
THE MAP FROM THE CYCLOHEDRON TO THE ASSOCIAHEDRON IS

LEFT COFINAL

PASCAL LAMBRECHTS, VICTOR TURCHIN, AND ISMAR VOLIĆ

Abstract. Two natural projections from the cyclohedron to the associahedron are defined. We
show that the preimages of any point via these projections might not be homeomorphic to (a cell
decomposition of) a disc, but are still contractible. We briefly explain an application of this result
to the study of knot spaces from the point of view of the Goodwillie-Weiss embedding calculus.

1. Introduction

The configuration space Conf(n, [0, 1]) of n distinct points 0 < t1 < t2 < . . . < tn < 1 in the
interior of the segment [0, 1] is clearly homeomorphic to the configuration space Conf∗(n, S1) of
n + 1 distinct points on the circle S1 ' [0, 1]/0∼1 one of which is the fixed point ∗ = 0∼1:
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The Fulton-MacPherson compactification [5] of Conf(n, [0, 1]) is the n-dimensional associa-
hedron Assocn, also called the Stasheff polytope. The Fulton-MacPherson compactification of
Conf∗(n, S1) is the n-dimensional cyclohedron Cycln, also called the Bott-Taubes polytope [1].

The homeomorphism Conf∗(n, S1)→ Conf(n, [0, 1]) induces a natural projection of compact-
ifications

πn : Cycln → Assocn. (1.1)

The compactification Cycln contains more information than Assocn since one can compare how
fast configuration points approach ∗ = 0∼1 from the left and from the right:
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Informally speaking, the projection (1.1) forgets this information.
The poset of faces of Assocn is the poset of planar trees (see Section 2.1) which we denote by

Ψ([n + 1]).1 We denote the poset of faces of Cycln by Φ(n)2 and we encode them in a way that
is more geometric then the one in [10]. Namely, we associate to elements of Φ(n) certain planar
trees that we call fans (see Section 2.2).

To any face of Cycln one can assign a face of Assocn which is its image via πn. This cor-
respondence defines a functor Πn : Φ(n) → Ψ([n + 1]). This functor is the main object of our
study.

Passing to a map of realizations |Φ(n)| → |Ψ([n+1])| gives the projection π̄n : Cycln → Assocn.
However, the projections πn and π̄n are different because π̄n is not a homeomorphism of interiors.

We prove the following:

Theorem 1. The preimage of any point of |Ψ([n + 1])| = Assocn under π̄n is contractible.

An immediate corollary is

Theorem 2. Functor Πn : Φ(n)→ Ψ([n + 1]) is left cofinal.

Geometrically, Theorem 2 says that the preimage of any face of Assocn under π̄n is contractible.
This result was announced in [9]. Some applications of Theorem 2 for the study of knot spaces
are discussed in Section 4.

We also consider the initial projection (1.1) and describe the geometry of preimages under πn

(see Section 5). In particular we prove:

Theorem 3. The preimage of any point of Assocn under πn is contractible.

Theorems 1 and 3 are not surprising, but what is interesting is that the preimages might not
be homeomorphic to a disc. For example, for the vertex of Assoc4 encoded by the binary tree

(this vertex is the limit of (t1, t2, t3, t4) = (ε2, ε, 1− ε, 1− ε2) when ε→ +0), the preimage under
both πn and π̄n is a square (2-disc) with two segments attached3:

1Here [n + 1] stands for the set {0, 1, . . . , n + 1} of leaves.
2Here n stands for the set {1, 2, . . . , n}.
3This preimage is the realization of the poset X2,2; see Lemma 3.7 and Proposition 5.1.
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Markl has shown in [10] that the polytope Cycln can be obtained from Assocn by a sequence
of natural truncations by hyperplanes. Relating Theorems 1 and 3 to Markl’s construction seems
to be an interesting and a nontrivial problem.

2. Categories of faces

2.1. Category of trees. In this section we define a category Ψ([n]) of trees which keeps track
of the faces of Assocn−1.

Definition 2.1. A Ψ-tree is an isotopy class of rooted trees embedded in the upper half-plane
with the root of valence ≥ 2 at the origin. The valence of any internal vertex (i.e. a vertex that
is not a leaf) except the root is at least 3.

We orient each edge of a Ψ-tree from the vertex closer to the root to that which is farther from
the root. Each vertex (except the root) has exactly one incoming edge and a linearly ordered
(clockwise) set of outgoing edges. The root has only outgoing edges which are linearly ordered
(clockwise).

The set of leaves has a natural (clockwise) linear order. More precisely, let v1 and v2 be two
leaves. Consider two pathes – one from the root to v1, and another from the root to v2. Suppose
e1 and e2 are the first edges that are different in these paths. These edges are outgoing from some
vertex and we say v1 < v2 if and only if e1 < e2. In particular we can thus speak of the minimal
and maximal leaf.

Definition 2.2. A left-most (resp. right-most) node of a Ψ-tree is any vertex lying on the path
from the root to the minimal (resp. maximal) leaf. (Neither the root, nor the extremal leaves are
considered to be left-most or right-most.)

Definition 2.3. Define Ψ([n]) as the category whose objects are Ψ-trees with n+1 leaves labelled
by the ordered set [n] = {0, 1, 2, ..., n}. There is a (unique) morphism in Ψ([n]) from T to T ′ if
T ′ is obtained from T by a contraction along some set of non-leaf edges.

We will think of Ψ([n]) as a poset by saying T ≥ T ′ in the above situation.

Remark 1. The realization of the category Ψ([n]) is homeomorphic to the barycentric subdivision
of the (n− 1)-dimensional Stasheff associahedron Assocn−1.

Categories Ψ([1]), Ψ([2]), Ψ([3]) are pictured on the right side of Figure 2. The root is desig-
nated by a little circle.

2.2. Category of fans. In this subsection we define a category Φ(n) of fans which keeps track
of the faces of Cycln.

Definition 2.4. A fan (or a Φ-tree) is an isotopy class of planar rooted trees with one marked
vertex, which can be a leaf but not the root, called the bead. The root is of valence 1 and all the
internal vertices except the bead are of valence ≥ 3.

Note that the bead can have any valence ≥ 1. A leaf of a fan is thus any vertex of valence 1.
For example, the root of a fan is always a leaf. The bead might be a leaf since it might be of
valence 1. The set of leaves not coinciding with the root has a natural linear order in the same
way the set of leaves of a Ψ-tree does.
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Definition 2.5. (i) A vertex of a fan is said to be internal if it is not a leaf or if it is a leaf but
it is also a bead.

(ii) An edge of a fan is said to be internal if it joins two internal vertices.

Definition 2.6. Define Φ(n) to be the category whose objects are fans with n leaves, labeled by
the ordered set n = {1, 2, ..., n}, which are neither the root nor the bead. There is a (unique)

morphism in Φ(n) from T̂ to T̂ ′ if T̂ ′ is obtained from T̂ by a contraction along some set of
internal edges. A contraction of a connected set of edges produces a bead if and only if this set
of edges contained the bead.

We will think of Φ(n) as a poset by saying T̂ ≥ T̂ ′ in the above situation.

Remark 2. The realization of the category Φ(n) is homeomorphic to the barycentric subdivision
of the n-dimensional cyclohedron Cycln. This polytope was introduced by R. Bott and C. Taubes
in [1].

Categories Φ(0), Φ(1), Φ(2) are pictured on the left-hand side of Figure 2. The root is desig-
nated by a black point; the bead is designated by a little circle.

2.3. Functor Πn. We now define a functor Πn : Φ(n)→ Ψ([n+1]) between the categories of fans
and trees. For simplicity of notation we will sometimes omit the index n and write Π.

Definition 2.7. (i) The (only) path from the bead to the root will be called the trunk of the fan.
(ii) Let v be a vertex along the trunk of a fan. Let e1 (resp. e2) be the edge of the trunk which

is adjacent to v and whose other vertex is closer to the root (resp. bead). The edges adjacent to
v and lying between e1 and e2 (resp. e2 and e1) with respect to the natural clockwise order, will
be called left-going branches (resp. right-going branches).

Now let T̂ ∈ Φ(n) be a fan and cut R2 along the path which is the union of the trunk of T̂ and

the ray emanating downward from the root to infinity (so this ray does not cross T̂ ). The space
obtained from R2 by this surgery is homeomorphic to the upper half-plane. After this operation,

the fan T̂ becomes a Ψ-tree T with n + 2 leaves and with a root which is the former bead of T̂
(see Figure 1).

Note that a node of T̂ along the trunk can produce either one or two vertices in T . Such a node
produces a left-most (resp. right-most) vertex in T if and only if it has left-going (right-going)
branches. The root always produces two leaves, the minimal and the maximal one.

The following is immediate from the definition.

Lemma 2.8. The above correspondence defines a functor Πn : Φ(n)→ Ψ([n + 1]).

Remark 3. Passing to realizations, Πn defines a projection π̄n : |Φ(n)| → |Ψ([n + 1])|. Notice
however that π̄n is different from the projection πn : Cycln → Assocn mentioned in Introduction.
π̄n is not a homeomorphism of interiors of Cycln and Assocn starting from n ≥ 2.

Theorem 1. The preimage of any point of |Ψ([n + 1])| = Assocn under π̄n is contractible.

We prove this result in the next section.



THE MAP FROM THE CYCLOHEDRON TO THE ASSOCIAHEDRON IS LEFT COFINAL 5

root

bead

1

2

3

4

5 6

7

8

9

0

1

2

3

4

5 6

7

8

9

10

0
1

2
3

4

5 6

7

8
9

10

PSfrag replacements

T̂ T

Figure 1. A Ψ-tree obtained from a fan
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Figure 2. Π0, Π1, Π2. The circled edge of the hexagon gets mapped to the top
vertex of the pentagon.

3. Proof of Theorem 1

To prove Theorem 1, we need to define certain posets which are essential for understanding
the geometry of the functor Πn : Φ(n) → Ψ([n + 1]) and then prove that they are contractible.
Theorem 1 will in the end follow from Proposition 3.10.

Definition 3.1. Define X`,r, l, r ≥ 0, to be the poset whose elements are words in a, b, and (ab)
which contain exactly ` letters a and r letters b. Letter (ab) contributes one a and one b. We say
X < Y if X is obtained from Y by adding parentheses or by replacing some number of (ba)’s by
(ab)’s.
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Figure 3. Examples of |X`,r|.

aab→ a(ab)← aba→ (ab)a← baa

Poset X2,1

Proposition 3.2. For any `, r ≥ 0, poset X`,r is contractible.

In order to prove this, we will embed the realization of X`,r in R`.

Definition 3.3. An integer cube of R` is a cube of any dimension s, 0 ≤ s ≤ `, whose vertices
all integers and each of its edges is of length one and is parallel to one of the axes.

The proof of the following is immediate.

Lemma 3.4. (i) An integer cube in R` is determined by its center. The dimension of an integer
cube is the number of non-integer coordinates of the center. The set (of centers) of integer cubes
is the set 1

2 · Z
` of points with half-integer coordinates.

(ii) R` is a disjoint union of the interiors of integer cubes. Point (x1, . . . , x`) belongs to the

interior of the integer cube whose center has coordinates ( dx1e+bx1c
2 , . . . , dx`e+bx`c

2 ).

Lemma 3.5. The realization |X`,r| of X`,r is homeomorphic to the union of integer cubes in

R` = { (x1, . . . , x`) } which are contained in the domain

0 ≤ x1 ≤ x2 ≤ . . . ≤ x` ≤ r. (3.1)

Examples of |X`,r| are given in Figure 3.

Remark 4. It follows from Lemma 3.4 (ii), that the subspace of R` described above is defined
by the inequalities dxi−1e ≤ bxic, i = 1 . . . ` + 1, where x0 = 0 and x`+1 = r.

Proof. We define an embedding f : |X`,r| ↪→ R` on the elements of X`,r. A simplex X0 < X1 <
. . . < Xk, Xi ∈ X`,r will then be mapped to the convex hull of f(X0), f(X1), . . . , f(Xk).

Let X ∈ X`,r be a word. We define f(X) = (f1(X), . . . , f`(X)) as follows. The coordinate
fi(X) is set to be the number of elements b before the ith a in X, but if this a is parenthesized
with a b, then 1

2 is added. For example,

f( ab(ab)bbab ) = (0,
3

2
, 4).
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The number of non-integer coordinates is exactly the number of letters (ab) in X.
Note that the words in X`,r without parentheses are in one-to-one correspondence (via f) with

the integer points of the domain (3.1). Similarly a half-integer point N = ( n1

2 , n2

2 , . . . , n`

2 ) is in
the image of f if and only if the integer cube whose center is N is contained in the domain (3.1).
Consider the full subcategory X`,r ↓ X of elements greater than or equal to some X ∈ X`,r. The
realization |X`,r ↓ X| is homeomorphic to the barycentric subdivision of a cube (whose dimension
is the number of letters (ab) in X). Space |X`,r ↓ X| is mapped by f to the integer cube with
the center f(X). Thus f is an embedding, and the image is exactly the space described in the
lemma. �

Proof of Proposition 3.2. We induct over `. Poset X0,r is contractible since it is a point. Consider
the description of |X`,r| given in Remark 4. The projection of |X`,r| to the first `− 1 coordinates

of R` gives |X`−1,r|. The preimage of any point (x1, . . . , x`−1) ∈ f(|X`−1,r|) is the segment
x` ∈ [dx`−1e, r] (in the degenerate case dx`−1e = r, this segment is a point). So f(|X`,r|) can be
retracted to f(|X`,r|)∩{x` = r} ' |X`−1,r|, which is contractible by the inductive hypothesis. �

Definition 3.6. Let Y ∈ Ψ([n + 1]) and define Π−1(Y ) to be the full subcategory of Φ(n) with

elements Ŷ satisfying Π(Ŷ ) = Y .

Lemma 3.7. Let Y ∈ Ψ([n+1]) have ` left-most nodes and r right-most nodes (see Definition 2.2).
Then Π−1(Y ) is isomorphic to X`,r.

Proof. Suppose Ŷ ∈ Π−1(Y ). We assign to Ŷ a word in letters a, b, (ab) as follows: If we travel
along the trunk (see Definition 2.7) from the bead to the root and meet a node that has only
left-going branches, we write a. If we meet a node that has only right-going branches, we write
b. If this node has both left-going and right-going branches, we write (ab). Proceeding like this,
we get a word in X`,r. (For example, the fan from Figure 1 gives ba(ab).) It is easy to see that
such words are in one-to-one correspondence with the elements of Π−1(Y ). �

The following is a consequence of Proposition 3.2 and Lemma 3.7.

Corollary 3.8. Π−1(Y ) is contractible.

Definition 3.9. Suppose given Y ∈ Ψ([n + 1]) and T̂ ∈ Φ(n) such that Y ≥ Π(T̂ ). Define

Π−1(Y | ≥ T̂ ) as the full subcategory of Φ(n) whose elements Ŷ satisfy Π(Ŷ ) = Y and Ŷ ≥ T̂ .

Remark 5. Π−1(Y ) = Π−1(Y | ≥ ∗), where ∗ =
c

r

PP ��HH
. . .

is the terminal (minimal) element of Φ(n).

Proposition 3.10. Poset Π−1(Y | ≥ T̂ ) is contractible for any Y ∈ Ψ([n + 1]) and T̂ ∈ Φ(n)

satisfying Y ≥ Π(T̂ ).

Proof. We will prove that Π−1(Y | ≥ T̂ ) is isomorphic to
∏s

i=0 X`i,ri
for some s ≥ 0, `i, ri ≥ 0,

i = 0 . . . s. The result will follow from Proposition 3.2.

Label the vertices of the trunk of T̂ by 0, 1, 2, . . . , s (from the bead to the root), with 0
corresponding to the bead and s to the last node before the root (this vertex is the only one
joined to the root by an edge). Define `0 (resp. r0) as the number of left-most (resp. right-most)

vertices of Y that are contracted to the root in Π(T̂ ). Analogously define `i, ri, i = 1, ..., s as
follows: Denote by Ii, i = 1, ..., s, the ith vertex on the trunk (which is neither the bead nor
the trunk). If Ii does not have any left-going (resp. right-going) branches, then set `i = 0 (resp.
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ri = 0). Otherwise Ii defines a left-most (resp. right-most) node Li (resp. Ri) of Π(T̂ ). Then `i

(resp. ri) is the number of left-most (resp. right-most) vertices of Y contracted to Li (resp. Ri).

Poset Π−1(Y | ≥ T̂ ) is a subposet of Π−1(Y ) ∼= X`,r, where ` =
∑s

i=0 `i, r =
∑s

i=0 ri. This
subposet consists of those words in X`,r which can be broken up into s + 1 words from X`0,r0

,
X`1,r1

,..., X`s,rs
. But such a subposet is clearly the product

∏s
i=0 X`i,ri

. �

Proof of Theorem 1. Let z = zk be a point in the open simplex ∆k ⊂ |Ψ([n + 1])| = Assocn

defined by a sequence

Y0 < Y1 < . . . < Yk, (3.2)

where Yi ∈ Ψ([n + 1]). So zk is of the form

zk =

k∑

i=0

tiYi;

k∑

i=0

ti = 1; ti > 0, i = 0 . . . k.

We will prove that π̄−1(zk) is contractible by induction on k.
If k = 0, then π̄−1(z0) is the realization of Π−1(Y0), which is contractible by Corollary 3.8.
Let k ≥ 1. Then π̄−1(zk) has a natural prismatic decomposition. Indeed, any ẑk ∈ π̄−1(zk)

must be in the interior of some simplex

(Ŷ 0
0 < Ŷ 1

0 < . . . < Ŷ m1

0 ) < (Ŷ 0
1 < . . . < Ŷ m2

1 ) < . . . < (Ŷ 0
k < . . . < Ŷ mk

k ), (3.3)

ẑk =
∑

i=0...k
j=0...mi

tji Ŷ
j
i ,

where mi ≥ 0, i = 0, ..., k, Π(Ŷ j
i ) = Yi, and tji > 0 satisfy the condition

∑mi

j=0 tji = ti. (Parentheses

are meant to simplify the reading of the expression.) The sequence (3.3) defines an open prism
∆m1 × . . .×∆mk in π̄−1(zk). A prism is in the boundary of another if the sequence which defines
the first is a subsequence of the sequence which defines the second (however not any subsequence
of (3.3) defines a prism in π̄−1(zk); a subsequence that does has to contain at least one element

Ŷ j
i for each i = 0 . . . k).

The preimages π̄−1(zk) are naturally homeomorphic for all zk ∈ ∆k ⊂ |Ψ([n + 1])| (recall that
∆k is defined by the sequence (3.2)). So π̄−1(∆k) = ∆k × π̄−1(zk).

Now let zk−1 be any point in the open simplex ∆k−1 ⊂ |Ψ([n + 1])| defined by the sequence

Y0 < Y1 < . . . < Yk−1

and consider π̄−1(zk−1). By induction hypothesis π̄−1(zk−1) is contractible. There is a natural
map

p : π̄−1(zk) −→ π̄−1(zk−1)

which is geometrically a boundary limit map. This is well-defined since π̄−1(zk) is always the
same space as zk ∈ ∆k tends to zk−1 ∈ ∆k−1 ⊂ ∂∆k. We will show that p−1 of any point in
π̄−1(zk−1) is contractible.

In terms of prismatic decomposition, p forgets the last factor in ∆m1 × . . .×∆mk−1 ×∆mk by
mapping it to ∆m1 × . . .×∆mk−1 corresponding to the sequence

(Ŷ 0
0 < Ŷ 1

0 < . . . < Ŷ m1

0 ) < (Ŷ 0
1 < . . . < Ŷ m2

1 ) < . . . < (Ŷ 0
k−1 < . . . < Ŷ

mk−1

k−1 ). (3.4)
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Let ẑk−1 be a point of the open prism ∆m1 × . . . ×∆mk−1 ⊂ π̄−1(zk−1). It is easy to see that

p−1(ẑk−1) is exactly the realization of the poset Π−1(Yk| ≥ Ŷ mk−1
k−1 ). (Informally, we need to

consider all the “prolongations” of the sequence (3.4) to the sequence (3.3).) But the last poset is
contractible by Proposition 3.10. Thus π̄−1(zk) is surjectively mapped by p to π̄−1(zk−1). Space
π̄−1(zk−1) is contractible, and the preimage of p is contractible for any point of π̄−1(zk−1). So
π̄−1(zk) is contractible as well. �

4. Applications

4.1. Cofinality. Let F : C → D be a functor between two small categories. Recall that, for any
object d ∈ Ob(D), F ↓ d is defined as a category whose objects are pairs (c, f), where c ∈ C and
f ∈MorD(F(c), d). Morphisms are defined as

MorF↓D( (c1, f1); (c2, f2) ) = { f ∈MorC(c1, c2) | f2 ◦ F(f) = f1 }.

Functor F : C → D is said to be left cofinal if, for any object d ∈ Ob(D), the realization of
F ↓ d is contractible [2, Ch. XI, page 316]. This notion is important in homotopy theory since
left cofinal functors preserve homotopy limits. More precisely, for X : D → Top a functor from D
to the category of topological spaces and F : C → D left cofinal, we have

holim
C

X ◦ F ' holim
D

X.

The following theorem was the main motivation for this paper. We discuss its applications in
Section 4.3.

Theorem 2. The functor Πn : Φ(n)→ Ψ([n + 1]) is left cofinal for any n ≥ 0.4

Proof. For any T ∈ Ψ([n+1]), the realization of the category Πn ↓ T is the preimage under π̄n of
the face of Assocn encoded by T . Any face, being a convex polytope, is contractible. Theorem 1
then finishes the proof. �

4.2. Bimodules over an operad and associated fanic diagrams. In the same way as cat-
egories of trees encode the structure of an operad, the categories of fans encode the structure of
bimodules over an operad.

Let O = {O(n)}n≥2 be a non-Σ operad in a symmetric monoidal category (C,⊗,1). Notice
that we assume that O does not have operations of arity n = 0, 1 (if it does, we ignore them).

A sequence {X (n)}n≥0 of objects in C is a bimodule over O if it is endowed with structure
composition maps

◦i : X (n)⊗O(m)→ X (n + m− 1), i = 1 . . . n
◦i : O(n)⊗X (m)→ X (n + m− 1), i = 1 . . . n

(4.1)

that satisfy natural associativity conditions.
For example, if X is an operad endowed with a morphism from O,

O → X ,

then X is naturally a bimodule over O.
To any such bimodule one can assign a fanic diagram, i.e. a functor

X̂ n : Φ(n) −→ C

4Note that Πn is clearly right cofinal. It preserves homotopy colimits simply because both of the categories Φ(n)
and Ψ([n + 1]) have a terminal object, and Πn maps the terminal object to the terminal object.
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from the category Φ(n) of fans to C as follows.

We first define the value of the diagram X̂ n on objects. Let T ∈ Φ(n) be an n-fan. Recall that
each edge of T is oriented in the unique way such that its origin is on the path joining the root
to its end. Let |v| be the number of edges emanating from v. Since each vertex except the root
has exactly one incoming edge, we have |v| = valence(v)− 1.

Recall from Definition 2.5 that the inner vertices of T are its non-leaves and the bead (even if
the bead is a leaf). Let b denote the bead. For any inner vertex v of T set

X (T : v) :=

{
O(|v|), if v 6= b
X (|v|), if v = b

and define

X̂ n(T ) =
⊗

v inner vertex of T

X (T : v).

For example,

O(2)

X(3)

O(2)

X(3) O(2) O(2)x x

To define X̂ n on morphisms, a contraction of an edge is sent to the corresponding composi-
tion (4.1). For example,

O(2) x X(4)

X(3)

O(2)

O(2)

O(2)x xO(2) X(3)

O(2)

X(4)

PSfrag replacements
id× ◦3

Example 1. The cyclohedra {Cycln}n≥0 form a bimodule over the Stasheff operad
{Assocn−2}n≥2. In the corresponding fanic diagram

Ĉycl
n
: Φ(n) −→ Top,

all the maps are inclusions. This diagram describes the stratification of Cycln by its faces.

Another example (corresponding to a morphism of operads) is given in the next section.
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4.3. Formal cyclohedral model for the Goodwillie-Weiss embedding tower for spaces

of knots. The space of long knots Embd, d ≥ 3, is the space of smooth embeddings f : R ↪→ Rd

that coincide with a fixed linear embedding t 7→ (t, 0, . . . , 0) outside a compact subset of R.
T. Goodwillie and M. Weiss defined a tower of spaces

P0Embd ← P1Embd ← . . .← PnEmbd ← . . . (4.2)

converging to Embd for d ≥ 4 [7]. Each space PnEmbd is defined as a homotopy limit over a
subcubical diagram, i.e. over the category of faces of the n-simplex.

D. Sinha gave several different models for PnEmbd [12, 13]. In one of these models, the
homotopy limit is taken over the category Ψ([n + 1]) of faces of Assocn. We will call this model
associahedral. On the other hand, the authors defined a cyclohedral model for the tower (4.2)
in [9] using the construction of a fanic diagram assigned to a morphism of operads. More precisely,
let FMd = {FMd(n)}n≥0 denote the Fulton-MacPherson operad introduced in [6, 8]. Each space
in this operad is the Fulton-MacPherson compactification of the configuration space F (n, Rd) of
n distinct points in Rd quotiented out by translations and scalings. Let FM 0

1 (n) be the main
connected component of FM1(n). The non-Σ operad FM 0

1 = {FM0
1 (n)}n≥2 is in fact the Stasheff

operad (FM 0
1 (n) = Assocn−2).

Theorem ([9]). For any n ≥ 2 and d ≥ 3, there is a weak homotopy equivalence

holim
Φ(n)

F̂M
n

d ' PnEmbd × Ω2Sd−1,

where F̂M
n

d : Φ(n) → Top is the fanic diagram associated to the morphism of operads FM 0
1 →

FMd.

The advantage of this model is that the diagram F̂M
n

d is Q-formal, which allows one to
determine the rational homotopy type of PnEmbd and Embd for d ≥ 4 [9].

The proof of the cited theorem does not directly use the Theorem 2. In that proof, it was enough
that the composite map from Φ(n) to the poset of faces of the n-simplex is left cofinal. However,
D. Sinha and the second author are planning to use Theorem 2 to give a more direct geometric
relation between the cyclohedral model and the associahedral model from [12] in [14]. This is a
part of the program aimed at relating Bott-Taubes integrals [1] and their generalizations [3, 4] to
the Goodwillie-Weiss calculus of knots. This program was partially realized by the third author
in [15] on the level of finite-type invariants of knots in R3.

5. Projection πn.

In this section we briefly study the projection πn : Cycln → Assocn mentioned in the Introduc-
tion.

Theorem 3. The preimage of any point of Assocn under πn is contractible.

To prove this, we will need the following proposition. For any T ∈ Ψ([n + 1]) let Assocn(T )

denote the face of Assocn encoded by T . Similarly let Cycln(T̂ ) stand for the face of Cycln
encoded by T̂ ∈ Φ(n).

Proposition 5.1. Let t be any point in the interior of the face Assocn(T ). Then π−1
n (t) is

homemorphic to the realization of Π−1
n (T ).
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Recall from Lemma 3.7 that Π−1
n (T ) is isomorphic to X`,r for some ` and r. Thus Corollary 3.8

and Proposition 5.1 imply Theorem 3. The proof of Proposition 5.1, on the other hand, will
follow from the two lemmas below.

Denote by pn,m : Assocn+m+1 → Assocn × Assocm the projection which sends any point 0 <
t1 < . . . < tn+m+1 < 1 from the interior of Assocn+m+1 to the pair
(

0 <
t1

ti+1
<

t2
ti+1

< . . . <
ti

ti+1
< 1 ; 0 <

ti+2 − ti+1

1− ti+1
<

ti+3 − ti+1

1− ti+1
< . . . <

tn+m+1 − ti+1

1− ti+1
< 1

)
.

The following is immediate:

Lemma 5.2. The preimage of any point in the interior of Assocn × Assocm under pn,m is a
segment.

To understand the geometry of π−1
n (t) one first has to describe the preimage of t inside any

face of Cycln which is mapped onto Assocn(T ).

Lemma 5.3. The intersection of π−1
n (t) (point t is in the interior of Assocn(T )) with Cycln(T̂ ),

Πn(T̂ ) = T , is a k-dimensional cube, where k is the number of vertices of the trunk of T̂ having
both left and right outgoing edges.

Proof. This lemma follows from Lemma 5.2. Any face of an associahedron is a product of associ-
ahedra. Any face of a cyclohedron is a product of a cyclohedron and a number of associahedra.

The projection πn restricted on Cycln(T̂ ) sends this face onto Assocn(T ). This map is a product
of identity maps of associahedra, projections pi,j, and a projection π|b| (which is a homeomor-
phism on the interior), where |b| is the number of emanating edges from the bead b of the fan

T̂ . �

Proof of Proposition 5.1. To finish the proof of Proposition 5.1, notice that the cubes from Lemma
5.3 glue together exactly in the way the integer cubes do in the image of f : |X`,r| ↪→ R` (see the
proof of Lemma 3.5).

�
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