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Abstract
We study the gravitational emission, in Superstring Theory, from fundamental strings exhibiting

cusps. The classical computation of the gravitational radiation signal from cuspy strings features

strong bursts in the special null directions associated to the cusps. We perform a quantum compu-

tation of the gravitational radiation signal from a cuspy string, as measured in a gravitational wave

detector using matched filtering and located in the special null direction associated to the cusp. We

study the quantum statistics (expectation value and variance) of the measured filtered signal and

find that it is very sharply peaked around the classical prediction. Ultimately, this result follows

from the fact that the detector is a low-pass filter which is blind to the violent high-frequency

quantum fluctuations of both the string worldsheet Xµ(τ, σ), and the incoming gravitational field

hin
µν(x).
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I. INTRODUCTION

Recently, there has been a renewed interest in the possibility [1] that fundamental strings
of Superstring Theory may have astronomical sizes and play the role of cosmic strings [2].
There are indeed viable models of brane inflation [3, 4] where stable strings, of horizon size,
are produced at the end of inflation [5, 6, 7, 8, 9, 10, 11]. The tension µ of these strings is
expected [5], [4], [8, 9, 10] to lie in the range 10−11 . Gµ . 10−6. The upper bound of this
range is however already very constrained both by pulsar timing observations [12, 13, 14]
and by measurements of the anisotropy of the cosmic microwave background [15].

Until recently, it was thought that the gravitational effects of strings with tension Gµ ≪
10−6 were too weak to be observable. However, it has been shown in [16, 17, 18] that strings
with tensions in the large range 10−13 . Gµ . 10−6 (which includes the range expected
from brane inflation models) could be detected by the gravitational wave interferometers
LIGO and LISA through the observation of the gravitational wave bursts associated to
cusp formation. It has long be known that cusps periodically form during the oscillatory
evolution of a generic smooth string loop [19]. Geometrically, a cusp corresponds to an
(isolated) point on the string world-sheet where the tangent plane to the world-sheet is null
(i.e. tangent to the light-cone) instead of being time-like, as it generically is. In other words,
a future-directed local light-cone (with vertex on the world-sheet) generically intersects the
world-sheet along two distinct null vectors. A cusp is a special point on the world-sheet
where these two null vectors coincide (or are parallel). The common null direction, say
ℓµ, of these coinciding null vectors defines the null direction of strongest emission of the
gravitational wave bursts studied in [16, 17, 18].

The crucial feature that makes the gravitational wave bursts associated to cusps sensitive
probes of tensions as small as Gµ & 10−13 is the fact that, in the Fourier domain, their
gravitational wave amplitude h is proportional to the inverse cubic root of the frequency f
of observation: h(f) ∝ |f |−1/3 [16, 17]1.

This (weak) power-law dependence on the frequency, ∝ |f |−1/3, is directly related to the
(weak) geometrical singularity which exists at the isolated points of the world-sheet where
cusps form. As the geometrical definition of these cusp singularities depends on a classical
description of the world-sheet, one might worry that they be blurred by quantum fluctuation
effects (associated to the effective string length2 ℓs = (~/(2πµ))1/2)3. The main purpose of
the present paper is to perform a quantum computation of the observable gravitational
radiation signal from a cuspy string to investigate to what extent quantum effects might
blur the special feature that makes the corresponding classical signal such a sensitive probe
of small tensions. Our conclusion will be that quantum effects (both in the string dynamics

1 This corresponds to a time-domain waveform proportional to h(t) ∝ |t − tc|1/3. Note that h(f) denotes

here the logarithmic Fourier transform of h(t) : h(f) ≡ |f | h̃(2πf) where h̃(ω) ≡
∫

dt eiωt h(t) is the usual

Fourier transform.
2 It will sometimes be convenient to consider units where c = 1 but where ~ is not set to one, and to

correspondingly define the string tension µ with (classical) units [mass]/[length]. In these units the

combination Gµ is dimensionless, independently of ~, and naturally enters classical gravitational wave

calculations.
3 Let us note that Ref. [22] has shown that the waveform of gravitational wave bursts from cusps is robust

against the presence of (classical) small-scale wiggles on the string.
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which sources the signal, and in the emitted gravitational field) are utterly negligible and
jeopardize in no way the measurability estimates made in [16, 17, 18].

The computations of the present work are quite different from the ones of previous studies
of quantum effects in gravitational radiation from superstrings [20, 21]. Indeed previous
studies considered the quantum spectrum of massless emission, i.e. the probability for certain
massive string energy eigenstates to decay into another massive string energy eigenstate and
a (unique) massless (graviton) state. Such computations would be mostly relevant if one
had initially prepared the string into a particular energy eigenstate and had a detector
that could observe individual outgoing gravitons. However, we are concerned here with
quite a different physical situation. The detectors we are interested in (LIGO, LISA,. . .) do
not detect individual gravitons but measure instead a certain (quasi-classical) filtered wave
amplitude. In addition, we shall argue that the massive string states we are interested in
are not typical energy eigenstates but, instead, some quasi-classical coherent states. As a
consequence of this special physical situation we shall not be able to express our quantum
computation within the usual string perturbation formalism, but will resort to a mixture of
first-quantized strings and second-quantized gravitational field. We leave to future work a
derivation of our approximate results from a fully consistent string theory framework.

II. THE TWO TYPES OF QUANTUM EFFECTS IN FILTERED GRAVITA-

TIONAL WAVE SIGNALS FROM STRINGS

Let us motivate our discussion by considering, as model problem, a second quantized field
theory4 where a massless field h(x) is coupled to a quantum source J(x),

S =

∫

dDx

[

1

2
h(x) �h(x) + h(x) J(x) + · · ·

]

, (2.1)

where the ellipsis concern the dynamics of the quantum variables entering the definition
of the source J(x). [In our application the latter variables will be the string world-sheet
coordinates Xµ(τ, σ).] For simplicity, we suppress all Lorentz indices and write equations as
if the field h(x) were a scalar. We have, however, in mind a massless spin-2 field hµν(x) (so
that the kinetic operator5 � in equation (2.1) should be replaced by a suitably gauge-fixed
version of the Einstein-Pauli-Fierz kinetic operator; we shall define our normalization of hµν

below). The Heisenberg quantum equation of motion for the field h(x) reads

−�h(x) = J(x) . (2.2)

If Gret denotes the retarded Green’s function (−�Gret(x) = δD(x)) the second quantized
field operator h(x) can be written in the form (see, e.g., [23]6)

h(x) = hin(x) +

∫

dD y Gret(x− y) J(y) . (2.3)

4 The fact that superstring theory is, essentially, only defined as a first quantized theory of string states

makes it technically difficult to start from string transition amplitudes to discuss all the quantum effects

we want to discuss. This is why we find convenient to use such a second quantized field theory model.
5 We use the signature “mostly plus”.
6 Chapter IV of the textbook [23] considers a quantum field h(x) interacting with a classical source J(x).

We simply extends here the use of the general (Heisenberg-picture) result (2.3) to the case of a quantum
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In this equation the in field operator hin(x) is a free field (�hin(x) = 0) which describes the
incoming vacuum fluctuations of h(x). We work here in the Heisenberg picture and assume
that the quantum state of the field h(x) is the in vacuum |0〉in.

In the following we shall consider a gravitational wave detector such as LIGO or LISA,
and express its measurement in terms of the field h(x), Eq. (2.3), considered in the far
radiation zone of the source J .

As always when discussing quantum effects, it is crucial to make clear what experimental
situation, and precise observable, one is considering. Here, we are considering, as basic
quantum observable, the filtered output of a gravitational wave detector looking for bursts
of the form predicted by the (classical) computation of [16, 17]. The instantaneous output
of a gravitational wave detector is (after suitable normalization) of the form

o(t) = ζµν ĥµν(t,x0) + n(t) , (2.4)

where n(t) is the noise in the detector, ĥµν(x) a gauge-invariant projection7 of the gravi-
tational field of Eq. (2.3), considered in the radiation zone, x0 the spatial location of the
(center of mass of the) detector, and ζµν the suitably normalized8 polarization tensor to
which the detector is sensitive. When looking, in the noisy time series of the output o(t),
for a signal having a certain classically predicted behaviour hpredict(t), h(t) ∝ |t− tc|1/3, or,

in the Fourier domain9 h̃predict(ω) ∝ |ω|−4/3, the optimal linear filter consists in considering
as basic observable the filtered output

of ≡
∫

dt f(t) o(t) =

∫

dt f(t) ζµν ĥµν(t,x0) +

∫

dt f(t)n(t) (2.5)

where f(t) is a time-domain filter function10 defined, in the Fourier domain, as

f̃(ω) =
h̃predict(ω)

Sn(ω)
, (2.6)

where h̃predict(ω) is the Fourier transform of the predicted signal, and Sn(ω) the noise spectral
density, i.e. the Fourier transform of the correlation function of the detector’s noise:

〈n(t1)n(t2)〉 = Cn(t1 − t2) =

∫

dω

2π
Sn(ω) e−iω(t1−t2) . (2.7)

When discussing the detection of gravitational wave bursts of the form predicted in
[16, 17], i.e. hpredict(t) ∝ |t − tc|1/3, one should define a filter function f(t) by taking

source J(x), associated to the dynamics of a quantized string. Rigorously speaking, one would need to

start from a second quantized approach to string theory to make full sense of the formulas we write. Their

physical meaning (discussed below) is, however, so transparent that we are confident of the correctness

(to leading order in Gµ) of our final results.
7 A gravitational wave detector is sensitive only to a gauge-invariant measure of the gravitational field. For

instance, one can define ĥµν , in the rest frame of the detector, by ĥ00 = 0 = ĥ0i and R0i0j = − 1

2
∂00 ĥij .

8 Say ζµν ζ∗µν = 1.
9 We use here the usual Fourier transform h̃(ω) ≡

∫

dt eiωt h(t).
10 More precisely one considers a bank of time-translated filter functions f(t − t0), with varying “arrival

times” t0.
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h̃predict(ω) = |ω|−4/3 in Eq. (2.6), and then taking the inverse Fourier transform: f(t) =
∫

dω
2π
e−iωt f̃(ω) =

∫

dω
2π
e−iωt h̃predict(ω)/Sn(ω). Note that the optimal filter f(t) differs from

the expected time-domain signal hpredict(t) by the convolution action of a “whitening kernel”
with Fourier transform 1/Sn(ω).

When inserting the decomposition (2.3) of the radiation field hµν(x) entering the filtered
output of Eq. (2.5), we see that the basic quantum observable of can be decomposed into
three contributions:

of = Ain
f + AJ

f + nf , (2.8)

where, after introducing the J-generated field entering Eq. (2.3) namely,

hJ
µν(x) ≡

∫

dD y Gret(x− y) Jµν(y) , (2.9)

we have defined

Ain
f ≡

∫

dt f(t) ζµν ĥin
µν(t,x0) , (2.10)

AJ
f ≡

∫

dt f(t) ζµν ĥJ
µν(t,x0) , (2.11)

nf ≡
∫

dt f(t)n(t) . (2.12)

Viewed in the vacuum |0〉in appropriate to the Heisenberg picture we are using, the in
field hin

µν has vanishing expectation value. Therefore, the first contribution Ain
f , Eq. (2.10),

which we might call the “filtered in amplitude”, describes the effect of the quantum vacuum
fluctuations in h(x), as seen in the filtered output. In other words, the fluctuating quantum
observable Ain

f describes the shot noise due to the quantized nature of the gravitational field

hµν(x)
11. The second contribution AJ

f , Eq. (2.11), which is the “filtered gravitational wave
amplitude generated by the source J”, will be the main focus of this work, in the case where
the source Jµν is the stress-energy tensor Tµν of a cosmic-size superstring. Finally, the third
contribution nf , Eq. (2.12), is simply the filtered effect of the detector’s noise (which is
usually treated as a classical random variable).

Note that, contrary to the two contributions Ain
f and nf which are purely fluctuating, i.e.

have zero expectation values, the contribution AJ
f generated by the quantum stress-energy

tensor Jµν ∝ Tµν(X) of a superstring (considered in a highly excited state) will have a non-
zero expectation value (hopefully corresponding to the classical computation of [16, 17])
around which quantum effects linked to the quantized dynamics of the string will introduce
fluctuations. The aim of our computation is to quantitatively estimate the magnitude of the
latter fluctuations, i.e. the probability distribution function of the quantum observable AJ

f ,
to see to what extent quantum fluctuations of the string dynamics might blur the classically
expected signal.

11 Our use of a second quantized description of the gravitational field hµν(x) allowed us to derive with ease

the expression of the contribution Ain
f to the observed filtered signal of . A derivation of Ain

f within

first-quantized string perturbation theory would be more cumbersome because one would need to study

multi-graviton amplitudes.
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III. LIGHT-CONE GAUGE DESCRIPTION OF CUSPY STRING STATES IN SU-

PERSTRING THEORY

In order to compute the probability distribution function of the filtered, source-generated
gravitational wave amplitude AJ

f , Eq. (2.11) with Eq. (2.9), we need two ingredients: (i) a
description of the quantum operator Jµν in terms of the string dynamical variables, and (ii)
a description of the quantum state of a cuspy string. In this section, we shall discuss this
second ingredient.

Let us first remark that the experimental situation we are interested in is a special one.
We consider a state where, as seen from the small subsystem we are interested in (made of a
massive string and of some gravitational excitations12), a macroscopic external agency (the
cosmological expansion) has stretched an initially microscopic-size string state into a quasi-
classical, macroscopic-size state. If the system we were interested in was (to give a simple ex-

ample) an harmonic oscillator X̂(t), we would describe this blowing up, by a time-dependent
external agency, to the macroscopic level, of an initially microscopic quantum state (say the
ground state), by coupling the harmonic oscillator to a large, classical, time-dependent ex-
ternal force F (t). It is then well-known that the final state of the oscillator is described (in

the Schrödinger picture) by a coherent state, namely: |F 〉 = exp i
∫

dt F (t) X̂(t) |0〉, where

F (t) is the classical force and X̂(t) = (2ω0)
−1/2(â e−iω0t + â†(t) eiω0t) the position operator

of the (unit mass) oscillator. Thinking of the string as a collection of oscillators, this simple
example motivates us to considering that an appropriate description of the quantum state
of a superstring stretched to macroscopic sizes by the cosmological expansion is a certain
coherent state13 of the infinite set of oscillators describing Xµ(τ, σ). However, we need to
take care of the constraints which gauge-away the “time-like” and “longitudinal” oscillators
to leave only the D − 2 transverse oscillators. The simplest way to do so is to work in a
light-cone gauge

nµX
µ(τ, σ) = α′(nµ p

µ) τ , (3.1)

where nµ is a certain fixed null vector. In this gauge, if we choose, say, nµ =
(

1√
2
, 0, . . . , 0, 1√

2

)

so that nµX
µ ≡ (X0 + XD−1)/

√
2 ≡ X+, the X+ oscillators are set

to zero (X+ = α′ p+ τ), the X i “transverse” oscillators (with i = 1, 2, . . .D − 2) are uncon-
strained, and the X− oscillators are expressed as quadratic combinations of the infinite set
of transverse oscillators.

12 i.e. some extra massless string states.
13 We shall work henceforth within the approximation where, when discussing the distribution function of the

observable AJ
f , Eq. (2.11), the coupling of the string state to gravity (and, in particular, its decay under

back reaction) is neglected, so that we consider that the state of the string is some given coherent state

which determines the statistics of AJ
f . This is similar to saying that, in ordinary Schrödinger quantum

mechanics, the statistics of some observable f(X) is determined by the wave function ψ(X ; t), supposedly

known at the time t where the observable f(X) is observed.
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We shall therefore consider string states of the |α〉R |α̃〉L where

|α〉R =
∏

{n},{i}
e−

|αi
n|2

2
+αi

nai†
n |0〉 (3.2)

|α〉L =
∏

{n},{i}
e−

|α̃i
n|2

2
+α̃i

nãi†
n |0〉 .

Beware of the somewhat unconventional notation used in this equation. The quantities αi
n

(with i = 1, 2, . . . , D − 2 and n = 1, 2, . . .) denote some given c-numbers parametrizing
the right-moving part of the considered coherent state, while the ai

n, ai†
n ≡ ai

−n denote
the annihilation and creation operators of the nth right-moving mode. They are such that
[ai

n, a
j†
m] = [ai

n, a
j
−m] = δij δ0

n−m. The quantities α̃i
n, ãi

n denote the corresponding quantities
for the left-moving part of the string. In other words, the derivatives of the transverse string
coordinates read

∂±X
i(τ ± σ) =

√

α′

2

∑

n

√
n ((ã)i

n e
−in(τ±σ) + (ã

)i
−n e

in(τ±σ)) (3.3)

where σ± ≡ τ ± σ, ∂± ≡ ∂/∂σ± = 1
2
(∂τ ± ∂σ), and where the ‘tilde’ quantities correspond

to ∂+ and τ + σ (left-movers).

Because of the Lorentz covariance of light-cone quantization (in the critical dimension14)
we have full freedom in selecting the special null direction nµ entering Eq. (3.1). We shall
follow here the following logic. We start from some given coherent state, i.e. two sequences
of complex numbers αi

n, α̃
i
n. These numbers define both a quantum state and a classical

solution of the string equations of motion (in a generic light-cone gauge (3.1)). We know
from [19] that, generically, this classical solution will exhibit cusps, with certain associated
null directions ℓµ(α, α̃) of intense classical gravitational radiation emission. To simplify our
computation of the quantum observable AJ

f associated to some cusp null direction ℓµ(α, α̃),

we wish to ensure that ℓµ(α, α̃) is parallel to nµ15. Such a parallelism can always be realized
(simply by rotating appropriately nµ). However, after such a rotation, the values of the
sequences of c-numbers αi

n, α̃
i
n will change in a complicated manner. Actually, the new

“specially aligned” sequences (αnew, α̃new) must now behave in a non generic way, that we
need to specify.

14 In the formal developments we try to keep a general D and assume D = 10 (for the superstring). However,

we shall later assume that the considered coherent state has a macroscopic extension only in D = 4

uncompactified dimensions. The compactified dimensions will correspond to small values of the α’s and

α̃’s and will have a negligible contribution to our final results.
15 Actually, three different special null vectors will enter our study: the cusp null direction ℓµ, the light-cone

gauge null direction nµ and the “graviton momentum” kµ
ω (see below). We recall that, in the light-

cone gauge, the operator X−(τ, σ) = (X0 − XD−1)/
√

2 is a complicated (quadratic) functional of the

transverse oscillators. To avoid having a term exp(i k+X−) in the source-generated hJ
µν (see below) we

need 0 = k+ = kµ nµ, which implies the parallelism of the two real null vectors kµ and nµ. Finally, as we

wish to study gravitational emission in the “cusp” direction ℓµ, we shall have to require that the three

null vectors ℓµ, nµ and kµ are all parallel.
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We recall (see, e.g., [17]) that, in a generic conformal gauge σold
+ , σold

− , the left and right
string coordinates16 behave, near a cusp (located at Xµ = 0 and occurring at σ+ = 0 = σ−),
as

Xµ
±(σold

± ) = ℓµ σold
± +

1

2
Ẍµ

±(σold
± )2 +

1

6
X

(3)µ
± (σold

± )3 + · · · (3.4)

so that (remembering that ℓµ Ẍ
µ
± = 0 at the cusp)

ℓµ X
µ
±(σold

± ) =
1

6
ℓµX

(3)µ
± (σold

± )3 + · · · (3.5)

On the other hand, in the specially aligned “new” light-cone gauge nµ ∝ ℓµ, we must have,
from Eq. (3.1), the property that

ℓµX
µ
± = α′(ℓµ p

µ) σnew
± . (3.6)

The conclusion is therefore that σnew
± ∼ (σold

± )3. Considering the transverse components of
Xµ

±, Eq. (3.4), in the new gauge, we then have

X i
±(σnew

± ) =
1

2
Ẍ i

±(σold
± )2 + · · · ∼ (σnew

± )2/3 , (3.7)

so that
∂±X

i
±(σnew

± ) ∼ (σnew
± )−1/3 . (3.8)

Note that, geometrically, it means that the transverse projection of the string X i(τnew, σnew)
draws, at the light-cone moment where the cusp forms (τnew = 0), a cuspy curve in transverse
space. This is a simple geometrical consequence of having aligned our light-cone gauge
precisely with the null direction associated with the cusp.

The result (3.8) applies to the classical expectation value of ∂±X
i
±. For a coherent state,

this is simply given by replacing the operators ai
n, ã

i
n in Eq. (3.3) by αi

n, α̃
i
n respectively. This

means that the sequences of c-numbers αi
n, α̃

i
n must have a certain power-law behaviour

αi
n ∼ α̃i

n ∼ n−γ (3.9)

as n→ ∞ with (considering the right-moving modes)

∂−X
i(σ−) ∝

∑

n

√
nαi

n e
−inσ− ∼

1/σ−
∑

n=1

n
1

2
−γ ∼

(

1

σ−

)
3

2
−γ

. (3.10)

Comparing to Eq. (3.8) determines the power index γ of (3.9) to be

γ =
7

6
. (3.11)

In conclusion, we shall consider coherent string states of the form (3.2) with sequences of
c-numbers αi

n, α̃
i
n satisfying (3.9) with (3.11). Such states will describe a quantum version

of a cusp aligned with our chosen direction of observation nµ ∝ ℓµ.

16 We follow here [17] in writing Xµ = 1

2
(Xµ

+ +Xµ
−).
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IV. GRAVITATIONAL WAVE SIGNALS FROM CUSPY STRING STATES

We turn now to a description of the filtered string-generated signal AJ
f , Eq. (2.11), with

hJ
µν given by Eq. (2.9). Before discussing the exact form of the source Jµν corresponding

to the gravitational coupling of the string, let us consider the effect of the retarded Green’s
function Gret in the integral (2.9). When considering a string state which is localized around
some center of mass worldline yµ ≃ xµ

0 (τ) (at a cosmological distance from the Earth), and a
detector located in the solar system, we can approximate the (Fourier transformed) retarded
Green’s function in Eq. (2.9) (considered for concreteness in the physically relevant case of
D = 4 uncompactified dimensions)

Gret(tx,x; ty,y) =

∫

dω

2π
Gret

ω (x; y) e−iω(tx−ty) , (4.1)

in the following well-known way

Gret
ω (x; y) =

eiω|x−y|

4π|x − y| ≃
eiω|x|

4π|x| e
−iωn·y , (4.2)

where n ≡ x/|x| is the unit vector directed from the origin (located, say, at the center of
mass of the string) towards the detector.

Inserting Eqs. (4.1), (4.2) into Eq. (2.9) yields (see [17])

hJ
µν(t,x) ≃ 1

4πr

∫

dω

2π
e−iω(t−r)J̃µν(ω, ωn) (4.3)

where r ≡ |x| and where J̃µν(k
λ), with kλ = (ω,k), is the spacetime Fourier transform of

the source Jµν(x):

J̃µν(k
λ) =

∫

dD x e−ikλxλ

Jµν(x) . (4.4)

Note the important fact that the integral in (4.3) contains only an integration over the
frequency ω. The integral over d3k has been effectively already performed and has led to
the fact, apparent on the right-hand side (rhs) of Eq. (4.3), that the only k’s entering the
final result are related to the frequency by k = ωn. In other words kµ = (ω,k) = (ω, ωn)
is a null vector directed from the source towards the detector.

If we normalize the gravitational field hµν(x) in the geometrical (einsteinian) way, i.e.
gµν(x) = ηµν + hµν(x), the source Jµν of hµν (with −�hµν = Jµν) will be

Jµν(x) = +16 πG

(

Tµν(x) −
1

D − 2
ηµν T (x)

)

(4.5)

where G is Newton’s constant, and where Tµν(x) denotes the stress-energy tensor of the
source. Then, we can write hJ

µν as (in D = 4)

hJ
µν(t,x) ≃ 4G

r

∫

dω

2π
e−iω(t−r)

(

T̃µν(k
λ
ω) − 1

2
ηµν T̃ (kλ

ω)

)

, (4.6)

where T̃µν(k
λ) is the spacetime Fourier transform of Tµν(x

λ), and where kλ
ω = (ω, ωn).

9



The coupling
∫

1
2
hµν T

µν between a fundamental17 string, of tension µ18 and the gravita-
tional field is proportional to

µ

∫

d2σ
[

hµν(X)(∂+X
µ∂−X

ν) + hµν(X)(ψµ
+∂−ψ

ν
+) + hµν(X)(ψµ

−∂+ψ
ν
−)

+ Rµνρσ(X)ψµ
+ψ

ν
+ψ

ρ
−ψ

σ
−
]

. (4.7)

Because of the on-shell constraint ψ± = ψ±(τ ± σ) the terms ψµ
+ ∂− ψ

ν
+ and ψµ

− ∂+ ψ
ν
− do

not contribute to T µν . As for the term quartic in the fermions, it does, a priori, contribute
a term ∝ (δ Rαβγδ/δ hµν)ψ

α
+ ψ

β
+ ψ

γ
− ψ

δ
−. This term contributes to the Fourier-transformed

T̃µν(k
λ) a term proportional to (k · ψ+)(k · ψ−)ψµ

+ ψ
ν
−.

We shall further simplify our computation by considering a detector which is, as seen
from the source, precisely at the center of the gravitational burst emitted by the cusp. In
other words, we shall require that the basic null direction nµ defining the light-cone gauge
(Eq. (3.1)) is not only parallel to the null direction ℓµ defined by the cusp, but also to the
null direction (1,n) connecting the source to the detector. This implies that all the graviton
momenta kµ

ω = (ω, ωn) entering the radiation field (4.6) are also parallel to nµ. As one sets
ψ+
± = 0 in the light-cone gauge, k · ψ± = −k−ψ+

± vanishes in the light-cone gauge.

Finally, it is enough to consider the bosonic contribution to the stress-energy tensor
(d2σ ≡ dτ dσ)

T µν(x) = µ

∫

d2σ δD(x−X(τ, σ))(∂τ X
µ ∂τ X

ν − ∂σ X
µ ∂σ X

ν)

= 4µ

∫

d2σ δD(x−X(σ+, σ−)) ∂+X
(µ ∂−X

ν) , (4.8)

and to its Fourier transform

T̃ µν(k) = 4µ

∫

d2σ e−ik·X ∂+X
(µ ∂−X

ν) , (4.9)

which is the vertex operator for the emission or absorption of a graviton of momentum k by
a string.

If we simplify formulae by re-writing the filter function f(t) in Eq. (2.11) as fnew(t− r0)
(where r0 = |x0| is the radial distance from the source to the detector), the filtered source-
generated amplitude (2.11) reads (taking into account the tracelessness of ζµν)

AJ
f =

4G

r0

∫

dω

2π
f̃(−ω) ζµν

ˆ̃T µν(kλ
ω) , (4.10)

where f̃(ω) =
∫

dt e+iωtfnew(t) is the Fourier transform of fnew(t) = f old(t+r0). As explained

above the “hat” over T̃ µν denotes the projection over the gauge-invariant gravitational wave
amplitude affecting the detector (which is only sensitive to tidal forces). We can use the

17 The effects linked to the quantum fluctuations around the Nambu-Goto dynamics investigated here are

clearly present (possibly together with other effects) in all types of strings: fundamental, Dirichlet or even

gauge-theory ones.
18 The tension µ denotes the effective four-dimensional tension, including eventual warp factors.
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remaining freedom in our light-cone frame to ensure that the detector is “at rest” with
respect to the usual Lorentz frame (x0, x1, x2, x3) behind the light-cone frame (i.e. with x+ =
(x0 + x3)/

√
2). Then the detector’s polarization tensor will have only spatial components

ζIJ , I, J = 1, 2, 3. In addition, the “hat” projection simply consists in projecting hµν on its
physically active transverse traceless (TT) components hij , i, j = 1, 2 only. Let us define,
as usual, the TT projection operator of a symmetric spatial tensor kIJ , I, J = 1, 2, 3 by
kTT

IJ ≡
(

PIK PJL − 1
2
PIJ PKL

)

kKL with PIJ ≡ δIJ − nI nJ , where nI = n is, as above, the
unit direction vector from the source towards the detector. One easily checks that only
ζTT
IJ matters in Eq. (4.10), and that its only non zero components are transverse: ζTT

ij , with

i, j = 1, 2 only. [Note that we have aligned our frame so that nI = δI
3 points in the third,

longitudinal direction.] We can then rewrite the result (4.10) purely in terms of transverse
components19 i, j = 1, 2

AJ
f =

4G

r0

∫

dω

2π
f̃(−ω) ζTT

ij T̃ ij(kλ
ω) . (4.11)

The phase factor e−ik·X entering the vertex operator (4.9) reads simply (in view of the
definition (3.1) of the light-cone gauge and of the fact that our light-cone gauge “null vector”
nµ is aligned with kµ) e−iα′(k·p)τ = e+iα′Mωτ , where we used k = (ω, ωn), p = (M, 0), where
M is the total mass energy of the string. Using also µ = 1/(2πα′), i.e. α′ = 1/(2πµ), the
phase factor reads eiℓωτ/(2π) where we defined the invariant length of the string: ℓ ≡ M/µ.

Inserting the vertex operator (4.9) into (4.11) then leads to the following explicit expres-
sion for our basic filtered gravitational wave signal

AJ
f =

16Gµ

r0

∫

dτ dσ
dω

2π
f̃(−ω) ζTT

ij eiℓωτ/(2π) ∂+X
i ∂−X

j , (4.12)

in which one should insert the oscillator expansions (3.3)20.

Eqs. (4.12) and (3.3) define the quantum observable AJ
f as a certain operator in the string

dynamics Hilbert space. It is easy to perform explicitly the triple integration in Eq. (4.12):
(i) the integral over σ yields a Kronecker δnm between the left and right mode numbers
e−in(τ+σ), e−im(τ−σ); (ii) the integral over τ then yields some delta functions of the frequency
δ
(

ℓω
2π

− 2n
)

or δ
(

ℓω
2π

+ 2n
)

; and (iii) the integral over ω then yields a series over n. Finally,
defining (as in [17]) the fundamental frequency ω1 ≡ 4π/ℓ, we get

AJ
f = 16π

G

ℓr0
ζTT
ij

∞
∑

n=1

n [f̃(−nω1) a
i
n ã

j
n + f̃(nω1) a

i†
n ã

j†
n ] . (4.13)

19 To avoid any confusion: beware that the transverse components of ζTT
ij differ from the restriction ζij of

ζIJ to its transverse components i, j = 1, 2.
20 Note that, contrary to what happened in the time-gauge calculation of Refs. [16], [17], there is not any

more a “cubic” saddle point in the phase factor e−ik·X of Eq. (4.12). The fact that a cusp is a strong

emitter of high-frequency gravitational waves shows up, when using a “cusp-aligned” light-cone gauge, in

the singular behaviour ∂±X ∼ (σ±)−1/3 of the string coordinate gradients entering the vertex operator

∂+X
i ∂−X

j.
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V. QUANTUM NOISE CONTRIBUTIONS TO GRAVITATIONAL WAVE SIG-

NALS

Eq. (2.8) exhibited a decomposition of the filtered output, of , of a gravitational wave
detector into three terms: (i) the quantum noise Ain

f , Eq. (2.10), which describes the filtered

vacuum fluctuations of the gravitational field, (ii) the filtered, string-generated signal AJ
f ,

explicitly expressed as Eq. (4.13), and (iii) the filtered detector noise nf , Eq. (2.12). Let
us consider, for concreteness, the case of the LIGO detector. As discussed in [17], and
recalled above, the optimal filter for detecting gravitational wave bursts from cuspy strings
is Eq. (2.6) with h̃predict(ω) ∝ |ω|−4/3 · eiωt0 . The division by Sn(ω) provides a Fourier-

domain filter f̃(ω), Eq. (2.6), which is peaked around the characteristic (circular) frequency
ω∗ ≃ (2π) × 150 Hz [17]. It is then convenient to normalize the filter function f(t) entering

Eqs. (2.10), (2.11), (2.12) so that the modulus of f̃(ω∗) =
∫

dt f(t) eiω∗t is equal to one. With
this normalization, Eq. (6.5) of [17] says that the filtered detector noise nf of initial LIGO
can be roughly modelled as a Gaussian variable with standard deviation σf

n ≃ 1.7 × 10−22.
Advanced LIGO might reach a level smaller by a factor 13.5, i.e. σf

n ≃ 1.3 × 10−23. Fig. 1
of Ref. [17] (and their multi-parameter generalizations in Ref. [18]) shows that the classical
estimate of the string-generated signal AJ

f might be comparable (and hopefully larger) than

these noise levels in a wide range of string tensions 10−12 . Gµ . 10−6. Let us now estimate
the quantum statistics of, both, Ain

f and AJ
f , to see whether quantum noise can play any

significant role.

Let us start by considering the vacuum fluctuation term Ain
f , Eq. (2.10), which reads,

when using a TT gauge (I, J = 1, 2, 3),

Ain
f =

∫

dt f(t) ζIJ hinTT
IJ (t,x0) . (5.1)

Here, hinTT
IJ (x) is a free gravitational radiation field, considered in its vacuum state. There-

fore, Ain
f , Eq. (5.1), is a quantum Gaussian noise. To compute its standard deviation, let us

use the two-point (Wightman) correlation function of hin(x):

〈hinTT
IJ (t,x) hinTT

I′J ′ (t′,x′)〉 = 32 πG

∫

d3k

(2π)3 2ωk

PTT
IJI′J ′(k̂) e−iωk(t−t′)+ik(x−x′) (5.2)

where the factor 32 πG comes from the “geometric” (instead of “canonical”) normalization
of hµν and where PTT denotes the TT projector used above (here considered for the direction

k̂ = k/ωk with ωk = |k|). We then find that the variance of Ain
f (using ζIJ ζIJ = 1) is of

order

(σ(Ain
f ))2 ∼ G

∫

dω ω|f̃(ω)|2 ∼ Gω2
∗|f̃(ω∗)|2 , (5.3)

where we use the fact that the Fourier filter f̃(ω) is peaked around ω∗. As said above, we

normalize the filter f(t) so that |f̃(ω∗)| = 1. Hence, the standard deviation of the filtered
gravitational vacuum noise is of order

σ(Ain
f ) ∼ G1/2 ω∗ = 2π f∗ tPlanck ∼ 5 × 10−41

(

f∗
150 Hz

)

. (5.4)

This is clearly too small to worry about.
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Let us now consider the statistical properties of the string-generated signal (4.13). As
explained above, we model the state of the string by a coherent state |α〉R |α̃〉L. In such a
state the expectation values of the annihilation and destruction operators ai

n, ã
i
n, a

i†
n , ã

i†
n are,

by definition, the c-numbers αi
n, α̃

i
n, and their complex conjugates (c.c.) ᾱi

n, ¯̃αi
n, so that the

expectation value of AJ
f reads

〈AJ
f 〉 = 16π

G

ℓr0
ζTT
ij

∞
∑

n=1

(n f̃(−nω1)α
i
n α̃

j
n + c.c.) . (5.5)

This result is evidently equivalent to replacing the operatorX i in Eq. (4.12) by its classical
value (obtained by replacing a’s by α’s in Eqs. (3.3)), and therefore equivalent to the results
of Refs. [16, 17].

The principal novel result of this study is now obtained by considering the variance of the
operator AJ

f in the coherent state |α〉 |α̃〉. Using [ai
n, a

j†
m] = [ãi

n, ã
j†
n ] = δij δnm (and [a, ã] = 0

etc.), it is easily computed from Eq. (4.13) and found to be

(σ(AJ
f ))2 =

(

16π
G

ℓr0

)2 ∞
∑

n=1

n2|f̃(nω1)|2 [ζTT
is ζTT

js (αi
n ᾱ

j
n + α̃i

n
¯̃αj

n) + ζTT
ij ζTT

ij ] . (5.6)

The first important thing to notice in the variance (5.6) is its crucial dependence on
the detector’s filter function f(t). If one had considered a time-sharp filter, f(t) = δ(t −
t0), i.e. a frequency-flat |f̃(ω)| = 1, the variance (5.6) would be infinite. Both the last,
state-independent “vacuum” contribution (∝ Σn2), and the first, state-dependent one (∝
Σn2(|αn|2 + |α̃n|2)) would diverge for a cuspy string state (i.e. |αn|2 ∼ |α̃n|2 ∼ n−7/3

according to Eqs. (3.9), (3.11)). Note, by contrast, that the expectation value (5.5) would
remain convergent (like Σn−4/3) even for a time-sharp filter function. This shows that
quantum fluctuations in a gravitational wave “cusp” burst are pretty violent on short time
scales. On the other hand, if one takes into account the fact that the detecting filter is well
peaked21 around some optimal frequency ω∗, we see from Eq. (5.6) that the variance of the
filtered cusp signal will be finite and of order (we use |f(ω∗)| = 1, (ζTT)2 ∼ 1 and consider
∆n ∼ n∗ terms around the peak value n∗ such that n∗ ω1 = ω∗)

(σ(AJ
f ))2 ∼

(

16π
G

ℓr0

)2

n3
∗(|αn∗|2 + |α̃n∗|2 + 1) . (5.7)

Comparing this result with the expectation value (5.5), i.e. 〈AJ
f 〉 ∼

(16πG/(ℓr0))n
2
∗|αn∗| |α̃n∗|, we can approximately write the standard deviation of AJ

f

in the form

σ(AJ
f ) ∼

|〈AJ
f 〉|

n
1/2
∗

(

1

|αn∗|2
+

1

|α̃n∗|2
+

1

|αn∗|2|α̃n∗|2
)1/2

∼
|〈AJ

f 〉|
n

1/2
∗ |αn∗|

. (5.8)

In the last expression we have assumed that |α̃n∗| ∼ |αn∗| ≫ 1, so that one can neglect the
“vacuum” contribution.

21 The detector’s noise spectrum Sn(ω) increases like ω2 for large frequencies. Therefore the filter function

(2.6) decreases like ω−10/3.
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Let us now estimate how large n∗ and |αn∗| are for the type of cosmic superstring that
one might expect to detect via their gravitational wave bursts. Correspondingly to the
assumption |Ẍµ

±|time gauge ∼ 2π/ℓ of Ref. [17] (i.e. that the string is not too wiggly), we
can assume that, in the special cusp-related light-cone gauge we are using, the asymptotic
behaviour |αn| ∼ |α̃n| ∼ A/nγ with γ = 7/6 is roughly valid from n = 1 to infinity22. Then
we can use the closed string mass formula

1

4
α′M2 =

∑

n ai†
n a

i
n =

∑

n ãi†
n ã

i
n ∼

∞
∑

n=1

|A|2 n−4/3 , (5.9)

together with α′ = 1/(2π µ) and M = µ ℓ to estimate the coefficient A: |A|2 ∼ µ ℓ2. Using
also the link ω∗ ∼ 4π n∗/ℓ, we have the estimates n∗ ∼ f∗ ℓ and |αn∗| ∼ ℓ

√
µ (f∗ ℓ)

−7/6 where
f∗ ≡ ω∗/2π denotes the detector’s optimal frequency. In other words the ratio between the
standard deviation and the expectation value of AJ

f can be estimated as

R =
σ(AJ

f )

|〈AJ
f 〉|

∼ 1

n
1/2
∗ |αn∗|

∼ f∗ ℓs (f∗ ℓ)
− 1

3 ∼ f∗ tPlanck (f∗ ℓ)
− 1

3 (Gµ)−
1

2 , (5.10)

where ℓs ∼ µ−1/2 is the quantum string length, and ℓ ≡ M/µ the invariant length of the
considered coherent-state macoscopic string.

In terms of cosmologically relevant dimensionless ratios23 this yields

R ∼ 10−43

(

ℓ

1010 yr

)− 1

3

(

f∗
150 Hz

)
2

3

(

Gµ

10−9

)− 1

2

. (5.11)

As this is a ratio, the corresponding absolute value of σ(AJ
f ) (for a detectable amplitude

〈AJ
f 〉 ∼ 10−22) will be down to the ∼ 10−65 level ! This is clearly negligibly small, even with

respect to the already negligibly small graviton-shot noise term (5.4).

In summary, the main conclusions of this study are: The gravitational radiation “cusp”
signal hcusp(f∗) emitted by a string (in a coherent state) and detected by a low-frequency
detector (with characteristic frequency f∗) such as LIGO or LISA, is affected by two types
of quantum noise24. On the one hand, the graviton shot noise δhshot(f∗) ∼ f∗ tPlanck (where
tPlanck = (~G)1/2), and, on the other hand, the signal coming from quantum fluctuations of

the string stress-energy tensor near a cusp δhstring(f∗) ∼ Gµ(f∗ ℓ)
1

3
ℓs

r0
, (where ℓs ∼ (~/µ)1/2).

Both types of noise (and especially the second one) are totally negligible compared to the
classical signal hcusp(f∗) ∼ Gµ(f∗ ℓ)

−1/3 ℓ
r0

. The negligible character of the quantum noises
crucially depend on considering the “frequency windowing” due to the detector, around

22 We recall that the stretching effect of the cosmological expansion, together with the smoothing effects of

loop production and, possibly, radiation damping, are expected to lead to a network made of loops whose

overall shape is dominated (in the cosmic time gauge) by the first few modes αn, α̃n. The fact that such

string states might look rather special within the ensemble of possible quantum string states (see, e.g.,

[21]) is not necessarily relevant within the physical context that we consider.
23 Note that recent work [24] suggests that ℓ is only ten times smaller than the cosmological horizon.
24 We consider only the quantum effects carried by the gravitational wave signal hµν . There are evidently

many (much more relevant) quantum noise effects coming from the measuring process in the detector.
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a characteristic frequency f∗. Indeed, if the detector were allowed to make time-sharp
measurements, i.e. if we allow the bandwidth ∆f ∼ f∗ to go to infinity, both types of
quantum noises would diverge like a positive power of f∗. In other words, our computation
highlights the fact that the observable cusp signal does not come from short distance scales
(UV) near the cusp singularity (which do undergo violent fluctuations), but from length
scales of order f−1

∗ which are intermediate between the UV scales ∼ ℓs and the IR cut-off
∼ ℓ associated to the overall size of the string.
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