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ABSTRACT. We study the collapsing behaviour of Ricci—flat K&hler met-
rics on a projective Calabi-Yau manifold which admits an abelian fibra-
tion, when the volume of the fibers approaches zero. We show that away
from the critical locus of the fibration the metrics collapse with locally
bounded curvature, and along the fibers the rescaled metrics become flat
in the limit. The limit metric on the base minus the critical locus is lo-
cally isometric to an open dense subset of any Gromov-Hausdorff limit
space of the Ricci-flat metrics. We then apply these results to study
metric degenerations of families of polarized hyperkdhler manifolds in
the large complex structure limit. In this setting we prove an analog
of a result of Gross-Wilson for K3 surfaces, which is motivated by the
Strominger-Yau-Zaslow picture of mirror symmetry.

1. INTRODUCTION

A Calabi-Yau manifold M is a compact Kahler manifold with vanishing
first Chern class ¢ (M) = 0 in H*(M,R). A fundamental theorem of Yau
[45] says that on M there exists a unique Ricci-flat Kéhler metric in each
Kahler class. If we move the Kéhler class towards a limit class on the
boundary of the Kahler cone, we get a family of Ricci—flat Kéahler metrics
which degenerates in the limit. The general question of understanding the
geometric behaviour of these metrics was raised by Yau [46, 47], Wilson
[44] and others, and much work has been devoted to it, see for example
[18, 29, 30, 34, 37, 38] and references therein. In this paper, we study metric
degenerations of Ricci—flat Kéahler metrics whose Kéhler classes approach
semi-ample non-big classes.

The first useful observation is that the diameters of a family of Ricci—flat
Kéhler metrics @, t € (0,1], on a Calabi-Yau manifold M are uniformly
bounded if their Kéhler classes [@] tend to a limit class a on the boundary
of the Kéhler cone when t — 0 [37, 48]. Another special feature of the
Kahler case is that the volume of the Ricci-flat metrics can be computed
cohomologically, and to determine whether it will approach zero or stay
bounded away from it, it is enough to calculate the self-intersection o™ where
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n = dimgc M. If o™ is strictly positive, then it was proved by the second-
named author [37] that the Ricci—flat metrics do not collapse, (i.e., there is
a constant v > 0 independent of ¢ such that each &; has a unit radius metric
ball with volume bigger than v), and in fact converge smoothly away from
a subvariety. If o™ is zero, then the total volume of the Ricci—flat metrics
approaches zero, so one expects to have collapsing to a lower-dimensional
space. This was shown to be the case for elliptically fibered K3 surfaces by
Gross-Wilson [18], and later the second-named author considered the higher
dimensional case when the Calabi-Yau manifold M admits a holomorphic
fibration to a lower-dimensional Kéhler space, and the limit class is the
pullback of a Kéhler class [38]. The first goal of the present paper is to
improve the convergence result in [38].

Let us now describe our first result in detail. Let (M,wps) be a compact
Calabi-Yau n-manifold which admits a holomorphic map f : M — Z where
(Z,wz) is a compact Kéhler manifold. Thanks to Yau’s theorem, we can
assume that wys is Ricci-flat. Denote by N = f(M) the image of f, and
assume that N is an irreducible normal subvariety of Z with dimension m,
0 < m < n, and that the map f : M — N has connected fibers. Denote
by wy = f*wz, which is a smooth nonnegative real (1,1)-form on M whose
cohomology class lies on the boundary of the Kéhler cone of M, and denote
also by wpy the restriction of wz to the regular part of N. For example,
one can take either Z = N (if N is smooth), or Z = CPY (if N is an
algebraic variety). This second case arises whenever we have a line bundle
L — M which is semiample (some power is globally generated) and of Titaka
dimension m < n, so L is not big.

In general, given a map f: M — N as above, there is a proper analytic
subvariety S C M such that N\ f(.S) is smooth and f : M\S — N\ f(S) is
a smooth submersion (the set S is exactly where the differential df does not
have full rank m). For any y € N\ f(S) the fiber M, = f~!(y) is a smooth
Calabi-Yau manifold of dimension n—m, and it is equipped with the Kahler
metric wys|as,. The volume of the fibers fMy (warlag, )" ™ is a homological

constant that does not depend on y in N\ f(5), and we can assume that it

equals 1. Consider the Kéhler metrics on M given by w; = wg + twas, with

0 <t <1, and call @ = w; + /—100¢; the unique Ricci-flat Kihler metric

on M cohomologous to wy, with potentials normalized by sup ¢; = 0. They
M

satisfy a family of complex Monge-Ampere equations
(1.1) Of = (w + V—=100p)" = et "Wl

where ¢; is a constant that has a positive limit as ¢ — 0 (see (4.28)). A
general C¥ estimate |¢¢]|co < C (independent of ¢ > 0) for such equa-
tions was proved by Demailly-Pali [9] and Eyssidieux-Guedj-Zeriahi [10],
generalizing work of Kolodziej [24]. In the case under consideration, much
more is true: the second-named author’s work [38] shows that there exists a
smooth function ¢ on N\ f(.5) so that as ¢ goes to zero we have ¢ — @o f in
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Cllo’ca(M\S, wyr) for any 0 < o < 1. Moreover w = wy ++/—199¢ is a Kihler
metric on N\ f(S) with Ric(w) = wwp. Here wwp is the pullback of the
Weil-Petersson metric from the moduli space of polarized Calabi-Yau fibers,
which has appeared several times before in the literature [11, 18, 34, 38|.
We now assume that the every fiber M, with y € N\ f(.S) is biholomorphic
to a complex torus (of course, it is enough to assume that just one smooth
fiber is a complex torus). This is the case for example whenever M is
hyperkéhler. We also assume that M is projective, so we can take [wys] to
be the first Chern class of an ample line bundle. In this case we can improve
the above result, thus answering Questions 4.1 and 4.2 of [39] in our setting:

Theorem 1.1. If M is projective and if one (and hence all) of the fibers
M, with y € N\f(S) is a torus, then as t approaches zero the Ricci-flat
metrics @; converge in CPe(M\S,war) to f*w, where w is a Kdihler metric
on N\ f(S) with Ric(w) = wwp. Given any compact set K C M\S there is
a constant Cg such that the sectional curvature of w; satisfies

(1.2) sup |Sec(@y)| < Ck,
K

for all small t > 0. Furthermore, on each torus fiber M, with y € N\ f(S)

we have

@t |,
t

where wsr,y is the unique flat metric on M, cohomologous to wnr|n, and
the convergence is smooth and uniform as y varies on a compact subset of

NAS(S).

(1.3) —> WSFy»

As remarked earlier, in the case of elliptically fibered K3 surfaces (n =
2,m = 1) this theorem follows from the work of Gross-Wilson [18]. In
higher dimensions, in the very special case when S is empty, the theorem
(except (1.2)) also follows from the work of Fine [11]. Both these works
take a different approach from us, by constructing the Ricci—flat metrics @y
as small perturbations of semi-flat metrics (see section 3), which in [18] are
glued to Ooguri-Vafa metrics near the singular fibers. By contrast, we work
directly with the Ricci—flat metrics @y and prove that they satisfy a priori
estimates away from the singular fibers, which then implies the convergence
results. This was also the approach taken by the second-named author in
[38], where the convergence @y — f*w was proved in a weaker topology (see
also the work of Song-Tian [34] for the case of K3 surfaces).

The curvature bound (1.2) in Theorem 1.1 does not hold if the generic
fibers are not tori, as one can see for example by taking the product of two
non-flat Calabi-Yau manifolds with the product Ricci-flat Kdhler metric
and then scaling one factor to zero. On the other hand, we believe that
the assumption in Theorem 1.1 that M is projective is just technical and it
should be possible to remove it.
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We now describe the second main result of the paper, which concerns the
Gromov-Hausdorff limit of our manifolds. The Gromov-Hausdorff distance
de g was introducted by Gromov in the 1980’s [15], and it defines a topology
on the space of isometry classes of all compact metric spaces. For two
compact metric spaces X and Y, the Gromov-Hausdorff distance of X and
Y is

dar(X,Y) = irzlf{dIZ{(X, Y) | X,Y < Z isometric embeddings},

where Z is a metric space and d%(X,Y) denotes the standard Hausdorff
distance between X and Y regarded as subsets in Z by the isometric embed-
dings (see for example [15, 28] for more background). The Gromov-Hausdorff
topology provides a framework to study families of compact metric spaces or
Riemannian manifolds. We would like to understand the Gromov-Hausdorff
convergence of (M,@;) in Theorem 1.1. Since the volume of the whole man-
ifold goes to zero, the manifolds (M, ;) are collapsing. Furthermore, from
Theorem 1.1 we know that on a Zariski open set of M the Ricci-flat metrics
collapse with locally bounded curvature.

The collapsing of Einstein manifolds and Riemannian manifolds with def-
inite curvature bounds in the Gromov-Hausdorff sense has been extensively
studied from different viewpoints, see for example [2, 5, 6, 7, 8, 12, 18, 27,
28, 33] and the reference therein. These general theories provide us with
results which are particularly strong in the case of Riemannian manifolds
with bounded sectional curvature and Einstein manifolds of dimension 4.
The first detailed analysis of the collapsing of geometrically interesting fam-
ilies of Einstein 4-manifolds was done by Anderson in [2]. More recently, a
result of Cheeger-Tian [7] shows that on any sufficiently collapsed Ricci-flat
Einstein 4-manifold with volume 1 there is a large open set U where the
sectional curvature is bounded by a universal constant, and U admits an
F-structure, which is a generalization of torus fibration. Furthermore, by
[27], the collapsed limits of Ricci-flat Einstein 4-manifolds with bounded
Euler numbers are smooth Riemannian orbifolds away from a finite number
of points. The metric structure of collapsed limits of higher-dimensional
Einstein n-manifolds (and more generally manifolds with a uniform lower
bound on the Ricci curvature) was extensively studied by Cheeger-Colding
[5] and collaborators. Regarding the collapsed Gromov-Hausdorff limit of
the Ricci—flat metrics in Theorem 1.1, we have the following result.

First of all, thanks to [37, 48] we know that the diameter of (M,y)
satisfies

(1.4) diamg, (M) < D,

for some constant D and for all ¢ > 0. Furthermore, since &y — f*w and
the base N is not a point, we also have that diamg, (M) > D~!. Given any
sequence tr — 0, Gromov’s precompactness theorem shows that a subse-
quence of (M, &y, ) converges to some compact path metric space (X, dx) in
the Gromov-Hausdorff topology. Note that because of the upper and lower
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bounds for the diameter, if we rescaled the metrics @;, to have diameter
equal to one, the Gromov-Hausdorff limit (modulo subsequences) would be
isometric to (X, dx) after a rescaling.

Theorem 1.2. In the same setting as Theorem 1.1, for any such limit space
(X,dx) there is an open dense subset Xg C X such that (Xo,dx) is locally
isometric to (N\ f(S),w), i.e. there is a homeomorphism ¢ : N\ f(S) — X
satisfying that, for any y € N\f(S), there is a neighborhood By C N\ f(S)
of y such that, for y1 and y2 € By,

dw(y1,y2) = dx(d(y1), ¢(y2))-

In fact we prove that X\ Xy has measure zero with respect to the renor-
malized limit measure of [5], which implies that X is dense in X. It would
be interesting to prove that the metric completion of (N\ f(S),w) is isomet-
ric to (X, dx). In the case of K3 surfaces this was proved by Gross-Wilson
[18].

As an application of Theorem 1.1 and Theorem 1.2 we study the metric
degenerations of families of polarized hyperkahler manifolds in the large
complex structure limit. In [36], Stominger, Yau and Zaslow proposed a
conjecture about constructing the mirror manifold of a given Calabi-Yau
manifold via special Lagrangian fibrations. This became known as the SYZ
conjecture, and has generated an immense amount of work, see for example
[16, 17, 18, 25] and references therein. Later another version of the SYZ
conjecture was proposed by Gross-Wilson [18], Kontsevich-Soibelman [25]
and Todorov via degenerations of Ricci—flat Kéhler-Einstein metrics. The
conjecture says that if {M;}, t € A\{0} C C, is a family of polarized Calabi-
Yau n-manifolds, w; is the Ricci—flat Kéhler-Einstein metric representing the
polarization on M, and the complex structure of M; tends to a large complex
structure limit point in the deformation moduli space of M; when ¢ — 0,
then after rescaling (M, w;) to have diameter 1, they collapse to a compact
metric space (X, dx) in the Gromov-Hausdorff sense. Furthermore, a dense
open subset Xy C X is a smooth manifold of real dimension n, and the
codimension of X\ Xy is bigger or equal to 2. This conjecture holds trivially
for tori, and was verified for K3 surfaces by Gross-Wilson in [18].

In the third main result of this paper we consider this conjecture for
higher dimensional hyperkahler manifolds. We will describe it briefly here,
and give a more complete description in Section 2. Let (M, I) be a compact
complex manifold of complex dimension 2n with a Ricci—flat Kahler metric
wr with holonomy the full group Sp(n). In particular M is Calabi-Yau (in
our definition), and furthermore it has a hyperkéhler structure. We assume
that there is an ample line bundle over M with the first Chern class [wy], that
we have a holomorphic fibration f : M — N as before with N a projective
variety, and that there is a holomorphic section s : N — M. Under these
assumptions, it is known that NV = CP" [22], and that the smooth fibers of
f are complex Lagrangian tori [26]. If we perform a hyperkéhler rotation
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of the complex structure, the fibers become special Lagrangian, and we are
exactly in the setup of Strominger, Yau and Zaslow [36]. We furthermore
assume that the polarization induced on the torus fibers is principal. In
this case, the SYZ mirror symmetry picture predicts that M is mirror to
itself, and that a large complex structure limit is mirror to a large Kéhler
structure limit. We use this as our definition of large complex structure
limit, so we have a family of polarized hyperkihler structures (M, Q) with
Ricci-flat Kahler metric & which approach a large complex structure limit as
s — 00. By assuming the validity of a standard conjecture on hyperkéhler
manifolds (Conjecture 2.3), we can performe a hyperkahler rotation and a
normalization to reduce exactly to the setup covered by Theorems 1.1 and
1.2, and we can prove:

Theorem 1.3. In the above situation, denote M, the hyperkdhler manifold
with period s, and ds = diamg(Ms). Then, for any sequence s, — o0,

a subsequence of (Msk,d;fw) converges in the Gromov-Hausdorff sense to
a compact metric space (X, dx). Furthermore, there is an open dense sub-
set Xo C X such that (Xo,dx) is local isometric to an open non-complete

smooth Riemannian manifold (Ny, g) with dimg Ny = %dimR M.

This proves the conjecture of Gross-Wilson [18], Kontsevich-Soibelman
[25] and Todorov in our situation, modulo these assumptions, except for
the statement that codimg(X\Xo) > 2 where more arguments are needed.
Again, this was proved by Gross-Wilson [18] in the case of K3 surfaces.

This paper is organized as follows. In Section 2 we study SYZ mirrors
of some hyperkahler manifolds, and derive Theorem 1.3 as a consequence
of Theorems 1.1 and 1.2. In Section 3 we construct semi-flat background
metrics on the total space of a holomorphic torus fibration. Theorem 1.1 is
proved in Section 4 while Theorem 1.2 is proved in Section 5.

Acknowledgements: Most of this work was carried out while the second-
named author was visiting the Mathematical Science Center of Tsinghua
University in Beijing, which he would like to thank for the hospitality. He is
also grateful to D.H. Phong and S.-T. Yau for their support and encourage-
ment, and to J. Song for many useful discussions. Some parts of this paper
were obtained while the third-named author’s was visiting University of Cal-
ifornia San Diego and Institut des Hautes Etudes Scientifiques. He would
like to thank UCSD and IHES for the hospitality, and he is also grateful to
Professor Xiaochun Rong for helpful discussions.

2. HYPERKAHLER MIRROR SYMMETRY

In this section we discuss a version of mirror symmetry for hyperkahler
manifolds analogous to the one used for K3 surfaces in [18].
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The situation for general hyperkahler manifolds is considerably less de-
veloped, however, and we shall have to make many assumptions in this
discussion. The goal is to show, modulo these assumptions, that one ob-
tains the expected Gromov-Hausdorff collapse at a large complex structure
limit of hyperkahler manifolds, and that the limit can be identified using
the main results of this paper. This is completely analogous to [18], and
this discussion represents a summary of known results.

First we review known facts about periods of hyperkahler manifolds. Fix
M a manifold of real dimension 4n which supports a hyperkahler manifold
structure with holonomy being the full group Sp(n). (When a hyperkéhler
manifold has this full group as holonomy, it is said to be irreducible.) Set
L = H?*(M,Z), Lg :== L®z R, Lc := L ®z C. Then there is a real-valued
non-degenerate quadratic form gps : L — R, called the Beauville-Bogomolov
form, with the property that there is a constant ¢ such that

QM(Oé)n :C/ a2n
M

for a € L, of signature (+,+,+,—, -+, —). We write g(+,-) for the induced
pairing, with gas(o, @) = qur(@).
We can define the period domain of M to be

Py = {10 € P(Le) [qm(Q) =0,  qu(2,Q) >0}

The Teichmiiller space of M, Teichys, is the set of hyperkahler complex
structures on M modulo elements of Diffy(M), the diffeomorphisms of M
isotopic to the identity. By the Bogomolov-Tian-Todorov theorem, this is a
(non-Hausdorff) manifold. There is a period map

Per : Teich; — Py

taking a complex structure on M to the class of the line H*%(M). Then Per
is étale, and was proved to be surjective by Huybrechts in [21]. Although we
shall not make use of this here, we note that recently Verbitsky [41] proved
a suitably formulated global Torelli theorem. However, one must keep in
mind that Per is not, in general, a diffeomorphism.

Next consider a complex structure on M and Ricci-flat Kéahler met-
ric wr making M hyperkahler. Then a choice of a holomorphic symplec-
tic two-form €, along with wy, completely determines this structure. In
particular, if we write Q; = wy + v/ —lwg, we can normalize £ so that
gvu(wr) = qu(wy) = qu(wg). Furthermore, necessarily qps(wr,wy) =
qv(wr,wg) = qu(wy,wg) = 0. The triple wr, wy, wk is called a hyperkdhler
triple. Tt gives rise to an S? worth of complex structures compatible with
the same hyperkahler metric: in particular, one has the J complex struc-
ture with holomorphic symplectic form € := wg + v—1lw; and Kéahler
form wy, and the K complex structure with holomorphic symplectic form
Ok :=wr + v/—1wy and Kahler form wg.
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We use these facts to speculate on mirror symmetry for hyperkéhler man-
ifolds, starting with the Strominger-Yau-Zaslow point of view. Suppose
that we are given a complex structure on M such that there is a fibration
f: M — N, with fibers being holomorphic Lagrangian subvarieties of M.
Suppose furthermore that N is a Kéahler manifold. Then by results of Mat-
sushita (see [26] and [16], Proposition 24.8 for these results) the smooth
fibers of f are complex tori and N is a Fano manifold with bo(N) = 1.
Furthermore, if M is projective of complex dimension 2n then N = CP" by
a result of Hwang [22]. Let w; be a Ricci-flat Kéhler form on M. Write
the holomorphic symplectic form Q7 on M as wy + v/—1lwg. Then after
hyperkahler rotation, there is a a complex structure with holomorphic sym-
plectic form Qx = wr + v/—1w; and Kéhler form wg. If M, is a fiber of f,
then w;|n, = wi|n, = 0, from which it follows that Im(Q%)|az, = 0, so the
fibers of f are special Lagrangian.

The Strominger-Yau-Zaslow conjecture [36] predicts that mirror symme-
try can be explained via dualizing such a special Lagrangian torus fibration.
In a general situation, it can be hard to dualize torus fibrations, because of
singular fibres. The case that M is a K3 surface, treated in detail in [18],
is rather special because Poincaré duality gives a canonical isomorphism
between a two-torus and its dual.

With some additional assumptions, a similar situation holds in the hy-
perkahler case. Suppose that the Kahler form wy is integral, so that there is
an ample line bundle £ on X whose first Chern class is represented by w;y.
The restriction of this line bundle to a non-singular fiber M, then induces
a polarization of some type (di,...,d,). In particular there is a canonical
map M, — M, given by

1
MyBxH[,’My@t;ﬁ |, EM;/.

Here M;/ is the dual abelian variety to M,, classifying degree zero line
bundles on M,, and t, : M, — M, is given by translation by x, which
makes sense once one chooses an origin in M. The kernel of this map is
(Z)dZ® - ®Z)d,Z)*P2. In particular, if f possesses a section s : N — M,
and Ny := N\ f(S) where S is the critical locus of f, then the dual of
f~Y(No) — Ny can be described as a quotient map, given by dividing out
by the kernel of the polarization on each fiber. One can then hope that this
dual fibration can be compactified to a hyperkahler manifold.

In general, if M, carries a polarization of type (d1,...,dy), it is not dif-
ficult to check that the dual abelian variety M;’ carries a polarization of
type (dn/dn,dn/dn-1,...,dn/d1). Thus it is possible that the SYZ dual
hyperkahler manifold need not be the same as M. There do indeed exist
examples of abelian variety fibrations on hyperkéhler manifolds which are
not principally polarized; these were discovered by Justin Sawon, see Ex-
ample 3.8 and Remark 3.9 of [31]. It is quite possible these fibrations do
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not have duals which are hyperkahler manifolds, as a natural compactifi-
cation might be a holomorphic symplectic variety without a holomorphic
symplectic resolution of singularities.

On the other hand, if w; induces a principal polarization on each fiber
M,, i.e., the map M, — M?Y is an isomorphism, then the SYZ dual of the
fibration f~!(Ng) — Np, assuming again the existence of a section, can be
canonically identified with f~1(Ngy) — Np, and thus it is natural to consider
f: M — N to be a self-dual fibration, at least at the purely topological
level. In this case, and only in this case, SYZ mirror symmetry predicts that
hyperkéhler manifolds are self-mirror. The idea that hyperkéhler manifolds
should be self-mirror was first suggested and explored by Verbitsky in [40].

In this case only, we can be more explicit about mirror symmetry. We
summarize our assumptions so far:

Assumptions 2.1. Let M; be a hyperkdhler manifold with f : My — N a
complex torus fibration, along with a section s : N — M7 and an ample line
bundle L with first Chern class represented by a hyperkdhler metric wy. We
assume further the induced polarization on the smooth fibers of f is principal
and that N is projective.

Thus, with these assumptions, it is natural to assume that mirror sym-
metry exchanges complex and Kéahler moduli for the fixed underlying space
M. This can be described at the level of period domains as follows.

Let 0 € Lg be the class represented by w;. Fix an integral Kéhler class
wy on N, and let E € L be represented by f*wy, so that gy (E) = 0.

Lemma 2.2. In the above situation, we have qp(E,0) # 0.

Proof. By [16], Exercise 23.2, we have

am (E, U)/ o = 2qM(U)/ a2 LA fron £0,
M M

so qu(FE,0) # 0. O

Denote by E+ C Lg the orthogonal complement of E under ¢y, and
denote by E1/E the quotient space E-/RE. Then ¢y induces a quadratic
form on E+/E. Let

C(M) = {z € B/E | qu(x) > 0},
and define the complezified Kdhler moduli space of M to be
K(M):= E*+/E®iC(M) C (E+/E)®C.
We then have an isomorphism

mgq : K(M) — PM\EJ‘
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via, representing an element of (E+/E)® C by a € E+ ® C,

1 ” a—l qm (o) N gm (e, o)
B’ 2<qM<E,a>2+qM( )+2qM<E,a>)E]'

Indeed, one first checks that this is independent of which representative
a is chosen. Then one notes that the coefficient of F is chosen so that
qu(mpe(a)) = 0, and qu(meq(a),mpqe(@)) = 2qu(Ima) > 0 by as-
sumption that o € K(M). Further, mg, is clearly injective, since o =
mpgq(a) —o/qu(E,0) mod E. It is surjective, since given [Q] € Py \ B+,
we can rescale 2 so that ¢p/(Q2, E) = 1, and then [Q] = mp o (Q—0/qm(E, 0)
mod E).

We can then view the mirror map mg , described above as realising mirror
symmetry on the level of period domains as follows, defining an exchange of
data

(M, Q,B+vV—1w) < (M +V—1w).

M,Q, B
Here [Q], [Q] € Par, with qar(E,Q), qar(E, ) # 0, so that we can assume
and € are normalized with gy (E, Q) = qu(F, Q) = 1. Furthermore, B, B €
E+/E and w,& € E+ satisfy qur(w, Q) = qar(@,Q) = 0 and qpr(w ),qM( ) >
0. The relationship between the two triples is that = mgs(B + vV—1w)
and B, @ are the unique cohomology classes satisfying the above conditions
and Q = mpg (B + \/7w) Indeed, B and & exist, since as ¢y (F, Q) = 1,
(E i B + v/—1& mod E, and replacing a chosen

representative w W1th w—(qu(w,0)/qu(E,0)—qn (0, B))E, one guarantees
that ¢ (Q, @) = 0.

This mirror symmetry on the level of period domains doesn’t quite give
an exact mirror symmetry on the level of moduli spaces, since global Torelli
does not in general hold for hyperkahler manifolds, so there might be a
number of choices of complex structure on M with period [€2]. In addition,
w or w need not represent a Kahler form except for very general choices of
complex structure.

Nevertheless, this allows us to identify a large complex structure limit as
being mirror to a large Kéhler limit. The family

we can write =

1 .
(M,Q: ——— 0+ B+ v—10 mod E,sw> ,
qm(E,0)

represents a large Kéhler limit, with the Kéahler class moving off to infinity
while the complex structure is fixed, and this is mirror to the triple

(M, Q, =

1 .
—— o0+ +V—-1lswmod E,B + \/—1&)) )
QM(E’O-)

If for each s, we have an actual hyperkéhler manifold with period €, and
Kaéhler form @, we would like to understand the limiting metric behaviour.
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To do so, we use hyperkéhler rotation, and to do this we need to normalize
the holomorphic symplectic form, defining

quor — 51, [1@) g
qmr (w

Then we have gp7(Re Q") = qp(Im Q27) = qas(0). So Re QRO Tm Qner
and & form a hyperkahler triple, and hence we can hyperkahler rotate to
obtain a hyperkahler manifold with holomorphic two-form

Oy = Im O 4 /1 = qum (@) (w ~ qu(w,0) E> Vo

(W) am(E,0)

~—

~—

and Kéahler form

- — ReQror — QM((I)) 1 1 0._1 QM(O') 5 w
G = Rel = | [ |~ (i o)+ 50)E]

We note that the period QS, J is in fact independent of s, so we can fix the
complex structure on M independent of s. Assume that E is the first Chern
class of a nef line bundle on M with respect to a complex structure with
period Q& J, and w5 is a Kéhler class with respect to this complex structure

if s > sg, for some sy > 0. We now take s = sg %, so that as t goes to

zero, s goes to infinity and we define the rescaled metrics
. . . S0 -
Opg =Vt + D)@y, = tsg,s + 5 am (@)qu (W) E.

So as t — 0, W}y moves on a straight line towards 3 +/qu (@)qum (w)E, and
Wy, is Kahler.

To relate this to the results of this paper, we have the following conjecture,
stated in [19, 42]:

Conjecture 2.3. Let M be an irreducible hyperkahler manifold and L «a
non-trivial nef bundle on M, with qp(c1(L)) = 0. Then L induces a holo-
morphic map f': M — N’ to a projective variety N’ with L™ = f™*(O(1))
for some m > 0.

If such a map exists, it is necessarily a holomorphic Lagrangian fibration.
If furthermore M is projective then N’ = CP" by [22]. This conjecture
follows from the log abundance conjecture if some multiple of L is effective,
and has been studied for example in [1, 4, 19, 42].

Let us suppose this conjecture holds. By choosing sg properly, we assume
that % /qn(@)qn(w) is a integer, and thus 2 \/qum(0)qu(W)E = f"a
for an ample class a on N’, where f’ and N’ are obtained by Conjec-
ture 2.3. Because of the hyperkédhler rotation, the Riemannian metrics
defined by (Q°",&) and by (Qs,s,@s.7) are the same. Therefore, to un-
derstand the Gromov-Hausdorff limit of the large complex structure limit
(M, Q2" &) (this is the same that appears in the statement of Theorem
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1.3) we can instead consider (M, j,@s ). Now € s is independent of
s, so we are simply changing the Kéhler class, and the rescaled metrics
@ty = 4+ 1)@s4), = tWs,7 + [ move towards f™a along a straight
line. Therefore we are exactly in the setting of Theorem 1.1 and Theorem
1.2, which describe the Gromov-Hausdorff limit of (M,w; ;) as t goes to
zero. But as remarked in the Introduction, we also have that the diameter
of &y y is bounded uniformly away from zero and infinity, so if we further
rescale the metrics & ; to have diameter 1, then up to a subsequence the
Gromov-Hausdorff limit only changes by a rescaling, and Theorem 1.3 fol-
lows.

3. SEMI-FLAT METRICS

In this section we discuss semi-flat forms and metrics, extending some
results in [18, 20] to our setting.

In general a closed real (1,1)-form wgp on an open set U C M\S will be
called semi-flat if its restriction to each torus fiber M, NU with y € f(U) is
a flat metric, which we will always assume to be cohomologous to was|as,-
If wgp is also Kéahler then we will call it a semi-flat metric. Semi-flat forms
can also be defined when the fibers M, are not tori but general Calabi-Yau
manifolds, by requiring that the restriction to each fiber be Ricci—flat (see
[34, 38]). They were first introduced by Greene-Shapere-Vafa-Yau in [14].

Fix now a small ball B C N\ f(S) with coordinates y = (y1,...¥ym), and
consider the preimage f : U = f~}(B) — B. This is a holomorphic family of
complex tori, and if B is small enough it has a holomorphic section o, which
we also fix. We can then define a complex Lie group structure on each fiber
M, = f~1(y) with unit og(y). We claim that this family is locally isomorphic
to a family of the form f’ : (B x C"™)/A — B, where h : A — B is a
lattice bundle with fiber A1 (y) = A, & Z?"72™ 5o that M, = C""™/A,.
To see this, note that each fiber M, = f~1(y) is a torus biholomorphic to
Cr=™ /A, for some lattice A, that varies holomorphically in y. We choose a
basis v1(y), . . ., Van—2m(y) of this lattice, which varies holomorphically in y.
Given these lattices we can construct the family f’ by taking the quotient of
B x C"~™ by the Z?"~2™_action given by (n1,...,n2n_2m) - (y,2) = (y,2 +
> nivi(y)), where z = (21,..., 2,—m) € C"™™. Note that different choices
of generators give isomorphic quotients. By construction the fiber f'~!(y)
is biholomorphic to f~'(y) for all y € B. A theorem of Kodaira-Spencer
[23] (see also [43, Satz 3.6]) then implies that the families f and f’ are
locally isomorphic, so up to shrinking B there exists a biholomorphism (B X
C"™)/A — U compatible with the projections to B, proving our claim.
With this identification, the section o¢g : B — U is induced by the map
B — B x C"™ given by y — (y,0).
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Composing this biholomorphism with the quotient map BxC"™™ — (B x
C"~™) /A by the Z?"~?™_action we get a holomorphic map p : BxC"™™ — U
such that fop(y,z) =y for all (y, z), and p is a local isomorphism (the map
p is also the universal covering map of U).

We now assume that M is projective and [wy] is an integral class, so
each complex torus fiber M,, y € B, can be polarized by [wys], which gives

an ample polarization of type (di,...,d,—m,) for some sequence of integers
dilda| - - - |dn—m. By [3], Proposition 8.1.1, one can then assume that A is gen-
erated by die, ..., dn—men—m, 21, .-, Lp—m € C*™ ™, where e1,...,e,_y, is

the standard basis for C"~". Furthermore, the matrix Z with columns
Z1y. . Zp—m must satisfy Z = Z' and ImZ positive definite. Also, on the
fibre M, the Kéhler form 3, , V—1(Im Z);;dz* A dz7 is cohomologous to
w M| M,- Let
gij = (ImZ);]l
Note that Z depends on y € B, as does g;;. Recall that we have the fiber
coordinates z1,..., zn_m. Consider the function

o2 = 32 (- )z - 7).

We would first like to show that v/—190n is invariant under translation
by flat sections of the Gauss-Manin connection on B x C"™" (this is the
connection on this bundle such that sections of A are flat sections of the
bundle). It is enough to check invariance under translation by As for s one
of the generators of A, A € R. First, consider the composition of 7 with a
general translation z; — z; + 7;(y):

> —gg ((zi+7i— 2 —Ti)(z + 75— 2 — 75))

i

=1 - Z % ((ri = 7a) (25 = 2j) + (7 = 7) (20 = Z0) + (1 = Ta) (7 = 7))
2y

=1n- %:Qij <(7'i —Ti)(zj — %) + %(Ti —Ti) (7 — Tj)) :

the last equality by the symmetry g;; = gj;. We now consider two cases.
If 7, = Ad;, for some k, so that 7; is real, then in fact the above formula
reduces to 7, so 7 is itself invariant under this translation. Secondly, if we
take ; = AZ;; for some k, A € R, we obtain

n—>Y (Im2);' 2AW-1(ImZ)i(z; — z) — 2A*(AImZ) 4 (ImZ) )
i
=n-— Z 253']6)\\/—71(2]‘ — Zj) — 2/\25jk(ImZ)jk.
j

Applying 00 kills the correction term, so v/=100n is invariant under this
action. This means that /—109n is the pullback under p of a two-form wgp
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on U
(3.1) p*wsp =V —1(9577,
and wgr is semi-flat since its restriction to a fiberis v—13, . i (y)dz*AdZ,

a flat metric on M, cohomologous to wyy]| M, Note that the function n on
B x C"™™ has the scaling property

(3:2) n(y, \z) = Nn(y, 2),
for all A € R.

We now claim that on U the semi-flat form wgp is nonnegative definite.
To check this, it is enough to check at one point on each fiber, because of the
invariance of this form. We check at the point 21 = --- = z,_,, = 0, where
the form is /—1 EZ j gijdzi A dZ7, which is clearly nonnegative definite. It
follows that wgr > 0, and moreover that given any Kahler metric w’ on B
the form wgp + f*w' is a semi-flat Kahler metric on U.

Suppose now that we have a holomorphic section ¢ : B — U of the map
f. We will denote by T, : U — U the fiberwise translation by o (with
respect to the section og). If we choose any local lift of o to B x C"™™,
given by y — (y,0(y)), then the translation 7, is induced by the map
BxC"™ — BxC" ™ given by (y, z) — (y,z+6(y)) (the choice of lift & is
irrelevant). We also have a map T_, : U — U given by fiberwise translation
by —o (with respect to o¢), which is induced by (y, z) — (y,z — (y)). The
two translation are biholomorphisms of U and are inverses to each other. For
later purposes, we will need the following version of the 99-Lemma, which
is analogous to [18, Lemma 4.3] (see also [20, Proposition 4.6]), except that
we work away from the singular fibers.

Proposition 3.1. Let w be any Kdhler metric on U cohomologous to wgp
in H?(U,R). Then there exist a holomorphic section o : B — U of f and a
smooth real function & on U such that

(3.3) Tiwsp —w = v/ —190¢
onU.
If in addition w is also semi-flat, then £ is constant on each fiber M, and

is therefore the pullback of a function from B.

Proof. By assumption there is a 1-form ¢ on U such that
WSF — W = d(: — aCO,l JFECI,O7 5(0,1 =0,

where ¢ = (%! + ¢"0 and ¢*! = ¢10.
We claim that (0, 1)-forms

(3.4) @-zﬁ@(i gij(y)(zi—zi)>, Jj=1-,n—m,
=1

are invariant under translations by flat sections of the Gauss-Manin connec-
tion on B x C"™ ™, and thus descend to (0,1)-forms on U. It is enough to
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check invariance under translation by As where s is a generator of A and
A € R. First, consider a general translation z; — z; + 7;(y). If 7, = Aoy, for
some k, so that 7; is real, then 6; are invariant. If 7; = A\Z;; for some k,
A € R, we obtain

n—m

Z 9ij (2 + AZiyy — Zi — NZyy,) = Z gij(zi — i)
i—1 -

+ 2ﬁ§<lmz>;lA<ImZ>ik

n—m

Z - Z’L + 2)\\/75]]6

Applying 0O kills the correction term, so f; are invariant, and therefore they
define (0, 1)-forms on U. Since, for any y € B,

n—m

(3'5) p* (9j|My -V Z gl] d'zh

is fiberwise constant and g;; is non-degenerate, we have that [0;]a,], 7 =
1,---,n—mis a basis of H®'(M,).
We claim that there are holomorphic functions o; : B — C such that
n—m
(3.6) ¢t =" 0i0; + o,
i=1
for a complex-valued function h on U. To prove this, note that H%'(U) =
H'(U,Oy) which by the Leray spectral sequence for f is isomorphic to
HY(B, R' f,0p) since H*(B, f.Oy) = H*(B,0p) = 0 for k > 1. Tt follows
that a d-closed (0,1)-form on U represents the zero class if and only if
its restriction to M, represents the zero class in H%'(M,) for all y € B.
Consider now the (0,1)-forms dy’, 1 < i@ < m, on B and denote their
pullbacks to U by the same symbol. Then at each point of U the forms
{6,;},1 < j < n—m together with {dy'},1 < i < m, form a basis of (0,1)-
forms. We can then write

n—m m
= Z wﬂj + Z hic@i,
j=1 i=1

where wj, h; are smooth complex functions on U. If we now restrict to a
fiber M, we get (%[, = > =1 wjfjla,, and the functions w; restricted to
M, can be thought of as functions on C"~" which are periodic with period
Ay. There is a holomorphic T?7=2"m_action on U which is induced by the
action of R?"=2™m on B x C"™™ given by z - (y,2) = (y,2 + 22 %7i(Y)),
where 7;(y) is a basis for the lattice A, (the choice of which is irrelevant).
If a is a function or differential form on U or M,, we will denote by & its
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average with respect to the 72" ~?"-action. In particular, if « is a function
on U then & is the pullback of a function from B. We now call o; = w;,
1 < j < n—m, which are functions of y € B only. We clearly have that

0; HandcfZ dg', so

n—m
oi(y 9|My
7j=1

Now the T2"~2™_action on M, is generated by holomorphic vector fields
and therefore acts trivially on the Dolbeault cohomology H%!(M,), which
implies that

n—m

[€*Mas] = [ = 3 030) (651,
7j=1

in H%Y(M,) for all y € B. If we show that the o;(y) are holomorphic, then
the (0, 1)-form ¢%! — >-;0j(y)8; on U would be O-closed and cohomologous
to zero in H%'(U), thus proving (3.6).

Call now Vj, 1 < j<n-—mand W;, 1 <i < m the T27=2m_jnyvariant
(0, 1)-type vector ﬁelds on U which are the dual basis to 6;,dy’. We have
that V; = /=1 Z g az , where ¢’% is the inverse matrix of Jjk, and
the vector fields ﬁk are well-defined on U. We will not need the explicit
formula for W;, but just the fact that if a function f on U is the pullback
of a function on B then W;(f) = (%.

To see why o;(y) is holomorphic, compute

5{0’1 :ZW' (w;) d@i N +Z%(wj>6i N
i,J
+ZW dy’ A dy' +Zv )0; A dy'.
,J

Since each Vj is a linear combination of %, we have that the functions

Vi(w;) and Vj(h;) have average zero on each fiber. Taking the average then
gives

7 A dy.

0=a¢1 =S Zdy pg; +
> Za

Since the forms dyi/\ﬂj and dy/ Ady are linearly independent at every point,
this implies that o;(y) are indeed holomorphic.
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Let now T, : U — U be the translation induced by the section o =
(pooi, -+ ,poOp_m), where p: B x C"™ — U is the quotient map. Since

S - (it oi -z = )2+ 05— 5 — )
‘7]’

=1n- Z W (00 = 00) 25 — %) + (0 = 33) (21— 2) + (03 — 33) (0 — 75))

—n— Zgz] ( i — i) (2 — Zj) + %(Uz’ —)(0;j —5j)> ;

we have
p*Trwsr — p'wsr = —\/—18529ij(ai —0:)(25 — Zj) + V—100%(y)
.3
=p* (—8201-91' — 3201'91') +V/—1900%(y),
where ®(y) = -3, % (0; — 5;)(0j — &) is a real function of y only. We

have just proved that
wsp —w=0¢"" +9 (0T =0 "0i0; + 90h+ 3> _ a:0; + dOh.

Thus .
p Tiwsp — p'w = p*vV—100(2Imh + P),
which proves (3.3) with £ = 2Imh + ®. O

4. ESTIMATES AND SMOOTH CONVERGENCE

In this section we prove a priori estimates of all orders for the Ricci—flat
metrics w; which are uniform on compact sets of M\S, and then use these
to prove Theorem 1.1. These estimates improve the results in [38], and use
crucially the assumptions that M is projective and that the smooth fibers
M, are tori.

Lemma 4.1. There is a constant C' such that on U the Ricci—flat metrics
W satisfy

(4.1) C Y wo + twpr) < @ < C(wo + twnr),
for all smallt > 0.

Proof. This estimate is contained in the second-named author’s work [38],
although it is not explicitly stated there. To see this, start from [38, (3.24)],
which gives a constant C' so that on U we have

C(twar) < @
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Then use [38, Lemma 3.1] to get
Clwy < @,
and so adding these two inequalities we get
C™Hwo + twar) < &,

or in other words trg,w; < C on U, where w; = wg + twys as before. To get
the reverse inequality, we note that on U we have

~ n—1 (D? (Z)p
trwtwt < (tri)twt) ;7? g O;? < Ca
where the last inequality follows from [38, (3.23)]. We thus get the reverse
inequality
(:-}t < C(WO + th)a
thus proving (4.1). O

From now on we fix a small ball B C N\f(S), and as before we call
U = f~%(B) and we have the holomorphic covering map p : B x C"™™ — U,
with f op(y,z) = y where (y,2) = (Y1,---,Yms 21, - - -, Zn—m) the standard
coordinates on BxC"™ ™, Welet \; : BxC"™™ — BxC" ™ be the dilation

Ae(y, z) = (y, \2) :

which takes the lattice v/tA, to A,. If we pull back the Kéhler potential ¢y
on U via p we get a function p; op on B x C"™™ which is periodic in z with
period Ay, ie. @t op(y,z+¢) = ¢ op(y,z) for all £ € Ay. The function
¢ opo A\ is then periodic in z with period \/EAy. Note that since wyq is the
pullback of a metric from N\ f(.S), we have A\jp*wy = p*wp.

Recall now that we have a nonnegative definite semi-flat form wgr on
U, and that wy + wgp is then a semi-flat Kéhler metric on U. Since U
is diffeomorphic to a product B x M,, it follows that wgr and wys are
cohomologous on U. We now apply Proposition 3.1 and get a holomorphic
section ¢ : B — U and a real function £ on U such that

(4.2) Trwsp —wy =/ —100¢
on U, where T, is the fiberwise translation by o.

Lemma 4.2. There is a constant C' such that on the whole of B x C"~™
we have

(4.3) C™1p*(wo + wsr) < Np*T* &0 < Cp*(wo + wsr),
for all smallt > 0.

Proof. First of all notice that after replacing U with a slightly smaller open
set, the semi-flat metric wg + wgp is uniformly equivalent to wys, which
implies that

(4.4) C_l(wo + twgp) S wo + twy < C(wo + thF),
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for all small ¢t > 0. Thanks to Lemma 4.1 on U we have that
CNwo + tT* jwpr) < T* 0 < Clwo + tT* ,wnr),
and since T jwyy is uniformly equivalent to wys we also have that
(4.5) C™HNwo + twar) < T* 0 < Clwo + twyr),
and combining (4.4) and (4.5) we get
(4.6) C N wo + twsr) < T* & < C(wo + twsr),
on U. If we pull back (4.6) by po A\; we get
(4.7) C (p*wo + tAp*wsr) < Np*T* &y < C(p*wo + tAfp*wsr),
on all of B x C"~™. We claim that on the whole of B x C"™™ we have that
(4.8) tAIp wsF = pwsr.

In fact, the construction of wgp in section 3 gives that p*wgp = \/—18577,
for a function n on B x C*"~™ that satisfies

(4.9) no(y,z)=n <y, \2) = %n(y, z),

for all (y,z) in B x C"™™ and any t > 0. It follows then that
(4.10)  tA\fp*wsk = AV 1000 = t/—199(n o \y) = v/ —109n = p*wsr,
as claimed. Combining (4.7) and (4.8) we get the bound (4.3). O

Proposition 4.3. Given any compact set K in B x C"™™ and any k > 0
there exists a constant C' independent of t > 0 such that

(4.11) AP T gl on e,y < C

where § is the Fuclidean metric on B x C*~™,

Proof. We pull back (1.1) via T_, o po A\; and get
(NP T2 5w)" (y, 2) = cot" " (Np™ T pwnr)" (y, 2)

z
= (p*T* _wy)" |y, — |,
(T )" (25
since the pullback under ); of any volume form f(y,2)dy' A--- A dz"~™ on
B x C"™ equals t" " f(y, %)dy1 A-+-AdzZ" ™. We now claim that in fact
we have

T o) (157 ) = 07T onn)"0,2).

To see this, consider the (n,0)-form

dyt A ANdy™ AdzE A ANdZTTT
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on B x C" ™. This form is invariant under the Z2"2"_action described
above

(n1,...,n2n—2m) - (¥, 2) = (Y, 2 + anz’(y)),

where (y,2) = (Y1,--+,Ym, 215 -+, Zn—m), and so it descends to a holomor-
phic (n, 0)-form to the quotient (BxC"~"™)/A and using the biholomorphism
with U we get a holomorphic (n,0)-form ©Q on U. We can then consider the

volume form (v/=1)"*Q A Q, and we have
T* Wy =h-(V=D1)"QAQ,

where h is a smooth positive function on U. Taking v/—199 log of both sides
we get

. B T* "
—109logh = v/—10dlog —— M =0,
V-100logh = V=100 log (V=1)"QAQ
since T* jwps is Ricci-flat and Q is a holomorphic (n,0)-form. So logh is

pluriharmonic on U, and this implies that its restriction to any fiber M,
with y € B is constant. Pulling back via p we get

(0T i) (0, 2) = (hop)(y, 2)(V=D)" dy A+ AdZ" ™,

but since h is constant along the fibers of f and p is compatible with the pro-
jection to B we get that the function (hop)(y, z) on BxC"™™ is independent
of z. In particular we have

T o) (125 ) = 0T )02,

and so the rescaled metrics \jp*T™* & satisfy the nondegenerate complex
Monge-Ampére equation

(NPT o)™ = (P*wo + AP T ywir + V—1003,)" = ¢, (p*T* ;war)"
on B x C" ™, where we have set
¢t =¢toT gopol.
We claim that the estimates (4.11) hold. To see this, we use (4.2) and get
(4.12) prwsp = p*T* jwar + p*T* v/ —100E,

for a function £ on U. On B x C"™™ we can then use (4.10) and (4.12) and
write

Nep*T* &y = p*wo + NP T jwnr + V—190p
= p*wo + tA;p* (wsp — T* ,v/—100€) + v/ —1005:
= p'wo + prwsk — AP T V=109 + V100,
= p*(wo + wsr) + V—190us,

where for simplicity we write uy = @ — t(§ 0 T—, o po A\y). The functions u,
are uniformly bounded in C°(B x C"~™) because of the L> bound for ¢,

(4.13)
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from [9, 10] and because £ is a fixed function on U. The functions u; satisfy
the complex Monge-Ampere equations

(4.14) (p*wo + p*wsk + V—100u)" = ct(p*T* jwpr)™

on BxC" ™ and on any compact subset K of B x C"™™ the Kéahler metric
p*(wo + wsr) is C* equivalent to the Euclidean metric § (with constants
that depend only on K'). The bounds (4.3) imply that

C™16 < p*(wo + wsr) + V—190u; < C6,

on K for all small ¢ > 0, where C depends on K. The constants c¢; are
bounded uniformly and away from zero. After shrinking K slightly we can
then apply the Evans-Krylov theory (as explained for example in [13, 32])
and Schauder estimates to get higher order estimates [lut||cr (x5 < C()
for all £ > 0, thus proving (4.11).

Lemma 4.4. Given any compact set K C M\S there is a constant Ck such
that the sectional curvature of @y satisfies

(4.15) sup [Sec(@)| < Ck,
K

for all small t > 0.

Proof. We can assume that K is sufficiently small so that f(K) C B for a
ball B as before, and that there is a compact set K/ C B x C* ™ so that
p: K' = T,(K) is a biholomorphism. We then have

sup |Sec(wy)| = sup |Sec(T™ ,@¢)| = sup |[Sec(p™T™ &)
K ) K’

Ts
= sup [Sec(Ajp*T* &1l
AN

For t > 0 small enough, the sets A\; ! (K) are all contained in a fixed compact
set K" C B x C" ™. From (4.3) and (4.11) we then get a uniform bound
for the sectional curvatures of \jp*T™* &, on K", and this proves (4.15). O

Lemma 4.5. Given any compact set K in B x C"™" and any k > 0 there
exists a constant C' independent of t > 0 such that

(4.16) 10T Gl e ) < C.

where ¢ is the Euclidean metric on B x C*™™,

Proof. Given K, for all t > 0 small enough the sets \; ' (K) are all contained
in a fixed compact set K’ ¢ BxC"~™. We wish to deduce (4.16) from (4.11).
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To see this, write on B x C*™™
Np*T* & =/ —1 ( > As(ty,2)de’ AdF + Bi(ty, 2)dy’ A dy
i,j i,J
+ Z Ci5(t,y, 2)dy’ A dz + Z Ds(t,y, 2)dz" A dyj> :
i3 i,J
Thanks to (4.11), on K’ the coefficents A, B,C, D satisfy uniform C* es-

timates in the variables (y,z) independent of t. We then pull back this
equation via the map A;; (the inverse of \;) and get

pT 0 = V=1 (t > Aty 2Vhd2' A dF + Y Bty 2VE)dy' A di
irj irj
+\[Z —(t,y, 2v/t)dy’ /\dzj—i-\[ZD (t,y, 2V/t)dz /\dy)
’]

and the new coefficients are uniformly bounded in C* on K, thus proving
(4.16). O

Proposition 4.6. Ast goes to zero we have
(:)t — f*w

in O (M\S,wnr), where w = wy ++/—19¢ is a Kdihler metric on N\ f(S)

loc
with Ric(w) = wwp as in Theorem 1.1.

Proof. Recall that &y = wg + twys + v/ —199¢, so that
p*Tjg(Dt — p*wo + tp*TjO_WM —+ vV —1(‘:)5(9@ fe) Tio. op)

We now fix a compact set K C M\S, which we can assume is sufficiently
small so that f(K) C B for a ball B as before, and that there is a compact
set K/ C B x C" ™ such that p: K’ — T,(K) is a biholomorphism. From
(4.16) (together with the L> bound for ¢; from [9, 10]) we see that

ot oT OpHCk(K’,é) < C(k),

and therefore also

(4.17) l@ellenrwn < CF),

since T_, op : K' — K is a fixed biholomorphism. From [38] we know
that ¢ = f*¢ in C’llog(M\S, wpyr), and so (4.17) implies that ¢; — f*¢ in

Cro (M\S,wnr), and therefore that @; — f*w in C2(M\S,whr). O

As a corollary of this, for any compact subset K C M\S, there is a
positive function e(t) which goes to zero as t — 0, such that

(4.18) ffw—et)wy <& < ffw+e(t)wn
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on K, as well as
(4.19) e 0w < &y

We now finish the proof of Theorem 1.1. We have already proved the first
two statements in Proposition 4.6 and Lemma 4.4, and it remains to prove
(1.3). We will present two proofs of (1.3), one which uses the fact that the
fibers are tori, and another one which only uses the convergence result in
Proposition 4.6.

For the first proof, we need the following lemma

Lemma 4.7. Ast goes to zero we have
(4.20) NPT @y — p*(wsrk + frw)

in CX(B x C*™™,0), where § is the Euclidean metric.

Proof. Recall that from (4.13) we see that on B x C"~™
ANp*T* Jéon = p*(wo + wsr) + V—190uy,

where the functions uy = ¢ — tAfp*T* £ have uniform C*° bounds on com-
pact sets. We need to show that as t goes to zero we have uy — (f op)*p in
Ce (BxC"™™ §), where f*y is the C1* limit of ¢, from [38]. To prove this
we need another estimate from the second-named author’s work [38, (3.9)],
which implies that there is a constant C' (that depends on the initial choice

of B) so that for all 0 < t < 1 we have

(4.21) sup oscpr, pr < Ct.
yeB

We now use this together with the fact that ¢; — f*p in C% to get that for
any (y,z) in B x C"™™ we have

@iy, 2) — (f op) p(y, 2)| =

proT_sop (y, \2) - w(y)‘
prop <y, % - 5(1/)) —@top(y,2)

+ lwr o p(y, 2) — ((f*0) o p) ()]
<Ct+ Sup loe — el

<

where in the last line we used (4.21) because the points p(y, % —o(y)) and

p(y,z) lie in the same fiber M,. Letting t go to zero we see that @, —
(fop)*p in C°(B x C»™™). On the other hand we have that t\;p*¢ — 0 in
CY(BxC" ™) and so u; — (fop)*p in C°(BxC" ™). Thanks to the higher
order estimates for u;, we also have that u; — (fop)*p in C;2(BxC"™™,9),

up to shrinking B slightly. O

We can now complete the proof of Theorem 1.1.
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Proof. Recall that thanks to Lemma 4.7, on B x C"™™ we can write
10" T 0 — p*(wsF + ffw) = Ey,

where the error term FE; is a (1,1)-form that goes to zero smoothly on
compact sets. From (4.8) we also have that

E, = \Np"(T* 00 — ffw — twsr).

If we restrict the form T j&; — f*w —twgr to a fiber M, and divide by ¢ we

get,
T &Jt]M
— )\* * e Y —w
{y}xCr—m ' ( t o

Pulling back this via the map A/, (the inverse of \;) we get

. Tjaait’My
=p + —WSsFry | -
{y}xCrn—m

Explicitly we have A, (y, z) = (y, zv/t), which implies that )Clk/tdzi = Vtd7,
and so

£
t

N Br
t

X By

¢ (y¢ Z) = Ey (ya Z\/i)7

{y}X(Cnfm {y}X(Cnfm
which goes to zero smoothly as ¢t approaches zero, uniformly in y. It follows

T* ,ot|m . .
that "f‘y converges smoothly to wgr,, and the convergence is uniform

as y varies on compact sets of N\ f(S). Pulling back via Tj, and using the
fact that T jwsr, = wsry, we see that also % converges smoothly to
wsFy, as desired. O

Remark 4.8. Note that in particular we get the estimate

- 2
S]\l/}p ’V(w|My)}wM < O,

Y

which improves [38, (2.11)].

We now give a second proof of (1.3). In fact we show that in general (1.3)
follows from Proposition 4.6, without assuming that M is projective or that
the fibers M, are tori (in general M, is a Calabi-Yau manifold). This will
finish the proof of Theorem 1.1.

Proposition 4.9. Assume the same setting as in the Introduction, except
that M need not be projective and M, need not be a torus. If we have that

(4.22) O — ffw
in Cpo(M\S,wnr), where w is as before, then on each fiber M, with y €

loc

N\f(S) we have

@t| m,

(4.23) ;

— WSFy,
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where wsr,y, s the unique Ricci-flat metric on M, cohomologous to wns|n,
and the convergence is smooth and uniform as y varies on a compact subset

of N\f(S5).

Proof. For simplicity of notation call w, = ws|n, and &y = @¢|ar,. On each
fiber M, we have that Ric(w,) = +/—190F, for some smooth function F,
normalized by [, M, (efv — Lwy ™™ = 0. The functions F, vary smoothly in
y € N\f(S), because so do the Kahler metrics w,. The unique Ricci-flat
metric on M, cohomologous to w, is given by wsr, = w, + \/—7185@ and
solves the complex Monge-Ampere equation on M,

Wepy = (Wy +V —199¢,)" " = erwZ_m.
Recall from [38, Section 2] that we have
wy' Awyy " = Huwyy,

where H > 0 is a smooth function on M that vanishes precisely on S. A
simple calculation [38, (3.5)] shows that on M, we have

Ric(wy) = —v/—1001og H + (Ric(wpr))|m, = —V—100log H,

since we picked wys to be Ricci-flat. It follows that on M, the functions Fj
and —log H differ by a constant, which we can identify as follows: thanks
to Yau’s estimates, the functions ¢, vary smoothly in y and so they define a
smooth function ¢ on M\S. We then defined wsr = wys + v/—199¢, which
is a semi-flat form on M\S (here semi-flat means that its restriction to each
fiber M, is Ricci-flat). This semi-flat form is in general different from the
one constructed locally in section 3, although they are equal when restricted
to each fiber M. Even though wgp is not necessarily nonnegative, on M\S
the (n,n)-form wg™ Awg® is strictly positive, and so we can define a smooth
positive function G on M\S by
n
(4.24) - M
wy' NWgp

It is shown in [35, Lemma 3.3|, [38, p.445] that G is a positive constant on
each fiber M,, and we claim we have

1
4.25 By =~
(4.25) © T GH
This is because on M, we have
1 n n wh—m
L wM _ wM . SF,[gL — Ger.

- m n—m m n—m n—
H  wi AWy Wit AwggE T wy
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On M, we can then write, using (1.1), (4.25)

~ n—m ~N—m ~N—m m
w W B W A wy B
( y) _ tm n_ Yy w;L m _ tm n_yY wn m

n—m n—m m Y
t Wy wyr AW

~n—m m
w ANwy' ¢

4.26 Y Lt nmm
( ) wy HY
Yy 0 Fy, n—
= ] (ctGe vwy, ™™,
We also have a pointwise identity on M,
wy ™A wi” _ wy ™ A wi” _ wy ™A wp”
@ (m)ay ™" Aap ()ey " Ao
and we will write
wy ™A wp”
=——~———
A AP
so that we can recast (4.26) as
(,:j n—m
y —
(1.2 (%) = oty

Notice that the functions f; are the restriction to M, of smooth functions
on M\S. We claim that as ¢ approaches zero the functions f; converge to 1
in Cp2 (M\S,wyr). To see this, first of all note that by definition we have

wit Awis ™
(4.28) lim ¢; = <”> oo neon ™ >0,
=0 m Jar Wiy
see also [10], [38, (2.6)]. We now use the assumption (4.22), and so the
functions f; converge smoothly to

(4.29) G(")fM”glA%m- “hr TAWE
m Jor @i (m)wnr ™ A (fra)m

To see why this equals one, recall from [38, (4.3)] that the limit metric w on
N\ f(S) satisfies

(4.30) = G N MW

Jar @
where our function G is defined so that it differs from the function F' in [38,
(4.3)] by the constant factor [, (wo + war)™/ [4; wiy- Substituting (4.30)

into (4.29) we see that the limit of f; equals

Note now that from the main result of [38] we have that on each fiber M,

(4.31) Clw, < Ty < Cuwy,
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where C' is uniform as y varies in a compact set of N\f(S). From the
definition on M, we have

(7).

where £t satisfies the CV estimate (4.21). The metrics % satisfy the complex
Monge-Ampere equations on M,

) n—m —r n—m e
(4.32) <ty> - (wy+\/—1aa (7)) = frePon—m,
and we have just shown that the functions f;efv are bounded in C™>°(My, wy)
and away from zero, so we can apply the theory of Evans-Krylov and
Schauder estimates on M, to (4.32) (using (4.21) and (4.31)) to get bounds

Yy

t < (k).

Ck(My)wy)

independent of ¢. It follows that given any sequence t; — 0 we can find a
subsequence (still denoted by t;) and a smooth Kéhler metric oy, on M, so

that %y — oy in C®(wy). Equation (4.27) in the limit becomes

oy = wepy
and so by the uniqueness of Ricci-flat metrics in a given cohomology class we
must have o, = wgp,. Therefore the whole sequence “£ converges smoothly

[
to wgr,y as desired, and the convergence is uniform as y varies on compact

sets of N\ f(.5). O

Remark 4.10. In fact the proof of Proposition 4.9 shows that if we just have
that @, — f*w in C2 (M\S) (or in the C? topology of Kihler potentials)
then (1.3) holds in the C%* topology of Kihler potentials. It seems that
just having @; — f*w in the C%* topology of Kihler potentials (which is

proved in [38] in general) is not quite enough to deduce (1.3).

5. GROMOV-HAUSDORFF CONVERGENCE

In this section we study the collapsed Gromov-Hausdorff limits of the
Ricci—flat metrics @y and prove Theorem 1.2.

Lemma 5.1. There is an open subset Xo C X such that (Xo,dx) is locally
isometric to (Ng,w) where Ny = N\ f(S), i.e. there is a homeomorphism
¢ : No — Xo such that, for any y € Ny, there is a neighborhood B, C Ny
of y satisfying that, if y1 and y2 € By,

dw(y1,y2) = dx((y1), ¢(y2))-
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Furthermore, for anyy € Ny, there is a compact neighborhood B C Ny and a
holomorphic section s : B — f~1(B), i.e., fos=1id, such that s(y) — ¢(y)
under the Gromov-Hausdorff convergence of (M, &y, ) to (X, dx).

Proof. Let A be a countable dense subset of Ny, and K C Ny be a compact
subset with the interior int K non-empty. Let {B;} be a finite covering
of K with small Euclidean balls such that each the concentric balls B of
half radius still cover K. Let s; : B; — f~(B;) be sections on B;, i.e.,
holomorphic maps with f o s; = id.

Now, we define a map ¢ from AN K = {aj,az,---} to X. Suppose
that the point a; lies inside the ball B], and consider the points s;(aq)
inside M. Under the Gromov-Hausdorff convergence of (M, @y, ) to (X,dx),
a subsequence of these points converges to a point b; in X, because the
diameter of (M, &y, ) is uniformly bounded. If a; also lies inside another ball
B, then (1.3) (or also [38, (2.10)]) shows that dg, (si(a1),s;(a1)) — 0 when
tr, — 0. Thus, by passing to subsequences, both s;(a1) and sj(a;) converge to
the same point b; € X under the Gromov-Hausdorff convergence of (M, &y, )
to (X,dx). We then define ¢(a;) = by. For ag, by repeating the above
procedure, we obtain that a subsequence s;;(a;), j = 1,2, converges to b; €
X, j = 1,2, respectively. Define ¢(az) = ba. By repeating this procedure and
with a diagonal argument, we can find a subsequence of (M, &y, ), denoted
by (M, &y, ) also, such that s;, (a;) converges to b; € X along the Gromov-
Hausdorff convergence. For any a; € AN K, define ¢(a;) = b;.

Now, we prove that ¢ : ANint K — X is injective. If it is not true, there
are y1, y2 € ANint K such that y; # yo, and ¢(y1) = ¢(y2), which implies
d,, (81 (Y1), 85 (y2)) — 0. If 7, is a minimal geodesic in (M, &y, ) connecting
siy (y1) and s;,(y2), then

C ™ Mength,,, (f(ye) N K) <lengthg, (v N f7HK)) < day, (500 (41, 505 (32))

by (4.1) for a constant C' > 0 independent of k. Thus, if f(v;) C K for
tr < 1,

dWN (yh y?) < Clengtth (f(’)/k)) — Oa

or, if f(vx) N N\K are not empty by passing to a subsequence,
dwy (Y1, 0K) + dyy (0K, y2) < Clength,,  (f(vx) N K) — 0.

In both cases, we obtain contradictions. Thus ¢ : ANint K — X is injective.

Note that there is a > 0 such that, for any y € int K, the metric ball
By, (y,) is a geodesically convex set, i.e. for any y; and y2 € By,(y,r), there
is a minimal geodesic v C By, (y,r) connecting y; and yo, which implies

dyw(y1,y2) = length,,(v) < 2r.
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We take r < 1 such that there is a B} with B, (y,2r) C Bl. If y1,y2 € A,
by Proposition 4.6,
dx (o(y1), #(y2)) = lim dg,, (si(y1), 5i(y2))
k—>0

< Jim lengthy, (5:(7)

= length,,(7)

= du (Y1, Y2)-

If 4 is a minimal geodesic in (M,&y, ) connecting s;(y1) and s;(y2), then
(4.19) implies that

e(t

Hlength, (f (1) N Buly, 2r)) < lengthg, (v&) — dx(#(y1), d(y2)),

for some function £(t) — 0 as t — 0. If f(vx) C Bw(y,2r) for tx < 1 by
passing to a subsequence,

length,, (f(vk)) > length,, (),

since 7 is a minimal geodesic in (Ny, w). If f(7x) N No\Buw(y, 2r) is not empty
for t;, < 1, then there is a § € f(yx) N No\By(y,2r). Since y1, y2 € B, (y,r)
and f(v) connects y; and ya,

length,, (f(vk) N By (y,2r)) = dw(y1,9) + dw(y2,§) = 2r > length (7).

In both cases,

e~

dw (yla y2) = lengthw (7)
< lim length,(f(vk) N By (y, 2r))
tx—0

< dx(o(y1), d(y2))-
Thus

duo(y1, y2) = dx (d(y1), #(y2)),
ie. ¢: (ANint K,d,) — (X,dx) is a local isometric embedding. If {y;;}
and {yo2;} are two sequences in A N int K such that lim d,(y;;,y) = 0
j—00

for i = 1,2, then lim dy(y1j,925) = 0 and {y15, 925} C Bu(y,r) for
j—00

j > 1. Hence du(y1,4,92;) = dx(o(y15), ¢(y2;5)) and du(yij, yij+e) =
dx (¢(vi;), ¢(Yi,j+e¢)) for j > 1 and any ¢ > 0, which implies that {¢(y1;)}
and {¢(y2,;)} are two Cauchy sequences, and converge to a unique point
x € X. By defining ¢(y) = x, ¢ extends to a unique map, denoted still by
¢, from int K to X which is also a local isometric embedding.

Now we prove that ¢(int K') is an open subset of X. Let 2 € ¢(int K), i.e.
there is a y € int K such that ¢(y) = z, and let 2’ € X with dx(z,2") < p
for a constant p < %dw(y,aK ). From the above construction, y € B; for
a B!, and s;(y) — = under Gromov-Hausdorff convergence. There is a
sequence of points py € (M,&y,) such that pp — 2’ under the Gromov-
Hausdorff convergence. If +; is a minimal geodesic connecting s;(y) and py
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in (M,&, ), then
d, (si(y),pr) = lengthajtk (7)) — dx(z,2').

Equation (4.19) implies that, for k> 1,

1 el
glengthy, (f(4) N K) < e 2 lengthy, (f () N K)
< lengthg, (1)
1
<2p< Zdw(y,aK).

Thus f(px) € K' C int K where K’ is a compact subset of int K. By
passing to a subsequence, f(pr) — ¥’ in (K',w). By Proposition 4.6,
i, (pks i, (f(pr))) — 0 when t, — 0, and, thus, s;, (f(pr)) — 2’ under
the Gromov-Hausdorff convergence. The above construction shows that
¢(y") = 2/, which implies that {2/|dx(z,2") < p} C ¢(int K). Hence
¢(int K) is open, and ¢ : int K — ¢(int K) is a homeomorphism.

Let Ko C --- C K; C Kjy1 C --- C Ng be a family of compact
subsets with Ny = (Jint K;. Given each Kj, the above argument con-

J

structs a local isometric embedding ¢; : (int Kj,w) — (X,dx), which is
a homeomorphism onto the image ¢;(int K;). By the same argument as
above, ¢; extends to a local isometric embedding ¢;41 : (int K11, w) —

(X,dx), ie. ¢j+1]intKj = ¢, which is a homeomorphism onto the im-
age ¢;11(int Kj41). By a diagonal argument, we obtain a local isometry
¢ : (No,w) — (¢(No), dx) C (X, dx). O

The above lemma proves the existence of ¢ in Theorem 1.2, and is an
analog of Lemma 4.1 in [30] for the collapsing case. In the rest of this
section, we prove that Xo = ¢(Np) is dense in X.

Let z € Xy and pr, € M such that pp — T under the Gromov-Hausdorff
convergence of (M, &y, ) to (X,dx), and let

VOLIth (BLDtk (p7 T))
VOLZth (Bd)tk (ﬁkv 1)) ’
for any p € M and r > 0. By Theorem 1.6 in [5], there is a continuous func-

tion Vi : X x [0,00) — [0, 00) such that, if p — = under the convergence
of (M,&y,) to (X,dx), then

Vilp,r) =

(5.1) Vi(pr,r) — Vo(a,7).

By Theorem 1.10 in [5], V, induces a unique Radon measure v on X such
that

V(B (z,71))

(62 vBay(er) =Vole,), and D *es)

> p(ry,ra) >0,
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for any x € X, r; < 1o, where pu(rq,r2) is a function of r; and ry. For any
compact subset K C X,

v(K)=limvs(K) = hm inf {Z V(i rg)|ri < 5}

6—0
where | By, (zi,7;) D K. By scaling @; and w by one positive number, we
i

assume that B, (¢~ 1(Z),2) C Ny and is a geodesically convex set.

Lemma 5.2. There 1s a constant v > 0 such that

v(X) = U/ wip,  Volz,r) = U/ Wiy,
M JH(Buw(¢p~(2),r))

whenever x € Xo and r < 1 is such that B, (¢~ (x),2r) is a geodesically
convez subset of (Ny,w).

Proof. If pr, — x under the convergence of (M,&y, ) to (X,dx), we claim
that a subsequence of pj converges to a point p' € f~1(¢~!(x)) under
the metric wp; on M. By Lemma 5.1, there is a compact neighborhood
B C Ny of ¢~!(z) and a section s : B — f~!(B) such that s(¢~!(z)) — =
under the Gromov-Hausdorff convergence of (M,&y,) to (X,dx). Thus
A, (Pks s(¢p~(x))) — 0 when t; — 0. By Lemma 4.1, there are curves -
connecting pp and s(¢~1(x)) such that lengthg, (Vk) = da,, (P s(p71(x))),
and

length,, (f(x) N B) = length ., (v f™ ( ) < C%length@tk (k) — 0.
For a k> 1, if there is a y; € f(yx)\B, then

)
lengthy, (f (yx) N B) = duy (yr, 6 (2)) = p,
where p > 0 such that B,, (¢ (z),p) C B, which is a contradiction.
Thus f(y) C B for k > 1, length,, (f(7)) — 0 and f(px) converges to

¢ 1(x) under the metric wy. By passing to a subsequence, py converges
to a point p’ under the metric wy;. Since f*wy < C'wys for a constant
¢’ >0, dwo(f(pk)7 f(p/)) < Cl%de (pk,p’) — 0. Hence f(p/) = ¢_1(x) and
pef et (m)).

Let 7 satisfy r < 1, and B, (¢~ !(z),2r) is a geodesically convex subset of
(No,w). If ¢ € f~1(B, (¢~ (x),2r)), there is a curve ¥ connecting p’ and ¢
such that f(%) is the unique minimal geodesic connecting ¢~'(z) and f(q).
Thanks to (4.18) we have

fro—e(tpwn < @y, < ffw+e(tr)wm
where e(t) — 0 when t; — 0, on f~Y(B,(¢~(z),2r)). We obtain that
oy (s 0) < length, (7)
< length, (f(7)) + Ce(tr)?
= du(6™"(2). f(0)) + Celti) 2.
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If 4 is a minimal geodesic of @, connecting p’ and ¢, then (4.19) gives

daitk (p/7 Q) = length&tk (77}@) > 6_@lengthw(f(:7k) N Bw(¢_1(x)v QT))'
If () C Bu(¢~(z),2r), then
length,, (f(3) N Bu (¢~ (x),2r)) = length, (f(7)) = du(¢™ ! (x), f(a)),

and, otherwise,
length,, (f(3) N Bu (¢~ (x),2r)) = 2r > length, (f(7)) = du(6™"(z), f(9)),

by the same argument as in the proof of Lemma 5.1. Thus
_ _ 1
(6™ (2), f(q)) < da,, (P ) < du(¢™' (), f(q)) + Celtr)>

where C' is a constant independent of t, p’ and ¢q. Of course if k is large we
will have that

_e(tg)
e 2

e(ty)

1 _ly) _
du(¢7(2), f(q)) — Ce(tr)? <e™ 2 du(¢™'(2), f(a))-
Thanks to (4.1), there is constant C' > 0 independent of ¢; such that
@, < Cwy on f7H(By(¢7(z),2r)). Let v, be minimal geodesics of wyy
connecting py and p/, which satisfy v, C f~1(Bu(¢71(z),2r)) for k > 1.
Thus

1 1
da}tk (p,7pl€) < 1ength@tk (7]’&‘) < Czlengthij (’7]::) = Cde}\/[ (p,7pk) — 0

The triangle inequality shows that

_ 1 1

(e, (P @) — du(97(2), (@) < Ce(ty)? + C2duy, (0, pi)-
Hence there is a function p(tx) of t; such that p(t;) — 0 when ¢, — 0, and
FH B¢~ (@), = p(th))) C Bay, (k) C f~H(Bu(9™ (@), + p(t1)))-

We obtain that

n

lim why :/ Wiy
w=0JBs, (i) 71 (Bu(é~ (@)r))

Note that
(:JZC = Ctktzimw}\z/f.
Hence
VOLI) (B~ (pkvr))
Zk (pk7 T) = e

B VOlGth (B&th (ﬁk) ]-))

n—m
t n

Jbay, ) Cutic "l L e @ Vi

= o

JBa o el "R S Bater @) Wi

when t; — 0. By (5.1),

~1
Violz,r) = v/ wiy, where v = (/ w}@) .
71 (Bu(@~ (@)r)) f71(Bu(¢~1(2),1))
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Recall the diameter bound (1.4)
diamg, (M) < D
for a constant D > 0. Using (5.1), we have

V(X) = Vy(z, D) = lim V,(py, D) = U/ o
tk;—>0 M
0

Proof of Theorem 1.2. We prove that Xg C X is dense. If this is not true,
there is a metric ball By, (2, p) C X\ Xo. Note that

diamg, (X) = tgglo diamg, (M) < D.

Because of (5.2), we have
V(B (&/,0)) > (o, D)(X) = @ > 0.
For any compact subset K C X,

v(K) <V(X)—w:U/Mw}\Z/[—w

by Lemma 5.2. If By, (z,7;) is a family of metric balls in (X,dx) such
that r; < 6 < 1, By, (x;,2r;) is a geodesically convex subset of Xy, and
UBdX (zi,7;) D K, then

i

Vo(zi,r;) / why = U/ Wiy
Z Z BdX 33177%))) f71(¢71(K))

by Lemma 5.2. Thus

U/ wip < lim vs(K) = hm inf ZVO (@i, ri)|ri <0 p =v(K).
JH6mHE)) 00

By taking K large enough such that

V(K)>v/ wnM—Z:u/ W"M—%,
f=1(No) M

we obtain a contradiction. O

Remark 5.3. In fact, the same proof shows that v(X\Xg) = 0.
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