SUR UN PROBLÈME DE COMPATIBILITÉ LOCAL-GLOBAL MODULO p POUR GL_2

par

Christophe Breuil

avec un appendice par Lassina Dembélé

« Il tenente Simeoni aveva fatto un preventivo, aveva detto sei mesi. Ma sei mesi non sono bastati per la costruzione, né sei mesi, né otto, né dieci. (...) Quindici anni ci sono voluti, quindici lunghissimi anni che pure sono corsi via come un sogno. »

— Dino Buzzati, Il deserto dei Tartari.

Résumé. — Soit L une extension finie non-ramifiée de \mathbb{Q}_p . On s'intéresse au problème de savoir si certaines des représentations de $\operatorname{GL}_2(L)$ sur $\overline{\mathbb{F}}_p$ associées dans $[\mathbf{6}]$ à une représentation de $\operatorname{Gal}(\overline{\mathbb{Q}}_p/L)$ de dimension 2 sur $\overline{\mathbb{F}}_p$ générique peuvent apparaître dans des espaces de cohomologie.

Table des matières

1. Introduction	2
2. Quelques types modérés et leurs réseaux	8
3. Réseaux de la théorie globale et réseaux de Dieudonné	15
4. Poids de Diamond et types modérés	21
5. Groupes p -divisible et réseaux de Dieudonné	27
6. Le cas résiduellement réductible non-scindé	31
7. Les théorèmes locaux	38
8. Un problème de compatibilité local-global modulo p I	42
9. Un problème de compatibilité local-global modulo p II	47
Appendice A. Un peu de théorie de Hodge p-adique entière	52
Appendice B. Appendice par Lassina Dembélé	59
Références	66

1. Introduction

Dans [7], Buzzard, Diamond et Jarvis formulent une conjecture de modularité étendant la conjecture de Serre de [29] au cas des représentations continues, irréductibles, totalement impaires $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$ où F est un corps de nombres totalement réel et p un nombre premier non-ramifié dans F (cette hypothèse de non-ramification est supprimée dans [27]). La conjecture, dans une de ses versions « faibles », stipule par exemple que le système de valeurs propres de Hecke issus des traces des éléments de Frobenius aux places où $\overline{\rho}$ est non-ramifiée apparaît dans un espace de formes quaternioniques :

(1)
$$S^{D}(U, \overline{\mathbb{F}_{p}}) \stackrel{\text{def}}{=} \text{Fonctions}(D^{\times} \setminus (D \otimes_{F} \mathbb{A}_{F}^{f})^{\times} / U, \overline{\mathbb{F}_{p}})$$

pour un corps de quaternions D convenable de centre F ramifié aux places infinies et non-ramifié aux places divisant p et un sous-groupe ouvert compact $U = \prod_{\nu} U_{\nu}$ de $(D \otimes_F \mathbb{A}_F^f)^{\times}$ (\mathbb{A}_F^f désignant les adèles finis). Si $\prod_{\nu|p} U_{\nu}$ est pris normal dans $\mathrm{GL}_2(\mathcal{O}_F \otimes_{\mathbb{Z}} \mathbb{Z}_p)$, ce dernier groupe agit non-trivialement par translation à droite sur l'espace de fonctions (1). L'essentiel du travail de [7] consiste à formuler une version « forte » de la conjecture, ce qui revient à déterminer les représentations irréductibles de $\mathrm{GL}_2(\mathcal{O}_F \otimes_{\mathbb{Z}} \mathbb{Z}_p)$ sur $\overline{\mathbb{F}_p}$ qui apparaissent en sous-objet dans l'espace propre de Hecke $S^D(U, \overline{\mathbb{F}_p})[\overline{p}^{\vee}]$ ci-dessus (supposé non-nul). Plus précisément, dans [7, Conj.4.7], d'une part il est conjecturé un isomorphisme :

(2)
$$\lim_{\stackrel{\longrightarrow}{U}} \left(S^D(U, \overline{\mathbb{F}_p})[\overline{\rho}^{\vee}] \right) \simeq \otimes'_{\nu} \pi_{\nu}^D(\overline{\rho}^{\vee})$$

où $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ est une représentation lisse admissible de $(D \otimes_{F} F_{\nu})^{\times}$ sur $\overline{\mathbb{F}_{p}}$ (F_{ν}) est le complété de F en ν) qui, lorsque $\nu \nmid p$, se déduit des travaux de Vignéras et Emerton; d'autre part il est prédit la liste des représentations irréductibles de $\mathrm{GL}_{2}(\mathcal{O}_{F_{\nu}})$ (mais sans leur multiplicité) apparaissant en sous-objet dans la $\mathrm{GL}_{2}(F_{\nu})$ -représentation $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ lorsque $\nu|p$. Sous une hypothèse supplémentaire sur $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_{p}}/F_{\nu})}$ (pour $\nu|p$) appelée « généricité » (voir §4), il est communément admis que l'on peut rajouter à $[\mathbf{7}, \mathrm{Conj}.4.7]$ le bonus que toutes les multiplicités des représentations de $\mathrm{GL}_{2}(\mathcal{O}_{F_{\nu}})$ apparaissant dans le socle de $\pi_{\nu}^{D}(\overline{\rho}^{\vee})|_{\mathrm{GL}_{2}(\mathcal{O}_{F_{\nu}})}$ sont égales à 1. Lorsque $F = \mathbb{Q}$, de nombreux cas de $[\mathbf{7}, \mathrm{Conj}.4.7]$ (avec son bonus) ont été annoncés par Emerton ($[\mathbf{14}],[\mathbf{15}]$) en utilisant les derniers résultats du programme de Langlands p-adique pour $\mathrm{GL}_{2}(\mathbb{Q}_{p})$ ($[\mathbf{10}]$) mais cette conjecture reste largement ouverte si $F \neq \mathbb{Q}$ malgré des progrès récents ($[\mathbf{18}], [\mathbf{19}]$ pour p totalement ramifié dans F).

Lorsque $F_{\nu} \neq \mathbb{Q}_p$, la $\operatorname{GL}_2(F_{\nu})$ -représentation $\pi_{\nu}^D(\overline{\rho}^{\vee})$ attendue dans (2) pour $\nu|p$ reste extrêmement mal comprise, même conjecturalement. En effet, connaître le $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$ -socle de $\pi_{\nu}^D(\overline{\rho}^{\vee})$ est très loin de suffire pour déterminer une unique représentation lisse admissible de longueur finie (ou irréductible) de $\operatorname{GL}_2(F_{\nu})$. Par ailleurs, les résultats de [21], [7] et [20] montrent que, dès que $F_{\nu} \neq \mathbb{Q}_p$, l'étude des représentations lisses admissibles irréductibles de $\operatorname{GL}_2(F_{\nu})$ sur $\overline{\mathbb{F}}_p$ devient

très subtile. Le but de cet article est d'aller « un cran plus loin » que [7] dans la compréhension de $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ sous l'hypothèse additionnelle que $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_{p}}/F_{\nu})}$ est générique. En particulier, on conjecture que $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ contient toujours une des représentations de $\mathrm{GL}_{2}(F_{\nu})$ associées à $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_{p}}/F_{\nu})}$ dans [6] et, en supposant vraie la conjecture [7, Conj.4.7] avec son bonus, on montre quelques cas partiels de cette conjecture.

Rentrons plus en détail dans les énoncés de cet article.

Fixons une place $\nu|p$ telle que $\overline{\rho}_{\nu} \stackrel{\text{def}}{=} \overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})}$ est générique et notons $\mathcal{D}(\overline{\rho}_{\nu})$ l'ensemble des représentations irréductibles de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$ sur $\overline{\mathbb{F}_p}$, ou de manière équivalente de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}}/(p))$ sur $\overline{\mathbb{F}_p}$, associé à $\overline{\rho}_{\nu}$ dans [7] (voir §4, ces représentations sont ici appelées « poids de Diamond » comme dans [6]). Soit $D_0(\overline{\rho}_{\nu})$ la plus grande représentation pour l'inclusion de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}}/(p))$ sur $\overline{\mathbb{F}_p}$ dont le socle est $\oplus_{\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})} \sigma_{\nu}$ et telle que les $\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})$ n'y apparaissent que dans ce socle. En admettant [7, Conj.4.7] et son bonus, il n'est pas difficile de montrer que $\pi^D_{\nu}(\overline{\rho}^{\vee})|_{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})}$ doit contenir $D_0(\overline{\rho}_{\nu})$ (de manière unique à scalaire près), cf. proposition 8.3. Soit $I_{1,\nu} \subset \operatorname{GL}_2(\mathcal{O}_{F_{\nu}}/(p))$ le sous-groupe des matrices unipotentes supérieures modulo p, il découle alors des constructions de [6] que la $\operatorname{GL}_2(F_{\nu})$ -représentation $\pi^D_{\nu}(\overline{\rho}^{\vee})$ contient une des représentations de [6] associées à $\overline{\rho}_{\nu}$ si et seulement si l'action de la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ à l'intérieur de $\pi^D_{\nu}(\overline{\rho}^{\vee})$ (ou de $\overline{\nu}^D_{\nu}(\overline{\rho}^{\vee})$) laisse $\overline{\nu}^D_{\nu}(\overline{\rho}^{\vee})$ laisse $\overline{\nu}^D_{\nu}(\overline{\rho}^{\vee}$

Soit $\nu|p$ et $U=\prod_{\nu'}U_{\nu'}$ un sous-groupe ouvert compact tel que $U_{\nu}=I_{1,\nu}$. Supposons que l'on peut choisir $U_{\nu'}$ pour $\nu' \neq \nu$ tel que $S^D(U, \overline{\mathbb{F}_p})[\overline{\rho}^{\vee}] \simeq \pi^D_{\nu}(\overline{\rho}^{\vee})^{I_{1,\nu}}$. Alors un tel énoncé de stabilité découlerait d'un énoncé de multiplicité 1 pour les caractères de l'Iwahori I_{ν} en ν agissant sur $S^{D}(U, \overline{\mathbb{F}_{p}})[\overline{\rho}^{\vee}]$ parce qu'on aurait dans ce cas $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}} \xrightarrow{\sim} \pi_{\nu}^D(\overline{\rho}^{\vee})^{I_{1,\nu}}$ (c'est une conséquence facile de la maximalité de la représentation $D_0(\bar{\rho}_{\nu})$). Ce point de vue est exploré dans l'appendice B, dû à Lassina Dembélé, où plusieurs cas d'un tel énoncé de multiplicité 1 sont vérifiés par des calculs explicites sur ordinateur (voir sa conjecture 1 sur la dimension de certains espaces $S^D(U,\overline{\mathbb{F}_p})[\overline{\rho}^{\vee}]$ qui est équivalente à la multiplicité 1 ci-dessus par [6, Prop.14.7] ou la remarque 4.4, et voir aussi les tables qui suivent). Mais, en dehors du cas où l'ensemble $\mathcal{D}(\overline{\rho}_{\nu})$ est un singleton, l'auteur de l'article ignore comment montrer cet énoncé de multiplicité 1 même en admettant la conjecture [7, Conj.4.7] et son bonus. Notons que cette multiplicité 1 pour les caractères de l'Iwahori devient en général complètement fausse si l'on remplace l'espace propre $S^D(U, \overline{\mathbb{F}_p})[\overline{\rho}^{\vee}]$ par le localisé $S^D(U, \overline{\mathbb{F}_p})_{\overline{\rho}^{\vee}}$, ce qui rend semble-t-il difficilement applicables les techniques de multiplicité 1 issues des théorèmes R = T à la Taylor-Wiles ([13], [17]).

Dans cet article, on choisit d'adopter un autre point de vue. Pour mieux comprendre théoriquement l'éventuelle stabilité de $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ par $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$, on la relie à un énoncé plus en amont sur les réseaux induits par les formes quaternioniques entières sur certains types de Bushnell-Kutzko en ν , un énoncé plus dans l'esprit du « programme de Langlands p-adique ». Soit $\pi = \otimes'_{\nu} \pi_{\nu}$ une composante irréductible de dimension infinie de $\lim_{\longrightarrow} S^D(U, \overline{\mathbb{Q}_p})$ (avec des notations évidentes)

et notons $\rho: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \operatorname{GL}_2(\overline{\mathbb{Q}_p})$ la représentation p-adique associée à π (convenablement normalisée, cf. §3) que l'on suppose absolument irréductible modulo p. En particulier, ρ admet à homothétie près un unique $\overline{\mathbb{Z}}_p$ -réseau stable dont on note $\overline{\rho}$ la réduction dans $\overline{\mathbb{F}}_p$. Supposons qu'il existe $\nu|p$ tel que d'une part π_{ν} soit une série principale modérément ramifiée qui n'est pas non-ramifiée et d'autre part $\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})}$ soit générique. Soit :

(3)
$$\sigma_{\nu} = \left(\operatorname{ind}_{I_{\nu}}^{\operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})} \eta_{\nu}' \otimes \eta_{\nu} \right) \otimes_{\overline{\mathbb{Z}_{p}}} \overline{\mathbb{Q}_{p}} \subset \pi_{\nu}$$

le type de Bushnell-Kutzko dans π_{ν} (cf. l'appendice de Henniart dans [5]) où $\eta_{\nu}, \eta'_{\nu}: \mathcal{O}_{F_{\nu}}^{\times} \to \overline{\mathbb{Z}_{p}}^{\times}$ sont des caractères distincts se factorisant par $(\mathcal{O}_{F_{\nu}}/(p))^{\times}$. Notons $\overline{\eta}_{\nu}, \overline{\eta}'_{\nu}$ la réduction de ces caractères dans $\overline{\mathbb{F}_{p}}^{\times}$ et $f_{\nu} \stackrel{\text{def}}{=} [F_{\nu}: \mathbb{Q}_{p}]$, la représentation $\operatorname{ind}_{I_{\nu}}^{\operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})} \overline{\eta}'_{\nu} \otimes \overline{\eta}_{\nu}$ a génériquement $2^{f_{\nu}}$ facteurs de Jordan-Hölder $\overline{\sigma}_{J}$ indexés par les parties J de l'ensemble des plongements S de F_{ν} dans $\overline{\mathbb{Q}_{p}}$. La $\operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})$ -représentation σ_{ν} possède donc beaucoup de $\overline{\mathbb{Z}_{p}}$ -réseaux stables et, fixant un plongement $\operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})$ -équivariant $\sigma_{\nu} \hookrightarrow \pi$, on peut se demander quel est le $\overline{\mathbb{Z}_{p}}$ -réseau induit par $\lim_{\overline{U}} S^{D}(U, \overline{\mathbb{Z}_{p}})$ sur σ_{ν} (on peut d'ailleurs se le demander pour n'importe quel type de Bushnell-Kutzko, et même à terme pour toute la représentation π_{ν}).

Soit $\overline{\inf}_J$ l'enveloppe injective de $\overline{\sigma}_J$ dans la catégorie des représentations de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}}/(p))$ sur un $\overline{\mathbb{F}_p}$ -espace vectoriel de dimension finie. Il existe à isomorphisme près une unique représentation inj_J de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}}/(p))$ sur un $\overline{\mathbb{Z}_p}$ -module libre de rang fini tel que $\operatorname{inj}_J \otimes_{\overline{\mathbb{Z}_p}} \overline{\mathbb{F}_p} \simeq \overline{\operatorname{inj}}_J$ ([28]). Soit ϕ_{ν} l'unique élément de σ_{ν} en (3) à support dans I_{ν} et envoyant la matrice identité sur 1, alors, pour chaque partie J de \mathbb{S} , il existe par [28] une injection équivariante unique (à multiplication près par un élément de $\overline{\mathbb{Z}_p}^{\times}$):

$$\psi_J: \sigma_\nu \hookrightarrow \operatorname{inj}_J \otimes_{\overline{\mathbb{Z}_p}} \overline{\mathbb{Q}_p}$$

telle que $\psi_J(\phi_\nu) \in \operatorname{inj}_J$ et l'image de $\psi_J(\phi_\nu)$ dans $\overline{\operatorname{inj}}_J$ est non-nulle. Soit $(v_J)_J$ des éléments de $\mathbb{Q}_{\geq 0}$, on note :

$$\sigma_{\nu}^{0}((v_{J})_{J}) \stackrel{\text{def}}{=} \bigcap_{J} \psi_{J}^{-1}(p^{v_{J}} \operatorname{inj}_{J})$$

où $p^{v_J} \in \overline{\mathbb{Z}_p}$ est un élément quelconque de valuation v_J . Il s'agit d'un $\overline{\mathbb{Z}_p}$ -réseau de σ_{ν} stable par $\mathrm{GL}_2(\mathcal{O}_{F_{\nu}})$.

Théorème 1.1. — Soit V l'ensemble des uplets $(v_J)_J$ de $\mathbb{Q}_{\geq 0}$ vérifiant $v_\emptyset = 0$ et $0 \leq v_{J'} - v_J \leq |J' \setminus J|$ si $J \subseteq J'$. Alors l'application $(v_J)_J \mapsto \sigma_{\nu}^0((v_J)_J)$ induit une bijection entre V et l'ensemble des classes d'homothéties de réseaux stables par $\mathrm{GL}_2(\mathcal{O}_{F_{\nu}})$ sur σ_{ν} .

Dans le texte, on démontre ce théorème en calculant directement et explicitement les réseaux stables sur σ_{ν} (sans passer par les ψ_{J}), cf. §2.

Pour ν comme en (3), la représentation $\rho_{\nu} \stackrel{\text{def}}{=} \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})}$ (ou plutôt le réseau induit sur cette représentation par l'unique réseau stable de ρ) et son dual de Cartier $\rho_{\nu}^{\vee}(1)$ (ibid.) deviennent Barsotti-Tate sur l'extension $F_{\nu}[\ ^{q_{\nu}-1}\sqrt{-p}]$ où $q_{\nu} \stackrel{\text{def}}{=} p^{f_{\nu}}$. Un choix de plongement $F_{\nu} \hookrightarrow \overline{\mathbb{Q}_p}$ permet d'identifier S à $\{0, \cdots, f_{\nu} - 1\}$ en composant ce choix avec les puissances du Frobenius absolu. Le module de Dieudonné contravariant de la fibre spéciale du groupe p-divisible sur $\mathcal{O}_{F_{\nu}}[\ ^{q_{\nu}-1}\sqrt{-p}]$ dont la fibre générique est $\rho_{\nu}^{\vee}(1)$ est alors de la forme $M^0 \times M^1 \times \cdots \times M^{f_{\nu}-1}$ avec $M^j = \overline{\mathbb{Z}_p} e_{\eta_{\nu}}^j \oplus \overline{\mathbb{Z}_p} e_{\eta_{\nu}'}^j$ où $\operatorname{Gal}(F_{\nu}[\ ^{q_{\nu}-1}\sqrt{-p}]/F_{\nu})$ agit sur $e_{\eta_{\nu}}^j$ (resp. $e_{\eta_{\nu}'}^j$) par le caractère η_{ν} (resp. η_{ν}') et où le Frobenius φ envoie M^j sur M^{j+1} . En particulier, on a $\varphi(e_{\eta_{\nu}}^j) = x_j e_{\eta_{\nu}}^{j+1}$ avec $0 \neq x_j \in \overline{\mathbb{Z}_p}$ et $v_j \stackrel{\text{def}}{=} \operatorname{val}(x_j) \in \mathbb{Q}_{\geq 0}$ est bien défini.

Conjecture 1.2. — Les $\overline{\mathbb{Z}_p}$ -réseaux induits par $\lim_{\stackrel{\longrightarrow}{U}} S^D(U, \overline{\mathbb{Z}_p})$ sur σ_{ν} en (3) via les divers plongements $\sigma_{\nu} \hookrightarrow \pi \subset \lim_{\stackrel{\longrightarrow}{U}} S^D(U, \overline{\mathbb{Q}_p})$ sont tous homothétiques au réseau $\sigma_{\nu}^0((\sum_{j\in J} v_j)_J)$.

Cette conjecture prédit les réseaux sur le type $\sigma_{\nu} \subset \pi_{\nu}$ en termes de données provenant du réseau sur la représentation p-adique ρ_{ν} (les v_{j}), elle entre donc dans le cadre du « programme de Langlands p-adique », la correspondance de Langlands classique ([23]) prédisant dans ce contexte seulement $\sum_{j\in \mathbb{S}} v_{j}$ (valuation de la valeur propre de $\varphi^{f_{\nu}}$). Il serait certainement intéressant de chercher si un énoncé analogue à 1.2 existe pour des types plus ramifiés que ceux considérés dans cet article.

Théorème 1.3. — Supposons qu'il y a un ou deux constituants du semi-simplifié modulo p de σ_{ν} dans $\mathcal{D}(\overline{\rho}_{\nu})$ et supposons soit que σ_{ν} est « suffisamment générique » (voir (i) du théorème 9.3 pour la condition précise) soit que [7, Conj.4.7] est vraie pour $\overline{\rho}$, alors la conjecture 1.2 est vraie.

On peut montrer qu'il y a toujours au moins un constituant du semi-simplifié modulo p de σ_{ν} (ou de manière équivalente de $\inf_{I_{\nu}}^{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})} \overline{\eta}'_{\nu} \otimes \overline{\eta}_{\nu}$) dans $\mathcal{D}(\overline{\rho}_{\nu})$, cf. corollaire 7.2. Lorsqu'il y en a exactement un et que $\overline{\rho}_{\nu}$ est semi-simple, le théorème 1.3 résulte d'une analyse poussée des calculs et résultats de Gee ([18]). C'est d'ailleurs cette analyse, et la description élégante ci-dessus du réseau induit sur σ_{ν} en terme du module de Dieudonné de $\rho_{\nu}^{\vee}(1)$ qui en a résulté, qui

ont suggéré à l'auteur que cette description devait être valable dans tous les cas. La preuve du théorème 1.3 utilise d'une part une étude fine de la position dans $\operatorname{ind}_{I_{\nu}}^{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})} \overline{\eta}'_{\nu} \otimes \overline{\eta}_{\nu}$ des constituants qui sont dans $\mathcal{D}(\overline{\rho}_{\nu})$ (§4), d'autre part des calculs explicites de théorie de Hodge p-adique entière (§7). L'hypothèse sur le nombre de constituants dans $\mathcal{D}(\overline{\rho}_{\nu})$ (un ou deux) associée au résultat de compatibilité local-global classique de [23] forcent alors le réseau induit sur σ_{ν} à être celui de la conjecture 1.2.

J'ignore comment montrer la conjecture 1.2 en général, mais elle a pour conséquence (voir théorème 9.1) :

Théorème 1.4. — Si la conjecture [7, Conj.4.7] et son bonus sont vrais pour $\overline{\rho}$, alors la conjecture 1.2 entraîne la stabilité de $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ par la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} \in GL_2(F_{\nu})$ à l'intérieur de $\lim_{\overrightarrow{U}} S^D(U, \overline{\mathbb{F}_p})$.

Le théorème 1.4 découle essentiellement d'un calcul exhaustif de tous les groupes p-divisibles sur $\mathcal{O}_{F_{\nu}}[\ ^{q_{\nu}-1}\sqrt{-p}]$ munis d'une action de $\operatorname{Gal}(F_{\nu}[\ ^{q_{\nu}-1}\sqrt{-p}]/F_{\nu})$ de « type » $\eta_{\nu} \oplus \eta'_{\nu}$ avec η_{ν} , η'_{ν} comme en (3) (§5), des représentations de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})$ portées par les points de p-torsion de ces groupes p-divisibles et des réseaux $\sigma^0_{\nu}((\sum_{j\in J}v_j)_J)$ sur le type σ_{ν} correspondant en (3) ainsi que de leur réduction dans $\overline{\mathbb{F}_p}$ (§6, §7).

Enfin, on déduit des théorèmes 1.3 et 1.4 le résultat conditionnel suivant (voir corollaire 9.6) :

Corollaire 1.5. — Supposons la conjecture [7, Conj.4.7] et son bonus vrais pour $\overline{\rho}$ et soit $\nu|p$ une place telle que ou bien $|\mathcal{D}(\overline{\rho}_{\nu})| \leq 2$, ou bien $f_{\nu} = 2$ et $\overline{\rho}_{\nu}$ est irréductible, alors $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ contient une des représentations de $\operatorname{GL}_{2}(F_{\nu})$ associées à $\overline{\rho}_{\nu}$ dans [6].

Passons maintenant en revue les différents paragraphes de cet article.

Au §2, on décrit tous les réseaux stables sur un type comme en (3) et on démontre le théorème 1.1. Au §3, on définit des réseaux « de Dieudonné » sur les types (3) à partir de certains modules de Dieudonné avec donnée de descente, on formule la conjecture 1.2 après avoir introduit les espaces de formes quaternioniques et on la démontre lorsque $F = \mathbb{Q}$. Au §4, on étudie en détails la position des poids de Diamond d'une représentation galoisienne locale générique dans une induite ind $_{I_{\nu}}^{\text{GL}_2(\mathbb{O}_{F_{\nu}})} \overline{\eta}'_{\nu} \otimes \overline{\eta}_{\nu}$. Au §5, on détermine en termes de modules comme en [1] tous les groupes p-divisibles avec donnée de descente de type (3). Au §6, on détermine quand la représentation de Galois sur les points de p-torsion d'un tel groupe p-divisible est générique non-scindée. Au §7, on calcule la réduction modulo p des réseaux de Dieudonné du §3 provenant d'un groupe p-divisible comme au §5, en particulier on montre que cette réduction a pour

socle la somme directe des poids de Diamond de la représentation de Galois sur les points de p-torsion du groupe p-divisible. Au §8, on formule le problème de compatibilité local-global de cet article, c'est-à-dire la stabilité de $D_0(\bar{\rho}_{\nu})^{I_{1,\nu}}$ par la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$, et on pose quelques questions supplémentaires lorsque $\bar{\rho}_{\nu}$ est semi-simple en liaison avec les « valeurs spéciales de paramètres » trouvées dans [4]. Au §9, on démontre les théorèmes 1.3, 1.4 et le corollaire 1.5. Dans l'appendice A, on montre quelques résultats techniques assez simples de théorie de Hodge p-adique entière que l'on utilise au §6 puis on détermine explicitement les poids de Diamond d'une représentation galoisienne locale générique réductible non-scindée (détermination qui restait conjecturale dans [6]). Ce dernier point est démontré indépendamment et différemment dans [9] en utilisant [8]. Enfin, dans l'appendice B, Lassina Dembélé énonce (dans un cadre un peu plus restrictif) la conjecture de multiplicité 1 pour les caractères de l'Iwahori mentionnée plus haut, et en vérifie informatiquement plusieurs cas.

Nous achevons cette introduction avec quelques unes des notations utilisées dans l'article.

Une représentation irréductible d'un groupe quelconque s'entend au sens algébrique : pas de sous-espace strict invariant non-nul.

Si H est un corps local, on note \mathcal{O}_H son anneau d'entiers et k_H son corps résiduel.

Tout au long des parties purement locales de l'article, on travaille avec une extension non-ramifiée L de \mathbb{Q}_p dans une clôture algébrique $\overline{\mathbb{Q}_p}$, même s'il peut arriver que l'hypothèse de non-ramification soit inutile (par exemple au §2 ou au §3). On note $f \stackrel{\text{def}}{=} [L:\mathbb{Q}_p]$ son degré et on pose $q \stackrel{\text{def}}{=} p^f = |k_L|$. On note φ le Frobenius sur $\mathcal{O}_L = W(k_L)$ tel que $\varphi(a) \equiv a^p$ (p) si $a \in \mathcal{O}_L$ et $[\cdot]: k_L \hookrightarrow \mathcal{O}_L$ l'application « représentant multiplicatif ». On note L^{nr} l'extension maximale non-ramifiée de L (ou de \mathbb{Q}_p) dans $\overline{\mathbb{Q}_p}$.

On rappelle que l'a un isomorphisme canonique :

(4)
$$\varkappa_{f}: \operatorname{Gal}(L[{}^{p^{f}}\sqrt[1]{-p}]/L) \xrightarrow{\sim} k_{L}^{\times} \\
g \longmapsto \frac{g({}^{p^{f}}\sqrt[1]{-p})}{{}^{p^{f}}\sqrt[1]{-p}}.$$

On voit tout caractère de k_L^{\times} comme un caractère de $\operatorname{Gal}(L[p^f \sqrt[]{-p}]/L)$ ou de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ ou de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})$ en le composant avec \varkappa_f et les surjections sur $\operatorname{Gal}(L[p^f \sqrt[]{-p}]/L)$.

On normalise la valuation val par val(p) = 1. On normalise les inverses des applications de réciprocité locales de telle sorte que les uniformisantes s'envoient sur les Frobenius géométriques.

On note ε le caractère cyclotomique p-adique et ω sa réduction modulo p.

Si F est un corps de nombres, on note \mathbb{A}_F^f les adèles finis de F.

Les autres notations seront introduites dans l'article, au fur et à mesure des besoins.

Pour des discussions à différentes étapes de ce travail, l'auteur remercie K. Buzzard, X. Caruso, F. Diamond, M. Dimitrov, M. Emerton, T. Gee, F. Herzig, V. Paškūnas et M. Schein. L'auteur remercie tout particulièrement L. Dembélé pour son appendice, ses tables et sa bonne volonté qui l'ont fortement motivé pour rédiger le présent article.

2. Quelques types modérés et leurs réseaux

On détermine tous les réseaux stables sur un type non-trivial dans une série principale modérément ramifiée.

On note E une extension finie de \mathbb{Q}_p telle que $|\operatorname{Hom}_{\mathbb{Q}_p}(L, E)| = [L : \mathbb{Q}_p]$ et on fixe un plongement $\iota : L \hookrightarrow E$. On note $K \stackrel{\text{def}}{=} \operatorname{GL}_2(\mathcal{O}_L)$, $I \subset K$ le sous-groupe d'Iwahori des matrices triangulaires supérieures modulo $p, I_1 \subset I$ le sous-groupe des matrices unipotentes supérieures modulo p et $T \subset I$ le sous-groupe des matrices diagonales.

Soit $\eta, \eta': k_L^{\times} \to \mathcal{O}_E^{\times}$ deux caractères multiplicatifs et $\chi \stackrel{\text{def}}{=} \eta \otimes \eta': I \to \mathcal{O}_E^{\times}$ le caractère :

(5)
$$\begin{pmatrix} a & b \\ pc & d \end{pmatrix} \mapsto \eta(\overline{a})\eta'(\overline{d})$$

où \overline{a} (resp. \overline{d}) est la réduction modulo p de a (resp. d). On note $\chi^s \stackrel{\text{déf}}{=} \eta' \otimes \eta$. On suppose $\eta \neq \eta'$ et on note $c_{\chi} = \sum_{j=0}^{f-1} c_{\chi,j} p^j \in \{0, \cdots, q-1\}$ avec $c_{\chi,j} \in \{0, \cdots, p-1\}$ l'unique entier tel que $\eta(\overline{a})\eta'^{-1}(\overline{a}) = \iota([\overline{a}])^{c_{\chi}}$. La condition $\eta \neq \eta'$ est équivalente à $c_{\chi} \notin \{0, q-1\}$.

On note $\sigma(\chi^s)$ le E-espace vectoriel $\operatorname{ind}_I^K \chi^s$ des fonctions $f: K \to E$ telles que $f(kk') = \chi^s(k)f(k')$ si $k \in I$, $k \in K$ muni de l'action à gauche de K par translation à droite sur les fonctions (notons que cette action se factorise par $\operatorname{GL}_2(k_L)$). On rappelle que l'on a un entrelacement $\sigma(\chi^s) \stackrel{\sim}{\to} \sigma(\chi)$ et que, puisque $\eta \neq \eta', \sigma(\chi^s)$ et $\sigma(\chi)$ sont irréductibles. La représentation $\sigma(\chi^s)$ admet un \mathcal{O}_E -réseau stable naturel induit par les fonctions sur K à valeurs dans \mathcal{O}_E . On le note $\sigma^0(\chi^s)$. Nous allons décrire tous les réseaux stables de $\sigma(\chi^s)$ (à homothétie près) comme « modifications » du réseau $\sigma^0(\chi^s)$.

On identifie l'ensemble $\{0,\cdots,f-1\}$ à l'ensemble des plongements $\mathbb{S}\stackrel{\text{def}}{=}\{\tau:$ $L \hookrightarrow E$ } en envoyant j sur $\iota \circ \varphi^{-j}$. Rien dans ce qui suit ne dépend du choix de ι mais il est assez agréable de remplacer S par $\{0, \dots, f-1\}$. On note \mathcal{P}_{χ} l'ensemble des parties J de $\{0, \dots, f-1\}$ vérifiant les conditions :

- (i) si $j \in J$ et $j 1 \notin J$ alors $c_{\chi,j} \neq p 1$

(ii) si $j \notin J$ et $j-1 \in J$ alors $c_{\chi,j} \neq 0$ où l'on adopte la convention j-1=f-1 si j=0. Notons que \mathcal{P}_χ contient toujours $J = \emptyset$ et J = S. Par [6, §4], les facteurs de Jordan-Hölder de $\overline{\sigma}(\chi^s) \stackrel{\text{def}}{=}$ $\sigma^0(\chi^s) \otimes_{\mathcal{O}_E} k_E \simeq \operatorname{ind}_I^K(\chi^s \otimes_{\mathcal{O}_E} k_E)$ sont paramétrés par les éléments de \mathcal{P}_{χ} .

Lemme 2.1. — (i) Si $J, J' \in \mathcal{P}_{\chi}$, alors $J \cap J' \in \mathcal{P}_{\chi}$ et $J \cup J' \in \mathcal{P}_{\chi}$. (ii) On a $J \in \mathcal{P}_{\chi}$ si et seulement si $\mathbb{S} \setminus J \in \mathcal{P}_{\chi^s}$. (iii) Si $J \in \mathcal{P}_{\chi}$, alors il existe une suite croissante pour l'inclusion $J_0 \subsetneq J_1 \subsetneq$ $\cdots \subsetneq J_{f-1} \subsetneq J_f$ telle que $J_j \in \mathcal{P}_{\chi}$, $|J_j| = j$ et J est un des J_j .

Démonstration. — (i) est élémentaire. (ii) découle de [6, Thm.2.4(ii)] et (iii) découle de [6, Cor.5.6(i)] combiné avec [6, Thm.2.4]. Les assertions (ii) et (iii) peuvent aussi se démontrer directement par de la combinatoire élémentaire.

Soit $\phi \in \sigma^0(\chi^s)$ l'unique fonction (à valeurs dans O_E) à support dans I telle que $\phi(u) = 1$ pour $u \in I_1$. En particulier ϕ est I_1 -invariante dans $\sigma^0(\chi^s)$ et T agit sur ϕ via le caractère $\chi^s|_T$. Pour $0 \le j \le q-1$, on pose :

$$f_j \stackrel{\text{def}}{=} \sum_{\lambda \in k_L} \iota([\lambda]^j) \begin{pmatrix} [\lambda] & 1 \\ 1 & 0 \end{pmatrix} \phi \in \sigma^0(\chi^s).$$

Les f_j sont des vecteurs propres sous l'action de T et on a :

$$\sigma^{0}(\chi^{s}) = (\bigoplus_{j=0}^{q-1} \mathcal{O}_{E} f_{j}) \oplus \mathcal{O}_{E} \phi$$

$$= \left(\bigoplus_{\substack{j=0 \ j \neq c_{\chi}}}^{q-2} \mathcal{O}_{E} f_{j} \right) \oplus \mathcal{O}_{E} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_{0} \oplus \mathcal{O}_{E} \phi \oplus \mathcal{O}_{E} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi.$$

De plus $Ef_0 \oplus E\phi$ est le sous-espace de $\sigma(\chi^s)$ des vecteurs I_1 -invariants.

Lemme 2.2. — Il existe un unique entrelacement $\alpha: \sigma(\chi^s) \xrightarrow{\sim} \sigma(\chi)$ tel que $\alpha(f_0) = q\phi$ et $\alpha(\phi) = f_0$ (où ϕ , f_0 sont relatifs à l'induite qui les contient).

Démonstration. — Tout entrelacement α entre les deux induites induit un isomorphisme sur les vecteurs I_1 -invariants et respecte l'action de T. Puisque $\chi \neq \chi^s$, il envoie donc f_0 sur un multiple de ϕ et réciproquement. Quitte à multiplier par un scalaire convenable, on peut donc supposer $\alpha(\phi) = f_0$. L'unicité d'un tel α est alors claire puisque les représentations sont irréductibles. Reste à vérifier $\alpha(f_0) = q\phi$. On a (l'action de K se factorisant par $GL_2(k_L)$, on ne se préoccupe

plus des Teichmüller dans les matrices):

$$\alpha(f_0) = \alpha \left(\sum_{\lambda \in k_L} \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix} \phi \right) = \sum_{\lambda,\mu \in k_L} \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \mu & 1 \\ 1 & 0 \end{pmatrix} \phi = \sum_{\lambda,\mu \in k_L} \begin{pmatrix} 1 + \lambda \mu & \lambda \\ \mu & 1 \end{pmatrix} \phi$$

$$= \sum_{\substack{\lambda,\mu \in k_L \\ 1 + \lambda \mu = 0}} \begin{pmatrix} 0 & \lambda \\ \mu & 1 \end{pmatrix} \phi + \sum_{\substack{\lambda,\mu \in k_L \\ 1 + \lambda \mu \neq 0}} \begin{pmatrix} 1 + \lambda \mu & \lambda \\ \mu & 1 \end{pmatrix} \phi$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \sum_{\lambda \neq 0} \begin{pmatrix} -\lambda^{-1} & 1 \\ 0 & \lambda \end{pmatrix} \phi + \sum_{\substack{\mu \neq 0 \\ 1 + \lambda \mu \neq 0}} \begin{pmatrix} 1 + \lambda \mu & 0 \\ \mu & (1 + \lambda \mu)^{-1} \end{pmatrix} \phi + \sum_{\lambda \in k_L} \phi$$

$$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \left(\sum_{\lambda \neq 0} \eta(-\lambda)^{-1} \eta'(\lambda) \right) \phi + \sum_{\substack{\mu \neq 0 \\ 1 + \lambda \mu \neq 0}} \eta(1 + \lambda \mu) \eta'(1 + \lambda \mu)^{-1} \left(\frac{1}{1 + \lambda \mu} & 1 \right) \phi + q\phi$$

$$= 0 + 0 + q\phi = q\phi$$

où l'avant-dernière égalité résulte de $\sum_{x \in k_L^{\times}} \eta(x)^{-1} \eta'(x) = 0$ puisque $\eta \neq \eta'$. \square

Si $J \in \mathcal{P}_{\chi}$, on note $F_J \subseteq \{0, \dots, p-1\}^f$ l'ensemble des f-uplets $(s_j)_j = (s_0, \dots, s_{f-1})$ où les s_j vérifient les conditions :

$$\begin{cases}
0 \le s_j \le c_{\chi,j} & \text{si} \quad j \notin J \text{ et } j - 1 \notin J \\
0 \le s_j \le c_{\chi,j} - 1 & \text{si} \quad j \notin J \text{ et } j - 1 \in J \\
c_{\chi,j} \le s_j \le p - 1 & \text{si} \quad j \in J \text{ et } j - 1 \in J \\
c_{\chi,j} + 1 \le s_j \le p - 1 & \text{si} \quad j \in J \text{ et } j - 1 \notin J.
\end{cases}$$

À l'aide des F_J , on définit les sous- \mathcal{O}_E -modules facteurs directs suivants de $\sigma^0(\chi^s)$ (stables sous l'action de T):

$$\sigma_{\emptyset} \stackrel{\text{def}}{=} \left(\bigoplus_{(s_{j})_{j} \in F_{\emptyset} \setminus \{(c_{\chi,j})_{j}\}} \mathcal{O}_{E} f_{\sum_{j} s_{j} p^{j}} \right) \oplus \mathcal{O}_{E} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_{0}$$

$$\sigma_{\mathbb{S}} \stackrel{\text{def}}{=} \left(\bigoplus_{(s_{j})_{j} \in F_{\mathbb{S}} \setminus \{(c_{\chi,j})_{j}, (p-1, \cdots, p-1)\}} \mathcal{O}_{E} f_{\sum_{j} s_{j} p^{j}} \right) \oplus \mathcal{O}_{E} \phi \oplus \mathcal{O}_{E} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi$$

$$\sigma_{J} \stackrel{\text{def}}{=} \bigoplus_{(s_{j})_{j} \in F_{J}} \mathcal{O}_{E} f_{\sum_{j} s_{j} p^{j}} \text{ si } J \neq \emptyset, \mathbb{S}.$$

En particulier, on a $\sigma^0(\chi^s) = \bigoplus_{J \in \mathcal{P}_{\chi}} \sigma_J$.

Proposition 2.3. — Tout \mathcal{O}_E -réseau de $\sigma(\chi^s)$ stable par K est de la forme $\bigoplus_{J \in \mathcal{P}_{\chi}} p^{v_J} \sigma_J$ pour des $v_J \in \mathbb{Q}$ convenables.

 $D\acute{e}monstration.$ — Soit $R\subset\sigma(\chi^s)$ un réseau stable. Montrons d'abord que l'on a :

(6)
$$R = \left(\bigoplus_{\substack{j=0\\j\neq c_{\chi}}}^{q-2} \mathcal{O}_{E} p^{v_{j}} f_{j}\right) \oplus \mathcal{O}_{E} p^{w_{0}} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} f_{0} \oplus \mathcal{O}_{E} p^{w_{1}} \phi \oplus \mathcal{O}_{E} p^{w_{2}} \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \phi$$

pour des $v_j, w_i \in \mathbb{Q}$ convenables. Les sous-espaces isotypiques de $\sigma(\chi^s)$ pour l'action de T sont les Ef_j pour $1 \leq j \leq q-2, j \neq c_\chi$ et les sous-espaces $V_0 \stackrel{\text{def}}{=} Ef_0 \oplus E\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi, V_1 \stackrel{\text{def}}{=} E\phi \oplus E\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_0$. Puisque T agit via un quotient de cardinal premier à p, R est somme directe des réseaux qu'il induit sur ces sous-espaces. En faisant agir la matrice $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, on voit que la seule assertion nontriviale à vérifier est que $R \cap V_0$ est de la forme $\mathcal{O}_E p^{v_0} f_0 \oplus \mathcal{O}_E p^{w_2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi$. Soit $af_0 \oplus b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in R$ $(a, b \in E)$. Nous allons montrer $af_0 \in R$ et $b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in R$ ce qui démontrera (6). On a d'abord :

$$\sum_{\lambda \in k_L} \iota([\lambda]^j) \begin{pmatrix} 1 & [\lambda] \\ 0 & 1 \end{pmatrix} \left(af_0 \oplus b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \right) = \begin{cases} bf_j & \text{si } 1 \le j \le q - 2 \\ (aq + b)f_0 & \text{si } j = 0 \end{cases}$$

d'où $(aq + b)f_0 \in R$ et $bf_j \in R$ si $1 \le j \le q - 2$. Nous allons distinguer trois cas. Premier cas : $val(b) \le val(a)$.

De $(aq + b)f_0 \in R$ on déduit $bf_0 \in R$ d'où aussi $af_0 \in R$ et $b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in R$.

Deuxième cas : $val(a) + f \le val(b)$.

L'image de R par l'entrelacement α (lemme 2.2) est un réseau stable de $\sigma(\chi)$ qui contient $aq\phi + b\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_0$ et donc aussi $bf_0 + aq\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi$. Comme val $(aq) \leq aq + b = aq\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi$.

 $\operatorname{val}(b)$, le premier cas appliqué à $\alpha(R)$ implique $bf_0 \in \alpha(R)$ et $aq\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in$

 $\alpha(R)$. En appliquant α^{-1} puis $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, on en déduit $af_0 \in R$ et $b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in R$. Troisième cas : $\operatorname{val}(a) < \operatorname{val}(b) < \operatorname{val}(a) + f$.

De $(aq + b)f_0 \in R$ on déduit $bf_0 \in R$. Nous allons montrer que $b\phi \in R$. On a $\frac{b^2}{a}\phi \in R$ puisque $bf_0 \in R$ et $af_0 \oplus b\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\phi \in R$. On en déduit $\frac{b^2}{a}\sigma^0(\chi^s) \subseteq R$ puisque $\operatorname{val}(\frac{b^2}{a}) > \operatorname{val}(b)$ et $bf_j \in R$ pour $0 \leq j \leq q-2$. Par ailleurs, on déduit facilement de $[\mathbf{6}, \text{ Lem. } 2.7(i)]$:

(7)
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_0 - \eta(-1) f_{c_{\chi}} - \phi \in p\sigma^0(\chi^s).$$

Si val $(b) \leq \text{val}(a) + 1$, c'est-à-dire val $(\frac{b^2}{a}) \leq \text{val}(pb)$, on a $pb\sigma^0(\chi^s) \subseteq \frac{b^2}{a}\sigma^0(\chi^s) \subseteq R$ et en multipliant (7) par b on obtient $b\phi \in R$. Si val(b) > val(a) + 1, alors $\text{val}(\frac{b^2}{ap}) > \text{val}(b)$ d'où $\frac{b^2}{ap}f_j \in R$ si $0 \leq j \leq q-2$. Comme $\frac{b^2}{a}\sigma^0(\chi^s) \subseteq R$, on obtient $\frac{b^2}{ap}\phi \in R$ en multipliant (7) par $\frac{b^2}{ap}$. On en déduit $\frac{b^2}{ap}\sigma^0(\chi^s) \subseteq R$. Si $\operatorname{val}(a) + 1 < 0$ $\operatorname{val}(b) \leq \operatorname{val}(a) + 2$, alors $\operatorname{val}(\frac{b^2}{ap}) \leq \operatorname{val}(pb)$ et on a $pb\sigma^0(\chi^s) \subseteq \frac{b^2}{ap}\sigma^0(\chi^s) \subseteq R$. En multipliant (7) par b on obtient encore $b\phi \in R$. Si $\operatorname{val}(b) > \operatorname{val}(a) + 2$, alors $\operatorname{val}(\frac{b^2}{ap^2}) > \operatorname{val}(b)$ et on obtient $\frac{b^2}{ap^2}\phi \in R$ en multipliant (7) par $\frac{b^2}{ap^2}$ et en utilisant $\frac{b^2}{ap}\sigma^0(\chi^s)\subseteq R$: une récurrence dont on laisse les détails au lecteur permet de conclure que l'on a toujours $b\phi \in R$, donc aussi $b\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \phi \in R$ et $af_0 \in R$. Ceci

achève la preuve de (6).

Montrons maintenant que les puissances de p sont constantes « sur » $R \cap (\sigma_J \otimes_{\mathcal{O}_E}$ E). Soit $J \neq \emptyset$, S. Choisissons f_i dans σ_J tel que v_i est minimum (avec v_i comme en (6)) et soit $f_{j'}$ dans σ_J . Comme $\sigma_J \otimes_{\mathcal{O}_E} k_E$ est une K-représentation irréductible dans un quotient convenable de $\overline{\sigma}(\chi^s)$ (voir [6, Lem.2.7]), il existe $h \in \mathcal{O}_E[K]$

tel que
$$hf_j = f_{j'} \oplus x$$
 où $x \in \left(\bigoplus_{i \neq j, j', c_\chi, q-1} \mathcal{O}_E f_i\right) \oplus \mathcal{O}_E \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} f_0 \oplus \mathcal{O}_E \phi \oplus \mathcal{O}_E \phi$

$$\mathcal{O}_E\begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix} \phi$$
. Par (6), on en déduit $p^{v_j}f_{j'} \in R$ puisque $p^{v_j}hf_j \in R$, d'où $v_{j'} = v_j$ puisque $v_j \leq v_{j'}$. La preuve lorsque $J = \emptyset$ ou S est la même.

Théorème 2.4. — Soit $J \in \mathcal{P}_{\chi}$ et $\langle K \cdot \sigma_J \rangle$ le sous \mathcal{O}_E -module de $\sigma^0(\chi^s)$ engendré par σ_J sous l'action de K. On a:

(8)
$$\langle K \cdot \sigma_J \rangle = \bigoplus_{J' \in \mathcal{P}_{\chi}} p^{|J'| - |J \cap J'|} \sigma_{J'}.$$

Démonstration. — Comme $\sigma(\chi^s)$ est irréductible, $\langle K \cdot \sigma_J \rangle$ est un réseau stable de $\sigma(\chi^s)$. De la structure de la représentation $\overline{\sigma}(\chi^s)$ ([6, Thm.2.4]) et de la proposition 2.3 on déduit (sachant que $\sigma^0(\chi^s)$ et les σ_J sont définis sur $W(\mathbb{F}_q) \subseteq \mathcal{O}_E$, comme le lecteur peut le vérifier aisément):

(9)
$$\langle K \cdot \sigma_J \rangle = \left(\bigoplus_{J' \subseteq J} \sigma_{J'} \right) \oplus \left(\bigoplus_{J' \not\subseteq J} p^{n_{J,J'}} \sigma_{J'} \right)$$

pour des entiers $n_{J,J'} \geq 1$. Soit $\sigma^1(\chi^s) \stackrel{\text{def}}{=} q\alpha^{-1}(\sigma^0(\chi))$ où α est l'entrelacement du lemme 2.2. C'est un réseau stable de $\sigma(\chi^s)$ et on a donc par la proposition 2.3 (sachant que $\sigma^0(\chi^s)$, $\sigma^0(\chi)$ et l'entrelacement α sont définis sur $W(\mathbb{F}_q) \subseteq \mathcal{O}_E$):

$$\sigma^1(\chi^s) = \bigoplus_{J \in \mathcal{P}_{\gamma}} p^{n_J} \sigma_J$$

pour des entiers n_J tels que $n_\emptyset = 0$ et $n_S = f$. Comme $\sigma_J \otimes_{\mathcal{O}_E} E = \alpha^{-1}(\sigma_{S \setminus J} \otimes_{\mathcal{O}_E} E)$ (utiliser le (ii) du lemme 2.1 et la compatibilité à T de α), de la structure de la représentation $\sigma^1(\chi^s) \otimes_{\mathcal{O}_E} k_E = \sigma^0(\chi) \otimes_{\mathcal{O}_E} k_E$ ([6, Thm.2.4]) et de la proposition 2.3 on déduit :

(10)
$$\langle K \cdot p^{n_J} \sigma_J \rangle = \left(\bigoplus_{J' \supseteq J} p^{n_{J'}} \sigma_{J'} \right) \oplus \left(\bigoplus_{J' \not\supseteq J} p^{m_{J,J'}} p^{n_{J'}} \sigma_{J'} \right)$$

pour des entiers $m_{J,J'} \ge 1$. Si $J' \supsetneq J$, (10) puis (9) fournissent $n_{J'} - n_J = n_{J,J'} \ge 1$. Ainsi la fonction $J \mapsto n_J$ est strictement croissante pour l'inclusion. Comme $n_\emptyset = 0$ et $n_\mathbb{S} = f$, par le (iii) du lemme 2.1 on voit que l'on a forcément $n_J = |J|$. Par (10) et (9), on a donc :

(11)
$$\langle K \cdot \sigma_J \rangle = \left(\bigoplus_{J' \subseteq J} \sigma_{J'} \right) \oplus \left(\bigoplus_{J' \supsetneq J} p^{|J' \setminus J|} \sigma_{J'} \right) \oplus \left(\bigoplus_{\substack{J' \not\subseteq J \\ J' \not\supset J}} p^{n_{J,J'}} \sigma_{J'} \right)$$

pour des entiers $n_{J,J'} \ge 1$ que l'on va maintenant déterminer.

Fixons $J' \in \mathcal{P}_{\chi}$. Il existe à homothétie près un unique réseau stable $\sigma^0_{J'}(\chi^s)$ de $\sigma(\chi^s)$ (défini sur $W(\mathbb{F}_q) \subset \mathcal{O}_E$) tel que $\mathrm{soc}_K(\sigma^0_{J'}(\chi^s) \otimes_{\mathcal{O}_E} k_E) \simeq \sigma_{J'} \otimes_{\mathcal{O}_E} k_E$ (lorsque $J' = \mathbb{S}$, ce réseau n'est autre que $\sigma^1(\chi^s)$). Cela découle du fait que $\sigma_{J'} \otimes_{\mathcal{O}_E} k_E$ intervient avec multiplicité 1 dans $\overline{\sigma}(\chi^s)$ et des propriétés du triangle cde (voir $[\mathbf{28}, \S 15.4]$, ce fait m'a été signalé par Paškūnas). Par la proposition 2.3, on a $\sigma^0_{J'}(\chi^s) = \bigoplus_{J'' \in \mathcal{P}_\chi} p^{w_{J''}} \sigma_{J''}$ pour des $w_{J''} \in \mathbb{Z}$ (rappelons que le réseau est défini sur $W(\mathbb{F}_q)$) et on peut supposer $w_\emptyset = 0$ de sorte que $w_{J''} \geq 0$ par (11) appliqué à $\langle K \cdot p^{w_{J''}} \sigma_{J''} \rangle$ (sinon, on aurait $p^{-1} \sigma_\emptyset \subset \langle K \cdot p^{w_{J''}} \sigma_{J''} \rangle \subseteq \sigma^0_{J'}(\chi^s)$). Soit $J \in \mathcal{P}_\chi$ et $I(J',J) \subseteq \sigma^0_{J'}(\chi^s) \otimes_{\mathcal{O}_E} k_E$ la sous-K-représentation de co-socle $(p^{w_J} \sigma_J) \otimes_{\mathcal{O}_E} k_E$ (cette représentation est bien définie puisque $\overline{\sigma}(\chi^s)$, donc $\sigma^0_{J'}(\chi^s) \otimes_{\mathcal{O}_E} k_E$, n'a pas de multiplicité > 1 dans ses facteurs irréductibles). Puisque I(J',J) a socle $(p^{w_{J'}} \sigma_{J'}) \otimes_{\mathcal{O}_E} k_E$ et co-socle $(p^{w_J} \sigma_J) \otimes_{\mathcal{O}_E} k_E$, il existe une suite $(J_n)_{0 \leq n \leq N}$ d'éléments distincts de \mathcal{P}_χ telle que $J_0 = J'$, $J_N = J$ et telle que pour tout n une extension non-scindée :

$$0 \longrightarrow (p^{w_{J_n}} \sigma_{J_n}) \otimes_{\mathcal{O}_E} k_E \longrightarrow * \longrightarrow (p^{w_{J_{n+1}}} \sigma_{J_{n+1}}) \otimes_{\mathcal{O}_E} k_E \longrightarrow 0$$

apparaît en sous-quotient de I(J',J). Par [6, Cor.5.6(i)], cela entraîne ou bien $J_n \subset J_{n+1}$ et $|J_{n+1} \setminus J_n| = 1$, ou bien $J_{n+1} \subset J_n$ et $|J_n \setminus J_{n+1}| = 1$. Comme $\sigma_\emptyset \otimes_{\mathcal{O}_E} k_E$ engendre $(p^{w_{J'}}\sigma_{J'}) \otimes_{\mathcal{O}_E} k_E$ dans $\sigma_{J'}^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$, par (11) appliqué à $\langle K \cdot \sigma_\emptyset \rangle$ on doit avoir $w_{J'} = |J'|$. Comme $(p^{w_{J_{n+1}}}\sigma_{J_{n+1}}) \otimes_{\mathcal{O}_E} k_E$ engendre $(p^{w_{J_n}}\sigma_{J_n}) \otimes_{\mathcal{O}_E} k_E$ dans $\sigma_{J'}^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$, par (11) appliqué à $(p^{w_{J_{n+1}}}\sigma_{J_{n+1}}) \otimes_{\mathcal{O}_E} k_E$ on doit avoir $w_{J_{n+1}} = w_{J_n}$ si $J_n \subset J_{n+1}$ ou $w_{J_{n+1}} = w_{J_n} - 1$ si $J_{n+1} \subset J_n$. Comme il doit y avoir exactement $|J' \setminus J \cap J'|$ valeurs de n pour lesquelles $J_{n+1} \subset J_n$ (puisque les $J_n \ll \text{vont} \gg \text{de } J'$ à J et qu'ils sont tous distincts), on voit que l'on a au final $w_J = w_{J'} - |J' \setminus J \cap J'| = |J'| - |J'| + |J \cap J'| = |J \cap J'|$. Comme $(p^{|J \cap J'|}\sigma_J) \otimes_{\mathcal{O}_E} k_E$ engendre $(p^{|J'|}\sigma_{J'}) \otimes_{\mathcal{O}_E} k_E$ dans $\sigma_{J'}^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$, par (11) appliqué à $\langle K \cdot p^{|J \cap J'|}\sigma_J \rangle$ pour $J' \nsubseteq J$, $J' \nsupseteq J$ on obtient $|J' \cap J| + n_{J,J'} = |J'|$ soit $n_{J,J'} = |J'| - |J' \cap J|$. Ceci achève la preuve.

Remarque 2.5. — La preuve du théorème 2.4 fournit en particulier :

$$\sigma_J^0(\chi^s) = \bigoplus_{J' \in \mathcal{P}_\chi} p^{|J \cap J'|} \sigma_{J'}$$

où $\sigma_J^0(\chi^s)$ est l'unique réseau stable de $\sigma(\chi^s)$ tel que $\operatorname{soc}_K(\sigma_J^0(\chi^s) \otimes_{\mathcal{O}_E} k_E) \simeq \sigma_J \otimes_{\mathcal{O}_E} k_E$.

Soit $\mathbb{Q}_E \stackrel{\text{def}}{=} \{ \operatorname{val}(x), x \in E^{\times} \} \subset \mathbb{Q}$. On note \mathcal{V}_{χ} l'ensemble des uplets $(v_J)_{J \in \mathcal{P}_{\chi}}$ vérifiant les conditions :

- (i) $v_J \in \mathbb{Q}_E$ et $v_\emptyset = 0$
- (ii) si $J \subseteq J'$, alors $0 \le v_{J'} v_J \le |J' \setminus J|$.

On a toujours $0 \le v_J \le |J|$. À tout uplet $v = (v_J)_J$ de \mathcal{V}_{χ} , on associe le \mathcal{O}_E -réseau de $\sigma(\chi^s)$ suivant :

$$\sigma_v^0(\chi^s) \stackrel{\text{déf}}{=} \bigoplus_{J \in \mathcal{P}_\chi} p^{v_J} \sigma_J$$

où $p^{v_J}\sigma_J\stackrel{\text{déf}}{=} x\sigma_J$ pour un quelconque élément x de E^{\times} de valuation ν_J . Si $J\in\mathcal{P}_{\chi}$, par la remarque 2.5 on a en particulier $\sigma^0_{(|J\cap J'|)_{J'}}(\chi^s)=\sigma^0_J(\chi^s)$. Par exemple $\sigma^0_{(0)_J}(\chi^s)=\sigma^0_\emptyset(\chi^s)=\sigma^0(\chi^s)$ et $\sigma^0_{(|J|)_J}(\chi^s)=\sigma^0_\S(\chi^s)=\sigma^1(\chi^s)=q\alpha^{-1}(\sigma^0(\chi))$.

Remarque 2.6. — En utilisant la remarque 2.5, on peut vérifier que $\sigma_v^0(\chi^s)$ admet la description alternative $\sigma_v^0(\chi^s) = \bigcap_J \psi_J^{-1}(p^{v_J} \operatorname{inj}_J)$ avec inj_J et ψ_J comme dans l'introduction.

Corollaire 2.7. — (i) Pour tout $v \in \mathcal{V}_{\chi}$, les \mathcal{O}_E -réseaux $\sigma_v^0(\chi^s)$ sont stables par K dans $\sigma(\chi^s)$.

(ii) Tout \mathcal{O}_E -réseau de $\sigma(\chi^s)$ stable par K est homothétique à $\sigma_v^0(\chi^s)$ pour un et un seul $v \in \mathcal{V}_{\chi}$.

 $D\acute{e}monstration.$ — (i) Par (8), on a:

$$\langle K \cdot p^{v_J} \sigma_J \rangle = \bigoplus_{J' \in \mathcal{P}_{\mathcal{Y}}} p^{v_J - v_{J'} + |J'| - |J \cap J'|} p^{v_{J'}} \sigma_{J'}$$

et il suffit donc de montrer $v_J - v_{J'} + |J'| - |J \cap J'| \ge 0$. Puisque $J \cap J' \subseteq J$, on a par le (i) du lemme 2.1 et la condition (ii) sur les v_J :

$$v_{J \cap J'} \le v_J \le v_{J \cap J'} + |J \setminus J \cap J'|$$

et des inégalités similaires en échangeant J et $J^{\prime}.$ On en déduit :

$$|J \cap J'| - |J'| \le v_J - v_{J'} \le |J| - |J \cap J'|$$

d'où en particulier l'inégalité recherchée. Passons à (ii). Soit $R \subset \sigma(\chi^s)$ un réseau stable. Par la proposition 2.3, on a $R = \bigoplus_{J \in \mathcal{P}_{\chi}} p^{v_J} \sigma_J$ pour des $v_J \in \mathbb{Q}_E$ et, à homothétie près, on peut supposer $v_{\emptyset} = 0$. Puisque R est stable par K, on doit avoir $\langle K \cdot p^{v_J} \sigma_J \rangle \subseteq \bigoplus_{J' \in \mathcal{P}_{\chi}} p^{v_{J'}} \sigma_{J'}$ pour tout $J \in \mathcal{P}_{\chi}$. Par le théorème 2.4, on obtient $v_J + |J'| - |J \cap J'| \geq v_{J'}$. En échangeant J et J', on a de même

 $|v_{J'}| + |J| - |J \cap J'| \ge v_J$. Maintenant supposons $J \subseteq J'$ i.e. $J \cap J' = J$. La première inégalité donne $v_{J'} - v_J \le |J' \setminus J|$ et la deuxième $0 \le v_{J'} - v_J$.

3. Réseaux de la théorie globale et réseaux de Dieudonné

On définit certains réseaux sur $\sigma(\chi^s)$ (§2) appelés réseaux de Dieudonné et on conjecture que les réseaux induits par les espaces de formes quaternioniques entières sont des réseaux de Dieudonné donnés par la théorie de Hodge p-adique entière.

On conserve les notations du §2. On rappelle que tout \mathcal{O}_E -réseau stable de $\sigma(\chi^s)$ est homothétique à $\sigma_v^0(\chi^s)$ pour un unique $v \in \mathcal{V}_{\chi}$ (corollaire 2.7).

Définition 3.1. — On dit qu'un \mathcal{O}_E -réseau stable $\sigma_v^0(\chi^s)$ de $\sigma(\chi^s)$ est un réseau de Dieudonné si $v = (v_J)_J$ est tel que $v_{J \cup J'} = v_J + v_{J'} - v_{J \cap J'}$ pour tous $J, J' \in \mathcal{P}_{\chi}$.

Par exemple, les réseaux stables $\sigma_J^0(\chi^s)$ de la remarque 2.5 sont tous des réseaux de Dieudonné puisqu'on a $v_{J'} = |J \cap J'| = \sum_{j \in J'} |J \cap \{j\}| = \sum_{j \in J'} v_{\{j\}}$. On peut facilement fabriquer des réseaux de Dieudonné comme suit : soit f rationnels (v_0, \cdots, v_{f-1}) dans \mathbb{Q}_E tels que $0 \le v_j \le 1$ et posons $v_J \stackrel{\text{def}}{=} \sum_{j \in J} v_j$ pour $J \in \mathcal{P}_{\chi}$, alors $\sigma_v^0(\chi^s)$ pour $v = (v_J)_J$ est un réseau de Dieudonné. Si $\{j\} \in \mathcal{P}_{\chi}$ pour tout $j \in \{0, \cdots, f-1\}$, se donner un réseau de Dieudonné dans $\sigma(\chi^s)$ est en fait équivalent à se donner les f rationnels $v_j \stackrel{\text{déf}}{=} v_{\{j\}}$ (qui sont bien tels que $0 \le v_j \le 1$).

De tels uplets (v_0, \dots, v_{f-1}) s'obtiennent naturellement à partir de modules de Dieudonné avec donnée de descente, comme on l'explique maintenant.

Définition 3.2. — On appelle \mathcal{O}_E -module de Dieudonné un $\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E$ -module libre de rang fini M muni d'un endomorphisme injectif $\varphi : M \to M$ tel que : (i) si $a \in \mathcal{O}_L$, $b \in \mathcal{O}_E$, $m \in M$, $\varphi((a \otimes b)m) = (\varphi(a) \otimes b)\varphi(m)$ (ii) $pM \subseteq \varphi(M)$.

Les \mathcal{O}_E -modules de Dieudonné forment une catégorie additive en un sens évident. Le résultat principal sur ces structures, bien connu et dû à Dieudonné, est que la catégorie des groupes p-divisibles G sur k_L munis d'une injection de \mathbb{Z}_p -algèbres $\mathcal{O}_E \hookrightarrow \operatorname{End}_{k_L}(G)$ est anti-équivalente à la catégorie des \mathcal{O}_E -modules de Dieudonné.

On a un isomorphisme :

 $\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E \xrightarrow{\sim} \mathcal{O}_E \times \cdots \times \mathcal{O}_E, \ a \otimes b \mapsto (\iota(a)b, \iota(\varphi^{-1}(a))b, \cdots, \iota(\varphi^{1-f}(a))b)$ (rappelons que $\iota : L \hookrightarrow E$ a été fixé au §2) qui permet d'écrire tout \mathcal{O}_{E^-} module de Dieudonné M sous la forme $M = M^0 \times M^1 \times \cdots \times M^{f-1}$ où $M^j \stackrel{\text{déf}}{=}$

 $(0, \dots, 1, \dots, 0)M$ avec 1 en position j. L'injection φ envoie alors M^j dans M^{j+1} (avec la convention usuelle « (f-1)+1=0 »). De plus la condition (ii) de la définition 3.2 est équivalente à $pM^{j+1} \subseteq \varphi(M^j)$ pour tout j.

Supposons M muni d'une action $\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E$ -linéaire de $\operatorname{Gal}(L[\ ^{p^f} - \sqrt[1]{-p}]/L)$ qui commute à φ (une telle action est parfois appelée donnée de descente). Cela revient, pour chaque j, à munir M^j d'une action \mathcal{O}_E -linéaire de $\operatorname{Gal}(L[\ ^{p^f} - \sqrt[1]{-p}]/L)$, ces actions commutant à φ . Puisque, par (4), ce groupe de Galois est de cardinal premier à p, toute action de $\operatorname{Gal}(L[\ ^{p^f} - \sqrt[1]{-p}]/L)$ sur un \mathcal{O}_E -module libre de rang fini est une somme de caractères. En particulier, pour chaque j, $\operatorname{Gal}(L[\ ^{p^f} - \sqrt[1]{-p}]/L)$ agit sur M^j par une somme de caractères qui ne dépendent pas de j (car on peut passer de M^j à M^{j+1} par φ).

Définition 3.3. — On appelle \mathcal{O}_E -module de Dieudonné de type $\chi = \eta \otimes \eta'$ (χ comme au §2) tout \mathcal{O}_E -module de Dieudonné qui est libre de rang 2 sur $\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E$ muni d'une action $\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E$ -linéaire de $\operatorname{Gal}(L[{}^{p^f}\sqrt[-1]{-p}]/L)$ commutant à φ et telle que, sur un (ou de manière équivalente tout) M^j , l'action est donnée par $\eta \circ \varkappa_f \oplus \eta' \circ \varkappa_f$.

Soit M un \mathcal{O}_E -module de Dieudonné de type χ . On peut écrire $M^j = \mathcal{O}_E e^j_\eta \oplus \mathcal{O}_E e^j_{\eta'}$ pour tout j où l'action de $\operatorname{Gal}(L[{}^{p^f}\sqrt{-p}]/L)$ sur e^j_η (resp. $e^j_{\eta'}$) se fait par le caractère $\eta \circ \varkappa_f$ (resp. $\eta' \circ \varkappa_f$). Comme $\eta \neq \eta'$, les vecteurs e^j_η et $e^j_{\eta'}$ sont uniquement déterminés à multiplication près par un élément de \mathcal{O}_E^{\times} . L'action de $\operatorname{Gal}(L[{}^{p^f}\sqrt{-p}]/L)$ commutant avec φ , on a donc $\varphi(e^j_\eta) = x_j e^{j+1}_\eta$ pour $j \in \{0, \cdots, f-1\}$ où $x_j \in \mathcal{O}_E$ est tel que $\operatorname{val}(x_j)$ est bien défini. De plus la condition $pM^{j+1} \subseteq \varphi(M^j)$ implique $p\mathcal{O}_E e^{j+1}_\eta \subseteq \mathcal{O}_E x_j e^{j+1}_\eta$. On voit donc que l'on a $0 \leq \operatorname{val}(x_j) \leq 1$ pour tout j. On associe à M le uplet de rationnels :

$$(v_j)_j \stackrel{\text{déf}}{=} (\text{val}(x_j))_j.$$

Par le début de ce paragraphe, on peut associer au uplet $(v_j)_j$ un réseau de Dieudonné sur $\sigma(\chi^s)$ que l'on note $\sigma_{\eta}^0(\chi^s)$. En remplaçant η par η' , on obtient de même un réseau de Dieudonné $\sigma_{\eta'}^0(\chi)$ sur $\sigma(\chi)$.

Lemme 3.4. — Soit M un \mathcal{O}_E -module de Dieudonné de type χ . Supposons $\varphi(\bigwedge_{\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E}^2 M) = p \bigwedge_{\mathcal{O}_L \otimes_{\mathbb{Z}_p} \mathcal{O}_E}^2 M$, alors on a:

$$\alpha(\sigma_{\eta}^{0}(\chi^{s})) = p^{\sum_{j=0}^{f-1} v_{j}} \sigma_{\eta'}^{0}(\chi)$$

 $où \alpha$ est l'entrelacement du lemme 2.2.

Démonstration. — Avec les notations précédentes, soit $x'_j \in \mathcal{O}_E$ tel que $\varphi(e^j_{\eta'}) = x'_j e^{j+1}_{\eta'}$ et $v'_j \stackrel{\text{def}}{=} \operatorname{val}(x'_j)$. La condition de l'énoncé est équivalente à $x_j x'_j \mathcal{O}_E = p \mathcal{O}_E$ i.e. $v_j + v'_j = 1$ pour tout j. Comme $\sigma_J \otimes_{\mathcal{O}_E} E = \alpha^{-1}(\sigma_{S \setminus J} \otimes_{\mathcal{O}_E} E)$ et $q\alpha^{-1}(\sigma^0(\chi)) = 1$

 $q\alpha^{-1}(\oplus_{J\in\mathcal{P}_{\chi}}\sigma_{S\backslash J})=\oplus_{J\in\mathcal{P}_{\chi}}p^{|J|}\sigma_{J}$ (voir preuve du théorème 2.4), on a :

$$\alpha^{-1}(\sigma_{\eta'}^{0}(\chi)) = \bigoplus_{J \in \mathcal{P}_{\chi}} p^{|J| - f + \sum_{j \notin J} v'_{j}} \sigma_{J}$$

$$= \bigoplus_{J \in \mathcal{P}_{\chi}} p^{\sum_{j \notin J} (v'_{j} - 1)} \sigma_{J}$$

$$= \bigoplus_{J \in \mathcal{P}_{\chi}} p^{-\sum_{j \notin J} v_{j}} \sigma_{J}$$

$$= p^{-\sum_{j=0}^{f-1} v_{j}} \bigoplus_{J \in \mathcal{P}_{\chi}} p^{\sum_{j \in J} v_{j}} \sigma_{J}$$

d'où
$$p^{\sum_{j=0}^{f-1} v_j} \alpha^{-1}(\sigma_{n'}^0(\chi)) = \sigma_n^0(\chi^s).$$

Remarque 3.5. — Les x_j et x_j' ne sont définis qu'à multiplication près par un élément de \mathcal{O}_E^{\times} mais les produits $\Pi_j x_j$ et $\Pi_j x_j'$ eux sont bien définis car il s'agit des valeurs propres de φ^f sur M.

On fixe maintenant F un corps totalement réel extension finie de \mathbb{Q} et \mathcal{O}_F son anneau d'entiers. Si ν est une place finie quelconque de F, on note F_{ν} le complété local en ν , ϖ_{ν} une uniformisante de $\mathcal{O}_{F_{\nu}}$ et $q_{\nu}=p^{f_{\nu}}$ le cardinal du corps résiduel $k_{F_{\nu}}$.

Soit D un corps de quaternions de centre F ramifié aux places infinies. On note Σ l'ensemble (fini) des places finies où D est ramifié. On fixe \mathfrak{O}_D un ordre maximal de D et pour chaque place $\nu \notin \Sigma$ un isomorphisme de $\mathfrak{O}_{F_{\nu}}$ -algèbres $\mathfrak{O}_D \otimes_{\mathfrak{O}_F} \mathfrak{O}_{F_{\nu}} \simeq \mathrm{M}_2(\mathfrak{O}_{F_{\nu}})$.

Soit A une \mathbb{Z}_p -algèbre, $\psi: F^{\times} \setminus (\mathbb{A}_F^f)^{\times} \to A^{\times}$ un caractère localement constant et $U \subset (D \otimes_F \mathbb{A}_F^f)^{\times}$ un sous-groupe ouvert compact tel que $\psi|_{U \cap (\mathbb{A}_F^f)^{\times}} = 1$. On note $S_{\psi}^D(U, A)$ le A-module des fonctions :

$$f: D^{\times} \backslash (D \otimes_F \mathbb{A}_F^f)^{\times} / U \to A$$

telles que $f(xg) = \psi(x)f(g)$ si $x \in (\mathbb{A}_F^f)^{\times}$, $g \in (D \otimes_F \mathbb{A}_F^f)^{\times}$. On note :

$$S^D_{\psi}(A) \stackrel{\mathrm{def}}{=} \varinjlim_{\boldsymbol{U}} S^D_{\psi}(\boldsymbol{U},A)$$

la limite inductive étant prise sur les sous-groupes ouverts compacts U précédents. Le A-module $S_{\psi}^{D}(A)$ est naturellement muni d'une action A-linéaire lisse de $(D \otimes_{F} \mathbb{A}_{F}^{f})^{\times}$ par $(gf)(g') \stackrel{\text{def}}{=} f(g'g), g, g' \in (D \otimes_{F} \mathbb{A}_{F}^{f})^{\times}$.

La théorie de Jacquet-Langlands dit que $S^D_{\psi}(\overline{\mathbb{Q}_p})$ est une représentation semisimple de $(D \otimes_F \mathbb{A}_F^f)^{\times}$ sur $\overline{\mathbb{Q}_p}$, somme directe de caractères et de représentations irréductibles de dimension infinie $\pi = \otimes'_{\nu} \pi_{\nu}$ apparaissant avec multiplicité 1 où ν parcourt les places finies de F et où π_{ν} est une représentation lisse admissible

irréductible de $(D \otimes_F F_{\nu})^{\times}$ sur $\overline{\mathbb{Q}_p}$ de caractère central ψ_{ν} (\otimes' est le produit tensoriel restreint et $\psi = \prod_{\nu} \psi_{\nu}$). En particulier π_{ν} est une représentation irréductible de $\mathrm{GL}_2(F_{\nu})$ de dimension infinie si $\nu \notin \Sigma$ et est une représentation irréductible de $(D \otimes_F F_{\nu})^{\times}$ de dimension finie si $\nu \in \Sigma$.

Soit $\pi = \otimes'_{\nu} \pi_{\nu}$ une composante irréductible de dimension infinie de $S^D_{\psi}(\overline{\mathbb{Q}_p})$ et choisissons une extension finie suffisamment grosse E de \mathbb{Q}_p telle que π se réalise dans $S^D_{\psi}(E)$. Si $\nu \notin \Sigma$ est une place finie première à p où $\pi^{\mathrm{GL}_2(\mathbb{O}_{F_{\nu}})}_{\nu} \neq 0$, on note $a_{\nu} \in \mathbb{O}_E$ la valeur propre de l'opérateur de Hecke $\mathrm{GL}_2(\mathbb{O}_{F_{\nu}}) \begin{pmatrix} \varpi_{\nu} & 0 \\ 0 & 1 \end{pmatrix} \mathrm{GL}_2(\mathbb{O}_{F_{\nu}})$ agissant sur $\pi^{\mathrm{GL}_2(\mathbb{O}_{F_{\nu}})}_{\nu}$. Par les travaux de divers mathématiciens (voir [31]), il existe une unique représentation continue absolument irréductible :

$$\rho: \operatorname{Gal}(\mathbb{Q}/F) \to \operatorname{GL}_2(E)$$

telle que $\det(\rho) = \psi \varepsilon$, ρ est non-ramifiée aux places ν comme ci-dessus et, si ν est une telle place et Fr_{ν} un Frobenius arithmétique en ν , $\operatorname{trace}(\rho(\operatorname{Fr}_{\nu})) = \psi_{\nu}(\varpi_{\nu})^{-1}a_{\nu}$ (et $\det(\rho(\operatorname{Fr}_{\nu})) = \psi_{\nu}(\varpi_{\nu})^{-1}q_{\nu}$). De manière équivalente, on a $\operatorname{trace}(\rho(\operatorname{Fr}_{\nu}^{-1})) = q_{\nu}^{-1}a_{\nu}$ et $\det(\rho(\operatorname{Fr}_{\nu}^{-1})) = q_{\nu}^{-1}\psi_{\nu}(\varpi_{\nu})$, ou encore, en notant $\rho^{\vee}(1)$ le dual de Cartier de ρ , $\det(\rho^{\vee}(1)) = \psi^{-1}\varepsilon$ et $\operatorname{trace}(\rho^{\vee}(1)(\operatorname{Fr}_{\nu})) = a_{\nu}$. On note ρ_{ν} la restriction de ρ à un sous-groupe de décomposition en une place finie ν . On suppose dans la suite que ρ est absolument irréductible modulo p, ce qui assure que ρ possède un unique \mathcal{O}_E -réseau stable par Galois (à homothétie près).

Le sous- \mathcal{O}_E -module $S_{\psi}^D(\mathcal{O}_E)$ de $S_{\psi}^D(E)$ est stable par $(D \otimes_F \mathbb{A}_F^f)^{\times}$. Puisque $D^{\times} \setminus (D \otimes_F \mathbb{A}_F^f)^{\times} / U$ est un ensemble fini, le \mathcal{O}_E -module $S_{\psi}^D(U, \mathcal{O}_E)$ est un \mathcal{O}_E -réseau dans $S_{\psi}^D(U, E)$ et $S_{\psi}^D(\mathcal{O}_E)$ est donc un sous- \mathcal{O}_E -module générateur de $S_{\psi}^D(E)$. Puisque $S_{\psi}^D(\mathcal{O}_E)$ est inclus dans le \mathcal{O}_E -module des fonctions sur $D^{\times} \setminus (D \otimes_F \mathbb{A}_F^f)^{\times}$ à valeurs dans \mathcal{O}_E , il ne contient pas de E-droite. On voit donc que $S_{\psi}^D(\mathcal{O}_E)$ est un \mathcal{O}_E -réseau stable de $S_{\psi}^D(E)$. En particulier, chaque représentation $\pi = \otimes_{\nu}' \pi_{\nu}$ est munie d'un \mathcal{O}_E -réseau invariant π^0 induit.

Supposons maintenant que D est non-ramifié en une place ν divisant p. Fixons un plongement $\mathrm{GL}_2(F_{\nu})$ -équivariant $\xi_{\nu}:\pi_{\nu}\hookrightarrow\pi$ et notons $\pi^0_{\nu,\xi_{\nu}}$ le \mathcal{O}_E -réseau stable de π_{ν} induit par π^0 . Une des questions fondamentales du programme de Langlands p-adique (dans ce contexte restreint du moins) est de comprendre le complété :

$$(\lim_{n} \pi^{0}_{\nu,\xi_{\nu}} \otimes_{\mathcal{O}_{E}} \mathcal{O}_{E}/p^{n}) \otimes_{\mathcal{O}_{E}} E$$

avec son action induite de $\operatorname{GL}_2(F_{\nu})$ (qui, en fait, ne dépend pas du choix de ξ_{ν}), tout en le reliant si possible à la théorie de Hodge p-adique de la représentation galoisienne ρ . La réponse n'est connue pour l'instant que lorsque $F_{\nu} = \mathbb{Q}_p$ ([14], [15]) et ne permet pas une généralisation à $F_{\nu} \neq \mathbb{Q}_p$. Notre objectif ici est bien plus modeste. Supposons $q_{\nu} > 2$ et notons :

(13)
$$\sigma_{\nu} \subset \pi_{\nu}$$

le $GL_2(\mathcal{O}_{F_{\nu}})$ -type alors défini dans l'appendice de [5]. C'est une représentation lisse irréductible de dimension finie de $GL_2(\mathcal{O}_{F_{\nu}})$ sur E qui apparaît avec multiplicité 1 dans π_{ν} et qui en général a beaucoup de facteurs de Jordan-Hölder modulo p et donc en général possède beaucoup de classes d'homothéties de \mathcal{O}_E -réseaux stables par $GL_2(\mathcal{O}_{F_{\nu}})$.

Question 3.6. — Quel est le \mathcal{O}_E -réseau $\sigma^0_{\nu,\xi_{\nu}}$ induit par $\pi^0_{\nu,\xi_{\nu}}$ (ou par $S^D_{\psi}(\mathcal{O}_E)$ via le plongement ξ_{ν}) sur σ_{ν} ?

Supposons F non-ramifié en ν . On va s'intéresser à cette question dans le cas le plus simple : celui où π_{ν} est une série principale modérément ramifiée. Il s'agit donc, à torsion près par un caractère modérément ramifié de F_{ν}^{\times} , soit d'une série principale non-ramifiée, soit de la représentation de Steinberg, soit d'une série principale modérément ramifiée qui n'est pas non-ramifiée.

- (i) Si c'est une série principale non-ramifiée (à torsion près), le type σ_{ν} dans π_{ν} en (13) a dimension 1, et admet donc à homothétie près un unique \mathcal{O}_E -réseau (stable) que l'on note $\sigma_{\nu}^0(\rho_{\nu})$ (cette notation prend plus de sens ci-dessous).
- (ii) Si c'est la représentation de Steinberg (à torsion près), alors σ_{ν} en (13) est (à torsion près) l'inflation de $GL_2(k_{F_{\nu}})$ à $GL_2(\mathcal{O}_{F_{\nu}})$ de la représentation de Steinberg de $GL_2(k_{F_{\nu}})$, qui est absolument irréductible modulo p. Il n'y a donc qu'un seul \mathcal{O}_E -réseau stable à homothétie près sur σ_{ν} que l'on note encore $\sigma_{\nu}^0(\rho_{\nu})$.
- (iii) Si c'est une série principale modérément ramifiée qui n'est pas non-ramifiée (à torsion près), alors σ_{ν} en (13) est isomorphe à $\sigma(\chi_{\nu}^{s})$ pour un caractère modérément ramifié $\chi_{\nu} = \eta_{\nu} \otimes \eta'_{\nu}$ avec $\eta_{\nu} \neq \eta'_{\nu}$ comme au §2. On a $\eta_{\nu}\eta'_{\nu} = \psi_{\nu}|_{\mathcal{O}_{F_{\nu}}^{\times}}$. Par ailleurs, on sait par la compatibilité local-global de [23] que la restriction à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})$ de l'unique \mathcal{O}_E -réseau galoisien sur le dual de Cartier $\rho^{\vee}(1)$ de ρ est le module de Tate d'un groupe p-divisible sur l'anneau des entiers de $F_{\nu}[{}^{q\nu}\sqrt[]{-p}]$ et que le module de Dieudonné contravariant M_{ν} de la fibre spéciale de ce groupe p-divisible est un \mathcal{O}_E -module de Dieudonné de type χ_{ν} . De plus l'égalité $\det(\rho) = \psi \varepsilon$ entraîne facilement $\varphi(\bigwedge_{\mathcal{O}_{F_{\nu}}\otimes_{\mathbb{Z}_p}\mathcal{O}_E} M_{\nu}) = p \bigwedge_{\mathcal{O}_{F_{\nu}}\otimes_{\mathbb{Z}_p}\mathcal{O}_E} M_{\nu}$. Par le lemme 3.4 et ce qui le précède, on peut donc associer à M_{ν} un \mathcal{O}_E -réseau de Dieudonné sur σ_{ν} que l'on note $\sigma_{\nu}^0(\rho_{\nu})$, bien défini à homothétie près, à savoir le réseau :

(14)
$$\sigma_{\eta_{\nu}}^{0}(\chi_{\nu}^{s}) = \bigoplus_{J \in \mathcal{P}_{\chi}} (\Pi_{j \in J} x_{j}) \sigma_{J}$$

(avec les notations du §2) où $\varphi(e_{\eta_{\nu}}^{j}) = x_{j}e_{\eta_{\nu}}^{j+1}$ et l'action de $\operatorname{Gal}(F_{\nu}[{}^{q_{\nu}}\sqrt[4]{-p}]/F_{\nu})$ sur $e_{\eta_{\nu}}^{j}$ se fait par η_{ν} (composé avec l'isomorphisme (4) pour $L = F_{\nu}$). La notation $\sigma_{\nu}^{0}(\rho_{\nu})$ devient ainsi claire puisque ce réseau est défini à partir du réseau sur la représentation p-adique ρ_{ν} .

Conjecture 3.7. — Soit π une composante irréductible de $S_{\psi}^{D}(E)$ de dimension infinie telle que ρ est absolument irréductible modulo p. Soit ν une place divisant

p où D et F sont non-ramifiés et où $q_{\nu} > 2$. Si π_{ν} est une série principale modérément ramifiée, alors les \mathcal{O}_E -réseaux $\sigma^0_{\nu,\xi_{\nu}}$ sur σ_{ν} sont tous homothétiques à $\sigma^0_{\nu}(\rho_{\nu})$.

La signification de la conjecture est qu'aux places $\nu|p$ où π_{ν} est modérément ramifiée, alors le réseau sur le type σ_{ν} induit par la cohomologie entière, c'est-à-dire par la théorie globale, est déterminé par le réseau induit sur la représentation galoisienne p-adique ρ_{ν} . En particulier, il ne devrait dépendre ni de D ni de ξ_{ν} . En fait, comme on vient de le voir, la conjecture est non-triviale seulement si π_{ν} est une série principale modérément ramifiée qui n'est pas non-ramifiée à torsion près. Seul un « petit morceau » de la représentation p-adique ρ_{ν} est alors utilisé pour décrire le réseau conjectural induit, mais il serait déjà impossible, pour $F_{\nu} \neq \mathbb{Q}_p$, de reconstituer ce réseau sur σ_{ν} à partir seulement de la représentation de Weil-Deligne associée à ρ_{ν} . En ce sens la conjecture 3.7 s'inscrit donc vraiment dans le « programme de Langlands p-adique ».

Remarque 3.8. — On pourrait facilement formuler la conjecture 3.7 sans l'hypothèse F_{ν} non-ramifié puisque, côté GL_2 , tout se passe sur le groupe $GL_2(k_{F_{\nu}})$ et, côté Galois, la filtration de Hodge n'intervient pas.

Proposition 3.9. — La conjecture 3.7 est vraie si $F = \mathbb{Q}$.

 $D\acute{e}monstration$. — On suppose que π_p est une série principale modérément ramifiée qui n'est pas non-ramifiée à torsion près sinon il n'y a rien à montrer. Dans ce cas le module de Dieudonné contravariant M_p ci-dessus est donné par $M_p = \mathcal{O}_E e_{\eta_p} \oplus \mathcal{O}_E e_{\eta'_p}$ avec $\varphi(e_{\eta_p}) = x e_{\eta_p}$ et $\varphi(e_{\eta'_p}) = x' e_{\eta'_p}$ pour $x, x' \in \mathcal{O}_E$ tels que val(x) + val(x') = 1. On a par ailleurs en utilisant [23] et avec les conventions qui précèdent :

$$\pi_p = \operatorname{ind}_{B(\mathbb{Q}_p)}^{\operatorname{GL}_2(\mathbb{Q}_p)} \widehat{\eta}_p |\cdot| \otimes \widehat{\eta}_p' \simeq \operatorname{ind}_{B(\mathbb{Q}_p)}^{\operatorname{GL}_2(\mathbb{Q}_p)} \widehat{\eta}_p' |\cdot| \otimes \widehat{\eta}_p$$

(induites paraboliques lisses non-tordues) où $|\cdot|$ est le caractère $x\mapsto p^{-\operatorname{val}(x)},$ $\widehat{\eta}_p|_{\mathbb{Z}_p^\times}=\eta_p,\ \widehat{\eta}_p'|_{\mathbb{Z}_p^\times}=\eta_p',\ \widehat{\eta}_p(p)=x,\ \widehat{\eta}_p'(p)=x'.$ La matrice $\begin{pmatrix} 0&1\\p&0 \end{pmatrix}$ préserve le réseau π_{p,ξ_p}^0 pour tout plongement ξ_p et aussi le sous-espace $\pi_p^{I_1}=\sigma_p^{I_1}=\operatorname{ind}_I^K\eta_p'\otimes\eta_p,$ donc induit un automorphisme de $(\sigma_{p,\xi_p}^0)^{I_1}.$ Soit $\phi,f_0\in\operatorname{ind}_I^K\eta_p'\otimes\eta_p$ comme au §2, un calcul facile dans $\operatorname{ind}_{B(\mathbb{Q}_p)}^{\operatorname{GL}_2(\mathbb{Q}_p)}\widehat{\eta}_p'|\cdot|\otimes\widehat{\eta}_p$ donne :

$$\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} \phi = \frac{\widehat{\eta}_p'(p)}{p} f_0 \text{ ou encore } \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} f_0 = \widehat{\eta}_p(p) \phi = x \phi$$

ce qui entraı̂ne $\sigma_{p,\xi_p}^0 \simeq \sigma_\emptyset \oplus x\sigma_{\mathbb{S}}$ (voir §2) qui est par définition le réseau $\sigma_p^0(\rho_p)$ (cf. (14)).

D'autres cas non-triviaux de la conjecture 3.7 seront démontrés au §9 (théorème 9.3).

4. Poids de Diamond et types modérés

Pour une représentation de dimension 2 générique fixée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ sur k_E , on détermine le nombre et la position des poids de Diamond associés dans la représentation $\overline{\sigma}(\chi^s) = \sigma^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$ (§2).

On conserve les notations du §2 et on dit qu'un caractère $\chi: I \to \mathcal{O}_E^{\times}$ est modéré s'il s'agit d'un caractère comme en (5). On suppose que k_E contient une extension quadratique de k_L . On note $\widetilde{\omega}_f$ le caractère composé $k_L^{\times} \stackrel{[\cdot]}{\hookrightarrow} \mathcal{O}_L^{\times} \stackrel{\iota}{\hookrightarrow} \mathcal{O}_E^{\times}$ où ω_f la réduction de $\widetilde{\omega}_f$ dans k_E^{\times} . On note encore $\widetilde{\omega}_f$ et ω_f les caractères de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ ou de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})$ obtenus en composant $\widetilde{\omega}_f$ et ω_f avec le caractère ω_f en (4). Enfin, on note $\omega_{2f}:\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}}) \to k_E^{\times}$ un caractère tel que $\omega_{2f}^{q+1} = \omega_f$.

On définit une application bijective δ de l'ensemble des parties J de $\{0, \dots, f-1\}$ dans lui-même en posant $j \in \delta(J)$ si et seulement si $j+1 \in J$ (autrement dit $\delta(J)$ est le translaté d'un cran à gauche de J). On appelle poids une représentation irréductible de $\mathrm{GL}_2(\mathfrak{O}_L)$, ou de $\mathrm{GL}_2(k_L)$, sur k_E . Si σ est un poids, alors σ^{I_1} est de dimension 1 et on note $[\sigma^{I_1}]$ le représentant multiplicatif du caractère donnant l'action de I sur σ^{I_1} .

Si s_0, \dots, s_{f-1} sont f entiers dans $\{0, \dots, p-1\}$, on note (s_0, \dots, s_{f-1}) le poids:

$$(\operatorname{Sym}^{s_0} k_E^2) \otimes_{k_E} (\operatorname{Sym}^{s_1} k_E^2)^{\varphi} \otimes_{k_E} \cdots \otimes_{k_E} (\operatorname{Sym}^{s_{f-1}} k_E^2)^{\varphi^{f-1}}$$

où par définition $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ agit sur $(\operatorname{Sym}^{s_j} k_E^2)^{\varphi^j}$ via $\begin{pmatrix} a^{p^j} & b^{p^j} \\ c^{p^j} & d^{p^j} \end{pmatrix}$ puis le plongement ω_f .

On fixe $\overline{\rho}$: $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \to \operatorname{GL}_2(k_E)$ une représentation continue générique (voir [6, Def.11.7]), c'est-à-dire une représentation de la forme (i) ou (ii) ci-dessous :

(i)
$$\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})} \cong \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j} & * \\ 0 & 1 \end{pmatrix} \otimes \theta \text{ avec } 0 \leq r_j \leq p-3 \text{ et } (r_j) \notin \{(0,\cdots,0), (p-3,\cdots,p-3)\}$$

(ii)
$$\overline{\rho}|_{\text{Gal}(\overline{\mathbb{Q}_p}/L^{\text{nr}})} \cong \begin{pmatrix} \omega_{2f}^{\sum_{j=0}^{f-1}(r_j+1)p^j} & 0 \\ 0 & \omega_{2f}^{q\sum_{j=0}^{f-1}(r_j+1)p^i} \end{pmatrix} \otimes \theta \text{ avec } 1 \leq r_0 \leq p - 2 \text{ et } 0 \leq r_j \leq p-3, \ j>0$$

pour un caractère θ de l'inertie qui s'étend à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$. Si p=2 il n'y a pas de représentations génériques, et si p=3 il n'y a pas de représentations génériques réductibles. La présence de l'hypothèse de généricité dans un énoncé suppose donc implicitement p>2. À une telle représentation générique $\overline{\rho}$ est associé dans [7] un ensemble $\mathcal{D}(\overline{\rho})$ de poids dits poids de Diamond (voir [6, §11] pour la description que l'on utilisera).

Soit (x_0, \dots, x_{f-1}) f variables (formelles) et $\lambda = (\lambda_0(x_0), \dots, \lambda_{f-1}(x_{f-1}))$ où $\lambda_i(x_i) \in \mathbb{Z} \pm x_i$. On convient que $x_f = x_0$ et $\lambda_f(x_f) = \lambda_0(x_0)$ dans ce qui suit. On pose :

$$e(\lambda) \stackrel{\text{def}}{=} \frac{1}{2} \left(\sum_{i=0}^{f-1} p^i (x_i - \lambda_i(x_i)) \right) \text{ si } \lambda_{f-1}(x_{f-1}) \in \mathbb{Z} + x_{f-1}$$

$$e(\lambda) \stackrel{\text{def}}{=} \frac{1}{2} \left(p^f - 1 + \sum_{i=0}^{f-1} p^i (x_i - \lambda_i(x_i)) \right) \text{ sinon.}$$

On note $\mathcal{PRD}(x_0, \dots, x_{f-1})$ l'ensemble des λ tels que :

- (i) $\lambda_i(x_i) \in \{x_i, x_i + 1, x_i + 2, p 3 x_i, p 2 x_i, p 1 x_i\}$
- (ii) si $\lambda_i(x_i) \in \{x_i, x_i + 1, x_i + 2\}$ alors $\lambda_{i+1}(x_{i+1}) \in \{x_{i+1}, x_{i+1} + 2, p 2 x_{i+1}\}$
- (iii) si $\lambda_i(x_i) \in \{p-1-x_i, p-2-x_i, p-3-x_i\}$ alors $\lambda_{i+1}(x_{i+1}) \in \{p-1-x_{i+1}, p-3-x_{i+1}, x_{i+1}+1\}$.

On note $\mathfrak{PID}(x_0, \dots, x_{f-1})$ l'ensemble des λ tels que :

- (i) si $i \neq 0$, $\lambda_i(x_i) \in \{x_i, x_i + 1, x_i + 2, p 3 x_i, p 2 x_i, p 1 x_i\}$ (resp. $\lambda_0(x_0) \in \{x_0, x_0 1, x_0 + 1, p 2 x_0, p 1 x_0, p x_0\}$)
- (ii) si $i \neq 0$, i < f 1 et $\lambda_i(x_i) \in \{x_i, x_i + 1, x_i + 2\}$ (resp. 0 < f 1 et $\lambda_0(x_0) \in \{x_0 1, x_0, x_0 + 1\}$) alors $\lambda_{i+1}(x_{i+1}) \in \{x_{i+1}, x_{i+1} + 2, p 2 x_{i+1}\}$
- (iii) si $i \neq 0$, i < f 1 et $\lambda_i(x_i) \in \{p 1 x_i, p 2 x_i, p 3 x_i\}$ (resp. 0 < f 1 et $\lambda_0(x_0) \in \{p 2 x_0, p 1 x_0, p x_0\}$) alors $\lambda_{i+1}(x_{i+1}) \in \{p 3 x_{i+1}, p 1 x_{i+1}, x_{i+1} + 1\}$
- (iv) si $\lambda_{f-1}(x_{f-1}) \in \{p-1-x_{f-1}, p-2-x_{f-1}, p-3-x_{f-1}\}$, alors $\lambda_0(x_0) \in \{p-1-x_0, x_0-1, x_0+1\}$
- (v) si $\lambda_{f-1}(x_{f-1}) \in \{x_{f-1}, x_{f-1} + 1, x_{f-1} + 2\}$, alors $\lambda_0(x_0) \in \{x_0, p 2 x_0, p x_0\}$.

Autrement dit, $\mathcal{PID}(x_0, \dots, x_{f-1})$ est défini comme $\mathcal{PRD}(x_0, \dots, x_{f-1})$ mais où le terme $\lambda_0(x_0)$ a un comportement différent. Ces définitions très combinatoires vont trouver leur raison d'être dans la proposition 4.1 ci-dessous.

Si $\overline{\rho}$ est comme en (i), soit $\mathcal{D}(x_0, \dots, x_{f-1})$ l'ensemble de uplets λ associé à $\overline{\rho}$ défini dans l'appendice A. On pose :

$$(15) \quad J_{\overline{\rho}} \stackrel{\text{def}}{=} \{ i \mid \exists \ \lambda \in \mathcal{D}(x_0, \cdots, x_{f-1}) \text{ avec } \lambda_i(x_i) \in \{ p - 3 - x_i, x_i + 1 \} \}$$

et on note $\mathcal{PD}(x_0, \dots, x_{f-1}) \subseteq \mathcal{PRD}(x_0, \dots, x_{f-1})$ le sous-ensemble des λ tels que $\lambda_i(x_i) \in \{p-3-x_i, x_i+2\}$ implique $i \in J_{\overline{\rho}}$. On a $\overline{\rho}$ scindée si et seulement si $J_{\overline{\rho}} = \{0, \dots, f-1\}$ si et seulement si $\mathcal{PD}(x_0, \dots, x_{f-1}) = \mathcal{PRD}(x_0, \dots, x_{f-1})$.

Si $\overline{\rho}$ est comme en (i), on pose :

$$\mathcal{P}(\overline{\rho}) = \{(\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})} \theta, \lambda \in \mathcal{PD}(x_0, \cdots, x_{f-1})\}$$

et si ρ est comme en (ii) on pose :

$$\mathfrak{P}(\overline{\rho}) = \{ (\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})} \theta, \lambda \in \mathfrak{PJD}(x_0, \cdots, x_{f-1}) \}.$$

On peut vérifier que deux λ distincts donnent toujours deux éléments distincts de $\mathcal{P}(\overline{\rho})$, on a donc une bijection entre $\mathcal{PD}(x_0, \dots, x_{f-1})$ (resp. $\mathcal{PID}(x_0, \dots, x_{f-1})$) et $\mathcal{P}(\overline{\rho})$.

Proposition 4.1. — L'ensemble des caractères modérés $\chi: I \to \mathcal{O}_E^{\times}$ tels que $\overline{\sigma}(\chi^s)$ contient en sous-quotient un poids de $\mathcal{D}(\overline{\rho})$ est exactement l'ensemble des caractères $[\sigma^{I_1}]$ pour $\sigma \in \mathcal{P}(\overline{\rho})$.

 $D\acute{e}monstration.$ — Notons que dans les deux ensembles, les caractères χ sont tels que $\chi \neq \chi^s$. On peut donc dans les deux cas remplacer χ par l'unique σ tel que $\chi = [\sigma^{I_1}]$. Vu la structure des constituants de $\overline{\sigma}(\chi^s)$ ([6, §2]), il suffit de montrer que si l'on applique des séquences arbitraires $p-2-\cdot, p-1-\cdot, \cdots, p-1-\cdot, +1$ aux uplets de $\Re \mathcal{D}(x_0, \cdots, x_{f-1})$, de $\Im \mathcal{D}(x_0, \cdots, x_{f-1})$ ou de $\Im \mathcal{D}(x_0, \cdots, x_{f-1})$ qui permettent de définir $\Im(\overline{\rho})$ suivant que $\overline{\rho}$ est scindée, irréductible ou réductible nonscindée (voir [6, §11]), on trouve exactement les uplets de $\Re \mathcal{D}(x_0, \cdots, x_{f-1})$ ou de $\Re \mathcal{D}(x_0, \cdots, x_{f-1})$ sont des successions de séquences $p-2-x_j, p-3-x_{j+1}, \cdots, p-3-x_{j+l-1}, x_{j+l}+1$ et idem pour les uplets de $\Im \mathcal{D}(x_0, \cdots, x_{f-1})$ en remplaçant $p-3-x_0$ par $p-1-x_0$ et x_0+1 par x_0-1 .

Si χ , \mathcal{P}_{χ} sont comme au §2, on rappelle que $\sigma^{0}(\chi^{s}) = \bigoplus_{J \in \mathcal{P}_{\chi}} \sigma_{J}$ et que les facteurs de Jordan-Hölder de $\overline{\sigma}(\chi^{s})$ sont en bijection avec les éléments de \mathcal{P}_{χ} . On note $\overline{\sigma}_{J}$ le facteur de Jordan-Hölder correspondant à $J \in \mathcal{P}_{\chi}$. La notation vient du fait que $\overline{\sigma}_{J}$ s'identifie à l'image de $\sigma_{J} \otimes_{\mathcal{O}_{E}} k_{E}$ dans un quotient convenable de $\overline{\sigma}(\chi^{s})$ (voir §2 et [6, Lem.2.7]).

Proposition 4.2. — Soit $\chi: I \to \mathcal{O}_E^{\times}$ un caractère modéré tel que $\chi^s \neq \chi$ et soit $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \to \operatorname{GL}_2(k_E)$ une représentation continue générique. Si $\overline{\sigma}(\chi^s)$ contient au moins un poids de $\mathcal{D}(\overline{\rho})$ comme sous-quotient, alors il existe un unique couple $(J^{\min}, J^{\max}) \in \mathcal{P}_{\chi} \times \mathcal{P}_{\chi}$ (dépendant de χ et $\overline{\rho}$) vérifiant $J^{\min} \subseteq J^{\max}$ tel que les facteurs de Jordan-Hölder de $\overline{\sigma}(\chi^s)$ qui sont des poids de Diamond pour $\overline{\rho}$ sont exactement les $\overline{\sigma}_J$ pour $J^{\min} \subseteq J \subseteq J^{\max}$ (et tous ces J sont dans \mathcal{P}_{χ}). De plus $|J^{\max} \setminus J^{\min}|$ est un entier pair si $\overline{\rho}$ est réductible scindée, impair si $\overline{\rho}$ est irréductible et on a $J^{\max} \setminus J^{\min} \subseteq \delta(J_{\overline{\rho}})$ si $\overline{\rho}$ est réductible non-scindée.

 $D\acute{e}monstration$. — Supposons d'abord $\theta=1$. Par la proposition 4.1, on a $\chi=[\sigma^{I_1}]$ pour un unique $\sigma\in\mathcal{P}(\overline{\rho})$ correspondant à un unique $\lambda\in\mathcal{PD}(x_0,\cdots,x_{f-1})$ ou $\mathcal{PJD}(x_0,\cdots,x_{f-1})$ suivant $\overline{\rho}$ réductible ou irréductible (en fait on a $\sigma=$

 $(c_{\chi,0},\cdots,c_{\chi,f-1})\otimes \overline{\eta}'(\det)$ avec les notations du §2). Si $\overline{\rho}$ est réductible on pose :

(16)
$$\begin{cases} J^{\min} & \stackrel{\text{def}}{=} \delta(\{j \mid \lambda_j(x_j) \in \{p-1-x_j, x_j+2\} \text{ ou} \\ (\lambda_j(x_j) = x_j+1 \text{ et } j \notin J_{\overline{\rho}})\}) \\ J^{\max} & \stackrel{\text{def}}{=} \delta(\{j \mid \lambda_j(x_j) \notin \{p-3-x_j, x_j\} \text{ et} \\ j \in J_{\overline{\rho}} \text{ si } \lambda_j(x_j) = p-2-x_j\}) \end{cases}$$

et si $\overline{\rho}$ est irréductible :

(17)
$$\begin{cases} J^{\min} \stackrel{\text{déf}}{=} \delta(\{j \mid j \neq 0 \text{ et } \lambda_{j}(x_{j}) \in \{p-1-x_{j}, x_{j}+2\} \text{ ou} \\ j = 0 \text{ et } \lambda_{0}(x_{0}) \in \{p-x_{0}, x_{0}+1\}\}) \end{cases} \\ J^{\max} \stackrel{\text{déf}}{=} \delta(\{j \mid j \neq 0 \text{ et } \lambda_{j}(x_{j}) \notin \{p-3-x_{j}, x_{j}\} \text{ ou} \\ j = 0 \text{ et } \lambda_{0}(x_{0}) \notin \{p-2-x_{0}, x_{0}-1\}\}). \end{cases}$$

Il est évident sur leur définition que l'on a toujours $J^{\min}\subseteq J^{\max}$ et $J^{\max}\backslash J^{\min}\subseteq J^{\max}$ $\delta(J_{\overline{\rho}})$ si $\overline{\rho}$ est réductible. Supposons $\overline{\rho}$ réductible. Si $\lambda_j(x_j) \in \{x_j, x_j + 1, p - 1,$ $3-x_j, p-2-x_j$ } alors $c_{\chi,j}=\lambda_j(r_j)\neq p-1$ car $\overline{\rho}$ est générique. De même si $\lambda_j(x_j) \in \{x_j+1, x_j+2, p-2-x_j, p-1-x_j\}$ alors $c_{\chi,j} = \lambda_j(r_j) \neq 0$. Cela entraı̂ne facilement que tout $J \subseteq \mathbb{S}$ tel que $J^{\min} \subseteq J \subseteq J^{\max}$ est dans \mathcal{P}_{χ} . Montrons que, si $J \nsubseteq J^{\max}$, alors $\overline{\sigma}_J \notin \mathcal{D}(\overline{\rho})$. Soit $j-1 \in J \setminus J^{\max}$. Comme $j-1 \notin J^{\max}$, on a soit $\lambda_j(x_j) \in \{p-3-x_j, x_j\}$ soit $\lambda_j(x_j) = p-2-x_j$ et $j \notin J_{\overline{\rho}}$. Comme $j-1 \in J$, on a soit $p-1-\lambda_j(r_j)$ soit $\lambda_j(r_j)-1$ qui apparaît dans le poids $\overline{\sigma}_J$ (cela découle de la structure des constituants de $\overline{\sigma}(\chi^s)$). Si $\lambda_j(x_j) \in \{p-3-x_j,x_j\}$, on voit que ni $p-1-\lambda_j(r_j)$ ni $\lambda_j(r_j)-1$ ne peuvent être dans un poids de $\mathcal{D}(\overline{\rho})$ (sauf peut-être si $r_j \in \{\frac{p-1}{2}, \frac{p-3}{2}, \frac{p-5}{2}\}$ mais une analyse plus poussée montre que cela ne peut quand même conduire à $\overline{\sigma}_J \in \mathcal{D}(\overline{\rho})$). Si $\lambda_j(x_j) = p - 2 - x_j$, on voit que $p-1-\lambda_j(r_j)=r_j+1$ et $\lambda_j(r_j)-1=p-3-r_j$, et aucun des deux ne peut être dans un poids de $\mathcal{D}(\overline{\rho})$ puisque $j \notin J_{\overline{\rho}}$ (la valeur particulière $r_j = \frac{p-3}{2}$ ne pouvant de même conduire à un poids de $\mathcal{D}(\overline{\rho})$). Montrons que, si $J \subsetneq J^{\min}$, alors $\overline{\sigma}_J \notin \mathcal{D}(\overline{\rho})$. Soit $j-1 \in J^{\min}$, $j-1 \notin J$. Comme $j-1 \in J^{\min}$, on a $\lambda_j(x_j) \in \{p-1-x_j, x_j+2\}$ ou $\lambda_i(x_i) = x_i + 1$ et $j \notin J_{\overline{\rho}}$. Comme $j - 1 \notin J$, on a soit $p - 2 - \lambda_i(r_i)$ soit $\lambda_i(r_i)$ qui apparaît dans le poids $\overline{\sigma}_J$. Dans tous les cas, on voit comme précédemment qu'il ne peut s'agir d'un poids de $\mathcal{D}(\overline{\rho})$. Donc, si $\overline{\sigma}(\chi^s)$ possède au moins un poids $\overline{\sigma}_J$ qui est dans $\mathcal{D}(\overline{\rho})$, on doit avoir $J^{\min} \subseteq J \subseteq J^{\max}$. On laisse au lecteur le soin de vérifier qu'alors tout J entre J^{\min} et J^{\max} vérifie $\overline{\sigma}_J \in \mathcal{D}(\overline{\rho})$. Enfin, si $\overline{\rho}$ est scindée, on a :

$$|J^{\max} \backslash J^{\min}| = |\mathbb{S} \backslash \{j \mid \lambda_j(x_j) \in \{p-3-x_j, x_j, p-1-x_j, x_j+2\}\}|$$

c'est-à-dire $|J^{\max}\backslash J^{\min}|=|\{j\mid \lambda_j(x_j)=p-2-x_j\text{ ou }\lambda_j(x_j)=x_j+1\}|$ qui est pair car il y a par définition autant de $p-2-x_j$ que de x_j+1 dans un uplet de $\mathcal{PRD}(x_0,\cdots,x_{f-1})$. Ceci achève la preuve dans le cas $\overline{\rho}$ réductible et $\theta=1$. La preuve pour $\overline{\rho}$ irréductible et $\theta=1$ est analogue et laissée au lecteur. Enfin, si $\theta\neq 1$, il suffit de tordre la preuve précédente par θ .

L'énoncé 4.2 était déjà connu de Diamond (dans le cas $\overline{\rho}$ semi-simple au moins).

Proposition 4.3. — Soit $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \to \operatorname{GL}_2(k_E)$ une représentation continue générique.

- (i) Supposons $\overline{\rho}$ scindée (resp. irréductible). Alors pour chaque couple (J^{\min}, J^{\max}) de parties de S telles que $J^{\min} \subseteq J^{\max}$ et $|J^{\max} \setminus J^{\min}|$ est pair (resp. $|J^{\max} \setminus J^{\min}|$ est impair), il existe exactement deux caractères modérés distincts $\chi: I \to \mathcal{O}_E^{\times}$ tels que les constituants de $\overline{\sigma}(\chi^s)$ qui sont dans $\mathcal{D}(\overline{\rho})$ sont exactement les $\overline{\sigma}_J$ pour $J^{\min} \subset J \subset J^{\max}$.
- (ii) Supposons $\overline{\rho}$ réductible non-scindée. Alors pour chaque couple (J^{\min}, J^{\max}) de parties de S telles que $J^{\min} \subseteq J^{\max}$ et $J^{\max} \setminus J^{\min} \subseteq \delta(J_{\overline{\rho}})$, il existe un unique caractère modéré $\chi: I \to \mathcal{O}_E^{\times}$ tels que les constituants de $\overline{\sigma}(\chi^s)$ qui sont dans $\mathcal{D}(\overline{\rho})$ sont exactement les $\overline{\sigma}_J$ pour $J^{\min} \subseteq J \subseteq J^{\max}$.

 $D\acute{e}monstration$. — On ne donne la preuve que pour $\overline{\rho}$ réductible, laissant le cas $\overline{\rho}$ irréductible au lecteur.

- (i) Supposons $\overline{\rho}$ scindée. Fixons $J^{\min} \subset J^{\max}$ et reprenons les notations de la preuve de la proposition 4.2. Si $J^{\min} = \overline{J}^{\max}$, il y a deux $\lambda \in \mathcal{PRD}(x_0, \dots, x_{f-1})$ distincts vérifiant (16) : l'un où $\lambda_j(x_j) = p-1-x_j$ si $j \in \delta^{-1}(J^{\min})$ et $\lambda_j(x_j) = p-3-x_j$ si $j \notin \delta^{-1}(J^{\min})$, l'autre où $\lambda_j(x_j) = x_j+2$ si $j \in \delta^{-1}(J^{\min})$ et $\lambda_i(x_i) = x_i$ si $j \notin \delta^{-1}(J^{\min})$. Supposons $J^{\min} \subseteq J^{\max}$. L'ensemble $\delta^{-1}(J^{\max} \setminus J^{\min})$ correspond aux indices où $\lambda_i(x_i) \in \{p-2-x_i, x_i+1\}$ (voir preuve de la proposition 4.2). Comme les $p-2-x_i$ et les x_i+1 se suivent alternativement dans λ , on voit qu'il y a exactement deux façons de les distribuer de la sorte sur les indices de $\delta^{-1}(J^{\max}\backslash J^{\min})$ (on utilise ici que $|J^{\max}\backslash J^{\min}|$ est pair). Les $p-1-x_j$ se distribuent alors uniquement sur les indices de $\delta^{-1}(J^{\min})$ de telle sorte qu'ils soient entre un $p-2-x_{j_1}$ et un $x_{j_2}+1$, $j_1 < j_2$, et les x_j+2 sur les indices de $\delta^{-1}(J^{\min})$ de telle sorte qu'ils soient entre un $x_{j_1}+1$ et un $p-2-x_{j_2}, j_1 < j_2$. Puis on « finit de remplir » en distribuant sur les indices restants les $p-3-x_j$ de telle sorte qu'ils soient entre un $p-2-x_{j_1}$ et un $x_{j_2}+1, j_1 < j_2$, et les x_j de telle sorte qu'ils soient entre un $x_{j_1}+1$ et un $p-2-x_{j_2},\,j_1< j_2$. Au final, on voit qu'il y a donc deux $\lambda \in \mathcal{PRD}(x_0, \dots, x_{f-1})$ distincts vérifiant (16). Ces deux λ correspondent à deux poids distincts $\sigma \in \mathcal{P}(\bar{\rho})$ tels que $\chi = [\sigma]^{I_1}$ est comme dans la proposition 4.2.
- (ii) Supposons $\overline{\rho}$ réductible non-scindée et fixons $J^{\min}\subseteq J^{\max}$ tels que $J^{\max}\backslash J^{\min}\subseteq \delta(J_{\overline{\rho}})$. La combinatoire qui suit étant laborieuse, on va seulement donner la formule de l'unique $\lambda\in\mathcal{PD}(x_0,\cdots,x_{f-1})$ associé au couple (J^{\min},J^{\max}) (i.e. vérifiant (16)) et laisser les détails (très combinatoires mais sans vraie difficulté) de la preuve de son unicité au lecteur motivé. Supposons d'abord $J^{\min}=J^{\max}$. On écrit :

$$\delta^{-1}(J^{\min}) \cup J_{\overline{\rho}} = \coprod_s J_s$$

où J_s est de la forme $\{j_s,j_s+1,\cdots,j_s+l_s\}$ avec ou bien $J_s=\{0,\cdots,f-1\}=\delta^{-1}(J^{\min})\cup J_{\overline{\rho}}$, ou bien $j_s-1\notin J_s$ et $j_s+l_s+1\notin J_s$ (notons qu'on raisonne comme d'habitude modulo f dans $\{0,\cdots,f-1\}$). Si $J_s\subseteq J_{\overline{\rho}}$, on pose $\lambda_j(x_j)=x_j$ si $j\in J_s,\ j\notin \delta^{-1}(J^{\min})$ et $\lambda_j(x_j)=x_j+2$ si $j\in J_s\cap \delta^{-1}(J^{\min})$. Si $J_s\nsubseteq J_{\overline{\rho}}$, soit

 j^0 l'unique entier de $J_s\setminus J_{\overline{\rho}}$ tel que $j\in J_s$ et $j>j^0$ implique $j\in J_{\overline{\rho}}$. On pose $\lambda_{j^0}(x_{j^0})=x_{j^0}+1$ puis :

$$\begin{cases} \lambda_{j}(x_{j}) &= p - 1 - x_{j} & \text{si} \quad j < j^{0} & \text{et} \quad j \in J_{s} \cap \delta^{-1}(J^{\min}) \\ \lambda_{j}(x_{j}) &= p - 3 - x_{j} & \text{si} \quad j < j^{0} & \text{et} \quad j \in J_{s} \setminus \delta^{-1}(J^{\min}) \\ \lambda_{j}(x_{j}) &= x_{j} + 2 & \text{si} \quad j > j^{0} & \text{et} \quad j \in J_{s} \cap \delta^{-1}(J^{\min}) \\ \lambda_{j}(x_{j}) &= x_{j} & \text{si} \quad j > j^{0} & \text{et} \quad j \in J_{s} \setminus \delta^{-1}(J^{\min}). \end{cases}$$

Enfin, si $j \notin \delta^{-1}(J^{\min}) \cup J_{\overline{\rho}}$, on pose $\lambda_j(x_j) = p - 2 - x_j$ si $j + 1 \in J_s$ avec $J_s \nsubseteq J_{\overline{\rho}}$ et $\lambda_j(x_j) = x_j$ pour tous les autre $j \notin \delta^{-1}(J^{\min}) \cup J_{\overline{\rho}}$.

Supposons maintenant $J^{\min} \subseteq J^{\max}$. Soit $(\lambda_i^{\min}(x_i))_i$ le uplet précédent associé à (J^{\min}, J^{\min}) et $J^+ \stackrel{\text{def}}{=} \delta^{-1}(J^{\max} \setminus J^{\min})$. Notons que $j \in J^+$ implique $j \in J_{\overline{\rho}}$ et $\lambda_j^{\min}(x_j) \in \{p-3-x_j, x_j\}$. On décompose $\delta^{-1}(J^{\min}) \cup J_{\overline{\rho}} = \coprod_s J_s$ comme ci-dessus. Supposons $J_s \subseteq J_{\overline{\rho}}$. Si $J_s \cap J^+ = \{i_0 < i_1 < \dots < i_{t(s)}\}$, on pose $\lambda_{i_{t(s)}}(x_{i_{t(s)}}) = \{i_0 < i_1 < \dots < i_{t(s)}\}$, on pose $\lambda_{i_{t(s)}}(x_{i_{t(s)}}) = \{i_0 < i_1 < \dots < i_{t(s)}\}$ Supposons $J_s \subseteq J_{\overline{\rho}}$. Sit $J_s + J_{\overline{\rho}} = \{i_0 < i_1 < i_$ Si $j \in J_s$, $j > j^0$, on définit $\lambda_j(x_j)$ exactement comme dans le cas $J_s \subseteq J_{\overline{\rho}}$ (en ne considérant que les entiers de J_s strictement plus grands que j^0). On pose $\lambda_{j^0}(x_{j^0}) = \lambda_{j^0}^{\min}(x_{j^0}) = x_{j^0} + 1$ si le plus petit $i \in J_s \cap J^+$ tel que $j^0 < i$ vérifie $\lambda_i(x_i) = p - 2 - x_i$ et $\lambda_{j^0}(x_{j^0}) = p - 1 - x_{j^0}$ sinon. On définit alors par récurrence pour h > 0 une suite décroissante j^{-h} d'entiers dans J_s (tous strictement plus petits que j^0) de la façon suivante : si h est impair, j^{-h} est le plus grand entier de $J_s \cap J^+$ tel que $j^{-h} < j^{-h+1}$ et si h > 0 est pair, j^{-h} est le plus grand entier de $(J_s \cap J^+) \coprod (J_s \setminus J_{\overline{\rho}})$ tel que $j^{-h} < j^{-h+1}$. On pose $\lambda_{j^{-h}}(x_{j^{-h}}) = p - 2 - x_{j^{-h}}$ si h est impair et $\lambda_{j-h}(x_{j-h}) = x_{j-h} + 1$ si h > 0 est pair. Si $j \in J_s$, $j < j^0$ et $j \notin \{j^{-h}, h > 0\}$, soit $h \ge 0$ le plus grand entier tel que $j < j^{-h}$, on pose $\lambda_j(x_j) = \lambda_j^{\min}(p-3-x_j)$ si h est impair et $\lambda_j(x_j) = \lambda_j^{\min}(x_j)$ si h est pair. Si $j+1 \in J_s, j \notin J_s$, on pose $\lambda_i(x_i) = p-2-x_i$ si le plus grand $h \geq 0$ tel que $j < j^{-h}$ est pair. Enfin, pour tous les autres $j \notin \delta^{-1}(J^{\min}) \cup J_{\overline{\rho}}$ pour lesquels $\lambda_i(x_i)$ n'est pas déjà défini, on pose $\lambda_i(x_i) = x_i$.

Remarque 4.4. — (i) Tous les J de la proposition 4.3 qui sont entre J^{\min} et J^{\max} sont automatiquement dans \mathcal{P}_{χ} .

- (ii) Soit $\overline{\rho}$ générique semi-simple, (J^{\min}, J^{\max}) deux parties de S telles que $J^{\min} \subseteq J^{\max}$ et λ_0, λ_1 les deux uplets de $\mathcal{PRD}(x_0, \cdots, x_{f-1})$ ou $\mathcal{PID}(x_0, \cdots, x_{f-1})$ associés à $\overline{\rho}$ et (J^{\min}, J^{\max}) par le (i) de la proposition 4.3. On vérifie facilement que l'on a $\lambda_i(x_j) = \lambda_{1-i}(p-3-x_j)$ si $\overline{\rho}$ est scindée et $\lambda_i(x_0, x_j) = \lambda_{1-i}(p-1-x_0, p-3-x_j)$ si $\overline{\rho}$ est irréductible $(i \in \{0,1\})$.
- (iii) Les propositions 4.2 et 4.3 permettent une nouvelle preuve (bien que basée sur les mêmes formules) de $[\mathbf{6}, \text{Prop.}14.7]$ donnant la dimension des invariants sous I_1 de la K-représentation $D_0(\overline{\rho})$ de $[\mathbf{6}, \S 13]$. De manière équivalente par les

propriétés de $D_0(\overline{\rho})$, cela revient à calculer le nombre de caractères modérés χ tels que $\overline{\sigma}(\chi^s)$ contient au moins un poids de $\mathcal{D}(\overline{\rho})$ comme sous-quotient (voir preuve de $[\mathbf{6}, \text{ Cor.} 13.6]$). Par les propositions ci-dessus, cela revient à compter les paires (J^{\min}, J^{\max}) convenables (et à multiplier par 2 si $\overline{\rho}$ est semi-simple). Par exemple, si $\overline{\rho}$ est réductible non-scindée, $|J_{\overline{\rho}}| = d$ et $i \in \{0, \dots, d\}$, il y a $\binom{d}{i}$ parties $J^{\max} \setminus J^{\min}$ de $\delta(J_{\overline{\rho}})$ de cardinal i et 2^{f-i} parties J^{\min} d'un ensemble à f-i éléments, de sorte que les paires (J^{\min}, J^{\max}) comme au (ii) de la proposition 4.3 sont au nombre de $\sum_{i=0}^d \binom{d}{i} 2^{f-i} = 2^{f-d} (\sum_{i=0}^d \binom{d}{i} 2^{d-i}) = 2^{f-d} 3^d$ qui est bien la formule de $[\mathbf{6}, \text{ Prop.} 14.7]$.

5. Groupes p-divisible et réseaux de Dieudonné

Lorsque p > 2, on calcule les modules fortement divisibles de tous les groupes p-divisibles sur l'anneau des entiers de $L\left[p^{f}-1\sqrt{-p}\right]$ avec donnée de descente de type $\sigma(\chi^{s})$.

On suppose p > 2 et on conserve les notations des §2, §3 et §4. On suppose de plus $|\operatorname{Hom}_{\mathbb{Q}_p}(L[\ ^{p^{2f}}\sqrt[1]{-p}],E)| = [L[\ ^{p^{2f}}\sqrt[1]{-p}]:\mathbb{Q}_p]$. On pose $e \stackrel{\text{def}}{=} p^f - 1$ et on définit S comme le complété p-adique de l'enveloppe aux puissances divisées de $\mathcal{O}_E[u]$ par rapport à l'idéal $(u^e + p)\mathcal{O}_E[u]$ compatibles avec les puissances divisées sur l'idéal $p\mathcal{O}_E[u]$. On note Fil^1S le complété p-adique de l'idéal engendré par $\frac{(u^e + p)^i}{i!}$ pour $i \geq 1$ et Fil^pS celui de l'idéal engendré par $\frac{(u^e + p)^i}{i!}$ pour $i \geq p$. On munit S d'un Frobenius \mathcal{O}_E -linéaire p-adiquement continu φ défini par $\varphi(u^i) = u^{pi}$. Il est tel que $\varphi(\operatorname{Fil}^1S) \subseteq pS$.

On rappelle ([1, 24]) qu'un groupe p-divisible G sur $\mathfrak{O}_L[\sqrt[e]{-p}]$ muni d'une injection de \mathfrak{O}_E dans son anneau d'endomorphismes peut se décrire comme un \mathfrak{O}_E -module fortement divisible :

$$(\mathcal{M} = \mathcal{M}^0 \times \cdots \times \mathcal{M}^{f-1}, \operatorname{Fil}^1 \mathcal{M} = \operatorname{Fil}^1 \mathcal{M}^0 \times \cdots \operatorname{Fil}^1 \mathcal{M}^{f-1}, \varphi)$$

où \mathcal{M}^j est un S-module libre de rang fini, $\mathrm{Fil}^1\mathcal{M}^j\subseteq\mathcal{M}^j$ un sous-S-module contenant $(\mathrm{Fil}^1S)\mathcal{M}^j$ tel que $\mathcal{M}^j/\mathrm{Fil}^1\mathcal{M}^j$ est sans p-torsion et $\varphi:\mathcal{M}\to\mathcal{M}$ une application semi-linéaire par rapport au Frobenius sur S envoyant \mathcal{M}^j dans \mathcal{M}^{j+1} (avec (f-1)+1=0), telle que $\varphi(\mathrm{Fil}^1\mathcal{M}^j)\subseteq p\mathcal{M}^{j+1}$ et $\varphi(\mathrm{Fil}^1\mathcal{M}^j)$ engendre $p\mathcal{M}^{j+1}$ sur S pour tout j. On pose $\varphi_1\stackrel{\mathrm{def}}{=}\frac{\varphi}{p}|_{\mathrm{Fil}^1\mathcal{M}}$.

Définition 5.1. — On appelle \mathcal{O}_E -module fortement divisible de type $\chi = \eta \otimes \eta'$ (χ comme au §2) tout \mathcal{O}_E -module fortement divisible tel que chaque \mathcal{M}^j est libre de rang 2 sur S et est muni d'une action \mathcal{O}_E -linéaire de $\operatorname{Gal}(L[\sqrt[e]{-p}]/L)$ telle que :

- (i) $g(u^i m) = (\widetilde{\omega}_f(g)^{p^{-j}} u)^i g(m), g \in \operatorname{Gal}(L[\sqrt[e]{-p}]/L), m \in \mathbb{M}^j$
- (ii) l'action de $\operatorname{Gal}(L[\sqrt[e]{-p}]/L)$ préserve $\operatorname{Fil}^1 \mathbb{M}^j$ et commute à φ

(iii) sur chaque \mathfrak{M}^j il existe une S-base sur laquelle l'action de $\operatorname{Gal}(L[\sqrt[e]{-p}]/L)$ est donnée par $\eta \circ \varkappa_f \oplus \eta' \circ \varkappa_f$.

Pour plus de détails sur ces modules fortement divisibles avec donnée de descente modérément ramifiée, on renvoie à [18, §3.2] et à [25].

On rappelle que $c_{\chi} = \sum_{i=0}^{f-1} c_{\chi,i} p^i \in \{1,\cdots,e-1\}$ est l'unique entier tel que $\eta = \widetilde{\omega}_f^{c_{\chi}} \eta'$. Comme $\widetilde{\omega}_f^e = 1$, on a aussi $\eta' = \widetilde{\omega}_f^{e-c_{\chi}} \eta$. On pose :

(18)
$$c_{\chi}^{(j)} \stackrel{\text{déf}}{=} \sum_{i=0}^{f-1} c_{\chi,[i-j]} p^i$$

où $[i-j] \stackrel{\text{déf}}{=} i-j$ si $i \geq j$ et $[i-j] \stackrel{\text{déf}}{=} f+i-j$ sinon (donc $c_{\chi}^{(0)} = c_{\chi}$).

Proposition 5.2. — Soit \mathfrak{M} un \mathfrak{O}_E -module fortement divisible de type χ tel que $\varphi(\bigwedge_S^2 \mathfrak{M}^j)$ engendre $p \bigwedge_S^2 \mathfrak{M}^{j+1}$ sur S pour tout j et notons $\widetilde{S} \stackrel{\text{déf}}{=} S/\text{Fil}^p S$ et $\widetilde{\text{Fil}}^1 \mathfrak{M}^j \stackrel{\text{déf}}{=} \operatorname{Fil}^1 \mathfrak{M}^j/(\operatorname{Fil}^p S) \mathfrak{M}^j$. Il existe $(\widehat{e}^j_{\eta}, \widehat{e}^j_{\eta'}) \in \mathfrak{M}^j \times \mathfrak{M}^j$ pour tout $j \in \{0, \dots, f-1\}$ tel que :

(i)
$$\mathcal{M}^j = S\widehat{e}_n^j \oplus S\widehat{e}_{n'}^j \ \forall \ j$$

$$(ii) \ \mathrm{Gal}(L[\sqrt[e]{-p}]/L) \ agit \ sur \ \widehat{e}^j_{\eta} \ (resp. \ \widehat{e}^j_{\eta'}) \ par \ \eta \circ \varkappa_f \ (resp. \ \eta' \circ \varkappa_f) \ \forall \ j$$

(iii) il existe $a_j \in \mathcal{O}_E$ pour tout j et $\alpha, \alpha' \in \mathcal{O}_E^{\times}$ tels que l'une des trois situations suivantes est vraie:

$$cas I_{\eta} : \begin{cases} \widetilde{\operatorname{Fil}}^{1} \mathcal{M}^{j} &= \widetilde{S}(\widehat{e}_{\eta}^{j} + a_{j} u^{c_{\chi}^{(j)}} \widehat{e}_{\eta'}^{j}) \oplus \widetilde{S}(u^{e} + p) \widehat{e}_{\eta'}^{j} \\ \varphi_{1}(\widehat{e}_{\eta}^{j} + a_{j} u^{c_{\chi}^{(j)}} \widehat{e}_{\eta'}^{j}) &= \widehat{e}_{\eta}^{j+1} \\ \varphi_{1}((u^{e} + p)\widehat{e}_{\eta'}^{j}) &= \widehat{e}_{\eta'}^{j+1} \end{cases}$$

$$cas I_{\eta'} : \begin{cases} \widetilde{\operatorname{Fil}}^1 \mathcal{M}^j &= \widetilde{S}(u^e + p) \widehat{e}_{\eta}^j \oplus \widetilde{S}(\widehat{e}_{\eta'}^j + a_j u^{e - c_{\chi}^{(j)}} \widehat{e}_{\eta}^j) \\ \varphi_1((u^e + p) \widehat{e}_{\eta}^j) &= \widehat{e}_{\eta}^{j+1} \\ \varphi_1(\widehat{e}_{\eta'}^j + a_j u^{e - c_{\chi}^{(j)}} \widehat{e}_{\eta}^j) &= \widehat{e}_{\eta'}^{j+1} \end{cases}$$

$$cas II : \begin{cases} 0 < \operatorname{val}(a_{j}) < 1 \\ \widetilde{\operatorname{Fil}}^{1} \mathcal{M}^{j} = \widetilde{S}(a_{j} \widehat{e}_{\eta}^{j} + u^{c_{\chi}^{(j)}} \widehat{e}_{\eta'}^{j}) \oplus \widetilde{S}(-\frac{p}{a_{j}} \widehat{e}_{\eta'}^{j} + u^{e-c_{\chi}^{(j)}} \widehat{e}_{\eta}^{j}) \\ \varphi_{1}(a_{j} \widehat{e}_{\eta}^{j} + u^{c_{\chi}^{(j)}} \widehat{e}_{\eta'}^{j}) = \widehat{e}_{\eta}^{j+1} \\ \varphi_{1}(-\frac{p}{a_{j}} \widehat{e}_{\eta'}^{j} + u^{e-c_{\chi}^{(j)}} \widehat{e}_{\eta}^{j}) = \widehat{e}_{\eta'}^{j+1} \end{cases}$$

avec φ_1 modifié comme suit si j = f - 1:

$$cas \ I_{\eta} : \begin{cases} \varphi_{1}(\widehat{e}_{\eta}^{f-1} + a_{f-1}u^{c_{\chi}^{(f-1)}}\widehat{e}_{\eta'}^{f-1}) &= \alpha \widehat{e}_{\eta}^{0} \\ \varphi_{1}((u^{e} + p)\widehat{e}_{\eta'}^{f-1}) &= \alpha'\widehat{e}_{\eta'}^{0} \end{cases}$$

$$cas \ I_{\eta'} : \begin{cases} \varphi_{1}((u^{e} + p)\widehat{e}_{\eta'}^{f-1}) &= \alpha\widehat{e}_{\eta}^{0} \\ \varphi_{1}(\widehat{e}_{\eta'}^{f-1} + a_{f-1}u^{e-c_{\chi}^{(f-1)}}\widehat{e}_{\eta}^{f-1}) &= \alpha'\widehat{e}_{\eta'}^{0} \end{cases}$$

$$cas \ II : \begin{cases} \varphi_{1}(a_{f-1}\widehat{e}_{\eta}^{f-1} + u^{c_{\chi}^{(f-1)}}\widehat{e}_{\eta'}^{f-1}) &= \alpha\widehat{e}_{\eta}^{0} \\ \varphi_{1}(-\frac{p}{a_{f-1}}\widehat{e}_{\eta'}^{f-1} + u^{e-c_{\chi}^{(f-1)}}\widehat{e}_{\eta'}^{f-1}) &= \alpha'\widehat{e}_{\eta'}^{0} \end{cases}$$

 $D\acute{e}monstration$. — Fixons d'abord une S-base $(\widehat{e}_{\eta}^{0}, \widehat{e}_{\eta'}^{0})$ de \mathcal{M}^{0} satisfaisant (ii). La décomposition de $\mathcal{M}^{0}/(\mathrm{Fil}^{1}S)\mathcal{M}^{0}$ en sous-espaces isotypiques pour l'action de $\mathrm{Gal}(\overline{\mathbb{Q}_{p}}/L)$ est donnée par :

$$\mathcal{M}^{0} = (\operatorname{Fil}^{1}S)\mathcal{M}^{0} \oplus \bigoplus_{j=0}^{e-c_{\chi}^{(0)}-1} \left(\mathcal{O}_{E}u^{j}\widehat{e}_{\eta}^{0} \oplus \mathcal{O}_{E}u^{j+c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0} \right)$$

$$\oplus \bigoplus_{j=0}^{c_{\chi}^{(0)}-1} \left(\mathcal{O}_{E}u^{j}\widehat{e}_{\eta'}^{0} \oplus \mathcal{O}_{E}u^{j+e-c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0} \right).$$

Puisque Fil¹ \mathbb{M}^0 est stable par Gal $(\overline{\mathbb{Q}_p}/L)$, Fil¹ $\mathbb{M}^0/(\mathrm{Fil}^1S)\mathbb{M}^0$ a aussi une décomposition analogue en sous-espaces isotypiques pour l'action de Gal $(\overline{\mathbb{Q}_p}/L)$. En utilisant de plus que $u^ix \in \mathrm{Fil}^1\mathbb{M}^0$ si et seulement si $x \in \mathrm{Fil}^1\mathbb{M}^0$ et que $\varphi(\bigwedge_S^2\mathbb{M}^0)$ engendre $p \bigwedge_S^2 \mathbb{M}^1$ sur S, on en déduit facilement qu'il existe $(a_0, a_0') \in \mathcal{O}_E^2$ tel que :

$$\mathrm{Fil}^{1}\mathcal{M}^{0} = (\mathrm{Fil}^{1}S)\mathcal{M}^{0} \oplus \bigoplus_{j=0}^{e-c_{\chi}^{(0)}-1} \mathcal{O}_{E}u^{j}\widehat{f}_{\eta}^{0} \oplus \bigoplus_{j=0}^{c_{\chi}^{(0)}-1} \mathcal{O}_{E}u^{j}\widehat{f}_{\eta'}^{0}$$

où $\widehat{f}_{\eta}^{0} \in \{a_{0}\widehat{e}_{\eta}^{0} \oplus u^{c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0}, \widehat{e}_{\eta}^{0} \oplus a_{0}u^{c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0}\}, \widehat{f}_{\eta'}^{0} \in \{a'_{0}\widehat{e}_{\eta'}^{0} \oplus u^{e-c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0}, \widehat{e}_{\eta'}^{0} \oplus a'_{0}u^{e-c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0}\}$ et \widehat{f}_{η}^{0} , $\widehat{f}_{\eta'}^{0}$ vérifient dans $\bigwedge_{S}^{2} \mathcal{M}^{0}$:

(19)
$$S\widehat{f}_{\eta}^{0} \wedge \widehat{f}_{\eta'}^{0} \subseteq S(u^{e} + p)\widehat{e}_{\eta}^{0} \wedge \widehat{e}_{\eta'}^{0}.$$

L'inclusion (19) laisse comme possibilités :

$$\begin{array}{lll} {\rm cas} \ {\rm I}_{\eta} \ : \ \widehat{f}_{\eta}^{0} = \widehat{e}_{\eta}^{0} \oplus a_{0} u^{c_{\chi}^{(0)}} \widehat{e}_{\eta'}^{0} & {\rm et} \ \widehat{f}_{\eta'}^{0} = -pa_{0} \widehat{e}_{\eta'}^{0} \oplus u^{e-c_{\chi}^{(0)}} \widehat{e}_{\eta}^{0} \ {\rm avec} \ a_{0} \in \mathbb{O}_{E} \\ {\rm cas} \ {\rm I}_{\eta'} \ : \ \widehat{f}_{\eta}^{0} = -pa_{0}' \widehat{e}_{\eta}^{0} \oplus u^{c_{\chi}^{(0)}} \widehat{e}_{\eta'}^{0} \ {\rm et} & \widehat{f}_{\eta'}^{0} = \widehat{e}_{\eta'}^{0} \oplus a_{0}' u^{e-c_{\chi}^{(0)}} \widehat{e}_{\eta}^{0} \ {\rm avec} \ a_{0}' \in \mathbb{O}_{E} \\ {\rm cas} \ {\rm II} \ : \ \widehat{f}_{\eta}^{0} = a_{0} \widehat{e}_{\eta}^{0} \oplus u^{c_{\chi}^{(0)}} \widehat{e}_{\eta'}^{0} \ {\rm et} \ \widehat{f}_{\eta'}^{0} = -\frac{p}{a_{0}} \widehat{e}_{\eta'}^{0} \oplus u^{e-c_{\chi}^{(0)}} \widehat{e}_{\eta}^{0} \ {\rm avec} \ 0 < {\rm val}(a_{0}) < 1. \end{array}$$

Comme $-pa_0\hat{e}_{\eta'}^0 \oplus u^{e-c_{\chi}^{(0)}}\hat{e}_{\eta}^0 = -a_0(u^e + p)\hat{e}_{\eta'}^0 + u^{e-c_{\chi}^{(0)}}(\hat{e}_{\eta}^0 \oplus a_0u^{c_{\chi}^{(0)}}\hat{e}_{\eta'}^0)$, on voit que le cas I_{η} ci-dessus correspond bien à Fil¹ \mathcal{M}^0 comme dans le cas I_{η} de l'énoncé,

et de même pour le cas $I_{\eta'}$. Ayant fixé une S-base $(\widehat{e}_{\eta}^0, \widehat{e}_{\eta'}^0)$ de \mathcal{M}^0 comme en (ii), on voit donc qu'il y a trois possibilités pour $\mathrm{Fil}^1\mathcal{M}^0$: les trois cas I_{η} , $I_{\eta'}$ et II de l'énoncé. Changeant de notations, posons:

$$cas I_{\eta}: (\widehat{f}_{\eta}^{0}, \widehat{f}_{\eta'}^{0}) \stackrel{\text{def}}{=} (\widehat{e}_{\eta}^{0} \oplus a_{0}u^{c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0}, (u^{e} + p)\widehat{e}_{\eta'}^{0})
cas I_{\eta'}: (\widehat{f}_{\eta}^{0}, \widehat{f}_{\eta'}^{0}) \stackrel{\text{def}}{=} ((u^{e} + p)\widehat{e}_{\eta}^{0}, \widehat{e}_{\eta'}^{0} \oplus a_{0}u^{e - c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0})$$

où a_0' est maintenant noté a_0 dans le cas $I_{\eta'}$. Si f > 1, soit $\widehat{e}_{\eta}^1 \stackrel{\text{def}}{=} \varphi_1(\widehat{f}_{\eta}^0)$ et $\widehat{e}_{\eta'}^1 \stackrel{\text{def}}{=} \varphi_1(\widehat{f}_{\eta'}^0)$, alors $(\widehat{e}_{\eta}^1, \widehat{e}_{\eta'}^1)$ est une S-base de \mathcal{M}^1 satisfaisant (ii) et, par le même raisonnement que précédemment, on a de même trois cas I_{η} , $I_{\eta'}$ ou II pour $\mathrm{Fil}^1\mathcal{M}^1$. Partant de $(\widehat{e}_{\eta}^0, \widehat{e}_{\eta'}^0)$ comme en (ii), on voit donc que l'on peut choisir des bases $(\widehat{e}_{\eta}^j, \widehat{e}_{\eta'}^j)$ de \mathcal{M}^j pour $0 \le j \le f - 1$ satisfaisant (ii) et telles que l'énoncé (iii) est vérifié si j < f - 1. Pour j = f - 1, on a seulement a priori:

$$\varphi_{1}(\widehat{f}_{\eta}^{f-1}) = \alpha_{1}(\widehat{e}_{\eta}^{0} + \lambda_{1}u^{c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0} + \widehat{g}_{\eta,1})
\varphi_{1}(\widehat{f}_{\eta'}^{f-1}) = \alpha'_{1}(\widehat{e}_{\eta'}^{0} + \lambda'_{1}u^{e-c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0} + \widehat{g}_{\eta',1})$$

où $\alpha_1, \alpha_1' \in \mathcal{O}_E^{\times}$, $\lambda_1, \lambda_1' \in \mathcal{O}_E$ et $\widehat{g}_{\eta,1}, \widehat{g}_{\eta',1} \in (\mathrm{Fil}^1 S) \mathcal{M}^0$. On peut remplacer la S-base $(\widehat{e}_{\eta}^0, \widehat{e}_{\eta'}^0)$ par la S-base $(\widehat{e}_{\eta}^0 + \lambda_1 u^{e_{\chi}^{(0)}} \widehat{e}_{\eta'}^0 + \widehat{g}_{\eta,1}, \widehat{e}_{\eta'}^0 + \lambda_1' u^{e-c_{\chi}^{(0)}} \widehat{e}_{\eta}^0 + \widehat{g}_{\eta',1})$ (satisfaisant toujours (ii)) et modifier successivement tous les $(\widehat{e}_{\eta}^j, \widehat{e}_{\eta'}^j)$ comme précédemment en conséquence. En itérant cet algorithme, on obtient au cran n:

$$\varphi_{1}(\widehat{f}_{\eta}^{f-1}) = \alpha_{n}(\widehat{e}_{\eta}^{0} + \lambda_{n}u^{c_{\chi}^{(0)}}\widehat{e}_{\eta'}^{0} + \widehat{g}_{\eta,n})
\varphi_{1}(\widehat{f}_{\eta'}^{f-1}) = \alpha'_{n}(\widehat{e}_{\eta'}^{0} + \lambda'_{n}u^{e-c_{\chi}^{(0)}}\widehat{e}_{\eta}^{0} + \widehat{g}_{\eta',n})$$

et un calcul explicite montre que les suites $(\alpha_n)_n$ et $(\alpha'_n)_n$ (resp. $(\lambda_n)_n$ et $(\lambda'_n)_n$, resp. $(\widehat{g}_{\eta,n})_n$ et $(\widehat{g}_{\eta',n})_n$) convergent p-adiquement dans \mathcal{O}_E^{\times} (resp. dans \mathcal{O}_E , resp. dans (Fil¹S) \mathcal{M}^0) vers des éléments α et α' (resp. vers 0 et 0, resp. vers 0 et 0). \square

En général, les a_j et α , α' de la proposition 5.2 ne sont pas uniquement déterminés. Soit \mathcal{M} comme dans la proposition 5.2 et posons :

(20)
$$\begin{cases} J^{\min} & \stackrel{\text{déf}}{=} \quad \{f - 1 - j \mid \mathcal{M}^j \text{ est de type I}_{\eta}\} \\ J^{\max} & \stackrel{\text{déf}}{=} \quad J^{\min} \coprod \{f - 1 - j \mid \mathcal{M}^j \text{ est de type II}\}. \end{cases}$$

Proposition 5.3. — Soit \mathcal{M} un \mathcal{O}_E -module fortement divisible de type χ comme dans la proposition 5.2 et (J^{\min}, J^{\max}) comme en (20).

- (i) Pour tout j, $val(a_i)$ est uniquement déterminé.
- (ii) Si $|J^{\max} \setminus J^{\min}|$ est pair, alors α et α' sont uniquement déterminés.
- (iii) Si $|J^{\max} \setminus J^{\min}|$ est impair, on peut supposer $\alpha = 1$ et α' est alors uniquement déterminé.

Démonstration. — Notons I_{η} (resp. $I_{\eta'}$, resp. II) l'ensemble des $j \in \{0, \dots, f-1\}$ tels que \mathcal{M}^j est de type I_{η} (resp. $I_{\eta'}$, resp. II). Soit $(\widehat{f}^j_{\eta}, \widehat{f}^j_{\eta'})_j$, $(b_j)_j, \beta, \beta'$ (au lieu

de $(\widehat{e}_{\eta}^{j}, \widehat{e}_{\eta'}^{j})_{j}$, $(a_{j})_{j}$, α , α') une autre description de \mathcal{M} comme dans la proposition 5.2. Un examen de l'algorithme dans la deuxième partie de la preuve de loc. cit. montre facilement que l'on a $\widehat{f}_{\eta}^{j} = \alpha_{j}\widehat{e}_{\eta}^{j}$ et $\widehat{f}_{\eta'}^{j} = \alpha'_{j}\widehat{e}_{\eta'}^{j}$ pour des α_{j} , $\alpha'_{j} \in \mathcal{O}_{E}^{\times}$ (attention, les $(\widehat{f}_{\eta}^{j}, \widehat{f}_{\eta'}^{j})_{j}$ ici ne désignent pas la même chose que les $(\widehat{f}_{\eta}^{j}, \widehat{f}_{\eta'}^{j})_{j}$ apparaissant dans cet algorithme). Les relations de commutations avec φ_{1} montrent alors que l'on a pour tout j < f - 1:

$$\begin{cases}
si j \in I_{\eta} & alors \quad b_{j} = a_{j} \frac{\alpha'_{j}}{\alpha_{j}}, \quad \alpha_{j+1} = \alpha_{j} \quad \text{et} \quad \alpha'_{j+1} = \alpha'_{j} \\
si j \in I_{\eta'} & alors \quad b_{j} = a_{j} \frac{\alpha'_{j}}{\alpha'_{j}}, \quad \alpha_{j+1} = \alpha_{j} \quad \text{et} \quad \alpha'_{j+1} = \alpha'_{j} \\
si j \in II \quad alors \quad b_{j} = a_{j} \frac{\alpha'_{j}}{\alpha_{j}}, \quad \alpha_{j+1} = \alpha'_{j} \quad \text{et} \quad \alpha'_{j+1} = \alpha_{j}
\end{cases}$$

et, pour j = f - 1

$$\begin{cases} \text{ si } f-1 \in \mathcal{I}_{\eta} & \text{ alors } \quad b_{f-1} = a_{f-1} \frac{\alpha'_{f-1}}{\alpha_{f-1}}, \quad \beta \alpha_0 = \alpha \alpha_{f-1} & \text{ et } \quad \beta' \alpha'_0 = \alpha' \alpha'_{f-1} \\ \text{ si } f-1 \in \mathcal{I}_{\eta'} & \text{ alors } \quad b_{f-1} = a_{f-1} \frac{\alpha'_{f-1}}{\alpha'_{f-1}}, \quad \beta \alpha_0 = \alpha \alpha_{f-1} & \text{ et } \quad \beta' \alpha'_0 = \alpha' \alpha'_{f-1} \\ \text{ si } f-1 \in \mathcal{I} & \text{ alors } \quad b_{f-1} = a_{f-1} \frac{\alpha'_{f-1}}{\alpha_{f-1}}, \quad \beta \alpha_0 = \alpha \alpha'_{f-1} & \text{ et } \quad \beta' \alpha'_0 = \alpha' \alpha_{f-1}. \end{cases}$$

Comme $\alpha_j, \alpha'_j \in \mathcal{O}_E^{\times}$, on voit que $\operatorname{val}(b_j) = \operatorname{val}(a_j)$ pour tout j ce qui démontre (i). Si $|J^{\max} \setminus J^{\min}|$ est pair, on a $\beta \alpha_0 = \alpha \alpha_0$ et $\beta' \alpha'_0 = \alpha' \alpha'_0$ ce qui entraîne $\beta = \alpha$ et $\beta' = \alpha'$ et démontre (ii). Si $|J^{\max} \setminus J^{\min}|$ est impair, on a $\beta \alpha_0 = \alpha \alpha'_0$ et $\beta' \alpha'_0 = \alpha' \alpha_0$. En choisissant α_0 et α'_0 tels que $\alpha_0 = \alpha \alpha'_0$, on voit que l'on peut se ramener à $\beta = 1$ et $\beta' = \alpha \alpha'$ d'où on déduit (iii).

Corollaire 5.4. — Soit M un O_E -module fortement divisible de type χ comme dans la proposition 5.2, G le groupe p-divisible correspondant et M son O_E -module de Dieudonné contravariant. Alors M est un O_E -module de Dieudonné de type χ tel que $\varphi(\bigwedge_{O_L \otimes_{\mathbb{Z}_p} O_E}^2 M) = p \bigwedge_{O_L \otimes_{\mathbb{Z}_p} O_E}^2 M$ et, si $(v_j)_j$ est le uplet de rationnels associé à M en (12), on a:

$$\begin{array}{cccc} v_j = 1 & si & \mathcal{M}^j \ est \ de \ type \ I_{\eta} \\ v_j = 0 & si & \mathcal{M}^j \ est \ de \ type \ I_{\eta'} \\ v_j = 1 - \mathrm{val}(a_j) & si & \mathcal{M}^j \ est \ de \ type \ II. \end{array}$$

 $D\acute{e}monstration$. — Le \mathcal{O}_E -module de Dieudonné M n'est autre que $\mathcal{M} \otimes_S \mathcal{O}_E$ où la flèche $S \to \mathcal{O}_E$ est la surjection de \mathcal{O}_E -algèbres qui envoie u et ses puissances (divisées) sur 0. On déduit alors trivialement la première assertion, puis la valeur de v_i par la proposition 5.2.

6. Le cas résiduellement réductible non-scindé

On montre que la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ sur les points de p-torsion d'un groupe p-divisible avec donnée de descente de type $\sigma(\chi^s)$ comme dans la

proposition 5.2 est réductible non-scindée si elle est générique et si un des a_j est une unité.

On suppose p>2 et on conserve les notations du §5. Si \mathbb{M} est un \mathbb{O}_E -module fortement divisible de type χ , on note ρ le dual de Cartier de la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ associée au module de Tate du groupe p-divisible correspondant à \mathbb{M} et $\overline{\rho} \stackrel{\text{déf}}{=} \rho \otimes_{\mathbb{O}_E} k_E$. On note également $\overline{S} \stackrel{\text{déf}}{=} S \otimes_{\mathbb{O}_E} k_E$, $\overline{\mathbb{M}} \stackrel{\text{déf}}{=} \mathbb{M} \otimes_{\mathbb{O}_E} k_E$, $\overline{\mathbb{M}} \otimes_{\mathbb{O}_E}$

(21)
$$\overline{\rho} = \operatorname{Hom}_{\operatorname{Fil}^1, \varphi_1}(\overline{\mathcal{M}}, \widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)^{\vee}(1)$$

où l'on renvoie à $[24, \S 3]$ pour plus de détails sur le membre de droite. Rappelons juste que l'action de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ sur $f \in \operatorname{Hom}_{\operatorname{Fil}^1, \varphi_1}(\overline{\mathbb{M}}, \widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)$ est définie par $(gf)(m) \stackrel{\text{déf}}{=} g(f(\overline{g}^{-1}m))$ où $m \in \overline{\mathbb{M}}$ et \overline{g} est l'image de g dans $\operatorname{Gal}(L[\sqrt[e]{-p}]/L)$. Si \mathbb{M} est un \mathbb{O}_E -module fortement divisible de type χ comme dans la proposition 5.2, on note I_η (resp. $I_{\eta'}$, II, I_{η}^{\times} , $I_{\eta'}^{\times}$) l'ensemble des $j \in \{0, \dots, f-1\}$ tels que \mathbb{M}^j est de type I_η (resp. $I_{\eta'}$, II, I_η avec $a_j \in \mathbb{O}_E^{\times}$, $I_{\eta'}$ avec $a_j \in \mathbb{O}_E^{\times}$). On note $\overline{\eta}$ (resp. $\overline{\eta'}$) l'image de η (resp. η') par la surjection $\mathbb{O}_E^{\times} \to k_E^{\times}$. Enfin, l'égalité suivante sera utile $(0 \leq d \leq j \leq f-1)$:

$$(22) c_{\chi}^{(j)} - p^d c_{\chi}^{(j-d)} = -e(c_{\chi,f-j} + pc_{\chi,f+1-j} + \dots + p^{d-1}c_{\chi,f+d-1-j}).$$

Lemme 6.1. — Soit M un O_E -module fortement divisible de type χ comme dans la proposition 5.2 et supposons que \overline{M} contient un sous- φ_1 -module filtré (avec filtration induite) de rang 1 facteur direct comme \overline{S} -module et stable par $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ (au sens de [25]).

(i) Ce sous-module est de la forme $\prod_{j=0}^{f-1} \overline{S} \widetilde{e}_{\eta_j}^j$ où $\eta_j \in \{\eta, \eta'\}$ et :

$$\begin{array}{lcl} \widetilde{e}_{\eta_{j}}^{j} & = & \overline{e}_{\eta}^{j} + \lambda_{j} u^{p c_{\chi}^{(j-1)}} \overline{e}_{\eta'}^{j} & si & \eta_{j} = \eta \\ \widetilde{e}_{\eta_{j}}^{j} & = & \overline{e}_{\eta'}^{j} + \lambda_{j} u^{p(e - c_{\chi}^{(j-1)})} \overline{e}_{\eta}^{j} & si & \eta_{j} = \eta' \end{array}$$

pour un $\lambda_i \in k_E$.

(ii) Soit $h_j \in \{0, \dots, e\}$ le plus petit entier tel que $u^{h_j} \widetilde{e}^j_{\eta_j} \in \operatorname{Fil}^1 \overline{\mathbb{M}}$, on a :

(23)
$$\begin{cases} h_j \in \{0, e\} & \text{si et seulement si} & \eta_{j+1} = \eta_j \\ h_j = e - c_{\chi}^{(j)} & \text{si et seulement si} & \eta_j = \eta \text{ et } \eta_{j+1} = \eta' \\ h_j = c_{\chi}^{(j)} & \text{si et seulement si} & \eta_j = \eta' \text{ et } \eta_{j+1} = \eta. \end{cases}$$

 $D\acute{e}monstration$. — Soit $\overline{\mathcal{M}}^j \stackrel{\text{def}}{=} \mathcal{M}^j \otimes_{\mathcal{O}_E} k_E$ et $\overline{\mathcal{M}}^j_{\eta}$ (resp. $\overline{\mathcal{M}}^j_{\eta'}$) la composante $\overline{\eta}$ -isotypique (resp. $\overline{\eta}'$ -isotypique) de $\overline{\mathcal{M}}^j$. On a :

$$\overline{\mathcal{M}}_{\eta}^{j} = \left(\bigoplus_{i \geq 0} k_{E} \gamma_{i}(u^{e}) \overline{e}_{\eta}^{j} \right) \oplus \left(\bigoplus_{i \geq 0} k_{E} \gamma_{i}(u^{e}) u^{c_{\chi}^{(j)}} \overline{e}_{\eta'}^{j} \right)$$

et une égalité analogue pour $\overline{\mathcal{M}}_{\eta'}^j$ avec $u^{e-c_\chi^{(j)}}$ à la place de $u^{c_\chi^{(j)}}$ ($\gamma_i(u^e)$ est la i-ième puissance divisée de u^e). Comme $\varphi_1(\gamma_i(u^e)\overline{e}_\eta^{j-1}) = \varphi_1(\gamma_i(u^e)u^{c_\chi^{(j-1)}}\overline{e}_{\eta'}^{j-1}) = 0$ si i > 1 (car p > 2), un examen de l'opérateur φ_1 sur $\overline{\mathcal{M}}_{\eta}^{j-1} \cap \operatorname{Fil}^1\overline{\mathcal{M}}$ à partir des différents cas de la proposition 5.2 montre que, dans tous les cas, on a $\varphi_1(\overline{\mathcal{M}}_{\eta}^{j-1} \cap \operatorname{Fil}^1\overline{\mathcal{M}}) = k_E \overline{e}_\eta^j \oplus k_E u^{pc_\chi^{(j-1)}}\overline{e}_{\eta'}^j$. De même, on trouve $\varphi_1(\overline{\mathcal{M}}_{\eta'}^{j-1} \cap \operatorname{Fil}^1\overline{\mathcal{M}}) = k_E \overline{e}_{\eta'}^j \oplus k_E u^{p(e-c_\chi^{(j-1)})}\overline{e}_\eta^j$. On en déduit (i). Le (ii) est alors immédiat à partir de (22) pour d=1 et de la stabilité par l'action de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$.

Remarque 6.2. — Le lemme 6.1 est en fait un cas particulier de [25, §3].

Lemme 6.3. — On conserve les notations et hypothèses du lemme 6.1 et on suppose de plus que la représentation $\overline{\rho}$ associée à $\overline{\mathbb{M}}$ en (21) est générique. (i) On a les inégalités suivantes :

$$\begin{cases} 2 \leq c_{\chi,f-j} \leq p-1 & si & h_j = 0 \ et \ \eta_j = \eta \\ 0 \leq c_{\chi,f-j} \leq p-3 & si & h_j = 0 \ et \ \eta_j = \eta' \\ 2 \leq c_{\chi,f-j} \leq p-1 & si & h_j = e \ et \ \eta_j = \eta' \\ 0 \leq c_{\chi,f-j} \leq p-3 & si & h_j = e \ et \ \eta_j = \eta \\ 1 \leq c_{\chi,f-j} \leq p-2 & si & h_j \in \{c_{\chi,j}, e-c_{\chi,j}\}. \end{cases}$$

(ii) On a $u^{h_j}\overline{e}_{\eta_j}^j \in \operatorname{Fil}^1\overline{\mathbb{M}}$ et $\varphi_1(u^{h_j}\widetilde{e}_{\eta_j}^j) = \varphi_1(u^{h_j}\overline{e}_{\eta_j}^j)$ pour tout j. (iii) Les η_i satisfont la récurrence :

(24)
$$\begin{cases} \eta_{j+1} = \eta_{j} & si \quad j \in (\mathbf{I}_{\eta} \setminus \mathbf{I}_{\eta}^{\times}) \cup (\mathbf{I}_{\eta'} \setminus \mathbf{I}_{\eta'}^{\times}) \\ \eta_{j+1} = \eta' & si \quad j \in \mathbf{I}_{\eta}^{\times} \\ \eta_{j+1} = \eta' & si \quad j \in \mathbf{II} \text{ et } \eta_{j} = \eta \\ \eta_{j+1} = \eta' & si \quad j \in \mathbf{II} \text{ et } \eta_{j} = \eta'. \end{cases}$$

Démonstration. — (i) On calcule explicitement la restriction à l'inertie de la représentation (réductible) $\overline{\rho}$ dans le cas où le sous-objet du lemme 6.1 est tel que $\eta_0 = \eta$, laissant le cas strictement analogue $\eta_0 = \eta'$ au lecteur. Soit $0 \le j_1 < j_2 < \cdots < j_{2t-1} < j_{2t} \le f-1$ les indices j tels que $\eta_{j+1} \ne \eta_j$ (notons qu'il y en a forcément un nombre pair) et $\overline{\mathbb{N}} \subset \overline{\mathbb{M}}$ le sous- φ_1 -module filtré de rang 1 du lemme 6.1. Par [25, Ex.3.7] appliqué à d = f on obtient :

$$\operatorname{Hom}_{\operatorname{Fil}^1,\varphi_1}(\overline{\mathbb{N}},\widehat{A}_{\operatorname{cris}}\otimes_{\mathbb{Z}_p}\mathbb{F}_p)^{\vee}(1)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})}=\overline{\eta}\omega_f^{\frac{1}{e}\sum_{j=0}^{f-1}p^{f-j}h_j}.$$

Posons $h \stackrel{\text{def}}{=} \frac{1}{e} \sum_{j=0}^{f-1} p^{f-j} h_j$, en utilisant (23) et (22) on déduit :

$$(25) \quad h = \left(\sum_{j \notin \{j_s, 1 \le s \le 2t\}} p^{f-j} \frac{h_j}{e}\right) + \left(\sum_{s=1}^t p^{f-j_{2s-1}}\right)$$
$$-\sum_{s=1}^t \left(p^{f-1-j_{2s-1}} c_{\chi, f-1-j_{2s-1}} + \dots + p^{f-j_{2s}} c_{\chi, f-j_{2s}}\right)$$

ce qui entraı̂ne $h \in \mathbf{Z}_{\geq 0}$ car, par (23), $\frac{h_j}{e} \in \{0,1\}$ si $j \notin \{j_s, 1 \leq s \leq 2t\}$. On a donc :

$$\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L^{\mathrm{nr}})} \simeq \begin{pmatrix} \overline{\eta}\omega_f^h & * \\ 0 & \overline{\eta}'\omega_f^{-h}\omega \end{pmatrix} \\
\simeq \begin{pmatrix} \omega_f^{c_{\chi}+2h}\omega^{-1} & * \\ 0 & 1 \end{pmatrix} \otimes \overline{\eta}'\omega_f^{-h}\omega.$$

Soit $J \stackrel{\text{def}}{=} \coprod_{1 \le s \le t} \{j_{2s-1}, j_{2s-1} + 1, \cdots, j_{2s}\}$, un calcul utilisant (25) donne $c_{\chi} + 2h - \sum_{j=0}^{f-1} p^j = \sum_{j=0}^{f-1} (r_j + 1)p^j$ où :

$$\begin{cases}
 r_{f-j} = c_{\chi,f-j} - 2 + 2\frac{h_j}{e} & \text{si} \quad j \notin J \\
 r_{f-j} = p - 3 - c_{\chi,f-j} + 2\frac{h_j}{e} & \text{si} \quad j \in J \setminus \{j_s, 1 \le s \le 2t\} \\
 r_{f-j} = p - 2 - c_{\chi,f-j} & \text{si} \quad j \in \{j_{2s}, 1 \le s \le t\} \\
 r_{f-j} = c_{\chi,f-j} - 1 & \text{si} \quad j \in \{j_{2s-1}, 1 \le s \le t\}
\end{cases}$$

(on convient que $r_f=r_0$ et $c_{\chi,f}=c_{\chi,0}$). Comme $0\leq c_{\chi,f-j}\leq p-1$ pour tout j et $\frac{h_j}{e}\in\{0,1\}$ pour tout $j\notin\{j_s,1\leq s\leq 2t\}$, la condition de généricité de $\overline{\rho}$ (§4) entraı̂ne $1\leq c_{\chi,f-j}\leq p-2$ si $j\in\{j_s,1\leq s\leq 2t\},\ 2\leq c_{\chi,f-j}\leq p-1$ si $h_j=0$ et $j\notin J$ ou si $h_j=e$ et $j\in J\setminus\{j_s,1\leq s\leq 2t\}$, et $0\leq c_{\chi,f-j}\leq p-3$ si $h_j=e$ et $j\notin J$ ou si $h_j=0$ et $j\in J\setminus\{j_s,1\leq s\leq 2t\}$. Cela correspond exactement à l'énoncé (i).

(ii) On vérifie les cas $\eta_j = \eta$ laissant les cas analogues $\eta_j = \eta'$ au lecteur. Si $j \in I_{\eta'}$, alors $h_j = e$ (voir proposition 5.2) et l'assertion découle de $pc_\chi^{(j-1)} + e = e(c_{\chi,f-j}+1) + c_\chi^{(j)}$ et de $u^{c_\chi^{(j)}} \overline{e}_{\eta'}^j \in \operatorname{Fil}^1 \overline{\mathbb{M}}$ (ibid.). Si $j \in II$, alors $h_j = e - c_\chi^{(j)}$ et l'assertion découle de $pc_\chi^{(j-1)} + e - c_\chi^{(j)} = (ec_{\chi,f-j}) + e$ et de $c_{\chi,f-j} > 0$ par (i). Si $j \in I_\eta^\times$ alors $h_j = e - c_\chi^{(j)}$ ou $h_j = 0$, ce dernier cas n'arrivant que lorsque $c_{\chi,f-j} = 0$. Par (i), cela est impossible et on a $h_j = e - c_\chi^{(j)}$. On conclut comme avant. Si $j \in I_\eta \setminus I_\eta^\times$ alors $h_j = 0$ ou $h_j = e - c_\chi^{(j)}$, ce dernier cas n'arrivant que lorsque $c_{\chi,f-j} = 0$. Par (i), cela est impossible et on a $h_j = 0$. Comme alors $c_{\chi,f-j} > 1$ par (i), on a $u^{pc_\chi^{(j-1)}} \overline{e}_{\eta'}^j = u^{e(c_{\chi,f-j}-1)+c_\chi^{(j)}} u^e \overline{e}_{\eta'}^j \in u^{e(c_{\chi,f-j}-1)+c_\chi^{(j)}} \operatorname{Fil}^1 \overline{\mathbb{M}}$, d'où $\varphi_1(u^{pc_\chi^{(j-1)}} \overline{e}_{\eta'}^j) = 0$ et $\varphi_1(\overline{e}_\eta^j) = \varphi_1(\overline{e}_\eta^j)$.

(iii) Pour $\eta_j = \eta$ cela découle de (23) et des valeurs de h_j (suivant le type de \mathfrak{M}^j) trouvées au (ii). Le cas $\eta_j = \eta'$ est analogue.

Remarque 6.4. — Si p=3, il n'y a pas de $\overline{\rho}$ générique réductible, et donc le lemme 6.3 est vide dans ce cas. Néanmoins, si l'on relâche la contrainte $(r_j) \neq (0, \cdots, 0)$ dans l'hypothèse de généricité de $\overline{\rho}$ (notons que p-3=0 ici!), le lemme 6.3 est encore valable tel quel. En effet, la seule différence dans la preuve se situe pour la partie (i), où il faut maintenant considérer les deux possibilités $(r_{f-j}+1) \in \{(-1, \cdots, -1), (p, \cdots, p)\}$ (les seules pouvant conduire au cas nouveau autorisé pour $\overline{\rho}$). Mais les égalités (26) (toujours valables) montrent que, pour chacune de ces possibilités, on doit avoir $\{j_s, 1 \leq s \leq 2t\} = \emptyset$, et donc $J = \emptyset$ et $r_{f-j} + 1 = c_{\chi, f-j} - 1 + 2\frac{h_j}{e}$ pour tout j. Or $(c_{\chi, f-j} - 1 + 2\frac{h_j}{e}) \in \{(-1, \cdots, -1), (p, \cdots, p)\}$ si et seulement si soit $c_{\chi, f-j} = h_j = 0$ pour tout j soit $c_{\chi, f-j} = p - 1$ et $h_j = e$ pour tout j. Comme $\chi \neq \chi^s$, ces possibilités sont exclues.

Proposition 6.5. — Soit M un O_E -module fortement divisible de type χ comme dans la proposition 5.2. Supposons que $\overline{\rho}$ est générique et que, dans la description de $\operatorname{Fil}^1 M$, il existe j tel que $a_j \in O_E^{\times}$. Alors $\overline{\rho}$ est réductible et \overline{M} contient un sous- φ_1 -module filtré de rang 1 comme au lemme 6.1.

 $D\acute{e}monstration.$ — Soit L' l'unique extension quadratique non-ramifiée de L dans $\overline{\mathbb{Q}_p}$. Fixons $\iota': L' \hookrightarrow E$ qui se restreint sur le plongement ι fixé au §2 et, comme au §2, identifions l'ensemble $\{0, \dots, 2f-1\}$ à l'ensemble des plongements $L' \hookrightarrow E$ en envoyant j sur $\iota' \circ \varphi^{-j}$. Le \mathfrak{O}_E -module fortement divisible \mathfrak{M} de type χ donne naissance par changement de base à un \mathcal{O}_E -module fortement divisible $\mathcal{M}' \simeq \mathcal{M}'^0 \times \cdots \times \mathcal{M}'^{2f-1}$ de type $\chi' \stackrel{\text{def}}{=} \eta \circ \text{Norme}_{k_{L'}/k_L} \otimes \eta' \circ \text{Norme}_{k_{L'}/k_L}$ avec, pour $0 \leq j \leq f-1$, \mathcal{M}'^j et \mathcal{M}'^{f+j} de même « type » que \mathcal{M}^j . D'un point de vue pratique, pour $0 \le j \le f-1$, $(\mathcal{M}'^j, \operatorname{Fil}^1 \mathcal{M}'^j, \varphi_1)$ et $(\mathcal{M}'^{f+j}, \operatorname{Fil}^1 \mathcal{M}'^{f+j}, \varphi_1)$ sont comme $(\mathcal{M}^j, \operatorname{Fil}^1\mathcal{M}^j, \varphi_1)$ mais en remplaçant partout u par u^{1+q} . La représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L')$ associée à \mathcal{M}' est la restriction de la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ associée à \mathcal{M} . Comme $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L')}$ est réductible (même si $\overline{\rho}$ ne l'est pas), la méthode de l'adhérence schématique ([22, §2]) combinée avec l'équivalence de catégorie de [1] comme généralisée dans [25, §1] montre que $\overline{\mathcal{M}}' \stackrel{\text{def}}{=} \mathcal{M}' \otimes_{\mathcal{O}_E} k_E$ contient un sous- φ_1 -module filtré de rang 1 facteur direct stable par $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L')$. Si p>3, la $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ -représentation $\overline{\rho}$ est générique si et seulement si sa restriction $\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L')}$ est générique et on peut alors appliquer les résultats du lemme 6.3 à $\overline{\mathcal{M}}'$. Si $p=3, \overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L')}$ n'est peut-être pas générique mais on vérifie facilement qu'elle est dans le $cas(r_j) = (0, \dots, 0)$ (voir §4) et la remarque 6.4 montre que l'on peut encore appliquer les résultats du lemme 6.3 à $\overline{\mathcal{M}}'$. Par les lemmes 6.1 et 6.3, on a donc trois suites $(\eta'_j)_{0 \le j \le 2f-1}$, $(\widetilde{e}^j_{\eta'_j})_{0 \le j \le 2f-1}$ et $(h'_j)_{0 \le j \le 2f-1}$ qui vérifient les propriétés de ces lemmes. Soit j le plus grand entier dans $\{0,\cdots,f-1\}$ tel que $j \in I_{\eta}^{\times} \cup I_{\eta'}^{\times}$ (un tel j existe par hypothèse). Comme $j \in I_{\eta}^{\times} \cup I_{\eta'}^{\times}$, η'_{j+1} est alors fixé indépendamment de η'_i par la récurrence (24). Comme tout i tel que $j+1 \leq i \leq f-1$ est dans $(I_{\eta} \setminus I_{\eta}^{\times}) \cup (I_{\eta'} \setminus I_{\eta'}^{\times})$ ou dans II, par cette même récurrence on voit que $\eta'_i = \eta'_{i+f}$ pour tout $i \in \{j+1, \dots, f\}$ (avec $\eta'_{2f} = \eta'_0$).

En particulier, pour i=f on a $\eta'_f=\eta'_{2f}=\eta'_0$. En remplaçant partout u^{1+q} par u dans l'expression de $\widetilde{e}^j_{\eta'_j}$ et en posant $\eta_j \stackrel{\text{déf}}{=} \eta'_j$ pour $0 \leq j \leq f-1$, on obtient une suite $(\widetilde{e}^j_{\eta_j})_{0 \leq j \leq f-1}$ de vecteurs de $\overline{\mathbb{M}}$ dont il est clair qu'elle est comme dans le lemme 6.1. En particulier, $\overline{\rho}$ est réductible.

Proposition 6.6. — On conserve les notations et hypothèses de la proposition 6.5. Soit $J_{\overline{\rho}}$ comme en (15), alors on a :

(27)
$$J_{\overline{\rho}} = \{ f - j \mid \operatorname{val}(a_j) > 0 \}.$$

En particulier, $\overline{\rho}$ est non-scindée.

Démonstration. — On remarque d'abord que $J_{\overline{\rho}} = J_{\overline{\rho}^{\vee}(1)}$ car les représentations $\overline{\rho}$ et $\overline{\rho}^{\vee}(1)$ sont isomorphes à torsion près. On va déterminer $J_{\overline{\rho}^{\vee}(1)}$, ce qui permettra de travailler avec le foncteur contravariant de l'appendice A plutôt qu'avec son dual de Cartier. Par le (i) de la proposition A.2 et un calcul explicite, $\overline{\mathcal{M}}$ provient du φ -module de type $\overline{\chi}$ (cf. définition A.1) $\mathfrak{D} = \mathfrak{D}^0 \times \cdots \times \mathfrak{D}^{f-1}$ où $\mathfrak{D}^j = k_E((u))\mathfrak{e}^j_{\eta} \oplus k_E((u))\mathfrak{e}^j_{\eta'}$, $\operatorname{Gal}(L_{\infty}[\sqrt[e]{-p}]/L_{\infty})$ agit sur \mathfrak{e}^j_{η} (resp. $\mathfrak{e}^j_{\eta'}$) par le caractère $\overline{\eta} \circ \varkappa_f$ (resp. $\overline{\eta}' \circ \varkappa_f$) et si $j \neq f-1$:

$$\begin{cases} \varphi(\mathbf{e}_{\eta}^{j-1}) &= u^{e}\mathbf{e}_{\eta}^{j} - a_{j}u^{c_{\chi}^{(j)}}\mathbf{e}_{\eta'}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= \mathbf{e}_{\eta'}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= \mathbf{e}_{\eta}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= u^{e}\mathbf{e}_{\eta'}^{j} - a_{j}u^{e-c_{\chi}^{(j)}}\mathbf{e}_{\eta}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= u^{c_{\chi}^{(j)}}\mathbf{e}_{\eta'}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= u^{e-c_{\chi}^{(j)}}\mathbf{e}_{\eta'}^{j} \\ \varphi(\mathbf{e}_{\eta'}^{j-1}) &= u^{e-c_{\chi}^{(j)}}\mathbf{e}_{\eta}^{j} \end{cases} \quad \text{si} \quad j \in \mathbf{I}_{\eta}.$$

Pour j=f-1, on a une description analogue de \mathfrak{D}^{f-2} faisant intervenir en plus α et α' que l'on laisse au lecteur. Rappelons que, par le (ii) de la proposition A.2, \mathfrak{D} permet de retrouver $\overline{\rho}^{\vee}(1)|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})}$. Soit $\mathfrak{e}^j \stackrel{\mathrm{def}}{=} \mathfrak{e}^j_{\eta}$ et $\mathfrak{f}^j \stackrel{\mathrm{def}}{=} u^{c_{\chi}^{(j)}} \mathfrak{e}^j_{\eta'}$, le groupe $\mathrm{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ agit sur chacun de ces vecteurs par le caractère $\overline{\eta}$. En écrivant les matrices de φ ci-dessus dans la nouvelle base $(\mathfrak{e}^j,\mathfrak{f}^j)_j$, on se rend compte qu'elles ne font intervenir que des puissances de u^e sur lesquelles la donnée de descente agit trivialement. En remplaçant u^e par u, l'isomorphisme (37) de l'appendice A nous dit que le φ -module $\prod_j (k_E((u))\mathfrak{e}^j \oplus k_E((u))\mathfrak{f}^j)$ obtenu suivant (sans donnée de descente) permet de retrouver $(\overline{\rho}^{\vee}(1) \otimes \overline{\eta})|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})}$:

$$\begin{cases} \varphi(\mathfrak{e}^{j-1}) &= u\mathfrak{e}^{j} - a_{j}\mathfrak{f}^{j} \\ \varphi(\mathfrak{f}^{j-1}) &= u^{c_{\chi,f-j}}\mathfrak{f}^{j} \end{cases} & \text{si} \quad j \in \mathbf{I}_{\eta} \\ \begin{cases} \varphi(\mathfrak{e}^{j-1}) &= \mathfrak{e}^{j} \\ \varphi(\mathfrak{f}^{j-1}) &= u^{c_{\chi,f-j}+1}(\mathfrak{f}^{j} - a_{j}\mathfrak{e}^{j}) \end{cases} & \text{si} \quad j \in \mathbf{I}_{\eta'} \\ \begin{cases} \varphi(\mathfrak{e}^{j-1}) &= \mathfrak{f}^{j} \\ \varphi(\mathfrak{f}^{j-1}) &= u^{c_{\chi,f-j}+1}\mathfrak{e}^{j} \end{cases} & \text{si} \quad j \in \mathbf{II} \end{cases}$$

(où $j \neq f-1$ et avec des équations analogues pour j = f-1 tenant compte de α et α'). Par la proposition 6.5, $\overline{\mathbb{M}}$ contient un sous-objet $\overline{\mathbb{N}}$ comme dans le lemme 6.1. On suppose que $\overline{\mathbb{N}}$ vérifie $\eta_0 = \eta$ et on laisse le cas $\eta_0 = \eta'$ (strictement analogue) au lecteur. On va calculer le module de Fontaine-Laffaille de $\overline{\rho}^{\vee}(1) \otimes \overline{\eta} \omega_f^h \omega^{-1}$, qui est bien une représentation de Fontaine-Laffaille car générique et telle que :

$$\overline{\rho}^{\vee}(1) \otimes \overline{\eta} \omega_f^h \omega^{-1}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})} \simeq \begin{pmatrix} \omega_f^{c_{\chi}+2h} \omega^{-1} & * \\ 0 & 1 \end{pmatrix}.$$

Cela permettra de déterminer $J_{\overline{\rho}^{\vee}(1)\otimes\overline{\eta}\omega_{f}^{h}\omega^{-1}}=J_{\overline{\rho}^{\vee}(1)}$. Un calcul utilisant (25) donne $\omega_{f}^{h}\omega^{-1}=\omega_{f}^{\sum_{j=0}^{f-1}w_{j}p^{j}}$ avec (on utilise les notations de la preuve du lemme 6.3 et on convient que $w_{f}=w_{0}$ et $c_{\chi,f}=c_{\chi,0}$):

(28)
$$\begin{cases} w_{f-j} = p - 2 + \frac{h_j}{e} & \text{si } j \notin J \\ w_{f-j} = p - 2 - c_{\chi,f-j} + \frac{h_j}{e} & \text{si } j \in J \setminus \{j_s, 1 \le s \le 2t\} \\ w_{f-j} = p - 2 - c_{\chi,f-j} & \text{si } j \in \{j_{2s}, 1 \le s \le t\} \\ w_{f-j} = p - 1 & \text{si } j \in \{j_{2s-1}, 1 \le s \le t\}. \end{cases}$$

Tordre par $\omega_f^{w_{f-j}p^{f-j}}$ côté Galois revient à multiplier $\varphi(\mathfrak{e}^{j-1})$ et $\varphi(\mathfrak{f}^{j-1})$ par $u^{w_{f-j}}$ côté φ -modules. En utilisant (28), on peut donc calculer le φ -module donnant la représentation $(\overline{\rho}^{\vee}(1)\otimes\overline{\eta}\omega_f^h\omega^{-1})|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})}$. En exprimant ce φ -module dans les bases $(\frac{1}{u}\mathfrak{e}^{j-1},\frac{1}{u}\mathfrak{f}^{j-1})$ si $\eta_j=\eta$ et $(\mathfrak{e}^{j-1},\frac{1}{u}\mathfrak{f}^{j-1})$ si $\eta_j=\eta'$, un calcul explicite montre qu'il provient comme dans la preuve de la proposition A.3 de l'unique module de Fontaine-Laffaille $M=M^0\times\cdots\times M^{f-1}$ avec $M^j=k_Ee^j\oplus k_Ef^j$ comme suit :

$$\begin{cases} \varphi(e^j) &= e^{j+1} \\ \varphi_{c_{\chi,f-j}}(f^j) &= f^{j+1} \\ \varphi(e^j) &= e^{j+1} - a_j f^{j+1} \\ \varphi_{c_{\chi,f-j}}(f^j) &= f^{j+1} \\ \varphi_{c_{\chi,f-j}}(f^j) &= f^{j+1} \\ \varphi_{c_{\chi,f-j}+1}(f^j) &= f^{j+1} - a_j e^{j+1} \\ \varphi_{c_{\chi,f-j}+1}(f^j) &= f^{j+1} - a_j e^{j+1} \\ \varphi_{c_{\chi,f-j}}(f^j) &= e^{j+1} \\ \varphi_{p-2-c_{\chi,f-j}}(e^j) &= e^{j+1} \\ \varphi(f^j) &= f^{j+1} \\ \varphi(f^j) &= f^{j+1} - a_j e^{j+1} \\ \varphi(f^j) &= f^{j+1} - a_j e^{j+1} \\ \varphi(f^j) &= f^{j+1} - a_j e^{j+1} \\ \varphi(f^j) &= f^{j+1} \\ \varphi(f^j)$$

(on a supposé j < f-1, le cas j = f-1 est analogue en tenant compte de α et α'). En suivant l'image de φ , on voit que M contient le sous-objet de Fontaine-Laffaille $\prod_{j=0}^{f-1} k_E \widetilde{e}^j$ suivant (j>0):

$$\widetilde{e}^{j} = \begin{cases} e^{j} & \text{si} & \eta_{j-1} = \eta & \text{et} & j-1 \notin I_{\eta}^{\times} \cup \Pi \\ e^{j} - a_{j-1} f^{j} & \text{si} & \eta_{j-1} = \eta & \text{et} & j-1 \in I_{\eta}^{\times} \\ f^{j} & \text{si} & \eta_{j-1} = \eta & \text{et} & j-1 \in \Pi \\ f^{j} & \text{si} & \eta_{j-1} = \eta' & \text{et} & j-1 \notin I_{\eta'}^{\times} \cup \Pi \\ f^{j} - a_{j-1} e^{j} & \text{si} & \eta_{j-1} = \eta' & \text{et} & j-1 \in I_{\eta'}^{\times} \\ e^{j} & \text{si} & \eta_{j-1} = \eta' & \text{et} & j-1 \in \Pi \end{cases}$$

(la définition de \tilde{e}^0 est analogue en tenant compte éventuellement de α et α'). Avec les notations de l'appendice A (voir (38)), on vérifie que $\mu_j = 0$ si et seulement si val $(a_{j-1}) > 0$. Par (39), on a bien que $J_{\bar{\rho}^{\vee}(1)}$ est comme dans l'énoncé.

7. Les théorèmes locaux

On détermine la réduction modulo p des réseaux de Dieudonné provenant d'un groupe p-divisible avec donnée de descente de type $\sigma(\chi^s)$ (§5) tel que la représentation $\overline{\rho}$ de $\mathrm{Gal}(\overline{\mathbb{Q}_p}/L)$ associée en (21) est générique. En particulier on montre que cette réduction a exactement pour socle les poids de Diamond de $\overline{\rho}$ qui apparaissent dans le semi-simplifié modulo p de $\sigma(\chi^s)$.

Comme au §2, on fixe $\chi = \eta \otimes \eta' : I \to \mathcal{O}_E^{\times}$ un caractère modéré tel que $\chi^s \neq \chi$ et on conserve toutes les notations des paragraphes précédents, en particulier celles du paragraphe §6 et des preuves qu'il contient. On rappelle que, pour $J \in \mathcal{P}_{\chi}$, $\overline{\sigma}_J$ désigne l'unique facteur de Jordan-Hölder de $\overline{\sigma}(\chi^s) = \sigma^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$ correspondant à J (voir §4).

Théorème 7.1. — Soit \mathfrak{M} un \mathfrak{O}_E -module fortement divisible de type χ comme dans la proposition 5.2 tel que la représentation $\overline{\rho}$ associée à $\overline{\mathfrak{M}}$ en (21) est générique.

(i) La représentation $\overline{\rho}$ est scindée (resp. irréductible, resp. réductible nonscindée) si et seulement si $\operatorname{val}(a_j) > 0$ pour tout j et |II| est pair (resp. $\operatorname{val}(a_j) > 0$ pour tout j et |II| est impair, resp. $\operatorname{val}(a_j) = 0$ pour au moins un j). (ii) Les facteurs de Jordan-Hölder de $\overline{\sigma}(\chi^s)$ qui sont des poids de Diamond pour $\overline{\rho}$ sont exactement les $\overline{\sigma}_J$ pour $J^{\min} \subseteq J \subseteq J^{\max}$ avec (J^{\min}, J^{\max}) comme en (20) (en particulier tous ces J sont dans \mathfrak{P}_{χ}).

 $D\acute{e}monstration$. — On va démontrer (i) et (ii) en même temps. Notons que, pour (ii), par la proposition 4.2 il suffit de montrer que J^{\min} et J^{\max} en (20) s'obtiennent à partir de $\overline{\rho}$ par les formules (16) et (17).

Premier cas: on suppose d'abord que tous les $a_j \in \mathcal{O}_E$ apparaissant dans Fil¹ \mathcal{M} (cf. proposition 5.2) sont de valuation > 0, et donc nuls dans $\overline{\mathcal{M}}$.

Premier sous-cas: |II| est pair.

On définit par la récurrence (24) deux suites $(\eta_j)_{0 \leq j \leq f-1}$ et $(\eta'_j)_{0 \leq j \leq f-1}$ d'éléments de $\{\eta, \eta'\}$ telles que $\eta_0 \stackrel{\text{déf}}{=} \eta$ et $\eta'_0 \stackrel{\text{déf}}{=} \eta'$ (noter que $I_\eta^\times = I_{\eta'}^\times = \emptyset$). Comme |II| est pair, on a $\eta_{(f-1)+1} = \eta_0$, $\eta'_{(f-1)+1} = \eta'_0$, et sur les formules de la proposition 5.2 (réduites modulo p) on voit que $\overline{\mathcal{M}}$ est la somme directe des deux φ_1 -modules filtrés de rang 1 stables par $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$:

$$\overline{\mathcal{M}} = \prod_{j=0}^{f-1} \overline{S} \overline{e}_{\eta_j}^j \oplus \prod_{j=0}^{f-1} \overline{S} \overline{e}_{\eta'_j}^j.$$

La même preuve que pour le (i) du lemme 6.3 donne (avec les mêmes notations):

$$\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L^{\mathrm{nr}})} \simeq (\omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j} \oplus 1) \otimes \overline{\eta}' \omega_f^{-h} \omega$$

et $\overline{\rho}$ est donc scindée. Si on explicite les égalités (26) donnant les r_j , on trouve sachant qu'ici $\{j_s, 1 \leq s \leq 2t\} = \text{II}$:

(29)
$$\begin{cases} r_{f-j} = c_{\chi,f-j} - 2 & \text{si} \quad j \in I_{\eta} & \text{et} \quad \eta_{j} = \eta \\ r_{f-j} = p - 1 - c_{\chi,f-j} & \text{si} \quad j \in I_{\eta} & \text{et} \quad \eta_{j} = \eta' \\ r_{f-j} = c_{\chi,f-j} & \text{si} \quad j \in I_{\eta'} & \text{et} \quad \eta_{j} = \eta' \\ r_{f-j} = p - 3 - c_{\chi,f-j} & \text{si} \quad j \in I_{\eta'} & \text{et} \quad \eta_{j} = \eta' \\ r_{f-j} = c_{\chi,f-j} - 1 & \text{si} \quad j \in II & \text{et} \quad \eta_{j} = \eta' \\ r_{f-j} = p - 2 - c_{\chi,f-j} & \text{si} \quad j \in II & \text{et} \quad \eta_{j} = \eta'. \end{cases}$$

Soit $\lambda \in \mathcal{PRD}(x_0, \dots, x_{f-1})$ l'unique uplet tel que :

$$(\lambda_j(r_j)) \otimes \det^{e(\lambda)(r_0,\cdots,r_{f-1})} = (c_{\chi,j}) \otimes \overline{\eta}'(\det).$$

La comparaison entre les formules (16) et les formules (20) montre immédiatement que l'on trouve exactement les mêmes ensembles.

Deuxième sous-cas : |II| est impair.

On reprend les notations de la preuve de la proposition 6.5. En particulier, \mathcal{M} « se restreint » sur L' en un module $\mathcal{M}' \simeq \mathcal{M'}^0 \times \cdots \times \mathcal{M'}^{2f-1}$ tel que, dans \mathcal{M}' , le nombre de cas II devient pair. On peut ainsi appliquer le même calcul que dans le premier sous-cas. On obtient :

$$\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})} \simeq \left(\omega_{2f}^{\sum_{j=0}^{f-1}(r_j+1)p^j} \oplus \omega_{2f}^{p^f\sum_{j=0}^{f-1}(r_j+1)p^j}\right) \otimes \overline{\eta}'\omega_f^*$$

où ω_{2f} est défini comme ω_f mais avec ι' au lieu de ι , * est un entier convenable, r_{f-j} est défini comme en (29) si $j \neq 0$ (en définissant la suite $(\eta_j)_{0 \leq j \leq 2f-1}$ par la récurrence (24) avec $\eta_0 = \eta$) et où :

$$\begin{cases} r_0 = p - c_{\chi,0} & \text{si} \quad 0 \in I_{\eta} \\ r_0 = p - 2 - c_{\chi,0} & \text{si} \quad 0 \in I_{\eta'} \\ r_0 = p - 1 - c_{\chi,0} & \text{si} \quad 0 \in \text{II}. \end{cases}$$

La généricité de $\overline{\rho}$ implique qu'elle doit être irréductible et on vérifie comme dans le premier sous-cas que (20) donne bien les mêmes J^{\min} et J^{\max} que (17). Deuxième cas: on suppose qu'au moins un des $a_j \in \mathcal{O}_E$ apparaissant dans Fil¹M

est de valuation nulle. L'assertion (i) dans ce cas est contenue dans les propositions 6.5 et 6.6. Par la proposition 6.5, $\overline{\mathbb{M}}$ contient en facteur direct un sous- φ_1 -module filtré $\prod_{j=0}^{f-1} \overline{S} \widetilde{e}_{\eta_j}^j$. On a comme dans la preuve du (i) du lemme 6.3 (et en supposant $\eta_0 = \eta$ comme dans cette preuve, le cas $\eta_0 = \eta'$ étant analogue):

$$\overline{
ho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L^{\mathrm{nr}})} \simeq \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j} & * \\ 0 & 1 \end{pmatrix} \otimes \overline{\eta}' \omega_f^{-h} \omega$$

et si on explicite les égalités (26), on trouve :

$$\begin{cases} r_{f-j} &=& c_{\chi,f-j}-2 & \text{si} & j \in \mathcal{I}_{\eta} \setminus \mathcal{I}_{\eta}^{\times} & \text{et} & \eta_{j} = \eta \\ r_{f-j} &=& p-1-c_{\chi,f-j} & \text{si} & j \in \mathcal{I}_{\eta} & \text{et} & \eta_{j} = \eta' \\ r_{f-j} &=& c_{\chi,f-j} & \text{si} & j \in \mathcal{I}_{\eta'} & \text{et} & \eta_{j} = \eta \\ r_{f-j} &=& p-3-c_{\chi,f-j} & \text{si} & j \in \mathcal{I}_{\eta'} \setminus \mathcal{I}_{\eta'}^{\times} & \text{et} & \eta_{j} = \eta' \\ r_{f-j} &=& c_{\chi,f-j}-1 & \text{si} & j \in \mathcal{I}_{\eta}^{\times} \cup \mathcal{I} & \text{et} & \eta_{j} = \eta \\ r_{f-j} &=& p-2-c_{\chi,f-j} & \text{si} & j \in \mathcal{I}_{\eta'}^{\times} \cup \mathcal{I} & \text{et} & \eta_{j} = \eta' \end{cases}$$

On note $\lambda \in \mathcal{PRD}(x_0, \dots, x_{f-1})$ l'unique uplet tel que $(\lambda_j(r_j)) \otimes \det^{e(\lambda)(r_0, \dots, r_{f-1})} = (c_{\chi,j}) \otimes \overline{\eta}'(\det)$. Par la proposition 6.6, l'ensemble $J_{\overline{\rho}}$ associé à $\overline{\rho}$ en (15) est aussi donné par (27). La comparaison entre les formules (20) et les formules (16) montre alors immédiatement que l'on trouve encore les mêmes ensembles.

Un corollaire évident du (ii) du théorème 7.1 est l'énoncé suivant.

Corollaire 7.2. — Soit M un \mathfrak{O}_E -module fortement divisible de type χ comme dans la proposition 5.2 tel que la représentation $\overline{\rho}$ associée à \overline{M} en (21) est générique. Alors $\overline{\sigma}(\chi^s)$ contient toujours au moins un poids de Diamond associé à $\overline{\rho}$.

Remarque 7.3. — (i) Le corollaire 7.2 était déjà connu pour $\overline{\rho}$ semi-simple mais sans hypothèse de généricité (voir [18, Prop.3.5.4]).

(ii) Les cas particuliers du théorème 7.1 formés des \mathfrak{M} tels que II = \emptyset (et donc $J^{\min} = J^{\max}$) sont essentiellement déjà traités dans [18].

Lemme 7.4. — Soit (J^{\min}, J^{\max}) deux parties de \mathbb{S} telles que $J^{\min} \subseteq J^{\max}$. Pour tout $J \in \mathbb{P}_{\chi}$ tel que $J^{\min} \subseteq J \subseteq J^{\max}$ et tel que $\overline{\sigma}_J = (s_0, \dots, s_{f-1}) \otimes \det^*$ avec $0 \le s_j \le p-2$, il existe une unique représentation $\overline{\sigma}_J(J^{\min}, J^{\max})$ de $\operatorname{GL}_2(k_L)$ sur k_E dont le socle est $\overline{\sigma}_J$ et dont les constituants sont les $\overline{\sigma}_{J'}$ pour $J \setminus J^{\min} \subseteq J' \subseteq J \coprod \mathbb{S} \setminus J^{\max}$ et $J' \in \mathbb{P}_{\chi}$.

Démonstration. — Par [6, Prop.13.1], il existe une unique représentation $\overline{\sigma}_J^{\max}$ de $\operatorname{GL}_2(k_L)$ sur k_E dont le socle est $\overline{\sigma}_J$, dont les autres constituants sont distincts de $\overline{\sigma}_J$ et qui est maximale pour ces propriétés. Soit $J' \in \mathcal{P}_{\chi}$ tel que $J \setminus J^{\min} \subseteq J' \subseteq J \coprod S \setminus J^{\max}$, alors par [6, Lem.3.2] $\overline{\sigma}_{J'}$ est un constituant irréductible de l'enveloppe injective $\operatorname{inj}_{\operatorname{GL}_2(k_L)} \overline{\sigma}_J$ (car, en notant $\overline{\sigma}_{J'} = (s'_0, \dots, s'_{f-1}) \otimes \operatorname{det}^*$, on passe de (s_0, \dots, s_{f-1}) à (s'_0, \dots, s'_{f-1}) par une succession de séquences $p-2-s., \dots, p-2-s. \pm 1, \dots, s. \pm 1$). Comme $0 \leq s_j \leq p-2$ pour tout j, [6,

Cor.3.12] montre qu'il existe une unique représentation $I(\overline{\sigma}_J, \overline{\sigma}_{J'})$ de $\operatorname{GL}_2(k_L)$ sur k_E de socle $\overline{\sigma}_J$ et de co-socle $\overline{\sigma}_{J'}$ dont tous les constituants sont distincts. Cette représentation est donc aussi l'unique sous-représentation de $\overline{\sigma}_J^{\max}$ de co-socle $\overline{\sigma}_{J'}$. Par [6, Cor.4.11] les constituants de cette représentation sont les $\overline{\sigma}_{J''}$ pour $J \cap J' \subseteq J'' \subseteq J \cup J'$ et $J'' \in \mathcal{P}_{\chi}$. En particulier ces J'' vérifient encore $J \setminus J^{\min} \subseteq J'' \subseteq J \coprod S \setminus J^{\max}$. La réunion des sous-représentations $I(\overline{\sigma}_J, \overline{\sigma}_{J'})$ dans $\overline{\sigma}_J^{\max}$ pour tous les J' comme dans l'énoncé donne la représentation cherchée, unique par construction.

Théorème 7.5. — Soit M un O_E -module fortement divisible de type χ comme dans la proposition 5.2, G le groupe p-divisible correspondant, M le O_E -module de Dieudonné de type χ associé à G (voir corollaire 5.4) et $\sigma^0_{\eta}(\chi^s)$ le O_E -réseau de Dieudonné sur $\sigma(\chi^s)$ associé à M au §3. Supposons la représentation $\overline{\rho}$ associée à \overline{M} en (21) générique. Alors on a avec les notations du lemme 7.4:

$$\sigma_{\eta}^{0}(\chi^{s}) \otimes_{\mathcal{O}_{E}} k_{E} = \bigoplus_{J^{\min} \subset J \subset J^{\max}} \overline{\sigma}_{J}(J^{\min}, J^{\max})$$

où $J^{\min}\subseteq J^{\max}$ sont les éléments de \mathfrak{P}_χ définis en (20). En particulier :

$$\operatorname{soc}_{K}(\sigma_{\eta}^{0}(\chi^{s}) \otimes_{\mathcal{O}_{E}} k_{E}) = \bigoplus_{J \mid \overline{\sigma}_{J} \in \mathcal{D}(\overline{\rho})} \overline{\sigma}_{J}.$$

Démonstration. — Notons que l'hypothèse de généricité implique p>2. La deuxième assertion découle de la première, du théorème 7.1 et de la définition de $\overline{\sigma}_J(J^{\min}, J^{\max})$. Montrons la première assertion. Par le théorème 2.4 on a dans $\sigma_{\eta}^0(\chi^s)$ pour tout $J' \in \mathcal{P}_{\chi}$ avec les v_j comme dans le corollaire 5.4 :

$$\begin{split} \langle K \cdot p^{\sum_{j \in J'} v_j} \sigma_{J'} \rangle &= \bigoplus_{J'' \in \mathcal{P}_\chi} p^{|J''| - |J' \cap J''| + \sum_{j \in J'} v_j - \sum_{j \in J''} v_j} \left(p^{\sum_{j \in J''} v_j} \sigma_{J''} \right) \\ &= \bigoplus_{J'' \in \mathcal{P}_\chi} p^{\sum_{j \in J' \setminus J' \cap J''} v_j + \sum_{j \in J'' \setminus J' \cap J''} (1 - v_j)} \left(p^{\sum_{j \in J''} v_j} \sigma_{J''} \right) \end{split}$$

où l'on convient qu'une somme est nulle lorsque son ensemble d'indices est vide. Notons que l'image de $\langle K \cdot p^{\sum_{j \in J'} v_j} \sigma_{J'} \rangle$ dans $\sigma_{\eta}^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$ est l'unique sous-représentation de $\sigma_{\eta}^0(\chi^s) \otimes_{\mathcal{O}_E} k_E$ de co-socle $\overline{\sigma}_{J'}$. Si on pose :

$$w_{J',J''} \stackrel{\text{def}}{=} \sum_{j \in J' \setminus J' \cap J''} v_j + \sum_{j \in J'' \setminus J' \cap J''} (1 - v_j),$$

les J'' tels que $\overline{\sigma}_{J''}$ apparaît dans cette sous-représentation de $\sigma^0_{\eta}(\chi^s) \otimes_{\mathcal{O}_E} k_E$ sont exactement ceux tels que $w_{J',J''}=0$. Mais on voit avec les valeurs des v_j du corollaire 5.4 que $w_{J',J''}=0$ si et seulement si $J'\backslash J'\cap J''\subseteq J^{\min}$ et $J''\backslash J'\cap J''\subseteq S\backslash J^{\max}$. De manière équivalente, $w_{J',J''}=0$ si et seulement si J'' s'obtient à partir de J' en rajoutant des éléments de J^{\min} et en enlevant des éléments de $S\backslash J^{\max}$. Pour $J\in\mathcal{P}_\chi$ posons :

$$\mathfrak{P}_{\chi,J} \stackrel{\mathrm{def}}{=} \{ J' \in \mathfrak{P}_{\chi} \mid (J' \cup J^{\mathrm{min}}) \backslash (J' \cap \mathbb{S} \backslash J^{\mathrm{max}}) = J \},$$

on a une partition $\mathcal{P}_{\chi} = \coprod_{J^{\min} \subseteq J \subseteq J^{\max}} \mathcal{P}_{\chi,J}$ et par ce qui précède $w_{J',J''} = 0$ implique que J' et J'' sont dans le même $\mathcal{P}_{\chi,J}$. De plus chaque $\mathcal{P}_{\chi,J}$ (pour $J^{\min} \subseteq J \subseteq J^{\max}$) contient un unique J' tel que $w_{J',J''} = 0$ implique J'' = J', à savoir J' = J (qui est toujours dans \mathcal{P}_{χ}). On voit donc finalement que $\sigma_{\eta}^{0}(\chi^{s}) \otimes_{\mathcal{O}_{E}} k_{E}$ est une somme directe indexée par les J entre J^{\min} et J^{\max} de représentations de K sur k_{E} (se factorisant par $\mathrm{GL}_{2}(k_{L})$) de socle isomorphe à $\overline{\sigma}_{J}$ et dont les constituants sont les $\overline{\sigma}_{J'}$ pour J' parcourant $\mathcal{P}_{\chi,J}$. Comme $\mathcal{P}_{\chi,J}$ s'identifie trivialement aux J' de \mathcal{P}_{χ} tels que $J \setminus J^{\min} \subseteq J' \subseteq J \coprod \mathbb{S} \setminus J^{\max}$, le résultat découle du lemme 7.4, en remarquant que $\overline{\sigma}_{J} \in \mathcal{D}(\overline{\rho})$ vérifie bien l'hypothèse du lemme 7.4 par généricité de $\overline{\rho}$.

8. Un problème de compatibilité local-global modulo p I

On énonce un problème de compatibilité local-global dans le programme de Langlands modulo p pour GL_2 qui précise les conjectures de [7]: les « diagrammes » associés à une représentation galoisienne générique en [6] et [4] apparaissent-ils sur les espaces $S_{\psi}^D(k_E)$ du §3?

On reprend les notations du §3 et on suppose que D et F sont non-ramifiés aux places divisant p. On note E une extension finie quelconque de \mathbb{Q}_p telle que $|\operatorname{Hom}_{\mathbb{Q}_p}(F_{\nu},E)|=[F_{\nu},\mathbb{Q}_p]$ pour tout $\nu|p$. On fixe une représentation continue irréductible totalement impaire :

$$\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}}/F) \to \operatorname{GL}_2(k_E)$$

telle que $\overline{\rho}_{\nu} \stackrel{\text{déf}}{=} \overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})}$ est générique au sens du §4 pour toute place ν de F divisant p (cela implique en particulier p>2). On note $\psi=\prod_{\nu}\psi_{\nu}:F^{\times}\setminus(\mathbb{A}_F^f)^{\times}\to k_E^{\times}$ l'unique caractère tel que $\det(\overline{\rho})=\psi_{\nu}$ via la réciprocité du corps de classes telle que normalisée dans l'introduction.

Soit $U = \prod_{\nu} U_{\nu} \subset (D \otimes_F \mathbb{A}_F^f)^{\times}$ un sous-groupe ouvert compact tel que $\psi|_{U \cap (\mathbb{A}_F^f)^{\times}} = 1$ et S un ensemble fini de places finies de F contenant Σ , les places divisant p, les places où $\overline{\rho}$ est ramifiée et les places où U_{ν} n'est pas maximal. Pour $\nu \notin S$, on note $a_{\nu} \stackrel{\text{déf}}{=} \psi(\operatorname{Fr}_{\nu})^{-1}\operatorname{trace}(\overline{\rho}_{\nu}(\operatorname{Fr}_{\nu})) = q_{\nu}\operatorname{trace}(\overline{\rho}_{\nu}(\operatorname{Fr}_{\nu}^{-1})) \in k_{E}$ (voir §3, Fr_{ν} est un Frobenius arithmétique en ν). On note $T_{\psi}^{S}(U, k_{E})$ la sous-algèbre commutative de $\operatorname{End}_{k_{E}}\left(S_{\psi}^{D}(U, k_{E})\right)$ engendrée par les opérateurs de Hecke :

$$T_{\nu} \stackrel{\text{déf}}{=} \operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}}) \begin{pmatrix} \overline{\omega}_{\nu} & 0 \\ 0 & 1 \end{pmatrix} \operatorname{GL}_{2}(\mathcal{O}_{F_{\nu}})$$

pour $\nu \notin S$, $\mathfrak{m}_{\overline{\rho}^{\vee}}^{S}$ l'idéal de $T_{\psi}^{S}(U, k_{E})$ engendré par les opérateurs $T_{\nu} - a_{\nu}$ pour $\nu \notin S$ et on pose :

$$S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\varrho}^{\vee}}^{S}] \stackrel{\text{def}}{=} \{ f \in S_{\psi}^{D}(U, k_{E}) \mid Tf = 0 \ \forall \ T \in \mathfrak{m}_{\overline{\varrho}^{\vee}}^{S} \}.$$

Par [7, Lem.4.6], le sous-espace $S_{\psi}^D(U, k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}^S]$ ne dépend pas de S comme cidessus, et on le note $S_{\psi}^D(U, k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$. Enfin on note :

$$S^D_{\psi}(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}] \stackrel{\mathrm{def}}{=} \varinjlim_{U} S^D_{\psi}(U,k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}].$$

Rappelons la conjecture suivante ([7, Conj.4.7]) :

Conjecture 8.1 ([7]). — Supposons $S_{\psi}^{D}(k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}] \neq 0$. Avec les notations précédentes, il existe un isomorphisme $(D \otimes_{F} \mathbb{A}_{F}^{f})^{\times}$ -équivariant :

$$S_{\psi}^{D}(k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}] \simeq \otimes_{\nu}' \pi_{\nu}^{D}(\overline{\rho}^{\vee})$$

où, dans le produit tensoriel restreint de droite, $\pi^D_{\nu}(\overline{\rho}^{\vee})$ si $\nu \nmid p$ est la représentation lisse admissible de $(D \otimes_F F_{\nu})^{\times}$ associée à $\overline{\rho}^{\vee}_{\nu}$ en $[\mathbf{7}, \S 4]$ (basée sur les travaux de Vignéras et Emerton) et où $\pi^D_{\nu}(\overline{\rho}^{\vee})$ si $\nu \mid p$ est une représentation lisse admissible de $(D \otimes_F F_{\nu})^{\times} \simeq \mathrm{GL}_2(F_{\nu})$ dont le $\mathrm{GL}_2(\mathfrak{O}_{F_{\nu}})$ -socle est $\oplus_{\sigma_{\nu} \in \mathfrak{D}(\overline{\rho}_{\nu})} \sigma_{\nu}$.

En fait, la conjecture de [7, Conj.4.7] est énoncée sans l'hypothèse de généricité sur $\overline{\rho}_{\nu}$ pour $\nu|p$ mais est du coup légèrement moins précise puisqu'elle demande que le socle de $\pi^{D}_{\nu}(\overline{\rho}^{\vee})$ soit constitué des poids de $\mathcal{D}(\overline{\rho}_{\nu})$ avec éventuellement des multiplicités > 1.

À ce jour, à la connaissance de l'auteur, aucun cas de la conjecture 8.1 n'est complètement connu lorsque l'un des F_{ν} pour $\nu|p$ n'est pas \mathbb{Q}_p , même en autorisant d'éventuelles multiplicités > 1. Soit $\mathcal{D}(\overline{\rho}_p) \stackrel{\text{def}}{=} \{ \otimes_{\nu|p} \sigma_{\nu}, \sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu}) \}$. Dans [18], Gee montre que, si $\overline{\rho}|_{\text{Gal}(\overline{\mathbb{Q}}/F(\sqrt[p]{1})})$ est irréductible et si $S_{\psi}^D(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}] \neq 0$, le $\text{GL}_2(\mathbb{O}_F \otimes_{\mathbb{Z}} \mathbb{Z}_p)$ -socle de $S_{\psi}^D(U, k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$ (pour U suffisamment petit) est formé des poids « réguliers non-ordinaires » de $\mathcal{D}(\overline{\rho}_p)$ (avec des multiplicités inconnues ≥ 1), des poids « réguliers ordinaires » de $\mathcal{D}(\overline{\rho}_p)$ (ibid.) sous certaines conditions supplémentaires sur $\overline{\rho}$, et éventuellement de poids « non-réguliers ».

Notons que, si $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ ne dépend par définition que de $\overline{\rho}_{\nu}^{\vee}$ pour $\nu \nmid p$, cela n'est absolument pas clair pour $\nu \mid p$ (du moins lorsque $F \neq \mathbb{Q}$). Nous allons d'abord « pousser un cran plus loin » la conjecture 8.1 pour les places $\nu \mid p$ en utilisant des constructions de $[\mathbf{6}]$, puis donner au §9 quelques résultats très partiels en faveur de cette conjecture « renforcée ».

Fixons une place ν de F divisant p et, suivant les notations de $[\mathbf{6}]$, soit $D_0(\overline{\rho}_{\nu})$ la plus grande représentation (pour l'inclusion) de $\mathrm{GL}_2(k_{F_{\nu}})$ sur k_E dont le socle est $\bigoplus_{\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})} \sigma_{\nu}$ et telle que les $\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})$ n'apparaissent pas ailleurs que dans le socle (comme facteurs de Jordan-Hölder). Le fait qu'une telle représentation existe est montré dans $[\mathbf{6}, \mathrm{Prop.}13.1]$, de même le fait qu'elle se décompose sous la forme :

$$D_0(\overline{\rho}_{\nu}) = \bigoplus_{\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})} D_{0,\sigma_{\nu}}(\overline{\rho}_{\nu})$$

où $\operatorname{soc}_{\operatorname{GL}_2(k_{F,\nu})} D_{0,\sigma_{\nu}}(\overline{\rho}_{\nu}) = \sigma_{\nu}.$

Lemme 8.2. — Soit $U \subseteq U' \subset (D \otimes_F \mathbb{A}_F^f)^{\times}$ deux sous-groupes ouverts compacts tels que $\psi|_{U \cap (\mathbb{A}_F^f)^{\times}} = 1$ et tels que U est normal dans U'. Soit $R' \subseteq R$ deux représentations de U'/U sur des k_E -espaces vectoriels de dimension finie telles que :

- (i) R' contient $soc_{U'/U} R$
- (ii) R' est contenue dans $S^D_{\psi}(U, k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$
- (iii) R/R' et $\operatorname{soc}_{U'/U} S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}]$ n'ont pas de composante irréductible en commun.

Si U est assez petit, la restriction à R' induit un isomorphisme :

(30)
$$\operatorname{Hom}_{U'/U}\left(R, S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}]\right) \xrightarrow{\sim} \operatorname{Hom}_{U'/U}\left(R', S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}]\right)$$
 en particulier R est contenue dans $S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}].$

 $D\'{e}monstration.$ — Soit $V\stackrel{\text{def}}{=} S^D_{\psi}(U,k_E)$ et fixons un ensemble fini de place S comme précédemment tel que $V[\mathfrak{m}^S_{\vec{\rho}^\vee}] = V[\mathfrak{m}_{\vec{\rho}^\vee}]$. Pour toute U'/U-représentation de dimension finie R, on fait agir les opérateurs de Hecke sur $\text{Hom}_{U'/U}(R,V)$ par leur action sur V. Si U est assez petit, il est alors standard que toute suite exacte $0 \to R' \to R \to R'' \to 0$ de U'/U-représentations de dimension finie donne lieu à une suite exacte compatible à l'action des opérateurs de Hecke :

$$(31) \quad 0 \longrightarrow \operatorname{Hom}_{U'/U}(R'',V)_{\mathfrak{m}_{\overline{\rho}\vee}^{S}} \longrightarrow \operatorname{Hom}_{U'/U}(R,V)_{\mathfrak{m}_{\overline{\rho}\vee}^{S}} \longrightarrow \operatorname{Hom}_{U'/U}(R',V)_{\mathfrak{m}_{\overline{\sigma}\vee}^{S}} \longrightarrow 0.$$

Soit $R' \subseteq R$ comme dans l'énoncé. On a par (iii) :

$$\operatorname{Hom}_{U'/U}\left(R/R',V[\mathfrak{m}_{\overline{\rho}^\vee}]\right)=\operatorname{Hom}_{U'/U}\left(R/R',V\right)[\mathfrak{m}_{\overline{\rho}^\vee}^S]=0,$$

d'où aussi :

(32)
$$\operatorname{Hom}_{U'/U}(R/R',V)_{\mathfrak{m}_{\overline{\rho}\vee}^S} = 0$$

car $W[\mathfrak{m}_{\overline{\rho}^{\vee}}^S]=0$ si et seulement si $W_{\mathfrak{m}_{\overline{\rho}^{\vee}}^S}=0$. Appliquant (31) à la suite exacte :

$$0 \longrightarrow R' \longrightarrow R \longrightarrow R/R' \longrightarrow 0,$$

on a avec (32) un isomorphisme compatible à Hecke:

$$\operatorname{Hom}_{U'/U}(R,V)_{\mathfrak{m}_{\overline{a}\vee}^S} \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{U'/U}(R',V)_{\mathfrak{m}_{\overline{a}\vee}^S}$$

d'où l'isomorphisme de l'énoncé en prenant des deux côtés les vecteurs propres sous Hecke. Par (ii), il existe $f \in \operatorname{Hom}_{U'/U}(R',V)[\mathfrak{m}_{\overline{\rho}^{\vee}}^{S}]$ qui est une injection. Soit $g \in \operatorname{Hom}_{U'/U}(R,V)[\mathfrak{m}_{\overline{\rho}^{\vee}}^{S}]$ l'unique élément s'envoyant sur f. Si g n'est pas injectif, alors $\ker(g) \cap \operatorname{soc}_{U'/U} R \neq 0$. Comme $\ker(g) \cap \operatorname{soc}_{U'/U} R \subseteq \ker(g) \cap R'$ par (i), on a donc $0 \neq \ker(g) \cap R' = \ker(f)$ ce qui est impossible. L'injection g donne l'inclusion (30) cherchée.

Proposition 8.3. — Si la conjecture 8.1 est vraie, alors pour tout $\nu|p$ il existe une injection $GL_2(\mathcal{O}_{F_{\nu}})$ -équivariante unique à scalaire près :

$$D_0(\overline{\rho}_{\nu}) \hookrightarrow \pi_{\nu}^D(\overline{\rho}^{\vee}).$$

En particulier, on a une injection $(D \otimes_F \mathbb{A}_F^{f,p})^{\times} \times \operatorname{GL}_2(\mathfrak{O}_F \otimes_{\mathbb{Z}} \mathbb{F}_p)$ -équivariante :

$$\left(\otimes'_{\nu\nmid p}\pi_{\nu}^{D}(\overline{\rho}^{\vee})\right)\otimes\left(\otimes_{\nu\mid p}D_{0}(\overline{\rho}_{\nu})\right)\hookrightarrow S_{\psi}^{D}(k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}].$$

Démonstration. — Soient $U = \prod_{\nu} U_{\nu} \subset U' = \prod_{\nu} U'_{\nu}$ deux sous-groupes ouverts compacts de $(D \otimes_F \mathbb{A}_F^f)^{\times}$ tels que $\psi|_{U \cap (\mathbb{A}_F^f)^{\times}} = 1$, $U_{\nu} = U'_{\nu}$ si $\nu \nmid p$, $U_{\nu} \stackrel{\text{def}}{=} \ker(\operatorname{GL}_2(\mathbb{O}_{F_{\nu}}) \twoheadrightarrow \operatorname{GL}_2(k_{F_{\nu}}))$ et $U'_{\nu} \stackrel{\text{def}}{=} \operatorname{GL}_2(\mathbb{O}_{F_{\nu}})$ si $\nu|p$. En particulier U est normal dans U' et $U'/U \simeq \operatorname{GL}_2(\mathbb{O}_F \otimes_{\mathbb{Z}} \mathbb{F}_p)$. Si l'on suppose vrai l'énoncé 8.1, on a en particulier un isomorphisme U'/U-équivariant :

$$S_{\psi}^{D}(U, k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}] \simeq \otimes_{\nu}' \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}}$$

et notons que l'espace de gauche, donc celui de droite, est de dimension finie sur k_E . En prenant quelques U_{ν} suffisamment petits pour $\nu \nmid p$, les U'/U-représentations de dimension finie :

$$R' \stackrel{\text{def}}{=} \left(\bigotimes_{\nu \nmid p}' \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}} \right) \otimes \left(\bigoplus_{\sigma \in \mathcal{D}(\overline{\rho}_{p})} \sigma \right)$$

$$R \stackrel{\text{def}}{=} \left(\bigotimes_{\nu \nmid p}' \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}} \right) \otimes \left(\bigotimes_{\nu \mid p} D_{0}(\overline{\rho}_{\nu}) \right),$$

vérifient bien les hypothèses (i), (ii) et (iii) du lemme 8.2. Par ce lemme, on obtient une injection U'/U-équivariante :

$$R = \left(\otimes'_{\nu\nmid p} \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}} \right) \otimes \left(\otimes_{\nu\mid p} D_{0}(\overline{\rho}_{\nu}) \right) \hookrightarrow \left(\otimes'_{\nu\nmid p} \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}} \right) \otimes \left(\otimes_{\nu\mid p} \pi_{\nu}^{D}(\overline{\rho}^{\vee})^{U_{\nu}} \right).$$

En considérant l'action de $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$ pour une seule place $\nu|p$, on voit qu'il doit exister une injection $\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$ -équivariante $D_0(\overline{\rho}_{\nu}) \hookrightarrow \pi_{\nu}^D(\overline{\rho}^{\vee})$, unique à scalaire près par la conjecture 8.1 et les propriétés de $D_0(\overline{\rho}_{\nu})$. Ceci achève la preuve. \square

Pour $\nu|p$ soit $I_{1,\nu} \subset \mathrm{GL}_2(\mathcal{O}_{F_{\nu}})$ le sous-groupe des matrices unipotentes supérieures modulo p. Si la conjecture 8.1 est vraie, alors par la proposition 8.3 $\pi^D_{\nu}(\overline{\rho}^{\vee})$ pour $\nu|p$ contient la $\mathrm{GL}_2(\mathcal{O}_{F_{\nu}})$ -représentation $D_0(\overline{\rho}_{\nu})$ de manière unique, mais il n'est absolument pas clair en général si, à l'intérieur de $\pi^D_{\nu}(\overline{\rho}^{\vee})$ (ou de $S^D_{\psi}(k_E)$),

l'action de la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ préserve le sous- k_E -espace vectoriel $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$.

La conjecture suivante précise un peu la conjecture 8.1 aux places divisant p.

Conjecture 8.4. — On conserve les notations précédentes. À l'intérieur de $S_{\psi}^{D}(k_{E})$ pour tout $\nu|p$, l'action de la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} \in \operatorname{GL}_{2}(F_{\nu})$ préserve le sous- k_{E} -espace vectoriel $D_{0}(\overline{\rho}_{\nu})^{I_{1,\nu}}$.

Si les conjectures 8.1 et 8.4 sont vraies, alors en particulier $\pi_{\nu}^{D}(\bar{\rho}^{\vee})$ contient une des représentations de $GL_{2}(F_{\nu})$ associées à $\bar{\rho}_{\nu}$ dans [6].

Si $x \in k_E^{\times}$ et $\nu|p$, notons μ_x le caractère non-ramifiée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})$ envoyant un Frobenius arithmétique Fr_{ν} sur x^{-1} . Notons F_{ν^2} l'unique extension quadratique non-ramifiée de F_{ν} dans $\overline{\mathbb{Q}_p}$ et fixons des plongements $\iota_{\nu}: F_{\nu} \hookrightarrow E$ pour tout $\nu|p$, ce qui permet de définir pour chaque ν le caractère $\omega_{f_{\nu}}: \operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu}) \to k_E^{\times}$ comme au §4. Supposons également que k_E contient le corps résiduel $k_{F_{\nu^2}}$ pour chaque $\nu|p$. Comme $\det(\overline{\rho}_{\nu}) = \psi_{\nu}\omega$, on peut écrire $\overline{\rho}_{\nu}$ sous l'une des deux formes suivantes (cf. §4):

(i)
$$\overline{\rho}_{\nu} \cong \begin{pmatrix} \omega_{f_{\nu}}^{\sum_{j=0}^{f-1} (r_{\nu,j}+1)p^{j}} \mu_{\alpha_{\nu}} & * \\ 0 & \mu_{\alpha_{\nu}^{-1}} \end{pmatrix} \otimes \theta_{\nu} \text{ avec } \alpha_{\nu} \in k_{E}^{\times}, \ 0 \leq r_{\nu,j} \leq p-3 \text{ et } (r_{\nu,j}) \notin \{(0,\cdots,0), (p-3,\cdots,p-3)\}$$

(ii)
$$\overline{\rho}_{\nu} \cong \left(\operatorname{ind}_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})}^{\operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu})} \omega_{2f_{\nu}}^{\sum_{j=0}^{f-1} (r_{\nu,j}+1)p^j} \mu_{-1} \right) \otimes \theta_{\nu} \text{ avec } 1 \leq r_{0,\nu} \leq p-2 \text{ et } 0 \leq r_{\nu,j} \leq p-3, \ j>0$$

où $\theta_{\nu}: \operatorname{Gal}(\overline{\mathbb{Q}_p}/F_{\nu}) \to k_E^{\times}$ est tel que $\theta_{\nu}^2 = \psi_{\nu} \omega_{f_{\nu}}^{-\sum_{j=0}^{f-1} r_{\nu,j} p^j}$ ($\omega_{2f_{\nu}}$ est défini comme $\omega_{f_{\nu}}$ à partir d'un plongement quelconque $k_{F_{\nu^2}} \hookrightarrow k_E$ étendant le plongement $\overline{\iota}_{\nu}: k_{F_{\nu}} \hookrightarrow k_E$ induit par ι_{ν}). Si $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ préserve $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ et si $\overline{\rho}_{\nu}$ est semisimple, il est défini dans [4] une application k_E -linéaire bijective :

$$S_{\nu}: \bigoplus_{\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})} \sigma_{\nu}^{I_{1,\nu}} \longrightarrow \bigoplus_{\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})} \sigma_{\nu}^{I_{1,\nu}}$$

qui envoie un vecteur de base v_{ν} de $\sigma_{\nu}^{I_{1,\nu}}$ sur :

$$S(v_{\nu}) \stackrel{\text{def}}{=} \sum_{\lambda \in k_{\nu}} \bar{\iota}_{\nu}(\lambda^{s_{\nu}}) \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} v_{\nu}$$

où s_{ν} est l'unique entier entre 0 et $q_{\nu}-1$ tel que $0 \neq S(v_{\nu}) \in \sigma_{\nu}^{I_{1,\nu}}$ pour un σ_{ν}' (unique) dans $\mathcal{D}(\overline{\rho}_{\nu})$ (voir [4, §4] pour plus de détails). De plus l'application induite $\sigma_{\nu} \mapsto \sigma_{\nu}'$ est une permutation sur les poids de $\mathcal{D}(\overline{\rho}_{\nu})$ que l'on peut décomposer en cycles $c_{\nu,1}, \cdots, c_{\nu,n_{\nu}}$ (la numérotation est arbitraire). On note $d_{\nu,i} \geq 1$ la longueur du cycle $c_{\nu,i}$. Pour tout i et tout $\sigma_{\nu} \in c_{\nu,i}$, on a donc un isomorphisme $S^{d_{\nu,i}}: \sigma_{\nu}^{I_{1,\nu}} \to \sigma_{\nu}^{I_{1,\nu}}$ qui, comme $\dim_{k_E} \sigma_{\nu}^{I_{1,\nu}} = 1$, est la multiplication par un élément $x_{\nu,i} \in k_E^{\times}$ qui ne dépend pas de σ_{ν} dans $c_{\nu,i}$. On peut de plus montrer que, pour chaque couple de poids $\sigma_{\nu} = (\lambda_j(r_{\nu,j})) \otimes \det^*$ et $\sigma_{\nu}' = (\lambda_j'(r_{\nu,j})) \otimes \det^*'$ de $c_{\nu,i}$ (voir §4 pour la notation) tels que la permutation ci-dessus envoie σ_{ν} sur σ_{ν}' , le nombre des j tels que l'un seulement de $\lambda_j(x_j)$ et $\lambda_j'(x_j)$ est dans $\{p-3-x_j, p-2-x_j, p-1-x_j\}$ ne dépend que de $c_{\nu,i}$ et pas des poids σ_{ν} , σ_{ν}' (cf. [4, §5 et §6]). On note $h_{\nu,i}$ cet entier. Lorsque $\overline{\rho}_{\nu}$ est scindée

et $\sigma_{\nu} = (\lambda_{i}(r_{\nu,i})) \otimes \det^{*} \in c_{\nu,i}$, on pose enfin :

$$\ell_{\nu,i} \stackrel{\text{def}}{=} \text{ nombre des } j \text{ tels que } \lambda_j(x_j) \in \{p-3-x_j, p-2-x_j\}$$

qui ne dépend encore que de $c_{\nu,i}$.

Question 8.5. — On conserve les notations précédentes et on suppose vraies les conjectures 8.1 et 8.4. Soit $\nu|p$ tel que $\overline{\rho}_{\nu}$ est semi-simple.

(i) Si $\overline{\rho}_{\nu}$ est réductible scindée, est-il vrai que l'on a :

$$x_{\nu,i} = (-1)^{\frac{d_{\nu,i}h_{\nu,i}}{2f_{\nu}} \sum_{j=0}^{f-1} r_{\nu,j} \alpha_{\nu}^{(f_{\nu}-2\ell_{\nu,i}) \frac{d_{\nu,i}}{f_{\nu}}} \theta_{\nu}(p)^{d_{\nu,i}}?$$

(ii) Si $\overline{\rho}_{\nu}$ est irréductible, est-il vrai que l'on a :

$$x_{\nu,i} = (-1)^{\frac{d_{\nu,i}}{2} + \frac{d_{\nu,i}h_{\nu,i}}{2f_{\nu}}(1 + \sum_{j=0}^{f-1} r_{\nu,j})} \theta_{\nu}(p)^{d_{\nu,i}}?$$

Notons que les valeurs des $x_{\nu,i}$ ci-dessus sont les « valeurs spéciales » de [4, Th.6.4] après torsion par θ_{ν} .

9. Un problème de compatibilité local-global modulo p II

On relie le problème de compatibilité local-global exposé au §8 (conjecture 8.4) à la conjecture 3.7 et on donne quelques résultats très partiels en direction de ces deux conjectures en utilisant les résultats locaux du §7 et les résultats globaux de [18].

On fixe $\overline{\rho}$ comme au §8 et on conserve toutes les notations de ce paragraphe. On suppose $S_{\psi}^{D}(k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}] \neq 0$.

Théorème 9.1. — Si les conjectures 8.1 et 3.7 sont vraies, alors pour tout $\nu|p$, $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ est stable par $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ dans $\pi^D_{\nu}(\overline{\rho}^{\vee})$, autrement dit $S^D_{\psi}(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$ contient pour chaque $\nu|p$ une des représentations de $\mathrm{GL}_2(F_{\nu})$ associées à $\overline{\rho}_{\nu}$ dans [6].

 $D\acute{e}monstration.$ — Fixons ν une place divisant p. Rappelons que $\pi^D_{\nu}(\overline{\rho}^{\vee})$ contient $D_0(\overline{\rho}_{\nu})$ par la proposition 8.3. Soit donc $x \in D_0(\overline{\rho}_{\nu})$ un vecteur non-nul fixé par $I_{1,\nu}$ que l'on peut supposer vecteur propre sous l'action de I_{ν} où $I_{\nu} \subset \operatorname{GL}_2(\mathcal{O}_{F_{\nu}})$ est le sous-groupe d'Iwahori des matrices triangulaires supérieures modulo p. On note $\overline{\chi}_{\nu} = \overline{\eta}_{\nu} \otimes \overline{\eta}'_{\nu} : I_{\nu} \to k_E^{\times}$ le caractère propre associé, et on remarque que la généricité de $\overline{\rho}_{\nu}$ implique $\overline{\chi}_{\nu} \neq \overline{\chi}_{\nu}^{s}$ (voir [6]). Pour $U \subset (D \otimes_F \mathbb{A}_F^f)^{\times}$ sous-groupe ouvert compact tel que $\psi|_{U \cap (\mathbb{A}_F^f)^{\times}} = 1$ et S ensemble fini de places finies de F suffisamment grand, la même preuve que [7, Lem.4.6] montre que les localisés $S_{\psi}^D(U, \mathcal{O}_E)_{\mathfrak{m}_{\overline{\rho}^\vee}}$ et $S_{\psi}^D(U, k_E)_{\mathfrak{m}_{\overline{\rho}^\vee}}$ ne dépendent pas de S (voir §8) et on les note respectivement $S_{\psi}^D(U, \mathcal{O}_E)_{\mathfrak{m}_{\overline{\rho}^\vee}}$ et $S_{\psi}^D(U, k_E)_{\mathfrak{m}_{\overline{\rho}^\vee}}$. Pour U assez petit, on rappelle que l'application $S_{\psi}^D(U, \mathcal{O}_E)_{\mathfrak{m}_{\overline{\rho}^\vee}} \to S_{\psi}^D(U, k_E)_{\mathfrak{m}_{\overline{\rho}^\vee}}$ est surjective. Soit

 $S^D_{\psi}(\mathfrak{O}_E)^{I_{1,\nu}}_{\mathfrak{m}_{\overline{\rho}^{\vee}}} \stackrel{\text{def}}{=} \lim_{\stackrel{\longrightarrow}{U}} S^D_{\psi}(U,\mathfrak{O}_E)_{\mathfrak{m}_{\overline{\rho}^{\vee}}} \text{ et } S^D_{\psi}(k_E)^{I_{1,\nu}}_{\mathfrak{m}_{\overline{\rho}^{\vee}}} \stackrel{\text{def}}{=} \lim_{\stackrel{\longrightarrow}{U}} S^D_{\psi}(U,k_E)_{\mathfrak{m}_{\overline{\rho}^{\vee}}} \text{ où la limite inductive est prise sur les } U \text{ de la forme } U^{\nu}I_{1,\nu} \text{ où } U^{\nu} \text{ est un sous-groupe ouvert compact de } (D \otimes_F \mathbb{A}_F^{f,\nu})^{\times} \ (\mathbb{A}_F^{f,\nu} \text{ désignant les adèles finis hors la place } \nu), \text{ on a par ce qui précède une surjection :}$

$$S_{\psi}^{D}(\mathcal{O}_{E})_{\mathfrak{m}_{\overline{\alpha}^{\vee}}}^{I_{1,\nu}} \twoheadrightarrow S_{\psi}^{D}(k_{E})_{\mathfrak{m}_{\overline{\alpha}^{\vee}}}^{I_{1,\nu}}.$$

Soit $\chi_{\nu} = \eta_{\nu} \otimes \eta'_{\nu} : I_{\nu} \to \mathcal{O}_{E}^{\times}$ où $\eta_{\nu} = [\overline{\eta}_{\nu}], \eta'_{\nu} = [\overline{\eta}'_{\nu}],$ comme $I_{\nu}/I_{1,\nu}$ est de cardinal premier à p, on a encore une surjection :

$$\operatorname{Hom}_{I_{\nu}}\left(\chi_{\nu}, S_{\psi}^{D}(\mathcal{O}_{E})_{\mathfrak{m}_{\overline{o}^{\vee}}}^{I_{1,\nu}}\right) \twoheadrightarrow \operatorname{Hom}_{I_{\nu}}\left(\overline{\chi}_{\nu}, S_{\psi}^{D}(k_{E})_{\mathfrak{m}_{\overline{o}^{\vee}}}^{I_{1,\nu}}\right) \neq 0.$$

Il existe donc un vecteur non-nul w dans $S_{\psi}^{D}(\mathfrak{O}_{E})_{\mathfrak{m}_{\overline{\rho}^{\vee}}}^{I_{1,\nu}}$ sur lequel I_{ν} agit par χ_{ν} et que l'on peut prendre tel que, dans $S_{\psi}^{D}(E)$, $w \in \pi^{I_{1,\nu}} = (\otimes'_{\nu'\neq\nu}\pi_{\nu'}) \otimes \pi_{\nu}^{I_{1,\nu}}$ où $\pi = \otimes'_{\nu'}\pi_{\nu'}$ est une composante irréductible de dimension infinie de $S_{\psi}^{D}(E)$. La représentation π_{ν} est alors une série principale modérément ramifiée dont le $\mathrm{GL}_{2}(\mathfrak{O}_{F_{\nu}})$ -type en (13) est $\sigma(\chi_{\nu}^{s})$ (voir §3). La conjecture 3.7 avec le théorème 7.5 et la propriété de maximalité de $D_{0}(\overline{\rho}_{\nu})$ montrent que l'image \overline{w} de w dans $S_{\psi}^{D}(k_{E})[\mathfrak{m}_{\overline{\rho}^{\vee}}]$ se trouve nécessairement dans le sous-espace $(\otimes'_{\nu'\neq\nu}\pi_{\nu'}^{D}(\overline{\rho}^{\vee})) \otimes D_{0}(\overline{\rho}_{\nu})^{I_{1,\nu}}$, donc est de la forme $y \otimes x$ avec $y \in \otimes'_{\nu'\neq\nu}\pi_{\nu'}^{D}(\overline{\rho}^{\vee})$ (car il n'y a à scalaire près que x dans $D_{0}(\overline{\rho}_{\nu})^{I_{1,\nu}}$ sur lequel I_{ν} agit par $\overline{\chi}_{\nu}$). Comme $\sigma(\chi_{\nu}^{s})^{I_{1,\nu}} = \pi_{\nu}^{I_{1,\nu}}$ est stable par la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} \in \mathrm{GL}_{2}(F_{\nu})$, on voit que $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} w \in S_{\psi}^{D}(\mathfrak{O}_{E})_{\mathfrak{m}_{\overline{\rho}^{\vee}}}^{I_{1,\nu}}$ va encore se réduire sur un élément de $(\otimes'_{\nu'\neq\nu}\pi_{\nu'}^{D}(\overline{\rho}^{\vee})) \otimes D_{0}(\overline{\rho}_{\nu})^{I_{1,p}}$, et donc que $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix} x \in \pi_{\nu}^{D}(\overline{\rho}^{\vee})$ est encore dans $D_{0}(\overline{\rho}_{\nu})^{I_{1,\nu}}$.

On aura besoin du lemme suivant, où l'on reprend les notations du §2 :

Lemme 9.2. — Soit $\chi = \eta \otimes \eta'$ avec $\eta \neq \eta'$ un caractère modéré comme en (5), (J^{\min}, J^{\max}) deux éléments de \mathfrak{P}_{χ} tels que $J^{\min} \subseteq J^{\max}$ et $J^{\max} \setminus J^{\min}$ est un singleton, et $\delta \in \mathbb{Q}_E$ tel que $0 < \delta < 1$. Alors il existe à homothétie près un unique \mathfrak{O}_E -réseau stable $R = \bigoplus_{J \in \mathfrak{P}_{\chi}} p^{v_J} \sigma_J$ sur $\sigma(\chi^s)$ (cf. proposition 2.3) tel que :

- (i) $\operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_L)} R \otimes_{\mathcal{O}_E} k_E = \overline{\sigma}_{J^{\min}} \oplus \overline{\sigma}_{J^{\max}}$
- (ii) $v_{\emptyset} = 0$ et $v_{\mathbb{S}} = |J^{\min}| + \delta$.

De plus, ce réseau est un réseau de Dieudonné (définition 3.1).

Démonstration. — Supposons d'abord que $R = \bigoplus_{J \in \mathcal{P}_{\chi}} p^{v_J} \sigma_J$ existe satisfaisant (i) et (ii). Par le corollaire 2.7 et la condition $v_{\emptyset} = 0$, on a $(v_J)_{J \in \mathcal{P}_{\chi}} \in \mathcal{V}_{\chi}$. Par le théorème 2.4 on a pour tout $J, J' \in \mathcal{P}_{\chi}$:

$$\langle \operatorname{GL}_2(\mathfrak{O}_L) \cdot p^{v_J} \sigma_J \rangle = \bigoplus_{J' \in \mathfrak{P}_{\chi}} p^{|J'| - |J \cap J'| + v_J - v_{J'}} (p^{v_{J'}} \sigma_{J'})$$

et rappelons que l'image de $\langle \operatorname{GL}_2(\mathcal{O}_L) \cdot p^{v_J} \sigma_J \rangle$ dans $R \otimes_{\mathcal{O}_E} k_E$ est l'unique sousreprésentation de $R \otimes_{\mathcal{O}_E} k_E$ de co-socle $\overline{\sigma}_J$. De plus, $\overline{\sigma}_{J'}$ est un facteur de Jordan-Hölder de cette sous-représentation si et seulement si :

$$|J'| - |J \cap J'| + v_J - v_{J'} = 0.$$

En particulier, pour tout $J \in \mathcal{P}_{\chi}$, on a toujours (33) pour $J' = J^{\min}$ ou $J' = J^{\max}$ par (ii). Soit $j_0 \in \mathcal{S}$ tel que $J^{\max} = J^{\min} \coprod \{j_0\}$, on a aussi $v_{J^{\min}} \leq v_{J^{\max}} \leq v_{J^{\min}} + 1$ (cf. §2).

Étape 1:

Si $v_{J^{\min}} = v_{J^{\max}}$, alors par (33):

$$|J^{\min}| - |J^{\max} \cap J^{\min}| + v_{J^{\max}} - v_{J^{\min}} = |J^{\min}| - |J^{\min}| + 0 = 0$$

ce qui implique que $\overline{\sigma}_{J^{\min}}$ est un sous-quotient de la sous-représentation de cosocle $\overline{\sigma}_{J^{\max}}$ dans $R \otimes_{\mathcal{O}_E} k_E$. C'est impossible car cela contredit (i). De même, si $v_{J^{\max}} = v_{J^{\min}} + 1$, alors par (33):

$$|J^{\max}| - |J^{\min} \cap J^{\max}| + v_{J^{\min}} - v_{J^{\max}} = 1 - 1 + 0 = 0$$

ce qui implique que $\overline{\sigma}_{J^{\max}}$ est un sous-quotient de la sous-représentation de cosocle $\overline{\sigma}_{J^{\min}}$ dans $R \otimes_{\mathcal{O}_E} k_E$ et contredit encore (i). On a donc $v_{J^{\min}} < v_{J^{\max}} < v_{J^{\min}} + 1$.

Étape 2 :

Soit $J \in \mathcal{P}_{\chi}$ tel que $J \subseteq J^{\min}$. Si (33) est vrai pour $J' = J^{\max}$, on a $v_J - v_{J^{\max}} = |J| - |J^{\max}| = |J| - |J^{\min}| - 1$. Mais $v_J - v_{J^{\max}} > v_J - v_{J^{\min}} - 1$ (étape 1) d'où $|J| - |J^{\min}| > v_J - v_{J^{\min}}$ c'est-à-dire $|J^{\min}| - |J| < v_{J^{\min}} - v_J$, ce qui est impossible puisque $J \subseteq J^{\min}$ et $(v_J)_{J \in \mathcal{P}_{\chi}} \in \mathcal{V}_{\chi}$ (cf. §2). Donc on a forcément (33) pour $J' = J^{\min}$ i.e. $v_J - v_{J^{\min}} = |J| - |J^{\min}|$, ce qui implique $v_{J^{\min}} = |J^{\min}|$ (prendre $J = \emptyset$) puis $v_J = |J|$.

Étape 3:

Soit $J \in \mathcal{P}_{\chi}$ tel que $j_0 \notin J$, alors $J \cap J^{\max} = J \cap J^{\min}$ donc $v_{J \cap J^{\max}} = |J \cap J^{\max}|$ par l'étape 2. Si on a (33) avec $J' = J^{\max}$, alors $v_J - v_{J^{\max}} = v_{J \cap J^{\max}} - |J^{\max}|$ c'est-àdire $v_J - v_{J \cap J^{\max}} = v_{J^{\max}} - |J^{\max}| = v_{J^{\max}} - |J^{\min}| - 1$. Or le membre de gauche est positif ou nul (car $J \supset J \cap J^{\max}$) alors que celui de droite est strictement négatif par l'étape 1. On en déduit donc (33) avec J^{\min} , i.e. $v_J - v_{J^{\min}} = |J \cap J^{\min}| - |J^{\min}|$ soit $v_J = |J \cap J^{\min}|$ par l'étape 2.

Etape 4:

Soit $J \in \mathcal{P}_{\chi}$ tel que $J^{\max} \subseteq J$. Si (33) est vrai pour $J' = J^{\min}$, on a $v_J - v_{J^{\min}} = |J \cap J^{\min}| - |J^{\min}| = |J^{\min}| - |J^{\min}| = 0$. Mais $v_J \ge v_{J^{\max}}$ puisque $J \supseteq J^{\max}$ d'où par l'étape 1 :

$$0 \le v_J - v_{J^{\max}} < v_J - v_{J^{\min}} = 0$$

qui est impossible. On en déduit $v_J - v_{J^{\max}} = |J \cap J^{\max}| - |J^{\max}| = 0$ d'où $v_J = v_{J^{\max}}$ si $J \supseteq J^{\max}$. En particulier, on a $v_8 = v_{J^{\max}} = |J^{\min}| + \delta$ par (ii). Étape 5:

Soit $J \in \mathcal{P}_{\chi}$ tel que $j_0 \in J$ et supposons que l'on a (33) avec $J' = J^{\min}$. On en

déduit $v_J = |J \cap J^{\min}|$ par l'étape 2. Par l'étape 4, on a :

$$(34) v_{J\coprod(J^{\max}\setminus(J\cap J^{\max}))} = v_{J^{\max}}.$$

On doit avoir par ailleurs puisque $(v_J)_{J\in\mathcal{P}_\chi}\in\mathcal{V}_\chi$:

$$(35) v_{J\coprod(J^{\max}\setminus(J\cap J^{\max}))} \le v_J + |J^{\max}\setminus(J\cap J^{\max})|.$$

Or:

$$\begin{array}{lll} v_J + |J^{\max} \backslash (J \cap J^{\max})| &=& |J \cap J^{\min}| + |J^{\max} \backslash (J \cap J^{\max})| \\ &=& (|J^{\min}| - |J^{\min} \backslash (J \cap J^{\min})|) + |J^{\max} \backslash (J \cap J^{\max})| \\ &=& (|J^{\min}| - |J^{\max} \backslash (J \cap J^{\max})|) + |J^{\max} \backslash (J \cap J^{\max})| \\ &=& |J^{\min}| \end{array}$$

d'où $v_{J\Pi(J^{\max}\setminus(J\cap J^{\max}))} \leq |J^{\min}|$ par (35). Par (34), on en déduit $v_{J^{\max}} \leq |J^{\min}|$ ce qui est impossible par les étapes 1 et 2. Donc on a forcément (33) avec $J' = J^{\max}$. On en déduit $v_J = v_{J^{\max}} + |J\cap J^{\max}| - |J^{\max}|$ c'est-à-dire $v_J = |J\cap J^{\max}| + \delta - 1$ avec l'étape 4.

On déduit de toutes ces étapes que l'unique \mathcal{O}_E -réseau possible satisfaisant (i) et (ii) est :

$$R = \left(\bigoplus_{\substack{J \in \mathcal{P}_{\chi} \\ j_0 \notin J}} p^{|J \cap J^{\min}|} \sigma_J\right) \oplus \left(\bigoplus_{\substack{J \in \mathcal{P}_{\chi} \\ j_0 \in J}} p^{|J \cap J^{\max}| - (1 - \delta)} \sigma_J\right)$$

et, en reprenant la preuve précédente, il est facile de montrer que ce réseau vérifie bien (i) et (ii). On laisse au lecteur la vérification (immédiate) du fait qu'il s'agit bien d'un réseau de Dieudonné.

Théorème 9.3. — Soit $\nu|p$ et $\chi_{\nu} = \eta_{\nu} \otimes \eta'_{\nu}$ avec $\eta_{\nu} \neq \eta'_{\nu}$ un caractère modéré comme en (5). Supposons que :

- (i) pour tout $j \in \{0, \dots, f_{\nu} 1\}$, on a $1 \le c_{\chi_{\nu}, j} \le p 2$
- (ii) la semi-simplifiée modulo p de $\sigma(\chi_{\nu}^{s})$ sur k_{E} contient au plus deux poids de $\mathcal{D}(\overline{\rho}_{\nu})$.

Alors la conjecture 3.7 est vraie pour toute composante irréductible π dans $S_{\psi}^{D}(E)$ telle que π_{ν} contient $\sigma(\chi_{\nu}^{s})$ et telle que la représentation ρ associée (cf. §3) déforme $\overline{\rho}$.

 $D\acute{e}monstration.$ — L'hypothèse (i) implique que les constituants irréductibles $(s_0, \dots, s_{f_{\nu}-1}) \otimes \det^* \det \overline{\sigma}(\chi_{\nu}^s)$ sont tels que $0 \le s_j \le p-2$ (i.e. sont « faiblement réguliers » au sens de [18]). Soit π comme dans l'énoncé et fixons un plongement $\mathrm{GL}_2(F_{\nu})$ -équivariant $\xi_{\nu} : \pi_{\nu} \hookrightarrow \pi$ comme au §3. Rappelons qu'on a défini au §3 un \mathfrak{O}_E -réseau $\pi^0_{\nu,\xi_{\nu}}$ sur π_{ν} provenant de $S^D_{\psi}(\mathfrak{O}_E)$. Via l'unique plongement $\mathrm{GL}_2(\mathfrak{O}_{F_{\nu}})$ -équivariant $\sigma(\chi_{\nu}^s) \hookrightarrow \pi_{\nu}$, $\pi^0_{\nu,\xi_{\nu}}$ induit un \mathfrak{O}_E -réseau $\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}}$ sur $\sigma(\chi_{\nu}^s)$ et on en déduit une injection $\mathrm{GL}_2(\mathfrak{O}_{F_{\nu}})$ -équivariante $\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}} \otimes_{\mathfrak{O}_E} k_E \hookrightarrow S^D_{\psi}(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$. Tout constituant irréductible σ_{ν} de $\mathrm{soc}_{\mathrm{GL}_2(\mathfrak{O}_{F_{\nu}})}(\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}} \otimes_{\mathfrak{O}_E} k_E)$ est donc tel que $\mathrm{Hom}_{\mathrm{GL}_2(\mathfrak{O}_{F_{\nu}})}(\sigma_{\nu}, S^D_{\psi}(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]) \neq 0$. La même preuve que [18, Lem.5.1] (basée sur une idée de Schein [26]), mais en utilisant le corollaire 7.2 de cet article au lieu

de [18, Prop.3.5.4] pour les cas $\overline{\rho}_{\nu}$ non-semi-simple, montre que l'on doit avoir nécessairement $\sigma_{\nu} \in \mathcal{D}(\overline{\rho}_{\nu})$ (notons que cette preuve utilise que σ_{ν} est « faiblement régulier » par (i)). Par (ii), il y a un ou deux tels σ_{ν} dans $\overline{\sigma}(\chi_{\nu}^{s})$. Nous traitons séparément ces deux cas.

Supposons d'abord qu'il n'y en a qu'un, alors :

$$\operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})}(\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}} \otimes_{\mathcal{O}_E} k_E) = \sigma_{\nu}.$$

Mais le réseau $\sigma_{\nu}^{0}(\rho_{\nu}) = \sigma_{\eta_{\nu}}^{0}(\chi_{\nu}^{s})$ de $\sigma(\chi_{\nu}^{s})$ défini en (14) vérifie aussi par le théorème 7.5 :

$$\operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})}(\sigma_{\nu}^0(\rho_{\nu}) \otimes_{\mathcal{O}_E} k_E) = \sigma_{\nu}$$

puisque σ_{ν} est le seul constituant dans $\mathcal{D}(\overline{\rho}_{\nu})$. Or, il n'y a à homothétie près qu'un seul tel réseau sur $\sigma(\chi_{\nu}^s)$, à savoir le réseau $\sigma_J^0(\chi_{\nu}^s)$ où J correspond à la position de σ_{ν} dans $\overline{\sigma}(\chi_{\nu}^s)$ (cf. §2 et la remarque 2.5). On en déduit que les réseaux $\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}}$ et $\sigma_{\nu}^0(\rho_{\nu})$ sont nécessairement homothétiques.

Supposons maintenant que deux constituants exactement de $\overline{\sigma}(\chi_{\nu}^{s})$ sont dans $\mathcal{D}(\overline{\rho}_{\nu})$. Soit $\rho: \operatorname{Gal}(\mathbb{Q}/F) \to \operatorname{GL}_{2}(E)$ la représentation associée à π au §3, par hypothèse ρ a un unique \mathcal{O}_{E} -réseau stable qui déforme $\overline{\rho}$. De plus par [23] la restriction à $\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/F_{\nu})$ du dual de Cartier de ce réseau est le module de Tate d'un groupe p-divisible sur l'anneau des entiers de $\mathcal{O}_{F_{\nu}}[p^{f_{\nu}}\sqrt{-p}]$ dont le module fortement divisible \mathcal{M}_{ν} associé ([1]) est un \mathcal{O}_{E} -module fortement divisible de type χ_{ν} comme dans la proposition 5.2. Par le théorème 7.5 et la définition de J^{\min} et J^{\max} en (20), on voit qu'il y a un unique $j_{0} \in \{0, \cdots, f_{\nu} - 1\}$ tel que $\mathcal{M}_{\nu}^{j_{0}}$ est de type II. En particulier avec les notations comme en (14) on a par le corollaire 5.4 :

$$\varphi^{f_{\nu}}(e^0_{\eta_{\nu}}) = \Big(\prod_{j=0}^{f_{\nu}-1} x_j\Big)e^0_{\eta_{\nu}}$$

avec $\operatorname{val}(x_j) \in \{0,1\}$ si $j \neq j_0$ et $0 < \operatorname{val}(x_{j_0}) < 1$. Soit $x \stackrel{\text{déf}}{=} \prod_{j=0}^{f_{\nu}-1} x_j$ et $\delta \stackrel{\text{déf}}{=} \operatorname{val}(x_{j_0})$ alors $\operatorname{val}(x) = |J^{\min}| + \delta$ par (20) et le corollaire 5.4. Écrivons :

$$\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}} \simeq \bigoplus_{J \in \mathcal{P}_{\nu,..}} p^{v_J} \sigma_J$$

comme dans le corollaire 2.7 avec $(v_J)_{J\in\mathcal{P}_\chi}\in\mathcal{V}_\chi$. La même preuve que celle de la proposition 3.9 utilisant [23] montre que l'on doit avoir $v_{\mathbb{S}} = \operatorname{val}(x)$ donc $v_{\mathbb{S}} = |J^{\min}| + \delta$. Or, si $\operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_{F_\nu})}(\sigma^0(\chi^s_\nu)_{\xi_\nu}\otimes_{\mathcal{O}_E}k_E)$ est irréductible, c'est-àdire si $\sigma^0(\chi^s_\nu)_{\xi_\nu}$ est homothétique à un des réseaux $\sigma^0_J(\chi^s_\nu)$, on a forcément $v_{\mathbb{S}}$ entier (voir remarque 2.5), ce qui n'est pas le cas ici car $0 < \delta < 1$. Donc $\sigma^0(\chi^s_\nu)_{\xi_\nu}\otimes_{\mathcal{O}_E}k_E$ a exactement pour socle ses deux constituants qui sont dans $\mathcal{D}(\overline{\rho}_\nu)$. Par le théorème 7.5, il en est de même de $\sigma^0_\nu(\rho_\nu)\otimes_{\mathcal{O}_E}k_E$. Par le lemme 9.2 (que l'on peut appliquer par le (ii) du théorème 7.1 et l'égalité $v_{\mathbb{S}} = |J^{\min}| + \delta$) un tel réseau est unique à homothétie près. Les réseaux $\sigma^0(\chi^s_\nu)_{\xi_\nu}$ et $\sigma^0_\nu(\rho_\nu)$ doivent donc encore être homothétiques.

Remarque 9.4. — Si χ_{ν} comme dans le théorème 9.3 vérifie seulement l'hypothèse (ii) mais si l'on suppose vraie la conjecture 8.1, alors la même preuve que celle du théorème 9.3 montre encore que le réseau induit sur $\sigma(\chi_{\nu}^s)$ est le réseau $\sigma_{\nu}^0(\rho_{\nu})$ défini en (14). En effet, par la conjecture 8.1, on a automatiquement que tout constituant irréductible σ_{ν} de $\operatorname{soc}_{\operatorname{GL}_2(\mathcal{O}_{F_{\nu}})}(\sigma^0(\chi_{\nu}^s)_{\xi_{\nu}} \otimes_{\mathcal{O}_E} k_E)$ est nécessairement dans $\mathcal{D}(\overline{\rho}_{\nu})$ (cf. début de la preuve).

Corollaire 9.5. — Supposons vraie la conjecture 8.1. Soit $\nu|p$ tel que, pour tout caractère $\overline{\chi}_{\nu}$ de I_{ν} apparaissant sur $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$, la semi-simplifiée modulo p de $\sigma(\chi_{\nu}^s)$ sur k_E contient un ou deux poids de $\mathfrak{D}(\overline{\rho}_{\nu})$ (où χ_{ν} est le relevé de Teichmüller de $\overline{\chi}_{\nu}$), alors la représentation $\pi_{\nu}^D(\overline{\rho}^{\vee})$ contient une des représentations de $\mathrm{GL}_2(F_{\nu})$ associées à $\overline{\rho}_{\nu}$ dans [6].

 $D\acute{e}monstration$. — C'est une conséquence immédiate des théorèmes 9.1 et 9.3 et de la remarque 9.4.

L'hypothèse sur $\mathcal{D}(\overline{\rho}_{\nu})$ dans le corollaire 9.5 est vérifiée dans les cas du corollaire ci-dessous.

Corollaire 9.6. — Supposons vraie la conjecture 8.1. Soit $\nu|p$ tel que l'on a soit $|\mathcal{D}(\overline{\rho}_{\nu})| \leq 2$, soit $f_{\nu} = 2$ et $\overline{\rho}_{\nu}$ irréductible, alors $\pi_{\nu}^{D}(\overline{\rho}^{\vee})$ contient une des représentations de $\mathrm{GL}_{2}(F_{\nu})$ associées à $\overline{\rho}_{\nu}$ dans [6].

Remarque 9.7. — (i) Lorsque $|\mathcal{D}(\overline{\rho}_{\nu})| = 1$, il existe une preuve bien plus rapide du corollaire 9.6 qui n'utilise pas le théorème 9.3 et qui consiste à remarquer que, si σ_{ν} est l'unique poids de $\mathcal{D}(\overline{\rho}_{\nu})$, alors $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ est dans ce cas isomorphe à $(\text{inj}_{\text{GL}_2(k_{F_{\nu}})} \sigma_{\nu})^{I_{1,\nu}}$ (en général, il est seulement inclus dedans). Il est alors automa-

tique que $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}}$ est stable par $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ dans $\pi^D_{\nu}(\overline{\rho}^{\vee})$ puisqu'alors $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}} = \pi^D_{\nu}(\overline{\rho}^{\vee})^{I_{1,\nu}}$ (cela découle de $D_0(\overline{\rho}_{\nu})^{I_{1,\nu}} \subseteq \pi^D_{\nu}(\overline{\rho}^{\vee})^{I_{1,\nu}} \subseteq (\operatorname{inj}_{\operatorname{GL}_2(k_{F_{\nu}})} \sigma_{\nu})^{I_{1,\nu}})$. Je remercie Paškūnas pour m'avoir signalé ce fait.

(ii) Rappelons que les représentations de $\operatorname{GL}_2(F_{\nu})$ associées à $\overline{\rho}_{\nu}$ dans [6] restent encore largement mystérieuses (voir [20]). Même si l'on suppose que la conjecture 8.4 est vraie et que les réponses aux questions (i) et (ii) de 8.5 sont oui, on semble encore loin de comprendre la représentation adélique $S_{\psi}^D(k_E)[\mathfrak{m}_{\overline{\rho}^{\vee}}]$.

Appendice A

Un peu de théorie de Hodge p-adique entière

On rappelle brièvement et on étend un peu quelques résultats de [3, §3]. Puis on détermine explicitement l'ensemble des poids de Diamond pour les représentations génériques réductibles non-scindées (détermination qui était conjecturale dans [6]).

On suppose p>2 et on fixe une extension finie non-ramifiée L de \mathbb{Q}_p dans $\overline{\mathbb{Q}_p}$ comme au §2, dont on reprend les notations, une extension finie E de \mathbb{Q}_p comme au §5 (en fait, on a seulement besoin ici de $|\operatorname{Hom}_{\mathbb{Q}_p}(L[\sqrt[e]{-p}],E)|=[L[\sqrt[e]{-p}],\mathbb{Q}_p]$ où $e=p^f-1$) et un plongement $\iota:L\hookrightarrow E$ comme au §2. On fixe également un système compatible p_n de racines p^n -ièmes de -p dans $\overline{\mathbb{Q}_p}$ pour $n\in\mathbb{Z}_{\geq 0}$ et on note $L_\infty\subset\overline{\mathbb{Q}_p}$ le sous-corps engendré par L et les p_n .

Appelons φ -module tout $k_L((u)) \otimes_{\mathbb{F}_p} k_E$ -module libre de rang fini \mathfrak{D} muni d'un endomorphisme k_E -linéaire $\varphi: \mathfrak{D} \to \mathfrak{D}$ tel que $\varphi((s \otimes 1)m) = (s^p \otimes 1)\varphi(m)$ $(s \in k_L((u)), m \in \mathfrak{D})$, on dit que φ est $k_L((u))$ -semi-linéaire) et tel que l'image de φ engendre le $k_L((u)) \otimes_{\mathbb{F}_p} k_E$ -module \mathfrak{D} .

Soit R la limite projective $\cdots \xrightarrow{\varphi} \overline{\mathbb{Z}_p}/p\overline{\mathbb{Z}_p} \xrightarrow{\varphi} \overline{\mathbb{Z}_p}/p\overline{\mathbb{Z}_p} \xrightarrow{\varphi} \cdots$ où φ est l'élévation à la puissance p. C'est un anneau intègre parfait de caractéristique p muni d'un Frobenius φ (l'élévation à la puissance p) et d'une action de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ (via l'action sur $\overline{\mathbb{Z}_p}$) commutant à φ . On note $\underline{p} \stackrel{\text{def}}{=} (\overline{p}_n)_{n \in \mathbb{Z}_{\geq 0}} \in R$ où \overline{p}_n est l'image de p_n dans $\overline{\mathbb{Z}_p}/p\overline{\mathbb{Z}_p}$.

En munissant $\operatorname{Frac}(R)$ de la structure de $k_L((u))$ -espace vectoriel qui consiste à envoyer u sur \underline{p} , on peut associer à tout φ -module \mathfrak{D} le k_E -espace vectoriel $\operatorname{Hom}_{\varphi}(\mathfrak{D},\operatorname{Frac}(R))^{-1}$ des applications $k_L((u))$ -linéaires f de \mathfrak{D} dans $\operatorname{Frac}(R)$ commutant à φ , l'action de k_E sur f se faisant via la multiplication sur \mathfrak{D} . Il s'agit d'un k_E -espace vectoriel de dimension finie égale au rang de \mathfrak{D} sur $k_L((u)) \otimes_{\mathbb{F}_p} k_E$. En posant $(gf)(m) \stackrel{\text{déf}}{=} g(f(m))$ si $g \in \operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ et $m \in \mathfrak{D}$, Fontaine a montré qu'on obtenait ainsi une anti-équivalence de catégories entre les φ -modules et les représentations linéaires continues de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ sur des k_E -espaces vectoriels de dimension finie (voir par exemple [3]).

On fixe une racine e-ième π de -p dans $\overline{\mathbb{Q}_p}$ et on pose pour $n \in \mathbb{Z}_{\geq 0}$:

$$\pi_n \stackrel{\text{déf}}{=} \frac{\pi^{p^r}}{\prod_{i=0}^{q-1} p_{n-if}}$$

où $r \geq 1$ et $q \geq 0$ sont les uniques entiers tels que n = fq - r avec $1 \leq r \leq f$. Alors les $(\pi_n)_{n \in \mathbb{Z}_{\geq 0}}$ engendrent $L_{\infty}[\pi]$ sur L et forment un système compatible de racines p^n -ièmes de π dans $\overline{\mathbb{Q}_p}$ tel que $\pi_n^e = p_n$ pour tout n (la vérification, élémentaire, est laissée en exercice au lecteur). Soit $\underline{\pi} \stackrel{\text{déf}}{=} (\overline{\pi}_n)_{n \in \mathbb{Z}_{\geq 0}} \in R$ où $\overline{\pi}_n$ est l'image de π_n dans $\overline{\mathbb{Z}_p}/p\overline{\mathbb{Z}_p}$. On a donc dans R:

$$\underline{\pi}^e = \underline{p}.$$

Munissant Frac(R) d'une deuxième structure de $k_L((u))$ -espace vectoriel qui consiste à envoyer u sur $\underline{\pi}$, on peut aussi associer à tout φ -module \mathfrak{D} le k_E -espace vectoriel $\text{Hom}_{\varphi}(\mathfrak{D}, \text{Frac}(R))^2$ des applications $k_L((u))$ -linéaires commutant à φ et obtenir cette fois une anti-équivalence de catégories entre les φ -modules et les

représentations linéaires continues de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty}[\pi])$ sur des k_E -espaces vectoriels de dimension finie. Soit \mathfrak{D}' le φ -module obtenu par extension des scalaires :

$$\mathfrak{D}' \stackrel{\text{def}}{=} \mathfrak{D} \otimes_{k_L((u)), u \mapsto u^e} k_L((u)),$$

il est clair par (36) que l'on a un isomorphisme compatible à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty}[\pi])$:

$$\operatorname{Hom}_{\varphi}(\mathfrak{D}, \operatorname{Frac}(R))^{1}|_{\operatorname{Gal}(\overline{\mathbb{Q}_{p}}/L_{\infty}[\pi])} \xrightarrow{\sim} \operatorname{Hom}_{\varphi}(\mathfrak{D}', \operatorname{Frac}(R))^{2}.$$

Le morphisme composé :

$$\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty}) \hookrightarrow \operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \twoheadrightarrow \operatorname{Gal}(L[\pi]/L)$$

se factorise par $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ et induit un isomorphisme de groupes :

$$\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty}) \xrightarrow{\sim} \operatorname{Gal}(L[\pi]/L).$$

Le caractère $\varkappa_f: \operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \to k_L^{\times}$ du §1 induit en restriction à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ un caractère qui se factorise par $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ et que l'on note encore \varkappa_f . En particulier on a $g(\underline{\pi}) = \varkappa_f(g)\underline{\pi}$ dans R pour $g \in \operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$. Munissant le φ -module \mathfrak{D}' de l'action $k_L \otimes_{\mathbb{F}_p} k_E$ -linéaire de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ définie par $g(m \otimes u^i) \stackrel{\text{déf}}{=} m \otimes (\varkappa_f(g)u)^i$ (où $m \in \mathfrak{D}$) et $\operatorname{Hom}_{\varphi}(\mathfrak{D}',\operatorname{Frac}(R))^2$ de l'action k_E -linéaire de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ définie par $(gf)(m') \stackrel{\text{déf}}{=} g(f(g^{-1}m'))$ (où $m' \in \mathfrak{D}'$), on retrouve un isomorphisme compatible à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$:

(37)
$$\operatorname{Hom}_{\varphi}(\mathfrak{D}, \operatorname{Frac}(R))^{1} \xrightarrow{\sim} \operatorname{Hom}_{\varphi}(\mathfrak{D}', \operatorname{Frac}(R))^{2}.$$

On a besoin pour la preuve de la proposition 6.6 de certains autres φ -modules avec action de $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ que l'on introduit maintenant.

On fixe $\eta, \eta': k_L^{\times} \to \mathcal{O}_E^{\times}$ deux caractères multiplicatifs distincts comme au $\S 2$ et on note $\overline{\eta}, \overline{\eta'}$ leurs images par la surjection $\mathcal{O}_E^{\times} \to k_E^{\times}$. En décomposant $k_L \otimes_{\mathbb{F}_p} k_E \simeq k_E \times \cdots \times k_E$, $a \otimes b \mapsto (\overline{\iota}(a)b, \overline{\iota}(\varphi^{-1}(a))b, \cdots, \overline{\iota}(\varphi^{1-f}(a))b)$ où $\overline{\iota}: k_L \hookrightarrow k_E$ est induit par $\iota: L \hookrightarrow E$, tout φ -module \mathfrak{D} s'écrit $\mathfrak{D} = \mathfrak{D}^0 \times \cdots \times \mathfrak{D}^{f-1}$ où \mathfrak{D}^j est un $k_E((u))$ -espace vectoriel de dimension finie et $\varphi: \mathfrak{D}^j \to \mathfrak{D}^{j+1}$ est k_E -linéaire tel que $\varphi(u^i m) = u^{pi} \varphi(m)$ $(i \in \mathbb{Z}, m \in \mathfrak{D}^j)$.

Définition A.1. — On appelle φ -module de type $\overline{\chi} \stackrel{\text{def}}{=} \overline{\eta} \otimes \overline{\eta}'$ tout φ -module \mathfrak{D} tel que chaque \mathfrak{D}^j est de dimension 2 sur $k_E((u))$ et est muni d'une action k_E -linéaire de $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ telle que :

- (i) $g(u^i m) = (\omega_f(g)^{p^{-j}} u)^i g(m), g \in \operatorname{Gal}(L_\infty[\pi]/L_\infty), m \in \mathfrak{D}^j$
- (ii) l'action de $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ commute à φ
- (iii) sur chaque \mathfrak{D}^j il existe une $k_E((u))$ -base sur laquelle l'action de $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ est donnée par $\overline{\eta} \oplus \overline{\eta}'$.

À tout φ -module de type $\overline{\chi}$ on associe comme ci-dessus $\operatorname{Hom}_{\varphi}(\mathfrak{D},\operatorname{Frac}(R))^2$ que l'on munit d'une action k_E -linéaire de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ par $(gf)(m) \stackrel{\text{déf}}{=} g(f(\overline{g}^{-1}m))$ où $m \in \mathfrak{D}$ et \overline{g} est l'image de g dans $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$.

Si \mathfrak{M} est un \mathcal{O}_E -module fortement divisible de type $\chi \stackrel{\text{def}}{=} \eta \otimes \eta'$ (définition 5.1) et $\overline{\mathfrak{M}} \stackrel{\text{def}}{=} \mathfrak{M} \otimes_{\mathcal{O}_E} k_E$ (§6), on considère la représentation $\operatorname{Hom}_{\operatorname{Fil}^1,\varphi_1}(\overline{\mathfrak{M}},\widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)$ de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)$ (voir (21)). On peut se demander si sa restriction à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ provient d'un φ -module de type $\overline{\chi}$ par le foncteur ci-dessus et, si oui, lequel.

Soit \mathfrak{M} un $k_L[[u]] \otimes_{\mathbb{F}_p} k_E$ -module libre de rang fini muni d'un endomorphisme k_E -linéaire et $k_L((u))$ -semi-linéaire $\varphi: \mathfrak{M} \to \mathfrak{M}$ tel que le $k_L[[u]] \otimes_{\mathbb{F}_p} k_E$ -module engendré par l'image de φ contient $u^e\mathfrak{M}$. On peut écrire comme d'habitude $\mathfrak{M} = \mathfrak{M}^0 \times \cdots \times \mathfrak{M}^{f-1}$ où \mathfrak{M}^j est un $k_E[[u]]$ -module libre de rang fini et où φ induit des applications (nécessairement) injectives $\varphi: \mathfrak{M}^j \to \mathfrak{M}^{j+1}$. Pour $j \in \{0, \dots, f-1\}$, on pose :

$$\overline{\mathfrak{M}}^j \stackrel{\text{def}}{=} \overline{S} \otimes_{\varphi, k_E[[u]]} \mathfrak{M}^{j-1}$$

où \overline{S} est vu comme $k_E[[u]]$ -algèbre via $k_E[[u]] \to \overline{S}$, $u \mapsto u^p$ (d'où la notation \otimes_{φ}) et où j-1=f-1 si j=0. On définit :

$$\operatorname{Fil}^{1}\overline{\mathfrak{M}}^{j} \stackrel{\text{def}}{=} \{ x \in \overline{\mathfrak{M}}^{j} \mid (\otimes \varphi)(x) \in \operatorname{Fil}^{1}\overline{S} \otimes_{k_{E}[[u]]} \mathfrak{M}^{j} \}$$

où $\operatorname{Fil}^1\overline{S}$ est cette fois vu comme $k_E[[u]]$ -module via $k_E[[u]] \to \overline{S}$, $u \mapsto u$. On définit enfin $\varphi_1 : \operatorname{Fil}^1\overline{\mathcal{M}}^j \to \overline{\mathcal{M}}^{j+1}$ comme le composé :

$$\operatorname{Fil}^{1}\overline{\mathfrak{M}}^{j} \stackrel{\operatorname{Id} \otimes \varphi}{\longrightarrow} \operatorname{Fil}^{1}\overline{S} \otimes_{k_{E}[[u]]} \mathfrak{M}^{j} \stackrel{\varphi_{1} \otimes \operatorname{Id}}{\longrightarrow} \overline{S} \otimes_{\varphi, k_{E}[[u]]} \mathfrak{M}^{j} = \overline{\mathfrak{M}}^{j+1}.$$

On peut ainsi associer un triplet $(\overline{\mathcal{M}}, \mathrm{Fil}^1\overline{\mathcal{M}}, \varphi_1)$ à tout \mathfrak{M} comme ci-dessus.

Proposition A.2. — Soit \mathfrak{M} un \mathfrak{O}_E -module fortement divisible de type χ comme au §5 et $\overline{\mathfrak{M}} \stackrel{\text{def}}{=} \mathfrak{M} \otimes_{\mathfrak{O}_E} k_E$ comme au §6.

- (i) Il existe un unique $k_L[[u]] \otimes_{\mathbb{F}_p} k_E$ -module libre \mathfrak{M} comme ci-dessus tel que le triplet associé soit isomorphe à $(\overline{\mathcal{M}}, \operatorname{Fil}^1\overline{\mathcal{M}}, \varphi_1)$.
- (ii) Soit $\mathfrak{D} \stackrel{\text{def}}{=} \mathfrak{M} \otimes_{k_L[[u]]} k_L((u))$ et munissons \mathfrak{D} de l'endomorphisme φ $k_L((u))$ semi-linéaire induit par celui de \mathfrak{M} . Alors \mathfrak{D} est un φ -module de type $\overline{\chi}$ et on a
 un isomorphisme k_E -linéaire compatible à l'action de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$:

$$\operatorname{Hom}_{\varphi}(\mathfrak{D}, \operatorname{Frac}(R))^2 \simeq \operatorname{Hom}_{\operatorname{Fil}^1, \varphi_1}(\overline{\mathcal{M}}, \widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})}.$$

Démonstration. — Le (i) découle de [3, Th.3.3.2]. L'unicité de \mathfrak{M} en (i) implique qu'il est naturellement muni d'une action de $\operatorname{Gal}(L_{\infty}[\pi]/L_{\infty})$ provenant de l'action de $\operatorname{Gal}(L[\pi]/L)$ sur $\overline{\mathbb{M}}$ et il est clair que cela fait de \mathfrak{D} un φ -module de type $\overline{\chi}$. Par [2, Lem.2.3.3] et une variante évidente de [2, Prop.4.2.1] (voir preuve de [3, Th.3.3.2]), en munissant R de la structure de $k_L[[u]]$ -module qui consiste à envoyer u sur $\underline{\pi}$, on a des isomorphismes de k_E -espaces vectoriels :

$$\operatorname{Hom}_{\varphi}(\mathfrak{D}, \operatorname{Frac}(R))^2 \stackrel{\sim}{\longleftarrow} \operatorname{Hom}_{\varphi}(\mathfrak{M}, R) \stackrel{\sim}{\longrightarrow} \operatorname{Hom}_{\operatorname{Fil}^1, \varphi_1}(\overline{\mathcal{M}}, \widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)$$

induits par $R \hookrightarrow \operatorname{Frac}(R)$ et $R \to \widehat{A}_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p$ (voir $[3, \S 3.3]$ pour cette dernière flèche). Comme toutes ces applications sont $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ -équivariantes, la commutativité à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ est immédiate.

On reprend maintenant les notations du $\S 4$ et on convient ci-dessous que f=0.

Soit $\overline{\rho}: \operatorname{Gal}(\overline{\mathbb{Q}_p}/L) \to \operatorname{GL}_2(k_E)$ telle que :

$$\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})} \cong \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1} (r_j+1)p^j} & * \\ 0 & 1 \end{pmatrix} \cong \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1} (s_j+1)p^{-j}} & * \\ 0 & 1 \end{pmatrix}$$

avec $0 \leq r_j \leq p-3$, $(r_j) \notin \{(0,\cdots,0),(p-3,\cdots,p-3)\}$ et $s_j \stackrel{\text{def}}{=} r_{f-j}$. Les conditions sur les r_j impliquent facilement qu'il existe un objet M de la catégorie de Fontaine-Laffaille ([16]) muni d'une action linéaire de k_E tel que $\overline{\rho} \simeq \operatorname{Hom}_{\operatorname{Fil}^+,\varphi}(M,A_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)$ (avec des notations évidentes). En particulier M est un $k_L \otimes_{\mathbb{F}_p} k_E$ -module libre de rang 2. Comme dans le cas des φ -modules de type $\overline{\chi}$, on peut écrire $M = M^0 \times \cdots \times M^{f-1}$ avec $M^j = k_E e^j \oplus k_E f^j$, $\operatorname{Fil}^0 M^j = M^j$, $\operatorname{Fil}^1 M^j = \operatorname{Fil}^{s_j+1} M^j = k_E f^j$, $\operatorname{Fil}^{s_j+2} M^j = 0$ et :

(38)
$$\begin{cases} \varphi(e^j) = \alpha_{j+1}e^{j+1} \\ \varphi_{s_j+1}(f^j) = \beta_{j+1}(f^{j+1} + \mu_{j+1}e^{j+1}) \end{cases}$$

où $j \in \{0, \dots, f-1\}$, $\alpha_j, \beta_j \in k_E^{\times}$, $\mu_j \in k_E$. Notons que l'on a bien $s_j+1 < p-1$. Les α_j, β_j, μ_j ne sont pas uniquement déterminés mais la nullité ou non de μ_j pour tout j est indépendante du choix de la base $(e^j, f^j)_j$ comme ci-dessus. Si $\mathcal{RD}(x_0, \dots, x_{f-1})$ désigne l'ensemble des « poids de Diamond formels » correspondant au cas scindé (voir $[\mathbf{6}, \S 11]$), on associe à $\overline{\rho}$ l'ensemble $\mathcal{D}(x_0, \dots, x_{f-1})$ de tous les uplets $\lambda = (\lambda_0(x_0), \dots, \lambda_{f-1}(x_{f-1})) \in \mathcal{RD}(x_0, \dots, x_{f-1})$ tels que $\lambda_j(x_j) \in \{p-2-x_j, p-3-x_j\}$ implique $\mu_{f-j} = 0$. Notons que, si $J_{\overline{\rho}}$ est comme en (15), on a :

(39)
$$\delta(J_{\overline{\rho}}) = \{f - j \mid \mu_j = 0\}$$

où δ est le « décalage à gauche » (§4).

Proposition A.3. — On a (avec les notations du $\S4$):

$$\mathcal{D}(\overline{\rho}) = \{ (\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})}, \lambda \in \mathcal{D}(x_0, \cdots, x_{f-1}) \}$$

où $\mathfrak{D}(\overline{\rho})$ est l'ensemble des poids de Diamond associés à $\overline{\rho}$ ([7]).

 $D\acute{e}monstration.$ — Pour tout $J\subseteq \mathbb{S}$ on peut écrire $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_n}/L^{\mathrm{nr}})}$ sous la forme :

$$\overline{\rho}|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})} \cong \begin{pmatrix} \omega_f^{\sum_{j \in J} (r'_j + 1)p^j} & * \\ 0 & \omega_f^{\sum_{j \notin J} (r'_j + 1)p^j} \end{pmatrix} \otimes \omega_f^{-\sum_{j \notin J} (r'_j + 1)p^j} \quad \text{où} :$$

(40)
$$r'_{j} = \begin{cases} p - 3 - r_{j} & \text{si} \quad j \notin J & \text{et} \quad j - 1 \notin J \\ p - 2 - r_{j} & \text{si} \quad j \notin J & \text{et} \quad j - 1 \in J \\ r_{j} + 1 & \text{si} \quad j \in J & \text{et} \quad j - 1 \notin J \\ r_{j} & \text{si} \quad j \in J & \text{et} \quad j - 1 \in J. \end{cases}$$

Disons qu'un $J \subseteq \mathcal{S}$ est $\overline{\rho}$ -cristallin si l'extension * dans $\overline{\rho}|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/L^{\mathrm{nr}})} \otimes \omega_f^{\sum_{j \notin J} (r'_j + 1) p^j}$ se relève en une extension cristalline :

$$\begin{pmatrix} \prod_{j \in J} \varphi^{j}(\varepsilon_{f})^{r'_{j}+1} & * \\ 0 & \prod_{j \notin J} \varphi^{j}(\varepsilon_{f})^{r'_{j}+1} \end{pmatrix}$$

où $\varphi^j(\varepsilon_f)$ est le caractère (cristallin) de Lubin-Tate de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L^{\operatorname{nr}})$ qui, via la réciprocité locale, est $\iota \circ \varphi^j$ sur \mathcal{O}_L^{\times} (en particulier il relève $\omega_f^{p^j}$). Par définition (cf. [7], [18]), $\mathcal{D}(\overline{\rho})$ est l'ensemble des poids $(\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})}$ pour $\lambda \in \mathcal{RD}(x_0, \cdots, x_{f-1})$ tel que $\{j \mid \lambda_j(x_j) \in \{x_j, x_j + 1\}\}$ est $\overline{\rho}$ -cristallin. Soit $L_{\infty} \subset \overline{\mathbb{Q}_p}$ le sous-corps précédent engendré par L et un système compatible de racines p^n -ièmes de -p. Puisque toute extension dans $\operatorname{Ext}^1_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)}(1, \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j})$ provient d'un objet de Fontaine-Laffaille, par [2, Cor.4.2.2 et Lem.5.1] la flèche de restriction :

$$(41) \quad \operatorname{Ext}^{1}_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)} \left(1, \omega_f^{\sum_{j=0}^{f-1} (r_j + 1) p^j} \right) \longrightarrow \operatorname{Ext}^{1}_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})} \left(1, \omega_f^{\sum_{j=0}^{f-1} (r_j + 1) p^j} \right)$$
est une injection.

Pour tout $J \subseteq \mathbb{S}$ posons $\iota(J) \stackrel{\text{def}}{=} \{f-j, j \in J\}$ et $s_j' \stackrel{\text{def}}{=} r_{f-j}'$ avec r_j' comme en (40). Considérons les modules de Fontaine-Laffaille de la forme $M_J' = M_J'^0 \times \cdots \times M_J'^{f-1}$ avec $M_J'^j = k_E e_J^j \oplus k_E f_J^j$, Fil $M_J'^j = M_J'^j$, Fil $M_J'^j = 0$ et :

$$\text{Vec } M_{J}^{s} = k_{E}e_{J}^{s} \oplus k_{E}f_{J}^{s}, \text{ Fil } M_{J}^{s} = M_{J}^{s}, \text{ Fil } f M_{J}^{s} = 0 \text{ et :}$$

$$\begin{cases} \text{Fil}^{1}M_{J}^{\prime j} = \text{Fil}^{s'_{j}+1}M_{J}^{\prime j} = k_{E}e_{J}^{j} & \text{si} \quad j \notin \iota(J) \\ \text{Fil}^{1}M_{J}^{\prime j} = \text{Fil}^{s'_{j}+1}M_{J}^{\prime j} = k_{E}f_{J}^{j} & \text{si} \quad j \in \iota(J) \end{cases}$$

$$\begin{cases} \varphi_{s'_{j}+1}(e_{J}^{j}) = \alpha_{j+1}e_{J}^{j+1} & \text{si} \quad j \notin \iota(J) \\ \varphi(e_{J}^{j}) = \alpha_{j+1}e_{J}^{j+1} & \text{si} \quad j \notin \iota(J) \\ \varphi(f_{J}^{j}) = \beta_{j+1}f_{J}^{j+1} & \text{si} \quad j \notin \iota(J) \text{ et } j+1 \notin \iota(J) \\ \varphi(f_{J}^{j}) = \beta_{j+1}(f_{J}^{j+1} + \mu_{j+1}e_{J}^{j+1}) & \text{si} \quad j \notin \iota(J) \text{ et } j+1 \in \iota(J) \\ \varphi_{s'_{j}+1}(f_{J}^{j}) = \beta_{j+1}(f_{J}^{j+1} + \mu_{j+1}e_{J}^{j+1}) & \text{si} \quad j \in \iota(J) \text{ et } j+1 \notin \iota(J) \end{cases}$$

où $\alpha_j, \beta_j \in k_E^{\times}, \, \mu_j \in k_E$. Soit E_J' le sous- k_E -espace vectoriel de :

$$E \stackrel{\text{def}}{=} \operatorname{Ext}^{1}_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/L)}(1, \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j})$$

des extensions isomorphes à $\operatorname{Hom}_{\operatorname{Fil}^-,\varphi_-}(M'_J,A_{\operatorname{cris}}\otimes_{\mathbb{Z}_p}\mathbb{F}_p)\otimes\omega_f^{-\sum_{j\notin J}(r'_j+1)p^j}$ pour M'_J comme ci-dessus. Il est de dimension $|\iota(J)|=|J|$.

Pour tout $J \subseteq S$, notons M_J les modules de Fontaine-Laffaille comme en (38) tels que $j \notin \iota(J)$ implique $\mu_j = 0$. Soit E_J le sous- k_E -espace vectoriel de E des extensions isomorphes à $\operatorname{Hom}_{\operatorname{Fil}^+,\varphi_-}(M_J, A_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p) \otimes \omega_f^{-\sum_{j \notin J}(r_j'+1)p^j}$. Il est de dimension |J|. Par définition de $\mathcal{D}(x_0, \dots, x_{f-1})$ et de $\mathcal{D}(\overline{\rho})$, on voit facilement qu'il suffit de montrer que, pour tout J, les deux sous-espaces E_J et E_J' de E sont les mêmes, et par (41) il suffit de le vérifier après restriction à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$. Par le résultat de Fontaine rappelé au début de cet appendice, se donner une

représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ sur un k_E -espace vectoriel de dimension 2 est équivalent par le foncteur $\mathfrak{D} \mapsto \operatorname{Hom}_{\varphi}(\mathfrak{D},\operatorname{Frac}(R))^1$ à se donner un φ -module $\mathfrak{D} = \mathfrak{D}^0 \times \cdots \times \mathfrak{D}^{f-1}$ où \mathfrak{D}^j est un $k_E((u))$ -espace vectoriel de dimension 2 et $\varphi : \mathfrak{D}^j \to \mathfrak{D}^{j+1}$ est k_E -linéaire tel que $\varphi(u^i m) = u^{pi}\varphi(m)$. Un calcul explicite utilisant [2, Th.4.1.1] (plus exactement la partie (2) de la preuve de loc.cit.) montre que les φ -modules $\mathfrak{D}'_J = \mathfrak{D}'_J{}^0 \times \cdots \times \mathfrak{D}'_J{}^{f-1}$ provenant des restrictions à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ des représentations $\operatorname{Hom}_{\operatorname{Fil}^+,\varphi_-}(M'_J,A_{\operatorname{cris}}\otimes_{\mathbb{Z}_p}\mathbb{F}_p)$ sont exactement les φ -modules $\mathfrak{D}'_J{}^j = k_E((u))\mathfrak{e}^j_J \oplus k_E((u))\mathfrak{f}^j_J$ avec :

$$\begin{cases} \varphi(\mathfrak{e}_{J}^{j}) &= \gamma_{j+1}u^{s_{j+1}^{\prime}+1}\mathfrak{e}_{J}^{j+1} & \text{si} \quad j+1 \notin \iota(J) \\ \varphi(\mathfrak{e}_{J}^{j}) &= \gamma_{j+1}\mathfrak{e}_{J}^{j+1} & \text{si} \quad j+1 \in \iota(J) \\ \varphi(\mathfrak{f}_{J}^{j}) &= \delta_{j+1}\mathfrak{f}_{J}^{j+1} & \text{si} \quad j+1 \notin \iota(J) \\ \varphi(\mathfrak{f}_{J}^{j}) &= \delta_{j+1}u^{s_{j+1}^{\prime}+1}\mathfrak{f}_{J}^{j+1} + \nu_{j+1}\mathfrak{e}_{J}^{j+1} & \text{si} \quad j+1 \in \iota(J) \end{cases}$$

où $\gamma_j, \delta_j \in k_E^{\times}$ et $\nu_j \in k_E$. Après torsion par $\omega_f^{-\sum_{j \notin J} (r'_j + 1) p^j}$, ce qui correspond à multiplier $\varphi(\mathfrak{e}_J^j)$ et $\varphi(\mathfrak{f}_J^j)$ par $u^{-(s'_{j+1} + 1)}$ si $j+1 \notin \iota(J)$, et en remplaçant \mathfrak{f}_J^j par $u\mathfrak{f}_J^j$ si $j+1 \notin \iota(J)$, on obtient les φ -modules suivants :

$$\begin{cases} \varphi(\mathfrak{e}_J^j) &= \gamma_{j+1}\mathfrak{e}_J^{j+1} \\ \varphi(\mathfrak{f}_J^j) &= \delta_{j+1}u^{s_{j+1}''}\mathfrak{f}_J^{j+1} + \nu_{j+1}\mathfrak{e}_J^{j+1} \end{cases}$$

où $\nu_i = 0$ si $j \notin \iota(J)$ et :

$$s_j'' = \left\{ \begin{array}{lll} p-2-s_j' & \text{si} & j \notin \iota(J) & \text{et} & j+1 \notin \iota(J) \\ p-1-s_j' & \text{si} & j \notin \iota(J) & \text{et} & j+1 \in \iota(J) \\ s_j' & \text{si} & j \in \iota(J) & \text{et} & j+1 \notin \iota(J) \\ s_j'+1 & \text{si} & j \in \iota(J) & \text{et} & j+1 \in \iota(J). \end{array} \right.$$

Comme $s'_j = r'_{f-j}$ et $j \in \iota(J)$ (resp. $j+1 \in \iota(J)$) si et seulement si $f-j \in J$ (resp. $f-1-j \in J$), en utilisant les formules (40) pour r'_{f-j} ainsi que $r_{f-j} = s_j$, on obtient finalement les φ -modules :

$$\begin{cases} \varphi(\mathfrak{e}_J^j) &= \gamma_{j+1}\mathfrak{e}_J^{j+1} \\ \varphi(\mathfrak{f}_J^j) &= \delta_{j+1}u^{s_{j+1}+1}\mathfrak{f}_J^{j+1} + \nu_{j+1}\mathfrak{e}_J^{j+1} \end{cases}$$

où $\gamma_j, \delta_j \in k_E^{\times}$, $\nu_j \in k_E$ et $\nu_j = 0$ si $j \notin \iota(J)$. Or, par le même calcul (en plus simple) que précédemment utilisant [2, Th.4.1.1], ces φ -modules correspondent exactement aux représentations de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/L_{\infty})$ obtenues par restriction à partir des représentations $\operatorname{Hom}_{\operatorname{Fil}^*,\varphi}(M_J, A_{\operatorname{cris}} \otimes_{\mathbb{Z}_p} \mathbb{F}_p)$. Ceci montre $E_J = E_J'$ et achève la preuve.

Remarque A.4. — Diamond m'informe que le résultat de la proposition A.3 peut aussi facilement se déduire de [8] (voir [9]).

Appendice B

Appendice par Lassina Dembélé

Soit F un corps totalement réel et $p \geq 3$ un premier inerte dans F. Soit D un corps de quaternion sur F totalement défini et ramifié en un ensemble de places finies Σ telles que $(p) \notin \Sigma$ et $v \in \Sigma$ n'est pas congru à 1 modulo p. Soit \mathfrak{n} un idéal entier tel que $v \nmid \mathfrak{n}$, $v \in \Sigma \cup \{(p)\}$. Soit $g \in S^D(U(\mathfrak{n}, p); \overline{\mathbb{F}_p})$ une forme nouvelle telle que la représentation galoisienne associée :

$$\overline{\rho}_a: \operatorname{Gal}(\overline{\mathbb{Q}_p}/F) \to \operatorname{GL}_2(\overline{\mathbb{F}_p})$$

est globalement irréductible et générique en p. (On réfère à l'article et au reste de l'appendice pour les diverses définitions et notations.) Alors l'ensemble des poids de Diamond $\mathcal{D}(\overline{\rho}_g)$ a comme cardinal 2^d avec $0 \leq d \leq f$, où f désigne le degré d'inertie en (p). De plus, on a d = f si et seulement si $\overline{\rho}_g$ est semi-simple en p.

La conjecture suivante est mentionnée dans l'introduction de l'article.

Conjecture B.1. — Soient F, D, \mathfrak{n} et g comme ci-dessus, et soit \mathfrak{m}_g l'idéal de l'algèbre de Hecke \mathbf{T}^D engendré par tous les opérateurs $T(\mathfrak{p}) - a_{\mathfrak{p}}(g)$ tels que $g|T(\mathfrak{p}) = a_{\mathfrak{p}}(g)g$ avec $\mathfrak{p} \notin (\Sigma \cup {\mathfrak{p} : \mathfrak{p} \mid \mathfrak{n}p})$. On pose :

$$S^D(U(\mathfrak{n},p);\overline{\mathbb{F}_p})[g] \stackrel{\mathrm{def}}{=} \left\{ h \in S^D(U(\mathfrak{n},p);\overline{\mathbb{F}_p}) \mid Th = 0, \forall \ T \in \mathfrak{m}_g \right\}$$

(que nous allons aussi abréger par $S^D[g]$). Alors on a :

- (i) Si d < f, $\dim_{\overline{\mathbb{F}_p}} S^D(U(\mathfrak{n}, p); \overline{\mathbb{F}_p})[g] = 2^{f-d}3^d$.
- (ii) Si d = f, $\dim_{\overline{\mathbb{F}_p}} S^D(U(\mathfrak{n}, p); \overline{\mathbb{F}_p})[g] = 3^f \pm 1$, avec + si $\overline{\rho}_g$ est scindée en p et si elle est irréductible en p.

Dans cet appendice, nous vérifions quelques cas de cette conjecture par ordinateur. Pour ce faire, nous avons calculé des systèmes de valeurs propres de Hecke de formes automorphes algébriques mod 5 sur des corps de quaternions définis sur les corps totalement réels $F = \mathbb{Q}(\zeta_9)^+$, $\mathbb{Q}(\zeta_7)^+$ et $\mathbb{Q}(\zeta_{16})^+$. Signalons que nous n'avons pas cherché à énoncer une conjecture générale puisque nous ne nous limitons qu'à la vérifier avec les conditions restreintes ci-dessus (p inerte, $v \in \Sigma$ non-congru à 1 modulo p, \mathfrak{n} premier à Σ et niveau $U_0(\mathfrak{n})$), mais un énoncé plus général devrait être vrai. Précisons aussi que le cas d=0 de la conjecture B.1 peut se déduire de la Remarque 9.7 et de la Conjecture 8.1 sur les poids de Diamond dans l'article.

B.1. Exemples. — Pour chacun des corps F ci-dessus et pour quelques corps de quaternions D sur F, nous avons calculé tous les systèmes de valeurs propres de Hecke à coefficients dans \mathbb{F}_{5f} , pour divers niveaux \mathfrak{n} . Nous avons effectué ces calculs en utilisant la même méthode que dans [12] auquel nous référons pour plus de détails.

$\Sigma = \{$	$\{\mathfrak{p}_3\},\mathfrak{n}=(1)$		
Np	p	$a_{\mathfrak{p}}(g_1)$	$a_{\mathfrak{p}}(g_2)$
3	\mathfrak{p}_3	2	0
8	\mathfrak{p}_2	α^{63}	α^7
17	$\mathfrak{p}_{17}^{(1)}$	$lpha^{67}$	$lpha^{35}$
17	$\mathfrak{p}_{17}^{(2)}$	$lpha^{87}$	$lpha^{51}$
17	$\mathfrak{p}_{17}^{\overline{(3)}}$	α^{113}	$lpha^{98}$
19	$\mathfrak{p}_{19}^{(1)}$	$lpha^{69}$	$lpha^{118}$
19	$\mathfrak{p}_{19}^{(2)}$	$lpha^{97}$	$lpha^{94}$
19	$\mathfrak{p}_{19}^{(3)}$	$lpha^{82}$	$lpha^{64}$
di	$\operatorname{m}_{\overline{\mathbb{F}}_5} S^D[g]$	4	8
	$\mathcal{D}(\overline{\rho}_g)$	$\sigma_{(2,3,3),(4,2,2)}$	$\sigma_{(2,1,1),(0,2,2)}$

TABLE 1. Exemples de systèmes de valeurs propres de Hecke sur $\mathbb{Q}(\zeta_9)^+$ à coefficients dans \mathbb{F}_{5^3} (ici α est un générateur de $\mathbb{F}_{5^3}^{\times}$).

Pour chaque système de valeurs propres g nous avons, par la même occasion, calculé l'ensemble des poids de Diamond $\mathcal{D}(\overline{\rho}_g)$ ainsi que la dimension $\dim_{\overline{\mathbb{F}}_5} S^D[g]$. Les poids de Diamond $\mathcal{D}(\overline{\rho}_g)$ sont obtenus en déterminant l'ensemble des $\overline{\mathbb{F}}_p$ -représentations irréductibles (σ, V) de $\mathrm{GL}_2(\mathfrak{O}_F/(p))$ pour lesquels le système g apparait dans $S^D(U_0(\mathfrak{n}); V)$ (voir §B.2 pour les notations). De façon analogue, on obtient $\dim_{\overline{\mathbb{F}}_5} S^D[g]$ en énumérant tous les caractères de l'Iwahori χ en p pour lesquels le système g apparait dans $S^D(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}}_p)$. (À titre illustratif, nous avons donné deux exemples de tels systèmes dans la Table 1; le lecteur s'apercevra en regardant les poids que le premier n'est pas générique.)

Dans les Tables 2, 3 et 4, nous avons réparti selon le cardinal de $\mathcal{D}(\overline{\rho}_g)$ tous les systèmes de valeurs propres qui satisfont à la condition :

$$\sigma = \theta \otimes (r_0, \dots, r_{f-1}) \in \mathcal{D}(\overline{\rho}_g) \Rightarrow 0 \leq r_i \leq p-2$$

(nécessaire pour la généricité de $\overline{\rho}_g$ en p). On observe que $\dim_{\overline{\mathbb{F}}_5} S^D[g]$ est en accord avec la Conjecture B.1.

B.2. Méthode de calcul des formes automorphes mod p sur F. — Dans ce paragraphe, nous expliquons comment nous avons effectué les calculs pour les systèmes de valeurs propres de Hecke des formes automorphes algébriques mod p.

Nous conservons les mêmes notations que dans l'article. Ainsi D est un corps de quaternions sur F qui est ramifié en toutes les places à l'infini et éventuellement en un ensemble fini quelconque de places finies Σ . Nous choisissons un ordre

$\Sigma = \{\mathfrak{p}_3\}, \mathfrak{n} = (1)$		
#Systèmes propres de Hecke	$ \mathcal{D}(\overline{\rho}_g) $	$\dim_{\overline{\mathbb{F}}_5} S^D[g]$
48	1	8
12	2	12

$\Sigma = \{\mathfrak{p}_3\}, \mathfrak{n} = (2)$		
#Systèmes propres de Hecke	$ \mathfrak{D}(\overline{ ho}_g) $	$\dim_{\overline{\mathbb{F}}_5} S^D[g]$
300	1	8
96	2	12

Table 2. $\dim_{\overline{\mathbb{F}}_5} S^D[g]$ pour systèmes de valeurs propres de Hecke sur $\mathbb{Q}(\zeta_9)^+$ à coefficients dans \mathbb{F}_{5^3} .

$\Sigma = \{\mathfrak{p}_7\}, \mathfrak{n} = (2)$		
#Systèmes propres de Hecke	$ \mathcal{D}(\overline{\rho}_g) $	$\dim_{\overline{\mathbb{F}}_5} S^D[g]$
292	1	8
48	2	12
12	4	18

Table 3. $\dim_{\overline{\mathbb{F}}_5} S^D[g]$ pour systèmes de valeurs propres de Hecke sur $\mathbb{Q}(\zeta_7)^+$ à coefficients dans \mathbb{F}_{5^3} .

$\Sigma = \emptyset, \mathfrak{n} = (1)$		
#Systèmes propres de Hecke	$ \mathcal{D}(\overline{\rho}_g) $	$\dim_{\overline{\mathbb{F}}_5} S^D[g]$
636	1	16
64	2	24
8	4	36

$\Sigma=\emptyset, \mathfrak{n}=(\mathfrak{p}_2)$		
#Systèmes propres de Hecke	$ \mathfrak{D}(\overline{\rho}_g) $	$\dim_{\overline{\mathbb{F}}_5} S^D[g]$
852	1	16
208	2	24
36	4	36

Table 4. $\dim_{\overline{\mathbb{F}}_5} S^D[g]$ pour systèmes de valeurs propres de Hecke sur $\mathbb{Q}(\zeta_{16})^+$ à coefficients dans \mathbb{F}_{5^4} , (\mathfrak{p}_2 est le premier au-dessus de 2).

maximal \mathcal{O}_D dans D. Pour chaque place finie v de F, on désigne par F_v et \mathcal{O}_v les complétés de F et de \mathcal{O}_F en v respectivement. On pose $D_v = D \otimes F_v$ et $\mathcal{O}_{D_v} = \mathcal{O}_D \otimes \mathcal{O}_v$; et pour chaque place finie $v \notin \Sigma$, on fixe un isomorphisme $\mathcal{O}_{D_v} \cong M_2(\mathcal{O}_v)$ que l'on étend à $D_v \cong M_2(F_v)$. Les adèles finis de D et \mathcal{O}_D sont notés par \hat{D} et $\hat{\mathcal{O}}_D$ respectivement; cela détermine un isomorphisme :

$$\hat{\mathbb{O}}_{D}^{\times} \simeq \prod_{v \in \Sigma} \mathbb{O}_{D_{v}}^{\times} \times \prod_{v \notin \Sigma} \mathrm{GL}_{2}(\mathbb{O}_{v})$$

par lequel nous allons identifier ces deux groupes par la suite.

Nous fixons un idéal entier \mathfrak{n} dans \mathfrak{O}_F tel que $v \nmid \mathfrak{n}$ pour tout $v \in \Sigma$ et nous définissons les sous groupes compacts ouverts de \hat{D}^{\times} suivants :

$$\begin{array}{ccc} U_0(\mathfrak{n}) & \stackrel{\mathrm{def}}{=} & \left\{ \gamma \in \hat{\mathbb{O}}_D^\times : \gamma \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} & \bmod \, \mathfrak{n} \right\} \\ U_1^1(p) & \stackrel{\mathrm{def}}{=} & \left\{ \gamma \in \hat{\mathbb{O}}_D^\times : \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} & \bmod \, p \right\} \\ U(\mathfrak{n},p) & \stackrel{\mathrm{def}}{=} & U_0(\mathfrak{n}) \cap U_1^1(p). \end{array}$$

Soit (σ, V) une $\overline{\mathbb{F}_p}$ -représentation irréductible de $\mathrm{GL}_2(\mathfrak{O}_F/(p))$. Pour vérifier la conjecture B.1, nous avons besoin de calculer les espaces des formes automorphes algébriques :

$$S^{D}(U(\mathfrak{n},p); \overline{\mathbb{F}_{p}}) \stackrel{\text{def}}{=} \left\{ f : D^{\times} \backslash \hat{D}^{\times} / U(\mathfrak{n},p) \to \overline{\mathbb{F}_{p}} \right\}$$

$$S^{D}(U_{0}(\mathfrak{n}); V) \stackrel{\text{def}}{=} \left\{ f : D^{\times} \backslash \hat{D}^{\times} / U_{0}(\mathfrak{n}) \to V : f | u = f, \forall u \in \mathcal{O}_{D(p)}^{\times} \right\}$$

où $\mathcal{O}_{D_{(p)}}^{\times}$ agit par la surjection $\mathcal{O}_{D_{(p)}}^{\times}$ \to $\mathrm{GL}_2(\mathcal{O}_F/(p))$ et où l'on pose $f|u(x)=f(xu)u^{-1}$. Pour ce faire nous allons les décomposer en sous-espaces plus facile à calculer.

Soit $Cl(\mathcal{O}_D)$ un ensemble de représentants de toutes les classes à droite de \mathcal{O}_D ; on rappelle qu'il existe alors une bijection naturelle entre $Cl(\mathcal{O}_D)$ et le double-quotient $D^{\times} \backslash \hat{D}^{\times} / \hat{\mathcal{O}}_D^{\times}$. Soit S un ensemble fini de premiers dans \mathcal{O}_F disjoint de Σ qui génère le groupe des classes étroites $Cl^+(F)$ et tel que, pour tout $\mathfrak{q} \in S$, on a $(\mathfrak{q}, \mathfrak{n}p) = 1$. Par le théorème de l'approximation forte, on choisit les représentants $\mathfrak{a} \in Cl(\mathcal{O}_D)$ tels que le support de $\operatorname{nr}(\mathfrak{a})$ est contenu dans S. (On désigne par $\operatorname{nr}: D \to F$ la norme réduite.) Pour chaque $\mathfrak{a} \in Cl(\mathcal{O}_D)$, on désigne par $\mathcal{O}_{D,\mathfrak{a}}$ l'ordre (maximal) à gauche de \mathfrak{a} . Il existe alors des surjections $\hat{\mathcal{O}}_{D,\mathfrak{a}}^{\times} \to \operatorname{GL}_2(\mathcal{O}_F/\mathfrak{n})$ dont les images dans $\operatorname{GL}_2(\mathcal{O}_F/\mathfrak{n})$ sont conjuguées par lesquelles les $\hat{\mathcal{O}}_{D,\mathfrak{a}}^{\times}$ agissent de façon transitive et compatible sur $\mathbf{P}^1(\mathcal{O}_F/\mathfrak{n})$.

L'espace des formes automorphes algébriques de niveau $U_0(\mathfrak{n})$ et de poids V sur l'ordre $\mathcal{O}_{D,\mathfrak{a}}$ est défini par :

$$S^{D,\mathfrak{a}}(U_0(\mathfrak{n});V) \stackrel{\text{def}}{=} \{f: \mathbf{P}^1(\mathfrak{O}_F/\mathfrak{n}) \to V \mid f | \gamma = f, \, \forall \, \gamma \in \mathfrak{O}_{D,\mathfrak{a}}^{\times} \}.$$

Pour chaque $(\mathfrak{a}, \mathfrak{b}) \in \mathrm{Cl}(\mathfrak{O}_D)^2$ et chaque premier \mathfrak{p} dans \mathfrak{O}_F , on pose :

$$\Theta^{(S)}(\mathfrak{p};\,\mathfrak{a},\,\mathfrak{b})\stackrel{\mathrm{def}}{=} \mathfrak{O}_{D,\mathfrak{a}}^{\times}\backslash \left\{u\in \mathfrak{ab}^{-1}:\; \frac{(\mathrm{nr}(u))}{\mathrm{nr}(\mathfrak{a})\mathrm{nr}(\mathfrak{b})^{-1}}=\mathfrak{p}\right\},$$

où on laisse $\mathcal{O}_{D,\mathfrak{a}}^{\times}$ agir par multiplication à gauche. On définit l'application linéaire :

$$T_{\mathfrak{a},\,\mathfrak{b}}(\mathfrak{p}):\ S^{D,\mathfrak{b}}(U_0(\mathfrak{n});V) \ \to \ S^{D,\mathfrak{a}}(U_0(\mathfrak{n});V)$$

$$f \ \mapsto \ \sum_{u\in\Theta^{(S)}(\mathfrak{p};\,\mathfrak{a},\,\mathfrak{b})} f|u.$$

Par [11], on sait alors qu'il y a un isomorphisme de modules de Hecke :

$$S^{D}(U_{0}(\mathfrak{n});V) \simeq \bigoplus_{\mathfrak{a} \in Cl(\mathfrak{O}_{D})} S^{D,\mathfrak{a}}(U_{0}(\mathfrak{n});V),$$

où l'action de l'opérateur de Hecke $T(\mathfrak{p})$ à droite est donnée par la famille d'applications linéaires $(T_{\mathfrak{a},\mathfrak{b}}(\mathfrak{p}))$ avec $(\mathfrak{a},\mathfrak{b})$ parcourant $\mathrm{Cl}(\mathfrak{O}_D)^2$. On désigne par \mathbf{T}^D la $\overline{\mathbb{F}_p}$ -sous-algèbre de $\mathrm{End}_{\overline{\mathbb{F}_p}}(S^D(U_0(\mathfrak{n});V))$ engendrée par les opérateurs $T(\mathfrak{p})$ pour tous les premiers \mathfrak{p} n'appartenant pas à $\Sigma \cup \{\mathfrak{p} : \mathfrak{p} \mid \mathfrak{n}p\}$. La décomposition cidessus et une adaption de l'algorithme présenté dans [11] permettent de calculer plus facilement l'espace $S^D \stackrel{\mathrm{def}}{=} S^D(U_0(\mathfrak{n});V)$ et son algèbre de Hecke \mathbf{T}^D .

Pour calculer le premier espace, posons $G \stackrel{\text{déf}}{=} (\mathcal{O}_F/(p))^{\times} \times (\mathcal{O}_F/(p))^{\times}$ et définissons :

$$\mathcal{H}_1(p) \stackrel{\text{def}}{=} \left\{ (a, b) \in (\mathcal{O}_F/(p))^2 : ad + bc = 1 \text{ avec } c, d \in \mathcal{O}_F/(p) \right\}.$$

On rappelle que $\mathcal{H}_1(p) \simeq \mathbf{P}^1(\mathcal{O}_F/(p)) \times (\mathcal{O}/(p))^{\times}$ et que $U_0(p)/U_1^1(p) \simeq G$. Le groupe $\hat{\mathcal{O}}_D^{\times}$ agit transitivement sur $\mathcal{H}_1(p) \times (\mathcal{O}_F/(p))^{\times}$ par :

$$\gamma \cdot (x, u) \stackrel{\text{déf}}{=} (\gamma_p x, \det(\gamma_p) u),$$

où γ_p est l'image de γ dans $\mathrm{GL}_2(\mathcal{O}_F/(p))$. Le stabilisateur de ((1,0),1) est $U_1^1(p)$. On en déduit les bijections :

$$\hat{\mathbb{O}}_D^{\times}/U(\mathfrak{n},p) \simeq \mathbf{P}^1(\mathbb{O}_F/\mathfrak{n}p) \times U_0(p)/U_1^1(p) \simeq \mathbf{P}^1(\mathbb{O}_F/\mathfrak{n}p) \times G.$$

On définit alors l'espace des formes automorphes algébriques sur l'ordre $\mathcal{O}_{D,\mathfrak{a}}$ de niveau $U(\mathfrak{n},p)$ par :

$$S^{D,\mathfrak{a}}(U(\mathfrak{n},p);\overline{\mathbb{F}_p})\stackrel{\text{def}}{=} \left\{ f: \, \mathfrak{O}_{D,\mathfrak{a}}^{\times} \backslash \mathbf{P}^1(\mathfrak{O}_F/\mathfrak{n}p) \times G \to \overline{\mathbb{F}_p} \right\}.$$

Il est alors facile de voir que :

$$S^D(U(\mathfrak{n},p);\overline{\mathbb{F}_p}) \simeq \bigoplus_{\mathfrak{a} \in \mathrm{Cl}(\mathfrak{O}_D)} S^{D,\mathfrak{a}}(U(\mathfrak{n},p);\overline{\mathbb{F}_p})$$

comme modules de Hecke lorsque l'on définit l'action de $T(\mathfrak{p})$ à droite comme précédemment.

Maintenant, on observe que le groupe G agit sur $\mathbf{P}^1(\mathfrak{O}_F/\mathfrak{n}p) \times G$ par multiplication sur le second facteur. Cela induit une action sur $S^{D,\mathfrak{a}}(U(\mathfrak{n},p);\overline{\mathbb{F}_p})$ que l'on peut donc décomposer suivant les caractères de G. Soit $\chi:G\to\overline{\mathbb{F}_p}^\times$ un tel caractère, c'est-à-dire un caractère de l'Iwahori en p. (On rappelle que cela équivaut à se donner une paire de caractères $\eta, \eta':(\mathfrak{O}_F/(p))^\times\to\overline{\mathbb{F}_p}^\times$ dans le langage de l'article). On peut alors définir l'espace $S^{D,\mathfrak{a}}(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}_p})$ des formes automorphes algébriques sur l'ordre $\mathfrak{O}_{D,\mathfrak{a}}$ de niveau $U(\mathfrak{n},p)$ et de caractère de l'Iwahori χ en p comme étant l'ensemble des fonctions $f\in S^{D,\mathfrak{a}}(U(\mathfrak{n},p);\overline{\mathbb{F}_p})$ telles que :

$$f(ux) = \chi(u)f(x)$$
, pour tous $x \in \mathbf{P}^1(\mathcal{O}_F/\mathfrak{n}) \times G$ et $u \in G$.

Ainsi, on obtient:

$$S^{D,\mathfrak{a}}(U(\mathfrak{n},p);\overline{\mathbb{F}_p})=\bigoplus_{\chi}S^{D,\mathfrak{a}}(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}_p}).$$

En définissant l'espace $S^D(U(\mathfrak{n}), \chi; \overline{\mathbb{F}_p})$ des formes automorphes algébriques sur \hat{D}^{\times} de niveau $U(\mathfrak{n}, p)$ et de caractère de l'Iwahori χ en p par :

$$S^D(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}_p}) \stackrel{\mathrm{def}}{=} \bigoplus_{\mathfrak{a} \in \mathrm{Cl}(\mathfrak{O}_D)} S^{D,\mathfrak{a}}(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}_p}),$$

on obtient alors la décomposition:

$$S^D(U(\mathfrak{n},p);\overline{\mathbb{F}_p}) = \bigoplus_{\chi} S^D(U(\mathfrak{n},p),\chi;\overline{\mathbb{F}_p}).$$

Comme précédemment, cette décomposition permet de calculer plus facilement $S^D \stackrel{\text{déf}}{=} S^D(U(\mathfrak{n},p);\overline{\mathbb{F}_p})$ et l'algèbre de Hecke \mathbf{T}^D correspondante (définie comme ci-dessus).

B.3. Espaces des formes anciennes et des formes nouvelles. — Pour vérifier la Conjecture B.1, nous avons besoin de calculer les espaces de formes nouvelles. Dans ce paragraphe, nous expliquons comment cela est effectué.

Soit $\mathfrak{q} \mid \mathfrak{n}$ un idéal premier, et posons $\mathfrak{m} = \mathfrak{n}\mathfrak{q}^{-1}$. Par le théorème de l'approximation faible, on choisit $u \in F$ tel que $v_{\mathfrak{q}}(u) = -1$ et $v_{\mathfrak{p}}(u) = 0$ pour $\mathfrak{p} \mid \mathfrak{n}$ et $\mathfrak{p} \neq \mathfrak{q}$. Pour définir les applications de dégénérescence en \mathfrak{q} , l'on a besoin d'une traduction en termes globaux de leur description adélique (donnée par exemple dans [31]). Pour cela, rappelons que :

$$\begin{split} X_0^D(\mathfrak{n}) &= D^\times \backslash \hat{D}^\times / U_0(\mathfrak{n}) \simeq \coprod_{\mathfrak{a} \in \mathrm{Cl}(\mathcal{O}_D)} \mathcal{O}_{D,\mathfrak{a}}^\times \backslash \mathbf{P}^1(\mathcal{O}_F/\mathfrak{n}) \\ X_0^D(\mathfrak{m}) &= D^\times \backslash \hat{D}^\times / U_0(\mathfrak{m}) \simeq \coprod_{\mathfrak{a} \in \mathrm{Cl}(\mathcal{O}_D)} \mathcal{O}_{D,\mathfrak{a}}^\times \backslash \mathbf{P}^1(\mathcal{O}_F/\mathfrak{m}). \end{split}$$

La surjection naturelle $\pi_1: \mathbf{P}^1(\mathcal{O}_F/\mathfrak{n}) \to \mathbf{P}^1(\mathcal{O}_F/\mathfrak{m})$ induit de façon évidente une application :

$$X_0^D(\mathfrak{n}) \to X_0^D(\mathfrak{m})$$
$$x \mapsto \pi_1(x).$$

La première application de dégénérescence est tout simplement le pullback par π_1 :

$$\alpha_1(\mathfrak{q}): S^D(U_0(\mathfrak{m}); V) \to S^D(U_0(\mathfrak{n}); V).$$

Pour définir la seconde, soient $x \in \mathcal{O}_{D,\mathfrak{a}}^{\times} \backslash \mathbf{P}^{1}(\mathcal{O}_{F}/\mathfrak{n})$, et $(a,b) \in (\mathcal{O}_{F}/\mathfrak{n})^{2}$ un représentant de x. Une interprétation de la définition adélique de la seconde application de dégénérescence en termes globaux implique qu'il existe un unique $\mathfrak{b} \in \mathrm{Cl}(\mathcal{O}_{D})$ et un unique $\gamma \in \Theta^{(S)}(\mathfrak{p};\mathfrak{b},\mathfrak{a})$ tels qu'en posant $(c,d) = \gamma \cdot (a,b)$ on a $\min\{v_{\mathfrak{q}}(c),v_{\mathfrak{q}}(d)\}=1$. On désigne alors par y la classe de (cu,du) dans $\mathcal{O}_{D,\mathfrak{b}}^{\times}\backslash \mathbf{P}^{1}(\mathcal{O}_{F}/\mathfrak{m})$. Cela donne une autre application :

$$\pi_2: X_0^D(\mathfrak{n}) \to X_0^D(\mathfrak{m})$$
$$x \mapsto y.$$

La seconde application de dégénérescence est le pullback par π_2 :

$$\alpha_2(\mathfrak{q}): S^D(U_0(\mathfrak{m}); V) \to S^D(U_0(\mathfrak{n}); V).$$

La combinaison de ces deux applications donne :

$$\iota_{\mathfrak{q}}: S^D(U_0(\mathfrak{m}); V)^2 \to S^D(U_0(\mathfrak{n}); V)$$

 $(f_1, f_2) \mapsto \alpha_1(\mathfrak{q}) f_1 + \alpha_2(\mathfrak{q}) f_2.$

On définit alors l'espace des formes anciennes par :

$$S^D(U_0(\mathfrak{n}); V)^{\text{old}} \stackrel{\text{déf}}{=} \sum_{\mathfrak{q} \mid \mathfrak{n}} \operatorname{im}(\iota_{\mathfrak{q}}).$$

Pour des raisons pratiques, et comme nous ne disposons pas d'un produit scalaire en général, nous travaillons plutôt avec le dual de $S^D(U_0(\mathfrak{n});V)$ pour le calcul de l'espace des formes nouvelles. Soit :

$$S^D(U_0(\mathfrak{n}); V)^{\perp} \stackrel{\text{déf}}{=} \operatorname{Hom}_{\overline{\mathbb{F}_n}}(S^D(U_0(\mathfrak{n}); V), \overline{\mathbb{F}_p}),$$

muni de l'action naturelle à droite de \mathbf{T}^D définie par :

$$(\varphi T)(f) \stackrel{\mathrm{def}}{=} \varphi(f|T), \ \varphi \in S^D(U_0(\mathfrak{n});V)^\perp, \ f \in S^D(U_0(\mathfrak{n});V).$$

L'accouplement naturel:

$$\langle,\rangle: S^D(U_0(\mathfrak{n});V)^{\perp} \times S^D(U_0(\mathfrak{n});V) \to \overline{\mathbb{F}_p}$$

défini par $(\varphi, f) = \varphi(f)$ satisfait alors à l'identité $\langle \varphi T, f \rangle = \langle \varphi, f | T \rangle$. En se rappelant que $\mathbf{T}^D \subset \operatorname{End}_{\overline{\mathbb{F}_p}}(S^D(U_0(\mathfrak{n}); V))$, l'application tranposée $T \mapsto T^t$ nous

permet alors de voir $S^D(U_0(\mathfrak{n});V)^{\perp}$ comme un \mathbf{T}^D -module à gauche. On obtient ainsi la transposée :

$$\iota^t_{\mathfrak{q}}:\,S^D(U_0(\mathfrak{n});V)^\perp\to S^D(U_0(\mathfrak{m});V)^{\perp\,2},$$

qui nous permet de définir :

$$S^D(U_0(\mathfrak{n}); V)^{\perp \text{ new }} \stackrel{\text{def}}{=} \bigcap_{\mathfrak{q} \mid \mathfrak{n}} \ker(\iota_{\mathfrak{q}}^t).$$

Comme nous nous intéressons seulement à la partie semi-simple de \mathbf{T}^D , le résultat suivant de Stein [30, Proposition 3.14] est encore valable.

Proposition B.2. — Soit $M \subset S^D(U_0(\mathfrak{n}); V)^{\text{new}}$ un sous- \mathbf{T}^D -module irréductible et $I = \text{Ann}_{\mathbf{T}^D}(M)$. Alors, pour chaque \mathfrak{p} , le polynôme caractéristique de $T(\mathfrak{p})$ agissant sur $S^D(U_0(\mathfrak{n}); V)^{\perp}[I]$ est le même que celui de $T(\mathfrak{p})$ agissant sur M.

Cette proposition nous permet de ramener le calcul de l'action de Hecke sur $S^D(U_0(\mathfrak{n}); V)^{\text{new}}$ à celle sur son dual, ce qui est plus facile en pratique.

Références

- [1] Breuil C., Groupes p-divisibles, groupes finis et modules filtrés, Ann. Math. 152, 2000, 489-549.
- [2] Breuil C., Une application du corps des normes, Compositio Math. 117, 1999, 189-203.
- [3] Breuil C., Integral p-adic Hodge theory, Advances Studies in Pure Math. 36, 2002, 51-80.
- [4] Breuil C., Diagrammes de Diamond et (φ, Γ) -modules, à paraître à Israel J. Math.
- [5] Breuil C., Mézard A. (avec un appendice par Henniart G.), Multiplicités modulaires et représentations de $\operatorname{GL}_2(\mathbb{Z}_p)$ et de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ en $\ell=p$, Duke Math. J. 115, 2002, 205-310.
- [6] Breuil C., Paškūnas V., Towards a modulo p Langlands correspondence for GL₂, prépublication 2007.
- [7] Buzzard K., Diamond F., Jarvis F., On Serre's conjecture for mod ℓ Galois representations over totally real fields, prépublication 2005 révisée 2008.
- [8] Chang S., Extensions of rank one (φ, Γ) -modules, thèse univ. Brandeis, 2006.
- [9] Chang S., Diamond F., Extensions of (φ, Γ) -modules and crystalline representations, prépublication 2009.
- [10] Colmez P., Représentations de $GL_2(\mathbb{Q}_p)$ et (φ, Γ) -modules, prépublication 2008.
- [11] Dembélé L., Donnelly S., Computing Hilbert modular forms over fields with non-trivial class group, Algorithmic Number Theory 5011, 2008, 371-386.
- [12] Dembélé L., Diamond F., Roberts D., Numerical evidences and examples for the Serre conjecture over totally real number fields, en préparation.
- [13] Diamond F., The Taylor-Wiles construction and multiplicity one, Inv. Math. 128, 1997, 379-391.

- [14] Emerton M., A local global compatibility conjecture in the p-adic Langlands programme for $GL_{2/\mathbb{O}}$, Pure and Applied Math. Quarterly 2, 2006, 279-393.
- [15] Emerton M., en préparation.
- [16] Fontaine J.-M., Laffaille G., Construction de représentations p-adiques, Ann. Scient. E.N.S. 15, 1982, 547-608.
- [17] Fujiwara K., Deformation rings and Hecke algebras in the totally real case, prépublication.
- [18] Gee T., On the weights of mod p Hilbert modular forms, prépublication 2006.
- [19] Gee T., Savitt D., Serre weights for mod p Hilbert modular forms: the totally ramified case, prépublication 2009.
- [20] Hu Y., Sur quelques représentations supersingulières de $GL_2(\mathbb{Q}_{p^f})$, prépublication 2009.
- [21] Paškūnas V., Coefficient systems and supersingular representations of $GL_2(F)$, Mémoires de la Soc. Math. de France 99, 2004.
- [22] Raynaud M., Schémas en groupes de type (p, \dots, p) , Bull. Soc. Math. de France 102, 1974, 241-280.
- [23] Saito T., Hilbert modular forms and p-adic Hodge theory, à paraître à Compositio Math.
- [24] Savitt D., On a conjecture of Conrad, Diamond, and Taylor, Duke Math. J. 128, 2005, 141-197.
- [25] Savitt D., Breuil modules for Raynaud schemes, J. Number Theory 128, 2008, 2939-2950.
- [26] Schein M., Weights of Galois representations associated to Hilbert modular forms, J. Reine Angew. Math. 622, 2008, 57-94.
- [27] Schein M., Weights in Serre's conjecture for Hilbert modular forms: the ramified case, Israel J. Math. 166, 2008, 369-391.
- [28] Serre J.-P., Représentations linéaires des groupes finis, cinquième édition, Hermann, 1998.
- [29] Serre J.-P., Sur les représentations modulaires de degré 2 de $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$, Duke Math. J. 54, 1987, 179-230.
- [30] Stein W., Explicit approaches to modular abelian varieties, thèse univ. Berkeley, 2000, disponible à l'adresse http://modular.math.washington.edu/papers/thesis.
- [31] Taylor R., On Galois representations associated to Hilbert modular forms, Inv. Math. 98, 1989, 265-280.

C. Breuil, C.N.R.S. & I.H.É.S., 35 route de Chartres, 91440 Bures-sur-Yvette, France *E-mail*: breuil@ihes.fr

L. Dembélé, Warwick Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom • E-mail:1.dembele@warwick.ac.uk