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Abstract
In the second part of this article we use the cubical operad B2 of cubical weak oo-categories (built in [10]) as a
fundamental step to associate to any topological space X its fundamental cubical weak co-groupoids Il (X), and this

endows a functor Top LGN 00-CGrp which has a left adjoint functor C' No. This pair of adjunction (C'Neo, oo (—))

should put an equivalence between the homotopy category of homotopy types and the homotopy category of co-CGrp of
cubical weak oco-groupoids with connections equipped with an adapted Quillen model structure.
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Introduction

20 years ago Michael Batanin in [1] had described the functor of fundamental globular weak co-groupoids for spaces in order
to give a rigorous formulation of the Grothendieck conjecture on homotopy types [9] : in particular he built a functor from
the category Top of spaces to the category of globular weak co-groupoids. In order to do that he built an operadic approach
of globular weak oo-categories, that is his globular weak co-categories are algebra for a specific operad BY. Two major steps
for higher category theory were achieved in [1] :

e he builts a higher globular dimensional approach of non-symmetric operads & la Peter May;

e his definition of weak oo-categories is more general than simplicial models of (0o, 1)-categories. For example it is proved
in [12] that some algebraic models of (co, 1)-categories are embedded in his weak oco-categories.

In order to built the functor of fundamental globular weak oo-groupoids for spaces he proved that the globular object D*®
in Top consisting of topological disks :

1 2 S'n,
E n—1
] —
DO D! D2...pn1 D"
0 Iz [

is a BX-coalgebra, which implication is the construction of the fundamental globular weak oo-groupoid functor

Top —>H°°(_) 0o-Grp

In [17] Tom Leinster gave a simplification of the orginal definition of higher operads by Michael Batanin. However the
very important examples of (co)endomorphism globular operads are built very naturally within the framework of globular
monoidal categories, and this is not clear for us that the T-categorial framework of Leinster can capture such natural point of
view of (co)endomorphism globular operads. It seems that in [17], he succeeded to define such (co)endomorphism globular
operads through T-categories, but only in the context of locally cartesian closed categories. For example if C' is a category
with pullbacks and if E is a global object in the monoidal globular category Span(C') consisting of globular higher spans in C,
it is possible to define its associated endomorphism operad END(E) by using the theory of Batanin (see also [21]), but this is
not clear for us how to get such operad END(FE) with T-categories. Thus in order to write the first part of the article [10] we
used the Leinster approach to build the operad which algebras are cubical weak oco-categories, but to define cubical higher
operads of endomorphism we found that the cubical analogue of the globular monoidal categories was much more natural.

In this article, which is the second part of [10], we use the cubical operad B2 of cubical weak oo-categories (built in [10])
as a fundamental step to associate to any topological space X its fundamental cubical weak oco-groupoids Il (X), and this

endows a functor Top H°°;(7)> 00-CGrp which has a left adjoint functor C'Ny,. This pair of adjunction (C Ny, oo (—))

should put an equivalence between the homotopy category of homotopy types and the homotopy category of co-CGrp of
cubical weak co-groupoids with connections, through adapted Quillen model structures. This was shown to be true but in the
context of the Cisinski model structure on the category of cubical sets with connections (see [18]). It is also important to
know that non-operadical approach have been considered in [4, 8] to define other higher groupoid constructions for spaces.

Important tools to build this functor I, (—) come from 2-category theory and especially thanks to the work of Mark
Weber ([23, 24]) and Ross Street ([20, 21]) : pseudo-algebras for 2-monads and a generalization of the Span construction have
been successfully considered for this interaction between elementary 2-topos and cubical geometry. An important feature of
this article is also to show how the 2-categorical tools developed in [20, 21, 23, 24] can lead to generalization of the original
theory of Michael Batanin’s higher operads.

Plan of this paper :

e In the first section we define monoidal cubical categories as pseudo S-algebras, where S is the 2-monad of free strict
monoidal cubical categories on cubical categories.

e In the second section we state an important result of [11] which shows that for general situations the Span-construction
leads to pseudo algebraic structure. Then we give a nice combinatorial description of the cubical (co)spans taken from
Marco Grandis ([7]). Then we define (co)endomorphisms operads by using the 2-categorical point of view of Ross Street

and Mark Weber in [20, 21, 23, 24]. Our 2-categorical point of view of (co)endomorphisms operads can be adapted in
the general context of pseudo algebras, and this is very important for a 2-categorical generalisation of the theory of
Batanin.

e In the third section we proved that the cocubical object "box" (as defined in [5]) in Top :
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is a B2-coalgebra, where B is the S-operad which algebras are cubical weak oo-categories. Then we show how to
"glue" the K;-functors of Quillen in order to obtain a functor :

Rings - B~ 00-CGrp

e The fourth and last section is a short "manifesto" for the following slogan : "coalgebraic structures govern different
higher category theory". In particular we explain the main steps to get the cubical weak co-category of cubical weak
oo-categories, which is indeed of coalgebraic nature.

Acknowledgement. This work was doing thanks to the beautiful ambiance I got during my two months visiting in the
THES. T especially want to mention Maxim Kontsevich, Pierre Cartier and Vasily Pestun. I want also to mention Laurent
Lafforgue and Olivia Caramello for their kind support. This work wouldn’t exist without my natural interactions with Ross
Street and Mark Weber. I dedicate this work to my wife Nadira and to my baby Ali-Réda.

1 Cubical monoidal categories as Pseudo-algebras

1.1 The cubical category

Consider the small category C with integers n € N as objects. Generators for C are, for all n € N given by sources

n n
Sn—1,j tn—1,j

n————>n—1 foreach j € {1,..,n} and targets n

n—1 foreachj € {1,..,n} such thatfor1 <i<j<n
we have the following cubical relations

n—1 _ .n—1

(lll> tn72,z © Sn—l,j Sn72,j71 Olp_1,
n—1 n __n—1 n

(IV) tn 2,i © tnfl 7 tn—2 j—1 ° tnfl,z

These generators plus these relations give the small category C called the cubical category that we may represent
schematically with the low dimensional diagram :

53,4
e E—
3%,3 Sg 3
Sg,z 32,2 S?,z
5%,1 53,1 S21),1 5(1)
Oy C3 Co Ch Co
t31 54 i, to
té’z t;g t%,Q
133 33
t34

and this category C gives also the sketch &g of cubical sets used especially in [14] to produce the monads S = (S, A, u), which
algebras are cubical strict co-categories.

Definition 1 The category CSets of cubical sets is the category of presheaves [C; Sets]. The terminal cubical set is denoted
1. 0



Definition 2 The 2-category CCAT of cubical categories is the 2-category of prestacks [C; CAT]. The terminal cubical
category is also denoted 1. o

In particular it is shown in [14] that the category co-CCat of strict cubical co-categories is sketchable by a projective
sketch. Thus we put the following definition of cubical strict monoidal categories :

Definition 3 Strict monoidal cubical categories are internal cubical strict co-categories in CAT. They form a strict 2-category
CM,C where :

e (-cells are internal cubical strict oo-categories in CAT;
e 1-cells are internal cubical strict co-functors in CAT;

e 2-cells are internal globular! strict co-natural transformations in CAT. o

In [14] we denoted by (S, 7, 1) the monad on CSets of cubical strict co-categories, and cubical n-trees are just n-cells of
S(1). We shall prove in [11] that this monad is cartesian, and we denote again by (S, n, i) its corresponding 2-monad on the
2-category CCAT. Also the following 2-forgetful functor is 2-monadic : CMgC —— CCAT , because the forgetful functor

00-CCat —— CSets is monadic and the 2-functor CAT,un CAL(> 2-CAT , which takes a category X with pullbacks

to the 2-category CAT(X) of internal categories preserves (finite) limits, thus preserves adjunctions and Eilenberg-Moore
constructions. Thus we prefer to denote S-Alg, this 2-category CMsC of strict monoidal cubical categories . This 2-monad
(S,m, u) gives weaker notions of algebras, and we recall it for any 2-monad (S,7, 1) on a 2-category K (see [2, 21]). In
particular we shall need the notion of pseudo S-algebra in order to define monoidal cubical categories below.

Definition 4 Let (S,n, 1) be a 2-monad on a 2-category K. A pseudo-algebra structure (a, g, @) on an object A € K is

given by a 1-cell S(A) ——*—— A and two invertible 2-cells in K :
2 Hu(A)
S*(A) ————— S(A) A—" 554
S(a) N a L\ =
S(A) —— A

such that the following equalities hold :

w(A)

S(4) S?(4) S(4)
}L(S% / a 1(S(A)) \ \
S?(4) S(4)
\ s / S(\ / /
S(a) A) S(a) A)
1s(a)
1s(a) S(a) S2 (A =14
— =
S(4) z A

The triple (A, ag, @) is called a pseudo S-algebra. If o is an identity the pseudo algebra is said to be normal. If oy and «
are identities then we recover the usual notion of S-algebra, and in that case we say that A is equipped with a strict S-algebra
structure.

lthat is they are 2-globes between two cubical strict co-functors, whereas cubical strict co-natural transformations are 2-cubes with faces, four
cubical strict co-functors. See [14]



Definition 5 Let (A, ag, ) and (A4’, o), ') two pseudo S-algebras. A strong S-morphism structure for a 1-cell A S Y

S(4) ——— A
is given by an invertible 2-cell : gy :f> f, such that we have the following equalities :
S(A) —— A
V / \ / \ \

S(a)

S(A’

52(\ Si? w‘ / \ / i a’

2(4") S(A")

and

S(A)
(A) a A n(A) (A)
Z s AN X )
- | L
S(A") f
N . A
1.

n
A
!
A/

Definition 6 Let f and f’ be strong S-morphisms :

(a, ap, ) - (,ap,d) .
f

A 2-cell f = f' is an algebra 2-cell if the following equality holds :

S(4) —2—— A S(4) —2—— A

S ’ f Y
S(f) (¢) S(f") ; =8 _i> fl = |f

S(A) ——— A S(A) ——— A

Let us denote by Ps-S-Alg the 2-category which objects are pseudo S-algebras, whose 1-cells are strong S-morphisms and
whose 2-cells are algebra 2-cells. The full sub-2-category of Ps-S-Alg consisting of the normal pseudo-algebras is denoted
Psp-S-Alg, and the locally full sub-2-category of Ps-S-Alg consisting of the strict algebras and strict morphisms is denoted
S-Alg,.

Remark 1 We gave the description of Psy-S-Alg here as an indication. As a matter of fact for the globular setting it is
possible to build a normal pseudo algebra for each globular monoidal categories in the sense of [1], but Mark Weber pointed
out to me that Psg-S-Alg is 2-equivalent to Ps-S-Alg, and thus we prefer to use the context of the 2-category Ps-S-Alg to
model monoidal cubical categories defined just below. o

Now let us comeback to the 2-monad S = (S, A, 1) on the 2-category of cubical categories CCAT as described above, which
strict 2-algebras are strict monoidal cubical categories .

Definition 7 The 2-category of monoidal cubical categories consists of the 2-category Ps-S-Alg of pseudo S-algebras o



Also by using the theorem 5.1 and the theorem 5.12 of [2] we get the following biadjunction, similar to the one described
in [21] :

Corollary 1 The forgetful 2-functor U : Ps-S-Alg T CCAT such that :

e Ps-S-Alg is the 2-category of pseudo S-algebras;
e CCAT is the 2-category of cubical categories;

e [ builds the free strict monoidal cubical categories functor.
exhibits a biadjunction which restricts to a 2-adjunction on the strict monoidal cubical categories. o
N AN
Also we shall denote by S-Alg, T CCAT the underlying strict 2-adjunction of this biadjunction.
F
2 Cubical Higher Spans and Cubical Higher Cospans

2.1 The pseudo-algebraic structure of Span(C)

Let us first recall the Span construction ([20, 24]) : for any small category C' there is a 2-adjunction :
EL
CAT i [C°P, CAT]
Spang

where Span (€)(c) = [(C/c)°P, €] and the category EL(X) has the following definition :
e objects are pairs (¢, z) where ¢ € C and x € X(c).
e morphisms : (¢,xz) —— (d,y) , are pairs (f,a) where d ¢ isin C and X(f)(x) —— y isin X(d).
e compositions and identities come from C' and the categories X (c).

Suppose now that T = (T, 7, 1) is a cartesian monad on [C°P, Sets], and let us denote again by T = (T, n, u) its extension
to a 2-monad on [C°P,CAT)]. In fact, for any category £ with pullbacks it is proved in [11] that :

Theorem 1 (Kachour,Weber) Span-(€) is a pseudo T-algebra O

In fact we can dualize such construction and produce a similar result which says that Cospang(€) is a pseudo T-algebra if
£ is a category with pushouts, and these produce the following diagram of functors :

CAT push J CAT
Cospan(—) o Cospan(-)
(—)or Ps-S-Alg . CCAT
pan(-) pan(-)
CATpun ) CAT

This result has two essential virtues : first it convince the reader that actually the structure behind the spans and the
cospans construction are really of pseudo-algebraic nature; secondly it shows, and this is we believe the main fact, that
probably not only globular and cubical higher category theory need such structures, but other useful higher category theory
could need it.

However because of the "cubical scopes" of this article, we are going to describe cubical spans and cubical cospans in a
more combinatorial way because this concrete point of view has the advantage to see it unpacked, and thus gives an accurate
idea of what these cubical spans and cubical cospans looks like. This combinatorial description has been described first by
Marco Grandis in [7], and it is instructive to compare it with the Batanin’s combinatorial construction of globular spans and
globular cospans [1]. The only new tools here are the connections on cubical (co)spans which are accurately describe.



In order to formalize cubical higher spans and cubical higher cospans we will use the formal span category V or the formal
cospan category A used by Marco Grandis (see [7]). For simplicity we will explain only constructions for cubical higher spans,
which use this small category V :

1\0/1

because for cubical higher cospans, constructions are duals, and use the small category A :

1V0K1

Definition 8 Let C be a category. The category Span,, (C) of cubical n-spans in C' is the category of functors [V"; C] and
natural transformations between them. o

The combinatoric description of the category V™ shall be useful : each objects of V™ are n-uplets (mq, ...,m,) € {0, —1,1}™.
Also the category V™ underlies a n-cube structure, such that the object (0,...,0) represents the n-face, and the n-uplets
(m1,...,my) € {0,—1,1}" which countains exactly p integers m; which are equal to zero, represent p-faces. Consider
(m1,...,my) a (p+ 1)-face and suppose m;j, =0 for 1 <i < p+ 1. Thus we get two morphisms in V" :

(Mg, —1,fmg, 41,0 mn)
(ml, ceey mj,i, ceey mn) (ml, ceey mji_l, mji,mji_,_l, ceey mn)
(M1 s M, — 1,95 15w M)

such that (ma,...,mj,—1, f,Mj,41, ..., my,) switch the value m;, to the value 7, = —1 and (mq,...,mj,—1, g, My, 41, ..., M)
switch the value m;, to the value 7, = 1.

p+1

Remark 2 Intuitively such map (mq,...,mj,—1, f,mj, 41, ..., My,) is a kind of Spoii

p+1
tpj"

and the map (mq, ..., mj,—1, 9, Mj,+1, -, Mp)

is a kind of O

In particular the following arrows in V™ :

(0,..,0,1,0,...,0)

0,...,0) — L0 I 00 g q)0,...,0), 0, ..., 0) —20:9.0:0)

(0,...,0,1,0,...,0)
shall be important for an accurate description of the projective cone below, when we will describe the pseudo-algebraic
structure produced by cubical higher spans in a category with pullbacks.

Now we want to put a cubical category structure on cubical spans. For that we just recall the constructions of Marco
Grandis (see [7]).

e The formal source functor is given by 1 ———=—— V | where 1 = {x} is the terminal category and s sends %
to —1. Similarly the formal target functor is given by 1 ——X 5 V where t sends * to 1. These give the
source functors V71 TN 7 , given by s7' |, ==Vt x s x V"' for 1 <i < n, and the target functors

yrn-l 221, yn given by b1, = Viml xt x V"% for 1 < i < n, and then we get the cubical category of
spans in C' :

34

3,4

54 53

3,3 2,3

3%,2 52,2 S% 2

Sg,l 52.1 5?,1 S(l,

[V (V3O [V2.0] [V;C] c

i, 2, 7, ta

i P 2,

iy 3y

t3.4

n

where for each 1 < i <n, Sp—1,i

and ¢, , are functors :



e The formal reflexivity functor is given by the unique functor V — 1 , and this gives for 1 < i < n the

n—1
n,i

reflexivity functors V™
on the cubical category of spans in C :

C—1 Vi

V=1 given by 17! := Vi~1x! x V"% and then we get a reflexivity structure

n,i

1%,
; 13, "
2,1 12 1,1
13 V2 C) +> V3 C) 13, V4:.C]---
13,3 13
4,4
—

where for each 1 < i < n, 1::;1 is a functor :

n—1

Vi) s (V70

e Connections for cubical higher (co)spans are not defined in Grandis |7], thus we need to formalize it properly. V2 may

be seen as the following cubical 2-span :

>/
=

(—1,0
(-1,1

)

f

(0,0)

/,

\

(0,1) (0,-1) (1,0)

)

~1,-1

(1,1) (1,

and if A ———— B is an 1-cell, then the 2-cell :

is represented by the following 2-span :

W —

and the 2-cell

is represented by the following 2-span :

N SN

A
f‘ 17 (f)
B

—>.
1p

sy

B

—
[

Sy

17 (f)

N
= >

w— 5



// \
[ > =< <

These show us how to formalise connections for cubical higher spans : the formal connection functors are thus given by :

vz Ly, V2 — 2,V defined on objects? of V2 by

(0,0), (~1,0), (0, =1) =~ 0, (0,1),(1,0), (=1,1),(1,1),(1,~1) —— 1, (=1,-1) —— —1,

and
(0,0), (0,1), (1,0) —~ 5 0, (=1,0),(0, ~1), (—1,1), (=1, ~1), (1, —1) — 1, (1,1) —“ 1.

n,+

n,—
n+1,4

177. 3
These give the connection functors : V7l — 21 5 yn pntl
Vn=t and 1211 ;= Vil x 17 x V=% and then we get the structure of connections on the cubical category of spans in

V", given by 1nJrl ;= Vihx 1T x

C:
4,—
15,4
3,— 4,—
14;3 15,3
2,— 3,— 4,—
1'3 2 14 2 15,2
1,— 2,— 3,— 4,—
12 1 13 1 14 1 15,1
_ _ _
V1 C] (V2] [V3:C) V4 C) [V5;C)
_—
1,4+ 2,+ 3,+ 4,+
121 b _ b
2, 3, 4,
134 15y 153
—_— —2
3,+ 4,+
14,3 15,3
4,+
15,4
where for each 1 < i <n, ln+1 i 1n++1 , are functors :
Lo
—_—
Vo] < [vrih Ol
1n,+
n+1,%

Now suppose that C is a category equipped with pullbacks. This context allows to put a pseudo-algebra structure on
cubical higher spans in C'. In fact this cubical monoidal structure shall be given by these pullbacks. We will follow the
definition of Grandis (see [7]) with a small variation on projective sketch. Our goal, for each n > 1 and each 1 <7 <mn, is to

build functors :

VO] X VC s [V
Vn=1s]
such that [V™*;C] x  [V™;C] comes from the pullback :
[V7L71;C]
Vel o x o [vrd] vl
(\aiel
[V C] vt

T

n—1,i

e First we consider the category V5, given by the following pushout :

20f course, these definition on objects give the one on arrows of V2



{*x} — 5 Vv
t Et

14 — Va

PN

Thus V5 is given by the category :

that we extend to the category V5 :

a c
-1 b 1
Also the following subcategory W of V5 shall be considered :
a c
b
A(0)

-

w —>F V2,

and the natural transformation A(0) :

where A(0) is the constant functor with value 0. This allow to see the category Vs as the category V5 equipped with
a cone over W, that is Vs is a projective sketch equipped with the cone A(0) ————— F ; also we have the

concatenation functor : V ——*—— V5 which sends 0 to 0, and —1 to —1, and finally 1 to 1, from the category V'

to the projective sketch Vg Now for each n > 1 and each 1 <14 < n, consider the pushout diagram :

s

Vn71 n—1,% Vn
n +
tn1i k;
n n
1% — Vi
i

where k7 = Vil x k= x Vi kg = ViTLx bt x V=t and V* = V=1 x Vo x V"% The category V;" may be thought
as the gluing of itself along the functors s}._; ; and ¢, ;, and also the category V;* := V'=! x V5 x V"~* may be
thought as the category V" equipped with a cone over its following subdiagram :

(0,...,0,1,0,...,0) ~ (0, ...,0,—1,0, ...,0)

Remark 3 In this subdiagram the symbol ~ means the identification of (0, ...,0,1,0,...,0) and (0,...,0,—1,0,...,0)
under the pushout. o

10



and the cone is formally described by the natural transformation :

Vitl x A(0) x V=t

Vil x W x i , : Vitl x Vy x Y-t
Vitl x Fx Yyt

e Now consider two cubical n-spans  and y such that s”_, .(z) =t"_, ,(y) in category C equipped with pullbacks :

n—1,t n—1,t

yrn ———— (.
Yy

We are in the following situation where we get the unique functor [z,y]; :

anl Sn—1,i vn

n

n—1,i

+
k;

V’n.

thus we get the functor [x:y] i Vl” L C' which is the extension of the functor [z,y]; on the category

Vl-", which sends the cone 7; = V! x 7 x V" to the following pullback in C' :

JL‘(O,,O) y(O,,O)

ki

Vn

7

e Thus we obtain the diagram : V™ C, where k; = V71 x k x V"% comes from the

concatenation functor : V —* Vg, and we put : y Q7 x = [x:y] ; © ki. As for globular higher spans, these

tensor products on arrows comes from universality of these pullbacks. Thus for each n > 1 and each 1 < ¢ < n, we built
functors :

Veel  x [vre] —2 s [y
[Vr=1C]

which put on Span(C') a pseudo-algebra structure.

Of course the description of the pseudo-algebra Cospan(C'), where C' is a category with pushouts, is obtained by dualizing
these constructions.

11



2.2 Bl-algebras and Bl-coalgebras
Definition 9 If C is a monoidal cubical category then a global object of C is given by a morphism :
11— ¢
in the category CCAT of cubical categories. a)

By the pseudo-universality of 1 L S(1) we get the following morphism [F] of monoidal cubical categories :

(£]

S(1) C
n(1) E
1
Now suppose : S(C) ——~—— C , is the structural map of the pseudo S-algebra C. It is important to notice that the

freeness of S(1) describes this extension [E] as the composition v o S(E) :

s(1) 7 C
k\ /
S(€)
This morphism [E] is denoted End(F) for the case of the monoidal cubical category C = Span(C') where C' is a category

End(E) Span(C) 7
and furthermore this morphism End(E) contains all informations we need to define the S-operad of endomorphism END(E)
associated to the global object E in Span(C) :

with pullbacks; thus a global object in it : 1 —2 Span(C) produces such extension S(1)

Definition 10 For all n € N, n-cells of END(E) consist of elements of the set homspan, (c)(End(E)(t), E(n)), for each

cubical n-tree t € S(1). These n-cells form the set END(E)(n), and the corresponding cubical set END(FE) underlies an

S-operad where the multiplication of it is defined as follow : if (x,v) is an n-cell of S(END(E)) x END(E), and is such that?
S(1)

#(1)(S(a)(x) = ' and a(y) =t :

S(END(E)) x END(E)

S(1)
S(END(E))// \ END(E)
S(a Ste p ¢
S(1)? \ s(1) \ 1
”,9/
S(1) \ K ¢
' END(E)

then v(x;y) is given by the composition y o v(z) in Span,, (C) :

v(x)

End(E)(t') End(E)(t) —2—— E(n)

where
S(Span(C')) ———— Span(C)

is the structural map of the pseudo S-algebra Span(C); the unity of it is given, for each n € N, by the singleton 1g,) €
homspan ¢y (E(n), E(n)). The axiom of associativity of the multiplication of END(E) comes from the associativity of
compositions of each categories Span,, (C) (n € N), and we have the similar result for the axiom of unities. o

3In this diagram S is seen as a monad on the category CSets of cubical sets. See [10] for the definition of S-operads.
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Remark 4 It is important to notice that these definition of cubical higher operad of endomorphism associated to a global
object can be generalized easily to any monoidal cubical categories (different to those of the form Span(C)), and more, this
could be done probably in the general setting of pseudo-algebras. But because the scope of this article is to have first an
accurate description of the functor I, (3.2.3) we prefer to restrict ourself to this concrete description. o

Also we have the following easy result :

Corollary 2 A global object 1 - £ Span(C) is the same thing as to give a cubical object, still denoted by E, internal
to the category C' : C —F LcC o

Now we are ready to define Bg—algebras :

Definition 11 Consider a category C' with pullbacks, plus a cubical object E init : C — £ 0. Eis equipped with
a B2-algebra structure if there is a morphism of S-operads : B2 S SN END(E) . o

Operads of coendomorphisms and coalgebraic structures are defined similarly and dually, but because of their importance
we prefer to give their precise dual definition : if C is a category with pushouts, thus C = Cospan(C) is a monoidal cubical

category, and if : 1 — 2 Cospan(C) is a global object in it, then the corresponding extension Coend(F) to S(1) :

Coend(E)

S(1)
associated to the global object E in Cospan(C) :

Cospan(C) , contains all informations we need to define the S-operad of coendomorphism COEND(E)

Definition 12 For all n € N, n-cells of COEND(E) consist of elements of the set homcospan, () (E(n), Coend(E)(t)), for each

cubical n-tree ¢t € S(1). These n-cells form the set COEND(FE)(n), and the corresponding cubical set COEND(FE) underlies

an S-operad where the multiplication of it is defined as follow : if (x,y) is an n-cell of S(COEND(E)) x COEND(FE), and is
S(1)

such that u(1)(S(a)(z)) =t and a(y) =t :

S(COEND(E)) x COEND(E)

S(1)

S(COEND(E COEND(E)

/
S(a c
s \ s@) / \

then ~(z;y) is given by the composition y o v(z) in Cospan,, (C) :

Coend(FE)(t') SN Coend(E)(t) ——— E(n)

where
S(Cospan(C)) ———— Cospan(C)

is the structural map of the pseudo S-algebra Cospan(C); the unity of it is given, for each n € N, by the singleton 1p,) €
homcospan,, () (E(n), E(n)). The axiom of associativity of the multiplication of COEND(E) comes from the associativity of
compositions of each categories Cospan,,(C) (n € N), and we have the similar result for the axiom of unities. o

Also we have the following easy result :
Corollary 3 A global object 1 —E Cospan(C') is the same thing as to give a cocubical object, still denoted by E,
internal to the category C' : C°P —fF L0 o

Now we are ready to define Bg—coalgebras :



Definition 13 Consider a category C' with pushouts, plus a cocubical object E in it : C°P —E L0 .FEis equipped
with a B-coalgebra structure if there is a morphism of S-operads : B, S SN COEND(E) . o
Also it is easy to check that for each global object E of Span(C) where C has pullbacks, the construction of END(E)

endows a functor, and also for each global object E of Cospan(C') where C' has pushouts, the construction of COEND(FE) is
also functorial. Recall from 2.1 that we got the following diagram of functors :

CAT push J CAT
Cospan(—) (<yop Cospan(—)
(=)°” Ps-S-Alg : CCAT
pan(-) pan(—)
CATpun - CAT

and we have the following result :

Corollary 4 o If C —f D isa morphism of the category CATp,u, and if
1
E/
Span(C) Span(F) Span(D)

is a morphism of the category (1 | i o Span(—)), then it produces the morphism of S-operads :
V4 gory Y4 ) p V4 P

END(Span(F))

END(E) END(E")
Furthemore this construction is functorial and gives the functor
(14 i0Span(—)) END(C) S-Oper
o If C —F D isa morphism of the category CATpysn, and if
1
El
Cospan(C) Py—— Cospan(D)

is a morphism of the category (1 | i o Cospan(—)), then it produces the morphism of S-operads :

COEND(Cospan(F))

COEND(E) COEND(E")
Furthemore this construction is functorial and gives the functor
(1] ioCospan(—)) COBND() S-Oper

14



3 Higher Cospans in Top
3.1 The global object box : I°

Here I = [0,1] is the usual interval of R. Consider the following internal cocubical object in Top :

n
Sp—1,1
4
83,1 N
e
5%,% 5%,2 5271,7;
_—
2 3 4
51,2 52,2 53,3
$0 52 $3 = sn e
1 1,1 2,1 3,4 n—1,n—1
_—
IO Il 12 13 14 .. In—l In...
_—
) 2 3 4 n
t t1,1 t2,1 3.4 tn—l,n—l N
2 3 4
15 132 33
_—
3 4 n
3.3 3.2 b1,
— >
t31
_—

tho1,
defined by :

n
S’n—l,i(xl’ ooy Lj—1, T4, ...,xn_l) = (3}‘1, ...,J;i_l,O,xi, ...,xn_l)

tzflyi(xl, ey Li—13 Ly enny xn,l) = ((El, ey Lj—1, ].7 Ljyenny xn,l).
This is a global object of the pseudo-algebra Cospan(Top). Following the notation in [5], this global object I® shall be

n(1)

called the box object. Thanks to the pseudo-universality of 1 S(1) we get the following commutative (up

to isomorphisms) diagram :

Coend(I) > Cospan(Top)

and from the cubical monoidal functor Coend(I*®) we get the S-operad COEND(I*®) (2.2). The next section is devoted to
prove that I°® is a B-coalgebra, i.e that the S-operad COEND(I®) is contractible and is equipped with a composition system
in the sense of cubical higher operads [10].

3.2 [*is a B-coalgebra
3.2.1 Composition systems on COEND(/*)
The cubical (n — 1)-sphere S?~1 is given by the sums :
siti= [T (T x {0y x U x {1y < I
1<i<n

and we have the inclusion : S?"7! «—w— 7
For all 1 < i < n we are going to build by induction maps :

n i
) — ] oI
In—

such that I" L] ) I" is the following pushout :
Iﬂ,—

n
Sn—1,i

In—l , VL
t"n

n—1,i

" ————1I" Iil "
n—1

15



1

that is, we start with I° S BN I°, and we suppose that the maps I™! EECEN— (S 11112 I" 1 are already

defined for 1 <i <n — 1. We glue S”~! with itself along the same face and we obtain the inclusion i :

n—1,i

.'J

In [n ﬁl In

Jn—1

o On i
In order to build u? we are going to build first its interior p* : S?~1 S SN Sn—l N Sn1. It is defined by the
Jn—1

following induction :

o Ifi = jthen weput I~! x {0} x I"~" ——_ Ji=1 % {0} x I"~*, where the identity map id sends the (n—1)-faces

I'=1 x {0} x I"~% of the first copy S?~! in S7~! II;II St to the (n—1)-faces I*~1 x {0} x I"~% of the second copy SP1,
and we put : I x {1} x ["1 — 9, Jim1 % £} x [ where the identity map id sends the (n — 1)-faces
I'=1 x {1} x I"~* of the first copy S?~! in S~} Ilill S7~! to the (n — 1)-faces I'~! x {1} x I"~" of the second copy
spt.

, . e , Ci-1 ,
e If 1 <j <i<mnthen weput: /71 x {0} x [" N (" {0} x "7 ;le =1 x {0} x I"77, and

. : A . Ci—1 .
=t x {1} x [n7 i D=t x {1} < 1" U 7' x {1} x I"77, where the codomains are given by the
I‘VL*
following pushout :
In_2 S:i:;,i—l In_l
th 21
i1
" In—l uz In—l
I‘VL*
) . nol ) C i1 )
e If 1 <i<j<mnthen weput: /71 x {0} x [" S L RS {0} x "7 jI_IQIJ_1 x {0} x I"77, and
=
_ _ oy . e _
=t x {1} x [n7 S S £ {1} x "7 J|_I2 7=t x {1} x I"77, where the codomains are given by the
In—
following pushout :
In—2 Sz:év1*1 In—l
th 21

16



o
Thus we obtain the desired extension p}* of u' :

I

—1 _q —1 T i
Sy E— RIS P (I
% Jn—1 1 Jn—1
Hi

3.2.2 Contractibility of COEND(I°*)

1 % X
7
Thus X is described as an iterated pushouts of the topological n-cubes I"™ (n € N) given by the global object I® in the

pseudo-algebra Cospan(Top); and in particular X is contractible. We are going to build the contraction [f, ] 1 by induction.

[F9n=3

Consider two maps in Top : such that f and g are two (n — 1)-cells of the operad COEND(I*).

Thus we suppose that for all 1 < j < n — 1 the maps I"~! X exist, and we start our induction with an

[£.91%

easy choice of extension [f, g]{, where f and g define here two points of X : [ X. The contraction [f, g]Z;l

fan it
is given by a continuous map I™ L X. In order to do that, for all 1 < j < n, we need first to define the map :
(fayn!
Sn—t Mo x This map (f,g)" has the following definition :
o - i f i1 nej g

efori=jweput: ' x{0} xI"7 ——— X, and " ' x {1} xI[") ——— X

. sn Tz (Do @) R R )
e 1 <i<j<mthen Ii-Lx {0 x po-i mzenoa@hiciigy o g pien oy o oot 2 2Oy

. EE SN € ) WO ST (7)) g A [t 5 1 (Ptn 5 1 (@In3,
e If1<j<i<nthen [i-!x {0} x [r—tn=2 29l and T x {1} x [P R 2y
then we obtain the desired extension :

-
R [t
sl {x
c (Frgyn it
. -1 ;) .
Now consider two (n — 1)-cells of COEND(I®) : [ _ X, such that for 1 < j <n —1 we have
=1 f
fosi” éj—gos L:I”‘Q%I’Ll X
g

that is SZ:é,j(f) = 32:5,3‘ (g). We are going to build the contraction [f, g]Z;L_ by induction. Thus we suppose that for

n—2

all 1 < j < n— 2 the maps I™! M X exist, and we start our induction with an easy choice of extension
[f, ]2 1, where f and g define here two paths in X : I? & X The map [f, 9]231,— is given by a continuous map
" % X. In order to do that, for all 1 < j <mn — 1, we need first to define the map : Sg‘l % X. This
map (f,g), L~ has the following definition :
o ifi=jweput: IF-'x {0} x "7 —L 5 X and IV x {0} x ["=i-1 —L x|
and [ x {1} x I7 [t =2 (N)tn 2 (D215 X, and I x {1} x [ [t =2 (N)tn 2 (D215 .
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e If 1 <1i,j <n then we put :

. o - PR GO O Rkt 7)) Mgt
—ifl1<i<j<n-—1then I'"' x {0} x I X,
, N G C DR )] Kl
and I'~1 x {1} w i =22 @1y
(CIRER ) FEUE Y ()] Kty

—if2<j+4+1<i<nthen I'"!

and I71 x {1} x ["7¢

x {0} x I™~¢

X,

then we obtain the desired extension :

Now consider two (n — 1)-cells of COEND(I*®) :

O ERYO RIGEN )) liakipy X
In
[fvg]z,_jl'_
_ 4
S? 1 T} X

(f.9)

n,j

o —

g
1<j7<n-—1we have
n—1 f
—1 —1 _ n—2,75 _ _
fotZ_QJ.:gotZ_Q’j: M2 2, el _ X,
that is tZ:;j(f) = tﬁ:;j (g). We are going to build the contraction [f, g]Z;H' by induction. Thus we suppose that for
(Faln=ds

all 1 < j < n —2 the maps I*!

[f, g]
ITL

1
n—1,4
[fyg]n,j

n—1,+
n,j

map (f,g)

o ifi=jweput: /71 x {1} x [
.

y—1
[5:,72,,'(

2:; where f and ¢ define here two paths in X : I2

X. In order to do that, for all 1 < j < mn — 1, we need first to define the map :

[f.9)27

Sn—l

c

has the following definition :

— 5 X, and I x {1} x i1 2, X,

L@y (773, (s 7h L (9)]

n—2,—

and 771 x {0} x ["~J

e If 1 <1i,j <n then we put :

—if1<i<j<n-—1then I'"!

" X, and I x {0} x I" ! LN 'S

-1 —1 -2,
[3272,1'(f),szfgyi(g)]:71_;l1

and I'71 x {1} x "7
—if2<j+4+1<i<nthen I'"!

and I71 x {1} x ["~¢

Then we obtain the desired extension :

and it is then straightforward to check

x {0} x I"~! X,
R N
i [Sz:é,ifl(f)vsz:;,i71(9)]Z:§:+
x {0} x I"™¢ — X,
e WG e RLC))
I’I’L
”*»__[ﬂdZ}L+
=
S X
¢ (fayn bt
the different axioms of contractions for such extensions [f, 9]2317

lf, g]:;fjl’+. With 3.2.1 and 3.2.2 we thus have proved the :

Theorem 2 I°® is a Bg-coalgebm,
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X, such that X is contractible, and such that for

X exist, and we start our induction with an easy choice of extension

X. The map [f, g]z’_jl’_ is given by a continuous map

(ot
_—

[f,g]n5 " and



3.2.3 The fundamental morphism of operads

Map(—,X)

Let us fix a topological space X € Top. From it we get a functor Top SET?? in CAT,ysn, thus from the

Cospan(—)

functor : CATpush Ps-S-Alg we get the following morphism in Ps-S-Alg :

Cospan(Map(—,X)) Cospan(SET?)

Cospan(Top)
Also we have the functor :

COEND(—)

(14 4o Cospan(—)) S-Oper

which sends the following morphism Map(—, X) of (1 | i o Cospan(—)) :

/ W)W

Cospan(Top) Cospan(SET?)

Cospan(Map(—,X))

to the morphism of operads :

COEND(Cospan(Map(—,X)))

COEND(I*)

this shows that Map(I®, X) is an algebra for COEND(I®). But we proved in 3.2 that I*® is also a BZ-coalgebra, which
means that we have a morphism of operads :

COEND (Map(I*, X)°P) ~ END(Map(I®, X))

BY, — 1 COEND(I*)
which shows that we have a morphism of operads :

COEND(Cospan(Map(—,X)))o!

Bg
that is the cubical set Map(7®, X) :

END(Map(I*, X))

n—1,n
S§,4
n P 3
n—1,i S3.3 S2.3
54 93 92
3,2 $2,2 1,2
w P 3 7 7 1
Sn—1,1 53,1 S2.1 S1,1 So
--Map(I™, X Map(I™~t, X) .- -Map(I*, X Map(I3, X Map(I2, X Map(I, X Map(1°, X
p(7)n p(I", X) p(,)4 p(,)s p(7)2 p(7)1 p(I”, X)
th_1 L t3 1 51 1 to
t3.2 5.2 t1 2
_ . 3, ,
bno1 33 3.3
> =
3,4
n
th1,n

is equipped with a structure of weak cubical co-category. This weak cubical co-category I, (X) is in fact a weak cubical
oo-groupoid (see [14] for the definition of cubical weak oco-groupoids), called the fundamental cubical weak co-groupoid of X.

Alsoif X —L 5 ¥ s a continuous map between X and Y, then from our functorial constructions we get the following

commutative diagram :

END(Map(I®, X))

COEND(Cospan(Map(—,X)))o!

BY — 1 COEND(I*) END(Map(*, )

COEND (Cospan(Map(—,Y")

END(Map(I®,Y))
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which exhibits the fundamental cubical weak co-groupoid functor :

Top HOO—(_)> oo-CGrp

which has a left adjoint functor C'No. This pair of adjunction (C' N, IIo(—)) should put an equivalence between the
homotopy category of homotopy types and the homotopy category of co-CGrp of cubical weak co-groupoids with connections
equipped with an adapted Quillen model structure. This was shown to be true but in the context of the Cisinski model
structure on the category of cubical sets with connections (see [18]).

The Grothendieck conjecture on homotopy types [9] predicts that the category Top of topological spaces is Quillen
equivalent to the category of globular weak oco-groupoids. An accurate formulation of this conjecture is in [1] where Michael
Batanin has built a fundamental globular weak oo-groupoid functor :

Top L oo—Grp

by using the coalgebraic feature of the coglobular object of Top consisting of topological disks. Also it was proved in [3] that
the category of globular strict co-categories is equivalent to the category of cubical strict co-categories. This work [3] shows
that technics to compare globular higher category and cubical higher category exist. A natural question is to ask if such
technics can be generalized for weak structures. Also it is important to notice an other analogy between globular higher
category and cubical higher category : in the work [12] we built algebraic models of globular weak co-groupoids, and in an
other work [14] we also built algebraic models of cubical weak oo-groupoids, which are similar to their globular analogue : they
are similar in the sense that they are both defined as algebras for specific monads. Indeed our globular weak oco-groupoids
are algebras for a monad on the category of globular sets, and our cubical weak oo-groupoids are also algebras for a monad
on the category of cubical sets. All these material putting together give a real perspectives to solve the the Grothendieck
conjecture on homotopy types4.

3.2.4 Application for higher K-theory

The functor I, (—) could be intuitively thought as the gluing of all the homotopy groups functor m; together, and because the
m; are cohomologies, 1o, (—) could be thought as a higher dimensional cohomology, that is a functor between co-categories, or
an oo-functor which behave like cohomologies. It seems that such objects are of interest for the Stolz-Teichner program®
[22] who try to investigate ideas from physic (TQFT=Topological Quantum Field Theory) through cohomologies, and also
ETQFT (Extended TQFT) through higher dimensional cohomologies and vice-versa.

In this section we explain how to "glue" algebraic K;-functors (i € N) of Quillen :

Rings - & Top

into a single functor K., where here Rings is the category of rings with unit.
But first let us recall some basic facts which are defined more accurately in [19] : the functors K; are defined by the
compostion :

BGL(—)T xKo(-) i (=)

Rings Top Grp

where for any rings R with unit :

e CL(R) = |J GL(n,R)

n=1
e BGL(R) is the classifying space of the group GL(R)
e the +-construction on BGL(R) is taken relative to the perfect subgroup E(R) (elementary matrices) of GL(R)

e Ky(R) is given the discrete topology
Thus we get the functor K., which is given by the composition :

BGL(—)TxKo(-) Moo (=)

Rings 00-CGrp

Top

41t is important to aware that the author suffer by a lack of financial support. Between 2013 and 2017, only three months have been financially
supported. The author believes that with decent financial support he will be in a better condition to attack this conjecture
5These ideas take their roots in the work of Graham Segal on Conformal Field Theory.
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4 Importance of Coalgebraic structures for Globular and Cubical Higher Cat-
egory Theory

4.1 The Batanin’s construction and the author’s construction

In the article [1], Michael Batanin has built the contractible operad B2 which algebras are globular weak oo-categories. He
also proved that the globular object D*® in Top consisting of topological disks :

1 2 n
So ST Sp—1
DO Dl D2“_Dn714>Dn_._
_—
t5 t3 th-1

isa Bg—coalgebra, which implication is the construction of the fundamental globular weak oco-groupoid functor

Top LS BN 0o-Grp

In the other hand, in the article [13] the author built a coglobular object Bg

Spo1
0 1 2 n—1 R — n
BY, : B, : B%---BY _ By -
ty tq L1

such that B is the contractible operad just above of Michael Batanin, B¢, is the contractible operad which algebras are
globular weak oo-functors, B is the contractible operad which algebras are globular weak co-natural transformations, etc.
Also we have the surprising fact : if B is a B&-coalgebra then it implies that the globular weak oo-category of globular weak
oo-categories exists. We didn’t prove yet this fact®, however this is an important improvement for globular higher category
theory for two main reasons :

e in the beginning it was non-trivial to know why globular weak oco-categories, globular weak oo-functors, globular weak
oo-natural transformations, etc. organize in a globular weak oco-category. Now we have replaced this very complex
combinatorial question by a precise statement : the coendomorphism operad COEND(B®,) should be contractible’, like
its topological little son® COEND(D?®).

e it brings a spectacular analogy between topological spaces and globular higher categories, which was hope by Grothendieck
and Thomason. Let us gives a first smell of such analogy :

— Consider the following 1-cell in the operad COEND(D*) of topological disks :

1
pt—H . pt L D!
D

and consider a topological space X. With these we get the following 1-cell of the fundamental weak oco-groupoid
Mo (X) :
Map(D',X) x  Map(D',X) ——°— Map(D', X)
Map(D°,X)

— Suppose that COEND(Bg) is contractible. It is then possible to consider the following 1-cell in the operad
COEND(B?,) of operadical disks :

1
1 Ho 1 1
—>
Bg B¢ L(I) B¢
BC

and with this 1-cell of COEND(Bg.), we get the following 1-cell in the suspected globular weak oo-category of
globular weak oo-categories :

01
Alg(B)(0)  x  Alg(Bg)(0) ——————— Alg(B¢)(0)
Alg(BL)(0)

which is the composition of globular weak oco-functors !

6 Also because the author suffer of lack of financial support.
“which imply that it is equipped with a composition system. See [13]
8or little brother ...
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4.2 Steps toward the cubical weak oco-category of cubical weak oco-categories

Consider the following internal cocubical object in a subcategory® C of the category Mnd of monads, such that C has pushouts.

5:—1,1
4
53,1 ,
—_—
3 4 ;
52,3 53,2 Sn—1,i
2 3 1
51,2 52,2 53,3 ,
2 3 4
8(1] S1,1 S2.1 53,4 Sn—1,n—1
0 1 2 3 4 n—1 n
BC BC BC BC BC BC BC
9 ti1 tg,1 t§,4 by 11 N
2 3 4
1,2 32 t33
—_—
t33 t3,2 tr—1,i
, ,
—_— >
t31
—_—>
th 11

such that B is the S°-operad which algebras are cubical weak oo-categories. Also the S'-operad B}, which algebras are
cubical weak oo-functors, the S2-operad B% which algebras are cubical weak co-natural transformations, etc. where S! is the
cartesian monad which algebras are cubical strict co-functors, S? is the cartesian monad which algebras are cubical strict
oo-natural transformations, etc. are not difficult to be built. For example the underlying combinatorics of the S'-collection
of B} comes easily from the monad of cubical weak co-functors as defined in [14] and the underlying combinatorics of the
S?-collection of B2 comes easily from the monad of cubical weak oo-natural transformations as defined in [14]. Also according
to the cubical combinatorics it is straightforward to see that the cartesian monad S™ of cubical strict n-transformations act on
the category CSets?", the cartesian product 2" times in CAT of the category of cubical sets with itself. In order to build these
contractible S"-operads B we have different technics to do it. We can use for example the formalism of the T-categorical
stretchings as developed in [16], or we can use the theory of Garner [6] to build a fibrant replacement of the S™, or we can
more classically just use the technology developed in [1, 10].

This internal cocubical object B® of C is a global object of the pseudo-algebra Cospan(C), where here we deal with cubical
higher cospans. Thanks to the functor defined in 2.2

(1] i 0 Cospan(—)) COEND() S-Oper
the following morphism Alg(—) of (1 | ¢ o Cospan(—)) :
1
Alg(Bg)P
I'
Cospan(C) Cospan(SET?)

Cospan(Alg(—))

is sent to the morphism of operads :

COEND(BZ:,) COEND(Cospan(Alg(—)))

COEND(Alg(Bg,)°%) ~ END(Alg(B?)) .

This shows that Alg(Bg) is an algebra for COEND(B¢). Now suppose B, is also a B&-coalgebra. In fact we put the
following conjecture :

Conjecture The operad of coendomorphism COEND(B?.) is contractible.

Contractibility here means the cubical one, as developed in [10], where we consider contractions similar to their globular
analogue, plus the "connections-contractions" which are for contractions what connections are for cubical co-categories.
If we accept this conjecture then it means that we have a morphism of operads :

BY ———' s COEND(BY)
which means that we have a morphism of operads :

COEND(Cospan(Alg(—)))o!

BY END(Alg(Bz.))

which shows that the cubical set Alg(Bg&)(0)! :

9Such subcategory exists according to a private communication with Ross Street and John Bourke who give me such accurate construction of it.
We won’t describe it here because of lack of time.
0For each n € N, Alg(B%)(0) means the class of objects of the category Alg(B%).
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n > sf;. 53
n—1,% Si,& S;Ji 82
o 2 R EoR 1
— : D) T MgB)0) 7 Ag(BR)0) 7 Als(BL)(0) T Alg(BL)O)
.. Alg(Bn)(0) Alg(B%1)(0) - - Alg(B)(0 Alg(B2)(0 Alg(B2)(0 Alg(BL)(0 Alg(B2)(0
¢ tzfl-l ¢ ¢ té 1 ¢ tg 1 ¢ t? 1 ¢ t(l) ¢
R t4’ t3, tZ’
3,2 2,2 1,2
t::71,i> t§,3 t%,s
tn*} t§,4

n—1,n

is equipped with a structure of weak cubical co-category. This is the cubical weak co-category of cubical weak co-categories.
Like for globular higher category theory, we thus have an amazing analogy between topological spaces and cubical higher
categories, up to these conjectures related to coalgebraicity. This is our operadical point of view which allows such analogies.
Thanks to it we can mimic the globular approach of weak Grothendieck co-topos as described in [15] to have a real smell
of what is a cubical weak Grothendieck co-topos. We would like to insist that this article overall shows how 2-categorical
materials developed in [20, 21, 23, 24] and recently in [11], can provide some good generalizations, where different higher
category theory with different shapes, could be developed within this framework, and where we can imagine for example that
other geometries for higher groupoids associated to topological spaces are possible.
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