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Abstract. We provide a far reaching derived equivalence classification of cluster-tilted algebras of Dynkin

type D. We introduce another notion of equivalence called good mutation equivalence which is slightly stronger

than derived equivalence but is algorithmically more tractable, and give a complete classification together with
normal forms. We also suggest normal forms for the derived equivalence classes, but some subtle questions in

the derived equivalence classification remain open.
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Introduction

Cluster categories have been introduced in [9] (see also [14] for Dynkin type A) as a representation-theoretic
approach to Fomin and Zelevinsky’s cluster algebras without coefficients having skew-symmetric exchange ma-
trices (so that matrix mutation becomes the combinatorial recipe of mutation of quivers). This highly successful
approach allows to use deep algebraic and representation-theoretic methods in the context of cluster algebras.
A crucial role is played by the so-called cluster tilting objects in the cluster category which model the clusters in
the cluster algebra. The endomorphism algebras of these cluster tilting objects are called cluster-tilted algebras.

Cluster-tilted algebras are particularly well-understood if the quiver underlying the cluster algebra, and hence
the cluster category, is of Dynkin type. Cluster-tilted algebras of Dynkin type can be described as quivers with
relations where the possible quivers are precisely the quivers in the mutation class of the Dynkin quiver, and the
relations are uniquely determined by the quiver in an explicit way [11]. By a result of Fomin and Zelevinsky [18],
the mutation class of a Dynkin quiver is finite. Moreover, the quivers in the mutation classes of Dynkin quivers
are explicitly known; for type An they can be found in [13], for type Dn in [31] and for type E6,7,8 they can be
enumerated using a computer, for example by the Java applet [22].

However, despite knowing the cluster-tilted algebras of Dynkin type as quivers with relations, many structural
properties are not understood yet. One important structural aspect is to understand the derived module
categories of the cluster-tilted algebras. In particular, one would want to know when two cluster-tilted algebras
have equivalent derived categories. A derived equivalence classification has been achieved so far for cluster-tilted
algebras of Dynkin type An by Buan and Vatne [13], and for Dynkin type E6,7,8 by the authors [5]. Moreover,
a complete derived equivalence classification has also been given by the first author for cluster-tilted algebras
of extended Dynkin type Ãn [4].

In the present paper we are going to address this problem for cluster-tilted algebras of Dynkin type Dn. We
shall obtain a far reaching derived equivalence classification, see Theorem 2.3. This classification is complete
up to D14, but it will turn out to be surprisingly subtle to distinguish certain of the cluster-tilted algebras up
to derived equivalence.

There are two natural approaches to address derived equivalence classification problems of a given collection
of algebras arising from some combinatorial data. The bottom-to-top approach is to systematically construct,
based on the combinatorial data, derived equivalences between pairs of these algebras and then to arrange
these algebras into groups where any two algebras are related by a sequence of such derived equivalences. The
top-to-bottom approach is to divide the algebras into equivalence classes according to some invariants of derived
equivalence, so that algebras belonging to different classes are not derived equivalent. To obtain a complete
derived equivalence classification one has to combine these approaches and hope that the two resulting partitions
of the entire collection of algebras coincide.

Since any two quivers in a mutation class are connected by a sequence of mutations, it is natural to ask
when mutation of quivers leads to derived equivalence of their corresponding cluster-tilted algebras. The third
author [25] has presented a procedure to determine when two cluster-tilted algebras whose quivers are related
by a mutation are also related by Brenner-Butler (co-)tilting, which is a particular kind of derived equivalence.
We call such quiver mutations good mutations. Obviously, the cluster-tilted algebras of quivers connected by a
sequence of good mutations (i.e. good mutation equivalent) are derived equivalent. The explicit knowledge of
the relations for cluster-tilted algebras of Dynkin type implies that good mutation equivalence is decidable for
these algebras. In particular, we can achieve a complete classification of the cluster-tilted algebras of Dynkin
type Dn, see Theorem 2.32.

Whereas for cluster-tilted algebras of Dynkin types An and E6,7,8 the notions of good mutation equivalence
and derived equivalence coincide (see Theorem 2.2 below for type A, and [5, Theorem 1.1] for type E) allowing
for a complete derived equivalence classification, this is not the case for Dynkin type D which underlines and
explains why the situation in type D is much more complicated.

One aspect of this complication is the fact that cluster-tilted algebras of Dynkin type D might be derived
equivalent without being connected by a sequence of good mutations. This occurs already for types D6 and D8,
see Examples 2.14 and 2.15 below. Although we have been able to find further systematic derived equivalences,
one cannot be sure that these are all. Another aspect demonstrating the latter point is that when trying to apply
the top-to-bottom approach by using the equivalence class of the integral bilinear form defined by the Cartan
matrix as derived invariant to distinguish the different derived equivalence classes, one encounters arbitrarily
large sets of cluster-tilted algebras with the same derived invariant but for which we cannot determine their
derived equivalence, see Section 2.5.
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The paper is organized as follows. In Section 1 we collect some preliminaries about invariants of derived
equivalences, mutations of algebras and fundamental properties of cluster-tilted algebras, particularly of Dynkin
types A and D. These are needed for the statements of our main results, which are given in Section 2. In
particular, Theorem 2.3 gives the far reaching derived equivalence classification of cluster-tilted algebras of
type D, and Theorem 2.32 the complete classification up to good mutation equivalence. Examples and some
open questions are also given in that section. In Section 3 we determine all the good mutations for cluster-
tilted algebras of Dynkin types A and D, whereas in Section 4 we present further derived equivalences between
cluster-tilted algebras of type D which are not given by good mutations. Building on these results we provide
in Section 5, which is purely combinatorial, standard forms for derived equivalence as well as ones for good
mutation equivalence of cluster-tilted algebras of type D, thus proving Theorem 2.3 and Theorem 2.32. We also
describe an explicit algorithm which decides on good mutation equivalence. Finally, the appendix contains the
proof of the formulae for the determinants of the Cartan matrices of cluster-tilted algebras of type D, as given
in Theorem 2.5. This invariant is used in the paper to distinguish some cluster-tilted algebras up to derived
equivalence.

1. Preliminaries

1.1. Derived equivalences and tilting complexes. Throughout this paper let K be an algebraically closed
field. All algebras are assumed to be finite-dimensional K-algebras.

For a K-algebra A, we denote the bounded derived category of right A-modules by Db(A). Two algebras A
and B are called derived equivalent if Db(A) and Db(B) are equivalent as triangulated categories.

A famous theorem of Rickard [29] characterizes derived equivalence in terms of the so-called tilting complexes,
which we now recall. Denote by perA the full triangulated subcategory of Db(A) consisting of the perfect
complexes of A-modules, that is, complexes (quasi-isomorphic) to bounded complexes of finitely generated
projective A-modules.

Definition 1.1. A tilting complex T over A is a complex T ∈ perA with the following two properties:
(i) It is exceptional, i.e. HomDb(A)(T, T [i]) = 0 for all i 6= 0, where [1] denotes the shift functor in Db(A);
(ii) It is a compact generator, that is, the minimal triangulated subcategory of perA containing T and closed

under taking direct summands, equals per A.

Theorem 1.2 (Rickard [29]). Two algebras A and B are derived equivalent if and only if there exists a tilting
complex T over A such that EndDb(A)(T ) ' B.

Although Rickard’s theorem gives us a criterion for derived equivalence, it does not give a decision process
nor a constructive method to produce tilting complexes. Thus, given two algebras A and B in concrete form,
it is sometimes still unknown whether they are derived equivalent or not, as we do not know how to construct
a suitable tilting complex or to prove the non-existence of such, see Sections 2.4 and 2.5 for some concrete
examples.

1.2. Invariants of derived equivalence. Let P1, . . . , Pn be a complete collection of pairwise non-isomorphic
indecomposable projective A-modules (finite-dimensional over K). The Cartan matrix of A is then the n × n
matrix CA defined by (CA)ij = dimK Hom(Pj , Pi). An important invariant of derived equivalence is given by
the following well known proposition. For a proof see the proof of Proposition 1.5 in [6], and also [5, Prop. 2.6].

Proposition 1.3. Let A and B be two finite-dimensional, derived equivalent algebras. Then the matrices CA

and CB represent equivalent bilinear forms over Z, that is, there exists P ∈ GLn(Z) such that PCAPT = CB,
where n denotes the number of indecomposable projective modules of A and B (up to isomorphism).

In general, to decide whether two integral bilinear forms are equivalent is a very subtle arithmetical problem.
Therefore, it is useful to introduce somewhat weaker invariants that are computationally easier to handle. In
order to do this, assume further that CA is invertible over Q. In this case one can consider the rational matrix
SA = CAC−T

A (here C−T
A denotes the inverse of the transpose of CA), known in the theory of non-symmetric

bilinear forms as the asymmetry of CA.

Proposition 1.4. Let A and B be two finite-dimensional, derived equivalent algebras with invertible (over Q)
Cartan matrices. Then we have the following assertions, each implied by the preceding one:

(a) There exists P ∈ GLn(Z) such that PCAPT = CB.
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(b) There exists P ∈ GLn(Z) such that PSAP−1 = SB.
(c) There exists P ∈ GLn(Q) such that PSAP−1 = SB.
(d) The matrices SA and SB have the same characteristic polynomial.

For proofs and discussion, see for example [24, Section 3.3]. Since the determinant of an integral bilinear
form is also invariant under equivalence, we obtain the following discrete invariant of derived equivalence.

Definition 1.5. For an algebra A with invertible Cartan matrix CA over Q, we define its associated polynomial
as (detCA) · χSA

(x), where χSA
(x) is the characteristic polynomial of the asymmetry matrix SA = CAC−T

A .

Remark 1.6. The matrix SA (or better, minus its transpose −C−1
A CT

A) is related to the Coxeter transformation
which has been widely studied in the case when A has finite global dimension (so that CA is invertible over Z),
see [28]. It is the K-theoretic shadow of the Serre functor and the related Auslander-Reiten translation in the
derived category. The characteristic polynomial is then known as the Coxeter polynomial of the algebra.

Remark 1.7. In general, SA might have non-integral entries. However, when the algebra A is Gorenstein,
the matrix SA is integral, which is an incarnation of the fact that the injective modules have finite projective
resolutions. By a result of Keller and Reiten [23], this is the case for cluster-tilted algebras.

1.3. Mutations of algebras. We recall the notion of mutations of algebras from [25]. These are local opera-
tions on an algebra A producing new algebras derived equivalent to A.

Let A = KQ/I be an algebra given as a quiver with relations. For any vertex i of Q, there is a trivial path
ei of length 0; the corresponding indecomposable projective Pi = eiA is spanned by the images of the paths
starting at i. Thus an arrow i

α−→ j gives rise to a map Pj → Pi given by left multiplication with α.
Let k be a vertex of Q without loops. Consider the following two complexes of projective A-modules

T−
k (A) =

(
Pk

f−→
⊕
j→k

Pj

)
⊕

(⊕
i 6=k

Pi

)
, T+

k (A) =
(⊕
k→j

Pj
g−→ Pk

)
⊕

(⊕
i 6=k

Pi

)
where the map f is induced by all the maps Pk → Pj corresponding to the arrows j → k ending at k, the map
g is induced by the maps Pj → Pk corresponding to the arrows k → j starting at k, the term Pk lies in degree
−1 in T−

k (A) and in degree 1 in T+
k (A), and all other terms are in degree 0.

Definition 1.8. Let A be an algebra given as a quiver with relations and k a vertex without loops.

(a) We say that the negative mutation of A at k is defined if T−
k (A) is a tilting complex over A. In this

case, we call µ−k (A) = EndDb(A) T−
k (A) the negative mutation of A at the vertex k.

(b) We say that the positive mutation of A at k is defined if T+
k (A) is a tilting complex over A. In this

case, we call µ+
k (A) = EndDb(A) T+

k (A) the positive mutation of A at the vertex k.

Remark 1.9. By Rickard’s Theorem 1.2, the negative and the positive mutations of an algebra A at a vertex,
when defined, are always derived equivalent to A.

There is a combinatorial criterion to determine whether a mutation at a vertex is defined, see [25, Prop. 2.3].
Since the algebras we will be dealing with in this paper are schurian, we state here the criterion only for this
case, as it takes a particularly simple form. Recall that an algebra is schurian if the entries of its Cartan matrix
are only 0 or 1.

Proposition 1.10. Let A be a schurian algebra.

(a) The negative mutation µ−k (A) is defined if and only if for any non-zero path k  i starting at k and
ending at some vertex i, there exists an arrow j → k such that the composition j → k  i is non-zero.

(b) The positive mutation µ+
k (A) is defined if and only if for any non-zero path i  k starting at some

vertex i and ending at k, there exists an arrow k → j such that the composition i k → j is non-zero.

Remark 1.11. It follows from [25, Remark 2.10], that when A is schurian, the negative mutation of A at k is
defined if and only if one can associate with k the corresponding Brenner-Butler tilting module. Moreover, in
this case, T−

k (A) is isomorphic in Db(A) to that Brenner-Butler tilting module.
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1.4. Cluster-tilted algebras. In this section we assume that all quivers are without loops and 2-cycles. Given
such a quiver Q and a vertex k, we denote by µk(Q) the Fomin-Zelevinsky quiver mutation [17] of Q at k. Two
quivers are called mutation equivalent if one can be reached from the other by a finite sequence of quiver
mutations. The mutation class of a quiver Q is the set of all quivers which are mutation equivalent to Q.

For a quiver Q′ without oriented cycles, the corresponding cluster category CQ′ was introduced in [9]. A
cluster-tilted algebra of type Q′ is an endomorphism algebra of a cluster-tilting object in CQ′ , see [10]. It is
known by [10] that for any quiver Q mutation equivalent to Q′, there is a cluster-tilted algebra whose quiver
is Q. Moreover, by [8], it is unique up to isomorphism. Hence, there is a bijection between the quivers in the
mutation class of an acyclic quiver Q′ and the isomorphism classes of cluster-tilted algebras of type Q′. This
justifies the following notation.

Notation 1.12. Throughout the paper, for a quiver Q which is mutation equivalent to an acyclic quiver, we
denote by ΛQ the corresponding cluster-tilted algebra and by CQ its Cartan matrix CΛQ

.

When Q′ is a Dynkin quiver of types A, D or E, the corresponding cluster-tilted algebras are said to be
of Dynkin type. These algebras have been investigated in [11], where it is shown that they are schurian and
moreover they can be defined by using only zero and commutativity relations that can be extracted from their
quivers in an algorithmic way.

1.5. Good quiver mutations. For cluster-tilted algebras of Dynkin type, the statement of Theorem 5.3
in [25], linking more generally mutation of cluster-tilting objects in 2-Calabi-Yau categories with mutations of
their endomorphism algebras, takes the following form.

Proposition 1.13. Let Q be mutation equivalent to a Dynkin quiver and let k be a vertex of Q.
(a) Λµk(Q) ' µ−k (ΛQ) if and only if the two algebra mutations µ−k (ΛQ) and µ+

k (Λµk(Q)) are defined.
(b) Aµk(Q) ' µ+

k (ΛQ) if and only if the two algebra mutations µ+
k (ΛQ) and µ−k (Λµk(Q)) are defined.

This motivates the following definition.

Definition 1.14. When one of the conditions in the proposition holds, we say that the quiver mutation of Q at
k, is good, since it implies the derived equivalence of the corresponding cluster-tilted algebras ΛQ and Λµk(Q).
When none of the conditions in the proposition hold, we say that the quiver mutation is bad.

Remark 1.15. In view of Propositions 1.10 and 1.13, there is an algorithm which decides, given a quiver which
is mutation equivalent to a Dynkin quiver, whether a mutation at a vertex is good or not.

Whereas in Dynkin types A and E, the quivers of any two derived equivalent cluster-tilted algebras are
connected by a sequence of good mutations [5], this is no longer the case in type D. Therefore, we need also to
consider mutations of algebras going beyond the family of cluster-tilted algebras (which is obviously not closed
under derived equivalence).

Definition 1.16. Let Q and Q′ be quivers with vertices k and k′ such that µk(Q) = µk′(Q′). We call the
sequence of the two mutations from Q to Q′ (first at k and then at k′) a good double mutation if both algebra
mutations µ−k (ΛQ) and µ+

k′(ΛQ′) are defined and moreover, they are isomorphic to each other.

By definition, for quivers Q and Q′ related by a good double mutation, the cluster-tilted algebras ΛQ and
ΛQ′ are derived equivalent. Note, however, that we do not require the intermediate algebra µ−k (ΛQ) ' µ+

k′(ΛQ′)
to be a cluster-tilted algebra.

1.6. Cluster-tilted algebras of Dynkin types A and D. In this section we recall the explicit description of
cluster-tilted algebras of Dynkin types A and D, which are our main objects of study, as quivers with relations.

Recall that a the quiver An is the following directed graph on n ≥ 1 vertices

•1 // •2 // . . . // •n .

The quivers which are mutation equivalent to An have been explicitly determined in [13]. They can be charac-
terized as follows.

Definition 1.17. The neighborhood of a vertex x in a quiver Q is the full subquiver of Q on the subset of
vertices consisting of x and the vertices which are targets of arrows starting at x or sources of arrows ending at
x.
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Figure 1. The 9 possible neighborhoods of a vertex • in a quiver which is mutation equivalent
to An, n ≥ 2. The three at the top row are the possible neighborhoods of a root in a rooted
quiver of type A.

Proposition 1.18. Let n ≥ 2. A quiver is mutation equivalent to An if and only if it has n vertices, the
neighborhood of each vertex is one of the nine depicted in Figure 1, and there are no cycles in its underlying
graph apart from those induced by oriented cycles contained in neighborhoods of vertices.

Definition 1.19. Let Q be a quiver mutation equivalent to An. A triangle is an oriented 3-cycle in Q, and
a line is an arrow in Q which is not part of a triangle. We denote by s(Q) and t(Q) the number of lines and
triangles in Q, respectively.

Remark 1.20. We have n = 1 + s(Q) + 2t(Q).

Remark 1.21. Given a quiver Q mutation equivalent to An, the relations defining the corresponding cluster-
tilted algebra ΛQ (which has Q as its quiver) are obtained as follows [11, 14, 15]; any triangle

•
β

��2
22

22

•

α
EE�����

•
γ
oo

in Q gives rise to three zero relations αβ, βγ, γα, and there are no other relations.

Recall that the quiver Dn is the following quiver
•1

!!C
CC

C

•3 // . . . // •n

•2

=={{{{

on n ≥ 4 vertices. We now recall the description by Vatne [31] of the quivers which are mutation equivalent
to Dn, and the relations defining the corresponding cluster-tilted algebras following [11]. It would be most
convenient to use the language of gluing of rooted quivers.

Definition 1.22. A rooted quiver of type A is a pair (Q, v) where Q is a quiver which is mutation equivalent
to An for some n ≥ 1, and v is a vertex of Q (the root) whose neighborhood is one of the three appearing in
the first row of Figure 1 if n ≥ 2.

By abuse of notation, we shall sometimes refer to such a rooted quiver (Q, v) just by Q.

Definition 1.23. Let Q0 be a quiver, called a skeleton, and let c1, c2, . . . , ck be k ≥ 0 distinct vertices of Q0.
The gluing of k rooted quivers of type A, say (Q1, v1), (Q2, v2), . . . , (Qk, vk), to Q0 at the vertices c1, . . . , ck is
defined as the quiver obtained from the disjoint union Q0 tQ1 t · · · tQk by identifying each vertex ci with the
corresponding root vi, for 1 ≤ i ≤ k.

Remark 1.24. Given relations (i.e. linear combinations of parallel paths) on the skeleton Q0, they induce
relations on the gluing, namely by taking the union of all the relations on Q0, Q1, . . . , Qk, where the relations
on the rooted quivers of type A are those stated in Remark 1.21.
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A cluster-tilted algebra of Dynkin type D belongs to one of the following four families, which are called types
and are defined as gluing of rooted quivers of type A to certain skeleta. Note that in view of Remark 1.24, it
is enough to specify the relations on the skeleton. For each type, we define parameters which will be useful in
the sequel when referring to the cluster-tilted algebras of that type.

Type I. The gluing of a rooted quiver Q′ of type A at the vertex c of one of the three skeleta

•a

!!C
CC

CC

•c

}}{{
{{

{

•b

•a

!!C
CC

CC

•c

•b

=={{{{{

•a

•c

}}{{
{{

{

aaCCCCC

•b

as in the following picture:

Q′

a

b

c

The parameters are
(
s(Q′), t(Q′)

)
.

Type II. The gluing of two rooted quivers Q′ and Q′′ of type A at the vertices c′ and c′′, respectively, of the
following skeleton

•b
β

||zz
zz

zz

•c′′
ε // •c′

α
aaCCCCCC

γ}}{{
{{

{{

•a

δ

bbDDDDDD

with the commutativity relation αβ − γδ and the zero relations εα, εγ, βε, δε as in the following picture:

Q′′ Q′

a

b

c′c′′

The parameters are
(
s(Q′), t(Q′), s(Q′′), t(Q′′)

)
.

Type III. The gluing of two rooted quivers Q′ and Q′′ of type A at the vertices c′ and c′′, respectively, of the
following skeleton

•b
β

||zz
zz

zz

•c′′

γ ""D
DD

DD
D •c′

α
aaCCCCCC

•a

δ

=={{{{{{

with the four zero relations αβγ, βγδ, γδα, δαβ, as in the following picture:
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Q′′ Q′

b

a

c′′ c′

As in type II, the parameters are
(
s(Q′), t(Q′), s(Q′′), t(Q′′)

)
.

Type IV. The gluing of r ≥ 0 rooted quivers Q(1), . . . , Q(r) of type A at the vertices c1, . . . , cr of a skeleton
Q(m, {i1, . . . , ir}) defined below, see Figure 2.

Definition 1.25. Given integers m ≥ 3, r ≥ 0 and an increasing sequence 1 ≤ i1 < i2 < · · · < ir ≤ m, we
define the following quiver Q(m, {i1, . . . , ir}) with relations.

(a) Q(m, {i1, . . . , ir}) has m + r vertices, labeled 1, 2, . . . ,m together with c1, c2, . . . , cr, and its arrows are{
i → (i + 1)

}
1≤i≤m

∪
{
cj → ij , (ij + 1) → cj

}
1≤j≤r

,

where i + 1 is considered modulo m, i.e. 1, if i = m.
The full subquiver on the vertices 1, 2, . . . ,m is thus an oriented cycle of length m, called the central

cycle, and for every 1 ≤ j ≤ r, the full subquiver on the vertices ij , ij + 1, cj is an oriented 3-cycle,
called a spike.

(b) The relations on Q(m, {i1, . . . , ir}) are as follows:
• The paths ij , ij + 1, cj and cj , ij , ij + 1 are zero for all 1 ≤ j ≤ r;
• For any 1 ≤ j ≤ r, the path ij + 1, cj , ij equals the path ij + 1, . . . , 1, . . . , ij of length m− 1 along

the central cycle;
• For any i 6∈ {i1, . . . , ir}, the path i + 1, . . . , 1, . . . , i of length m− 1 along the central cycle is zero.

1

2

34

5

6

m

c1

c2

c3

Q(1)

Q(2)

Q(3)

i1

i1 + 1

i2i2 + 1
||

i3

i3 + 1

Figure 2. A quiver of a cluster-tilted algebra of type IV.

The parameters are encoded as follows. If r = 0, that is, there are no spikes hence no attached rooted quivers
of type A, the quiver is just an oriented cycle, thus parameterized by its length m ≥ 3. In all other cases, due
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to rotational symmetry, we define the distances d1, d2, . . . , dr by

d1 = i2 − i1, d2 = i3 − i2, . . . , dr = i1 + m− ir

so that m = d1 + d2 + · · ·+ dr, and encode the cluster-tilted algebra by the sequence of triples

(1.1)
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
where sj = s(Q(j)), tj = t(Q(j)) are the numbers of lines and triangles of the rooted quiver Q(j) of type A glued
at the vertex cj of the j-th spike.

Remark 1.26. Note that the cluster-tilted algebras in type III can be viewed as a degenerate version of type
IV, namely corresponding to the skeleton Q(2, {1, 1}) with central cycle of length 2 (hence it is “invisible”) with
all spikes present. It turns out that this point of view is consistent with the constructions of good mutations
and double mutations as well as with the determinant computations presented later in this paper. However, for
simplicity, the proofs that we give for type III will not rely on this observation.

2. Main results

In this section we describe the main results of the paper.

2.1. Derived equivalences. We start by providing standard forms for derived equivalence. Since rooted
quivers of Dynkin type A are important building blocks of the quivers of cluster-tilted algebras of type D, we
recall the results on derived equivalence classification of cluster-tilted algebras of type A, originally due to Buan
and Vatne [13].

Definition 2.1. Let Q be a quiver of a cluster-tilted algebra of type A. The standard form of Q is the following
quiver consisting of s(Q) lines and t(Q) triangles arranged as follows:

(2.1) •
����
��

•
����
��

•v // • // . . . // • // •

YY2222
. . . • // •

YY2222

The standard form of a rooted quiver (Q, v) of type A is a rooted quiver of type A as in (2.1) consisting of s(Q)
lines and t(Q) triangles with the vertex v as the root.

The name “standard form” is justified by the next theorem which follows from the results of [13], see also
Section 3.

Theorem 2.2. Let Q be a quiver of a cluster-tilted algebra of Dynkin type A. Then Q can be transformed via
a sequence of good mutations to its standard form. Moreover, two standard forms are derived equivalent if and
only if they coincide.

In Dynkin type D, we suggest the following standard forms.

Theorem 2.3. A cluster-tilted algebra of type D with n vertices is derived equivalent to one of the cluster-tilted
algebras with the following quivers, which we call “standard forms” for derived equivalence:

(a) Dn (i.e. type I with a linearly oriented An−2 quiver attached);

•
��@

@@
@

• // . . . // •

•

??~~~~

(b) Type II as in the following figure, where s, t ≥ 0 and s + 2t = n− 4;

•
��~~

~~
•
����
�

•
����
�

• // • 1 //

__@@@@

��~~
~~

. . . s // • 1 // •

YY333
. . . • t // •

YY333

•

__@@@@
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(c) Type III as in the following figure, where s, t ≥ 0 and s + 2t = n− 4;

•
��~~

~~
•
����
�

•
����
�

•
��@

@@
@ • 1 //

__@@@@
. . . s // • 1 // •

YY333
. . . • t // •

YY333

•

??~~~~

(d1) (only when n is odd) Type IV with a central cycle of length n without spikes, as in the following picture:
1

2

3 n− 2

n− 1

n

(d2) Type IV with parameter sequence(
(1, s, t), (1, 0, 0), . . . , (1, 0, 0)

)
of length b ≥ 3, with s, t ≥ 0 such that n = 2b + s + 2t, and the attached rooted quiver of type A is in
standard form;

2

13

4 b

1 s 1 t

(d3) Type IV with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0), (3, s1, t1), (3, s2, t2), . . . , (3, sk, tk)

)
for some k > 0, where the number of triples (1, 0, 0) is b ≥ 0, the non-negative integers s1, t1, . . . , sk, tk
are considered up to rotation of the sequence(

(s1, t1), (s2, t2), . . . , (sk, tk)
)
,

n = 4k + 2b + s1 + 2t1 + · · ·+ sk + 2tk and the attached rooted quivers of type A are in standard form.

1s11

1 s2 1 1 sk 1

sk−11 1 tk−11s31

tk

t3

t2

t1
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Moreover, any two distinct standard forms which are not of the class (d3) are not derived equivalent.

Remark 2.4. There is no known example of two distinct standard forms which are derived equivalent.

2.2. Numerical invariants. The main tool for distinguishing the various standard forms appearing in The-
orem 2.3 is the computation of their numerical invariants of derived equivalence described in Section 1.2. We
start by giving the formulae for the determinants of the Cartan matrices of all cluster-tilted algebras of type D.

Theorem 2.5. Let Q be a quiver which is mutation equivalent to Dn for n ≥ 4. Using the notation from
Section 1.6 we have the following formulae for the determinants of the Cartan matrices.

(I) If Q is of type I, then detCQ = 2t(Q′) = detCQ′ .
(II) If Q is of type II, then detCQ = 2 · 2t(Q′)+t(Q′′) = 2 · det CQ′ · detCQ′′ .

(III) If Q is of type III, then detCQ = 3 · 2t(Q′)+t(Q′′) = 3 · detCQ′ · detCQ′′ .
(IV) For a quiver Q of type IV with central cycle of length m ≥ 3, let Q(1), . . . , Q(r) be the rooted quivers of

type A glued to the spikes and let c(Q) be the number of vertices on the central cycle which are part of
two (consecutive) spikes, i.e. c(Q) = |{1 ≤ j ≤ r : dj = 1}|, cf. (1.1). Then

det CQ = (m + c(Q)− 1) ·
r∏

j=1

2t(Q(j)) = (m + c(Q)− 1) ·
r∏

j=1

detCQ(j) .

We immediately obtain the following.

Corollary 2.6.
(a) A cluster-tilted algebra in type II is not derived equivalent to any cluster-tilted algebra in type III.
(b) A cluster-tilted algebra in type II is not derived equivalent to any cluster-tilted algebra in type IV whose

Cartan determinant is not a power of 2.

Note that the determinant alone is not enough to distinguish types II and IV, the smallest example occurs
already in type D5.

Example 2.7. The Cartan matrices of the cluster-tilted algebra in type II with parameters (1, 0, 0, 0) and the
one in type IV with parameters

(
(3, 1, 0)

)
whose quivers are given by

•
��~~

~~

• // •

__@@@@

��~~
~~

// •

•

__@@@@

•
��~~

~~
��@

@@
@

•
��@

@@
@ •

��~~
~~

// •

•

OO

have both determinant 2, but the characteristic polynomials of their asymmetries differ, namely x5−x3 +x2−1
and x5 − 2x3 + 2x2 − 1, respectively.

Since the determinants of the Cartan matrices of all cluster-tilted algebras of type D do not vanish, one
can consider their asymmetry matrices and the corresponding characteristic polynomials. We list below the
characteristic polynomials of the asymmetry matrices for cluster-tilted algebras of subtypes I, II and III of
Dynkin type D and for certain cases in type IV. Combining this with Theorem 2.5, we get the corresponding
associated polynomials. Using these it is possible to distinguish several further standard forms of Theorem 2.3
up to derived equivalence. However, in the present paper we are not embarking on this aspect, and therefore
only list these polynomials for the sake of completeness. For the proofs we refer to the forthcoming thesis of the
first author [3] as well as to the note [26] containing a general method for computing the associated polynomial
of an algebra obtained by gluing rooted quivers of type A to a given quiver with relations.

Notation 2.8. For a quiver Q mutation equivalent to a Dynkin quiver, we denote by χQ(x) the characteristic
polynomial of the asymmetry matrix of the Cartan matrix CQ of the cluster-tilted algebra corresponding to Q.

Remark 2.9. Let Q be the quiver of a cluster-tilted algebra of type A. Then

χQ(x) = (x + 1)t−1
(
xs+t+2 + (−1)s+1

)
where s = s(Q) and t = t(Q).



12 JANINE BASTIAN, THORSTEN HOLM, AND SEFI LADKANI

Remark 2.10. Consider a cluster-tilted algebra in type D with quiver Q of type I, II, III or IV and parameters
as defined in Section 1.6.

(I) If Q is of type I, then

χQ(x) = (x + 1)t(x− 1)
(
xs+t+2 + (−1)s

)
where s = s(Q′) and t = t(Q′).

(II/III) If Q is of type II or type III, then

χQ(x) = (x + 1)t+1(x− 1)
(
xs+t+2 + (−1)s+1

)
where s = s(Q′) + s(Q′′) and t = t(Q′) + t(Q′′).

(IV) If Q is of type IV, then we have the following.
(a) If Q is an oriented cycle of length n without spikes then

χQ(x) =

{
xn − 1 if n is odd,(
x

n
2 − 1

)2 if n is even.

(b) If Q has parameters
(
(1, s, t), (1, 0, 0), . . . , (1, 0, 0)

)
with b ≥ 3 spikes, then

χQ(x) = (x + 1)t(xb − 1)
(
xs+t+b + (−1)s+1

)
.

(c) If Q has parameters
(
(3, s, t)

)
as in the picture below

Q′

then

χQ(x) = (x + 1)t−1(x− 1)
(
xs+t+4 + 2 · xs+t+3 + (−1)s+1 · 2x + (−1)s+1

)
.

(d) If Q has parameters
(
(3, s1, t1), (3, s2, t2)

)
then

χQ(x) = (x + 1)t1+t2−2 · (x− 1) ·
(
xs1+t1+s2+t2 · (x9 + 3x8 + 4x7 + 4x6)

+
(
(−1)s1xs2+t2 + (−1)s2xs1+t1

)
(x5 − x4)

+ (−1)s1+s2+1(1 + 3x + 4x2 + 4x3)
)
.

2.3. Complete derived equivalence classification up to D14. Fixing the number of vertices n, it is possible
to enumerate over all the standard forms of derived equivalence with n vertices as given in Theorem 2.3, and
compute the Cartan matrices of the corresponding cluster-tilted algebras and their associated polynomials. As
long as the resulting polynomials (or any other derived invariants) do not coincide for two distinct standard
forms, the derived equivalence classification is complete since then we know that any cluster-tilted algebra in
type D is derived equivalent to one of the standard forms, and moreover any two distinct such forms are not
derived equivalent.

By carrying out this procedure on a computer using the Magma system [7], we have been able to obtain a
complete derived equivalence classification of the cluster-tilted algebras of type Dn for n ≤ 14. Table 1 lists,
for 4 ≤ n ≤ 14, the number of such algebras (using the formula given in [12]) and the number of their derived
equivalence classes.

As a consequence of our methods, we deduce the following characterization of derived equivalence for cluster-
tilted algebras of type Dn with n ≤ 14.

Proposition 2.11. Let Λ and Λ′ be two cluster-tilted algebras of type Dn with n ≤ 14. Then the following
conditions are equivalent:

(a) Λ and Λ′ have the same associated polynomials;
(b) The Cartan matrices of Λ and Λ′ represent equivalent bilinear forms over Z;
(c) Λ and Λ′ are derived equivalent;
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n Algebras Classes
4 6 3
5 26 5
6 80 9
7 246 10
8 810 17
9 2704 18

10 9252 29
11 32066 31
12 112720 49
13 400024 53
14 1432860 81

Table 1. The numbers of cluster-tilted algebras of type Dn and their derived equivalence
classes, n ≤ 14.

(d) Either Λ and Λ′ are both self-injective, or none of them is self-injective and they are connected by a
sequence of good mutations or good double mutations.

Remark 2.12. The implications (d) ⇒ (c) ⇒ (b) ⇒ (a) always hold.

Remark 2.13. It follows from their derived equivalence classification (see [13] for type A and [5] for type E)
that a statement analogous to Corollary 2.11 is true also for cluster-tilted algebras of Dynkin types A and E,
replacing the condition (d) by:

(d’) Λ and Λ′ are connected by a sequence of good mutations.
However, for Dynkin type D the following two examples in types D6 and D8 demonstrate that one must replace
condition (d’) by the weaker one (d). Thus, in some sense the derived equivalence classification in type D8 is
more complicated than that in type E8.

Example 2.14. For any b ≥ 3, the cluster-tilted algebra in type IV with a central cycle of length 2b without any
spike is derived equivalent to that in type IV with parameter sequence

(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length

b (see Lemma 4.5). There is no sequence of good mutations connecting these two self-injective [30] algebras.
Indeed, none of the algebra mutations at any of the vertices is defined. The smallest such pair occurs in type
D6 and the corresponding quivers are shown below.

•

����
��

•oo

•

��2
22

2 •

YY2222

• // •

EE����

• // •

����
��

// •

����
��

•

YY2222
// •

YY2222

����
��

•

YY2222

Example 2.15. The two cluster-tilted algebras of type D8 with quivers

•

����
��

•

����
��

•

����
��

•

��2
22

2 •

YY2222
// •

YY2222
// •

YY2222

•

EE����

•

����
��

•

����
��

•

����
��

• // •

YY2222

��2
22

2 •

YY2222
// •

YY2222

•

EE����

of type III are derived equivalent but cannot be connected by a sequence of good mutations. Indeed, the
mutations at all the vertices of the right quiver are bad (see cases II.1, III.3 in Tables 5 and 6 in Section 3).

2.4. Opposite algebras. The smallest example of two distinct standard forms (as in Theorem 2.3) for which
it is unknown whether they are derived equivalent or not arises for n = 15 vertices. It is related to the question
of derived equivalence of an algebra and its opposite which we briefly discuss below.

It follows from the description of the quivers and relations given in Section 1.6 that if Λ is a cluster-tilted
algebra of Dynkin type D, then so is its opposite algebra Λop. Moreover, a careful analysis of the classes given
in Theorem 2.3 shows that any cluster-tilted algebra with standard form in the classes (a),(b),(c),(d1) or (d2) is
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derived equivalent to its opposite, and the opposite of a cluster-tilted algebra with standard from in class (d3)
and parameter sequence(

(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0), (3, s1, t1), (3, s2, t2), . . . , (3, sk, tk)
)

is derived equivalent to a standard form in the same class, but with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0), (3, sk, tk), . . . , (3, s2, t2), (3, s1, t1)

)
which may not be equivalent to the original one when k ≥ 3. The smallest such pairs of rotation-inequivalent
standard forms occur when k = 3, and the number of vertices is then 15.

The equivalence class of the integral bilinear form defined by the Cartan matrix can be a very tricky derived
invariant when it comes to assessing the derived equivalence of an algebra Λ and its opposite Λop. Indeed,
the Cartan matrix of Λop is the transpose of that of Λ. Since the bilinear forms defined by any square matrix
(over any field) and its transpose are always equivalent over that field [16, 19, 32], it follows that the bilinear
forms defined by the integral matrices CΛ and CΛop are equivalent over Q as well as over all prime fields Fp.
Hence determining their equivalence over Z becomes a delicate arithmetical question. Moreover, it follows
that the asymmetry matrices (when defined) are similar over any field, and hence the associated polynomials
corresponding to Λ and Λop always coincide.

To illustrate these difficulties, we present here the two smallest examples occurring in type D15. In one
example, the equivalence of the bilinear forms is known, whereas in the other it is unknown. In both cases, we
are not able to tell whether the algebra is derived equivalent to its opposite.

Example 2.16. The Cartan matrices of the opposite cluster-tilted algebras of type D15 with standard forms(
(3, 1, 0), (3, 0, 1), (3, 0, 0)

)
,

(
(3, 0, 0), (3, 0, 1), (3, 1, 0)

)
define equivalent bilinear forms over the integers. This has been verified by computer search (using Magma [7]).
One can even choose the matrix inducing equivalence to have all its entries in {0,±1,±2}.

Example 2.17. For the opposite cluster-tilted algebras of type D15 with standard forms(
(3, 1, 0), (3, 2, 0), (3, 0, 0)

)
,

(
(3, 0, 0), (3, 2, 0), (3, 1, 0)

)
it is unknown whether their Cartan matrices define equivalent bilinear forms over Z.

The above discussion motivates the following question.

Question 2.18. Let Q be an acyclic quiver such that its path algebra KQ is derived equivalent to its opposite,
and let Λ be a cluster-tilted algebra of type Q. Is it true that Λ is derived equivalent to its opposite Λop?

Remark 2.19. The answer to the above question is affirmative for cluster-tilted algebras of Dynkin types A,
E and affine type Ã, as well as for cluster-tilted algebras of type D with at most 14 simples. This follows from
the corresponding derived equivalence classifications.

Remark 2.20. If the answer to the question is positive for cluster-tilted algebras of Dynkin type D, then in
class (d3) of Theorem 2.3, one has to consider the non-negative integers s1, t1, . . . , sk, tk in the k-term sequence(

(s1, t1), (s2, t2), . . . , (sk, tk)
)

up to rotation as well as order reversal.

2.5. Other open questions for Dn, n ≥ 15. An immediate consequence of part (IV)(d) of Remark 2.10 is
the following systematic construction of standard forms with the same associated polynomial.

Remark 2.21. Let s1, t1, s2, t2 ≥ 0. Then the cluster-tilted algebras with standard forms(
(3, 2 + s1, t1), (3, s2, 2 + t2)

) (
(3, 2 + s2, t2), (3, s1, 2 + t1)

)
(2.2)

have the same associated polynomial. In other words, for a cluster-tilted algebra with quiver

•

��






•oo // •

��






// • // Q′

•

��1
11

1 •

��1
11

1 •

��1
11

1 •

XX1111

Q′′

DD����
•

FF



oo •

FF



oo •oo // •

FF
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where Q′ and Q′′ are rooted quivers of type A, exchanging the rooted quivers Q′ and Q′′ does not change the
associated polynomial.

The following proposition, which is a specific case of a statement in the note [27], shows that moreover, in
most cases, the Cartan matrices of the corresponding standard forms define equivalent bilinear forms (over Z).

Proposition 2.22. Let s1, s2 ≥ 0 and t1, t2 > 0. Then the bilinear forms defined by the Cartan matrices of the
cluster-tilted algebras with standard forms as in (2.2) are equivalent over Z. In other words, for a cluster-tilted
algebra with quiver

•

��






•oo // •

��






// • //

��






• // Q′

•

��1
11

1 •

��1
11

1 •

��1
11

1 •

��1
11

1 •

XX1111
•

XX1111

Q′′

DD����
•

FF



oo •

FF



oo •

FF



oo •oo // •

FF





where Q′ and Q′′ are rooted quivers of type A, exchanging the rooted quivers Q′ and Q′′ does not change the
equivalence class of the bilinear form defined by the Cartan matrix.

Question 2.23. Are any two cluster-tilted algebras as in Proposition 2.22 derived equivalent?

Let m ≥ 1. By considering the m + 1 standard forms with parameters(
(3, 2i, 2m + 1− 2i), (3, 2m + 1− 2i, 1 + 2i)

)
0 ≤ i ≤ m

and invoking Proposition 2.22, we obtain the following.

Corollary 2.24. Let m ≥ 1. Then one can find m + 1 distinct standard forms of cluster-tilted algebras of type
D6m+13 whose Cartan matrices define equivalent bilinear forms.

Remark 2.25. The smallest case occurs when m = 1, giving a pair of cluster-tilted algebras of type D19 whose
Cartan matrices define equivalent bilinear forms but their derived equivalence is unknown. They correspond to
the choice of Q′ = A1 and Q′′ = A2 in Proposition 2.22.

In some of the remaining cases in Remark 2.21, despite the collision of the associated polynomials, it is still
possible to distinguish the standard forms by using the bilinear forms of their Cartan matrices, whereas in other
cases this remains unsettled. We illustrate this by two examples.

Example 2.26. The two standard forms
(
(3, 2, 0), (3, 1, 2)

)
and

(
(3, 3, 0), (3, 0, 2)

)
in type D15 corresponding

to the choice of Q′ = A1 and Q′′ = A2 in Remark 2.21 have the same associated polynomial, namely

20 ·
(
x15 + 2x14 + x13 − 4x11 + x9 − 3x8 + 3x7 − x6 + 4x4 − x2 − 2x− 1

)
but their asymmetry matrices are not similar over the finite field F3 (and hence not over Z). Thus the bilinear
forms defined by their Cartan matrices are not equivalent so the two algebras are not derived equivalent.

This is the smallest non-trivial example of Remark 2.21, and it also shows that the implication (a) ⇒ (b) in
Proposition 2.11 does not hold in general for cluster-tilted algebras of type D.

Example 2.27. The two standard forms
(
(3, 2, 0), (3, 3, 2)

)
and

(
(3, 5, 0), (3, 0, 2)

)
in type D17 corresponding to

the choice of Q′ = A1 and Q′′ = A4 in Remark 2.21 have the same associated polynomials and the asymmetries
are similar over Q as well as over all finite fields Fp, but it is unknown whether the bilinear forms are equivalent
over Z or not.

Table 2 lists for 15 ≤ n ≤ 20 the number of cluster-tilted algebras of type Dn (according to the formula
in [12]) together with upper and lower bounds on the number of their derived equivalence classes. There are
two upper bounds which are obtained by counting the number of standard forms given in Theorem 2.3 with
(“maxop”) or without (“max”) the assumption of affirmative answer to Question 2.18 concerning the derived
equivalence of opposite cluster-tilted algebras. The lower bound (“min”) is obtained by considering the number
of standard forms with distinct numerical invariants of derived equivalence. It follows that in types D15, D16

and D18 there are no unsettled cases apart from those arising as opposites of algebras.
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Classes
n Algebras min maxop max
15 5170604 91 91 93
16 18784170 136 136 139
17 68635478 156 157 167
18 252088496 231 231 248
19 930138522 273 275 312
20 3446167860 395 401 461

Table 2. The number of cluster-tilted algebras of type Dn together with lower and upper
bounds on the number of their derived equivalence classes, 15 ≤ n ≤ 20.

2.6. Good mutation equivalence classification. Whereas the classification according to derived equivalence
becomes subtle when the number of vertices grows, leaving some questions still undecided, this does not happen
for the stronger, but algorithmically more tractable relation of good mutation equivalence.

Definition 2.28. Two cluster-tilted algebras (of Dynkin type) with quivers Q′ and Q′′ are called good mutation
equivalent if one can move from Q′ to Q′′ by performing a sequence of good mutations. In other words, there
exists a sequence of vertices k1, k2, . . . , km such that if we set Q0 = Q′ and Qj = µkj (Qj−1) for 1 ≤ j ≤ m,
and denote by Λj the cluster-tilted algebra with quiver Qj , then Q′′ = Qr and for any 1 ≤ j ≤ m we have
Λj = µ−kj

(Λj−1) or Λj = µ+
kj

(Λj−1).

Remark 2.29. Any two cluster-tilted algebras which are good mutation equivalent are also derived equivalent.
The converse is true in Dynkin types A and E but not in type D, see Section 2.3 above.

Let Q be mutation equivalent to a Dynkin quiver. When assessing whether its quiver mutation at a vertex
k is good or not, one needs to consider which of the algebra mutations at k of the two cluster-tilted algebras
ΛQ and Λµk(Q) corresponding to Q and its mutation µk(Q) are defined.

A-priori, there may be 16 possibilities as there are four algebra mutations to consider (negative and positive
for ΛQ and Λµk(Q)) and each of them can be either defined or not. However, our following result shows that
the question which of the algebra mutations of ΛQ at k is defined and the analogous question for Λµk(Q) are
not independent of each other, and the number of possibilities that can actually occur is only 5.

Proposition 2.30. Let Q be mutation equivalent to a Dynkin quiver and let k be a vertex of Q. Consider the
algebra mutations µ−k (ΛQ) and µ+

k (ΛQ) of the corresponding cluster-tilted algebra ΛQ.

(a) If none of these mutations is defined, then both algebra mutations µ−k (Λµk(Q)) and µ+
k (Λµk(Q)) are

defined. Obviously, the quiver mutation at k is bad.
(b) If µ−k (ΛQ) is defined but µ+

k (ΛQ) is not, then µ+
k (Λµk(Q)) is defined and µ−k (Λµk(Q)) is not, hence the

quiver mutation at k is good.
(c) If µ+

k (ΛQ) is defined but µ−k (ΛQ) is not, then µ−k (Λµk(Q)) is defined and µ+
k (Λµk(Q)) is not, hence the

quiver mutation at k is good.
(d) If both algebra mutations of ΛQ at k are defined, then either both mutations of Λµk(Q) at k are defined

or none of them is defined. Accordingly, the quiver mutation at k may be good or bad.

We now present our results concerning good mutations in type D.

Theorem 2.31. There is an algorithm which decides for two quivers which are mutation equivalent to Dn given
in parametric notation (i.e. specified by their type I,II,III,IV and the parameters), whether the corresponding
cluster-tilted algebras are good mutation equivalent or not. The running time of this algorithm is at most
quadratic in the number of parameters.

We provide also a list of “canonical forms” for good mutation equivalence.

Theorem 2.32. A cluster-tilted algebra of type D with n vertices is good mutation equivalent to one (and only
one!) of the cluster-tilted algebras with the following quivers:
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(a) Dn (i.e. type I with a linearly oriented An−2 quiver attached);

•
��@

@@
@

• // . . . // •

•

??~~~~

(b) Type II as in the following figure, where S, T ≥ 0 and S + 2T = n− 4;

•
��~~

~~
•
����
�

•
����
�

• // • 1 //

__@@@@

��~~
~~

. . . S // • 1 // •

YY333
. . . • T // •

YY333

•

__@@@@

(c) Type III as in the following figure, with S ≥ 0, the non-negative integers T1, T2 are considered up to
rotation of the sequence (T1, T2), and S + 2(T1 + T2) = n− 4;

•
��3

33
•
��3

33
•

��~~
~~

•
����
�

•
����
�

•

EE���
•T2oo . . . •

EE���
•1oo

��@
@@

@ • 1 //

__@@@@
. . . S // • 1 // •

YY333
. . . • T1 // •

YY333

•

??~~~~

(d1) Type IV with a central cycle of length n without any spikes;
1

2

3 n− 2

n− 1

n

(d2,1) Type IV with parameter sequence(
(1, S, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length b ≥ 3, with S ≥ 0 such that n = 2b + S and the attached rooted quiver of type A is linearly
oriented AS+1;

2

13

4 b

1 2 S

(d2,2) Type IV with parameter sequence(
(1, S, T1), (1, 0, 0), . . . , (1, 0, 0), (1, 0, T2), (1, 0, 0), . . . , (1, 0, 0), . . . , (1, 0, Tl), (1, 0, 0), . . . , (1, 0, 0)

)
which is a concatenation of l ≥ 1 blocks of positive lengths b1, b2, . . . , bl whose sum is not smaller than
3, with S ≥ 0 and T1, . . . , Tl > 0 considered up to rotation of the sequence(

(b1, T1), (b2, T2), . . . , (bl, Tl)
)
,

n = 2(b1 + · · ·+ bl + T1 + · · ·+ Tl) + S and the attached quivers of type A are in standard form;
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1T2 1 Tl

1S1T1

(d3,1) Type IV with parameter sequence

(
(1, 0, 0), . . . , (1, 0, 0), (3, S1, 0), . . . , (3, Sa, 0)

)
for some a > 0, where the number of the triples (1, 0, 0) is b ≥ 0, the sequence of non-negative integers
(S1, . . . , Sa) is considered up to a cyclic permutation, n = 4a+2b+S1 + · · ·+Sa and the attached rooted
quivers of type A are in standard form (i.e. linearly oriented AS1+1, . . . , ASa+1);

1S1 1 Sa

1 S2

(d3,2) Type IV with parameter sequence which is a concatenation of l ≥ 1 sequences of the form

γj =

{(
(1, 0, Tj), (1, 0, 0), . . . , (1, 0, 0), (3, Sj,1, 0), (3, Sj,2, 0), . . . , (3, Sj,aj )

)
if bj > 0,(

(3, Sj,1, Tj), (3, Sj,2, 0), . . . , (3, Sj,aj
, 0) otherwise,

where each sequence γj for 1 ≤ j ≤ l is defined by non-negative integers aj, bj not both zero, a sequence
of aj non-negative integers Sj,1, . . . , Sj,aj

and a positive integer Tj, and not all the aj are zero. All these
numbers are considered up to rotation of the l-term sequence

((
b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al

), Tl

))
,

they satisfy n =
∑l

j=1(4aj + 2bj + Sj,1 + · · · + Sj,aj + 2Tj), and the attached rooted quivers of type A
are in standard form.
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That is, the quiver is a concatenation of l ≥ 1 quivers γj of the form

γj =



1

Tj

1

Sj,1Sj,2

11

Sj,aj

if bj > 0,

1

Sj,2

11

Sj,aj
Sj,1

1

Tj

if bj = 0,

where the last vertex of γl is glued to the first vertex of γ1.

3. Good mutation equivalences

In this section we determine all the good mutations for cluster-tilted algebras of Dynkin types A and D.

3.1. Rooted quivers of type A. For a rooted quiver (Q, v) of type A, we call a mutation at a vertex other
than the root v a mutation outside the root.

Proposition 3.1. Any two rooted quivers of type A with the same numbers of lines and triangles can be
connected by a sequence of good mutations outside the root.

Remark 3.2. It is enough to show that a rooted quiver of type A can be transformed to its standard form via
good mutations outside the root.

We begin by characterizing the good mutations in Dynkin type A.

Lemma 3.3. Let Q be a quiver mutation equivalent to An. Then a mutation of Q is good if and only if it does
not change the number of triangles.

Proof. Each row of Table 3 displays a pair of neighborhoods of a vertex • in such a quiver related by a mutation
(at •). Using the description of the relations of the corresponding cluster-tilted algebras as in Remark 1.21,
we can use Proposition 1.10 and easily determine, for each entry in the table, which of the negative µ−• or the
positive µ+

• mutations is defined. Then Proposition 1.13 tells us if the quiver mutation is good or not.
By examining the entries in the table, we see that the only bad mutation occurs in row 2b, where a triangle

is created (or destroyed). �

Proof of Proposition 3.1. In view of Remark 3.2, we give an algorithm for the mutation to the standard form
above (similar to the procedures in [4] and [13]): Let Q be a rooted quiver of type A which has at least one
triangle (otherwise we get the desired orientation of a standard form by sink/source mutations as in 1 and 2a
in Table 3). For any triangle C in Q denote by vC the unique vertex of the triangle having minimal distance to
the root c. Choose a triangle C1 in Q such that to the vertices of the triangle 6= v1 := vC1 only linear parts are
attached; denote them by p1 and p2, respectively.
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1

◦
!!C

CC
C

• µ−•

◦

•

aaCCCC
µ+
• good

2a

◦
!!C

CC
C

•

◦

aaCCCC
µ−•

◦

•

aaCCCC

!!C
CC

C

◦

µ+
• good

2b

◦
!!C

CC
C

•
}}{{

{{

◦

µ−• , µ+
•

◦

��

•

aaCCCC

◦

=={{{{

none bad

3

◦
!!C

CC
C

•
}}{{

{{

◦ // ◦

aaCCCC
µ−•

◦

��

•

aaCCCC

!!C
CC

C

◦

=={{{{
◦

µ+
• good

4

◦
!!C

CC
C ◦oo

•
}}{{

{{

=={{{{

◦ // ◦

aaCCCC
µ−• , µ+

•

◦

��

◦
}}{{

{{

•

aaCCCC

!!C
CC

C

◦

=={{{{
◦

OO

µ−• , µ+
• good

Table 3. The neighborhoods in Dynkin type A and their mutations.

v1

C1

c
p

p2

p1

Denote by C2, . . . , Ck the (possibly) other triangles along the path p from v1 to c.

v1

C1

p

p2

p1

c
C2C3Ck

Q2Q3Qk

α
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Now we move all subquivers p2, Q2, . . . , Qk onto the path p1αp. For this we use the same mutations as in the
steps 1 and 2 in in [4, Lemma 3.10.]. Note that this can be done with the good mutations presented in Table 3.
Thus, we get a new complete set of triangles {C1, C

′
2, . . . , C

′
l} on the path from v1 to c:

v1

c
C ′

2C ′
3 C1C ′

l

We move all the triangles along the path to the right side. For this we use the same mutations as in step 4 in
[4, Lemma 3.10.]. We then obtain a quiver of the form

c
C1C ′

2C ′
l

�

3.2. Good mutations in types I and II. The good mutations involving quivers in types I and II are given
in Tables 4 and 5 below. In each row of these tables, we list:

(a) The quiver, where Q, Q′, Q′′ and Q′′′ are rooted quivers of type A;
(b) Which of the algebra mutations (negative µ−• , or positive µ+

• ) at the distinguished vertex • are defined;
(c) The (Fomin-Zelevinsky) mutation of the quiver at the vertex •; and for the corresponding cluster-tilted

algebra:
(d) Which of the algebra mutations at the vertex • are defined.
(e) Based on these, we determine whether the mutation is good or not, see Proposition 1.13.

To check whether a mutation is defined or not, we use the criterion of Proposition 1.10. Observe that since
the gluing process introduces no new relations, it is enough to assume that each rooted quiver of type A consists
of just a single vertex. The finite list of quivers we obtain can thus be examined by using a computer. We
illustrate the details of these checks on a few examples. Since there is at most one arrow between any two
vertices, we indicate a path by the sequence of vertices it traverses.

Example 3.4. Consider the case I.4c in Table 4. We look at the two cluster-tilted algebras Λ and Λ′ with the
following quivers

•1
!!C

CC
C •4

��

•0
}}{{

{{

=={{{{

•2 •3

aaCCCC

•1

��

// •4
}}{{

{{

•0

aaCCCC

!!C
CC

C

•2

=={{{{
•3oo

and examine their mutations at the vertex 0.
Since the arrow 1 → 0 does not appear in any relation of Λ, its composition with any non-zero path starting

at 0 is non-zero. Thus the negative mutation µ−0 (Λ) is defined. Similarly, since 0 → 2 does not appear in any
relation of Λ, its composition with any non-zero path that ends at 0 is non-zero, and the positive mutation
µ+

0 (Λ) is also defined.
Consider now Λ′. The path 0, 1, 2 is non-zero, as it equals 0, 3, 2, but both compositions 2, 0, 1, 2 and 4, 0, 1, 2

vanish because of the zero relations 2, 0, 1 and 4, 0, 1, hence µ−0 (Λ′) is not defined. Similarly, the path 1, 2, 0 is
non-zero, as it equals 1, 4, 0, but both compositions 1, 2, 0, 1 and 1, 2, 0, 3 vanish because of the zero relations
2, 0, 1 and 2, 0, 3, showing that µ+

0 (Λ′) is not defined.

Example 3.5. Consider the case I.5a in Table 4. We look at the two cluster-tilted algebras Λ and Λ′ with the
following quivers

•1
!!C

CC
C •4

��

•0

=={{{{

•2

=={{{{
•3

aaCCCC

•1
}}{{

{{

•4 // •0

aaCCCC

}}{{
{{

// •3

•2

aaCCCC
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I.1

•
��?

??
?

Q

◦

??����

µ+
•

•

Q

__????

◦

??����

µ−• good

I.2

◦

��=
==

=

• Qoo

◦

@@����

µ−•

◦

•

^^====

����
��

// Q

◦

µ+
• good

I.3a

◦

��=
==

=

• // Q

◦

@@����

µ−• , µ+
•

◦
����

��

Q // •

^^====

����
��

◦

__????

none bad

I.3b

◦

•

^^====

����
��

Qoo

◦

µ−• , µ+
•

◦

����
��

• // Q

__????

����
��

◦

^^====

none bad

I.4a

◦

��=
==

=

•

����
��

// Q

◦

µ−• , µ+
•

Q

��?
??

?

◦

??����

  B
BB

B •oo

◦

>>||||

none bad

I.4b

◦

��=
==

=

•

����
��

Qoo

◦

µ−• , µ+
•

Q

��?
??

?

•

??����

  B
BB

B ◦oo

◦

>>||||

none bad

I.4c

◦

��=
==

= Q′′

��

•

����
��

>>}}}}

◦ Q′

``AAAA
µ−• , µ+

•

◦

��

// Q′′

~~}}
}}

•

^^====

  A
AA

A

◦

@@����
Q′oo

none bad

I.5a

◦

��=
==

= Q′′

��

•

>>}}}}

◦

@@����
Q′

``AAAA
µ−•

◦
~~}}

}}

Q′′ // •

^^====

����
��

// Q′

◦

``AAAA

µ+
• good

I.5b

◦ Q′′

��

•

^^====

����
��

>>}}}}

◦ Q′

``AAAA
µ+
•

◦

����
��

Q′′ // • // Q′

``@@@@

~~~~
~~

◦

^^====

µ−• good

Table 4. Mutations involving type I quivers.



DERIVED EQUIVALENCES FOR CLUSTER-TILTED ALGEBRAS OF DYNKIN TYPE D 23

II.1

•
~~}}

}}

Q′′ // Q′

``@@@@

~~~~
~~

◦

``AAAA

µ−• , µ+
•

•
  @

@@
@

Q′′

>>}}}}
Q′

~~~~
~~

◦

``AAAA

none bad

II.2

◦
~~}}

}}

Q′′ // •

^^====

����
��

Q′oo

◦

``AAAA

µ−•

◦

����
��

Q′′ •oo // Q′

``@@@@

~~~~
~~

◦

^^====

µ+
• good

II.3

◦

����
��

�
Q′

��~~
~~

~

Q′′ // •

\\:::::

����
��

�
��@

@@
@@

◦

__>>>>>
Q′′′

OO

µ−• , µ+
•

Q′′′

��@
@@

@@
◦

����
��

�

•

��~~
~~

~
// Q′

^^====

����
��

Q′′

OO

◦

\\:::::

µ−• , µ+
• good

Table 5. Mutations involving type II quivers.

and examine their mutations at the vertex 0.
As in the previous example, since the arrow 1 → 0 (or 2 → 0) does not appear in any relation of Λ, the

negative mutation µ−0 (Λ) is defined. But µ+
0 (Λ) is not defined since the composition of the arrow 3 → 0 with

0 → 4 vanishes. Similarly for Λ′, the positive mutation µ+
0 (Λ′) is defined since the arrow 0 → 3 does not appear

in any relation, and µ−0 (Λ′) is not defined since the composition of the arrow 4 → 0 with the arrow 0 → 1
vanishes.

Example 3.6. Consider the case II.3 in Table 5. We will show that if Λ is one of the cluster-tilted algebras
with the quivers given below

•1
}}{{

{{
•3

α

}}{{
{{

•4 α′ // •0

aaCCCC

β′}}{{
{{

β !!C
CC

C

•2

aaCCCC
•5

OO •5
α

!!C
CC

C •1
α′

}}{{
{{

•0
β}}{{

{{ β′
// •3

aaCCCC

}}{{
{{

•4

OO

•2

aaCCCC

then both algebra mutations µ−0 (Λ) and µ+
0 (Λ) are defined.

Indeed, let p = γ1γ2 . . . γr be a non-zero path starting at 0 written as a sequence of arrows. If γ1 6= β, then
the composition α · p is not zero, whereas otherwise the composition α′ · p is not zero, hence µ−0 (Λ) is defined.
Similarly, if p = γ1 . . . γr is a non-zero path ending at 0, then composition p · β is not zero if γr 6= α, and
otherwise p · β′ is not zero, hence µ+

0 (Λ) is defined as well.

3.3. Good mutations in types III and IV. These are given in Tables 6 and 7. Table 6 is computed in a
similar way to Tables 4 and 5. In Table 7, the dotted lines indicate the central cycle, and the two vertices at the
sides may be identified (for the right quivers in IV.2a and IV.2b, these identifications lead to the left quivers of
III.1 and III.2). The proof that all the mutations listed in that table are good relies on the lemmas below.

Mutations at vertices on the central cycle are discussed in Lemmas 3.7, 3.10 and 3.13, whereas mutations at
the spikes are discussed in Lemmas 3.8 and 3.11. The moves IV.1a and IV.1b in Table 7 follow from Corollary 3.9.
The moves IV.2a and IV.2b follow from Corollary 3.12. Lemma 3.13 implies that there are no additional good
mutations involving type IV quivers.
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III.1

◦

����
��

�
Q′

����
��

Q′′

  A
AA

A
•

\\:::::

◦

@@����

µ−•

◦

����
��

�

��:
::

::
Q′oo

Q′′

  A
AA

A
•

����
��

@@����

◦

OO

µ+
• good

III.2

◦
~~}}

}}

Q′′

��>
>>

>>
•

^^====

��=
==

=

◦

BB�����
Q′

µ+
•

◦
~~}}

}}
��=

==
=

Q′′

��>
>>

>>
•

����
��

�

◦

OO

// Q′

^^====
µ−• good

III.3

◦

����
��

�
Q′

��~~
~~

~

Q′′

��>
>>

>>
•

\\:::::

��@
@@

@@

◦

BB�����
Q′′′

OO

µ−• , µ+
•

◦

����
��

�

��:
::

::
Q′oo

Q′′

��>
>>

>>
•

����
��

�

??~~~~~

◦

OO

// Q′′′

__@@@@@

none bad

Table 6. Mutations involving type III quivers.

IV.1a

•
xxrrrr◦

��

◦
ffLLLL

%%KK
KK

Q
yysss

s
◦ ◦

OO
µ−•

•

��1
11

1

◦

FF





��






◦oo // Q

����
��

◦ ◦

XX1111
µ+
•

IV.1b

•
xxrrrr◦

��

◦
ffLLLL

Q

99ssss

◦
eeKKKK

◦

OO
µ+
•

•

��1
11

1

Q // ◦

FF





��






◦oo

◦

YY3333
◦

XX1111
µ−•

IV.2a

Q′

%%KK
KK

•
wwpppp

◦

OO

◦
ffLLLL

&&LL
LL

Q′′

xxrrrr◦

OO µ−•

Q′ •oo

��/
//

//

◦

GG�����
◦oo // Q′′

����
��

◦

XX1111

µ+
•

IV.2b

Q′

��
•

xxrrrr

99ssss

◦

��

◦
ggNNNN

Q′′

88rrrr

◦
ffLLLL

µ+
•

•

��/
//

//
Q′oo

Q′′ // ◦

GG�����

��






◦oo

◦

ZZ6666

µ−•

Table 7. Good mutations involving type IV quivers.
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Lemma 3.7. Let m ≥ 2 and consider a cluster-tilted algebra Λ of type IV with the quiver

(3.1)

•0
xxppp

pp
•1

��

•m

ggOOOOO

''N
NN

Q+

88ppp
Q−

wwp p p

•2
ffN N N

•

OO

having a central cycle 0, 1, . . . ,m and optional spikes Q− and Q+ (which coincide when m = 2). Then:

(a) µ−0 (Λ) is defined if and only if the spike Q− is present.
(b) µ+

0 (Λ) is defined if and only if the spike Q+ is present.

Proof. We prove only the first assertion, as the proof of the second is similar.
We use the criterion of Proposition 1.10. The negative mutation µ−0 (Λ) is defined if and only if the composition

of the arrow m → 0 with any non-zero path starting at 0 is not zero. This holds for all such paths of length
smaller than m−1, so we only need to consider the path 0, 1, . . . ,m−1. Now, the composition m, 0, 1, . . . ,m−1
vanishes if Q− is not present, and otherwise equals the (non-zero) path m, v−,m− 1 where v− denotes the root
of Q−. �

Lemma 3.8. Let m ≥ 3 and consider a cluster-tilted algebra Λ of type IV with the quiver

(3.2)

•0

��6
66

66

Q+
//___ •1

DD					

��		
		

	
•moo //___ Q−

��	
	

	

•2

[[7
7

7
•

ZZ44444

having a central cycle 1, 2, . . . ,m and optional spikes Q− and Q+. Then:

(a) µ−0 (Λ) is defined if and only if the spike Q− is not present.
(b) µ+

0 (Λ) is defined if and only if the spike Q+ is not present.

Proof. We prove only the first assertion, as the proof of the second is similar.
We use the criterion of Proposition 1.10. The negative mutation µ−0 (Λ) is defined if and only if the composition

of the arrow 1 → 0 with any non-zero path starting at 0 is not zero. For the path 0,m, the composition 1, 0,m
equals the path 1, 2, . . . ,m and hence it is non-zero. This shows that µ−0 (Λ) is defined when Q− is not present.
When Q− is present, the path 0,m, v− to the root v− of Q− is non-zero, but the composition 1, 0,m, v− equals
the path 1, 2, . . . ,m, v− which is zero since the path m− 1,m, v− vanishes �

Corollary 3.9. Let Λ be a cluster-tilted algebra corresponding to a quiver as in (3.1) and let Λ′ be the one
corresponding to its mutation at 0, as in (3.2). The following table lists which of the algebra mutations at 0 are
defined for Λ and Λ′ depending on whether the optional spikes Q− or Q+ are present (“yes”) or not (“no”).

Q− Q+ Λ Λ′

yes yes µ−, µ+ none bad
yes no µ− µ+ good
no yes µ+ µ− good
no no none µ−, µ+ bad



26 JANINE BASTIAN, THORSTEN HOLM, AND SEFI LADKANI

Lemma 3.10. Let m ≥ 2 and consider cluster-tilted algebras Λ− and Λ+ of type IV with the following quivers

Q0

&&MM
MMM

•0
wwooo

oo

•1

OO

•m

ggOOOOO

''N
NN

Q−

wwo o o

•

OO

Q0

��
•0

xxppp
pp

88qqqqq

•1

��

•m

ggOOOOO

Q+

88ppp

•2
ffN N N

(3.3)

having a central cycle 0, 1, . . . ,m and optional spikes Q− or Q+. Then:

(a) µ+
0 (Λ−) is never defined;

(b) µ−0 (Λ−) is defined if and only if the spike Q− is present;
(c) µ−0 (Λ+) is never defined;
(d) µ+

0 (Λ+) is defined if and only if the spike Q+ is present.

Proof. We prove only the first two assertions, the proof of the others is similar.

(a) Let v0 denote the root of Q0. Then the path v0, 0 is non-zero whereas v0, 0, 1 is zero.
(b) Since the path v0, 0, 1 is zero, the composition of the arrow v0 → 0 with any non-trivial path starting

at 0 is zero. Therefore the negative mutation at 0 is defined if and only if the composition of the arrow
m → 0 with any non-zero path starting at 0 is not zero, and the proof goes in the same manner as in
Lemma 3.7.

�

Lemma 3.11. Let m ≥ 3 and consider cluster-tilted algebras Λ− and Λ+ of type IV with the following quivers

Q0 •0oo

��5
55

55
5

•1

EE






•moo //___ Q−

���
�
�

•

ZZ55555

•0

��5
55

55
5 Q0
oo

Q+
//___ •1

EE







��		
		

	
•moo

•2

[[7
7

7

(3.4)

having a central cycle 1, . . . ,m and optional spikes Q− or Q+. Then:

(a) µ+
0 (Λ−) is always defined;

(b) µ−0 (Λ−) is defined if and only if the spike Q− is not present;
(c) µ−0 (Λ+) is always defined;
(d) µ+

0 (Λ+) is defined if and only if the spike Q+ is not present.

Proof. We prove only the first two assertions, the proof of the others is similar.

(a) Let v0 denote the root of Q0. Then the composition of any non-zero path ending at 0 with the arrow
0 → v0 is not zero.

(b) Since the composition of the arrow 1 → 0 with any non-zero path whose first arrow is 0 → v0 is not zero,
we only need to consider paths whose first arrow 0 → m. The proof is then the same as in Lemma 3.8.

�

Corollary 3.12. Let Λ− and Λ+ be cluster-tilted algebras corresponding to quivers as in (3.3) and let Λ′− and
Λ′+ be the ones corresponding to their mutations at 0, as in (3.4). The following tables list which of the algebra
mutations at 0 are defined for Λ−, Λ′−, Λ+ and Λ′+ depending on whether the optional spikes Q− or Q+ are
present (“yes”) or not (“no”).

Q− Λ− Λ′−
yes µ− µ+ good
no none µ−, µ+ bad

Q+ Λ+ Λ′+
yes µ+ µ− good
no none µ−, µ+ bad
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Lemma 3.13. Let m ≥ 2 and consider a cluster-tilted algebra Λ of type IV with the following quiver

Q′′
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having a central cycle 0, 1, . . . ,m. Then the algebra mutations µ−0 (Λ) and µ+
0 (Λ) are never defined.

Proof. Denote by v′, v′′ the roots of Q′ and Q′′, respectively, and consider the path 0, 1, . . . ,m. It is non-zero,
since it equals the path 0, v′,m. However, its composition with the arrow v′′ → 0 is zero since the path v′′, 0, 1
vanishes, and its composition with the arrow m → 0 is zero as well, since it equals m, 0, v′,m and the path
m, 0, v′ vanishes. By Proposition 1.10, the mutation µ−0 (Λ) is not defined. The proof for µ+

0 (Λ) is similar. �

4. Further derived equivalences in types III and IV

4.1. Good double mutations in types III and IV. The good double mutations we consider in this section
consist of two algebra mutations. The first takes a cluster-tilted algebra Λ to a derived equivalent algebra which
is not cluster-tilted, whereas the second takes that algebra to another cluster-tilted algebra Λ′, thus obtaining a
derived equivalence of Λ and Λ′. As already demonstrated in Example 2.15, these derived equivalences cannot
in general be obtained by performing sequences consisting of only good mutations.

Lemma 4.1. Let m ≥ 3 and consider a cluster-tilted algebra Λ = Λ
eQ of type IV with the quiver Q̃ as in the

left picture
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having a central cycle 1, . . . ,m and optional spikes Q− and Q+. Let µ0(Q̃) denote the mutation of Q̃ at the
vertex 0, as in the right picture. Then:

(a) µ−0 (Λ) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Λµ0( eQ) by the ideal
generated by the path p given by

p =

{
1, 2, . . . ,m, 0 if the spike Q− is present,
2, . . . ,m, 0 otherwise.

(b) µ+
0 (Λ) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Λµ0( eQ) by the ideal

generated by the path p given by

p =

{
0, 1, . . . ,m if the spike Q+ is present,
0, 1, . . . ,m− 1 otherwise.

Proof. We prove only the first assertion and leave the second to the reader. Let Λ = Λ
eQ be the cluster-tilted

algebra corresponding to the quiver Q̃ depicted as
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Q+Q−
1 m

2 m− 1

a b
Q′′ Q′

α6

α7 α8

α3

α5

α4 α2

α1

0

It is easily seen using Proposition 1.10 that the negative mutation µ−0 (Λ) is defined. In order to describe it
explicitly, we recall that µ−0 (Λ) = EndDb(Λ)(T

−
0 (Λ)), where

T−
0 (Λ) =

(
P0

(α1,α2)−−−−−→ (P1 ⊕ Pb)
)
⊕

(⊕
i>0

Pi

)
= L0 ⊕

(⊕
i>0

Pi

)
.

Using an alternating sum formula of Happel [20] we can compute the Cartan matrix of µ−0 (Λ) to be

Cµ−0 (Λ) =

0 1 m a b 2 (m− 1) · · ·
0 1 1 1 0 1 1 1 · · ·
1 0 1 1 1 0 1 1 · · ·
m 1 1 1 0 0 1 ? · · ·
a 1 0 0 1 1 0 0 · · ·
b 0 0 1 0 1 0 0 · · ·
2 1/ 0 1/0 1 0 0 1 1 · · ·

(m− 1) 1 1 1 0 0 ? 1 · · ·
...

...
...

...
...

...
...

...

where 1/0 means 1 if Q− is present and 0 if Q− is not present.
Now to each arrow of the following quiver we define a homomorphism of complexes between the summands

of T−
0 (Λ).

Q− Q+

a b
Q′′ Q′

1

2

m

m− 1

0

α (α6, 0)

β(0, α5)

α1α4 α2α3

α7 α8

First we have the embeddings α := (id, 0) : P1 → L0 and β := (0, id) : Pb → L0 (in degree zero). Moreover,
we have the homomorphisms α1α4 : Pa → P1, α2α3 : Pm → Pb, (α6, 0) : L0 → Pm and (0, α5) : L0 → Pa. All
the other homomorphisms are as before.

Now we have to show that these homomorphisms satisfy the defining relations of the algebra Λµ0( eQ)/I(p), up
to homotopy, where I(p) is the ideal generated by the path p stated in the lemma. Clearly, the concatenation of
(0, α5) and α and the concatenation of (α6, 0) and β are zero-relations. The concatenation of α2α3 and (α6, 0)
is zero as before. It is easy to see that the two paths from vertex 0 to vertex m are the same since (0, α2α3) is
homotopic to (α7 . . . α8, 0) (and α7 . . . α8 = α1α3 in Λ). The path from vertex 0 to vertex a is zero since (α1α4, 0)
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is homotopic to zero. There is no non-zero path from vertex 1 to vertex 0 since (0, α1α4α5) = 0 = (α7 . . . α8α6, 0).
This corresponds to the path p in the case if Q− is present and is marked in the Cartan matrix by a box. If
Q− is not present then the path from vertex 2 to vertex 0 is already zero since (. . . α8α6, 0) = 0 which is also
marked in the Cartan matrix above. Thus, µ−0 (Λ) is isomorphic to the quotient of the cluster-tilted algebra
Λµ0( eQ) by the ideal generated by the path p. �

Corollary 4.2. The two cluster-tilted algebras with quivers

Q′′ // Q′

����
��

�

•0

[[66666

��6
66

66

Q′′′ // •1

CC�����

����
��

�
•moo

•2

[[88888

Q′′′ // Q′′

����
��

�

•1

[[88888

��6
66

66

•2

CC������
•0oo // Q′

����
��

�

•m

\\888888

(where Q′, Q′′ and Q′′′ are rooted quivers of type A) are related by a good double mutation (at the vertex 0 and
then at 1).

Proof. Denoting the left algebra by ΛL and the right one by ΛR, we see that µ−0 (ΛL) ' µ+
1 (ΛR), as by Lemma 4.1

these algebra mutations are isomorphic to quotient of the cluster-tilted algebra of the quiver
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by the ideal generated by the path 1, 2, . . . ,m, 0. �

There is an analogous version of Lemma 4.1 for cluster-tilted algebras in type III, corresponding to the case
where m = 2, and the spikes Q− and Q+ coincide (and are present). That is, there is a central cycle of length
m = 2 (hence it is “invisible”) with all spikes present.

Lemma 4.3. Consider the cluster-tilted algebra Λ
eQ of type III whose quiver Q̃ is shown in the left picture,

where Q′, Q′′ and Q′′′ are rooted quivers of type A.
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Let µ0(Q̃) denote the mutation of Q̃ at the vertex 0, as in the right picture. Then:

(a) µ−0 (Λ) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Λµ0( eQ) by the ideal
generated by the path βγ.

(b) µ+
0 (Λ) is always defined and is isomorphic to the quotient of the cluster-tilted algebra Λµ0( eQ) by the ideal

generated by the path αβ.
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Corollary 4.4. The cluster-tilted algebras of type III with quivers
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(where Q′, Q′′ and Q′′′ are rooted quivers of type A) are related by a good double mutation (at 0 and then at 1).

4.2. Self-injective cluster-tilted algebras. The self-injective cluster-tilted algebras have been determined
by Ringel in [30]. They are all of Dynkin type Dn, n ≥ 3. Fixing the number n of vertices, there are one or two
such algebras according to whether n is odd or even. Namely, there is the algebra corresponding to the cycle
of length n without spikes, and when n = 2m is even, there is also the one of type IV with parameter sequence(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length m.

The following lemma shows that these two algebras are in fact derived equivalent. Note that this could also
be deduced from the derived equivalence classification of self-injective algebras of finite representation type [2].

Lemma 4.5. Let m ≥ 3. Then the cluster-tilted algebra of type IV with a central cycle of length 2m without any
spike is derived equivalent to that in type IV with parameter sequence

(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length

m.

Proof. Let Λ be the cluster-tilted algebra corresponding to a cycle of length 2m as in the left picture.

1

2

3 2m− 2

2m

2m− 1

α1

α2

α2m

α2m−1

α2m−2

13

2

5

4

2m− 1

2m

We leave it to the reader to verify that the following complex of projective Λ-modules

T =
( m⊕

i=1

(
P2i

α2i−1−−−−→ P2i−1

))
⊕

( m⊕
i=1

P2i−1

)
(where the terms P2i−1 are always at degree 0) is a tilting complex whose endomorphism algebra EndDb(Λ)(T )
is isomorphic to the cluster-tilted algebra whose quiver is given in the right picture. �

5. Algorithms and standard forms

In this section we provide standard forms for derived equivalence (Theorem 2.3) as well as ones for good
mutation equivalence (Theorem 2.32) of cluster-tilted algebras of type D. We also describe an explicit algorithm
which decides on good mutation equivalence (Theorem 2.31).

5.1. Good mutations and double mutations in parametric form. We start by describing all the good
mutations determined in Section 3 using the parametric notation of Section 1.6 which would be useful in the
sequel. Note that by Proposition 3.1 two quivers with the same type and parameters are indeed equivalent by
good mutations so this notation makes sense.

Each row of Table 8 describes a good mutation between two quivers of cluster-tilted algebras of type D
given in parametric form. The numbers s′, s′′, s′′′, t′, t′′, t′′′ are arbitrary non-negative and correspond to the
parameters of the rooted quivers Q′, Q′′, Q′′′ of type A appearing in the corresponding pictures (referenced by
the column “Move”).

By looking at the first four rows of the table we immediately draw the following conclusions.

Lemma 5.1. Consider quivers of type I or II.
(a) The subset consisting of the quivers of type I or II is closed under good mutations.
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Move Type Parameters Type Parameters Remarks
I.5a I (s′ + s′′, t′ + t′′ + 1) II (s′ + 1, t′, s′′, t′′)
I.5b I (s′ + s′′, t′ + t′′ + 1) II (s′, t′, s′′ + 1, t′′)
II.2 II (s′ + 1, t′, s′′, t′′) II (s′, t′, s′′ + 1, t′′)
II.3 II (s′ + s′′′, t′ + t′′′ + 1, s′′, t′′) II (s′, t′, s′′ + s′′′, t′ + t′′′ + 1)
III.1 III (s′ + 1, t′, s′′, t′′) IV

(
(2, s′, t′), (1, s′′, t′′)

)
III.2 III (s′ + 1, t′, s′′, t′′) IV

(
(1, s′, t′), (2, s′′, t′′)

)
IV.1a IV

(
(d1, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1, t1), (d1 − 2, 0, 0), (d2, s2, t2), . . .

)
d1 ≥ 4

IV.1b IV
(
(d1, s1, t1), (d2, s2, t2), . . .

)
IV

(
(d1 − 2, s1, t1), (1, 0, 0), (d2, s2, t2), . . .

)
d1 ≥ 4

IV.2a IV
(
(2, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1, t1), (d2, s2 + 1, t2), . . .

)
IV.2b IV

(
(2, s1, t1), (d2, s2, t2), . . .

)
IV

(
(1, s1 + 1, t1), (d2, s2, t2), . . .

)
Table 8. All good mutations in parametric form.

(b) The subset consisting of all the orientations of a Dn diagram is closed under good mutations
(c) A quiver in type I with parameters (s, t + 1) for some s, t ≥ 0 is equivalent by good mutations to one in

type II with parameters (s + 1, t, 0, 0).
(d) A quiver in type II with parameters (s′, t′, s′′, t′′) is equivalent by good mutations to one in type II with

parameters (s′ + s′′, t′ + t′′, 0, 0).
(e) Two quivers in type II with parameters (s1, t1, 0, 0) and (s2, t2, 0, 0) are equivalent by good mutations if

and only if s1 = s2 and t1 = t2.

Lemma 5.2. Consider quivers of type III.
(a) A quiver of type III with parameters (s′+1, t′, s′′, t′′) is good mutation equivalent to one of type III with

parameters (s′, t′, s′′ + 1, t′′).
(b) A quiver of type III with parameters (s′, t′, s′′, t′′) is good mutation equivalent to one of type III with

parameters (s′ + s′′, t′, 0, t′′).

Proof. (a) We have

III(s′ + 1, t′, s′′, t′′) III.1−−−→ IV
(
(2, s′, t′), (1, s′′, t′′)

)
' IV

(
(1, s′′, t′′), (2, s′, t′)

) III.2−−−→ III(s′′ + 1, t′′, s′, t′)

' III(s′, t′, s′′ + 1, t′′)

where the isomorphisms follow from rotational symmetries.
(b) Follows from the first part.

�

Remark 5.3. The previous lemma shows that in type III, it is possible to move linear parts in the rooted
quivers of type A from side to side by using good mutations. It is not possible, however, to move triangles by
good mutations (see III.3 in Table 6 and Example 2.15).

For the next two lemmas we need the following terminology on spikes in quivers of type IV. Spikes are
consecutive if the distance (di) between them is 1. A spike is free if the attached rooted quiver of type A
consists of just a single vertex.

Lemma 5.4. Consider quivers of type IV. A free spike at the end of a group of at least two consecutive spikes
can be moved by good mutations to the next group of consecutive spikes. In other words, the two quivers with
parameters

(
(1, s, t), (d, 0, 0), . . .

)
and

(
(d, s, t), (1, 0, 0), . . .

)
are connected by good mutations.

Proof. We assume d ≥ 2, otherwise there is nothing to prove. Then(
(1, s, t), (d, 0, 0), . . .

) IV.1a−−−→
(
(d + 2, s, t), . . .

) IV.1b−−−→
(
(d, s, t), (1, 0, 0), . . .

)
.

�

Lemma 5.5. Lines in a rooted quiver of type A attached to a spike in a group of consecutive spikes in a quiver
of type IV can be moved by good mutations to a rooted quiver attached to any spike in that group.
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Type Parameters Type Parameters
III (s′ + s′′, t′ + t′′ + 1, s′′′, t′′′) III (s′, t′, s′′ + s′′′, t′′ + t′′′ + 1)
IV

(
(1, s′ + s′′, t′ + t′′ + 1), (d2, s

′′′, t′′′), . . .
)

IV
(
(1, s′, t′), (d2, s

′′ + s′′′, t′′ + t′′′ + 1), . . .
)

Table 9. Good double mutations in parametric form.

Proof. It suffices to show that the two quivers with parameters
(
(1, s1, t1), (d2, s2 + 1, t2), . . .

)
and

(
(1, s1 +

1, t1), (d2, s2, t2), . . .
)

are good mutation equivalent. Indeed,(
(1, s1, t1), (d2, s2 + 1, t2), . . .

) IV.2a−−−→
(
(2, s1, t1), (d2, s2, t2), . . .

) IV.2b−−−→
(
(1, s1 + 1, t1), (d2, s2, t2), . . .

)
.
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We now turn to good double mutations as determined in Section 4. They are presented in parametric form
in Table 9, based on Corollaries 4.2 and 4.4. Using them, we can achieve the following further transformations
of quivers in types III and IV described in the next lemmas.

Lemma 5.6. Consider quivers of type III.
(a) A quiver of type III with parameters (s′, t′ + 1, s′′, t′′) is equivalent by good double mutations to one of

type III with parameters (s′, t′, s′′, t′′ + 1).
(b) A quiver of type III with parameters (s′, t′, s′′, t′′) can be transformed using good mutations and good

double mutations to one of type III with parameters (s′ + s′′, t′ + t′′, 0, 0).

Proof. (a) Follows from the first row in Table 9.
(b) Follows from the first part together with Lemma 5.2.

�

Lemma 5.7. Triangles in a rooted quiver of type A attached to a spike in a group of consecutive spikes in a
quiver of type IV can be moved by good double mutations to a rooted quiver attached to any spike in that group.

Proof. It suffices to show that the two quivers with parameters
(
(1, s1, t1), (d2, s2, t2 + 1), . . .

)
and

(
(1, s1, t1 +

1), (d2, s2, t2), . . .
)

are equivalent by good double mutation. Indeed, setting (s′′, t′′) = (0, 0) in the second row
of Table 9 shows this equivalence. �

Remark 5.8. A careful look at Tables 8 and 9 shows that one can regard type III quivers with parameters
(s′, t′, s′′, t′′) as “formal” type IV quivers with parameters

(
(1, s′, t′), (1, s′′, t′′)

)
. Indeed, the good mutation

moves III.1 and III.2 in Table 8 then become just specific cases of moves IV.2b and IV.2a, respectively, and the
first row in Table 9 becomes a specific instance of the second.

5.2. Standard forms for derived equivalence. In this section we prove Theorem 2.3. Namely, given a
quiver Q of a cluster-tilted algebra of Dynkin type D, we show how to find a quiver in one of the standard forms
of Theorem 2.3 whose cluster-tilted algebra is derived equivalent to that of Q.

Indeed, if Q is of type I or II, then by Lemma 5.1 we can transform it by good mutations to a quiver in the
classes (a) or (b) in Theorem 2.3, thus proving the derived equivalence for this case. Similarly, if Q is of type
III, then by Lemma 5.2 and Lemma 5.6 the corresponding cluster-tilted algebra is derived equivalent to a one
in class (c) of the theorem.

Let Q be a quiver of type IV. If it is a cycle without any spikes, we distinguish two cases. If the number
of vertices is even, then by Lemma 4.5 the corresponding cluster-tilted algebra is derived equivalent to another
one in type IV with spikes. Otherwise, it gives rise to the standard form (d1).
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If Q is of type IV with some spikes, let
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
be its parameters. By iteratively

applying the good mutations IV.1a (or IV.1b) we can repeatedly shorten by 2 all the distances di ≥ 4 until they
become 2 or 3. By applying the good mutations IV.2a (or IV.2b) we can shorten further any distance 2 to a
distance of 1. Thus we get a parameter sequence where all distances di are either 1 or 3.

If all the distances are 1, we are in class (d2) when they sum up to at least 3 or in class (c) otherwise. The
latter case can be dealt with Lemma 5.2 and Lemma 5.6 yielding the required standard form, whereas for the
former we note that by Lemma 5.5 and Lemma 5.7 we can successively move all the lines and triangles of the
attached rooted quivers of type A and concentrate them on a single spike, yielding the standard form of (d2).

Otherwise, when there is at least one distance of 3, we observe the following. Consider a group of consecutive
spikes. By Lemma 5.5 and Lemma 5.7, inside such a group one can always concentrate the attached type A
quivers at one of the spikes in the group, thus creating a free spike at the end of the group. By Lemma 5.4 this
free spike can then be moved to the beginning of the next group. In this way, one can move all spikes of the
group except one to the next group, thus creating a single spike with some rooted quiver of type A attached.

Continuing in this way, we can eventually merge all groups of at least two consecutive spikes into one large
group, with all the other spikes being single spikes. In other words, the sequence of distances will look like
(1, 1, . . . , 1, 3, 3, . . . , 3). At this large group of consecutive spikes, one can concentrate the rooted quivers of type
A at the last spike, yielding exactly the standard form occurring in (d3) of Theorem 2.3.

To complete the proof of Theorem 2.3, we show how to distinguish among standard forms which are not of
the class (d3). First, observe that when the number n of vertices is odd, the form in the class (d1) corresponds
to the unique self-injective cluster-tilted algebra with n vertices [30], hence it is distinguished by the fact that
being self-injective is invariant under derived equivalence [1].

The standard forms in all other classes (except (d3)) can be distinguished by the determinants of their Cartan
matrices. Indeed, these are given in the list below

1
(a)

2t+1

(b)
3 · 2t

(c)
(2b− 1) · 2t

(d2)

from which it is clear how to distinguish among the standard forms.

5.3. Algorithm for good mutation equivalence. In this section we prove Theorem 2.31 and Theorem 2.32.
We first observe that by Lemma 5.1 the set of quivers of types I or II is closed under good mutations, and
moreover that lemma completely characterizes good mutation equivalence among these quivers in terms of their
parameters, leading to the classes (a) and (b) in Theorem 2.32. We observe also that the cyclic quiver of type
IV without any spikes does not admit any good mutations, thus it falls into a separate equivalence class (d1)
in that theorem. Therefore we are left to deal only with quivers of types III and IV (with spikes). Before
describing the algorithm, we introduce a few notations.

Notation 5.9. Given r ≥ 1 and a non-empty subset φ 6= I ⊆ {1, 2, . . . , r}, we define the following two partitions
of the set {1, 2, . . . , r}. Write the elements of I in an increasing order 1 ≤ i1 < i2 < · · · < il ≤ r for l = |I|, and
define the intervals

i+1 = {i1, i1 + 1, . . . , i2 − 1} i−1 = {il + 1, . . . , r, 1, . . . , i1}
i+2 = {i2, i2 + 1, . . . , i3 − 1} i−2 = {i1 + 1, . . . , i2 − 1, i2}

. . . . . .

i+l = {il, . . . , r, 1, . . . , i1 − 1} i−l = {il−1 + 1, . . . , il − 1, il}

We call the partition i+1 ∪ i+2 ∪ · · · ∪ i+l the positive partition defined by I. Similarly, we call i−1 ∪ i−2 ∪ · · · ∪ i−l
the negative partition defined by I.

Notation 5.10. We partition the set of positive integers as N1 ∪N2 ∪N3, where

N1 = {1}, N2 = {n ≥ 2 : n is even}, N3 = {n ≥ 3 : n is odd} .
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Notation 5.11. Given a sequence
(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
of triples of non-negative integers and

a subset I of {1, . . . , r}, we define the quantities

a(I) = |{i ∈ I : di ∈ N3}|,

b(I) = |{i ∈ I : di ∈ N1}|+
∑

i∈I : di∈N2

di

2
+

∑
i∈I : di∈N3

di − 3
2

,

s(I) = |{i ∈ I : di ∈ N2}|+
∑
i∈I

si.

Algorithm 5.12 (Good mutation class). Given a non-empty sequence of triples of non-negative integers(
(d1, s1, t1), (d2, s2, t2), . . . , (dr, sr, tr)

)
such that

• di ≥ 1 and si, ti ≥ 0 for all 1 ≤ i ≤ r,
• d1 + d2 + · · ·+ dr ≥ 2 and (d1, . . . , dr) 6= (2),

parameterizing a quiver of type III or IV (with spikes), we output its class (c), (d2,1), (d2,2), (d3,1) or (d3,2)
and the parameters in that class as specified in Theorem 2.32 by performing the following operations.

1. Compute the subsets

ID = {1 ≤ i ≤ r : di ∈ N3}, IT = {1 ≤ i ≤ r : ti > 0}.

2. If ID = φ and IT = φ, set b, S as

b = b({1, 2, . . . , r}), S = s({1, 2, . . . , r}).

If b ≥ 3, we are in class (d2,1), otherwise we are in class (c) with parameters (S, 0, 0, 0)
3. If ID = φ and IT 6= φ, enumerate the elements of IT in increasing order as IT = {i1 < i2 < · · · < il}

with l = |IT |, and set bj , Tj for 1 ≤ j ≤ l and S as

bj = b(i+j ), Tj = tij , S = s({1, 2, . . . , r}).

If b1 + · · ·+ bl ≥ 3, we are in class (d2,2). Otherwise, we are in class (c) with parameters (S +T1, 0, 0, 0)
if l = 1 or (S + T1, 0, T2, 0) if l = 2.

4. If ID 6= φ and IT = φ, enumerate the elements of ID in increasing order as ID = {i1,1 < i1,2 < · · · <
i1,a} and set a, b and S1, . . . , Sa as

a = a({1, 2, . . . , r}) = |ID|, b = b({1, 2, . . . , r}), Sj = s(i−1,j).

We are in class (d3,1).
5. If ID 6= φ and IT 6= φ, enumerate the elements of IT in increasing order as IT = {i1 < i2 < · · · < il}

with l = |IT |. For any 1 ≤ j ≤ l,
• Enumerate the elements of i+j ∩ID (where the positive partition is taken with respect to the subset
IT ) in the order they appear within the interval i+j as ij,1 < ij,2 < · · · < ij,a(i+j ).

• Set aj , bj , Tj and Sj,1, . . . , Sj,aj
as

aj = a(i+j ), bj = b(i+j ), Tj = tij
, (Sj,1, . . . , Sj,aj

) =
(
s(i−j,1), s(i

−
j,2), . . . , s(i

−
j,a(i+j )

)
)

with the positive partition taken with respect to IT and the negative one with respect to ID.
We are in class (d3,2).

Notation 5.13. We call two sequences (v0, v1, . . . , vm−1) and (w0, w1, . . . , wm−1) cyclic equivalent if there is
some 0 ≤ j ≤ m such that wi = v(i+j) mod m for all 0 ≤ i < m.

Definition 5.14. We define the space S of good mutation parameters as a disjoint union of the following five
sets. We also define an equivalence relation ∼ on S inside each set, and agree that elements from different sets
are inequivalent.

(c) Triples (T1, T2, S) of non-negative integers. (T1, T2, S) ∼ (T ′
1, T

′
2, S

′) if and only if S = S′ and (T1, T2),
(T ′

1, T
′
2) are cyclic equivalent.

(d2,1) Pairs (b, S) with b ≥ 3 and S ≥ 0. (b, S) ∼ (b′, S′) if and only if b = b′ and S = S′.
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(d2,2) Pairs ((
(b1, T1), (b2, T2), . . . , (bl, Tl)

)
, S

)
for some l ≥ 1, where the numbers bj , Tj are positive, b1 + · · · + bl ≥ 3 and S ≥ 0. Two such pairs
are equivalent if and only if S = S′ and

(
(b1, T1), (b2, T2), . . . , (bl, Tl)

)
,
(
(b′1, T

′
1), (b

′
2, T

′
2), . . . , (b

′
l, T

′
l )

)
are

cyclic equivalent.
(d3,1) Pairs

(
b, (S1, . . . , Sa)

)
where b ≥ 0 and (S1, . . . , Sa) is a sequence of a > 0 non-negative integers. Two

such pairs are equivalent if and only if b = b′ and (S1, . . . , Sa), (S′1, . . . , S
′
a) are cyclic equivalent.

(d3,2) Sequences((
b1, (S1,1, . . . , S1,a1), T1

)
,
(
b2, (S2,1, . . . , S2,a2), T2

)
, . . . ,

(
bl, (Sl,1, . . . , Sl,al

), Tl

))
,

of any length l ≥ 1, where for any 1 ≤ j ≤ l the numbers aj , bj are non-negative integers not both zero,
(Sj,1, . . . , Sj,aj

) is a (possibly empty) sequence of aj non-negative integers and Tj is a positive integer.
The relation ∼ is just cyclic equivalence.

Remark 5.15. It is easy to decide whether two good mutation parameters are equivalent or not, because this
involves only checking for cyclic equivalence.

Algorithm 5.12 in fact computes a map Σ : Q → S from the set Q of all quivers of types III or IV (with spikes)
to the set S of good mutation parameters. On the other hand, the standard forms stated in Theorem 2.32 can
be seen as a map Q : S → Q. We also have two natural equivalence relations on these sets: the equivalence
relation ∼ defined on S via cyclic equivalence, and the good mutation equivalence on Q, which we also denote
by ∼. The correctness of the algorithm is guaranteed by the following proposition whose proof is long but
straightforward building on arguments similar to those presented in Section 5.2, and is therefore left to the
interested reader.

Proposition 5.16. Let q, q′ ∈ Q and σ, σ′ ∈ S.
(a) If q ∼ q′, then Σ(q) ∼ Σ(q′).
(b) If σ ∼ σ′ then Q(σ) ∼ Q(σ′).
(c) If σ ∈ S then Σ(Q(σ)) = σ. In other words, applying Algorithm 5.12 to a standard form as in Theo-

rem 2.32 recovers the parameters of that form.
(d) If q ∈ Q then there exists σ ∈ S such that q ∼ Q(σ). In other words, a quiver can be transformed by

good mutations to a quiver in standard form as in Theorem 2.32.

This completes the proof of Theorem 2.31 and Theorem 2.32.

Appendix A. Proofs of Cartan determinants

As a consequence of Proposition 1.4 the determinant of the Cartan matrix is invariant under derived equiv-
alences. The aim of this section is to provide a proof of the formulae for the determinants of the Cartan
matrices of all cluster-tilted algebras of Dynkin type D as given in Theorem 2.5. Recall that the quivers of the
cluster-tilted algebras of type D are given by the quivers of types I, II, III and IV described in Section 1.6.

As these quivers are defined by gluing of rooted quivers of type A, it is useful to also have formulae for cluster-
tilted algebras of Dynkin type A. Since cluster-tilted algebras of type A are gentle, the Cartan determinants
can be obtained as a special case of [21] where formulae for the Cartan determinants of arbitrary gentle algebras
are given; for a simplified proof for the special case of cluster-tilted algebras of type A see also [13].

Proposition A.1. Let Q be a quiver mutation equivalent to a Dynkin quiver of type A. Then the Cartan matrix
of the cluster-tilted algebra corresponding to Q has determinant detCQ = 2t(Q).

For proving Theorem 2.5 we shall first show a useful reduction lemma. We need the following notation: if Q
is a quiver and V a set of vertices in Q, then Q \ V is the quiver obtained from Q by removing all vertices in V
from Q and all arrows attached to them.

Lemma A.2. Let Q be a quiver in the mutation class of a quiver of Dynkin type D, i.e. Q is of one of the
types I,II,III,IV given in Section 1.6.

(i) Suppose Q contains a vertex a of valency 1. Then detCQ = det CQ\{a}.
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(ii) Suppose that Q contains an oriented triangle with vertices a, b, c (in this order, i.e. there is an arrow
from b to c etc) where a and b have valency 2 in Q and where the quiver Q′ = Q \ {a, b} is mutation
equivalent to a quiver of Dynkin type A or D. Then detCQ = 2 · det CQ\{a,b} = 2 · det CQ′ .

Proof. (i) Since taking transposes does not change the determinant we can assume that a is a sink. Then
the Cartan matrix of the cluster-tilted algebra corresponding to Q has the form

CQ =


1 0 . . . 0
∗
... CQ\{a}
∗


from which the desired formula directly follows by Laplace expansion.

(ii) In the cluster-tilted algebra corresponding to Q, every product of two consecutive arrows in the triangle
a, b, c is zero. Moreover, in the quiver Q\{a} there is a one-one correspondence between non-zero paths
starting in c and non-zero paths starting in b by extending any of the former paths by the arrow from b
to c (in fact, by the unique relations in the cluster-tilted algebra all these extensions remain non-zero).
Therefore, the Cartan matrix of the cluster-tilted algebra corresponding to Q has the form

CQ =



1 1 0 0 . . . . . . 0
0 1 1 ∗1 . . . . . . ∗n

1 0 1 ∗1 . . . . . . ∗n

∗ 0 ∗
...

...
... CQ\{a,b,c}

...
...

...
∗ 0 ∗


where the first three rows are labelled by a, b and c, respectively. The entries marked by ∗i are really
the same in the rows for b and c because of the one-one correspondence just mentioned. Moreover, note
that in the (first) row for a and in the (second) column for b we have 0’s except the two 1’s indicated
because of the zero-relations in the triangle with vertices a, b, c.

Denote by rv the row in the above matrix corresponding to the vertex v. We now perform an
elementary row operation, namely replace the first row ra by ra − rb + rc. Then we get

det CQ = det



2 0 0 0 . . . . . . 0
0 1 1 ∗1 . . . . . . ∗n

1 0 1 ∗1 . . . . . . ∗n

∗ 0 ∗
...

...
... CQ\{a,b,c}

...
...

...
∗ 0 ∗


= 2 · detCQ\{a,b}

where the last equality follows directly by Laplace expansion (with respect to the row of a and then the
column of b).

�

We will also need the following three lemmas dealing with skeleta of type IV, i.e. the rooted quivers of type
A consist of just one vertex.

Lemma A.3. Let Q be a quiver of type IV which contains no spikes at all, i.e. it is just an oriented cycle of
length k ≥ 3. Then det CQ = k − 1.

Lemma A.4. Let Q be a quiver of type IV with parameter sequence
(
(1, 0, 0), (1, 0, 0), . . . , (1, 0, 0)

)
of length

k ≥ 3, in other words, it is an oriented cycle of length k with all spikes present. Then det CQ = 2k − 1.

Lemma A.5. Let Q be a quiver of type IV with oriented cycle of length k ≥ 3 and not all spikes are present.
Let c(Q) be the number of vertices on the oriented cycle which are part of two (consecutive) spikes. Then
det CQ = k + c(Q)− 1.
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Proof of Lemma A.3. We have

det CQ = det



1 . . . . . . 1 0
0 1 . . . . . . 1

1
. . . . . .

...
...

. . . . . .
...

1 . . . 1 0 1

 = (−1)k−1 det


0 1 . . . 1

1 0
...

...
. . . 1

1 . . . 1 0

 = k − 1,

where for the last equality we have used the following formula whose verification is a standard exercise in linear
algebra: for all a, b ∈ R we have

det


b a . . . a

a b
...

...
. . . a

a . . . a b

 = (b− a)k−1(b + (k − 1)a).(A.1)

�

Proof of Lemma A.4. By Lemma 4.5, the cluster-tilted algebra ΛQ is derived equivalent to the one corresponding
to the cycle of length 2k. Since the determinant of the Cartan matrix is invariant under derived equivalence,
the result now follows from Lemma A.3. �

Proof of Lemma A.5. We shall closely look at one group of t ≥ 1 consecutive spikes in Q and label the vertices
as in the following figure

1

tt + 1

2

3t + 2

k
k + 1

k + 2

k + t
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Then the Cartan matrix has the following shape

CQ =



1 1 . . . 1 1 . . . 1 0 0 0 . . . 0 0 . . . . . . 0
1 1 . . . 1 1 . . . . . . 1 1 0 . . . 0 0 . . . . . . 0
...

...
...

...
...

...
. . . . . .

...
...

1 1 . . . 1 1 . . . . . . 1 0 . . . 1 0 0 . . . . . . 0
1 1 . . . 1 1 1 . . . 1 0 0 . . . 1 0 . . . . . . 0
1 1 . . . 1 0 0 . . . 0
1 1 . . . 1 ? ? 0 0 . . . 0 ? ?
...

...
... ? ?

...
...

... ? ?
1 1 . . . 1 0 0 . . . 0
1 0 . . . 0 0 0 . . . 0 1 0 . . . 0 0 0 . . . 0

0 1
...

...
... 1

. . .
...

...
...

. . . 0
...

... 0
. . . . . . 0

...
...

0 . . . 0 1 0 . . . . . . 0 0 . . . 1 1 0 0 . . . 0
0 . . . . . . 0 0 . . . . . . 0
...

... ? ?
...

... ? ?
0 . . . . . . 0 0 . . . . . . 0


The two highlighted rows correspond to the vertices t + 1 and k + t, respectively. For each vertex j let rj be

the row of CQ corresponding to j.
Note that the column k + t of CQ has only two non-zero entries, namely in rows t + 1 and k + t. We first

replace row rt+1 by rt+1 − rk+t + rt − r1 (in case t = 1 this indeed means just rt+1 − rk+t). Then column k + t
has only one non-zero entry, namely on the diagonal; Laplace expansion along this column yields a new matrix
C̃.

We consider the (t + 1)-st row in this new matrix which has the form(
1 1 . . . 1 0 1 1 . . . 1 N 0 0 . . . 0 0 . . . . . . 0

)
where the number N at position (t + 1, k) is equal to 0 if t = 1 and equal to 2 if t > 1.

In case t = 1 we see that C̃ is equal to the Cartan matrix of the cluster-tilted algebra corresponding to the
quiver Q \ {k + t}. This means that when computing the Cartan determinant we can remove isolated spikes,
i.e. spikes which are not neighboring any other spike.

In this case t = 1 the statement of the theorem follows immediately by induction on the number of spikes
(with the case of no spikes treated earlier as base of the induction). In fact, removing the isolated spike does
not change the determinant (as we have just seen), and also the formula given in the theorem is not affected by
removing an isolated spike.

Let us turn to the more complicated case t > 1 (which we shall also show by induction). If t > 1, the matrix
C̃ is equal to the Cartan matrix of Q \ {k + t}, except for the (t+1, k)-entry which is 2 in C̃, but 1 in CQ\{k+t}.

To compare the determinants in this case we use the following easy observation. Let C = (cij) and C̃ = (c̃ij)
be two matrices which only differ at the (m,n)-entry. Then

det C̃ − detC = (−1)m+n(c̃mn − cmn)Cmn

where Cmn is the matrix obtained from C (or C̃) by removing row m and column n.
Applied to our situation we get

det C̃ − det CQ\{k+t} = (−1)t+1+k(2− 1) det Ct+1,k = (−1)t+1+k det Ct+1,k.

Since det C̃ = detCQ we can rephrase this to get

detCQ = detCQ\{k+t} + (−1)t+1+k detCt+1,k.(A.2)

By induction on the number of spikes of Q (with the case of no spikes treated earlier as base of the induction)
we can deduce that det CQ\{k+t} = k + c(Q)− 2 and hence

detCQ = k + c(Q)− 2 + (−1)t+1+k det Ct+1,k.
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For proving the assertion of the theorem we therefore have to show that (−1)t+1+k det Ct+1,k = 1.
We keep the labelling of the rows and columns also for Ct+1,k (i.e. there is no row with label t + 1 or k + t,

and no column with label k or k + t).
For convenience, the vertices 1, . . . , k on the cycle will be called cycle vertices and the remaining vertices will

be called outer vertices in the sequel.
Note that in Ct+1,k we have 0’s on the diagonal in all rows indexed by cycle vertices which have no spike

attached. More precisely, the rows corresponding to cycle vertices are of the form(
1 . . . 1 1 . . . 1 0 . . . 0 1 0 . . . 0 0 . . . 0

)
if the vertex has a spike attached, and(

1 . . . 1 0 1 . . . 1 0 . . . 0 0 . . . 0
)

if there is no spike attached to the vertex.
For each cycle vertex j 6= 1 with no spike attached we perform the elementary row operation replacing rj by

rj − r1; this gives a unit vector with −1 on the diagonal. Laplace expansion along all these rows removes from
Ct+1,k all rows and columns corresponding to cycle vertices (not equal to vertex 1) with no spikes attached; for
the determinant we thus get a sign (−1)k−s(Q)−1 where s(Q) is the total number of spikes of Q.

The matrix obtained after this removal process has rows indexed by vertex 1, the cycle vertices with spikes
attached except vertex t + 1, and the outer vertices except vertex k + t. Moreover it has the form

1 1 . . . . . . . . . 1 1 0 . . . . . . 0
1 1 . . . . . . . . . 1 1 1 0 . . . 0
...

...
...

... 0 1
. . .

...

1 1 . . . . . . . . . 1 1
...

. . . . . . 0
1 1 . . . . . . . . . 1 1 0 . . . 0 1
1

. . .
1 ? ?

0 1 ? ?
. . . . . .

0 1


where in the lower left block the crucial 0 on the main diagonal occurs in the column labelled by vertex t
(because the row indexed by k + t has been removed).

Now for each cycle vertex j with a spike attached we replace the row rj by rj − r1, giving a unit vector.
Consecutive Laplace expansion along these rows removes all columns corresponding to outer vertices (and all
rows corresponding to cycle vertices with spikes attached). For each of these Laplace expansions we get a sign
(−1)s(Q)+1 and there are s(Q)− 1 such expansions in total, giving an overall sign of (−1)s(Q)2−1 = (−1)s(Q)−1.

We are left with a s(Q)× s(Q)-matrix of the form

1 1 . . . . . . . . . 1 1
. . .

1
0 1

. . . . . .
0 1


whose determinant is easily seen to be (−1)t+1.

Summarizing our arguments we get

det Ct+1,k = (−1)k−s(Q)−1 · (−1)s(Q)−1 · (−1)t+1 = (−1)k+t−1.
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Substituting this into equation (A.2) we get for the Cartan determinant of Q the following

det CQ = k + c(Q)− 2 + (−1)t+1+k detCt+1,k

= k + c(Q)− 2 + (−1)t+1+k(−1)k+t−1 = k + c(Q)− 1

which is exactly the formula claimed in Theorem 2.5. �

Proof of Theorem 2.5. (I) Applying part (i) of Lemma A.2 twice gives detCQ = detCQ\{a,b}. By definition
Q′ = Q \ {a, b} is a quiver of Dynkin type A, thus det CQ′ = 2t(Q′) by Proposition A.1. Clearly,
t(Q) = t(Q′) for quivers of type I and hence

detCQ = detCQ\{a,b} = det CQ′ = 2t(Q′) = 2t(Q).

(II) Let Q be a quiver of type II. By applying Lemma A.2 inductively we can shrink each of the quivers Q′ and
Q′′ (which are of Dynkin type A) to one vertex where for the Cartan determinant of the corresponding
cluster-tilted algebra we get a factor 2 for each triangle we remove (see part (ii) of Lemma A.2). Thus
we get

detCQ = 2t(Q′) · 2t(Q′′) · det CQ̃(A.3)

where Q̃ is the quiver with vertices a, b, c, d obtained after shrinking each of Q′ and Q′′ to one vertex.
Labelling the rows and columns in the order a, b, c, d the cluster-tilted algebra corresponding to Q̃ has

Cartan matrix CQ̃ =


1 0 0 1
0 1 0 1
1 1 1 1
0 0 1 1

 whose determinant is easily computed to be 2. This gives the

desired formula as

detCQ = 2t(Q′) · 2t(Q′′) · det CQ̃ = 2t(Q′)+t(Q′′)+1 = 2 · detCQ′ det CQ′′ .

(III) Completely analogous to the previous argument in type II we can shrink the subquivers Q′ and Q′′ of
any quiver of type III to one vertex, ending up with an oriented 4-cycle Q̃. Labelling the rows and
columns in the order a, c, b, d the cluster-tilted algebra corresponding to this 4-cycle has Cartan matrix

CQ̃ =


1 1 1 0
1 1 0 1
0 1 1 1
1 0 1 1

 which has determinant 3. As above we then get

det CQ = 2t(Q′) · 2t(Q′′) · det CQ̃ = 3 · 2t(Q′)+t(Q′′) = 3 · det CQ′ detCQ′′ .

(IV) If there are no spikes at all, the result follows from Lemma A.3. Otherwise, by Lemma A.2 we can again
assume that all the rooted quivers Q(1), . . . , Q(r) of type A attached to the spikes have been shrinked
to one vertex, yielding a factor

r∏
j=1

2t(Q(j)) =
r∏

j=1

detCQ(j)

for the Cartan determinant detCQ. The result then follows from Lemma A.4 and Lemma A.5.
�
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