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Abstract. We study the collapsing behaviour of Ricci–flat Kähler met-
rics on a projective Calabi-Yau manifold which admits an abelian fibra-
tion, when the volume of the fibers approaches zero. We show that away
from the critical locus of the fibration the metrics collapse with locally
bounded curvature, and along the fibers the rescaled metrics become flat
in the limit. The limit metric on the base minus the critical locus is lo-
cally isometric to an open dense subset of any Gromov-Hausdorff limit
space of the Ricci-flat metrics. We then apply these results to study
metric degenerations of families of polarized hyperkähler manifolds in
the large complex structure limit. In this setting we prove an analog
of a result of Gross-Wilson for K3 surfaces, which is motivated by the
Strominger-Yau-Zaslow picture of mirror symmetry.

1. Introduction

A Calabi-Yau manifold M is a compact Kähler manifold with vanishing
first Chern class c1(M) = 0 in H2(M,R). A fundamental theorem of Yau
[45] says that on M there exists a unique Ricci–flat Kähler metric in each
Kähler class. If we move the Kähler class towards a limit class on the
boundary of the Kähler cone, we get a family of Ricci–flat Kähler metrics
which degenerates in the limit. The general question of understanding the
geometric behaviour of these metrics was raised by Yau [46, 47], Wilson
[44] and others, and much work has been devoted to it, see for example
[18, 29, 30, 34, 37, 38] and references therein. In this paper, we study metric
degenerations of Ricci–flat Kähler metrics whose Kähler classes approach
semi-ample non-big classes.

The first useful observation is that the diameters of a family of Ricci–flat
Kähler metrics ω̃t, t ∈ (0, 1], on a Calabi-Yau manifold M are uniformly
bounded if their Kähler classes [ω̃t] tend to a limit class α on the boundary
of the Kähler cone when t → 0 [37, 48]. Another special feature of the
Kähler case is that the volume of the Ricci–flat metrics can be computed
cohomologically, and to determine whether it will approach zero or stay
bounded away from it, it is enough to calculate the self-intersection αn where
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n = dimCM . If αn is strictly positive, then it was proved by the second-
named author [37] that the Ricci–flat metrics do not collapse, (i.e., there is
a constant υ > 0 independent of t such that each ω̃t has a unit radius metric
ball with volume bigger than υ), and in fact converge smoothly away from
a subvariety. If αn is zero, then the total volume of the Ricci–flat metrics
approaches zero, so one expects to have collapsing to a lower-dimensional
space. This was shown to be the case for elliptically fibered K3 surfaces by
Gross-Wilson [18], and later the second-named author considered the higher
dimensional case when the Calabi-Yau manifold M admits a holomorphic
fibration to a lower-dimensional Kähler space, and the limit class is the
pullback of a Kähler class [38]. The first goal of the present paper is to
improve the convergence result in [38].

Let us now describe our first result in detail. Let (M,ωM ) be a compact
Calabi-Yau n-manifold which admits a holomorphic map f : M → Z where
(Z, ωZ) is a compact Kähler manifold. Thanks to Yau’s theorem, we can
assume that ωM is Ricci–flat. Denote by N = f(M) the image of f , and
assume that N is an irreducible normal subvariety of Z with dimension m,
0 < m < n, and that the map f : M → N has connected fibers. Denote
by ω0 = f∗ωZ , which is a smooth nonnegative real (1, 1)-form on M whose
cohomology class lies on the boundary of the Kähler cone of M , and denote
also by ωN the restriction of ωZ to the regular part of N . For example,
one can take either Z = N (if N is smooth), or Z = CPN (if N is an
algebraic variety). This second case arises whenever we have a line bundle
L → M which is semiample (some power is globally generated) and of Iitaka
dimension m < n, so L is not big.

In general, given a map f : M → N as above, there is a proper analytic
subvariety S ⊂ M such that N\f(S) is smooth and f : M\S → N\f(S) is
a smooth submersion (the set S is exactly where the differential df does not
have full rank m). For any y ∈ N\f(S) the fiber My = f−1(y) is a smooth
Calabi-Yau manifold of dimension n−m, and it is equipped with the Kähler
metric ωM |My . The volume of the fibers

∫
My

(ωM |My)
n−m is a homological

constant that does not depend on y in N\f(S), and we can assume that it
equals 1. Consider the Kähler metrics on M given by ωt = ω0 + tωM , with
0 < t 6 1, and call ω̃t = ωt +

√−1∂∂ϕt the unique Ricci–flat Kähler metric
on M cohomologous to ωt, with potentials normalized by sup

M
ϕt = 0. They

satisfy a family of complex Monge-Ampère equations

(1.1) ω̃n
t = (ωt +

√−1∂∂ϕt)
n = ctt

n−mωn
M ,

where ct is a constant that has a positive limit as t → 0 (see (4.28)). A
general C0 estimate ‖ϕt‖C0 6 C (independent of t > 0) for such equa-
tions was proved by Demailly-Pali [9] and Eyssidieux-Guedj-Zeriahi [10],
generalizing work of KoÃlodziej [24]. In the case under consideration, much
more is true: the second-named author’s work [38] shows that there exists a
smooth function ϕ on N\f(S) so that as t goes to zero we have ϕt → ϕ◦f in
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C1,α
loc (M\S, ωM ) for any 0 < α < 1. Moreover ω = ωN+

√−1∂∂ϕ is a Kähler
metric on N\f(S) with Ric(ω) = ωWP. Here ωWP is the pullback of the
Weil-Petersson metric from the moduli space of polarized Calabi-Yau fibers,
which has appeared several times before in the literature [11, 18, 34, 38].

We now assume that the every fiberMy with y ∈ N\f(S) is biholomorphic
to a complex torus (of course, it is enough to assume that just one smooth
fiber is a complex torus). This is the case for example whenever M is
hyperkähler. We also assume that M is projective, so we can take [ωM ] to
be the first Chern class of an ample line bundle. In this case we can improve
the above result, thus answering Questions 4.1 and 4.2 of [39] in our setting:

Theorem 1.1. If M is projective and if one (and hence all) of the fibers
My with y ∈ N\f(S) is a torus, then as t approaches zero the Ricci–flat
metrics ω̃t converge in C∞

loc(M\S, ωM ) to f∗ω, where ω is a Kähler metric
on N\f(S) with Ric(ω) = ωWP. Given any compact set K ⊂ M\S there is
a constant CK such that the sectional curvature of ω̃t satisfies

(1.2) sup
K

|Sec(ω̃t)| 6 CK ,

for all small t > 0. Furthermore, on each torus fiber My with y ∈ N\f(S)
we have

(1.3)
ω̃t|My

t
→ ωSF,y,

where ωSF,y is the unique flat metric on My cohomologous to ωM |My and
the convergence is smooth and uniform as y varies on a compact subset of
N\f(S).

As remarked earlier, in the case of elliptically fibered K3 surfaces (n =
2,m = 1) this theorem follows from the work of Gross-Wilson [18]. In
higher dimensions, in the very special case when S is empty, the theorem
(except (1.2)) also follows from the work of Fine [11]. Both these works
take a different approach from us, by constructing the Ricci–flat metrics ω̃t

as small perturbations of semi-flat metrics (see section 3), which in [18] are
glued to Ooguri-Vafa metrics near the singular fibers. By contrast, we work
directly with the Ricci–flat metrics ω̃t and prove that they satisfy a priori
estimates away from the singular fibers, which then implies the convergence
results. This was also the approach taken by the second-named author in
[38], where the convergence ω̃t → f∗ω was proved in a weaker topology (see
also the work of Song-Tian [34] for the case of K3 surfaces).

The curvature bound (1.2) in Theorem 1.1 does not hold if the generic
fibers are not tori, as one can see for example by taking the product of two
non-flat Calabi-Yau manifolds with the product Ricci-flat Kähler metric
and then scaling one factor to zero. On the other hand, we believe that
the assumption in Theorem 1.1 that M is projective is just technical and it
should be possible to remove it.
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We now describe the second main result of the paper, which concerns the
Gromov-Hausdorff limit of our manifolds. The Gromov-Hausdorff distance
dGH was introducted by Gromov in the 1980’s [15], and it defines a topology
on the space of isometry classes of all compact metric spaces. For two
compact metric spaces X and Y , the Gromov-Hausdorff distance of X and
Y is

dGH(X,Y ) = inf
Z
{dZH(X,Y ) | X,Y ↪→ Z isometric embeddings},

where Z is a metric space and dZH(X,Y ) denotes the standard Hausdorff
distance between X and Y regarded as subsets in Z by the isometric embed-
dings (see for example [15, 28] for more background). The Gromov-Hausdorff
topology provides a framework to study families of compact metric spaces or
Riemannian manifolds. We would like to understand the Gromov-Hausdorff
convergence of (M, ω̃t) in Theorem 1.1. Since the volume of the whole man-
ifold goes to zero, the manifolds (M, ω̃t) are collapsing. Furthermore, from
Theorem 1.1 we know that on a Zariski open set of M the Ricci-flat metrics
collapse with locally bounded curvature.

The collapsing of Einstein manifolds and Riemannian manifolds with def-
inite curvature bounds in the Gromov-Hausdorff sense has been extensively
studied from different viewpoints, see for example [2, 5, 6, 7, 8, 12, 18, 27,
28, 33] and the reference therein. These general theories provide us with
results which are particularly strong in the case of Riemannian manifolds
with bounded sectional curvature and Einstein manifolds of dimension 4.
The first detailed analysis of the collapsing of geometrically interesting fam-
ilies of Einstein 4-manifolds was done by Anderson in [2]. More recently, a
result of Cheeger-Tian [7] shows that on any sufficiently collapsed Ricci–flat
Einstein 4-manifold with volume 1 there is a large open set U where the
sectional curvature is bounded by a universal constant, and U admits an
F-structure, which is a generalization of torus fibration. Furthermore, by
[27], the collapsed limits of Ricci–flat Einstein 4-manifolds with bounded
Euler numbers are smooth Riemannian orbifolds away from a finite number
of points. The metric structure of collapsed limits of higher-dimensional
Einstein n-manifolds (and more generally manifolds with a uniform lower
bound on the Ricci curvature) was extensively studied by Cheeger-Colding
[5] and collaborators. Regarding the collapsed Gromov-Hausdorff limit of
the Ricci–flat metrics in Theorem 1.1, we have the following result.

First of all, thanks to [37, 48] we know that the diameter of (M, ω̃t)
satisfies

(1.4) diamω̃t(M) 6 D,

for some constant D and for all t > 0. Furthermore, since ω̃t → f∗ω and
the base N is not a point, we also have that diamω̃t(M) > D−1. Given any
sequence tk → 0, Gromov’s precompactness theorem shows that a subse-
quence of (M, ω̃tk) converges to some compact path metric space (X, dX) in
the Gromov-Hausdorff topology. Note that because of the upper and lower
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bounds for the diameter, if we rescaled the metrics ω̃tk to have diameter
equal to one, the Gromov-Hausdorff limit (modulo subsequences) would be
isometric to (X, dX) after a rescaling.

Theorem 1.2. In the same setting as Theorem 1.1, for any such limit space
(X, dX) there is an open dense subset X0 ⊂ X such that (X0, dX) is locally
isometric to (N\f(S), ω), i.e. there is a homeomorphism φ : N\f(S) −→ X0

satisfying that, for any y ∈ N\f(S), there is a neighborhood By ⊂ N\f(S)
of y such that, for y1 and y2 ∈ By,

dω(y1, y2) = dX(φ(y1), φ(y2)).

In fact we prove that X\X0 has measure zero with respect to the renor-
malized limit measure of [5], which implies that X0 is dense in X. It would
be interesting to prove that the metric completion of (N\f(S), ω) is isomet-
ric to (X, dX). In the case of K3 surfaces this was proved by Gross-Wilson
[18].

As an application of Theorem 1.1 and Theorem 1.2 we study the metric
degenerations of families of polarized hyperkähler manifolds in the large
complex structure limit. In [36], Stominger, Yau and Zaslow proposed a
conjecture about constructing the mirror manifold of a given Calabi-Yau
manifold via special Lagrangian fibrations. This became known as the SYZ
conjecture, and has generated an immense amount of work, see for example
[16, 17, 18, 25] and references therein. Later another version of the SYZ
conjecture was proposed by Gross-Wilson [18], Kontsevich-Soibelman [25]
and Todorov via degenerations of Ricci–flat Kähler-Einstein metrics. The
conjecture says that if {Mt}, t ∈ ∆\{0} ⊂ C, is a family of polarized Calabi-
Yau n-manifolds, ωt is the Ricci–flat Kähler-Einstein metric representing the
polarization onMt, and the complex structure ofMt tends to a large complex
structure limit point in the deformation moduli space of Mt when t → 0,
then after rescaling (Mt, ωt) to have diameter 1, they collapse to a compact
metric space (X, dX) in the Gromov-Hausdorff sense. Furthermore, a dense
open subset X0 ⊂ X is a smooth manifold of real dimension n, and the
codimension of X\X0 is bigger or equal to 2. This conjecture holds trivially
for tori, and was verified for K3 surfaces by Gross-Wilson in [18].

In the third main result of this paper we consider this conjecture for
higher dimensional hyperkähler manifolds. We will describe it briefly here,
and give a more complete description in Section 2. Let (M, I) be a compact
complex manifold of complex dimension 2n with a Ricci–flat Kähler metric
ωI with holonomy the full group Sp(n). In particular M is Calabi-Yau (in
our definition), and furthermore it has a hyperkähler structure. We assume
that there is an ample line bundle overM with the first Chern class [ωI ], that
we have a holomorphic fibration f : M → N as before with N a projective
variety, and that there is a holomorphic section s : N → M . Under these
assumptions, it is known that N = CPn [22], and that the smooth fibers of
f are complex Lagrangian tori [26]. If we perform a hyperkähler rotation
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of the complex structure, the fibers become special Lagrangian, and we are
exactly in the setup of Strominger, Yau and Zaslow [36]. We furthermore
assume that the polarization induced on the torus fibers is principal. In
this case, the SYZ mirror symmetry picture predicts that M is mirror to
itself, and that a large complex structure limit is mirror to a large Kähler
structure limit. We use this as our definition of large complex structure
limit, so we have a family of polarized hyperkähler structures (M, Ω̌s) with
Ricci-flat Kähler metric ω̌ which approach a large complex structure limit as
s → ∞. By assuming the validity of a standard conjecture on hyperkähler
manifolds (Conjecture 2.3), we can performe a hyperkähler rotation and a
normalization to reduce exactly to the setup covered by Theorems 1.1 and
1.2, and we can prove:

Theorem 1.3. In the above situation, denote M̌s the hyperkähler manifold
with period Ω̌s, and ds = diamω̌(M̌s). Then, for any sequence sk → ∞,
a subsequence of (M̌sk , d

−2
sk

ω̌) converges in the Gromov-Hausdorff sense to
a compact metric space (X, dX). Furthermore, there is an open dense sub-
set X0 ⊂ X such that (X0, dX) is local isometric to an open non-complete
smooth Riemannian manifold (N0, g) with dimRN0 =

1
2 dimRM .

This proves the conjecture of Gross-Wilson [18], Kontsevich-Soibelman
[25] and Todorov in our situation, modulo these assumptions, except for
the statement that codimR(X\X0) > 2 where more arguments are needed.
Again, this was proved by Gross-Wilson [18] in the case of K3 surfaces.

This paper is organized as follows. In Section 2 we study SYZ mirrors
of some hyperkähler manifolds, and derive Theorem 1.3 as a consequence
of Theorems 1.1 and 1.2. In Section 3 we construct semi-flat background
metrics on the total space of a holomorphic torus fibration. Theorem 1.1 is
proved in Section 4 while Theorem 1.2 is proved in Section 5.

Acknowledgements: Most of this work was carried out while the second-
named author was visiting the Mathematical Science Center of Tsinghua
University in Beijing, which he would like to thank for the hospitality. He is
also grateful to D.H. Phong and S.-T. Yau for their support and encourage-
ment, and to J. Song for many useful discussions. Some parts of this paper
were obtained while the third-named author’s was visiting University of Cal-
ifornia San Diego and Institut des Hautes Études Scientifiques. He would
like to thank UCSD and IHÉS for the hospitality, and he is also grateful to
Professor Xiaochun Rong for helpful discussions.

2. Hyperkähler mirror symmetry

In this section we discuss a version of mirror symmetry for hyperkähler
manifolds analogous to the one used for K3 surfaces in [18].
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The situation for general hyperkähler manifolds is considerably less de-
veloped, however, and we shall have to make many assumptions in this
discussion. The goal is to show, modulo these assumptions, that one ob-
tains the expected Gromov-Hausdorff collapse at a large complex structure
limit of hyperkähler manifolds, and that the limit can be identified using
the main results of this paper. This is completely analogous to [18], and
this discussion represents a summary of known results.

First we review known facts about periods of hyperkähler manifolds. Fix
M a manifold of real dimension 4n which supports a hyperkähler manifold
structure with holonomy being the full group Sp(n). (When a hyperkähler
manifold has this full group as holonomy, it is said to be irreducible.) Set
L = H2(M,Z), LR := L ⊗Z R, LC := L ⊗Z C. Then there is a real-valued
non-degenerate quadratic form qM : L → R, called the Beauville-Bogomolov
form, with the property that there is a constant c such that

qM (α)n = c

∫

M
α2n

for α ∈ L, of signature (+,+,+,−, · · · ,−). We write qM (·, ·) for the induced
pairing, with qM (α, α) = qM (α).

We can define the period domain of M to be

PM := {[Ω] ∈ P(LC) | qM (Ω) = 0, qM (Ω, Ω̄) > 0}.
The Teichmüller space of M , TeichM , is the set of hyperkähler complex
structures on M modulo elements of Diff0(M), the diffeomorphisms of M
isotopic to the identity. By the Bogomolov-Tian-Todorov theorem, this is a
(non-Hausdorff) manifold. There is a period map

Per : TeichM → PM

taking a complex structure on M to the class of the line H2,0(M). Then Per
is étale, and was proved to be surjective by Huybrechts in [21]. Although we
shall not make use of this here, we note that recently Verbitsky [41] proved
a suitably formulated global Torelli theorem. However, one must keep in
mind that Per is not, in general, a diffeomorphism.

Next consider a complex structure on M and Ricci–flat Kähler met-
ric ωI making M hyperkähler. Then a choice of a holomorphic symplec-
tic two-form ΩI , along with ωI , completely determines this structure. In
particular, if we write ΩI = ωJ +

√−1ωK , we can normalize ΩI so that
qM (ωI) = qM (ωJ) = qM (ωK). Furthermore, necessarily qM (ωI , ωJ) =
qM (ωI , ωK) = qM (ωJ , ωK) = 0. The triple ωI , ωJ , ωK is called a hyperkähler
triple. It gives rise to an S2 worth of complex structures compatible with
the same hyperkähler metric: in particular, one has the J complex struc-
ture with holomorphic symplectic form ΩJ := ωK +

√−1ωI and Kähler
form ωJ , and the K complex structure with holomorphic symplectic form
ΩK := ωI +

√−1ωJ and Kähler form ωK .
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We use these facts to speculate on mirror symmetry for hyperkähler man-
ifolds, starting with the Strominger-Yau-Zaslow point of view. Suppose
that we are given a complex structure on M such that there is a fibration
f : M → N , with fibers being holomorphic Lagrangian subvarieties of M .
Suppose furthermore that N is a Kähler manifold. Then by results of Mat-
sushita (see [26] and [16], Proposition 24.8 for these results) the smooth
fibers of f are complex tori and N is a Fano manifold with b2(N) = 1.
Furthermore, if M is projective of complex dimension 2n then N = CPn by
a result of Hwang [22]. Let ωI be a Ricci–flat Kähler form on M . Write
the holomorphic symplectic form ΩI on M as ωJ +

√−1ωK . Then after
hyperkähler rotation, there is a a complex structure with holomorphic sym-
plectic form ΩK = ωI +

√−1ωJ and Kähler form ωK . If My is a fiber of f ,
then ωJ |My = ωK |My = 0, from which it follows that Im(Ωn

K)|My = 0, so the
fibers of f are special Lagrangian.

The Strominger-Yau-Zaslow conjecture [36] predicts that mirror symme-
try can be explained via dualizing such a special Lagrangian torus fibration.
In a general situation, it can be hard to dualize torus fibrations, because of
singular fibres. The case that M is a K3 surface, treated in detail in [18],
is rather special because Poincaré duality gives a canonical isomorphism
between a two-torus and its dual.

With some additional assumptions, a similar situation holds in the hy-
perkähler case. Suppose that the Kähler form ωI is integral, so that there is
an ample line bundle L on X whose first Chern class is represented by ωI .
The restriction of this line bundle to a non-singular fiber My then induces
a polarization of some type (d1, . . . , dn). In particular there is a canonical
map My → M∨

y given by

My 3 x 7→ L|My ⊗ t∗xL−1|My ∈ M∨
y .

Here M∨
y is the dual abelian variety to My, classifying degree zero line

bundles on My, and tx : My → My is given by translation by x, which
makes sense once one chooses an origin in My. The kernel of this map is
(Z/d1Z⊕· · ·⊕Z/dnZ)⊕2. In particular, if f possesses a section s : N → M ,
and N0 := N \ f(S) where S is the critical locus of f , then the dual of
f−1(N0) → N0 can be described as a quotient map, given by dividing out
by the kernel of the polarization on each fiber. One can then hope that this
dual fibration can be compactified to a hyperkähler manifold.

In general, if My carries a polarization of type (d1, . . . , dn), it is not dif-
ficult to check that the dual abelian variety M∨

y carries a polarization of
type (dn/dn, dn/dn−1, . . . , dn/d1). Thus it is possible that the SYZ dual
hyperkähler manifold need not be the same as M . There do indeed exist
examples of abelian variety fibrations on hyperkähler manifolds which are
not principally polarized; these were discovered by Justin Sawon, see Ex-
ample 3.8 and Remark 3.9 of [31]. It is quite possible these fibrations do
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not have duals which are hyperkähler manifolds, as a natural compactifi-
cation might be a holomorphic symplectic variety without a holomorphic
symplectic resolution of singularities.

On the other hand, if ωI induces a principal polarization on each fiber
My, i.e., the map My → M∨

y is an isomorphism, then the SYZ dual of the

fibration f−1(N0) → N0, assuming again the existence of a section, can be
canonically identified with f−1(N0) → N0, and thus it is natural to consider
f : M → N to be a self-dual fibration, at least at the purely topological
level. In this case, and only in this case, SYZ mirror symmetry predicts that
hyperkähler manifolds are self-mirror. The idea that hyperkähler manifolds
should be self-mirror was first suggested and explored by Verbitsky in [40].

In this case only, we can be more explicit about mirror symmetry. We
summarize our assumptions so far:

Assumptions 2.1. Let MI be a hyperkähler manifold with f : MI → N a
complex torus fibration, along with a section s : N → MI and an ample line
bundle L with first Chern class represented by a hyperkähler metric ωI . We
assume further the induced polarization on the smooth fibers of f is principal
and that N is projective.

Thus, with these assumptions, it is natural to assume that mirror sym-
metry exchanges complex and Kähler moduli for the fixed underlying space
M . This can be described at the level of period domains as follows.

Let σ ∈ LR be the class represented by ωI . Fix an integral Kähler class
ωN on N , and let E ∈ L be represented by f∗ωN , so that qM (E) = 0.

Lemma 2.2. In the above situation, we have qM (E, σ) 6= 0.

Proof. By [16], Exercise 23.2, we have

qM (E, σ)

∫

M
σ2n = 2qM (σ)

∫

M
σ2n−1 ∧ f∗ωN 6= 0,

so qM (E, σ) 6= 0. ¤

Denote by E⊥ ⊆ LR the orthogonal complement of E under qM , and
denote by E⊥/E the quotient space E⊥/RE. Then qM induces a quadratic
form on E⊥/E. Let

C(M) := {x ∈ E⊥/E | qM (x) > 0},
and define the complexified Kähler moduli space of M to be

K(M) := E⊥/E ⊕ iC(M) ⊆ (E⊥/E)⊗ C.
We then have an isomorphism

mE,σ : K(M) → PM \E⊥
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via, representing an element of (E⊥/E)⊗ C by α ∈ E⊥ ⊗ C,

α 7→
[

1

qM (E, σ)
σ + α− 1

2

(
qM (σ)

qM (E, σ)2
+ qM (α) + 2

qM (α, σ)

qM (E, σ)

)
E

]
.

Indeed, one first checks that this is independent of which representative
α is chosen. Then one notes that the coefficient of E is chosen so that
qM (mE,σ(α)) = 0, and qM (mE,σ(α),mE,σ(ᾱ)) = 2qM (Imα) > 0 by as-
sumption that α ∈ K(M). Further, mE,σ is clearly injective, since α =

mE,σ(α)− σ/qM (E, σ) mod E. It is surjective, since given [Ω] ∈ PM \E⊥,
we can rescale Ω so that qM (Ω, E) = 1, and then [Ω] = mE,σ(Ω−σ/qM (E, σ)
mod E).

We can then view the mirror mapmE,σ described above as realising mirror
symmetry on the level of period domains as follows, defining an exchange of
data

(M,Ω,B+
√−1ω) ↔ (M, Ω̌, B̌+

√−1ω̌).

Here [Ω], [Ω̌] ∈ PM , with qM (E,Ω), qM (E, Ω̌) 6= 0, so that we can assume Ω
and Ω̌ are normalized with qM (E,Ω) = qM (E, Ω̌) = 1. Furthermore, B, B̌ ∈
E⊥/E and ω, ω̌ ∈ E⊥ satisfy qM (ω,Ω) = qM (ω̌, Ω̌) = 0 and qM (ω), qM (ω̌) >
0. The relationship between the two triples is that Ω̌ = mE,σ(B +

√−1ω)

and B̌, ω̌ are the unique cohomology classes satisfying the above conditions
and Ω = mE,σ(B̌+

√−1ω̌). Indeed, B̌ and ω̌ exist, since as qM (E,Ω) = 1,

we can write Ω = 1
qM (E,σ)σ + B̌ +

√−1ω̌ mod E, and replacing a chosen

representative ω̌ with ω̌−(qM (ω̌, σ)/qM (E, σ)−qM (ω̌,B))E, one guarantees
that qM (Ω̌, ω̌) = 0.

This mirror symmetry on the level of period domains doesn’t quite give
an exact mirror symmetry on the level of moduli spaces, since global Torelli
does not in general hold for hyperkähler manifolds, so there might be a
number of choices of complex structure on M with period [Ω]. In addition,
ω or ω̌ need not represent a Kähler form except for very general choices of
complex structure.

Nevertheless, this allows us to identify a large complex structure limit as
being mirror to a large Kähler limit. The family

(
M,Ω =

1

qM (E, σ)
σ + B̌+

√−1ω̌ mod E, sω

)
,

represents a large Kähler limit, with the Kähler class moving off to infinity
while the complex structure is fixed, and this is mirror to the triple

(
M, Ω̌s =

1

qM (E, σ)
σ +

√−1sω mod E, B̌+
√−1ω̌

)
.

If for each s, we have an actual hyperkähler manifold with period Ω̌s and
Kähler form ω̌, we would like to understand the limiting metric behaviour.



COLLAPSING OF ABELIAN FIBRED CALABI-YAU MANIFOLDS 11

To do so, we use hyperkähler rotation, and to do this we need to normalize
the holomorphic symplectic form, defining

Ω̌nor
s = s−1

√
qM (ω̌)

qM (ω)
Ω̌s.

Then we have qM (Re Ω̌nor
s ) = qM (Im Ω̌nor

s ) = qM (ω̌). So Re Ω̌nor
s , Im Ω̌nor

s

and ω̌ form a hyperkähler triple, and hence we can hyperkähler rotate to
obtain a hyperkähler manifold with holomorphic two-form

Ω̌s,J := Im Ω̌nor
s +

√−1ω̌ =

√
qM (ω̌)

qM (ω)

(
ω − qM (ω, σ)

qM (E, σ)
E

)
+
√−1ω̌

and Kähler form

ω̌s,J = Re Ω̌nor
s =

√
qM (ω̌)

qM (ω)

[
1

s

(
1

qM (E, σ)
σ − 1

2

qM (σ)

qM (E, σ)2
E

)
+

s

2
qM (ω)E

]
.

We note that the period Ω̌s,J is in fact independent of s, so we can fix the
complex structure on M independent of s. Assume that E is the first Chern
class of a nef line bundle on M with respect to a complex structure with
period Ω̌s,J , and ω̌s,J is a Kähler class with respect to this complex structure

if s > s0, for some s0 À 0. We now take s = s0

√
t+1
t , so that as t goes to

zero, s goes to infinity and we define the rescaled metrics

ω̌nor
t,J =

√
t(t+ 1)ω̌s(t),J = tω̌s0,J +

s0
2

√
qM (ω̌)qM (ω)E.

So as t → 0, ω̌nor
t,J moves on a straight line towards s0

2

√
qM (ω̌)qM (ω)E, and

ω̌s0,J is Kähler.
To relate this to the results of this paper, we have the following conjecture,

stated in [19, 42]:

Conjecture 2.3. Let M be an irreducible hyperkähler manifold and L a
non-trivial nef bundle on M , with qM (c1(L)) = 0. Then L induces a holo-
morphic map f ′ : M → N ′ to a projective variety N ′ with Lm ∼= f ′∗(O(1))
for some m > 0.

If such a map exists, it is necessarily a holomorphic Lagrangian fibration.
If furthermore M is projective then N ′ = CPn by [22]. This conjecture
follows from the log abundance conjecture if some multiple of L is effective,
and has been studied for example in [1, 4, 19, 42].

Let us suppose this conjecture holds. By choosing s0 properly, we assume
that s0

2

√
qM (ω̌)qM (ω) is a integer, and thus s0

2

√
qM (ω̌)qM (ω)E = f ′∗α

for an ample class α on N ′, where f ′ and N ′ are obtained by Conjec-
ture 2.3. Because of the hyperkähler rotation, the Riemannian metrics
defined by (Ω̌nor

s , ω̌) and by (Ω̌s,J , ω̌s,J) are the same. Therefore, to un-
derstand the Gromov-Hausdorff limit of the large complex structure limit
(M, Ω̌nor

s , ω̌) (this is the same that appears in the statement of Theorem
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1.3) we can instead consider (M, Ω̌s,J , ω̌s,J). Now Ω̌s,J is independent of
s, so we are simply changing the Kähler class, and the rescaled metrics
ω̌t,J =

√
t(t+ 1)ω̌s(t),J = tω̌s0,J + f ′∗α move towards f ′∗α along a straight

line. Therefore we are exactly in the setting of Theorem 1.1 and Theorem
1.2, which describe the Gromov-Hausdorff limit of (M, ω̌t,J) as t goes to
zero. But as remarked in the Introduction, we also have that the diameter
of ω̌t,J is bounded uniformly away from zero and infinity, so if we further
rescale the metrics ω̌t,J to have diameter 1, then up to a subsequence the
Gromov-Hausdorff limit only changes by a rescaling, and Theorem 1.3 fol-
lows.

3. Semi-flat metrics

In this section we discuss semi-flat forms and metrics, extending some
results in [18, 20] to our setting.

In general a closed real (1, 1)-form ωSF on an open set U ⊂ M\S will be
called semi-flat if its restriction to each torus fiber My ∩U with y ∈ f(U) is
a flat metric, which we will always assume to be cohomologous to ωM |My .
If ωSF is also Kähler then we will call it a semi-flat metric. Semi-flat forms
can also be defined when the fibers My are not tori but general Calabi-Yau
manifolds, by requiring that the restriction to each fiber be Ricci–flat (see
[34, 38]). They were first introduced by Greene-Shapere-Vafa-Yau in [14].

Fix now a small ball B ⊂ N\f(S) with coordinates y = (y1, . . . ym), and
consider the preimage f : U = f−1(B) → B. This is a holomorphic family of
complex tori, and if B is small enough it has a holomorphic section σ0, which
we also fix. We can then define a complex Lie group structure on each fiber
My = f−1(y) with unit σ0(y). We claim that this family is locally isomorphic
to a family of the form f ′ : (B × Cn−m)/Λ → B, where h : Λ → B is a
lattice bundle with fiber h−1(y) = Λy

∼= Z2n−2m, so that My
∼= Cn−m/Λy.

To see this, note that each fiber My = f−1(y) is a torus biholomorphic to
Cn−m/Λy for some lattice Λy that varies holomorphically in y. We choose a
basis v1(y), . . . , v2n−2m(y) of this lattice, which varies holomorphically in y.
Given these lattices we can construct the family f ′ by taking the quotient of
B ×Cn−m by the Z2n−2m-action given by (n1, . . . , n2n−2m) · (y, z) = (y, z +∑

i nivi(y)), where z = (z1, . . . , zn−m) ∈ Cn−m. Note that different choices
of generators give isomorphic quotients. By construction the fiber f ′−1(y)
is biholomorphic to f−1(y) for all y ∈ B. A theorem of Kodaira-Spencer
[23] (see also [43, Satz 3.6]) then implies that the families f and f ′ are
locally isomorphic, so up to shrinking B there exists a biholomorphism (B×
Cn−m)/Λ → U compatible with the projections to B, proving our claim.
With this identification, the section σ0 : B → U is induced by the map
B → B × Cn−m given by y 7→ (y, 0).
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Composing this biholomorphism with the quotient map B×Cn−m → (B×
Cn−m)/Λ by the Z2n−2m-action we get a holomorphic map p : B×Cn−m → U
such that f ◦p(y, z) = y for all (y, z), and p is a local isomorphism (the map
p is also the universal covering map of U).

We now assume that M is projective and [ωM ] is an integral class, so
each complex torus fiber My, y ∈ B, can be polarized by [ωM ], which gives
an ample polarization of type (d1, . . . , dn−m) for some sequence of integers
d1|d2| · · · |dn−m. By [3], Proposition 8.1.1, one can then assume that Λ is gen-
erated by d1e1, . . . , dn−men−m, Z1, . . . , Zn−m ∈ Cn−m, where e1, . . . , en−m is
the standard basis for Cn−m. Furthermore, the matrix Z with columns
Z1, . . . , Zn−m must satisfy Z = Zt and ImZ positive definite. Also, on the
fibre My, the Kähler form

∑
i,j

√−1(ImZ)ijdz
i ∧ dz̄j is cohomologous to

ωM |My . Let

gij = (ImZ)−1
ij .

Note that Z depends on y ∈ B, as does gij . Recall that we have the fiber
coordinates z1, . . . , zn−m. Consider the function

η(y, z) =
∑

i,j

−gij(y)

2
((zi − z̄i)(zj − z̄j)) .

We would first like to show that
√−1∂∂̄η is invariant under translation

by flat sections of the Gauss-Manin connection on B × Cn−n (this is the
connection on this bundle such that sections of Λ are flat sections of the
bundle). It is enough to check invariance under translation by λs for s one
of the generators of Λ, λ ∈ R. First, consider the composition of η with a
general translation zi 7→ zi + τi(y):∑

i,j

−gij
2

((zi + τi − z̄i − τ̄i)(zj + τj − z̄j − τ̄j))

= η −
∑

i,j

gij
2

((τi − τ̄i)(zj − z̄j) + (τj − τ̄j)(zi − z̄i) + (τi − τ̄i)(τj − τ̄j))

= η −
∑

i,j

gij

(
(τi − τ̄i)(zj − z̄j) +

1

2
(τi − τ̄i)(τj − τ̄j)

)
,

the last equality by the symmetry gij = gji. We now consider two cases.
If τi = λδik for some k, so that τi is real, then in fact the above formula
reduces to η, so η is itself invariant under this translation. Secondly, if we
take τi = λZik for some k, λ ∈ R, we obtain

η −
∑

i,j

(ImZ)−1
ij

(
2λ

√−1(ImZ)ik(zj − z̄j)− 2λ2(ImZ)ik(ImZ)jk
)

= η −
∑

j

2δjkλ
√−1(zj − z̄j)− 2λ2δjk(ImZ)jk.

Applying ∂∂̄ kills the correction term, so
√−1∂∂̄η is invariant under this

action. This means that
√−1∂∂η is the pullback under p of a two-form ωSF
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on U

(3.1) p∗ωSF =
√−1∂∂η,

and ωSF is semi-flat since its restriction to a fiber is
√−1

∑
i,j gij(y)dz

i∧dz̄j ,
a flat metric on My cohomologous to ωM |My . Note that the function η on
B × Cn−m has the scaling property

(3.2) η(y, λz) = λ2η(y, z),

for all λ ∈ R.
We now claim that on U the semi-flat form ωSF is nonnegative definite.

To check this, it is enough to check at one point on each fiber, because of the
invariance of this form. We check at the point z1 = · · · = zn−m = 0, where
the form is

√−1
∑

i,j gijdz
i ∧ dz̄j , which is clearly nonnegative definite. It

follows that ωSF > 0, and moreover that given any Kähler metric ω′ on B
the form ωSF + f∗ω′ is a semi-flat Kähler metric on U .

Suppose now that we have a holomorphic section σ : B → U of the map
f . We will denote by Tσ : U → U the fiberwise translation by σ (with
respect to the section σ0). If we choose any local lift of σ to B × Cn−m,
given by y 7→ (y, σ̃(y)), then the translation Tσ is induced by the map
B×Cn−m → B×Cn−m given by (y, z) 7→ (y, z+ σ̃(y)) (the choice of lift σ̃ is
irrelevant). We also have a map T−σ : U → U given by fiberwise translation
by −σ (with respect to σ0), which is induced by (y, z) 7→ (y, z − σ̃(y)). The
two translation are biholomorphisms of U and are inverses to each other. For
later purposes, we will need the following version of the ∂∂-Lemma, which
is analogous to [18, Lemma 4.3] (see also [20, Proposition 4.6]), except that
we work away from the singular fibers.

Proposition 3.1. Let ω be any Kähler metric on U cohomologous to ωSF

in H2(U,R). Then there exist a holomorphic section σ : B → U of f and a
smooth real function ξ on U such that

(3.3) T ∗
σωSF − ω =

√−1∂∂ξ

on U .

If in addition ω is also semi-flat, then ξ is constant on each fiber My and
is therefore the pullback of a function from B.

Proof. By assumption there is a 1-form ζ on U such that

ωSF − ω = dζ = ∂ζ0,1 + ∂ζ1,0, ∂ζ0,1 = 0,

where ζ = ζ0,1 + ζ1,0 and ζ0,1 = ζ1,0.
We claim that (0, 1)-forms

(3.4) θj =
√−1 ∂

(
n−m∑

i=1

gij(y)(zi − z̄i)

)
, j = 1, · · · , n−m,

are invariant under translations by flat sections of the Gauss-Manin connec-
tion on B × Cn−m, and thus descend to (0, 1)-forms on U . It is enough to
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check invariance under translation by λs where s is a generator of Λ and
λ ∈ R. First, consider a general translation zi 7→ zi + τi(y). If τi = λδik for
some k, so that τi is real, then θj are invariant. If τi = λZik for some k,
λ ∈ R, we obtain

n−m∑

i=1

gij(zi + λZik − z̄i − λZ̄ik) =

n−m∑

i=1

gij(zi − z̄i)

+ 2
√−1

n−m∑

i=1

(ImZ)−1
ij λ(ImZ)ik

=
n−m∑

i=1

gij(zi − z̄i) + 2λ
√−1δjk.

Applying ∂̄ kills the correction term, so θj are invariant, and therefore they
define (0, 1)-forms on U . Since, for any y ∈ B,

(3.5) p∗
(
θj |My

)
= −√−1

n−m∑

i=1

gij(y)dz̄i,

is fiberwise constant and gij is non-degenerate, we have that [θi|My ], i =

1, · · · , n−m is a basis of H0,1(My).
We claim that there are holomorphic functions σi : B → C such that

(3.6) ζ0,1 =
n−m∑

i=1

σiθi + ∂h,

for a complex-valued function h on U . To prove this, note that H0,1(U) =
H1(U,OU ) which by the Leray spectral sequence for f is isomorphic to
H0(B,R1f∗OU ) since Hk(B, f∗OU ) = Hk(B,OB) = 0 for k > 1. It follows
that a ∂-closed (0, 1)-form on U represents the zero class if and only if
its restriction to My represents the zero class in H0,1(My) for all y ∈ B.
Consider now the (0, 1)-forms dyi, 1 6 i 6 m, on B and denote their
pullbacks to U by the same symbol. Then at each point of U the forms
{θj}, 1 6 j 6 n −m together with {dyi}, 1 6 i 6 m, form a basis of (0, 1)-
forms. We can then write

ζ0,1 =
n−m∑

j=1

wjθj +
m∑

i=1

hidy
i,

where wj , hi are smooth complex functions on U . If we now restrict to a

fiber My we get ζ0,1|My =
∑n−m

j=1 wjθj |My , and the functions wj restricted to

My can be thought of as functions on Cn−m which are periodic with period
Λy. There is a holomorphic T 2n−2m-action on U which is induced by the
action of R2n−2m on B × Cn−m given by x · (y, z) = (y, z +

∑
j xjτj(y)),

where τj(y) is a basis for the lattice Λy (the choice of which is irrelevant).
If α is a function or differential form on U or My, we will denote by α̃ its
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average with respect to the T 2n−2m-action. In particular, if α is a function
on U then α̃ is the pullback of a function from B. We now call σj = w̃j ,
1 6 j 6 n − m, which are functions of y ∈ B only. We clearly have that

θ̃j = θj and d̃yi = dyi, so

ζ̃0,1|My =

n−m∑

j=1

σj(y)θj |My .

Now the T 2n−2m-action on My is generated by holomorphic vector fields
and therefore acts trivially on the Dolbeault cohomology H0,1(My), which
implies that

[
ζ0,1|My

]
=

[
ζ̃0,1|My

]
=

n−m∑

j=1

σj(y)
[
θj |My

]
,

in H0,1(My) for all y ∈ B. If we show that the σj(y) are holomorphic, then

the (0, 1)-form ζ0,1 −∑
j σj(y)θj on U would be ∂-closed and cohomologous

to zero in H0,1(U), thus proving (3.6).
Call now Vj , 1 6 j 6 n − m and Wi, 1 6 i 6 m the T 2n−2m-invariant

(0, 1)-type vector fields on U which are the dual basis to θj , dy
i. We have

that Vj =
√−1

∑n−m
k=1 gjk ∂

∂zk
, where gjk is the inverse matrix of gjk, and

the vector fields ∂
∂zk

are well-defined on U . We will not need the explicit

formula for Wi, but just the fact that if a function f on U is the pullback
of a function on B then Wi(f) =

∂f
∂yi

.

To see why σj(y) is holomorphic, compute

0 = ∂ζ0,1 =
∑

i,j

Wi(wj)dy
i ∧ θj +

∑

i,j

Vi(wj)θi ∧ θj

+
∑

i,j

Wj(hi)dy
j ∧ dyi +

∑

i,j

Vj(hi)θj ∧ dyi.

Since each Vj is a linear combination of ∂
∂zk

, we have that the functions

Vi(wj) and Vj(hi) have average zero on each fiber. Taking the average then
gives

0 = ∂ζ̃0,1 =
∑

i,j

∂σj
∂yi

dyi ∧ θj +
∑

i,j

∂h̃i
∂yj

dyj ∧ dyi.

Since the forms dyi∧θj and dyj∧dyi are linearly independent at every point,
this implies that σj(y) are indeed holomorphic.
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Let now Tσ : U → U be the translation induced by the section σ =
(p ◦ σ1, · · · , p ◦ σn−m), where p : B ×Cn−m → U is the quotient map. Since
∑

i,j

− gij
2

((zi + σi − z̄i − σ̄i)(zj + σj − z̄j − σ̄j))

= η −
∑

i,j

gij
2

((σi − σ̄i)(zj − z̄j) + (σj − σ̄j)(zi − z̄i) + (σi − σ̄i)(σj − σ̄j))

= η −
∑

i,j

gij

(
(σi − σ̄i)(zj − z̄j) +

1

2
(σi − σ̄i)(σj − σ̄j)

)
,

we have

p∗T ∗
σωSF − p∗ωSF = −√−1∂∂

∑

i,j

gij(σi − σ̄i)(zj − z̄j) +
√−1∂∂Φ(y)

= p∗
(
−∂

∑

i

σiθi − ∂
∑

i

σiθi

)
+

√−1∂∂Φ(y),

where Φ(y) = −∑
i,j

gij
2 (σi − σ̄i)(σj − σ̄j) is a real function of y only. We

have just proved that

ωSF − ω = ∂ζ0,1 + ∂ ζ0,1 = ∂
∑

i

σiθi + ∂∂h+ ∂
∑

i

σiθi + ∂∂h.

Thus
p∗T ∗

σωSF − p∗ω = p∗
√−1∂∂(2Imh+Φ),

which proves (3.3) with ξ = 2Imh+Φ. ¤

4. Estimates and smooth convergence

In this section we prove a priori estimates of all orders for the Ricci–flat
metrics ω̃t which are uniform on compact sets of M\S, and then use these
to prove Theorem 1.1. These estimates improve the results in [38], and use
crucially the assumptions that M is projective and that the smooth fibers
My are tori.

Lemma 4.1. There is a constant C such that on U the Ricci–flat metrics
ω̃t satisfy

(4.1) C−1(ω0 + tωM ) 6 ω̃t 6 C(ω0 + tωM ),

for all small t > 0.

Proof. This estimate is contained in the second-named author’s work [38],
although it is not explicitly stated there. To see this, start from [38, (3.24)],
which gives a constant C so that on U we have

C−1(tωM ) 6 ω̃t.
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Then use [38, Lemma 3.1] to get

C−1ω0 6 ω̃t,

and so adding these two inequalities we get

C−1(ω0 + tωM ) 6 ω̃t,

or in other words trω̃tωt 6 C on U , where ωt = ω0 + tωM as before. To get
the reverse inequality, we note that on U we have

trωtω̃t 6 (trω̃tωt)
n−1 ω̃

n
t

ωn
t

6 C
ω̃n
t

ωn
t

6 C,

where the last inequality follows from [38, (3.23)]. We thus get the reverse
inequality

ω̃t 6 C(ω0 + tωM ),

thus proving (4.1). ¤

From now on we fix a small ball B ⊂ N\f(S), and as before we call
U = f−1(B) and we have the holomorphic covering map p : B×Cn−m → U ,
with f ◦ p(y, z) = y where (y, z) = (y1, . . . , ym, z1, . . . , zn−m) the standard
coordinates on B×Cn−m. We let λt : B×Cn−m → B×Cn−m be the dilation

λt(y, z) =

(
y,

z√
t

)
,

which takes the lattice
√
tΛy to Λy. If we pull back the Kähler potential ϕt

on U via p we get a function ϕt ◦ p on B×Cn−m which is periodic in z with
period Λy, i.e. ϕt ◦ p(y, z + `) = ϕt ◦ p(y, z) for all ` ∈ Λy. The function

ϕt ◦ p ◦ λt is then periodic in z with period
√
tΛy. Note that since ω0 is the

pullback of a metric from N\f(S), we have λ∗
t p

∗ω0 = p∗ω0.
Recall now that we have a nonnegative definite semi-flat form ωSF on

U , and that ω0 + ωSF is then a semi-flat Kähler metric on U . Since U
is diffeomorphic to a product B × My, it follows that ωSF and ωM are
cohomologous on U . We now apply Proposition 3.1 and get a holomorphic
section σ : B → U and a real function ξ on U such that

(4.2) T ∗
σωSF − ωM =

√−1∂∂ξ

on U , where Tσ is the fiberwise translation by σ.

Lemma 4.2. There is a constant C such that on the whole of B × Cn−m

we have

(4.3) C−1p∗(ω0 + ωSF ) 6 λ∗
t p

∗T ∗
−σω̃t 6 Cp∗(ω0 + ωSF ),

for all small t > 0.

Proof. First of all notice that after replacing U with a slightly smaller open
set, the semi-flat metric ω0 + ωSF is uniformly equivalent to ωM , which
implies that

(4.4) C−1(ω0 + tωSF ) 6 ω0 + tωM 6 C(ω0 + tωSF ),
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for all small t > 0. Thanks to Lemma 4.1 on U we have that

C−1(ω0 + tT ∗
−σωM ) 6 T ∗

−σω̃t 6 C(ω0 + tT ∗
−σωM ),

and since T ∗−σωM is uniformly equivalent to ωM we also have that

(4.5) C−1(ω0 + tωM ) 6 T ∗
−σω̃t 6 C(ω0 + tωM ),

and combining (4.4) and (4.5) we get

(4.6) C−1(ω0 + tωSF ) 6 T ∗
−σω̃t 6 C(ω0 + tωSF ),

on U . If we pull back (4.6) by p ◦ λt we get

(4.7) C−1(p∗ω0 + tλ∗
t p

∗ωSF ) 6 λ∗
t p

∗T ∗
−σω̃t 6 C(p∗ω0 + tλ∗

t p
∗ωSF ),

on all of B×Cn−m. We claim that on the whole of B×Cn−m we have that

(4.8) tλ∗
t p

∗ωSF = p∗ωSF .

In fact, the construction of ωSF in section 3 gives that p∗ωSF =
√−1∂∂η,

for a function η on B × Cn−m that satisfies

(4.9) η ◦ λt(y, z) = η

(
y,

z√
t

)
=

1

t
η(y, z),

for all (y, z) in B × Cn−m and any t > 0. It follows then that

(4.10) tλ∗
t p

∗ωSF = tλ∗
t

√−1∂∂η = t
√−1∂∂(η ◦ λt) =

√−1∂∂η = p∗ωSF ,

as claimed. Combining (4.7) and (4.8) we get the bound (4.3). ¤

Proposition 4.3. Given any compact set K in B × Cn−m and any k > 0
there exists a constant C independent of t > 0 such that

(4.11) ‖λ∗
t p

∗T ∗
−σω̃t‖Ck(K,δ) 6 C,

where δ is the Euclidean metric on B × Cn−m.

Proof. We pull back (1.1) via T−σ ◦ p ◦ λt and get

(λ∗
t p

∗T ∗
−σω̃t)

n(y, z) = ctt
n−m(λ∗

t p
∗T ∗

−σωM )n(y, z)

= ct(p
∗T ∗

−σωM )n
(
y,

z√
t

)
,

since the pullback under λt of any volume form f(y, z)dy1 ∧ · · · ∧ dzn−m on
B×Cn−m equals tm−nf(y, z√

t
)dy1 ∧ · · · ∧ dzn−m. We now claim that in fact

we have

(p∗T ∗
−σωM )n

(
y,

z√
t

)
= (p∗T ∗

−σωM )n(y, z).

To see this, consider the (n, 0)-form

dy1 ∧ · · · ∧ dym ∧ dz1 ∧ · · · ∧ dzn−m
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on B × Cn−m. This form is invariant under the Z2n−2m-action described
above

(n1, . . . , n2n−2m) · (y, z) = (y, z +
∑

i

nivi(y)),

where (y, z) = (y1, . . . , ym, z1, . . . , zn−m), and so it descends to a holomor-
phic (n, 0)-form to the quotient (B×Cn−m)/Λ and using the biholomorphism
with U we get a holomorphic (n, 0)-form Ω on U . We can then consider the

volume form (
√−1)n

2
Ω ∧ Ω, and we have

T ∗
−σω

n
M = h · (√−1)n

2
Ω ∧ Ω,

where h is a smooth positive function on U . Taking
√−1∂∂ log of both sides

we get
√−1∂∂ log h =

√−1∂∂ log
T ∗−σω

n
M

(
√−1)n2Ω ∧ Ω

= 0,

since T ∗−σωM is Ricci–flat and Ω is a holomorphic (n, 0)-form. So log h is
pluriharmonic on U , and this implies that its restriction to any fiber My

with y ∈ B is constant. Pulling back via p we get

(p∗T ∗
−σω

n
M )(y, z) = (h ◦ p)(y, z)(√−1)n

2
dy1 ∧ · · · ∧ dzn−m,

but since h is constant along the fibers of f and p is compatible with the pro-
jection to B we get that the function (h◦p)(y, z) on B×Cn−m is independent
of z. In particular we have

(p∗T ∗
−σωM )n

(
y,

z√
t

)
= (p∗T ∗

−σωM )n(y, z),

and so the rescaled metrics λ∗
t p

∗T ∗−σω̃t satisfy the nondegenerate complex
Monge-Ampère equation

(λ∗
t p

∗T ∗
−σω̃t)

n = (p∗ω0 + tλ∗
t p

∗T ∗
−σωM +

√−1∂∂ϕ̃t)
n = ct(p

∗T ∗
−σωM )n

on B × Cn−m, where we have set

ϕ̃t = ϕt ◦ T−σ ◦ p ◦ λt.

We claim that the estimates (4.11) hold. To see this, we use (4.2) and get

(4.12) p∗ωSF = p∗T ∗
−σωM + p∗T ∗

−σ

√−1∂∂ξ,

for a function ξ on U . On B ×Cn−m we can then use (4.10) and (4.12) and
write

λ∗
t p

∗T ∗
−σω̃t = p∗ω0 + tλ∗

t p
∗T ∗

−σωM +
√−1∂∂ϕ̃t

= p∗ω0 + tλ∗
t p

∗(ωSF − T ∗
−σ

√−1∂∂ξ) +
√−1∂∂ϕ̃t

= p∗ω0 + p∗ωSF − tλ∗
t p

∗T ∗
−σ

√−1∂∂ξ +
√−1∂∂ϕ̃t

= p∗(ω0 + ωSF ) +
√−1∂∂ut,

(4.13)

where for simplicity we write ut = ϕ̃t − t(ξ ◦ T−σ ◦ p ◦ λt). The functions ut
are uniformly bounded in C0(B × Cn−m) because of the L∞ bound for ϕt
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from [9, 10] and because ξ is a fixed function on U . The functions ut satisfy
the complex Monge-Ampère equations

(4.14) (p∗ω0 + p∗ωSF +
√−1∂∂ut)

n = ct(p
∗T ∗

−σωM )n

on B×Cn−m, and on any compact subset K of B×Cn−m the Kähler metric
p∗(ω0 + ωSF ) is C∞ equivalent to the Euclidean metric δ (with constants
that depend only on K). The bounds (4.3) imply that

C−1δ 6 p∗(ω0 + ωSF ) +
√−1∂∂ut 6 Cδ,

on K for all small t > 0, where C depends on K. The constants ct are
bounded uniformly and away from zero. After shrinking K slightly we can
then apply the Evans-Krylov theory (as explained for example in [13, 32])
and Schauder estimates to get higher order estimates ‖ut‖Ck(K,δ) 6 C(k)

for all k > 0, thus proving (4.11). ¤

Lemma 4.4. Given any compact set K ⊂ M\S there is a constant CK such
that the sectional curvature of ω̃t satisfies

(4.15) sup
K

|Sec(ω̃t)| 6 CK ,

for all small t > 0.

Proof. We can assume that K is sufficiently small so that f(K) ⊂ B for a
ball B as before, and that there is a compact set K ′ ⊂ B × Cn−m so that
p : K ′ → Tσ(K) is a biholomorphism. We then have

sup
K

|Sec(ω̃t)| = sup
Tσ(K)

|Sec(T ∗
−σω̃t)| = sup

K′
|Sec(p∗T ∗

−σω̃t)|

= sup
λ−1
t (K′)

|Sec(λ∗
t p

∗T ∗
−σω̃t)|.

For t > 0 small enough, the sets λ−1
t (K) are all contained in a fixed compact

set K ′′ ⊂ B × Cn−m. From (4.3) and (4.11) we then get a uniform bound
for the sectional curvatures of λ∗

t p
∗T ∗−σω̃t on K ′′, and this proves (4.15). ¤

Lemma 4.5. Given any compact set K in B × Cn−m and any k > 0 there
exists a constant C independent of t > 0 such that

(4.16) ‖p∗T ∗
−σω̃t‖Ck(K,δ) 6 C,

where δ is the Euclidean metric on B × Cn−m.

Proof. Given K, for all t > 0 small enough the sets λ−1
t (K) are all contained

in a fixed compact setK ′ ⊂ B×Cn−m. We wish to deduce (4.16) from (4.11).
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To see this, write on B × Cn−m

λ∗
t p

∗T ∗
−σω̃t =

√−1

(∑

i,j

Aij(t, y, z)dz
i ∧ dzj +

∑

i,j

Bij(t, y, z)dy
i ∧ dyj

+
∑

i,j

Cij(t, y, z)dy
i ∧ dzj +

∑

i,j

Dij(t, y, z)dz
i ∧ dyj

)
.

Thanks to (4.11), on K ′ the coefficents A,B,C,D satisfy uniform Ck es-
timates in the variables (y, z) independent of t. We then pull back this
equation via the map λ1/t (the inverse of λt) and get

p∗T ∗
−σω̃t =

√−1

(
t
∑

i,j

Aij(t, y, z
√
t)dzi ∧ dzj +

∑

i,j

Bij(t, y, z
√
t)dyi ∧ dyj

+
√
t
∑

i,j

Cij(t, y, z
√
t)dyi ∧ dzj +

√
t
∑

i,j

Dij(t, y, z
√
t)dzi ∧ dyj

)
,

and the new coefficients are uniformly bounded in Ck on K, thus proving
(4.16). ¤

Proposition 4.6. As t goes to zero we have

ω̃t → f∗ω

in C∞
loc(M\S, ωM ), where ω = ωN +

√−1∂∂ϕ is a Kähler metric on N\f(S)
with Ric(ω) = ωWP as in Theorem 1.1.

Proof. Recall that ω̃t = ω0 + tωM +
√−1∂∂ϕt, so that

p∗T ∗
−σω̃t = p∗ω0 + tp∗T ∗

−σωM +
√−1∂∂(ϕt ◦ T−σ ◦ p).

We now fix a compact set K ⊂ M\S, which we can assume is sufficiently
small so that f(K) ⊂ B for a ball B as before, and that there is a compact
set K ′ ⊂ B × Cn−m such that p : K ′ → Tσ(K) is a biholomorphism. From
(4.16) (together with the L∞ bound for ϕt from [9, 10]) we see that

‖ϕt ◦ T−σ ◦ p‖Ck(K′,δ) 6 C(k),

and therefore also

(4.17) ‖ϕt‖Ck(K,ωM ) 6 C(k),

since T−σ ◦ p : K ′ → K is a fixed biholomorphism. From [38] we know

that ϕt → f∗ϕ in C1,α
loc (M\S, ωM ), and so (4.17) implies that ϕt → f∗ϕ in

C∞
loc(M\S, ωM ), and therefore that ω̃t → f∗ω in C∞

loc(M\S, ωM ). ¤

As a corollary of this, for any compact subset K ⊂ M\S, there is a
positive function ε(t) which goes to zero as t → 0, such that

(4.18) f∗ω − ε(t)ωM 6 ω̃t 6 f∗ω + ε(t)ωM
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on K, as well as

(4.19) e−ε(t)f∗ω 6 ω̃t.

We now finish the proof of Theorem 1.1. We have already proved the first
two statements in Proposition 4.6 and Lemma 4.4, and it remains to prove
(1.3). We will present two proofs of (1.3), one which uses the fact that the
fibers are tori, and another one which only uses the convergence result in
Proposition 4.6.

For the first proof, we need the following lemma

Lemma 4.7. As t goes to zero we have

(4.20) λ∗
t p

∗T ∗
−σω̃t → p∗(ωSF + f∗ω)

in C∞
loc(B × Cn−m, δ), where δ is the Euclidean metric.

Proof. Recall that from (4.13) we see that on B × Cn−m

λ∗
t p

∗T ∗
−σω̃t = p∗(ω0 + ωSF ) +

√−1∂∂ut,

where the functions ut = ϕ̃t − tλ∗
t p

∗T ∗−σξ have uniform C∞ bounds on com-
pact sets. We need to show that as t goes to zero we have ut → (f ◦ p)∗ϕ in
C∞
loc(B×Cn−m, δ), where f∗ϕ is the C1,α limit of ϕt from [38]. To prove this

we need another estimate from the second-named author’s work [38, (3.9)],
which implies that there is a constant C (that depends on the initial choice
of B) so that for all 0 < t 6 1 we have

(4.21) sup
y∈B

oscMyϕt 6 Ct.

We now use this together with the fact that ϕt → f∗ϕ in C0 to get that for
any (y, z) in B × Cn−m we have

|ϕ̃t(y, z)− (f ◦ p)∗ϕ(y, z)| =
∣∣∣∣ϕt ◦ T−σ ◦ p

(
y,

z√
t

)
− ϕ(y)

∣∣∣∣

6
∣∣∣∣ϕt ◦ p

(
y,

z√
t
− σ̃(y)

)
− ϕt ◦ p(y, z)

∣∣∣∣
+ |ϕt ◦ p(y, z)− ((f∗ϕ) ◦ p)(y)|

6 Ct+ sup
U

|ϕt − f∗ϕ|,

where in the last line we used (4.21) because the points p(y, z√
t
− σ̃(y)) and

p(y, z) lie in the same fiber My. Letting t go to zero we see that ϕ̃t →
(f ◦ p)∗ϕ in C0(B ×Cn−m). On the other hand we have that tλ∗

t p
∗ξ → 0 in

C0(B×Cn−m), and so ut → (f◦p)∗ϕ in C0(B×Cn−m). Thanks to the higher
order estimates for ut, we also have that ut → (f ◦p)∗ϕ in C∞

loc(B×Cn−m, δ),
up to shrinking B slightly. ¤

We can now complete the proof of Theorem 1.1.
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Proof. Recall that thanks to Lemma 4.7, on B × Cn−m we can write

λ∗
t p

∗T ∗
−σω̃t − p∗(ωSF + f∗ω) = Et,

where the error term Et is a (1, 1)-form that goes to zero smoothly on
compact sets. From (4.8) we also have that

Et = λ∗
t p

∗(T ∗
−σω̃t − f∗ω − tωSF ).

If we restrict the form T ∗−σω̃t− f∗ω− tωSF to a fiber My and divide by t we
get

Et

t

∣∣∣∣
{y}×Cn−m

= λ∗
t p

∗
(
T ∗−σω̃t|My

t
− ωSF,y

)

Pulling back this via the map λ1/t (the inverse of λt) we get

λ∗
1/tEt

t

∣∣∣∣
{y}×Cn−m

= p∗
(
T ∗−σω̃t|My

t
− ωSF,y

)
.

Explicitly we have λ1/t(y, z) = (y, z
√
t), which implies that λ∗

1/tdz
i =

√
tdzi,

and so
λ∗
1/tEt

t

∣∣∣∣
{y}×Cn−m

(y, z) = Et

∣∣∣∣
{y}×Cn−m

(y, z
√
t),

which goes to zero smoothly as t approaches zero, uniformly in y. It follows

that
T ∗
−σω̃t|My

t converges smoothly to ωSF,y, and the convergence is uniform
as y varies on compact sets of N\f(S). Pulling back via Tσ, and using the

fact that T ∗
σωSF,y = ωSF,y, we see that also

ω̃t|My

t converges smoothly to
ωSF,y, as desired. ¤

Remark 4.8. Note that in particular we get the estimate

sup
My

∣∣∇(ω̃|My)
∣∣2
ωM

6 Ct2,

which improves [38, (2.11)].

We now give a second proof of (1.3). In fact we show that in general (1.3)
follows from Proposition 4.6, without assuming that M is projective or that
the fibers My are tori (in general My is a Calabi-Yau manifold). This will
finish the proof of Theorem 1.1.

Proposition 4.9. Assume the same setting as in the Introduction, except
that M need not be projective and My need not be a torus. If we have that

(4.22) ω̃t → f∗ω

in C∞
loc(M\S, ωM ), where ω is as before, then on each fiber My with y ∈

N\f(S) we have

(4.23)
ω̃t|My

t
→ ωSF,y,
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where ωSF,y is the unique Ricci–flat metric on My cohomologous to ωM |My

and the convergence is smooth and uniform as y varies on a compact subset
of N\f(S).

Proof. For simplicity of notation call ωy = ωM |My and ω̃y = ω̃t|My . On each

fiber My we have that Ric(ωy) =
√−1∂∂Fy for some smooth function Fy

normalized by
∫
My

(eFy − 1)ωn−m
y = 0. The functions Fy vary smoothly in

y ∈ N\f(S), because so do the Kähler metrics ωy. The unique Ricci–flat

metric on My cohomologous to ωy is given by ωSF,y = ωy +
√−1∂∂ζy and

solves the complex Monge-Ampère equation on My

ωn−m
SF,y = (ωy +

√−1∂∂ζy)
n−m = eFyωn−m

y .

Recall from [38, Section 2] that we have

ωm
0 ∧ ωn−m

M = Hωn
M ,

where H > 0 is a smooth function on M that vanishes precisely on S. A
simple calculation [38, (3.5)] shows that on My we have

Ric(ωy) = −√−1∂∂ logH + (Ric(ωM ))|My = −√−1∂∂ logH,

since we picked ωM to be Ricci–flat. It follows that on My the functions Fy

and − logH differ by a constant, which we can identify as follows: thanks
to Yau’s estimates, the functions ζy vary smoothly in y and so they define a

smooth function ζ on M\S. We then defined ωSF = ωM +
√−1∂∂ζ, which

is a semi-flat form on M\S (here semi-flat means that its restriction to each
fiber My is Ricci–flat). This semi-flat form is in general different from the
one constructed locally in section 3, although they are equal when restricted
to each fiber My. Even though ωSF is not necessarily nonnegative, on M\S
the (n, n)-form ωn−m

SF ∧ωm
0 is strictly positive, and so we can define a smooth

positive function G on M\S by

(4.24) G =
ωn
M

ωm
0 ∧ ωn−m

SF

.

It is shown in [35, Lemma 3.3], [38, p.445] that G is a positive constant on
each fiber My, and we claim we have

(4.25) eFy =
1

GH
.

This is because on My we have

1

H
=

ωn
M

ωm
0 ∧ ωn−m

M

=
ωn
M

ωm
0 ∧ ωn−m

SF

· ω
n−m
SF,y

ωn−m
y

= GeFy .
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On My we can then write, using (1.1), (4.25)
(
ω̃y

t

)n−m

= tm−n
ω̃n−m
y

ωn−m
y

ωn−m
y = tm−n

ω̃n−m
y ∧ ωm

0

ωn−m
M ∧ ωm

0

ωn−m
y

=
ω̃n−m
y ∧ ωm

0

ω̃n
t

· ct
H

ωn−m
y

=
ω̃n−m
y ∧ ωm

0

ω̃n
t

(ctG)eFyωn−m
y .

(4.26)

We also have a pointwise identity on My

ω̃n−m
y ∧ ωm

0

ω̃n
t

=
ω̃n−m
y ∧ ωm

0(
n
m

)
ω̃n−m
y ∧ ω̃m

t

=
ωn−m
y ∧ ωm

0(
n
m

)
ωn−m
y ∧ ω̃m

t

,

and we will write

ft = ctG
ωn−m
y ∧ ωm

0(
n
m

)
ωn−m
y ∧ ω̃m

t

,

so that we can recast (4.26) as

(4.27)

(
ω̃y

t

)n−m

= ftω
n−m
SF,y .

Notice that the functions ft are the restriction to My of smooth functions
on M\S. We claim that as t approaches zero the functions ft converge to 1
in C∞

loc(M\S, ωM ). To see this, first of all note that by definition we have

(4.28) lim
t→0

ct =

(
n

m

)∫
M ωm

0 ∧ ωn−m
M∫

M ωn
M

> 0,

see also [10], [38, (2.6)]. We now use the assumption (4.22), and so the
functions ft converge smoothly to

(4.29) G

(
n

m

)∫
M ωm

0 ∧ ωn−m
M∫

M ωn
M

· ωn−m
M ∧ ωm

0(
n
m

)
ωn−m
M ∧ (f∗ω)m

.

To see why this equals one, recall from [38, (4.3)] that the limit metric ω on
N\f(S) satisfies

(4.30) ωm = G

∫
M ωm

0 ∧ ωn−m
M∫

M ωn
M

ωm
N ,

where our function G is defined so that it differs from the function F in [38,
(4.3)] by the constant factor

∫
M (ω0 + ωM )n/

∫
M ωn

M . Substituting (4.30)
into (4.29) we see that the limit of ft equals

ωn−m
M ∧ ωm

0

ωn−m
M ∧ (f∗ωN )m

= 1.

Note now that from the main result of [38] we have that on each fiber My

(4.31) C−1ωy 6 ω̃y

t
6 Cωy,
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where C is uniform as y varies in a compact set of N\f(S). From the
definition on My we have

ω̃y

t
= ωy +

√−1∂∂
(ϕt

t

)
,

where ϕt

t satisfies the C0 estimate (4.21). The metrics
ω̃y

t satisfy the complex
Monge-Ampère equations on My

(4.32)

(
ω̃y

t

)n−m

=
(
ωy +

√−1∂∂
(ϕt

t

))n−m
= fte

Fyωn−m
y ,

and we have just shown that the functions fte
Fy are bounded in C∞(My, ωy)

and away from zero, so we can apply the theory of Evans-Krylov and
Schauder estimates on My to (4.32) (using (4.21) and (4.31)) to get bounds

∥∥∥∥
ω̃y

t

∥∥∥∥
Ck(My ,ωy)

6 C(k),

independent of t. It follows that given any sequence ti → 0 we can find a
subsequence (still denoted by ti) and a smooth Kähler metric αy on My so

that
ω̃y

ti
→ αy in C∞(ωy). Equation (4.27) in the limit becomes

αn−m
y = ωn−m

SF,y ,

and so by the uniqueness of Ricci–flat metrics in a given cohomology class we

must have αy = ωSF,y. Therefore the whole sequence
ω̃y

t converges smoothly
to ωSF,y as desired, and the convergence is uniform as y varies on compact
sets of N\f(S). ¤

Remark 4.10. In fact the proof of Proposition 4.9 shows that if we just have
that ω̃t → f∗ω in C0

loc(M\S) (or in the C2 topology of Kähler potentials)
then (1.3) holds in the C1,α topology of Kähler potentials. It seems that
just having ω̃t → f∗ω in the C1,α topology of Kähler potentials (which is
proved in [38] in general) is not quite enough to deduce (1.3).

5. Gromov-Hausdorff convergence

In this section we study the collapsed Gromov-Hausdorff limits of the
Ricci–flat metrics ω̃t and prove Theorem 1.2.

Lemma 5.1. There is an open subset X0 ⊂ X such that (X0, dX) is locally
isometric to (N0, ω) where N0 = N\f(S), i.e. there is a homeomorphism
φ : N0 −→ X0 such that, for any y ∈ N0, there is a neighborhood By ⊂ N0

of y satisfying that, if y1 and y2 ∈ By,

dω(y1, y2) = dX(φ(y1), φ(y2)).
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Furthermore, for any y ∈ N0, there is a compact neighborhood B ⊂ N0 and a
holomorphic section s : B → f−1(B), i.e., f ◦ s = id, such that s(y) → φ(y)
under the Gromov-Hausdorff convergence of (M, ω̃tk) to (X, dX).

Proof. Let A be a countable dense subset of N0, and K ⊂ N0 be a compact
subset with the interior intK non-empty. Let {Bi} be a finite covering
of K with small Euclidean balls such that each the concentric balls B′

i of
half radius still cover K. Let si : Bi → f−1(Bi) be sections on Bi, i.e.,
holomorphic maps with f ◦ si = id.

Now, we define a map φ from A ∩ K = {a1, a2, · · · } to X. Suppose
that the point a1 lies inside the ball B′

i, and consider the points si(a1)
inside M . Under the Gromov-Hausdorff convergence of (M, ω̃tk) to (X, dX),
a subsequence of these points converges to a point b1 in X, because the
diameter of (M, ω̃tk) is uniformly bounded. If a1 also lies inside another ball
B′

j , then (1.3) (or also [38, (2.10)]) shows that dω̃tk
(si(a1), sj(a1)) → 0 when

tk → 0. Thus, by passing to subsequences, both si(a1) and sj(a1) converge to
the same point b1 ∈ X under the Gromov-Hausdorff convergence of (M, ω̃tk)
to (X, dX). We then define φ(a1) = b1. For a2, by repeating the above
procedure, we obtain that a subsequence sij (aj), j = 1, 2, converges to bj ∈
X, j = 1, 2, respectively. Define φ(a2) = b2. By repeating this procedure and
with a diagonal argument, we can find a subsequence of (M, ω̃tk), denoted
by (M, ω̃tk) also, such that sij (aj) converges to bj ∈ X along the Gromov-
Hausdorff convergence. For any aj ∈ A ∩K, define φ(aj) = bj .

Now, we prove that φ : A∩ intK → X is injective. If it is not true, there
are y1, y2 ∈ A ∩ intK such that y1 6= y2, and φ(y1) = φ(y2), which implies
dω̃tk

(si1(y1), si2(y2)) → 0. If γk is a minimal geodesic in (M, ω̃tk) connecting

si1(y1) and si2(y2), then

C−1lengthωN
(f(γk) ∩K) 6 lengthω̃tk

(γk ∩ f−1(K)) 6 dω̃tk
(si1(y1), si2(y2)),

by (4.1) for a constant C > 0 independent of k. Thus, if f(γk) ⊂ K for
tk ¿ 1,

dωN (y1, y2) 6 ClengthωN
(f(γk)) −→ 0,

or, if f(γk) ∩N\K are not empty by passing to a subsequence,

dωN (y1, ∂K) + dωN (∂K, y2) 6 ClengthωN
(f(γk) ∩K) −→ 0.

In both cases, we obtain contradictions. Thus φ : A∩ intK → X is injective.
Note that there is a r > 0 such that, for any y ∈ intK, the metric ball

Bω(y, r) is a geodesically convex set, i.e. for any y1 and y2 ∈ Bω(y, r), there
is a minimal geodesic γ ⊂ Bω(y, r) connecting y1 and y2, which implies

dω(y1, y2) = lengthω(γ) 6 2r.
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We take r ¿ 1 such that there is a B′
i with Bω(y, 2r) ⊂ B′

i. If y1, y2 ∈ A,
by Proposition 4.6,

dX(φ(y1), φ(y2)) = lim
tk→0

dω̃tk
(si(y1), si(y2))

6 lim
tk→0

lengthω̃tk
(si(γ))

= lengthω(γ)

= dω(y1, y2).

If γk is a minimal geodesic in (M, ω̃tk) connecting si(y1) and si(y2), then
(4.19) implies that

e−
ε(tk)

2 lengthω(f(γk) ∩Bω(y, 2r)) 6 lengthω̃tk
(γk) −→ dX(φ(y1), φ(y2)),

for some function ε(t) → 0 as t → 0. If f(γk) ⊂ Bω(y, 2r) for tk ¿ 1 by
passing to a subsequence,

lengthω(f(γk)) > lengthω(γ),

since γ is a minimal geodesic in (N0, ω). If f(γk)∩N0\Bω(y, 2r) is not empty
for tk ¿ 1, then there is a ȳ ∈ f(γk)∩N0\Bω(y, 2r). Since y1, y2 ∈ Bω(y, r)
and f(γk) connects y1 and y2,

lengthω(f(γk) ∩Bω(y, 2r)) > dω(y1, ȳ) + dω(y2, ȳ) > 2r > lengthω(γ).

In both cases,

dω(y1, y2) = lengthω(γ)

6 lim
tk→0

lengthω(f(γk) ∩Bω(y, 2r))

6 dX(φ(y1), φ(y2)).

Thus

dω(y1, y2) = dX(φ(y1), φ(y2)),

i.e. φ : (A ∩ intK, dω) −→ (X, dX) is a local isometric embedding. If {y1,j}
and {y2,j} are two sequences in A ∩ intK such that lim

j→∞
dω(yi,j , y) = 0

for i = 1, 2, then lim
j→∞

dω(y1,j , y2,j) = 0 and {y1,j , y2,j} ⊂ Bω(y, r) for

j À 1. Hence dω(y1,j , y2,j) = dX(φ(y1,j), φ(y2,j)) and dω(yi,j , yi,j+`) =
dX(φ(yi,j), φ(yi,j+`)) for j À 1 and any ` > 0, which implies that {φ(y1,j)}
and {φ(y2,j)} are two Cauchy sequences, and converge to a unique point
x ∈ X. By defining φ(y) = x, φ extends to a unique map, denoted still by
φ, from intK to X which is also a local isometric embedding.

Now we prove that φ(intK) is an open subset of X. Let x ∈ φ(intK), i.e.
there is a y ∈ intK such that φ(y) = x, and let x′ ∈ X with dX(x, x′) < ρ
for a constant ρ < 1

8dω(y, ∂K). From the above construction, y ∈ B′
i for

a B′
i, and si(y) → x under Gromov-Hausdorff convergence. There is a

sequence of points pk ∈ (M, ω̃tk) such that pk → x′ under the Gromov-
Hausdorff convergence. If γ′k is a minimal geodesic connecting si(y) and pk
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in (M, ω̃tk), then

dω̃tk
(si(y), pk) = lengthω̃tk

(γ′k) −→ dX(x, x′).

Equation (4.19) implies that, for k À 1,

1

2
lengthω(f(γ

′
k) ∩K) 6 e−

ε(tk)

2 lengthω(f(γ
′
k) ∩K)

6 lengthω̃tk
(γ′k)

< 2ρ <
1

4
dω(y, ∂K).

Thus f(pk) ∈ K ′ ⊂ intK where K ′ is a compact subset of intK. By
passing to a subsequence, f(pk) → y′ in (K ′, ω). By Proposition 4.6,
dω̃tk

(pk, sik(f(pk))) → 0 when tk → 0, and, thus, sik(f(pk)) → x′ under
the Gromov-Hausdorff convergence. The above construction shows that
φ(y′) = x′, which implies that {x′|dX(x, x′) < ρ} ⊂ φ(intK). Hence
φ(intK) is open, and φ : intK −→ φ(intK) is a homeomorphism.

Let K0 ⊂ · · · ⊂ Kj ⊂ Kj+1 ⊂ · · · ⊂ N0 be a family of compact
subsets with N0 =

⋃
j
intKj . Given each Kj , the above argument con-

structs a local isometric embedding φj : (intKj , ω) −→ (X, dX), which is
a homeomorphism onto the image φj(intKj). By the same argument as
above, φj extends to a local isometric embedding φj+1 : (intKj+1, ω) −→
(X, dX), i.e. φj+1|intKj = φj , which is a homeomorphism onto the im-
age φj+1(intKj+1). By a diagonal argument, we obtain a local isometry
φ : (N0, ω) −→ (φ(N0), dX) ⊂ (X, dX). ¤

The above lemma proves the existence of φ in Theorem 1.2, and is an
analog of Lemma 4.1 in [30] for the collapsing case. In the rest of this
section, we prove that X0 = φ(N0) is dense in X.

Let x̄ ∈ X0 and p̄k ∈ M such that p̄k → x̄ under the Gromov-Hausdorff
convergence of (M, ω̃tk) to (X, dX), and let

V k(p, r) =
Volω̃tk

(Bω̃tk
(p, r))

Volω̃tk
(Bω̃tk

(p̄k, 1))
,

for any p ∈ M and r > 0. By Theorem 1.6 in [5], there is a continuous func-
tion V 0 : X × [0,∞) −→ [0,∞) such that, if pk → x under the convergence
of (M, ω̃tk) to (X, dX), then

(5.1) V k(pk, r) −→ V 0(x, r).

By Theorem 1.10 in [5], V 0 induces a unique Radon measure ν on X such
that

(5.2) ν(BdX (x, r)) = V 0(x, r), and
ν(BdX (x, r1))

ν(BdX (x, r2))
> µ(r1, r2) > 0,
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for any x ∈ X, r1 6 r2, where µ(r1, r2) is a function of r1 and r2. For any
compact subset K ⊂ X,

ν(K) = lim
δ→0

νδ(K) = lim
δ→0

inf

{∑

i

V 0(xi, ri)|ri < δ

}
,

where
⋃
i
BdX (xi, ri) ⊃ K. By scaling ω̃t and ω by one positive number, we

assume that Bω(φ
−1(x̄), 2) ⊂ N0 and is a geodesically convex set.

Lemma 5.2. There is a constant υ > 0 such that

ν(X) = υ

∫

M
ωn
M , V 0(x, r) = υ

∫

f−1(Bω(φ−1(x),r))
ωn
M ,

whenever x ∈ X0 and r 6 1 is such that Bω(φ
−1(x), 2r) is a geodesically

convex subset of (N0, ω).

Proof. If pk → x under the convergence of (M, ω̃tk) to (X, dX), we claim
that a subsequence of pk converges to a point p′ ∈ f−1(φ−1(x)) under
the metric ωM on M . By Lemma 5.1, there is a compact neighborhood
B ⊂ N0 of φ−1(x) and a section s : B → f−1(B) such that s(φ−1(x)) → x
under the Gromov-Hausdorff convergence of (M, ω̃tk) to (X, dX). Thus
dω̃tk

(pk, s(φ
−1(x))) → 0 when tk → 0. By Lemma 4.1, there are curves γk

connecting pk and s(φ−1(x)) such that lengthω̃tk
(γk) = dω̃tk

(pk, s(φ
−1(x))),

and

lengthω0
(f(γk) ∩B) = lengthf∗ω0

(γk ∩ f−1(B)) 6 C
1
2 lengthω̃tk

(γk) → 0.

For a k À 1, if there is a yk ∈ f(γk)\B, then

lengthω0
(f(γk) ∩B) > dω0(yk, φ

−1(x)) > ρ,

where ρ > 0 such that Bω0(φ
−1(x), ρ) ⊂ B, which is a contradiction.

Thus f(γk) ⊂ B for k À 1, lengthω0
(f(γk)) → 0 and f(pk) converges to

φ−1(x) under the metric ω0. By passing to a subsequence, pk converges
to a point p′ under the metric ωM . Since f∗ω0 6 C ′ωM for a constant

C ′ > 0, dω0(f(pk), f(p
′)) 6 C ′ 1

2dωM (pk, p
′) → 0. Hence f(p′) = φ−1(x) and

p′ ∈ f−1(φ−1(x)).
Let r satisfy r 6 1, and Bω(φ

−1(x), 2r) is a geodesically convex subset of
(N0, ω). If q ∈ f−1(Bω(φ

−1(x), 2r)), there is a curve γ̄ connecting p′ and q
such that f(γ̄) is the unique minimal geodesic connecting φ−1(x) and f(q).
Thanks to (4.18) we have

f∗ω − ε(tk)ωM 6 ω̃tk 6 f∗ω + ε(tk)ωM

where ε(tk) → 0 when tk → 0, on f−1(Bω(φ
−1(x), 2r)). We obtain that

dω̃tk
(p′, q) 6 lengthω̃tk

(γ̄)

6 lengthω(f(γ̄)) + Cε(tk)
1
2

= dω(φ
−1(x), f(q)) + Cε(tk)

1
2 .
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If γ̄k is a minimal geodesic of ω̃tk connecting p′ and q, then (4.19) gives

dω̃tk
(p′, q) = lengthω̃tk

(γ̄k) > e−
ε(tk)

2 lengthω(f(γ̄k) ∩Bω(φ
−1(x), 2r)).

If f(γ̄k) ⊂ Bω(φ
−1(x), 2r), then

lengthω(f(γ̄k) ∩Bω(φ
−1(x), 2r)) > lengthω(f(γ̄)) = dω(φ

−1(x), f(q)),

and, otherwise,

lengthω(f(γ̄k) ∩Bω(φ
−1(x), 2r)) > 2r > lengthω(f(γ̄)) = dω(φ

−1(x), f(q)),

by the same argument as in the proof of Lemma 5.1. Thus

e−
ε(tk)

2 dω(φ
−1(x), f(q)) 6 dω̃tk

(p′, q) 6 dω(φ
−1(x), f(q)) + Cε(tk)

1
2

where C is a constant independent of tk, p
′ and q. Of course if k is large we

will have that

dω(φ
−1(x), f(q))− Cε(tk)

1
2 6 e−

ε(tk)

2 dω(φ
−1(x), f(q)).

Thanks to (4.1), there is constant C > 0 independent of tk such that
ω̃tk 6 CωM on f−1(Bω(φ

−1(x), 2r)). Let γ′k be minimal geodesics of ωM

connecting pk and p′, which satisfy γ′k ⊂ f−1(Bω(φ
−1(x), 2r)) for k À 1.

Thus

dω̃tk
(p′, pk) 6 lengthω̃tk

(γ′k) 6 C
1
2 lengthωM

(γ′k) = C
1
2dωM (p′, pk) → 0.

The triangle inequality shows that

|dω̃tk
(pk, q)− dω(φ

−1(x), f(q))| 6 Cε(tk)
1
2 + C

1
2dωM (p′, pk).

Hence there is a function ρ(tk) of tk such that ρ(tk) → 0 when tk → 0, and

f−1(Bω(φ
−1(x), r − ρ(tk))) ⊂ Bω̃tk

(pk, r) ⊂ f−1(Bω(φ
−1(x), r + ρ(tk))).

We obtain that

lim
tk→0

∫

Bω̃tk
(pk,r)

ωn
M =

∫

f−1(Bω(φ−1(x),r))
ωn
M .

Note that
ω̃n
tk

= ctkt
n−m
k ωn

M .

Hence

V k(pk, r) =
Volω̃tk

(Bω̃tk
(pk, r))

Volω̃tk
(Bω̃tk

(p̄k, 1))

=

∫
Bω̃tk

(pk,r)
ctkt

n−m
k ωn

M∫
Bω̃tk

(p̄k,1)
ctkt

n−m
k ωn

M

→
∫
f−1(Bω(φ−1(x),r)) ω

n
M∫

f−1(Bω(φ−1(x̄),1)) ω
n
M

,

when tk → 0. By (5.1),

V 0(x, r) = υ

∫

f−1(Bω(φ−1(x),r))
ωn
M , where υ =

(∫

f−1(Bω(φ−1(x̄),1))
ωn
M

)−1

.
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Recall the diameter bound (1.4)

diamω̃tk
(M) 6 D

for a constant D > 0. Using (5.1), we have

ν(X) = V 0(x,D) = lim
tk→0

V k(pk, D) = υ

∫

M
ωn
M .

¤

Proof of Theorem 1.2. We prove that X0 ⊂ X is dense. If this is not true,
there is a metric ball BdX (x

′, ρ) ⊂ X\X0. Note that

diamdX (X) = lim
tk→0

diamω̃tk
(M) 6 D.

Because of (5.2), we have

ν(BdX (x
′, ρ)) > µ(ρ,D)ν(X) = $ > 0.

For any compact subset K ⊂ X0,

ν(K) 6 ν(X)−$ = υ

∫

M
ωn
M −$

by Lemma 5.2. If BdX (xi, ri) is a family of metric balls in (X, dX) such
that ri < δ ¿ 1, BdX (xi, 2ri) is a geodesically convex subset of X0, and⋃
i
BdX (xi, ri) ⊃ K, then

∑

i

V 0(xi, ri) =
∑

i

υ

∫

f−1(φ−1(BdX
(xi,ri)))

ωn
M > υ

∫

f−1(φ−1(K))
ωn
M

by Lemma 5.2. Thus

υ

∫

f−1(φ−1(K))
ωn
M 6 lim

δ→0
νδ(K) = lim

δ→0
inf

{∑

i

V 0(xi, ri)|ri < δ

}
= ν(K).

By taking K large enough such that

ν(K) > υ

∫

f−1(N0)
ωn
M − $

2
= υ

∫

M
ωn
M − $

2
,

we obtain a contradiction. ¤
Remark 5.3. In fact, the same proof shows that ν(X\X0) = 0.
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