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Abstract

In the second part of this article we use the cubical operad B0
C of cubical weak ∞-categories (built in [10]) as a

fundamental step to associate to any topological space X its fundamental cubical weak ∞-groupoids Π∞(X), and this

endows a functor Top ∞-CGrp
Π∞(−)

which has a left adjoint functor CN∞. This pair of adjunction (CN∞,Π∞(−))

should put an equivalence between the homotopy category of homotopy types and the homotopy category of ∞-CGrp of
cubical weak ∞-groupoids with connections equipped with an adapted Quillen model structure.
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Introduction
20 years ago Michael Batanin in [1] had described the functor of fundamental globular weak ∞-groupoids for spaces in order
to give a rigorous formulation of the Grothendieck conjecture on homotopy types [9] : in particular he built a functor from
the category Top of spaces to the category of globular weak ∞-groupoids. In order to do that he built an operadic approach
of globular weak ∞-categories, that is his globular weak ∞-categories are algebra for a specific operad B0

C . Two major steps
for higher category theory were achieved in [1] :

• he builts a higher globular dimensional approach of non-symmetric operads à la Peter May;

• his definition of weak ∞-categories is more general than simplicial models of (∞, 1)-categories. For example it is proved
in [12] that some algebraic models of (∞, 1)-categories are embedded in his weak ∞-categories.

In order to built the functor of fundamental globular weak ∞-groupoids for spaces he proved that the globular object D•
in Top consisting of topological disks :

D0 D1 D2 · · ·Dn−1 Dn · · ·
s10

t10

s21

t21

snn−1

tnn−1

is a B0
C-coalgebra, which implication is the construction of the fundamental globular weak ∞-groupoid functor

Top ∞-Grp
Π∞(−)

In [17] Tom Leinster gave a simplification of the orginal definition of higher operads by Michael Batanin. However the
very important examples of (co)endomorphism globular operads are built very naturally within the framework of globular
monoidal categories, and this is not clear for us that the T-categorial framework of Leinster can capture such natural point of
view of (co)endomorphism globular operads. It seems that in [17], he succeeded to define such (co)endomorphism globular
operads through T-categories, but only in the context of locally cartesian closed categories. For example if C is a category
with pullbacks and if E is a global object in the monoidal globular category Span(C) consisting of globular higher spans in C,
it is possible to define its associated endomorphism operad END(E) by using the theory of Batanin (see also [21]), but this is
not clear for us how to get such operad END(E) with T-categories. Thus in order to write the first part of the article [10] we
used the Leinster approach to build the operad which algebras are cubical weak ∞-categories, but to define cubical higher
operads of endomorphism we found that the cubical analogue of the globular monoidal categories was much more natural.

In this article, which is the second part of [10], we use the cubical operad B0
C of cubical weak ∞-categories (built in [10])

as a fundamental step to associate to any topological space X its fundamental cubical weak ∞-groupoids Π∞(X), and this

endows a functor Top ∞-CGrp
Π∞(−)

which has a left adjoint functor CN∞. This pair of adjunction (CN∞,Π∞(−))

should put an equivalence between the homotopy category of homotopy types and the homotopy category of ∞-CGrp of
cubical weak ∞-groupoids with connections, through adapted Quillen model structures. This was shown to be true but in the
context of the Cisinski model structure on the category of cubical sets with connections (see [18]). It is also important to
know that non-operadical approach have been considered in [4, 8] to define other higher groupoid constructions for spaces.

Important tools to build this functor Π∞(−) come from 2-category theory and especially thanks to the work of Mark
Weber ([23, 24]) and Ross Street ([20, 21]) : pseudo-algebras for 2-monads and a generalization of the Span construction have
been successfully considered for this interaction between elementary 2-topos and cubical geometry. An important feature of
this article is also to show how the 2-categorical tools developed in [20, 21, 23, 24] can lead to generalization of the original
theory of Michael Batanin’s higher operads.

Plan of this paper :

• In the first section we define monoidal cubical categories as pseudo S-algebras, where S is the 2-monad of free strict
monoidal cubical categories on cubical categories.

• In the second section we state an important result of [11] which shows that for general situations the Span-construction
leads to pseudo algebraic structure. Then we give a nice combinatorial description of the cubical (co)spans taken from
Marco Grandis ([7]). Then we define (co)endomorphisms operads by using the 2-categorical point of view of Ross Street
and Mark Weber in [20, 21, 23, 24]. Our 2-categorical point of view of (co)endomorphisms operads can be adapted in
the general context of pseudo algebras, and this is very important for a 2-categorical generalisation of the theory of
Batanin.

• In the third section we proved that the cocubical object "box" (as defined in [5]) in Top :
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I0 I1 I2 I3 I4 · · · In−1 In · · ·
s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s43,4

t43,4

s43,3

t43,3

s43,2

t43,2

s43,1

t43,1

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

is a B0
C-coalgebra, where B

0
C is the S-operad which algebras are cubical weak ∞-categories. Then we show how to

"glue" the Ki-functors of Quillen in order to obtain a functor :

Rings ∞-CGrpK∞

• The fourth and last section is a short "manifesto" for the following slogan : "coalgebraic structures govern different
higher category theory". In particular we explain the main steps to get the cubical weak ∞-category of cubical weak
∞-categories, which is indeed of coalgebraic nature.

Acknowledgement. This work was doing thanks to the beautiful ambiance I got during my two months visiting in the
IHES. I especially want to mention Maxim Kontsevich, Pierre Cartier and Vasily Pestun. I want also to mention Laurent
Lafforgue and Olivia Caramello for their kind support. This work wouldn’t exist without my natural interactions with Ross
Street and Mark Weber. I dedicate this work to my wife Nadira and to my baby Ali-Réda.

1 Cubical monoidal categories as Pseudo-algebras

1.1 The cubical category
Consider the small category C with integers n ∈ N as objects. Generators for C are, for all n ∈ N given by sources

n
snn−1,j // n− 1 for each j ∈ {1, .., n} and targets n

tnn−1,j // n− 1 for each j ∈ {1, .., n} such that for 1 ≤ i < j ≤ n
we have the following cubical relations

(i) sn−1
n−2,i ◦ snn−1,j = sn−1

n−2,j−1 ◦ snn−1,i,

(ii) sn−1
n−2,i ◦ tnn−1,j = tn−1

n−2,j−1 ◦ snn−1,i,

(iii) tn−1
n−2,i ◦ snn−1,j = sn−1

n−2,j−1 ◦ tnn−1,i,

(iv) tn−1
n−2,i ◦ tnn−1,j = tn−1

n−2,j−1 ◦ tnn−1,i

These generators plus these relations give the small category C called the cubical category that we may represent
schematically with the low dimensional diagram :

· · ·C4 C3 C2 C1 C0

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

and this category C gives also the sketch ES of cubical sets used especially in [14] to produce the monads S = (S, λ, µ), which
algebras are cubical strict ∞-categories.

Definition 1 The category CSets of cubical sets is the category of presheaves [C; Sets]. The terminal cubical set is denoted
1. 2
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Definition 2 The 2-category CCAT of cubical categories is the 2-category of prestacks [C; CAT]. The terminal cubical
category is also denoted 1. 2

In particular it is shown in [14] that the category ∞-CCat of strict cubical ∞-categories is sketchable by a projective
sketch. Thus we put the following definition of cubical strict monoidal categories :

Definition 3 Strict monoidal cubical categories are internal cubical strict∞-categories in CAT. They form a strict 2-category
CMsC where :

• 0-cells are internal cubical strict ∞-categories in CAT;

• 1-cells are internal cubical strict ∞-functors in CAT;

• 2-cells are internal globular1 strict ∞-natural transformations in CAT. 2

In [14] we denoted by (S, η, µ) the monad on CSets of cubical strict ∞-categories, and cubical n-trees are just n-cells of
S(1). We shall prove in [11] that this monad is cartesian, and we denote again by (S, η, µ) its corresponding 2-monad on the
2-category CCAT. Also the following 2-forgetful functor is 2-monadic : CMsC CCAT , because the forgetful functor

∞-CCat CSets is monadic and the 2-functor CATpull 2-CAT
CAT(−)

, which takes a category X with pullbacks
to the 2-category CAT(X) of internal categories preserves (finite) limits, thus preserves adjunctions and Eilenberg-Moore
constructions. Thus we prefer to denote S-Algs this 2-category CMsC of strict monoidal cubical categories . This 2-monad
(S, η, µ) gives weaker notions of algebras, and we recall it for any 2-monad (S, η, µ) on a 2-category K (see [2, 24]). In
particular we shall need the notion of pseudo S-algebra in order to define monoidal cubical categories below.

Definition 4 Let (S, η, µ) be a 2-monad on a 2-category K. A pseudo-algebra structure (a, α0, α) on an object A ∈ K is
given by a 1-cell S(A) Aa and two invertible 2-cells in K :

S2(A) S(A)

S(A) A

S(a)

µ(A)

a

a

α
=⇒

A S(A)

A

1A

ηA

a
α

=⇒

such that the following equalities hold :

S2(A) S(A)

S3(A) S2(A) A

S2(A) S(A)

µ(A)

aµ(S(A))

S2(a)
S(a)

S(a)

a=⇒
S(α)

α⇑

=

=

S2(A) S(A)

S3(A) S(A) A

S2(A) S(A)

µ(A)

aµ(S(A))

S2(a)

a

S(a)

a
α
⇐=

α
=⇒

=

S(A) S(A)

S2(A)

S(A) A

1S(A)

1S(A) a

µ(A)

S(a)

a

S(α0)
=⇒

α
=⇒

=

= 1a

The triple (A,α0, α) is called a pseudo S-algebra. If α0 is an identity the pseudo algebra is said to be normal. If α0 and α
are identities then we recover the usual notion of S-algebra, and in that case we say that A is equipped with a strict S-algebra
structure.

1that is they are 2-globes between two cubical strict ∞-functors, whereas cubical strict ∞-natural transformations are 2-cubes with faces, four
cubical strict ∞-functors. See [14]
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Definition 5 Let (A,α0, α) and (A′, α′0, α
′) two pseudo S-algebras. A strong S-morphism structure for a 1-cell A A′

f

is given by an invertible 2-cell :

S(A) A

S(A′) A′

S(f)

a

f

a′

f̄
=⇒ , such that we have the following equalities :

S(A) A

S2(A) S(A) A′

S2(A′) S(A′)

a

fµ(A)

S(a)

S2(f)

a

S(f)

S(a′)

a′

α
⇐=

f̄⇑

S(f̄)
=⇒

=

S(A) A

S2(A) S(A′) A′

S2(A′) S(A′)

a

fµ(A)

S2(f)

a′

µ(A′)

S(a′)

a′
α′
⇐=

f̄
=⇒

=

and

S(A)

A A

S(A′)

A′ A′

aη(A)

f f

1A′

f̄
=⇒

α′0⇑

= =

A S(A)

A

A′

1A

η(A)

a

f

α0
=⇒

Definition 6 Let f and f ′ be strong S-morphisms :

(a, α0, α) (a′, α′0, α
′)

f

f ′
.

A 2-cell f f ′
ψ is an algebra 2-cell if the following equality holds :

S(A) A

S(A′) A′

S(f) S(f ′)

a

f ′

a′

S(ψ)
=⇒

f̄ ′

=⇒ =

S(A) A

S(A′) A′

S(f)

a

f f ′

a′

f̄
=⇒

ψ
=⇒

Let us denote by Ps-S-Alg the 2-category which objects are pseudo S-algebras, whose 1-cells are strong S-morphisms and
whose 2-cells are algebra 2-cells. The full sub-2-category of Ps-S-Alg consisting of the normal pseudo-algebras is denoted
Ps0-S-Alg, and the locally full sub-2-category of Ps-S-Alg consisting of the strict algebras and strict morphisms is denoted
S-Algs.

Remark 1 We gave the description of Ps0-S-Alg here as an indication. As a matter of fact for the globular setting it is
possible to build a normal pseudo algebra for each globular monoidal categories in the sense of [1], but Mark Weber pointed
out to me that Ps0-S-Alg is 2-equivalent to Ps-S-Alg, and thus we prefer to use the context of the 2-category Ps-S-Alg to
model monoidal cubical categories defined just below. 2

Now let us comeback to the 2-monad S = (S, λ, µ) on the 2-category of cubical categories CCAT as described above, which
strict 2-algebras are strict monoidal cubical categories .

Definition 7 The 2-category of monoidal cubical categories consists of the 2-category Ps-S-Alg of pseudo S-algebras 2
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Also by using the theorem 5.1 and the theorem 5.12 of [2] we get the following biadjunction, similar to the one described
in [21] :

Corollary 1 The forgetful 2-functor U : Ps-S-Alg CCAT
U

>
F

such that :

• Ps-S-Alg is the 2-category of pseudo S-algebras;

• CCAT is the 2-category of cubical categories;

• F builds the free strict monoidal cubical categories functor.

exhibits a biadjunction which restricts to a 2-adjunction on the strict monoidal cubical categories. 2

Also we shall denote by S-Algs CCAT
V

>
F

the underlying strict 2-adjunction of this biadjunction.

2 Cubical Higher Spans and Cubical Higher Cospans

2.1 The pseudo-algebraic structure of Span(C)

Let us first recall the Span construction ([20, 24]) : for any small category C there is a 2-adjunction :

CAT [Cop,CAT]
SpanC

⊥
EL

where SpanC(E)(c) = [(C/c)op, E ] and the category EL(X) has the following definition :

• objects are pairs (c, x) where c ∈ C and x ∈ X(c).

• morphisms : (c, x) (d, y) , are pairs (f, α) where d c
f is in C and X(f)(x) yα is in X(d).

• compositions and identities come from C and the categories X(c).

Suppose now that T = (T, η, µ) is a cartesian monad on [Cop,Sets], and let us denote again by T = (T, η, µ) its extension
to a 2-monad on [Cop,CAT]. In fact, for any category E with pullbacks it is proved in [11] that :

Theorem 1 (Kachour,Weber) SpanC(E) is a pseudo T-algebra 2

In fact we can dualize such construction and produce a similar result which says that CospanC(E) is a pseudo T-algebra if
E is a category with pushouts, and these produce the following diagram of functors :

CATpush CAT

Ps-S-Alg CCAT

CATpull CAT

j

(−)op

Cospan(−)
(−)op

Cospan(−)

i

Span(−)

k

Span(−)

This result has two essential virtues : first it convince the reader that actually the structure behind the spans and the
cospans construction are really of pseudo-algebraic nature; secondly it shows, and this is we believe the main fact, that
probably not only globular and cubical higher category theory need such structures, but other useful higher category theory
could need it.

However because of the "cubical scopes" of this article, we are going to describe cubical spans and cubical cospans in a
more combinatorial way because this concrete point of view has the advantage to see it unpacked, and thus gives an accurate
idea of what these cubical spans and cubical cospans looks like. This combinatorial description has been described first by
Marco Grandis in [7], and it is instructive to compare it with the Batanin’s combinatorial construction of globular spans and
globular cospans [1]. The only new tools here are the connections on cubical (co)spans which are accurately describe.
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In order to formalize cubical higher spans and cubical higher cospans we will use the formal span category V or the formal
cospan category Λ used by Marco Grandis (see [7]). For simplicity we will explain only constructions for cubical higher spans,
which use this small category V :

−1 1

0
f g

because for cubical higher cospans, constructions are duals, and use the small category Λ :

0

−1 1

f g

Definition 8 Let C be a category. The category Spann(C) of cubical n-spans in C is the category of functors [V n;C] and
natural transformations between them. 2

The combinatoric description of the category V n shall be useful : each objects of V n are n-uplets (m1, ...,mn) ∈ {0,−1, 1}n.
Also the category V n underlies a n-cube structure, such that the object (0, ..., 0) represents the n-face, and the n-uplets
(m1, ...,mn) ∈ {0,−1, 1}n which countains exactly p integers mj which are equal to zero, represent p-faces. Consider
(m1, ...,mn) a (p+ 1)-face and suppose mji = 0 for 1 ≤ i ≤ p+ 1. Thus we get two morphisms in V n :

(m1, ...,mji , ...,mn) (m1, ...,mji−1, m̂ji ,mji+1, ...,mn)
(m1,...,mji−1,f,mji+1,...,mn)

(m1,...,mji−1,g,mji+1,...,mn)

such that (m1, ...,mji−1, f,mji+1, ...,mn) switch the value mji to the value m̂ji = −1 and (m1, ...,mji−1, g,mji+1, ...,mn)
switch the value mji to the value m̂ji = 1.

Remark 2 Intuitively such map (m1, ...,mji−1, f,mji+1, ...,mn) is a kind of sp+1
p,ji

and the map (m1, ...,mji−1, g,mji+1, ...,mn)

is a kind of tp+1
p,ji

. 2

In particular the following arrows in V n :

(0, ..., 0) (0, ..., 0,−1, 0, ..., 0),
(0,...,0,f,0,...,0)

(0, ..., 0) (0, ..., 0, 1, 0, ..., 0)
(0,...,0,g,0,...,0)

shall be important for an accurate description of the projective cone below, when we will describe the pseudo-algebraic
structure produced by cubical higher spans in a category with pullbacks.

Now we want to put a cubical category structure on cubical spans. For that we just recall the constructions of Marco
Grandis (see [7]).

• The formal source functor is given by 1 Vs , where 1 = {?} is the terminal category and s sends ?

to −1. Similarly the formal target functor is given by 1 Vt where t sends ? to 1. These give the

source functors V n−1 V n
snn−1,i , given by snn−1,i := V i−1 × s × V n−i for 1 ≤ i ≤ n, and the target functors

V n−1 V n
tnn−1,i , given by tnn−1,i := V i−1 × t × V n−i for 1 ≤ i ≤ n, and then we get the cubical category of

spans in C :

· · · [V 4;C] [V 3;C] [V 2;C] [V ;C] C

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

where for each 1 ≤ i ≤ n, snn−1,i and tnn−1,i are functors :

[V n;C] [V n−1;C]
snn−1,i

tnn−1,i
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• The formal reflexivity functor is given by the unique functor V 1! , and this gives for 1 ≤ i ≤ n the

reflexivity functors V n V n−1
1n−1
n,i , given by 1n−1

n,i := V i−1×!× V n−i, and then we get a reflexivity structure
on the cubical category of spans in C :

C [V 1;C] [V 2;C] [V 3;C] [V 4;C] · · ·
10
1

11
2,1

11
2,2

12
3,1

12
3,2

12
3,3

13
4,1

13
4,2

13
4,3

13
4,4

where for each 1 ≤ i ≤ n, 1n−1
n,i is a functor :

[V n−1;C] [V n;C]
1n−1
n,i

• Connections for cubical higher (co)spans are not defined in Grandis [7], thus we need to formalize it properly. V 2 may
be seen as the following cubical 2-span :

(0, 0)

(−1, 0) (0, 1) (0,−1) (1, 0)

(−1, 1) (−1,−1) (1, 1) (1,−1)

and if A B
f is an 1-cell, then the 2-cell :

A B

B B

11,−
2,1 (f)f

f

1B

1B

is represented by the following 2-span :

11,−
2,1 (f)

f 1B f 1B

B A B B

and the 2-cell

A A

A B

11,+
2,1 (f)1A

1A

f

f

is represented by the following 2-span :

8



11,+
2,1 (f)

1A f 1A f

A A B A

These show us how to formalise connections for cubical higher spans : the formal connection functors are thus given by :

V 2 V,1− V 2 V1+

defined on objects2 of V 2 by

(0, 0), (−1, 0), (0,−1) 0, (0, 1), (1, 0), (−1, 1), (1, 1), (1,−1) 1, (−1,−1) −1,1− 1− 1−

and
(0, 0), (0, 1), (1, 0) 0, (−1, 0), (0,−1), (−1, 1), (−1,−1), (1,−1) −1, (1, 1) 1.1+ 1+ 1+

These give the connection functors : V n+1 V n, V n+1 V n,
1n,−
n+1,i 1n,+

n+1,i given by 1n,−n+1,i := V i−1 × 1− ×
V n−i and 1n,+n+1,i := V i−1 × 1+ × V n−i, and then we get the structure of connections on the cubical category of spans in
C :

[V 1;C] [V 2;C] [V 3;C] [V 4;C] [V 5;C] · · ·
11,−
2,1

11,+
2,1

12,−
3,1

12,+
3,1

12,−
3,2

12,+
3,2

13,−
4,1

13,+
4,1

13,−
4,2

13,+
4,2

13,−
4,3

13,+
4,3

14,−
5,1

14,+
5,1

14,−
5,2

14,+
5,2

14,−
5,3

14,+
5,3

14,−
5,4

14,+
5,4

where for each 1 ≤ i ≤ n, 1n,−n+1,i, 1n,+n+1,i are functors :

[V n;C] [V n+1;C]
1n,−
n+1,i

1n,+
n+1,i

Now suppose that C is a category equipped with pullbacks. This context allows to put a pseudo-algebra structure on
cubical higher spans in C. In fact this cubical monoidal structure shall be given by these pullbacks. We will follow the
definition of Grandis (see [7]) with a small variation on projective sketch. Our goal, for each n ≥ 1 and each 1 ≤ i ≤ n, is to
build functors :

[V n;C] ×
[V n−1;C]

[V n;C] [V n;C]
⊗n

i

such that [V n;C] ×
[V n−1;C]

[V n;C] comes from the pullback :

[V n;C] ×
[V n−1;C]

[V n;C] [V n;C]

[V n;C] [V n−1;C]

snn−1,i

tnn−1,i

• First we consider the category V2 given by the following pushout :
2Of course, these definition on objects give the one on arrows of V 2
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{?} V

V V2

s

t k+

k−

Thus V2 is given by the category :
a c

−1 b 1

that we extend to the category V̂2 :

0

a c

−1 b 1

Also the following subcategory W of V2 shall be considered :

a c

b

and the natural transformation ∆(0) :

W V̂2,

∆(0)

F

τ

where ∆(0) is the constant functor with value 0. This allow to see the category V̂2 as the category V2 equipped with
a cone over W , that is V̂2 is a projective sketch equipped with the cone ∆(0) Fτ ; also we have the

concatenation functor : V V̂2
k which sends 0 to 0, and −1 to −1, and finally 1 to 1, from the category V

to the projective sketch V̂2. Now for each n ≥ 1 and each 1 ≤ i ≤ n, consider the pushout diagram :

V n−1 V n

V n V ni

snn−1,i

tnn−1,i k+i

k−i

where k−i = V i−1× k−×V n−i, k+
i = V i−1× k+×V n−i and V ni = V i−1×V2×V n−i. The category V ni may be thought

as the gluing of itself along the functors snn−1,i and tnn−1,i, and also the category V̂ ni := V i−1 × V̂2 × V n−i may be
thought as the category V ni equipped with a cone over its following subdiagram :

(0, ..., 0) (0, ..., 0)

(0, ..., 0, 1, 0, ..., 0) ∼ (0, ..., 0,−1, 0, ..., 0)

(0,...,0,f,0,...,0)
(0,...,0,g,0,...,0)

Remark 3 In this subdiagram the symbol ∼ means the identification of (0, ..., 0, 1, 0, ..., 0) and (0, ..., 0,−1, 0, ..., 0)
under the pushout. 2

10



and the cone is formally described by the natural transformation :

V i−1 ×W × V n−i V i−1 × V̂2 × V n−i

V i−1 ×∆(0)× V n−i

V i−1 × F × V n−i

τ=V i−1×τ×V n−i

• Now consider two cubical n-spans x and y such that snn−1,i(x) = tnn−1,i(y) in category C equipped with pullbacks :

V n C.
x

y

We are in the following situation where we get the unique functor [x, y]i :

V n−1 V n

V n V ni

C

snn−1,i

tnn−1,i k+i
y

k−i

x

[x,y]i

thus we get the functor ˆ[x, y]i : V̂ ni C
ˆ[x,y]i which is the extension of the functor [x, y]i on the category

V̂ ni , which sends the cone τi = V i−1 × τ × V n−i to the following pullback in C :

•

x(0, ..., 0) y(0, ..., 0)

x(0, ..., 0, 1, 0, ..., 0) = y(0, ..., 0,−1, 0, ..., 0)

x(0,...,0,f,0,...,0)
y(0,...,0,g,0,...,0)

• Thus we obtain the diagram : V n V̂ ni C,
ki

ˆ[x,y]i where ki = V i−1 × k × V n−i comes from the

concatenation functor : V V̂2,
k and we put : y ⊗ni x = ˆ[x, y]i ◦ ki. As for globular higher spans, these

tensor products on arrows comes from universality of these pullbacks. Thus for each n ≥ 1 and each 1 ≤ i ≤ n, we built
functors :

[V n;C] ×
[V n−1;C]

[V n;C] [V n;C]
⊗n

i

which put on Span(C) a pseudo-algebra structure.

Of course the description of the pseudo-algebra Cospan(C), where C is a category with pushouts, is obtained by dualizing
these constructions.
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2.2 B0
C-algebras and B0

C-coalgebras
Definition 9 If C is a monoidal cubical category then a global object of C is given by a morphism :

1 CE

in the category CCAT of cubical categories. 2

By the pseudo-universality of 1 S(1)
η(1)

we get the following morphism [E] of monoidal cubical categories :

S(1) C

1

[E]

η(1)
E

.

Now suppose : S(C) Cv , is the structural map of the pseudo S-algebra C. It is important to notice that the
freeness of S(1) describes this extension [E] as the composition v ◦ S(E) :

S(1) C

S(C)

[E]

S(E)
v

This morphism [E] is denoted End(E) for the case of the monoidal cubical category C = Span(C) where C is a category

with pullbacks; thus a global object in it : 1 Span(C)E produces such extension S(1) Span(C)
End(E)

,
and furthermore this morphism End(E) contains all informations we need to define the S-operad of endomorphism END(E)
associated to the global object E in Span(C) :

Definition 10 For all n ∈ N, n-cells of END(E) consist of elements of the set homSpann(C)(End(E)(t), E(n)), for each
cubical n-tree t ∈ S(1). These n-cells form the set END(E)(n), and the corresponding cubical set END(E) underlies an
S-operad where the multiplication of it is defined as follow : if (x, y) is an n-cell of S(END(E)) ×

S(1)
END(E), and is such that3

µ(1)(S(a)(x)) = t′ and a(y) = t :

S(END(E)) ×
S(1)

END(E)

S(END(E)) END(E)

S(1)2 S(1) 1

S(1)

END(E)

γ

π1
π2

S(a) S(c) a
c

µ(1)

a

c

then γ(x; y) is given by the composition y ◦ v(x) in Spann(C) :

End(E)(t′) End(E)(t) E(n)
v(x) y

where
S(Span(C)) Span(C)v

is the structural map of the pseudo S-algebra Span(C); the unity of it is given, for each n ∈ N, by the singleton 1E(n) ∈
homSpann(C)(E(n), E(n)). The axiom of associativity of the multiplication of END(E) comes from the associativity of
compositions of each categories Spann(C) (n ∈ N), and we have the similar result for the axiom of unities. 2

3In this diagram S is seen as a monad on the category CSets of cubical sets. See [10] for the definition of S-operads.
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Remark 4 It is important to notice that these definition of cubical higher operad of endomorphism associated to a global
object can be generalized easily to any monoidal cubical categories (different to those of the form Span(C)), and more, this
could be done probably in the general setting of pseudo-algebras. But because the scope of this article is to have first an
accurate description of the functor Π∞ (3.2.3) we prefer to restrict ourself to this concrete description. 2

Also we have the following easy result :

Corollary 2 A global object 1 Span(C)E is the same thing as to give a cubical object, still denoted by E, internal

to the category C : C CE
2

Now we are ready to define B0
C-algebras :

Definition 11 Consider a category C with pullbacks, plus a cubical object E in it : C CE . E is equipped with

a B0
C-algebra structure if there is a morphism of S-operads : B0

C END(E)
f . 2

Operads of coendomorphisms and coalgebraic structures are defined similarly and dually, but because of their importance
we prefer to give their precise dual definition : if C is a category with pushouts, thus C = Cospan(C) is a monoidal cubical
category, and if : 1 Cospan(C)E is a global object in it, then the corresponding extension Coend(E) to S(1) :

S(1) Cospan(C)
Coend(E)

, contains all informations we need to define the S-operad of coendomorphism COEND(E)

associated to the global object E in Cospan(C) :

Definition 12 For all n ∈ N, n-cells of COEND(E) consist of elements of the set homCospann(C)(E(n),Coend(E)(t)), for each
cubical n-tree t ∈ S(1). These n-cells form the set COEND(E)(n), and the corresponding cubical set COEND(E) underlies
an S-operad where the multiplication of it is defined as follow : if (x, y) is an n-cell of S(COEND(E)) ×

S(1)
COEND(E), and is

such that µ(1)(S(a)(x)) = t′ and a(y) = t :

S(COEND(E)) ×
S(1)

COEND(E)

S(COEND(E)) COEND(E)

S(1)2 S(1) 1

S(1)

COEND(E)

γ

π1
π2

S(a) S(c) a
c

µ(1)

a

c

then γ(x; y) is given by the composition y ◦ v(x) in Cospann(C) :

Coend(E)(t′) Coend(E)(t) E(n)
v(x) y

where
S(Cospan(C)) Cospan(C)v

is the structural map of the pseudo S-algebra Cospan(C); the unity of it is given, for each n ∈ N, by the singleton 1E(n) ∈
homCospann(C)(E(n), E(n)). The axiom of associativity of the multiplication of COEND(E) comes from the associativity of
compositions of each categories Cospann(C) (n ∈ N), and we have the similar result for the axiom of unities. 2

Also we have the following easy result :

Corollary 3 A global object 1 Cospan(C)E is the same thing as to give a cocubical object, still denoted by E,

internal to the category C : Cop CE
2

Now we are ready to define B0
C-coalgebras :
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Definition 13 Consider a category C with pushouts, plus a cocubical object E in it : Cop CE . E is equipped

with a B0
C-coalgebra structure if there is a morphism of S-operads : B0

C COEND(E)
f . 2

Also it is easy to check that for each global object E of Span(C) where C has pullbacks, the construction of END(E)
endows a functor, and also for each global object E of Cospan(C) where C has pushouts, the construction of COEND(E) is
also functorial. Recall from 2.1 that we got the following diagram of functors :

CATpush CAT

Ps-S-Alg CCAT

CATpull CAT

j

(−)op

Cospan(−)
(−)op

Cospan(−)

i

Span(−)

k

Span(−)

and we have the following result :

Corollary 4 • If C DF is a morphism of the category CATpull, and if

1

Span(C) Span(D)

E
E′

Span(F )

is a morphism of the category (1 ↓ i ◦ Span(−)), then it produces the morphism of S-operads :

END(E) END(E′)
END(Span(F ))

Furthemore this construction is functorial and gives the functor

(1 ↓ i ◦ Span(−)) S-Oper
END(−)

• If C DF is a morphism of the category CATpush, and if

1

Cospan(C) Cospan(D)

E
E′

Cospan(F )

is a morphism of the category (1 ↓ i ◦ Cospan(−)), then it produces the morphism of S-operads :

COEND(E) COEND(E′)
COEND(Cospan(F ))

Furthemore this construction is functorial and gives the functor

(1 ↓ i ◦ Cospan(−)) S-Oper
COEND(−)

14



3 Higher Cospans in Top

3.1 The global object box : I•

Here I = [0, 1] is the usual interval of R. Consider the following internal cocubical object in Top :

I0 I1 I2 I3 I4 · · · In−1 In · · ·
s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s43,4

t43,4

s43,3

t43,3

s43,2

t43,2

s43,1

t43,1

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

defined by :
snn−1,i(x1, ..., xi−1, xi, ..., xn−1) = (x1, ..., xi−1, 0, xi, ..., xn−1)

tnn−1,i(x1, ..., xi−1, xi, ..., xn−1) = (x1, ..., xi−1, 1, xi, ..., xn−1).

This is a global object of the pseudo-algebra Cospan(Top). Following the notation in [5], this global object I• shall be

called the box object. Thanks to the pseudo-universality of 1 S(1)
η(1)

we get the following commutative (up
to isomorphisms) diagram :

S(1) Cospan(Top)

1

Coend(I•)

η(1)
I•

and from the cubical monoidal functor Coend(I•) we get the S-operad COEND(I•) (2.2). The next section is devoted to
prove that I• is a B0

C -coalgebra, i.e that the S-operad COEND(I•) is contractible and is equipped with a composition system
in the sense of cubical higher operads [10].

3.2 I• is a B0
C-coalgebra

3.2.1 Composition systems on COEND(I•)

The cubical (n− 1)-sphere Sn−1
c is given by the sums :

Sn−1
c :=

∐
1≤i≤n

(Ii−1 × {0} × In−i t Ii−1 × {1} × In−i)

and we have the inclusion : Sn−1
c In

For all 1 ≤ i ≤ n we are going to build by induction maps :

In In
i
t

In−1
In

µn
i

such that In
i
t

In−1
In is the following pushout :

In−1 In

In In
i
t

In−1
In

snn−1,i

tnn−1,i
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that is, we start with I0 I0,id and we suppose that the maps In−1 In−1
i
t

In−2
In−1

µn−1
i are already

defined for 1 ≤ i ≤ n− 1. We glue Sn−1
c with itself along the same face and we obtain the inclusion i :

In−1 Sn−1
c In

Sn−1
c Sn−1

c

i
t

In−1
Sn−1
c

In In
i
t

In−1
In

snn−1,i

snn−1,i

tnn−1,i

tnn−1,i

i

In order to build µni we are going to build first its interior
◦
µni : Sn−1

c Sn−1
c

i
t

In−1
Sn−1
c .

◦
µn
i It is defined by the

following induction :

• If i = j then we put Ii−1 × {0} × In−i Ii−1 × {0} × In−i,id where the identity map id sends the (n−1)-faces

Ii−1×{0}× In−i of the first copy Sn−1
c in Sn−1

c

i
t

In−1
Sn−1
c to the (n−1)-faces Ii−1×{0}× In−i of the second copy Sn−1

c ,

and we put : Ii−1 × {1} × In−i Ii−1 × {1} × In−i,id where the identity map id sends the (n − 1)-faces

Ii−1 × {1} × In−i of the first copy Sn−1
c in Sn−1

c

i
t

In−1
Sn−1
c to the (n− 1)-faces Ii−1 × {1} × In−i of the second copy

Sn−1
c .

• If 1 ≤ j < i ≤ n then we put : Ij−1 × {0} × In−j Ij−1 × {0} × In−j
i−1
t

In−2
Ij−1 × {0} × In−j ,

µn−1
i−1 and

Ij−1 × {1} × In−j Ij−1 × {1} × In−j
i−1
t

In−2
Ij−1 × {1} × In−j ,

µn−1
i−1 where the codomains are given by the

following pushout :

In−2 In−1

In In−1
i−1
t

In−2
In−1

sn−1
n−2,i−1

tn−1
n−2,i−1

• If 1 ≤ i < j ≤ n then we put : Ij−1 × {0} × In−j Ij−1 × {0} × In−j
j−1
t

In−2
Ij−1 × {0} × In−j ,

µn−1
j−1 and

Ij−1 × {1} × In−j Ij−1 × {1} × In−j
j−1
t

In−2
Ij−1 × {1} × In−j ,

µn−1
j−1 where the codomains are given by the

following pushout :

In−2 In−1

In In−1
j−1
t

In−2
In−1

sn−1
n−2,j−1

tn−1
n−2,j−1
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Thus we obtain the desired extension µni of
◦
µni :

In

Sn−1
c Sn−1

c

i
t

In−1
Sn−1
c In

i
t

In−1
In

µn
i

◦
µn
i

i

3.2.2 Contractibility of COEND(I•)

Consider two maps in Top : In−1 X,
f

g
such that f and g are two (n − 1)-cells of the operad COEND(I•).

Thus X is described as an iterated pushouts of the topological n-cubes In (n ∈ N) given by the global object I• in the
pseudo-algebra Cospan(Top); and in particular X is contractible. We are going to build the contraction [f, g]n−1

n,j by induction.

Thus we suppose that for all 1 ≤ j ≤ n − 1 the maps In−1 X
[f,g]n−2

n−1,j exist, and we start our induction with an

easy choice of extension [f, g]01, where f and g define here two points of X : I X.
[f,g]01 The contraction [f, g]n−1

n,j

is given by a continuous map In X.
[f,g]n−1

n,j In order to do that, for all 1 ≤ j ≤ n, we need first to define the map :

Sn−1
c X.

〈f,g〉n−1
n,j This map 〈f, g〉n−1

n,j has the following definition :

• for i = j we put : Ij−1 × {0} × In−j X,
f and Ij−1 × {1} × In−j X

g

• If 1 ≤ i < j ≤ n then Ii−1 × {0} × In−i X,
[sn−1

n−2,i(f),sn−1
n−2,i(g)]

n−2
n−1,j−1 and Ii−1 × {1} × In−i X

[tn−1
n−2,i(f),tn−1

n−2,i(g)]
n−2
n−1,j−1

• If 1 ≤ j < i ≤ n then Ii−1 × {0} × In−i X,
[sn−1

n−2,i−1(f),sn−1
n−2,i−1(g)]n−2

n−1,j and Ii−1 × {1} × In−i X
[tn−1

n−2,i−1(f),tn−1
n−2,i−1(g)]n−2

n−1,j

then we obtain the desired extension :

In

Sn−1
c X

[f,g]n−1
n,j

〈f,g〉n−1
n,j

Now consider two (n− 1)-cells of COEND(I•) : In−1 X,
f

g
such that for 1 ≤ j ≤ n− 1 we have

f ◦ sn−1
n−2,j = g ◦ sn−1

n−2,j : In−2 In−1 X,
sn−1
n−2,j

f

g

that is sn−1
n−2,j(f) = sn−1

n−2,j(g). We are going to build the contraction [f, g]n−1,−
n,j by induction. Thus we suppose that for

all 1 ≤ j ≤ n − 2 the maps In−1 X
[f,g]n−2,−

n−1,j exist, and we start our induction with an easy choice of extension

[f, g]1,−2,1 , where f and g define here two paths in X : I2 X
[f,g]1,−2,1 The map [f, g]n−1,−

n,j is given by a continuous map

In X.
[f,g]n−1,−

n,j In order to do that, for all 1 ≤ j ≤ n− 1, we need first to define the map : Sn−1
c X.

〈f,g〉n−1,−
n,j This

map 〈f, g〉n−1,−
n,j has the following definition :

• if i = j we put : Ij−1 × {0} × In−j X,
f and Ij × {0} × In−j−1 X,

g

and Ij−1 × {1} × In−j X,
[tn−1

n−2,j(f),tn−1
n−2,j(g)]n−2,−

n−1,j and Ij × {1} × In−j−1 X.
[tn−1

n−2,j(f),tn−1
n−2,j(g)]n−2,−

n−1,j
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• If 1 ≤ i, j ≤ n then we put :

– if 1 ≤ i < j ≤ n− 1 then Ii−1 × {0} × In−i X,
[sn−1

n−2,i(f),sn−1
n−2,i(g)]

n−2,−
n−1,j−1

and Ii−1 × {1} × In−i X.
[tn−1

n−2,i(f),tn−1
n−2,i(g)]

n−2,−
n−1,j−1

– if 2 ≤ j + 1 < i ≤ n then Ii−1 × {0} × In−i X,
[sn−1

n−2,i−1(f),sn−1
n−2,i−1(g)]n−2,−

n−1,j

and Ii−1 × {1} × In−i X
[tn−1

n−2,i−1(f),tn−1
n−2,i−1(g)]n−2,−

n−1,j

then we obtain the desired extension :

In

Sn−1
c X

[f,g]n−1,−
n,j

〈f,g〉n−1,−
n,j

Now consider two (n − 1)-cells of COEND(I•) : In−1 X,
f

g
such that X is contractible, and such that for

1 ≤ j ≤ n− 1 we have

f ◦ tn−1
n−2,j = g ◦ tn−1

n−2,j : In−2 In−1 X,
tn−1
n−2,j

f

g

that is tn−1
n−2,j(f) = tn−1

n−2,j(g). We are going to build the contraction [f, g]n−1,+
n,j by induction. Thus we suppose that for

all 1 ≤ j ≤ n − 2 the maps In−1 X
[f,g]n−2,+

n−1,j exist, and we start our induction with an easy choice of extension

[f, g]1,+2,1 , where f and g define here two paths in X : I2 X.
[f,g]1,+2,1 The map [f, g]n−1,−

n,j is given by a continuous map

In X.
[f,g]n−1,+

n,j In order to do that, for all 1 ≤ j ≤ n− 1, we need first to define the map : Sn−1
c X.

〈f,g〉n−1,+
n,j This

map 〈f, g〉n−1,+
n,j has the following definition :

• if i = j we put : Ij−1 × {1} × In−j X,
f and Ij × {1} × In−j−1 X,

g

and Ij−1 × {0} × In−j X,
[sn−1

n−2,j(f),sn−1
n−2,j(g)]n−2,−

n−1,j and Ij × {0} × In−j−1 X,
[sn−1

n−2,j(f),sn−1
n−2,j(g)]n−2,−

n−1,j

• If 1 ≤ i, j ≤ n then we put :

– if 1 ≤ i < j ≤ n− 1 then Ii−1 × {0} × In−i X,
[sn−1

n−2,i(f),sn−1
n−2,i(g)]

n−2,+
n−1,j−1

and Ii−1 × {1} × In−i X.
[tn−1

n−2,i(f),tn−1
n−2,i(g)]

n−2,+
n−1,j−1

– if 2 ≤ j + 1 < i ≤ n then Ii−1 × {0} × In−i X,
[sn−1

n−2,i−1(f),sn−1
n−2,i−1(g)]n−2,+

n−1,j

and Ii−1 × {1} × In−i X.
[tn−1

n−2,i−1(f),tn−1
n−2,i−1(g)]n−2,+

n−1,j

Then we obtain the desired extension :

In

Sn−1
c X

[f,g]n−1,+
n,j

〈f,g〉n−1,+
n,j

and it is then straightforward to check the different axioms of contractions for such extensions [f, g]n−1
n,j , [f, g]n−1,−

n,j and
[f, g]n−1,+

n,j . With 3.2.1 and 3.2.2 we thus have proved the :

Theorem 2 I• is a B0
C-coalgebra. 2
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3.2.3 The fundamental morphism of operads

Let us fix a topological space X ∈ Top. From it we get a functor Top SETop
Map(−,X)

in CATpush, thus from the

functor : CATpush Ps-S-Alg
Cospan(−)

we get the following morphism in Ps-S-Alg :

Cospan(Top) Cospan(SETop)
Cospan(Map(−,X))

Also we have the functor :

(1 ↓ i ◦ Cospan(−)) S-Oper
COEND(−)

which sends the following morphism Map(−, X) of (1 ↓ i ◦ Cospan(−)) :

1

Cospan(Top) Cospan(SETop)

I•
Map(I•,X)op

Cospan(Map(−,X))

to the morphism of operads :

COEND(I•) COEND(Map(I•, X)op) ' END(Map(I•, X))
COEND(Cospan(Map(−,X)))

this shows that Map(I•, X) is an algebra for COEND(I•). But we proved in 3.2 that I• is also a B0
C-coalgebra, which

means that we have a morphism of operads :

B0
C COEND(I•)!

which shows that we have a morphism of operads :

B0
C END(Map(I•, X))

COEND(Cospan(Map(−,X)))◦!

that is the cubical set Map(I•, X) :

· · ·Map(In, X) Map(In−1, X) · · ·Map(I4, X) Map(I3, X) Map(I2, X) Map(I,X) Map(I0, X)

snn−1,1

tnn−1,1

snn−1,i

tnn−1,i

snn−1,n

tnn−1,n

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

is equipped with a structure of weak cubical ∞-category. This weak cubical ∞-category Π∞(X) is in fact a weak cubical
∞-groupoid (see [14] for the definition of cubical weak ∞-groupoids), called the fundamental cubical weak ∞-groupoid of X.

Also if X Y
f is a continuous map between X and Y , then from our functorial constructions we get the following

commutative diagram :

END(Map(I•, X))

B0
C COEND(I•)

END(Map(I•, Y ))

END(Map(I•,f))
!

COEND(Cospan(Map(−,X)))◦!

COEND(Cospan(Map(−,Y )))◦!
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which exhibits the fundamental cubical weak ∞-groupoid functor :

Top ∞-CGrp
Π∞(−)

which has a left adjoint functor CN∞. This pair of adjunction (CN∞,Π∞(−)) should put an equivalence between the
homotopy category of homotopy types and the homotopy category of ∞-CGrp of cubical weak ∞-groupoids with connections
equipped with an adapted Quillen model structure. This was shown to be true but in the context of the Cisinski model
structure on the category of cubical sets with connections (see [18]).

The Grothendieck conjecture on homotopy types [9] predicts that the category Top of topological spaces is Quillen
equivalent to the category of globular weak ∞-groupoids. An accurate formulation of this conjecture is in [1] where Michael
Batanin has built a fundamental globular weak ∞-groupoid functor :

Top ∞−Grp
Π∞(−)

by using the coalgebraic feature of the coglobular object of Top consisting of topological disks. Also it was proved in [3] that
the category of globular strict ∞-categories is equivalent to the category of cubical strict ∞-categories. This work [3] shows
that technics to compare globular higher category and cubical higher category exist. A natural question is to ask if such
technics can be generalized for weak structures. Also it is important to notice an other analogy between globular higher
category and cubical higher category : in the work [12] we built algebraic models of globular weak ∞-groupoids, and in an
other work [14] we also built algebraic models of cubical weak∞-groupoids, which are similar to their globular analogue : they
are similar in the sense that they are both defined as algebras for specific monads. Indeed our globular weak ∞-groupoids
are algebras for a monad on the category of globular sets, and our cubical weak ∞-groupoids are also algebras for a monad
on the category of cubical sets. All these material putting together give a real perspectives to solve the the Grothendieck
conjecture on homotopy types4.

3.2.4 Application for higher K-theory

The functor Π∞(−) could be intuitively thought as the gluing of all the homotopy groups functor πi together, and because the
πi are cohomologies, Π∞(−) could be thought as a higher dimensional cohomology, that is a functor between ∞-categories, or
an ∞-functor which behave like cohomologies. It seems that such objects are of interest for the Stolz-Teichner program5

[22] who try to investigate ideas from physic (TQFT=Topological Quantum Field Theory) through cohomologies, and also
ETQFT (Extended TQFT) through higher dimensional cohomologies and vice-versa.

In this section we explain how to "glue" algebraic Ki-functors (i ∈ N) of Quillen :

Rings TopKi

into a single functor K∞, where here Rings is the category of rings with unit.
But first let us recall some basic facts which are defined more accurately in [19] : the functors Ki are defined by the

compostion :

Rings Top Grp
BGL(−)+×K0(−) πi(−)

where for any rings R with unit :

• GL(R) =
∞⋃
n=1

GL(n,R)

• BGL(R) is the classifying space of the group GL(R)

• the +-construction on BGL(R) is taken relative to the perfect subgroup E(R) (elementary matrices) of GL(R)

• K0(R) is given the discrete topology

Thus we get the functor K∞ which is given by the composition :

Rings Top ∞-CGrp
BGL(−)+×K0(−) Π∞(−)

4It is important to aware that the author suffer by a lack of financial support. Between 2013 and 2017, only three months have been financially
supported. The author believes that with decent financial support he will be in a better condition to attack this conjecture

5These ideas take their roots in the work of Graham Segal on Conformal Field Theory.
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4 Importance of Coalgebraic structures for Globular and Cubical Higher Cat-
egory Theory

4.1 The Batanin’s construction and the author’s construction
In the article [1], Michael Batanin has built the contractible operad B0

C which algebras are globular weak ∞-categories. He
also proved that the globular object D• in Top consisting of topological disks :

D0 D1 D2 · · ·Dn−1 Dn · · ·
s10

t10

s21

t21

snn−1

tnn−1

is a B0
C-coalgebra, which implication is the construction of the fundamental globular weak ∞-groupoid functor

Top ∞-Grp
Π∞(−)

In the other hand, in the article [13] the author built a coglobular object B•C

B0
C B1

C B2
C · · ·B

n−1
C BnC · · ·

s10

t10

s21

t21

snn−1

tnn−1

such that B0
C is the contractible operad just above of Michael Batanin, B1

C is the contractible operad which algebras are
globular weak ∞-functors, B2

C is the contractible operad which algebras are globular weak ∞-natural transformations, etc.
Also we have the surprising fact : if B•C is a B0

C -coalgebra then it implies that the globular weak ∞-category of globular weak
∞-categories exists. We didn’t prove yet this fact6, however this is an important improvement for globular higher category
theory for two main reasons :

• in the beginning it was non-trivial to know why globular weak ∞-categories, globular weak ∞-functors, globular weak
∞-natural transformations, etc. organize in a globular weak ∞-category. Now we have replaced this very complex
combinatorial question by a precise statement : the coendomorphism operad COEND(B•C) should be contractible7, like
its topological little son8 COEND(D•).

• it brings a spectacular analogy between topological spaces and globular higher categories, which was hope by Grothendieck
and Thomason. Let us gives a first smell of such analogy :

– Consider the following 1-cell in the operad COEND(D•) of topological disks :

D1 D1 t
D0
D1µ1

0

and consider a topological space X. With these we get the following 1-cell of the fundamental weak ∞-groupoid
Π∞(X) :

Map(D1, X) ×
Map(D0,X)

Map(D1, X) Map(D1, X)
◦10

– Suppose that COEND(B•C) is contractible. It is then possible to consider the following 1-cell in the operad
COEND(B•C) of operadical disks :

B1
C B1

C t
B0

C

B1
C

µ1
0

and with this 1-cell of COEND(B•C), we get the following 1-cell in the suspected globular weak ∞-category of
globular weak ∞-categories :

Alg(B1
C)(0) ×

Alg(B0
C)(0)

Alg(B1
C)(0) Alg(B1

C)(0)
◦10

which is the composition of globular weak ∞-functors !
6Also because the author suffer of lack of financial support.
7which imply that it is equipped with a composition system. See [13]
8or little brother ...
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4.2 Steps toward the cubical weak ∞-category of cubical weak ∞-categories
Consider the following internal cocubical object in a subcategory9 C of the category Mnd of monads, such that C has pushouts.

B0
C B1

C B2
C B3

C B4
C · · ·B

n−1
C BnC · · ·

s01

t01

s21,1

t21,1

s21,2

t21,2

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s43,4

t43,4

s43,3

t43,3

s43,2

t43,2

s43,1

t43,1

snn−1,n−1

tnn−1,n−1

snn−1,i

tnn−1,i

snn−1,1

tnn−1,1

such that B0
C is the S0-operad which algebras are cubical weak ∞-categories. Also the S1-operad B1

C which algebras are
cubical weak ∞-functors, the S2-operad B2

C which algebras are cubical weak ∞-natural transformations, etc. where S1 is the
cartesian monad which algebras are cubical strict ∞-functors, S2 is the cartesian monad which algebras are cubical strict
∞-natural transformations, etc. are not difficult to be built. For example the underlying combinatorics of the S1-collection
of B1

C comes easily from the monad of cubical weak ∞-functors as defined in [14] and the underlying combinatorics of the
S2-collection of B2

C comes easily from the monad of cubical weak ∞-natural transformations as defined in [14]. Also according
to the cubical combinatorics it is straightforward to see that the cartesian monad Sn of cubical strict n-transformations act on
the category CSets2

n

, the cartesian product 2n times in CAT of the category of cubical sets with itself. In order to build these
contractible Sn-operads BnC we have different technics to do it. We can use for example the formalism of the T-categorical
stretchings as developed in [16], or we can use the theory of Garner [6] to build a fibrant replacement of the Sn, or we can
more classically just use the technology developed in [1, 10].

This internal cocubical object B• of C is a global object of the pseudo-algebra Cospan(C), where here we deal with cubical
higher cospans. Thanks to the functor defined in 2.2

(1 ↓ i ◦ Cospan(−)) S-Oper
COEND(−)

the following morphism Alg(−) of (1 ↓ i ◦ Cospan(−)) :

1

Cospan(C) Cospan(SETop)

I•
Alg(B•C)op

Cospan(Alg(−))

is sent to the morphism of operads :

COEND(B•C) COEND(Alg(B•C)op) ' END(Alg(B•C))
COEND(Cospan(Alg(−)))

.

This shows that Alg(B•C) is an algebra for COEND(B•C). Now suppose B•C is also a B0
C-coalgebra. In fact we put the

following conjecture :

Conjecture The operad of coendomorphism COEND(B•C) is contractible.

Contractibility here means the cubical one, as developed in [10], where we consider contractions similar to their globular
analogue, plus the "connections-contractions" which are for contractions what connections are for cubical ∞-categories.

If we accept this conjecture then it means that we have a morphism of operads :

B0
C COEND(B•C)!

which means that we have a morphism of operads :

B0
C END(Alg(B•C))

COEND(Cospan(Alg(−)))◦!

which shows that the cubical set Alg(B•C)(0)10 :
9Such subcategory exists according to a private communication with Ross Street and John Bourke who give me such accurate construction of it.

We won’t describe it here because of lack of time.
10For each n ∈ N, Alg(Bn

C)(0) means the class of objects of the category Alg(Bn
C).
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· · ·Alg(BnC)(0) Alg(Bn−1
C )(0) · · ·Alg(B4

C)(0) Alg(B3
C)(0) Alg(B2

C)(0) Alg(B1
C)(0) Alg(B0

C)(0)

snn−1,1

tnn−1,1

snn−1,i

tnn−1,i

snn−1,n

tnn−1,n

s43,1

t43,1

s43,2

t43,2

s43,3

t43,3

s43,4

t43,4

s32,1

t32,1

s32,2

t32,2

s32,3

t32,3

s21,1

t21,1

s21,2

t21,2

s10

t10

is equipped with a structure of weak cubical∞-category. This is the cubical weak∞-category of cubical weak∞-categories.
Like for globular higher category theory, we thus have an amazing analogy between topological spaces and cubical higher
categories, up to these conjectures related to coalgebraicity. This is our operadical point of view which allows such analogies.
Thanks to it we can mimic the globular approach of weak Grothendieck ∞-topos as described in [15] to have a real smell
of what is a cubical weak Grothendieck ∞-topos. We would like to insist that this article overall shows how 2-categorical
materials developed in [20, 21, 23, 24] and recently in [11], can provide some good generalizations, where different higher
category theory with different shapes, could be developed within this framework, and where we can imagine for example that
other geometries for higher groupoids associated to topological spaces are possible.
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