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Abstract. The Leibniz rule for derivations is invariant under cyclic permutations of
the co-multiples within the derivations’ arguments. We now explore the implications
of this fundamental principle, developing the calculus of variations on the infinite jet
spaces for maps from sheaves of free associative algebras over commutative manifolds
to the quotients of free associative algebras over the linear relation of equivalence under
cyclic shifts. In the frames of such variational noncommutative symplectic geometry,
we prove the main properties of the Batalin–Vilkovisky Laplacian and variational
Schouten bracket. As a by-product of this intrinsically regularised picture, we show
that the structures that arise in the classical variational Poisson geometry of infinite-
dimensional integrable systems – such as the KdV, NLS, KP, or 2D Toda – do actually
not refer to the graded commutativity assumption.
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2 ARTHEMY KISELEV

Introduction. Let F be a free associative algebra over k := R and suppose a1, . . ., ak ∈
F. Denote by t the counterclockwise cyclic shift of co-multiples in the product a1◦. . .◦ak,

t (a1 ◦ . . . ◦ ak−1 ◦ ak)
def
= ak ◦ a1 ◦ . . . ak−1.

For the sake of definition, assume now that a given derivation ∂ : F → F is such that
its values at a1, . . ., ak do not leave that set. By the Leibniz rule, the derivation is
cyclic-shift invariant:

∂
(
t (a1 ◦ . . . ◦ ak)

)
= t
(
∂(a1 ◦ . . . ◦ ak)

)
. (1)

Indeed, both sides of the equality above are given by the sum

∂(ak) ◦ a1 ◦ . . . ◦ ak−1 + ak ◦ ∂(a1) ◦ . . . ak + ak ◦ a1 ◦ . . . ◦ ∂(ak−1),

up to the sequential order in which these k summands follow each other (see Fig. 1).
This observation is generalised in an obvious way to the case when the elements of
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Figure 1. The cyclic-shift invariance of derivations.

algebra F are graded by some Abelian group, each element a1, . . ., ak is homogeneous
with respect to the grading, and ∂ : F → F is a graded derivation (i.e., not necessarily
preserving the set {a1, . . ., ak} at hand).

How much (graded-) commutativity is really needed to make the calculus of varia-
tions in Lagrangian and Hamiltonian formalisms work, thus allowing for the Batalin–
Vilkovisky technique for quantisation of gauge systems — and creating the cohomolog-
ical approach to complete integrability of infinite-dimensional KdV-type systems ?1

We now claim that it is not the restrictive assumption of commutativity that shows
through arbitrary permutations — but it is the linear equivalence a ∼ t(a) of words a,
written in a given algebra’s alphabet, with respect to the cyclic permutations t that
is sufficient for the structures of the calculus of iterated variations to be well defined.
Introduced in this cyclic-invariant setup, the Batalin–Vilkovisky Laplacian ∆ and vari-
ational Schouten bracket [[ , ]] are rigorously proven to satisfy the main identities such
as the cocycle condition ∆2 = 0, see (2a–2d) below. Both the definitions and assertions

1We refer to [2, 3, 39, 15, 12, 4, 46, 47] or [19] and to [34, 37, 38, 8, 7, 10, 32, 33] or [17, 27], see
also [28, 23] in both contexts.



VARIATIONAL NONCOMMUTATIVE SYMPLECTIC GEOMETRY 3

are then literally valid in the sub-class of graded-commutative geometries; the reason
for this is that the latter can be obtained from the former by using the postulated
commutativity reduction at the end of the day when the proof is over. In brief, Fig. 1
portrays the immanent property of Leibniz rule, so that much of differential calculus is
possible regardless of the commutativity but thanks to cyclic invariance (1).

The idea to establish the formal noncommutative symplectic geometry on the cyclic
invariance, generalising the geometry of commutative symplectic manifolds, was intro-
duced by Kontsevich in [30], cf. [14] and references therein. The quotient spaces of cyclic
words were employed as target sets for maps from usual manifolds in [38] by Olver and
Sokolov; several integrable equations of KdV-type were recovered in such noncommu-
tative set-up.2 Variations arising in the variational Poisson or Schouten brackets for
integral functionals, their calculus was then pursued along the lines of [37], cf. [21]. The
paper [38] initiated the classification and study of evolutionary ODE and PDE systems
on associative algebras, which required the calculation of standard geometric structures
for such models in jet spaces (e.g., see [40] in this context).

In this paper we futher that approach to noncommutative jet spaces.3 Continuing the
line of reasoning from [19, 20] where the intrinsic regularisation of Batalin–Vilkovisky
formalism is revealed, we now verify the main identities for ∆ and [[ , ]] in the variational
noncommutative set-up of (homogeneous) local functionals F , G, H :

∆(F ×G) = ∆F ×G+ (−)|F |[[F,G]] + (−)|F |F ×∆G, (2a)

[[F,G×H ]] = [[F,G]]×H + (−)(|F |−1)·|G|G× [[F,H ]], (2b)

∆
(
[[F,G]]

)
= [[∆F,G]] + (−)|F |−1[[F,∆G]], (2c)

Jacobi
(
[[ , ]]
)
= 0 ⇐⇒ ∆2 = 0. (2d)

It is quite paradoxical that for a long time, these identities were proclaimed to be valid
just formally [13, 15]; for it was believed that the Batalin–Vilkovisky technique would
necessarily contain some divergencies or “infinite constants,” whereas their manual
regularisation appealed to surreal principles like “δ(0) := 0” for Dirac’s δ-function
(see [19] and references therein for discussion on the history of the problem).

Let us emphasize that through the use of noncommutativity we gain a deeper un-
derstanding of classical objects and structures such as the iterated variations of local
functionals; it is by this that the intrinsic regularisation of the Batalin–Vilkovisky for-
malism was achieved (see [22] for illustration). In fact, it was enough to focus on
the algebraic distinction between the commutative substrate manifold Mn (e.g., the
Minkowski space-time underlying the BV-zoo) and the quotients A = F/ ∼ of the free
associative algebras taken for the target sets. The maps that take the sheaves Mn

nC

of some other free associative algebras – in earnest, the sheaves of groups of walks,
see §1.2 – over Mn to the cyclic-word quotients A(0|1) of Z2-graded extensions of F now

2Noncommutative extensions of classical infinite-dimensional systems can acquire new components
that are invisible in the commutative world: e.g., there appear – often, through nonlocalities – the
terms that contain the commutants ai ◦ aj − aj ◦ ai.

3We note that the positive differential order calculus on infinite jet spaces lies far beyond the bare
tensor calculus on usual commutative manifolds; for instance, compare [41] with [28] or contrast [1]
vs [26] and [39] vs [19].
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play the rôle of sections in the BV-bundle of (anti)fields and (anti)ghosts. — Models
from theoretical physics motivate the study of precisely this construction over Mn, cf.
Fig. 4 on p. 17 below.4 In the frames of noncommutative picture, the cyclic words
in the target set acquire the nature of paths which are thread through a cell-complex
tiling of Mn, whereas the underlying manifold itself shows up in the formulae through
the integration by parts, see Ch. 1. The point is that, even in this picture’s graded-
commutative reduction, all the path-like objects to-vary are first unrolled consecutively,
forming one long path the components of which are then re-attached or modified by
using the derivations ∂; only afterwards are the integrations by parts performed. This
results in the sought-for regularisation (2a–2d) of the BV-geometry, cf. [15, §18].

A still wider approach to noncommutativity suggests that the manifolds – and deriva-
tive objects such as the fibre bundles – are determined as the spectra of noncommutative
algebras, most commonly associative, provided that the algebras are ‘smooth;’ those
algebras are viewed as the algebras of smooth functions on the objects which they de-
termine. Nowadays, noncommutative geometry à la Connes [5] is a well-established
domain that allows for consideration of much more general settings than ours. How-
ever, we keep the framework closer to the needs which one encounters in an intriguing
class of path- and loop-based theoretical physics models ([24, 25], cf. [44, 11, 6]). Let
us stay on the verge of maximal generality in favour of studying the language of closed
strings of symbols – written around the circles and encoding paths in the granulated
space Mn.

This paper consists of three parts. In Ch. 1 we introduce the static set-up of noncom-
mutative infinite jet (super-)spaces. Based on the algorithmic construction of parity-odd
Laplacian ∆ and variational Schouten bracket [[ , ]], the calculus of iterated variations of
local functionals – i.e., kinematics – is developed in Ch. 2. Such BV-geometry of local
functionals is then contrasted to the noncommutative Poisson formalism – that is, to
the dynamics of variational multi-vectors, which we prove in Ch. 3 to be the paradigm
of steps and stops, as far as the calculus of variations is concerned.

The text is structured as follows. The commutative but not associative algebra A

of cyclic words written in the alphabet 〈ai〉 of a free associative algebra is introduced
in §1.1. The generators ai themselves are viewed in §1.2 as words written in the al-
phabet 〈~x±1

i 〉 of edges in the adjacency graph for a cell-complex tiling of the substrate
manifoldMn. The alphabets 〈~x±1

i 〉 and 〈a
i〉 provide the respective noncommutative ana-

logues of base and fibre in a bundle; in §1.3 we build the jet space of maps J∞(Mn
nC → A)

from the sheaf of [unital extensions of] free associative algebras generated by 〈~x±1
i 〉 for

a crystal tiling of Mn to [the unital extension of] the algebra A of cyclic words written
in the alphabet 〈ai〉. Various elements of the jet-space language are then recovered. In
particular, we show in §1.3 why the Substitution Principle works for identities in total
derivatives; the noncommutativity of set-up makes the reasoning particularly transpar-
ent.

4Let us recall that the notion of associative structures itself deserves the focused attention in math-
ematical physics literature (e.g., in the broad context of Yang–Baxter’s equation). By construction,
solutions of the Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equation are the regular generators of
associative algebra structures [45, 9], cf. [35]. We now study the extent to which the differential calculus
can be developed on the basis of that input data.
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The second part begins with the definition of noncommutative analogue for the varia-
tional cotangent bundle over the infinite jet space J∞(Mn

nC → A), see §2.1. The target

algebra’s alphabet 〈ai〉 is doubled by using the canonical pairs 〈ai, a†i〉; sign conven-
tion (11) for the two ordered couplings of the virtual variations δa and δa† ensures the
matching of signs in all the structures that are defined in what follows. In the meantime
(see §2.3), the Z2-parity reversion Π: a†i ⇄ bi acts on the dual symbols a†, producing
the parity-odd slots b. Now, the geometric approach of [19] to iterated variations works
in the noncommutative set-up of maps a = s(x, ~x±1) and antimaps a† = s†(x, ~x±1)
from the sheaf over Mn. Therefore, while giving the operational definitions of BV-
Laplacian ∆ in §2.6, we focus on the unlock-and-join reconfigurations of cyclic words.
The variational Schouten bracket [[ , ]] is a derivative structure, that is, it is determined
by the parity-odd operator ∆ via its action on products, see (2a) above.5 We then
confirm that the variational Schouten bracket [[ , ]] is shifted-graded skew-symmetric
and satisfies the Jacobi-identity. The two structures ∆ and [[ , ]] endow the ring of local
functionals with the structure of differential shifted-graded Lie algebra.

The third part of this text narrates on the noncommutative variational Poisson for-
malism. The notion of noncommutative variational multi-vectors is introduced in §3.1.
We recall that not every grading-homogeneous integral functional over the infinite jet
space of maps J∞(Mn

nC → A
(0|1)), canonically extended in Ch. 2, would be a well de-

fined variational multi-vector containing the respective number of parity-odd slots b.
Remark 2.2 on p. 17 is a key to that concept. Specifically, by viewing now the variational
multi-vectors as maps that take the respective tuples of – possibly, exact – variational
covectors to the senior horizonal cohomology space of cyclic word-valued integral func-
tionals, we analyse in §3.2 the proper geometry of iterated variations that arise in the
derived brackets encoding such maps. We then discover that the calculus of noncom-
mutative variational multivectors is the paradigm of steps and stops. Finally, we arrive
at the definition of Poisson brackets. In §3.3 we study the geometry of differential
forms that stands behind the criterion — under which the variational noncommutative
bi-vectors are Poisson, i.e., endow the space of noncommutative Hamiltonians with the
variational Poisson brackets. In particular, in the course of showing that the Helmholtz
lemma holds in the noncommutative case (see p. 36) we reveal a yet another mechanism
for differentials to anticommute – besides the construction of top-degree volume forms
dvol(x) on the oriented substrate manifols Mn ∋ x and besides the sign convention on
the couplings of dual variations, see (10) on p. 16.

5In geometric terms, the bracket [[ , ]] of cyclic word-valued functionals is encoded by the standard
topological pair of pants S1×S1 → S1 that links the cycles. In fact, this topological procedure underlies
also each of the following structures and operations in the differential calculus under study:

• multiplication × of cyclic words and word-valued function(al)s,
• termwise action of derivations, including
• the commutation of vector fields, — and also
• evaluation of multi-vectors at the tuples of covectors: in particular,
• the Poisson bracket of Hamiltonian functionals.

Indeed, all of the above amounts to the detach-and-join trick S1 × S1 → S1.
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1. The nature of associative symbols

1.1. The algebra A of cyclic words. In this section we introduce the main object
to consider in the future reasoning. Namely, by starting with a non-commutative free
associative algebra, we define the commutative but not associative unital algebra A of
cyclic words written in the free algebra’s alphabet. Note that for the sake of clarity,
neither of these two algebras is graded; however, in what follows we shall extend the
alphabet by using symbols the Z2-valued parity of which is odd.

Throughout this text, the ground field k is the field R of real numbers.
.

Consider the free associative algebra Free (a1, . . . , am) with m generators a1, . . . , am;
let m <∞ for definition. Denote by ◦ the multiplication in that algebra. By definition,
put

t (ai1 ◦ . . . ◦ aiλ) := aiλ ◦ ai1 ◦ . . . ◦ aiλ−1; (3)

otherwise speaking, the operator t is the counterclockwise cyclic permutation of symbols
in a homogeneous word of length λ.

Introduce the linear equivalence relation ∼ on Free (a1, . . . , am) by setting6

a ∼ t(a),

where a is a homogeneous word as in (3), and then extending ∼ onto the algebra by
linearity: a ∼ a′ and b ∼ b′ implies a+ b ∼ a′ + b′. For instance, one has that7

a1 + a2 ◦ a3 + a1 ◦ a2 ◦ a3 ∼ a1 + a3 ◦ a2 + a2 ◦ a3 ◦ a1.

Notice also that

a ∼ t(a) ∼ . . . ∼ t
λ(a)−1(a) ∼

1

λ(a)

λ(a)∑

i=1

t
i−1(a)

for any word a of length λ(a) > 0; by convention, a word of zero length is an element
of the ground field k, see (6) below.

We denote by A the quotient Free (a1, . . . , am)/ ∼, that is, A is the vector space of
(formal sums of) cyclic words such that each homogeneous component ai1 ◦ . . .◦aiλ can
be read starting from any letter aiα for 1 6 α 6 λ. Therefore, let us denote by (a) ∈ A

the equivalence class of an element a ∈ Free (a1, . . . , am) under cyclic permutations of
symbols in all its homogeneous components (i. e., in all its “words” in proper sense).

We now endow the vector space A of cyclic words with the algebra structure ×.
Consider the equivalence classes (a1) and (a2) of two homogeneous elements a1, a2 ∈
Free (a1, . . . , am) of lengths λ(a1) and λ(a2) respectively. Let their product be

(a1)× (a2)
def
=

1

max(1, λ(a1)) ·max(1, λ(a2))

(λ(a1)∑

i=1

λ(a2)∑

j=1

t
i−1 (a1) ◦ t

j−1 (a2)
)
, (4)

6It is readily seen that ai1 ◦ . . . ◦ aiλ = t
λ−1 (t (ai1 ◦ . . . ◦ aiλ)) so that a ∼ a and t(a) ∼ a, whence

the transitive relation ∼ is reflexive and symmetric indeed.
7We emphasize that the cyclic invariance itself does not imply the commutativity: even though

ai ∼ ai and ai ◦ aj ∼ aj ◦ ai one has that ai ◦ aj ◦ ak ≁ ai ◦ ak ◦ aj unless some of the indexes coinside.
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where the equivalence class in the right-hand side is normalized in such a way that the
definition correlates with the commutative set-up (should it be recovered postfactum);
now extend the product onto A by (bi-)linearity. The definition of operation × says
that, each homogeneous string of symbols in the first co-multiple read, time after time,
starting from every next letter, it is then pasted – time after time in its turn – in between
every two consecutive letters occurring in each homogeneous string contained in the
second co-multiple. Sure, this is the classical topological pair of pants S1 × S1 → S1 in
which every symbol in either of the factors has the right to be read first, see the figure.

✞ ☎✞✝ ☎✆✞✝ ☎✆

✞✝ ☎✆ Notice that not only the necklace (a1) is unlocked at all pos-
sible multiplication signs ◦ and joined to (a2) in between each
pair of adjacent symbols in that word but, as one shifts the
symbols in (a2) around the circle, exactly the same is done
with respect to the insertion of tj−1 (a2) into (a1).

Corollary 1. Multiplication (4) on A is commutative.

However, it is readily seen that the symbols in homogeneous strings in (a1) and (a2)
always stay next to each other in the nested product

(
(a1) × (a2)

)
× (a3), whereas

they are separated by the symbols from (a3) in at least one homogeneous term in
(a1) ×

(
(a2) × (a3)

)
, provided that the alphabet contains at least two different letters

and the length of the word a3 is greater than one.

Proposition 2. If m > 2 so that the letters a1 and a2 are distinct in the alphabet,
multiplication (4) on A is not associative:

(
(a1)× (a2)

)
× (a3) ≁ (a1)×

(
(a2)× (a3)

)
, (5)

see the figure below.

✄ �✄✂ �✁✄✂ �✁

✄✂ �✁

✄✂ �✁ 6= ✄ �✄✂ �✁✄✂ �✁

✄✂ �✁

✄✂ �✁
Obviously, the associativity equation for × can be satisfied incidentally, for a special

choice of the three co-multiples.

Counterexample 1.1 (“abba”). Let a1 := a1, a2 := a1, and a3 := a2a2. Then
(a1)× (a2) = (a1 ◦ a1) so that these two copies of the letter a1 always stay next to each
other in any product of (a1)×(a2) with any other word. On the other hand (see Fig. 2),

✚✙
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✚✙
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	 	 6= a1 	
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Figure 2. The letters a1 are (not) separated by the letters a2.

the word (a2)×(a3) is equal to (a2a1a2), whence the nested product (a1)×
(
(a2)×(a3)

)

contains the term 1
3
a1a2a1a2, which is absent in the left-hand side of (5).
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By interpreting the ground field k as the linear span of the zero-length word 1 and its
equivalence class (1), we extend the commutative algebra of cyclic words to A⊕ k · (1),
now endowed with the multiplication × such that, in agreement with the vector space
structure of A, formula (4) yields

(k)× (a)
def
= k · (a) (6)

for any k ∈ k and all cyclic words (a). Allowing for the slightest abuse of notation, we
continue denoting by A the unital algebra of cyclic words that contains such zero-length
but non-empty strings of symbols.

1.2. The sheaves of algebras of walks. In this section we motivate the construction
of the algebra A that contains nonnegative-length cyclic words written in the alpha-
bet a1, . . ., am. By introducing several new elements into the picture now, in the next
section we shall recover the notion of space of infinite jets of maps into the algebra A.

Let Mn be an oriented smooth real manifold of positive dimension n. Suppose now
that a tiling of the manifold Mn is given, that is, Mn is realised by Mn = ∪α∈I∆α via
the complex of cells ∆α of dimension n, see Fig. 3a. We remark that the choice of a tiling
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2 ~x−1

1

~x1 ~x2 ~x−1
3

Figure 3. A fragment of cell-complex tiling (a), its adjacency graph (b),
and the alphabet of a crystal tiling (c).

can be not unique for a given manifold Mn. Construct the tiling’s adjacensy graph:
each cell ∆α represented by the vertex in the dual picture (see Fig. 3b), two vertices
are connected by the edge iff the respective cells in the tiling are adjacent through a
common face of lower dimension.8

Over the substrate manifold Mn, let us construct now the sheaf of algebras of walks
along the edges in the adjacency graph, see [36] for the basic definition.9 The sheaf is
glued from the algebras of walks defined over every subset U ⊆ Mn open with respect
to a chosen topology on that manifold (e. g., the standard Euclidean one – however,
cf. Remark 1.1 below). By definition, if U ∩ ∆α 6= ∅ for some α ∈ I, the respective

8The discrete adjacency table, finite for every vertex ∆α in the dual complex, is the main profit
that one gains by taking the tiling of space, however tiny be the diameter of each cell with respect to
a given distance function on Mn.

9The algebra of walks – that is, the vector space of formal sums of paths that can also be multiplied
by using the concatenation, – but not the group of walks in which every element could always be
singled out and inverted or dealt with separately in other respects, is considered here for the sake of
beauty, strangeness, and charm.
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algebra over U is formed by all the walks along the adjacency graph’s edges that connect
those vertices ∆α such that U ∩ ∆α 6= ∅. (In particular, whenever U ⊆ ∆α for some
α ∈ I, then all walks amount to the null path 1 that does not leave the vertex ∆α in
the adjacency graph.) Obviously, the algebra of walks over a union Ui ∪ Uj ⊆ Mn of
open sets in Mn consists of (the formal sums of) walks along the union of two sets of
edges that interconnect the adjacent cells having non-empty intersections with Ui or Uj.
Conversely, the algebra of walks over the open intersection Ui ∩Uj is built by using the
intersection of the sets of edges for Ui and Uj alone.

Remark 1.1. As an alternative to the ever-present Euclidean topology induced on Mn,
non-Hausdorff topologies on the sheaf’s substrate manifold can be determined by the cell
complex itself. Namely, let its vertices, edges, faces and so on up to the n-dimensional
cells ∆α be proclaimed open. By this argument, the cells ∆α of higher dimension
acquire the status of things that have no parts; for all the points of every such cell are
indistinguishable indeed.

The sheaf structure is then set equal to ∅ over the empty subset ofMn. By definition,
the structure over all the lower-dimensional components of the complex such as the
vertices, edges, or faces (i.e., for all U ⊆Mn open such that U ∩∆α = ∅ for all α ∈ I)
is set equal to k · 1. Consequently, a scalar is the only type of data which the substrate
manifold does carry whenever it is shrunk to The One Point. Finally, for all subsets U
open in Mn and such that U ∩ ∆α 6= ∅ for some α ∈ I, the sheaf structure is set
equal to the unital algebra of walks along the adjacency graph’s edges interconnecting
the respective vertices ∆α of the dual graph. Note that under the shrinking of such
open domains U ⊆ Mn to non-empty open parts of the lower-dimensional skeleton of
the cell complex, the unital algebra of walks is canonically projected onto its null-path
component k · 1.

Note further that two (or say, three) different tilings of the substrate manifold Mn

determine the two (resp., three) topologies on it; all of them would not be equivalent
to the standard Euclidean topology.

Without any extra assumptions made about the tiling, the cells’ adjacency table and
the portrait of edges in the dual graph are local. Indeed, a quasicrystal structure of the
cell complex realisation of Mn could contain defects. Consequently, the larger an open
domain U ⊆ Mn is, the larger can be the alphabet of edges which are used to encode
paths as words. On the other hand, such robust sheaf structure is uniform with respect
to the presence or absence of any defects in the (quasi)crystal tiling {∆α}; this would
be convenient if there are some defects indeed.

For the sake of clarity, we shall assume from now on that the substrate manifold’s
tiling is globally regular, so that the crystal structure {∆α} is formed by (in)finite
replication of a finite union of cells. The edge alphabet is then completely determined
by N adjacency relations within the generating set of cells in that finite union. For
instance, consider the honeycomb triangular tiling of the plane, see Fig. 3c. This regu-
larity assumption makes the alphabet ~x±1 finite even if the tiling of the (non)compact
manifold Mn is infinite. The price that one has to pay is that the coding of edges can no
longer be referred to any specific cell, hence a presence of defects is no longer possible.

Be that as it may, over Mn let us construct the (almost) constant sheaf of unital
extensions k ·1⊕Free k

(
~x±1
1 , . . . ,~x±1

N

)
of free algebras generated by the symbols ~x+1

i and
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~x−1
i that denote the edges passed in the adjacency graph in either of the two directions.10

The idea that the sheaf be almost constant is expressed as follows.11 Whenever one
shrinks an open subset Ui ⊆Mn to a smaller open set Uj ⊆ Ui such that Uj ∩∆α 6= ∅
for some α ∈ I, the restriction map acting on the algebra is the identity map. Over any
non-empty set U open in Mn but such that U ∩∆α = ∅ for all α ∈ I (see Remark 1.1
above), the sheaf structure is the unital component k · 1 and the restriction map is
the canonical projection. For the empty subset of Mn, the sheaf structure is empty by
definition.

This sheaf over Mn will be denoted by Mn
nC; it remembers the topology on the

substrate manifold and it carries the finite alphabet ~x±1 of theN edges that interconnect
the cells in (the replicas of) a fundamental domain in the tiling.

We now start building a noncommutative analogue of the variational cotangent bundle
or Batalin–Vilkovisky bundle over the space-time. Recalling from §1.1 the construction
of the algebra A of cyclic words, we notice that it always suffices to define maps to
the generators ai of the free associative algebra; the maps are then extended onto
(the quotient of) the target space Free (a1, . . . , am) by using both the multiplicative
and additive structures (◦ and +, respectively). Indeed, consider the map s : Mn

nC →
Free (a1, . . . , am) which, in a chart U ⊆ Mn containing a point x of the substrate
manifold Mn, is described by the formulas12

ai = si(x, ~x±1), 1 6 i 6 m. (7)

Otherwise speaking, each component si of such “section” is a word (or a formal sum
of words) in the alphabet ~x±1 = {~x±1

j , 1 6 j 6 N}, each word taken with a smooth
coefficient from C∞(Mn). By construction, the value of a homogeneous word written
in the alphabet a = {ai, 1 6 i 6 m} is the associative product of the map’s values at
the word’s consecutive letters. For instance, we postulate that

(ai ◦ aj)
∣∣
s
(x, ~x±1) = si(x, ~x±1) ◦ sj(x, ~x±1);

the multiplication ◦ in the left-hand side is thus inherited from the associative multi-
plication in the sheaves (that is, from the bare concatenation of paths that run along
the chosen adjacency graph).

The construction of maps that take the sheaf Mn
nC to the quotient A is immediate

because the equivalence relation ∼ was introduced in §1.1 without reference to the
evaluation of letters ai via (7); however, we now refer to Remark 2.6 on p. 19 below.

10A possibility to walk every edge, hence every path backwards – along the respective reverses ~x∓1
i ,

reading the words right to left, – is a forerunner of the introduction of canonical conjugate symbols a†j,
which are responsible for the dual, parity-odd part of the picture. This will be discussed in §2.1
and §2.3, see Fig. 4 on p. 17 in particular.

11We remark that by intention do we consider the sheaves overMn but not the spaces of maps taking
that commutative manifold to a given (non)commutative algebra. In view of what has been said before,
such target spaces themselves could depend on the point x as it runs through the domains ∆α.

12Actually, formula (7) is a compact notation: its right-hand side evaluates at x ∈Mn the infinitely
many coefficients of ~x±1

i , ~x±1
i ◦ ~x

±1
j , ~x±1

i ◦ ~x
±1
j ◦ ~x

±1
k , etc.; those auxiliary objects are not even given

their own names in this transcription.
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Remark 1.2. Evaluation (7) of a word a from A paves the way (weighted by elements
of C∞(Mn)) along the edges ~x±1

i of the graph which we started with. However, the
cyclic invariance of the word a does not generally imply that this path is closed.13 For a
given map (7), not every cyclic word may have its proper meaning14 (Still the converse
is true: every path is encoded by the respective word and every closed path is described
by the equivalence class of cyclic words.) ; moreover, not every word written in the
alphabet ~x±1

i encodes some path connecting cells in the tiling.

Remark 1.3 (1(x) ∈ C∞(Mn)). As soon as the unital algebra A of cyclic words is
placed over the “points” of Mn

nC – in earnest, over usual points x ∈Mn of the substrate
manifold – the zero-length words in A are specified pointwise over Mn by elements
of the ring C∞(Mn) that plays now the rôle of the ground field k. This blow-up
k →֒ C∞(Mn) is standard in differential calculus on (jet) bundles in the commutative
case (cf. [37, 28, 26, 18]).

Remark 1.4 (Positive proper length). Obviously, the case when ai = si(x) for some i
is somewhat special: the algebra A of nonnegative-length cyclic words was unital by
construction, but the assignment above would convert the generator ai to the multiple
of the neutral element at every x in a chart. To exclude this unfavourable situation
from the study, let us technically assume that the lexicographic length of all the word(s)
in each component si is strictly positive.15

1.3. The geometry of jet space J∞(Mn
nC → A). In this section we outline the

standard construction of infinite jet space J∞(Mn
nC → A) for maps from the substrate

manifold Mn through the sheaf Mn
nC to the quotient A of the free associative algebra.

We emphasize that this construction (local with respect to x ∈ U ⊆Mn) refers only to
the smooth structure on the domain set U ⊆ Mn and to the vector-space organisation
of objects over it.

The construction which we revealed in footnote 12 yields the (infinite sets of) jet
coordinates ai ≡ ai∅, a

i
xj , aixjxk , . . . , aσ for |σ| > 0 over a chart U ⊆ Mn with local

coordinates x = (x1, . . . , xn). Let us denote by [a] the differential dependence on
letters ai, aixj , . . . , aσ up to some arbitrarily high but always finite order |σ| <∞. The
construction of the algebra F(Mn

nC → A) of cyclic-word valued functions on J∞(Mn
nC →

A) is standard: namely, it is the inductive limit of filtered algebras ([37, 18]). Likewise,
the total derivatives d

dxi , which we denote synonymically by Dxi for 1 6 i 6 n making

no further distinction between
(

d
dx

)σ
and Dσ

x, are introduced by using the restrictions
of elements f ∈ F(Mn

nC → A) to graphs of (7), i.e.,

−→
d

dxi
(f)

∣∣∣∣∣
jet∞(a=s( · ,~x±1))

(x0)
def
=

∂

∂xi

∣∣∣∣
x0

(
f |jet∞(a=s( · ,~x±1))

)
. (8)

13Actually, this circumstance refers to a distinction between all sections of a given bundle and all
solutions of a given equations for sections of that bundle.

14Alternatively, it could require some effort to endow a given cyclic word with a meaning by con-
tracting the graph between the path’s loose ends.

15Moreover, one should even require that the walk si along the edges ~x±1
i of the graph be more than

a null path 1, for it could be that the walk is contractable: e. g., si = ~xj ◦ ~x
−1
j = 1.
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This determines the usual coordinate expressions,
−→
d

dxi
=

∂

∂xi
+

m∑

j=1

∑

|σ|>0

ajσ∪{i} ·

−→
∂

∂ajσ
and

←−
d

dxi
=

∂

∂xi
+

m∑

j=1

∑

|σ|>0

←−
∂

∂ajσ
· ajσ∪{i}

for 1 6 i 6 n. When subjected to close scrutiny, both the operators
←−
Dxi and

−→
Dxi show

up, first, through the substrate part 1 · ∂/∂xi plus the m sums – formally, infinite – of
the cyclic words such that the derivations ∂/∂ajσ sit in their locks. The Leibniz-rule
action of each term in such operator on another cyclic word that contains the respective
jet letters ajσ is again a topological pair of pants S1 × S1 → S1.

Similarly, one could now think of the variational covectors (p◦δa) =
(
pα
(
x, ~x±1, [a]

)
◦

δaα
)
on J∞(Mn

nC → A) as of (the formal sums of) necklaces equipped with the extra
earrings δaα, by which those cyclic words are handled.

We emphasize that, unlike it is the case studied in §1.1 – the cyclic words in A do
not carry any marked point, – the earrings ∂/∂aσ and δa are the only places where the
(co)vectors can be unlocked. Let us establish an immediate implication of this principle;
very helpful, it remains valid in the purely commutative set-up.

Theorem 3 (The Substitution Principle). Suppose that a tuple of identities

I
(
(x, ~x±1), [a],

[
p1(x, ~x

±1)
]
, . . . ,

[
pk(x, ~x

±1)
])
≡ 0

holds on J∞(Mn
nC → A) for every k-tuple of noncommutative variational (co)vectors

the coefficients pi,α(x, ~x
±1) of which can depend only on points x ∈ Mn and letters

from the edge alphabet ~x±1. Then the identities

I
(
(x, ~x±1), [a],

[
p1

(
(x, ~x±1), [a]

)]
, . . . ,

[
pk

(
(x, ~x±1), [a]

)])
≡ 0

in total derivatives (8) with respect to pi are valid on J∞(Mn
nC → A) for all (local)

(co)vectors pi depending not only on x and ~x±1 but also endowed with arbitrary, finite

differential order dependence on the jet variables aσ, |σ| <∞.

Remark 1.5. At this moment it is legitimate to view the variational (co)vectors pi =
(pi,α ◦ δa

α) as bare collections of their indexed open-word components pi,α that are
already built into the identities I. The geometric mechanism telling how the variational
(co)vectors got there will be revealed gradually in what follows (see footnote 33 on p. 33).

Corollary 4. If, under the assumptions of Theorem 3, the identities I
(
(x, ~x±1), [a], [pi]

)
≡

0 in total derivatives with respect to p1, . . ., pk hold on J∞(Mn
nC → A) for every k-tuple

of exact variational covectors pi = (δHi/δa ◦ δa) which are obtained by variation of
arbitrary linear integral functionals H ∈ H̄n(Mn

nC → A), then these identities hold for
all covectors pi, i.e., not necessarily exact.

Indeed, it is always possible to represent locally an (x, ~x±1)-dependent cyclic word∑m
α=1

(
pi,α(x, ~x

±1) ◦ δaα
)
as the variation δH of the functional

∑m
j=1

∫ (
pi,α(x, ~x

±1) ◦

aα dvol(x)
)
and then apply Theorem 3.

Proof of Theorem 3. For the sake of brevity, let each variational noncommutative covec-
tor pi consist of just one word written in the alphabet of J∞(Mn

nC → A). The crucial
idea is that the position of the locks δa is fixed on the circles which carry the words pi.
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This means that, whenever one declares an arbitrary differential dependence of pi on a,
the words I in principle lengthen but still, in the course of multiplications × within the
identities, each pi is never torn in between any consecutive pair of letters a. Namely,
during the evaluation of I at the words pi those are unlocked, the letters and the
words’ overall coefficients depending on x are then stretched to open strings (ordered
counterclockwise). These strings are pasted into I without splitting, i.e., the adjacent
letters of pi never become separated by any other symbols.16

Total derivatives (8) then work according to their definition: under a restriction of I
(hence of all pi) to the jet of a mapping a = s(x, ~x±), each symbol aj is replaced with
the respective sum of open strings sj(x, ~x±1) so that derivations (8) in aσ occurring
anywhere (either in pi or in I if the identities explicitly depend on [a]) then reduce
to the derivations ∂/∂xi of real-valued functions defined at x ∈ U ⊆ Mn. By the
initial assumption of the theorem, its assertion is valid for all strings written in the
basic alphabet (x, ~x±1) that replace17 the entries pi in I. Hence we conclude that the
identities I ≡ 0 hold on J∞(Mn

nC → A) for the full set of arguments of the (co)vec-
tors. �

Remark 1.6. The proof remains literally valid in the case of (evolutionary) vector fields
instead of variational covectors. This would be important for the description of vari-
ational noncommutative symplectic structures. However, the proof reveals why this
noncommutative phrasing of the Substitution Principle does not hold for arbitrary
cyclic words pi

(
(x, ~x±1), [a]

)
of unspecified nature.

16This scenario is realised irrespectively of presence or absence of letters a’s on the necklaces pi,
which is in contrast with formula (4).

17One does not even have to postulate that the mappings a = s(x, ~x±1) inserted in the explicit
dependence of I on [a] coincide with the mappings now standing for a in the implicit dependence[
pi

(
(x, ~x±1), [a]

)]
.
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2. Differential graded Lie algebra of noncommutative local

functionals

2.1. The variational symplectic dual. We now extend the alphabet a1, . . . , am of
the associative algebra Free k(a

1, . . . , am) which we started with. Namely, we introduce

the new symbols a†1, . . . , a
†
m that ought to be the canonical conjugates of the respec-

tive variables a1, . . . , am; let us explain what this means by viewing their construction
from the four different perspectives (e.g., by putting these new symbols in context of
Schwinger–Dyson’s equation in Batalin–Vilkovisky formalism — or by tracking their
origin in the (non)commutative variational Poisson geometry).

First, let us consider the free associative algebra standing alone, that is, before the
evaluation of generators by (7) under a given map s : Mn

nC → Free (a1, . . . , am). In

this set-up, there still remain two ways to understand the nature of new generators a†i ,
namely, the coarse and fine. The former is to proclaim that the vector space V † :=
spank(a

†
1, . . . , a

†
m) is dual to the linear span V := spank(a

1, . . . , am) under the k-valued

coupling; by construction, the elements a†i specify the basis dual to that of ai in V . The
new letters are then incorporated into the set of generators of (the unital extention of)

the associative algebra k · 1⊕ Free k(a
1, . . . , am; a†1, . . . , a

†
m). This definition is sufficient

(which is explained in Chapter 3) to make the noncommutative variational Poisson
formalism work.

The fine approach is as follows; although less is required, it is still enough to construct
the (non)commutative Batalin–Vilkovisky geometry. Suppose that the generators ai

of the free associative algebra are subjected to a virtual shift δa = δai · ~ei, where
the m vectors ~ei constitute the adapted18 basis in TaV , each of them pointing along
the respective generator in the vector space V = spank(a

1, . . . , am). Likewise, consider
the adapted basis ~e †,i in the tangent space Ta†V † at the point a† of the vector space
V † = spank(a

†
1, . . . , a

†
m). We require that the frame ~e †,i be k-dual to the frame ~ei,

1 6 i 6 m, so that the virtual variation δa† = δa†i · ~e
†,i is canonical conjugate to the

diagonal deformation δa = δai · ~ei, see (10) and (11) below.

Remark 2.1. In the second approach, we do not proclaim that the new symbols a†i are
the duals of the old generators ai (or their inverses, or reverses, cf. (9)). In other words,

we do not use the isomorphism between the vector space V † = spank(a
†
1, . . . , a

†
m) and

the vector space Ta†V † tangent to it at a point. Note that the left-hand side of the
isomorphism V † ≃ Ta†V † exploits the global vector-space organisation of V † whereas
the right-hand side refers to its local portrait near the point a†. This is what the
Batalin–Vilkovisky and Poisson formalisms really need.

Next, let us recall that the algebra generated now by the symbols a1, . . . , am; a†1, . . . ,
a†m is the target space for maps from the (locally constant) sheaf Mn

nC that provides

18In other words, only the diagonal deformations of the associative algebra generators are now
allowed. This should be expected; for in the commutative BV-geometry, the variables ai and bi =

Π(a†i ), see below, describe the conjugate field-antifield or ghost-antighost pairs that stem from the
different generations of Noether’s identities between the Euler–Lagrange equations of motion. Hence
by construction, the variables ai or bi at different values of the index i are fibre coordinates in different
vector bundles, merged later to their Whitney sum (see [18, §§2, 6, 11] or [23] and references therein).
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the alphabet ~x±1 in a chart U ⊆ Mn containing a point x. We now discuss the three
admissible scenarios of extending the mappings s in (7) to the new set-up.19 The guiding
principle that we keep in mind is that the Schwinger–Dyson condition, which is imposed
in the Batalin–Vilkovisky picture but which is devised to constrain the objects already
defined, makes the Feynman path integrals of local functionals, the geometry of which
will be defined later in this text, effectively independent of any actual values of the
symbols a†i (or their parity-odd descendants bi and their derivatives with respect to x).

That is, the objects a†i as elements of the target set for maps from Mn
nC could acquire

whatever values; indeed, no physics depends on the mapping’s part that hits them. If
so, leaving the symbols a†i unspecified would be the first option. To reduce the number

of essences, we could let the mapping Mn
nC →

(
k ·1⊕Free k(a

1, . . . , am; a†1, . . . , a
†
m)
)
/ ∼

be not onto but hit only the (unital) half generated by the symbols ai.
However, we are also free to assign the values a = s(x, ~x±1) and a† = s†(x, ~x±1)

in a way we choose. Hence the third option is to set the components of s† equal by
definition to the sum of formal reverses for each nonzero, homogeneous words in s,

a†i := s†i(x, ~x
±1) =

∑

J

1

f i,J(x)
~x

−α(λ)
jλ

◦ . . . ◦ ~x
−α(1)
j1

(9)

for

ai = si(x, ~x±1) =
∑

J

f i,J(x)~x
α(1)
j1
◦ . . . ◦ ~x

α(λ)
jλ

, f i,J 6≡ 0,

where, at every point x ∈ U ⊆ Mn, the sum is taken over the indexes J such that the
coefficients f i,Jdo not vanish.20

Example 2.1. If

ai =
∑

k∈Z
(loop)k, then a†i =

∑
k∈Z

(loop)−k,

that is, all the reiterations of a closed path are walked backwards.

Convention (9) means that, whenever each component si of the map s is just a single

word, the respective dual a†i becomes the weighted reverse – and true inverse – of the
path ai(x, ~x±1).

2.2. Elementary (non)commutative variations. The precedence ~e1 ≺ . . . ≺ ~em ≺
~e †,1 ≺ . . . ≺ ~e †,m of the basic vectors for virtual shifts endows the Cartesian sum
Ta span(a

1, . . . , am) ⊕̂Ta† span(a†1, . . . , a
†
m) of the dual spaces with an orientation; it

fixes the signs in all the structures of (non)commutative symplectic geometry. The
signs show up through the two couplings TaV × Ta†V † → k and Ta†V † × TaV → k

19The fourth scenario is specific to the (non)commutative variational Poisson formalism, in the
frames of which the symbols a† play the rôles of placeholders for the variational covectors that are not
exact; but still, the isomorphism V † ≃ T

a
†V † is explicitly used in the assignment a† := p (we shall

discuss this in Chapter 3).
20In view of what has been said before, the fact that the extension s† remains undefined at the zero

locus of all these coefficients makes no harm.
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(which we denote by 〈 , 〉 in both cases, making no confusion; for the sequential order
is essential). Namely, we have that

〈
~ei, ~e

†,j
〉
= δi

j and
〈
~e †,j , ~ei

〉
= −δi

j , (10)

where δi
j is the Kronecker symbol that equals unit iff i = j and which is set equal to

zero otherwise, see [19, §2.2].

Note that the virtual deformations δa = δai(x) · ~ei(x) and δa† = δa†j(x) · ~e
†,j(x)

can be dependent on x ∈ Mn — and they should even be such. We let the shifts be
normalised at all x ∈ supp(δai) ⊆Mn by the constraint

δai(x) · δa†i(x) ≡ 1. (no summation!)

This is why the couplings of virtual deformations are invisible in the ready-to-use for-
mulae. Indeed, it is enough to know the signs

〈δai(x) · ~ei(x), δa†i(y) · ~e
†,i(y)〉

∣∣∣
x=y

= +1 (11a)

and

〈δa†i (y) · ~e
†,i(y), δai(x) · ~ei(x)〉

∣∣∣
x=y

= −1, (11b)

at all the internal points x of the support supp(δai), see [22] and [19] for illustrations.21

2.3. Parity-odd neighbours b = Π(a†). From now on, let the set-up be Z2-graded
by the function | · | that takes values in Z and determines the parity (−)| · |. In the
cyclic world, the concept of Z2-grading works as follows:

t (γ1 ◦ . . . ◦ γλ) = (−)|γ1◦...◦γλ−1|·|γλ|γλ ◦ γ1 ◦ . . . ◦ γλ−1. (12)

That is, all the cyclic words containing parity-odd letters are equipped with the obser-
vation point∞∞∞ which is located between the last and first symbols with respect to the
cyclic order. Whenever a graded letter γλ standing last in a closed string of symbols
overtakes its predecessors, thus becoming the first in a row, it monitors the rest of the
word from the point ∞∞∞ and contributes to the exponent of (−) with the product of
gradings.

All the objects which have been considered in the preceding sections were parity-even,
of proper grading 0. Let us relay the parity of symbols a†i by postulating that the new
parity-odd variables carry the grading +1 (or minus one, or any other (un)conventional
odd integer number). To keep track of the reversed parity, let us denote22 these gener-

ators by b = (b1, . . . , bm) so that Π: a†i ⇄ bi. Likewise, we denote by A
(0|1) the graded

commutative unital non-associative algebra of cyclic words written in the alphabet 1,
a1, . . . , am, b1, . . . , bm.

21The usefullness of carrying the coefficients δa( · ) and δa†( · ) all way long is revealed in the
geometry of iterated variations; let us also remember that we shall not always indicate the dependence
of frames ~ei( · ) and ~e

†,i( · ) on points of substrate manifoldMn. However, the fact that such dependence
is not impossible is crucial for the consistency of the formalism.

22Note that the new rule of arithmetic (12) does not modify our earliest convention (9) for the
evaluation of symbols — as soon as a calculation governed by such graded arithmetic rule is over.
Note also that the parity reversion Π does not modify the topology of spaces, whence conventions (11)
remain valid for the virtual variations δb = δbi(x) · ~e

†,i(x).
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Remark 2.2 (“(abab) = 0 ?”). The idea that cyclic words acquire and accumulate the
extra sign factors, whenever a parity-odd symbol overtakes the rest of the word by
passing through the circle’s observation point∞∞∞, creates the following subtlety.

Set m = 1 for definition and, omitting the symbols ◦ of associative multiplication,
first consider the cyclic word (abaab). The identical, parity-odd letters b contained in
it can be distinguished nevertheless: one of them is followed by aa but preceded only
by a, whereas the other is preceded by aa and followed by just a single copy of letter a;
we have that (abaab) ∼ −(aabab).

On the other hand, the cyclic word (abab) does not contain any mechanism to dis-
tinguish between the two parity-odd entries b, yet (abab) ∼ −(abab) by construction.
In fact, this word is synonymic to zero in the algebra of cyclic words which are written
in the parity-extended alphabet. It will also be readily seen that both the Batalin–
Vilkovisky Laplacian of such words – or the Schouten bracket taken for such words
with any other cyclic-word functional – vanish identically.

Let us be aware of the existence of this class of synonyms for zero; the calculus of
iterated variations which we develop in Ch. 2 is indifferent to these synonyms’ presence.
(Arising in the Batalin–Vilkovisky formalism in retrospect, the Schwinger–Dyson con-
dition neutralises the idea of evaluating such dual symbols by a use of the extentions
s†(x, ~x±1) for the initially defined maps s : Mn

nC → A.) However, when the time comes
in Ch. 3 to view integral functionals as well-defined totally antisymmetric maps of k-
tuples of variational covectors – but not as maps from the sheaf Mn

nC to the algebra of
cyclic words written using ~x±1 and weighted at every x ∈Mn, – then we restrict ourself
to the study of spaces of (non)commutative variational multivectors only, regarding the
parity-odd slots b as those covectors’ placeholders.

Remark 2.3 (Comparison with the BV-geometry). We extended the alphabet of (the
quotient of the unital extension for) the free associative algebra that serves as the target
space for maps from the (locally constant) sheaf Mn

nC over the substrate manifold Mn.
Let us summarise this picture in Fig. 4(a), in which one easily recognises the noncom-
mutative generalisation of the classical Batalin–Vilkovisky geometry (see Fig. 4(b)).

❍❍❍

❍❍❍

✟✟✟

✟✟✟s s✟✟✟✟✙
❍❍❍❍❥

s
✻ ✻

0̄ 1̄

a bδa|a (x) δb|b (x)

s ~x±1 s†

Mn

x(a)

❍❍❍

❍❍❍

✟✟✟

✟✟✟

❄

✟✟✟✟✙
❍❍❍❍❥

ss

s ❄

✣

✻ ✻

ζζζ(0|1)0̄ 1̄

q†qδs|(x,φ,s) δs†
∣∣
(x,φ,s†)

s s†

πφ

Mn

x
(b)

Figure 4. The elementaty displacements ~x±1 in a tiling ofMn versus the
gauge connection fields φ over the space-time Mn; the canonical duality of
diagonal variations for the opposite-parity halves of the alphabet versus
the opposite-parity field-antifield and ghost-antighost pairs.
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The rôle of physical fields φ as sections of their bundle π is now played by the primi-
tive displacements ~x±1 in granulated space, cf. [24, §3.1]. The target algebra generated
by the symbols ai and bi was known to us before as the Whitney sum of parity-even
and odd components in the Batalin–Vilkovisky superbundle ζ(0|1), pulled back – by the
projection π – over the total space of the bundle of physical fields. The symbols a and
b = Π(a†) of opposite parities form the noncommutative analogue of the BV-zoo q, q†

inhabited by the (anti)fields and (anti)ghosts. The rôle of the BV-bundle’s sections is
granted to the two maps s and s†; the latter, see (9) above, has been studied in the
context of Schwinger–Dyson’s equation.23

2.4. The ring of noncommutative local functionals. Let us proceed from func-

tions on the space J∞
(
Mn

nC → A
(0|1)
)
of jets of maps (9) to the notion of functionals

that take such mappings (s, s†) to formal cyclic words24 written in the alphabet ~x±1 of
edges in the adjacency graph for a given crystal tiling of the substrate manifold Mn.

Remark 2.4. On the infinite jet space J∞
(
Mn

nC → A
(0|1)
)
for maps from the sheaf

over Mn ∋ x to the quotient A
(0|1) of Z2-graded associative algebra, one could use

the full alphabet x, ~x±1, aσ, bτ when writing the cyclic words (those, in turn, can be
equipped with an extra structure dvol(x), see Remark 2.5 below). Every such object is
the sum of its homogeneous components, each weighted by the coefficients that (can)
depend on points x of the substrate manifold Mn. For the sake of definition, let us
assume that every such coefficient is C∞-smooth on Mn; their asymptotic behaviour
must also be specified in advance so that the integration by parts makes sense.

Specifically, if the manifold Mn is closed, then there is nothing to discuss: the empty
boundary carries no boundary terms. However, should there be one, ∂Mn 6= ∅, or
should the manifold Mn be non-compact (e.g., let Mn = Rn with the standard Eu-
clidean topology), then we postulate that the coefficients decay rapidly towards the
boundary ∂Mn or spatial infinity, respectively.

Likewise, we suppose that the supports supp δai of the C∞(Mn)-smooth infinitesimal
variations δai(·) · ~ei(·) : M

n → Ta span(a
1, . . . , am) are compact.

Remark 2.5. The volume element dvol(x) on Mn in the construction of jet space
J∞
(
Mn

nC → A
(0|1)
)
is an important ingredient in the notion of integral functionals.

We suppose that a volume element dvol(x) is given at all points x ∈Mn (possibly, in a
way that depends on the tiling at hand). Also, we technically assume that the volume
element dvol(x) may not depend on a choice of the mappings (s, s†) — that is, in a
sense, on a configuration of noncommutative “fields” over the granulation Mn

nC of the
physical space Mn.

23We recall from [19] that the normalised variations δs and δs† were the dual components in sections

of the tangent bundle Tζ(0|1); the vectors δs (x, φ(x), s(x, φ(x))) and δs†
(
x, φ(x), s†(x, φ(x))

)
were

attached at points of graphs of sections for the BV-superbundle induced over π. The construction
of these test shifts was laborious indeed in the graded-commutative world. On the other hand, the
noncommutative target spaces contain nothing else but the basic letters a and b that undergo the
virtual deformations, so that the picture is simplified considerably.

24Such cyclic words are formal because (i) they could encode no realisable paths along the edges
of the graph and (ii), although “cyclic” by construction, each homogeneous component of such words
could not encode a closed walk, even if it did specify some walk along the edges.
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One could think that the volume element dvol(·) is placed in the locks of cyclic words;
this idea is practical because, whenever any such word is unlocked, it is converted at once
into a singular linear integral operator; the volume element then disappears, giving way
to the attachment points’ congruence mechanism through the locality of couplings (10)
in (11).

From now on we focus on the class of integral functionals such as F =
∫
f
(
x, ~x±1,

[a], [b]
)
◦dvol(x), where the cyclic word f ◦dvol(x) marks an equivalence class modulo

integrations by parts (no boundary terms! ). By definition, the value of such integral
functional at a given mapping (s, s†) is

F (s, s†)
def
=

∫

Mn

f
(
x, ~x±1, jet∞(s), jet∞(s†)

)
◦ dvol(x) ∈ X(~x±1); (13)

the integral makes sense due to our earlier assumptions on the global choice of alpha-
bet ~x±1 on the entire Mn (that is, the tiling Mn =

⋃
α∆α is not quasicrystal) and on

the class of functional coefficients depending on x, so that the (im)proper integral con-
verges. The vector space of integral functionals will be denoted by H̄n

(
Mn

nC → A
(0|1)
)
,

to keep track of the target algebra of cyclic words (even though neither the letters ai

nor bj show up in the functionals’ values that belong to the space X(~x±1) of cyclic words
written in the edge alphabet ~x±1).

Integral functionals F1, . . ., Fℓ ∈ H̄n
(
Mn

nC → A
(0|1)
)
are the building blocks in the

local functionals such as F1 × . . .× Fℓ ∈ H̄n⊗ℓ(
Mn

nC → A
(0|1)
)
.

Definition 1. Let F1 =
∫
f1
(
x1, [a], [b]

)
◦dvol(x1) and F2 =

∫
f2
(
x2, [a], [b]

)
◦dvol(x2)

be two linear integral functionals the densities of which do not depend explicitly on
letters from the edge alphabet ~x±1. The product

F1 × F2 =
x

f1
∣∣
(x1,[a],[b])

× f2
∣∣
(x2,[a],[b])

◦ dvol(x1) · dvol(x2) ∈ H̄n⊗2(
Mn

nC → A
(0|1)
)

is the horizontal cohomology class of linear integral functionals over
(
Mn⊗2, dvol( · )⊗2

)

such that their densities are equivalent to the product f1 × f2 in A
(0|1).

Setting H̄n⊗0(
Mn

nC → A
(0|1)
)
equal to k · (1) by definition, we extend the bi-linear

operation × recursively from pairs of integral functionals to the multiplication of prod-
ucts of any nonnegative numbers of functionals. Because the operation × is not asso-
ciative, there are the respective Catalan number ways to arrange the multiplications in
F1 × . . . × Fℓ by inserting the ℓ − 1 balanced pairs of parentheses. We let the default

ordering be lexicographic: (· · · (F1 × F2)× . . .× Fℓ−1)× Fℓ.

Denote byM
n(
Mn

nC → A
(0|1)
)
the Z2-graded commutative non-associative unital ring⊕

ℓ>0 H̄
n⊗ℓ(

Mn
nC → A

(0|1)
)
of local functionals in the noncommutative set-up under

study.
The evaluation of products F1× . . .×Fℓ of functionals at a given mapping (s, s†) goes

as follows; without loss of generality suppose ℓ = 2. First, double (s, s†) 7→ (s, s†)⊗2

for the ℓ = 2 copies of the substrate manifold Mn, and then integrate over Mn⊗2 in the
element of H̄n⊗2(

Mn
nC → A

(0|1)
)
.



20 ARTHEMY KISELEV

Remark 2.6. It is readily seen that, generally speaking,

(
F1

A(0|1)

× F2

)
(s, s†) 6= F1(s, s

†)
X(~x±1)

× F2(s, s
†).

Namely, the first-step multiplication f1 × f2 of the two densities, still referred to the
respective copies of base manifoldMn, followed by the object’s evaluation at (s, s†)⊗2 for
a given mapping Mn

nC → Free (a1, . . ., am; b1, . . ., bm), does yield the cyclic word written
in the alphabet ~x±1 but the definition of multiplicative structure in A

(0|1) makes that
word not necessarily equal to the values’ product in the commutative non-associative
unital algebra X(~x±1) of such words. Indeed, the multiplication × in A

(0|1) unlocks the
cyclic words in between the letters a or b that will later be evaluated at (s, s†)(x, ~x±1)
whereas the multiplication × in X(~x±1) unlocks the cyclic words, already evaluated at
a given mapping (s, s†)(x, ~x±1), in between every two consecutive symbols from the
edge alphabet.25

Also, note that the multiplication × in A
(0|1) is Z2-graded commutative — whereas

that grading is lost in the course of functionals’ evaluation at the mappings (s, s†).

In the remaining part of this chapter we reveal the structure of differential (shifted-)
graded Lie algebra on the Z2-graded commutative non-associative unital ringM

n(
Mn

nC →

A
(0|1)
)
of local functionals.

2.5. Elements of the geometric theory of variations. For consistency, let us out-
line the key ideas in the geometry of iterated variations; we note however that an
attempt to describe and motivate every detail of the picture would inevitably mean a
verbatim reproduction of the text [19]. Yet at the same time, we recall that the concept
of writing words in a given alphabet — associative but without reference to the commu-
tativity — does contribute to the consistency of formalism in the (graded-)commutative
set-up; the bonus we get there, it is the full matching of signs in formulae, whenever
the sequential order in which the (co)vectors combine in couplings (10) is never broken.

The promised key points are as follows.

• The unlinking of a cyclic word, together with an intention to paste the open
string of symbols contained in it into another word as an uninterrupted fragment,
converts the (procedure of) insertion of that string into a singular linear integral
operator.
• Such operators are singular because the restriction to the diagonal over substrate
points in Mn is ensured by the ordered couplings (10) which are not defined off
the diagonal x = y in (11).
• The definitions of the Batalin–Vilkovisky Laplacian ∆ and variational Schouten
bracket [[ , ]] are operational, that is, every such definition is an algorithm for
the on-the-diagonal reconfiguration of the couplings.

25Otherwise speaking, the arithmetic of local functionals’ values does indicate the existence of

elementary paths ai and a†i that one can neither single out as closed walks nor still grind into the

smallest possible displacements ~x±1
j in the granulated space Mn

nC.
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• The right-to-left order in which the operators are accumulated and the lexi-
cographic, left-to-right direction in which they act, variations occur, and dif-
ferentials are taken are essential; the ordering may not be violated — lest the
formalism becomes inconsistent and formulae contradict each other.
• The objects that are usually viewed in the calculus of variations as differential
forms are either the volume element dvol(x) on the substrate manifold Mn or
the dual bases ~ei, ~e

†,i in the tangent spaces attached at the point (a, b) of
the target algebra (this is what its alphabet was doubled for). In both cases,
the orientation uniquely determines the signs of the couplings by ordering the
tangent vectors. This explains why such differential 1-forms anticommute.
• In the course of virtual variation of the symbols aiσ and bj,τ by using26

(δai)

(←−
∂

∂x

)σ

(x) · ~ei(x) and (δbj)

(←−
∂

∂x

)τ

(x) · ~e †,j(x),

the responses of integral functionals are always expanded with respect to respec-
tive dual bases ~e †,i and ~ei. For instance, we obtain the singular linear integral
operators

−→
δa(·) =

∫

Mn

dy

m∑

i=1

∑

|σ|>0

(δai)

(←−
∂

∂y

)σ

(y) ·
〈
~ei(y), ~e

†,i(·)
〉 −→∂
∂aiσ

and

−→
δb(·) =

∫

Mn

dz
m∑

j=1

∑

|τ |>0

(δbj)

(←−
∂

∂z

)τ

(z) ·
〈
(−~e †,j)(z), ~ei(·)

〉 −→∂
∂bj,τ

.

This convention will be illustrated in the sequel.
• Given by its own singular integral operator, each variation brings a new copy of
the integration domainMn into the picture. In consequence, all the intermediate
objects that emerge in the course of calculations do retain a kind of memory of
the way how they were obtained from the input data.27 That is, no calculation
can be interrupted along the way.
• In every calculation, the integrations by parts are performed last, prior only
to the reconfigurations of couplings and their evaluation by using (11). For

instance, the derivative (
←−
∂ /∂y)σ in the formula above channels through ~ei(y)

and ~e †,i(x) on the diagonal y = x which is the only place where the coupling

is defined; the derivative thus becomes (−~d/dx)σ that falls on (a derivative of)
the argument’s density at x ∈Mn.

This principle makes the variations (graded-)permutable.

26It is readily seen that the congruence of multi-indexes σ in (∂/∂x)σ and aiσ (as well as in the

partial derivative ~∂/∂aiσ, see below) refers to the definition of vector as an equivalence class of curves
passing through a point.

27In the (graded-)commutative language of bundles this means that their products ζζζ(0|1)×Tζζζ(0|1)×
. . .× Tζζζ(0|1), standing over Mn ×Mn × . . .×Mn, are taken, but not their Whitney sums ζζζ(0|1) ×Mn

Tζζζ(0|1) ×Mn . . .×Mn Tζζζ(0|1) are fibred over a single copy of the base manifold Mn.
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• By construction, iterated variations of a functional never spread from it to the
fragments of other functionals in any composite object during multiple integra-
tions by parts.

We refer to [19, 20, 22] for more details and illustrations of these guiding principles.28

2.6. How the Batalin–Vilkovisky Laplacian determines the Schouten bracket.
We are now ready to outline the construction of parity-odd Batalin–Vilkovisky Lapla-
cian ∆. On the space of local functionals over the jet space J∞(Mn

nC → A(0|1)) of maps,
it is the parent structure for the noncommutative variational Schouten bracket [[ , ]]. We
establish the main properties of these structures, recalling further the relations between
them.

Definition 2. The Batalin–Vilkovisky Laplacian is the reconfiguration – shown in

Fig. 5 – of (co)vector couplings in the second variation
−→
δa(
−→
δb(·)) of a local functional

on the jet space J∞(Mn → A
(0|1)) of maps.

〈(1)♂ (2)♀〉

〈(3)♀ (4)♂〉
7→

〈(1)♂ (3)♀〉

〈(2)♀ (4)♂〉

Figure 5. The on-the-diagonal reconfiguration of couplings is the oper-
ational definition of BV-Laplacian ∆.

First, let us consider an integral functional F ∈ H̄n(Mn
nC → A

(0|1)). Let δai1(y1) ·
~ei1(y1) and δbi2(y2) · ~e

†,i2(y2) be a pair of test shifts of the parity-even and odd letters
in the target alphabet; assume normalization (11). Construct the second variation

−→
δa(
−→
δb(F )) =

x

Mn

dy1 dy2

∫
dvol(x)·

·
{
(δai1)

( ←−
∂

∂y1

)σ1

(y1) ·
〈
~ei1(y1)

∣∣∣~e †,i1(x)
〉 −→∂
∂ai1σ1

◦

◦ (δbi2)

( ←−
∂

∂y2

)σ2

(y2) ·
〈
(−~e†,i2)(y2)

∣∣∣~ei2(x)
〉 −→

∂

∂bi2,σ2

f(x, [a], [b])
}
.

28Simple as they may look, these geometric rules substantiate & 104 man-hours of research on BV-
quantisation of gauge fields; the estimate is this: in the past 30 years, each member of the communities
of & 30 researchers in circa 30 countries invested annually & 30 hours into the (manual regularisation
of) calculations related to the Batalin–Vilkovisky geometry [2, 3].
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At the end of a reasoning (of which the object ∆F could be only a small piece), the
integrations by parts carry the derivatives off the virtual test shifts, which yields

x

Mn

dy1 dy2

∫
dvol(x) ·

{
δai1(y1) ·

〈
~ei1(y1)

∣∣~e †.i1(x)
〉
·

· δbi2(y2) ·
〈
(−~e †,i2)(y2)

∣∣~ei2(x)
〉(
−

d

dx

)σ1∪σ2
−→
∂ 2

∂ai1σ1∂bi2,σ2

f(x, [a], [b])
}
.

Finally, the two pairs of couplings are reconfigured according to the scenario in Fig. 5,
which gives the action of operator

x

Mn

dy1 dy2

{
〈δai1(y1)~ei1(y1)| |δbi2(y2) · (−~e

†,i2)(y2)〉
〈~e †.i1(x)| |~ei2(x)〉

}

on the basic (co)vectors at x ∈ Mn. The couplings wright the diagonal i1 = i2 in the
summation over the indexes. Normalization (11) and the couplings’ values (10) make
each line in the formula above equal to −1; their product equals unit.

Corollary 5. In particular, this gives us the integrand of ∆F whenever this object is
the endpoint of a reasoning; namely, we obtain

m∑

i=1

∑

|σ1|>0
|σ2|>0

(
−

−→
d

dx

)σ1∪σ2
( −→

∂ 2

∂aiσ1
∂bi,σ2

f

)
(x, [a], [b]).

We emphasize that, should the object ∆F itself be a constituent element of a larger

expression, other partial derivatives
−→
∂ /∂aj1τ1 or

−→
∂ /∂bj2,τ2 could accumulate at the given

density f of the functional F , whereas all the powers of minus the total derivatives
would then gather outside those higher-order partial derivatives.

Let F, G, and H be homogeneous integral functionals on J∞(Mn
nC → A

(0|1)), of
respective gradings |F |, |G|, and |H|, cf. Definition 1 on p. 19.

Definition 3 (∆(F×G)). Whenever applied to the product F×G of two integral func-
tionals, the Batalin–Vilkovisky Laplacian ∆, which was defined above as reconfiguration
(cf. Fig. 5) of the (co)vector couplings, is the parent structure for the (non)commutative
variational Schouten bracket [[ , ]], or antibracket,

∆(F ×G)
def
= ∆(F )×G+ (−)|F |[[F,G]] + (−)|F |F ×∆G. (14)

In other words, the bracket [[ , ]] measures the deviation for ∆ from being a graded
derivation.

Corollary 6. The (non)commutative variational Schouten bracket [[ , ]] itself is a (shifted-
) graded derivation of the product × in the algebra of local functionals,

[[F,G×H ]] = [[F,G]]×H + (−)(|F |−1)·|G|G× [[F,H ]]. (15)

The proof refers to a check of definitions.

Remark 2.7 (the geometric realization of [[ , ]]). The geometric construction of every
term in the noncommutative variational Schouten bracket goes as follows. Without loss
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of generality, suppose that the given integral functionals F and G each consist of just
a single cyclic word (otherwise, proceed by linearity).

✫✪
✬✩

	

s∞∞∞F

F =

r· ·· 7→ ✫✪
✬✩

	

∞∞∞F
r
··
·
s

✫✪
✬✩

	

s p
∞∞∞G✛✲ ✲✛

+
+
+ ← ✫✪

✬✩
	

s∞∞∞G

= G

p
+
++

First, rotate the necklace F counterclockwise until r > 0 parity-odd symbols would
have passed through the lock∞∞∞F ; when a parity-even or the next, (r+1)th parity-odd
symbol reaches∞∞∞F , open that lock. Likewise, rotate the ring G clockwise and, as soon
as p > 0 parity-odd symbols would have passed through∞∞∞G, unlock G at a symbol the
parity of which is opposite to that of the letter at which F was unlocked.

s
✲

✲

s

✛

✛

	 	

∞∞∞F ∞∞∞G

r p

〈 , 〉F G

s∞∞∞· · · +++

Second, place the loose ends of the two open words next to each other, preserving the
orientation of the strings of symbols. Now integrate by parts, throwing the derivatives
off the variations δa and δb by letting them fall on the chains of letters from the words
where the variations emerged from. Next, couple the variations δa and δb by using (11)
and join the facing ends of the two strings, forming the new cyclic word that carries
the orientation and sign factor from 〈 , 〉.

s
s
❘

✒
++

+

··
·

	∞∞∞F

∞∞∞[[F,G]] =∞∞∞G

G

G

G

p

r

F

F

G

Finally, rotate the letters around the new word counterclockwise so that the old
location of∞∞∞G in between the symbols of G reaches the new linking∞∞∞[[F,G]] of strings,
nearest to∞∞∞G in the positive direction. The terminal configuration is displayed above;
it carries |F |+ |G|−1 parity-odd symbols, it preserves the orientation of both the input
words F and G, and it carries the sign factor determined by the ordered coupling of
(co)vectors.

Corollary 7. For a given homogeneous integral functional F ∈ H̄n(Mn
nC → A

(0|1)) of
grading |F |, the operator [[F, · ]] proceeds over letters of its cyclic-word argument by the
graded Leibniz rule; the operator’s proper grading |[[F, · ]]| is |F | = 1.
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Proposition 8. The (non)commutative variational Schouten bracket of homogeneous
integral functionals is shifted-graded skew-symmetric:

[[G,F ]] = −(−)(|F |−1)·(|G|−1)[[F,G]]

for F,G ∈ H̄n(Mn
nC → A

(0|1)).

Theorem 9. Let F , G, and H be homogeneous integral functionals on J∞(Mn
nC
→

A
(0|1)) so that their gradings are |F |, |G|, and |H|, respectively. Then the following

three equivalent statements are valid :

(i) The noncommutative variational Schouten bracket satisfies the shifted-graded

Jacobi identity

(−)(|F |−1)·(|H|−1)[[F, [[G,H ]]]] + (−)(|F |−1)·(|G|−1)[[G, [[H,F ]]]] +

+ (−)(|G|−1)·(|H|−1)[[H, [[F,G]]]] = 0.

(ii) The Jacobi identity for the bracket [[ , ]] is the graded Leibniz rule for the operator

[[F, · ]] acting on [[G,H ]], namely,

[[F, [[G,H ]]]] = [[[[F,G]], H ]] + (−)(|F |−1)·(|G|−1)[[G, [[F,H ]]]]. (16)

(iii) The shifted-graded commutator of operators [[F, · ]] and [[G, · ]] is equal to the

operator [[[[F,G]] · ]], that is,

[[F, [[G, · ]]]](H)− (−)(|F |−1)·(|G|−1)[[G, [[F, · ]]]](H) = [[[[F,G]], · ]](H). (17)

Corollary 10. Let F and G be two noncommutative local functionals; suppose F is
homogeneous. The Batalin–Vilkovisky Laplacian ∆ satisfies the relation

∆
(
[[F,G]]

)
= [[∆F,G]] + (−)|F |−1[[F,∆G]]. (18)

In other words, the operator ∆ is a graded derivation of the noncommutative variational
Schouten bracket [[ , ]].

Corollary 11. The Batalin–Vilkovisky Laplacian ∆ is a differential on the space of
local functionals over J∞(Mn

nC → A
(0|1)),

∆2 = 0.

The proof of Corollaries 10 and 11 is straightforward, see [19] for the scheme of that
reasoning.

Proof of Theorem 9. Consider the consecutive action on the operators [[F · ]] and [[G · ]]
of gradings |F | = 1 and |G| = 1, respectively, on an integral functional H . Each
operator proceeds over letters in every cyclic word of H by the graded Leibniz rule. It
is readily seen that by taking the shifted-graded difference of the two applications, as
it stands in the left-hand side of (17), we cancel all the terms in which the strings of
symbols from F and G are pasted into H not hitting each other (that is, rather staying
next to each other or becoming separated by the argument’s own letters). Therefore,
both sides of (17) contain the second variation of F and G but only the first variation
of H .

Note further that all the integrals by parts always fall only on letters that belong to
(what remains of) the functional which is varied, see section 2.5. Consequently, both
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sides of (17) contain the same configurations of powers of total derivatives that fall on
the letters from the second, second, and first variations of F , G, and H , respectively.
This shows that it is sufficient to inspect the matching of signs — as they occur in the
left- and right-hand side of (17) — in front of the insertions of symbols from F into G,
and vice versa. Without loss of generality, let us suppose that each of the functionals
F and G consist of just a single cyclic word.

Every term in [[G, · ]](H) is obtained from the cyclic words

✫✪
✬✩s∞∞∞G

	G = and H = ✫✪
✬✩s∞∞∞H

	

qp+
+
+

as follows (see Remark 2.7). First, the ring G is rotated counterclockwise, transporting
p odd symbols through∞∞∞G, which gives the sign (−)p·(|G|−1) and then G is unlocked at
∞∞∞G. At the same time, H is rotated clockwise and unlocked as soon as q odd letters
would have passed the lock ∞∞∞H . Contracting one pair of variations δa, δb) destroys
one parity-odd symbol in either G or H . Now, the word obtained from G by erasing
one letter in it is pasted, orientation preserved, into the similarly obtained fragments
of H . The loose ends of the two strings are joined, making a new circle. Finally, the q
letters of H are pushed counterclockwise — so many of them that the old∞∞∞H coincides
with ∞∞∞[[G,H]], placed at the moment of linking at the concatenation of strings’ loose
ends nearest to∞∞∞H in positive direction. The sign factor which is gained when the lock
of H is restored on its proper place equals (−)q·(|G|−1); the minus one in the exponent
counts the parity-odd letter destroyed by the coupling. The resulting necklace – a term
in [[G,H ]] – looks like this:

✉
✉

❘✐

	∞∞∞G

∞∞∞[[G,H]]

✕ H

H

q

p +
+

G

G
H

The total sign accumulated up to this moment is (−)p·(|G|−1) · (−)q·(|G|−1). Now the
operator [[F, · ]] approaches that ring from the left. Arguing as above, we rotate the
cyclic word

✫✪
✬✩r

	

∞∞∞F
· ··
r

F =

counterclockwise, letting r parity-odd symbols pass through∞∞∞F (this yields (−)r·(|F |−1)).
Having unlocked that ring at∞∞∞F , we carry this term in [[F, · ]] of grading |F | − 1 along
the p+ q parity-odd symbols in the pre-fabricated linking of G and H . By the time the
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loose ends of [[F, · ]] reach the former location of∞∞∞G in G, the sign factor (−)(p+q)·(|F |−1)

is accumulated, and the configuration is this:

s
ss

❘
✲

✒

	∞∞∞F

∞∞∞G

∞∞∞[[F,[[G,H]]]] =∞∞∞H

✕
H H

H

G

F H

p
q

r ···

++
+

F

G

H

By having realised the scenario which the left-hand side of (17) provides, we obtained
the overall sign

(−)r·(|F |−1)·(−)p·(|G|−1)·(−)q·(|G|−1)·(−)(p+q)·(|F |−1) = (−)r·(|F |−1)·(−)(p+q)·(|F |+|G|−2). (19)

Moreover, it is clear now what the extra sign contribution to the formula above would
there be, should the insertion of the unlocked F start later – with respect to the cyclic
order – than the starting point∞∞∞G of the turned-and-unlocked cyclic word G.

On the other hand, let us calculate the overall sign factor of the very same geometric
configuration in the right-hand side of (17). So, we first produce the respective term in
[[F,G]]. Let us recall from the above that the word

✫✪
✬✩r

	

∞∞∞G
+++

p

G =

is unlocked straight after∞∞∞G, but

✫✪
✬✩r

	

∞∞∞F
· ··

r

F =

is first rotated counterclockwise by r parity-odd slots; this yields the sign (−)r·(|F |−1)

and gives the word

s s

❘

✲

· ·
·

	

∞∞∞F

∞∞∞[[F,G]] =∞∞∞G

F

G

G

r p++
+

F

G G

It contains |F |+ |G|−1 parity-odd letters; let us use it in the action of [[[[F,G]], · ]] on H .
By rotating the word to-paste counterclockwise by p parity-odd symbols, we gain the
sign (−)p·(|F |+|G|−2) ; proceeding by the Leibniz rule over q parity-odd letters in H , we
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obtain another sign factor (−)q·(|F |+|G|−2). In total, the overall sign that occurs in the
right-hand side of (17) for the configuration that we knew before is

(−)r·(|F |−1) · (−)p·(|F |+|G|−2) · (−)q·(|F |+|G|−2).

This is exactly (19).
To process the configurations in which the symbols from G are pasted in between

the letters of F , and those are already installed in H , let us first swap F and G in the
right-hand side of (17). By Proposition 8, it becomes

−(−)(|F |−1)·(|G|−1)[[G,F ]], · ]](H).

Second, multiply both sides of (17) by the sign factor −(−)(|F |−1)·(|G|−1); this gives

−(−)(|F |−1)·(|G|−1)[[F, [[G, · ]]]](H) + [[G, [[F, · ]]]](H) versus [[[[G,F ]], · ]](H).

Finally, relabel F ⇄ G; by having thus recovered both sides of (17) in its authentic
form, we convert the configurations to-consider into those which we did cope with. The
proof is complete. �

Remark 2.8. We conclude that the proof of all these assertions about the Batalin–
Vilkovisky Laplacian and variational Schouten bracket remains literally valid in the
graded-commutative set-up. Indeed, when the proof is over, it suffices to let N := 0
and proclaim that the letters aiσ and bj,τ are graded-permutable; the proof itself does
not require that assumption.

Likewise, by shrinking the substrate manifoldMn to a point, so that n = 0 andN = 0,

we recover the standard properties of the parity-odd differential ∆0 =
−→
∂ 2/∂ai∂bi and

parity-odd Poisson bracket in the (formal non)commutative geometry of symplectic
supermanifolds of superdimension (m|m). The locality of couplings (10) still in force,
our reasoning explains why the differentials of two Hamiltonians are referred to the

same point when their Poisson bracket is constructed.
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3. Noncommutative variational Poisson formalism

The noncommutative variational cotangent superspace, which we built in Ch. 1 for
spaces of maps Mn

nC → A
(0|1), and the calculus of local functionals on jet spaces

J∞(Mn
nC → A(0|1)), see Ch. 2, refer to the canonical symplectic structure encoded

by (10). Let us now introduce a more narrow class of variational noncommutative
geometries in which the Poisson structures are defined.

3.1. Noncommutative variational multivectors. Let us recall that the notion of
space of integral functionals H̄n(Mn

nC → A
(0|1)) was based in Ch. 2 on an obvious

analytic idea to integrate the maps s : Mn
nC → A

(0|1) over dvol(x) on the substrate
manifold Mn; the integrals take every such mapping to the cyclic word(s) written in
the edge alphabet ~x±1 (see (13) on p. 19). When the Z2-valued parity function was
introduced, the parity-odd symbols b and extension s† of s to maps landing in A

(0|1)

were felt as the objects that make everything go much better as soon as one gets rid of
them; we refer to Remark 2.2 in particular.

Taking this into account, let us describe a very different geometric approach to the use
of Z2-parity graded noncommutative integral functionals. Namely, we propose to view
the parity-odd symbols b and their derivatives as placeholders for (non)commutative
variational covectors; such placeholders appear in the fully skew-symmetric poly-linear
maps for the space H̄(Mn

nC → A
(0|1)) of purely even Hamiltonian functionals. By making

this construction precise, which forces us to narrow the class of graded-homogeneous
functionals under study, we resolve the difficulty which is known from Remark 2.2.

The key idea is that – unlike it is the case for cyclic-word integral functionals of generic
nature – the (non)commutative variational multivectors are organised in precisely the
same way with respect to each parity-odd entry b, as long as the shifts t around the
circle and integrations by parts are allowed.

Let P ∈ H̄n(Mn
nC → A

(0|1)) be a homogeneous functional of grading |P | =: k > 0. If
k = 0, none of the cyclic words in P contains any parity-odd symbols biτ . If k = 1, then
there is the noncommutative linear total differential operator A (that is, an operator
which is polynomial in the total derivatives and the coefficients of which are operators
of left and right multiplication by functions of x or by parity-even symbols ~x±1 or aiσ
from the alphabet on J∞(Mn

nC → A
(0|1))) such that

P =
(
A(b)

)
.

Clearly, there remains nothing more to do; for the key idea above is already realized.
Suppose now k = 2 ; pick one parity-odd letter in every cyclic word of P and throw

all the derivations off every such letter by using a suitable number of integrations by
parts; then, if necessary, transport the letters around the circle so that those bi∅ stand
immediately after the observation point∞∞∞ in the positive, counterclockwise direction.
This brings P to the normal shape

P ∼= 1
2

(
b ◦ A(b)

)
; (20)

by construction, A is the arising (m × m)-size matrix linear noncommutative total
differential operator of one argument.

Arguing as above and picking some parity-odd letter in every word of a given integral
functional P of grading k, we transform it to the sum of cyclic words, each starting
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with bj∅ for 1 6 j 6 m,

P ∼=
1

k!

(
b ◦ A(b, . . . , b︸ ︷︷ ︸

k−1 slots

)
)
, (21)

where the noncommutative total differential operator A is poly-linear in its k− 1 argu-
ments.29

To make the construction of operator A independent of our initial choice of some

parity-odd entries, let us analyse the properties such an operator must have. We now
consider the case k = 2 because it will be essential in what follows. Through the chain
of integrations by parts and by carrying the parity-odd letters around the circle,

P = 1
2
(b ◦ A(b)) ∼= 1

2

(
(b)
←−
A † ◦ b

)
∼ −1

2

(
b ◦ (b)

←−
A †
)

def
= −1

2

(
b ◦ A†(b)

)
, (22)

we define the adjoint operator A† that acts on its argument in the left-to-right direc-
tion.30 The starting objects P and the resulting functional are identically the same if
we require that

A = −A†. (23)

For example, let n = 1, m = 1 and consider P = 1
2
(b ◦ bx) with A = ~d/dx, see [40].

The requirements which the poly-linear operator A of k − 1 arguments must satisfy
are imposed for all k > 3 in the exactly same way as in (22).

In what follows, we shall consider only the grading-homogeneous functionals on
J∞(Mn

nC → A
(0|1)) for which the poly-linear operators A are well defined, so that nor-

malisation (21) can be attained by starting from any parity-odd entry in every cyclic
word of the functional at hand.

Definition 4. Homogeneous integral functionals P ∈ H̄n(Mn
nC → A

(0|1)) of grading
k > 0 and such that either k 6 1 or normalisation (21) is well defined are called
noncommutative variational k-vectors.

Let us denote by H̄n
k (M

n
nC → A

(0|1))  H̄n(Mn
nC → A

(0|1)) the vector space of non-
commutative variational k-vectors on J∞(Mn

nC → A
(0|1)).

Note that by Remark 2.2, the subspaces H̄n
k (M

n
nC → A

(0|1)) do not exhaust the
homogeneous components of grading k in H̄n(Mn

nC → A
(0|1)) for k > 2.

Remark 3.1. We claim that the vector space
⊕

k>0 H̄
n
k (M

n
nC → A

(0|1)) of all noncommu-
tative variational multivectors is closed under [[ , ]], which endows it with the structure of
Gerstenhaber algebra with respect to the noncommutative variational Schouten bracket.

29Of course, the notation for A acting on the m-tuples b is symbolic; in reality, every cyclic word
of P carries k parity-odd entries bi1

∅
, bi2

σ
i2

2

, . . . , bik
σ
i
k

k

, where 1 6 iα 6 m and the multi-indexes are

word-dependent. It is often the case that |σi
α| 6= |σ

j
α| for i 6= j at some α; for instance, recall the

differential order of entries in the matrix operator for the second Poisson structure of the renowned
Boussinesq hierarchy.

30Note that the left multiplications in A become the right multiplications in
←−
A †, and vice versa.

At the same time, the total derivative operators are reshaped by (
−→
d /dx)σ◦ 7→ ◦(−

←−
d /dx)σ 7→

(−
−→
d /dx)σ◦, e. g., the adjoint to (aa◦)

−→
Dx( · )(◦a) is (−

−→
Dx) ◦ ((a◦)( · )(◦aa)). Thirdly, the operator’s

matrix is transposed: (A†)ij = (Aji)†.
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Definition 4 is constructive but implicit. It is instructive to see why the Schouten
bracket [[F,G]] of a k-vector F and ℓ-vector G is a (k + ℓ − 1)-vector: this fact re-
lies on a very distinguished structure – of the local variational differential operators
[[F, · ]] or [[ · , G]] – which normalization (21) provides for the geometric model of [[ , ]] in
Remark 2.7.

Remark 3.2. The price that one pays for the (non)commutative variational multivectors’
realisation – uniform with respect to every parity-odd entry b under integration by parts
and cyclic shifts – is precisely having that legal possibility to integrate by parts. Yet we
remember from §2.5 that all such integration is postponed until the ultimate end of every
object’s construction in the frames of the geometry of iterated variations. Therefore,
the variational calculus of (non)commutative variational multivectors is step-by-step

indeed; every intermediate object is let to exist as a well-defined notion.
For instance, Poisson bi-vectors P first take the Hamiltonians F to the respective

one-vectors XF , which are also known to us under the name of Hamiltonian evolution
equations (e. g., of (non)commutative Korteveg–de Vries type). In turn, the well-defined
one-vectorXF acts by the Schouten bracket [[XF , · ]] on a given 0-vectorH , which defines
the Poisson bracket {F,G}P , see §3.3 below.

Notice that no multiplication of copies of the substrate manifold Mn can be seen
from this way of reasoning; in fact, the on-the-diagonal restriction in the last phase of
construction of the Schouten bracket becomes the immediate next to the first step. This
is why the Poisson framework for (non)commutative variational multivectors was not
capable of providing the intrinsic self-regularisation of the Batalin–Vilkovisky formalism
with generic local functionals.

3.2. Derived brackets. Let P ∈ H̄n
k (M

n
nC → A

(0|1)) be a noncommutative variational
k-vector. Consider k integral functionals H1, . . . , Hk ∈ H̄n

0 (M
n
nC → A

(0|1)) of grading
zero (that is, a k-tuple of 0-vectors).

Definition 5. The k-linear bracket { · , . . . , · }P : (H̄
n
0 × . . . × H̄n

0 )(M
n
nC → A

(0|1)) →
H̄n

0 (M
n
nC → A

(0|1)) is defined by the noncommutative variational k-vector P as the
derived bracket,31

{H1, . . . , Hk}P
def
= (−)k [[. . . [[P,H1]], . . . , Hk]]. (24)

The nested Schouten brackets are underlined in order to emphasize that each of them
produces an object, i. e., the noncommutative variational multivector with one parity-
odd entry less than the two arguments had together. In consequence, the integrations
by parts are legitimate at every such step. This makes the Poisson formalism on the
jet spaces a science of steps and stops.

Example 3.1. If k = 1 and the noncommutative variational one-vector is the cyclic
word P = (A(b)) for some total differential operator A (i. e., for a linear operator that

31We refer to [31] for a review of the concept of derived brackets in the geometry of usual manifolds.
The algebraic classification of N -ary brackets is obtained in [43]; by analysing the jet-bundle geometry
in this context, in the paper [16] we developed the notion of Wronskian determinants for functions
in many variables. In particular, we proved that every such structure W on the space of functions
encodes a differential d2

W = 0.
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is polynomial in the total derivatives), then

{H1}P = −[[P,H1]] = (A(δH1/δa)).

Likewise, if k = 2 and, after a suitable number of integrations by parts, the noncommu-
tative variational bi-vector is represented by the cyclic word(s) P = 1

2
(b ◦ A(b)), then

it is readily seen that32

{H1, H2}P = [[[[H1, P ]], H2]] ∼=

(
A

(
δH1

δa

)
◦
δH2

δa

)
∼

(
δH2

δai
◦ Aij

(
δH1

δaj

))
. (25)

Let us comment on every step in this construction. First, the variational one-vector
XH1 is produced from P and H1; consider

[[H1,
1
2
(b ◦ A(b))]] =


δH1

δa
◦
1

2

∑

|τ |

(
−

−→
d

dx

)τ −→
∂

∂bτ
(b ◦ A(b))


 .

When P = 1
2

(
b ◦A(b)

)
is varied with respect to b, the partial derivatives

−→
∂ /∂bjτ reach

the first occurence b∅ with τ = ∅ at once; before they reach the argument b of skew-
adjoint operator A, let us integrate by parts: 1

2
(b ◦A(b)) ∼= 1

2
(−A(b) ◦b) ∼ 1

2
(b◦A(b)).

This shows that due to the particular structure of bi-vectors – if compared with generic
functionals of grading two, – the second term doubles and absorbs 1

2
. We get the one-

vector (δH1/δa ◦ A(b)); integrating by parts once again and using (23), we obtain the
object

XH1 =

(
−A

(
δH1

δa

)
◦ b

)
.

Now the construction of the outer Schouten bracket in (25) is elementary.

Lemma 12. Derived bracket (24) is totally antisymmetric under permutations of its
arguments:

{Hω(1), . . . , Hω(k)}P = (−)ω {H1, . . . , Hk}P

for any ω ∈ Sk and any H1, . . . , Hk ∈ H̄n
0 (M

n
nC → A

(0|1)).

Remark 3.3. The total skew-symmetry of object (24) produced in k separate steps –
with integration by parts and full stop after each step – does not follow from the Jacobi
identity for [[ , ]]. Rather, this is a manifestation of the noncommutative variational k-
vectors’ intrinsic property to be structurally identical with respect to every two graded
entries b.

Sketch of the proof. It suffices to show that the derived bracket { · , . . . , · }P changes
its sign under a swap of two consecutive arguments Hi and Hi+1 :

. . . [[[[Q,Hi]], Hi+1]] . . . ∼= − . . . [[[[Q,Hi+1]], Hi]] . . . .

Consider the noncommutative variational multivector’s necklace Q and mark, by using
⊗ and ⊕, two parity-odd entries b (e. g., the two consecutive ones for the sake of clarity),
see the figure,

32The first equality tells us that the bracket { · , · }P which the bi-vector P determines is a bracket
between its arguments indeed.
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✫✪
✬✩

	

s∞∞∞ss s s
⊗
⊕

This object’s inner Schouten bracket with Hi does basically the following: normalisa-
tion (21) throws all the derivatives off the entry ⊗ and implants δHi/δa in its stead
(the normalisation does exactly the same with every other entry b by the definition of
multivector, but let us focus on the term such that the variation δHi/δa hits ⊗). Now
reshape this output by making ⊕ free of derivatives falling on it. Note that this ses-
sion of integrations by parts again amounts to bringing the multivector to normalized
shape (21), – only the neighbouring entry ⊗ is occupied now by δHi/δa, not by b. The
outer Schouten bracket installs δHi+1/δa for ⊕ (or for any other parity-odd entry; we
consider just one term, for definition).

On the other hand, consider the very same scenario of putting δHi/δa for ⊗ and
δHi+1/δa for ⊕, done in the reverse order. To reach ⊕ first in the construction of (now,

inner) Schouten bracket, the derivation
←−
∂ /∂b has to overtake ⊗ currently occupied

by the parity-odd placeholder b; this overtake yields the sought-for minus sign. The
variation δHi+1/δa pasted for ⊕, we cast all the derivatives off the still-unused slot ⊗,
leave δHi/δa there, and integrate by parts back, to isolate δHi+1/δa in the socket ⊕.
It is readily seen that the two algorithms produce the identical portraits of letters and
derivatives, yet those two differ by the sign factor. �

Remark 3.4. Continuing this line of reasoning, we conclude that for a given noncom-
mutative variational k-vector P , the value {H1, . . . , Hk}P of derived bracket (24) at k
arguments H1, . . . , Hk ∈ H̄n

0 (M
n
nC → A(0|1)) is equivalent, up to integration by parts,

to the 0-vector

(−)
k(k−1)

2 ·
1

k!

∑

ω∈Sk

(−)ω
(
δHω(1)

δa
· A

(
δHω(2)

δa
, . . . ,

δHω(k)

δa

))
∼= {H1, . . . , Hk}P , (26)

where the alternating sum runs through the entire permutation group Sk; note that it
is the parity-even arguments Hi but not the slots for them which are shuffled.

Observation (26) allow us to extend the mapping P from the geometry of exact
(non)commutative variational covectors δHi/δa,

P
(
δH1

/
δa, . . . , δHk

/
δa
) def
= {H1, . . . , Hk}P ,

to k-tuples of arbitrary variational covectors pi = (pi,α ◦ δa
α). The case k = 1 with

P (p1) := (A(p1)) is elementary; for k > 2, we put33

P (p1, . . . ,pk) := (−)
k(k−1)

2 ·
1

k!

∑

ω∈Sk

(−)ω
(
pω(1) ◦ A(pω(2), . . . ,pω(k))

)
. (27)

33The variations δa serve as the earrings by which the open-word components pi,α of pi are hooked
and dragged into the cyclic word of P . We emphasize that the isomorphism V † ≃ T

a
†V † is used here

to convert the placeholders b for pi into the virtual offsets
m∑

α=1
1·~e †,α. The absorption of each argument

pi then goes closely to the lines of geometric construction of the Schouten bracket, see Remark 2.7 on
p. 23. The various details of this construction – e. g., earrings, hooks, and placeholders – are left to
the reader.
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However, generic variational covectors, not necessarily exact, will not be studied in par-
ticular in what follows – rather, the converse can be assumed in view of the Substitution
Principle (see §1.3).

Remark 3.5. Attempts to define the (non)commutative variational Schouten bracket
of multivectors via a recursive procedure that involves the use of the two arguments’
values at test covectors are sometimes practised in the literature; see [29] and references
therein for the hydrography of underwater stones and for the analysis of other difficulties
which arise on that way.

3.3. Noncommutative variational Poisson structures. We now analyse the con-
struction of noncommutative variational Poisson brackets, recalling and re-proving sev-
eral important facts from the general theory — here, under the coarse assumption of
cyclic invariance (e.g., the Helmholtz lemma reveals a yet another mechanism for the
differentials to anticommute).

Remark 3.6. Although the formalism is based on the noncommutative variational sym-

plectic geometry from Ch. 2, the presence of differential operators A in the definition
of the Poisson bracket { , }P as derived with respect to a given Poisson bi-vector P ,
see (24), usually makes such brackets degenerate. Their Casimirs, forming the zeroth
Poisson cohomology group with respect to ∂P1 , starts the Magri scheme for systems
possessing the bi-Hamiltonian structures (P1, P2), see [18, §9.2] and [8, 7].

3.3.1. The definition of Poisson bracket. Consider a noncommutative variational bi-
vector P and let H1, H2, H3 ∈ H̄n

0

(
Mn

nC → A
(0|1)
)
be any three noncommutative

variational 0-vectors.

Definition 6. Bi-linear, skew-symmetric derived bracket (25),

{Hi, Hj}P = [[[[Hi,P ]], Hj]], 1 6 i < j 6 3,

is called the noncommutative variational Poisson bracket if it satisfies Jacobi’s identity,

{{H1, H2}P , H3}P + {{H2, H3}P , H1}P + {{H3, H1}P , H2}P ∼= 0 (28)

for all H1, H2, H3 ∈ H̄n
0

(
Mn

nC → A
(0|1)
)
, which are then called the Hamiltonians.

If identity (28) holds, the noncommutative variational bi-vector P = 1
2

(
b ◦ A(b)

)
is

called Poisson; the skew-adjoint noncommutative linear operator A in total derivatives
is then called a Hamiltonian operator, and the noncommutative variational one-vectors

XHi

def
= [[P , Hi]] are the Hamiltonian one-vectors (or one-vector fields) specified by their

Hamiltonians Hi and the Poisson bi-vector P .

Criterion 13. A noncommutative variational bi-vector P is Poisson (i.e., the derived

bracket { , }P satisfies Jacobi’s identity (28)) if the bi-vector P satisfies the classical

master-equation

[[P ,P ]] ∼= 0 ∈ H̄n
3

(
Mn

nC → A
(0|1)
)
. (29)

The bi-vector P is Poisson only if the value of [[P ,P]] at any triple H1, H2, H3 of

Hamiltonians is cohomologically trivial :

[[P ,P ]](H1, H2, H3) ∼= 0 ∈ H̄n
0

(
Mn

nC → A
(0|1)
)
.
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The assertion is aimed to emphasize that the Poisson bi-vectors are the primary objects,
whereas the Poisson brackets are the derived structures.34

Lemma 14. If a noncommutative variational k-vector Q represents the class of zero
in H̄n

k

(
Mn

nC → A
(0|1)
)
, then, Q viewed as the map

(
H̄n

0 × . . .× H̄n
0

)(
Mn

nC → A
(0|1)
)
→

H̄n
0

(
Mn

nC → A
(0|1)
)
, its value Q

(
δH1/δa, . . . , δHk/δa

)
= {H1, . . . , Hk}Q is cohomolog-

ically trivial for every k-tuple of the arguments H1, . . ., Hk ∈ H̄n
0

(
Mn

nC → A
(0|1)
)
.

Sketch of the proof. Indeed, whenever the cyclic word Q = dhR(b, . . . , b) carrying
k parity-odd entries b is exact with respect to the lift dh of the de Rham differen-
tial for Mn onto J∞

(
Mn

nC → A
(0|1)
)
, so is every term – in the sum over the |Sk| ways to

permute the argumentsH1, . . .,Hk by using ω ∈ Sk – obtained by pasting whatever open
string δHω(i)/δa

j of parity-even symbols instead of the ith copy of the symbol bj . �

3.3.2. Noncommutative differential forms. To approach the proof of Criterion 13, let
us have a glimpse of the classical set of structures that appear on the infinite jet
spaces J∞

(
Mn

nC → A
)
– in particular, in the context of Vinogradov’s C-spectral se-

quence [42].
By definition, now put

~∂
(a)

ϕ(x,~x±1,[a]) =
m∑

i=1

∑

|σ|>0

(
(ϕi)

(←−d
dx

)σ)(
x, ~x±1, [a]

)
◦

−→
∂

∂aiσ
.

It is readily seen that these evolutionary derivations commute with the total derivatives
on J∞

(
Mn

nC → A
)
:

[
~∂ (a)
ϕ , ~d/dxk

]
= 0 for all k = 1, . . . , n.

Consequently, for any operator A in total derivatives we have that

~∂ (a)
ϕ

(
A(p)

)
=
(
~∂ (a)
ϕ (A)

)
(p) + A

(
~∂ (a)
ϕ (p)).

Next, define the linearization ℓ
(a)
p of an object p over J∞

(
Mn

nC → A
)
by setting

(ϕ)
←−
ℓ (a)

p =
−→
∂ (a)

ϕ (p)

whenever the right-hand side is well defined.
Thirdly, for each value of the index i running from 1 to m and for every multi-index σ

let us introduce the symbol daiσ. Now define the Cartan differential dC : a
i
σ 7→ daiσ,

34The gap between necessity and sufficience is the conjecture that, whenever the value Q(δH1/δa,
. . ., δHk/δa) of a (non)commutative variational k-vector Q at every k-tuple of exact variational covec-
tors δHi/δa is cohomologically trivial in H̄n

0

(
Mn

nC → A
(0|1)

)
, the k-vector Q itself is cohomologically

trivial in H̄n
k

(
Mn

nC → A
(0|1)

)
. This conjecture proven, Lemma 14 would convert into an equivalence.

It is quite paradoxical that, to the best of our knowledge, no proof of this claim has been obtained
yet — even in the graded-commutative set-up; some think it is too obvious to be proved and others
think it is too broad to be true, unless extra assumptions on the topology of fibre bundle π over Mn

are incorporated in the precise phrasing of that claim for the structures over J∞(π).
We expect however that there is a proof and that it is particularly transparent in the cyclic-word

setting J∞
(
Mn

nC → A
(0|1)

)
. The Substitution Principle working first (see Theorem 3 on p. 12), a

suitable homotopy then restores the k-linear horizontal (n− 1)-form R(b, . . ., b) such that the explicit
construction Q = dhR showing Q is trivial is uniform with respect to all the k-tuples H1, . . ., Hk.
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daiσ 7→ 0, also setting its action equal to zero on x and ~x±1 and postulating that dC is a
derivation. By construction, let the differential dC be correlated with other structures
on J∞

(
Mn

nC → A
)
in the standard way: e.g., set ~Dxk(daiσ) = daiσ∪{k}.

Let us explain what it means that the symbols daiσ and dajτ “anticommute.” The key
idea is that the precedence-succedence relation of such symbols in a given cyclic word
manifests that circle’s orientation, which is provided by construction.

Consider a cyclic word that carries one symbol daiσ; the word thus acquires a marked
point. The derivation dC acts on (the rest of) the word by starting at daiσ and processing
the letters ajτ by going in the positive direction. We say that all the symbols dajτ , newly
produced by dC from such ajτ are succedent with respect to the mark daiσ; in turn, the old
symbol daiσ is precedent for each new object dajτ . To change this precedence-succedence
relation daiσ ≺ dajτ but still let the circle’s orientation stay intact, the object dajτ is
proclaimed the new marked point — so that daiσ now succeeds it with respect to the
positive order of letters written along the oriented circle. By definition, such involution
of the relative order ≺ of the two symbols, daiσ and dajτ , produces the factor −1 in front
of the cyclic word that carries both of them. Clearly, d2

C = 0.

Lemma 15 (Helmholtz). The linearization ~ℓ
(a)
δH/δa of an element in the image of varia-

tional derivative δ/δa is self-adjoint:

~ℓ
(a)
δH/δa = ~ℓ

(a) †
δH/δa. (30)

Note that this half of Helmholtz’ criterion does not refer to the topology of the set-up.

Proof. Let H be a noncommutative variational 0-vector. Up to an integration by parts,
we have that dCH ∼=

(
da ◦ δH/δa

)
. By the above,

0 = d2
C(H) ∼=

(
da ◦

−→
ℓ

(a)
δH/δa(da)

)
∼=
(
(da)
←−
ℓ

(a) †
δH/δa ◦ da

)
∼ −

(
da ◦

−→
ℓ

(a) †
δH/δa(da)

)
,

whence (30). �

3.3.3. Proof of Criterion 13. First, let us recall the renowned cancellation mechanism
in the left-hand side of Jacobi’s identity (28). By definition, put pi = δHi/δa for the
three Hamiltonians. Integrating by parts in the inner and outer Poisson brackets in (28)
and using formula (25), we get

~∂
(a)
A(p1)

(
p2 ◦ A(p3)

)
+ ~∂

(a)
A(p2)

(
p3 ◦ A(p1)

)
+ ~∂

(a)
A(p3)

(
p1 ◦ A(p2)

)

=
(
~∂
(a)
A(p1)

(p2) ◦ A(p3)
)
+
(
p2 ◦

~∂
(a)
A(p1)

(A)(p3)
)
−
(
A(p2) ◦

~∂
(a)
A(p1)

(p3)
)

+
(
~∂
(a)
A(p2)

(p3) ◦ A(p1)
)
+
(
p3 ◦

~∂
(a)
A(p2)

(A)(p1)
)
−
(
A(p3) ◦

~∂
(a)
A(p2)

(p1)
)

+
(
~∂
(a)
A(p3)

(p1) ◦ A(p2)
)
+
(
p1 ◦ ~∂

(a)
A(p3)

(A)(p2)
)
−
(
A(p1) ◦ ~∂

(a)
A(p3)

(p2)
)
. (31)

Applying Lemma 15 to the variational covectors pi = δHi/δa as follows,

(
~∂
(a)
A(p1)

(p2) ◦ A(p3)
) def
=
(
~ℓ (a)p2

(A(p1)) ◦ A(p3)
)
=
(
~ℓ (a) †p2

(A(p1)) ◦ A(p3)
)

∼=
(
A(p1) ◦

~ℓ (a)p2

(
A(p3)

)) def
=
(
A(p1) ◦

~∂
(a)
A(p3)

(p2)
)
,
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we conclude that it is only the second column which survives the cancellation in (31).
The left-hand side of Jacobi’s identity thus equals(

δH1

δa
◦ ~∂

(a)
A(δH3/δa)

(A)
(
δH2

δa

))
+ cyclic permutations. (32)

On the other hand, consider the bi-vector P = 1
2

(
b ◦ A(b)

)
and construct

[[P ,P ]] ∼=
((

b ◦ A(b)
)( ←−∂

∂aσ

◦
(−→d
dx

)σ(
A(b)

)))
;

the right-hand side contains, for every multi-index σ, the derivation that pastes its
coefficient for each aiσ occurring in the coefficients of operator A within

(
b ◦ A(b)

)
.

The only thing which the evaluation of [[P ,P ]] at H1, H2, and H3 does,

[[P ,P ]]
(
δH1/δa, δH2/δa, δH3/δa

)
= (−)3 [[[[[[[[P ,P]], H1]], H2]], H3]],

is the speading of variational derivatives δHi/δa over the three slots b in the tri-
vector [[P ,P ]]. In view of the evaluation’s total skew-symmetry (see Lemma 12), it
is enough to sum up over the cyclic (hence, even) permutations in the group S3, and
then double. This yields the three terms(

δH1

δa
◦
(
(A)
←−
∂

(a)
A(δH3/δa)

)(
δH2

δa

))
+ cyclic permutations. (33)

Uniting the two parts of the reasoning, we conclude that the left-hand side (32) of Ja-
cobi’s identity (28) for the bracket { , }P and the value of tri-vector [[P ,P ]] at the same
Hamiltonians H1, H2, and H3 as in (28) are equal, hence simultaneously (non)trivial,
as elements of the cohomology group H̄n

0

(
Mn

nC → A
(0|1)
)
. �

Example 3.2. Every noncommutative variational bi-vector P = 1
2

(
b◦A(b)

)
such that

the coefficients of skew-adjoint linear total differential operator A do not depend on any
symbol aiσ –in particular, the operator A has constant coefficients– is Poisson.

Referring to the conjecture in footnote 34 on p. 35 and setting Q = [[P ,P ]] there, one
could now argue that the bracket { , }P is Poisson if and only if the classical master-
equation [[P ,P ]] ∼= 0 holds for P .
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