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Abstract. We prove that the angle defect minus the area of a
super hyperbolic triangle is not identically zero and explicitly com-
pute the purely fermionic difference. This disproves the Angle De-
fect Theorem for N “ 1 super hyperbolic geometry and provides
a novel non-trivial additive function of super triangles. The proof
techniques involve the orthosymplectic group OSpp1|2q in its action
on the super Minkowski space R2,1|2 and brute-force computation.

Introduction

This paper continues our ongoing study of triangles in N “ 1 su-
per hyperbolic geometry, namely, the geometry of the usual two-real
dimensional hyperbolic plane enriched with two real anti-commuting
variables. We proved the Law of Cosines for super hyperbolic triangles
in [15] as a birthday present for Norbert A’Campo, only to find ex-
actly the classical formula with no corrections; however, we also found
that this classical formula relates expressions which do involve so-called
fermionic corrections. Here as a birthday present for Athanase Pa-
padopoulos, we compute the non-zero correction to the Angle Defect
Theorem for super hyperbolic triangles.

The classical hyperbolic Angle Defect Theorem states most elegantly
that the sum S of the interior angles of a hyperbolic triangle plus its
area A is constant equal to π. That is, S ě 0 is always at most π, the
defect D is D “ π ´ S ě 0, and the theorem is that A “ D.

It was Lambert [5] who originally proved this result in hyperbolic
geometry in 1766 in a manuscript unpublished in his lifetime, which fi-
nally appeared in German [18] in 1895, after Johann Bernoulli III, who
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2 ROBERT PENNER

was in charge of Lambert’s estate, considered publishing it and de-
cided against it. A French translation [7] by Athanase and his student
Guillaume Thèret appeared only recently in 2014.

As was the fashion for centuries, and indeed for millennia, to prove
the impossibility of the dubious hyperbolic geometry, theorems were
proved within its confines in the hopes of deriving a logical contradic-
tion. This was Lambert’s motivation, and his elegant proof comprises
all of two statements: Angle defect is additive for triangles, and area
is the only such additive function, at least up to an overall scalar. The
first assertion is obvious, as is the additivity of area, but the uniqueness
part of Lambert’s second assertion seems to anticipate developments
in measure theory by several centuries.

Contemporary textbook proofs of the Angle Defect Theorem typi-
cally involve first computing the area of a triangle with one or more
vanishing interior angles and again rely on additivity of area. This
approach is not available in super hyperbolic geometry due to the di-
vergence of the fermionic correction to the area of a super hyperbolic
triangle with vanishing interior angles, as we prove in the Appendix.

Lambert’s proof is likewise unavailable in our context because area
is not the only additive function for super hyperbolic triangles. This
follows from our main result Theorem 7.3, which explicitly computes
the non-zero fermionic correction to the Angle Defect Theorem for
super triangles. This furthermore raises the intriguing question of what
are the additive functions on super hyperbolic triangles.

The classical Angle Defect Theorem is evidently a direct consequence
of the Gauss-Bonnet Theorem in constant curvature. Differential geo-
metric approaches to super geometry are given in [1, 2, 17], and perhaps
an argument different from ours could be based on that.

This entire paper is devoted to the computation of the area and angle
defect of a super hyperbolic triangle. We work in the super Minkowski
space R2,1|2, which is recalled and discussed in Section 1, taking the
upper sheet IH of the unit hyperboloid as our model for the super
hyperbolic plane. As has been noted elsewhere [16], this is the most
natural model since in the super analogues of the upper half plane and
Poincaré disk, not every geodesic ray is asymptotic to a point of the
absolute; in contrast, every super geodesic in IH is indeed asymptotic
in each direction to a ray in the super light cone, as we shall recall.

Super geodesics are discussed in Section 2. The real orthosymplectic
group OSpp1|2q, which plays the role here of PSLp2,Rq or SLp2,Rq in
the classical case, is recalled and explained in Section 3. The OSpp1|2q-
invariant area form Ω on IH is computed in Section 4 as the pull-back
of the usual PSLp2,Rq-invariant area form in the classical case, and
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a primitive ω with dω “ Ω is derived. Our approach to computing
areas is given by Stokes’ theorem and hence devolves to computing line
integrals of ω on the edges of a super triangle; additivity of area is thus
obvious with this formalism.

These calculations are at some points concise and rewarding and at
other points routine and tedious. They comprise the bulk of the paper
in Sections 5 and 6. The final result provides a purely fermionic additive
function on super triangles, which is given by the angle defect minus
the area. It is obviously not identically zero, but it is complicated and
far from illuminating. With a large fermionic correction to the classical
formula, this is therefore diametrically opposite to what we found for
the Law of Cosines in the earlier work.

Let us emphasize that whereas the classical results we extend involve
two-real dimensional geometry, their super analogues include also two
real fermions and hence are higher dimensional. For instance, Theorem
6.2 in [15] provides the further conditions to guarantee the intersection
in IH of two super geodesics whose underlying classical geodesics inter-
sect in a point. Exactly what, if anything, our findings might suggest
about classical or super scissors congruence in dimensions 2, 3 or 4 re-
mains to be seen. It seems feasible to follow the scheme here and find
an analogous correction for the volume of a super hyperbolic 3-simplex.

This paper is dedicated to Athanase Papadopoulos on the happy
occasion of his 65th birthday. He is my dearest friend. We met as
post-docs, and since our doctoral theses had substantial overlap, we
presumably should have been natural competitors. It was quite the
contrary, and from the moment we first shook hands at a conference in
Warwick, we have been fast friends.

I had just moved from Princeton to Los Angeles, and he from Orsay
to Strasbourg. I more or less immediately joined Athanase in Stras-
bourg for a semester, and he directly thereafter joined me in Los Ange-
les for a semester, each of us with our young families in tow. We wrote
two papers [8, 9] together at that time on Thurston theory, specifi-
cally on pseudo-Ansov mappings and measured foliations. I appreci-
ated Strasbourg more than he enjoyed Los Angeles, and I have often
been back to visit him over the last 40 years. Strasbourg has been a
second home to me, or perhaps more precisely third.

We had three substantial collaborations after that period: In [10, 11],
we showed that the Weil-Petersson Kähler form on Teichmüller space
extends naturally to the Thurston two-form on the space of (projective)
measured foliations, an early paradigm for tropical geometry as well
as for the theory of cluster varieties, which co-opted some of our con-
structions; in [12], we studied so-called broken hyperbolic structures on
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surfaces, which have certain controlled discontinuities along geodesics;
and in [13], we extended the Hatcher-Thurston theory, among other
things, to the setting of non-orientable surfaces, providing moves on
pants decompositions of a surface so that finite compositions act tran-
sitively. We have long planned to compute the relations among our
moves, a project for which I hope we both still have the time, energy
and inclination.

We have been through good times and bad times together. As we
have taken our separate trajectories through mathematics and through
life from our once-similar initial conditions, it has been rewarding to
see Athanase develop into the great scholar that he has become. It has
furthermore been an abiding joy in my career and in my existence to
have counted him among my life-long friends.

1. Quadrics in Super Minkowski Space

Let R̂ “ R̂r0s b R̂r1s be the Z/2-graded module over R with one

central generator 1 P R Ď R̂r0s of degree zero and countably infinitely

many anti-commuting generators θ1, θ2, . . . P R̂r1s of degree one. An

arbitrary a P R̂ can be written uniquely as

a “ a# `
ÿ

i

aiθi `
ÿ

iăj

aijθiθj ``
ÿ

iăjăk

aijkθiθjθk ¨ ¨ ¨ ,

where a#, ai, aij, aijk . . . P R. The term a# of degree zero is called the

body of the super number a P R̂. If a P R̂r0s, then it is said to be an

even super number or boson, while if a P R̂r1s, then it is said to be an
odd super number or fermion. We adopt the notation throughout that
fermions are denoted by lower-case Greek letters.

One allows only finitely many anti-commuting factors in any product
and only finitely many summands in any super number, a constraint we
shall call regularity. Regularity implies nilpotence, i.e., for each a P R̂,
there is some n P Zě0 with pa ´ a#q

n “ 0. It follows that if a# ‰ 0,
then we may write

1

a
“

1

a# ` pa´ a#q
“

1

a#

1

1`
a´a#
a#

“
1

a#

„

1´
a´ a#
a#

`

ˆ

a´ a#
a#

˙2

´ ¨ ¨ ¨ ` p´1qn´1
ˆ

a´ a#
a#

˙n´1

,

and hence a P R̂ is invertible if and only if a# ‰ 0. It similarly

follows from regularity that the zero divisors in R̂ are given by the
ideal generated by R̂r1s.
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One analogously extends real-analytic functions on R to R̂ with Tay-
lor series under appropriate restrictions on the body. For instance
for later tacit application, if b2 “ 0 for some b P R̂, then for a P R̂
with a# ‰ 0, we have 1

a`b
“ 1

a
p1 ´ b

a
q, and for a# ą 0, we have

?
a` b “

?
a p1` b

2a
q.

The usual order relation ď on R induces one on R̂ with a ď b,
for a, b P R̂, if and only if a# ď b#. Likewise if a# ‰ 0, then the
sign signpaq is defined to be the sign of a# and the absolute value is
|a| “ signpaqa.

Affine n|m dimensional R̂ super space is defined to be

Rn|m
“ tpx1, x2, . . . , xn | θ1, θ2, . . . , θmq P R̂n`m : xi P R̂r0s, θj P R̂r1su.

One defines n|m super manifolds with charts based on affine super space
Rn|m in the usual way [1, 2, 17], and a (Riemannian) super metric on
an n|m super manifold is defined to be a positive definite boson-valued
quadratic form on each tangent space Rn|m as usual.

The principal example for us here is (real) super Minkowski 2,1|2
space

R2,1|2
“ tpx1, x2, y | φ, ψq P R̂5 : x1, x2, y P R̂r0s and φ, ψ P R̂r1su,

which supports the boson-valued symmetric bilinear pairing

xpx1, x2, y | φ, ψq, px
1
1, x

1
2, y

1
| φ1, ψ1qy “

1

2
px1x

1
2`x

1
1x2q´yy

1
`φψ1`φ1ψ

with associated quadratic form x1x2 ´ y
2 ` 2φψ.

The body of R2,1|2 with this inner product is evidently the classical
Minkowski space R2,1 with its (negative) definite restriction to

IH1 “ tx “ px1, x2, yq P R2,1 : xx,xy “ 1 and x1 ` x2 ą 0u

providing a model of the hyperbolic plane, and we analogously define
the super hyperbolic plane to be

IH “ tx “ px1, x2, y | φ, ψq P R2,1|2 : xx,xy “ 1 and x1 ` x2 ą 0u Ě IH1

with its metric likewise induced from the inner product. Intermedi-
ate between the classical and super hyperbolic planes is the bosonic
hyperboloid

pIH “ tx “ px1, x2, y|0, 0q P R2,1|2 : xx,xy “ 1 and x1 ` x2 ą 0u,

whose coordinates lie in R̂r0s, in contrast to those of IH1 lying in R.

There are the natural inclusions IH1 Ă pIH Ă IH.
Continuing by analogy, let

H1 “ th P R2,1 : xh,hy “ ´1u
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denote the usual hyperboloid of one sheet and

H “ th P R2,1|2 : xh,hy “ ´1u Ě H1

its super analogue. Let L denote the collection of isotropic vectors in
R2,1 with

L` “ tu “ pu1, u2, vq P L : u1 ` u2 ą 0u

the (open) positive light cone (whose points are affine duals to horo-
cycles in IH1, as in [14]), and let L denote the collection of isotropic
vectors in R2,1|2 with

L` “ tu “ pu1, u2, v | φ, ψq P L : u1 ` u2 ą 0u.

2. Super Geodesics

Super geodesics in IH are parametrized in analogy to the geodesics
of general relativity:

Theorem 2.1 (Theorem 1.2 of [3]). The general form of a super geo-
desic xpsq in IH parametrized by arc length s is given by

x “ cosh su` sinh sv,

for some u P IH, v P H with xu,vy “ 0. The asymptotes of the
corresponding super geodesic are given by the rays in L` containing
the vectors e “ u ` v, f “ u ´ v. Conversely, points e, f P L`
with xe, fy “ 2 determine a unique corresponding super geodesic, where
u “ 1

2
pe` fq P IH and v “ 1

2
pe´ fq P H.

For any u P IH and v P H with xu,vy “ 0, let

Lu,v “ tcosh s u` sinh s v : s P Ru
denote the corresponding super geodesic.

Proof. This follows directly from the variational principle applied to
the functional

ż

´

a

|x 9x, 9xy| ` λpxx,xy ´ 1q
¯

dt,

where the dot stands for the derivative with respect to the parameter
s along the curve, with corresponding Euler-Lagrange equations

:x “ 2λx, xx,xy “ 1

with s is chosen so that |x 9x, 9xy| “ 1. Differentiating two times the
second equation and combining with the first equation we have

λ “ ´
x 9x, 9xy

2
.
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The solution with λ “ ´1{2 can be ruled out, and in the remaining
case λ “ 1{2, it is expressed as

x “ cosh su` sinh sv.

The constraints ´x 9x, 9xy “ xx,xy “ 1 imply the conditions on u,v. �

Corollary 2.2. For any two distinct points P,Q P IH, there is a unique
super geodesic containing them, and the distance D between them sat-
isfies coshD “ xP,Qy.

Proof. For existence, note that xP,Qy ą 1 for distinct P,Q P IH, and
define

` “

d

xP,Qy ` 1

xP,Qy ´ 1
,

so that xP,Qy “ `2`1
`2´1

. The identity cosh´1t “ logept`
?
t2 ´ 1q there-

fore gives

ecosh
´1xP,Qy

“ xP,Qy `
a

xP,Qy2 ´ 1 “
`` 1

`´ 1
.

We exhibit Lu,v “ L e`f
2
, e´f

2
containing P,Q parametrized as

xpsq “ cosh s u` sinh s v “
1

2
rexppsq e` expp´sq f s

by taking

e “
`´ 1

2`
rp1´ `qP` p1` `qQs,

f “
`` 1

2`
rp1` `qP` p1´ `qQs.

Direct computation confirms that e, f P L` with xe, fy “ 2 and

xp0q “ P and xpcosh´1xP,Qyq “ Q,

thus establishing existence as well as that coshD “ xP,Qy.

For uniqueness, the system of equations

P “ cosh s u` sinh s v,

Q “ cosh t u` sinh t v

is tantamount to the linear system
ˆ

cosh s I sinh s I
cosh t I sinh t I

˙ ˆ

u
v

˙

“

ˆ

P
Q

˙

,

where I is the 5-by-5 identity matrix, which has a unique solution since
the determinant is non-zero for distinct s, t. �
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Corollary 2.3. Given distinct P,Q P IH, the unit tangent vector at P

to the line from P to Q is given by Q´P xP,Qy?
xP,Qy2´1

. �

It follows from Corollary 2.2 that any three non-collinear points of
IH define a super triangle, namely, three super geodesic segments with
disjoint interiors meeting pairwise at the given points. The usual Hy-
perbolic Law of Cosines holds for super triangles, as proved in [15] and
as follows directly from Corollary 2.3 upon computing the cosine of an
interior angle based on the usual formula.

3. Orthosymplectic Group OSpp1|2q

We next include basic information concerning the orthosymplectic
group OSpp1|2q, which is among the simplest of Lie super groups and
whose body is the classical special linear group SLp2,Rq. We refer the
interested reader to [4, 6] for more information about general Lie super
algebras and super groups and to [16] for details about OSp(1|2).

An element g P OSpp1|2q can be represented by the 3-by-3 matrix

g “
´

a b α
c d β
γ δ f

¯

, where a, b, c, d, f are even and α, β, γ, δ are odd, with

multiplication defined by
ˆ

a1 b1 α1
c1 d1 β1
γ1 δ1 f1

˙ˆ

a2 b2 α2
c2 d2 β2
γ2 δ2 f2

˙

“

ˆ

a1a2`b1c2´α1γ2 a1b2`b1d2´α1δ2 a1α2`b1β2`α1f2
c1a2`d1c2´β1γ2 c1b2`d1d2´β1δ2 c1α2`d1β2`β1f2
γ1a2`δ1c2`δ1γ2 γ1b2`δ1d2`f1δ2 ´γ1α2´δ1β2`f1f2

˙

,

where g is required to satisfy the two further conditions:
‚ the super determinant or Berezinian of g is unity, namely,

sdet g “ f´1 det

„ˆ

a b
c d

˙

` f´1
ˆ

αγ αδ
βγ βδ

˙

“ 1;

and
‚ g is orthosymplectic, namely

gstJg “ J,

where J “
´

0 1 0
´1 0 0
0 0 ´1

¯

and the super transpose gst “
´ a c γ

b d δ
´α ´β f

¯

.

The extra minus signs in the definition of matrix multiplication come
from fermionic anti-commutation and our specification of the ordering
of rows and columns. The Berezinian is the analogue of the classi-
cal determinant [4, 6, 17] and is characterized by being a multiplica-
tive homomorphism satisfying sdet exp g = exppa ` d ´ fq, but un-
like the classical determinant, it is only defined for invertible super
matrices. The functional equation gstJg “ J explains the analogy
with the classical symplectic group and provides the simple expression
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g´1 “ J´1gstJ “
´

d ´b δ
´c a ´γ
´β α f

¯

for inversion in OSpp1|2q. More explic-

itly, the functional equation is equivalent to the contraints

α “ bγ ´ aδ, β “ dγ ´ cδ, f “ 1` αβ,

γ “ aβ ´ cα, δ “ bβ ´ dα, f´1 “ ad´ bc.

In particular, a small calculation using the two conditions shows
that ad ´ bc “ 1, so the upper-left 2-by-2 block lies in the special
linear group, but the entries are not real numbers but rather are even
elements of R̂. This upper-left block therefore lies in the bosonic Lie
super group

xSL2 “ SLp2, R̂r0sq “ t
´

a b 0
c d 0
0 0 1

¯

: a, b, c, d P R̂r0s and ad´ bc “ 1u,

and there are thus canonical inclusions SLp2,Rq ă xSL2 ă OSpp1|2q.

Another canonical subspace tupα, βq : α, β P R̂r1su Ă OSpp1|2q,
which is not a subgroup, is parametrized by a pair of fermions α, β and
defined by

upα, βq “

¨

˝

1´ αβ
2

0 α

0 1´ αβ
2

β
β ´α 1` αβ

˛

‚P OSpp1|2q.

It is not difficult to prove the following useful

Lemma 3.1. Any element g P OSpp1|2q can be written uniquely as a
product

g “
´

a b 0
c d 0
0 0 1

¯

upα, βq “ upaα ` bβ, cα ` dβq
´

a b 0
c d 0
0 0 1

¯

,

in OSpp1|2q, for some
´

a b 0
c d 0
0 0 1

¯

P xSL2 and fermions α, β P R̂r1s. �

Minkowski three-space R2,1 « R3, as the space of binary symmetric
bilinear forms, is naturally coordinatized by

A “

ˆ

z ´ x y
y z ` x

˙

“

ˆ

x1 y
y x2

˙

P R2|1,

and g in the component SO`p1, 2q of the identity in SOp1, 2q acts via
orientation-preserving isometry on A P R2,1 as change of basis via the
adjoint

g : A ÞÑ g.A “ gtAg.

This action of SLp2,Rq or SO`p1, 2q « PSLp2,Rq as the group of isome-
tries of IH1 links hyperbolic geometry and elementary number theory.



10 ROBERT PENNER

Likewise, R2,1|2 « R3|2 is naturally coordinatized by

A “

¨

˝

x1 y φ
y x2 ψ
´φ ´ψ 0

˛

‚P R2,1|2,

and g P OSpp1|2q acts on A as change of basis again via the adjoint

g : A ÞÑ g.A “ gstAg.

One checks using Lemma 3.1 that this action again preserves the inner
product on R2,1|2 and hence restricts to an isometric action on IH itself.

The body of this action of OSpp1|2q on IH is the classical action of
orientation-preserving isometries on IH1, and this extension is our anal-
ogous action of this Lie super group on the super hyperbolic plane.

Moreover, the induced action of xSL2 ă OSpp1|2q preserves the bosonic

hyperboloid pIH, and we therefore find the equivariant tower of isometric
actions

OSpp1|2q ý IH

_ Y

xSL2 ý pIH

_ Y

SLp2,Rq ý IH1 .

4. OSpp1|2q-invariant Area Form on IH

The classical hyperboloid IH1 supports the SLp2,Rq-invariant hyper-
bolic area form given in coordinates by Ω1px1, x2, yq “

dx2^dx1
2y

, as we

shall recall. We promote this to an xSL2-invariant form on pIH and then
suitably pull-back to derive an OSpp1|2q-invariant two-form on IH itself.

Lemma 4.1. pIH supports the xSL2-invariant two-form Ω̂ “ dx2^dx1
2y

.

Proof. We have
´

a b 0
c d 0
0 0 1

¯

.px1, x2, y|0, 0q “ px
1
1, x

1
2, y

1|0, 0q, where

x11 “ a2x1 ` 2acy ` c2x2,

x12 “ b2x1 ` 2bdy ` d2x2,

y1 “ abx1 ` pad` bcqy ` cdx2.
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One computes directly that

Ω̂1 “
dx12 ^ dx11

2y1

“
pad´ bcqrpad` bcqpdx2 ^ dx1q ` 2dy ^ pab dx1 ´ cd dx2qs

2rabx1 ` pad` bcqy ` cdx2s
.

Meanwhile, x1x2 ´ y2 “ 1 implies that dy “ x1dx2`x2dx1
2y

. Substituting

this into the numerator finally yields Ω̂ “ Ω̂1. �

Lemma 4.2. For any x “ px1, x2, y|φ, ψq P IH, consider the element
ux “ upyψ ´ x2φ, yφ ´ x1ψq P OSpp1|2q. This transformation acts on

x to give ux.x “ p1 ´ φψqpx1, x2, y|0, 0q P pIH, and this determines the
canonical mapping

IH Ñ pIH

px1, x2, y|φ, ψq ÞÑ px̂1, x̂2, ŷ|0, 0q “ p1` φψqpx1, x2, y|0, 0q. �

Theorem 4.3. The hyperbolic area form on IH1 pulls-back under the
natural mapping IH Ñ IH1 to the OSpp1|2q-invariant two-form on IH
given by

Ωpx1, x2, y|φ, ψq “
drp1` φψqx2qs ^ drp1` φψqx1s

2rp1` φψqyqs
.

Proof. This follows from the previous lemma and the factorization in
Lemma 3.1. �

Lemma 4.4. Ω “ dω on IH for the primitive

ωpx1, x2, y|φ, ψq “
yp1` φψq

2
dloge

ˆ

x1
x2

˙

.

Proof. Let ŷ “ yp1` φψq and likewise for x̂1, x̂2. Notice that

x̂1x̂2 ´ ŷ
2
“ p1` 2φψqpx1x2 ´ y

2
q “ p1` 2φψqp1´ 2φψq “ 1,

so that
2ŷ dŷ “ x̂1dx̂2 ` x2dx̂1.

Thus,

dω “ d

„

ŷ

2
p
dx̂1
x̂1

´
dx̂2
x̂2
q



“
x̂1dx̂2 ` x̂2dx̂1

4ŷ
^

1

x̂1x̂2
rx̂2dx̂1 ´ x̂1dx̂2s

“
dx̂2 ^ dx̂1

2ŷ

“ Ω,
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and finally ω “ ŷ
2

dlogep
x̂1
x̂2
q “

ŷ
2

dlogep
x1
x2
q. �

5. Line Integrals

Let P “ pp1, p2, p|α, βq and Q “ pq1, q2, q|γ, δq be distinct points in
IH, and define

d “ xP,Qy ą 1 and ` “

c

d` 1

d´ 1
.

It follows that d “ `2`1
`2´1

and the distance between P, and Q is given by

D “ cosh´1d, with exppDq “ d`
?
d2 ´ 1 “ ``1

`´1
.

By the proof of Corollary 2.2, the geodesic segment PQ from P to
Q is parametrized for t “ exppsq by

xptq “
1

2
pte` t´1fq, for 1 ď t ď exppDq “

`` 1

`´ 1
,

where
e “M rp1´ `qP` p1` `qQs,

f “ N rp1` `qP` p1´ `qQs,

with

M “
`´ 1

2`
and N “

`` 1

2`
,

so that MN “ 1
2pd`1q

. According to Lemma 4.4, the area primitive on

PQ is given in coordinates as

ωptq “ ω ˝ xptq “ r1` φptqψptqs ω̄ptq,

where

ω̄ptq “
1

4
rtA` t´1Bs dloge

tA1 ` t
´1B1

tA2 ` t´1B2

,

with

A “M rp1´ `qp` p1` `qqs and B “ N rp1` `qp` p1´ `qqs,

Ai “M rp1´ `qpi ` p1` `qqis and Bi “ N rp1` `qpi ` p1´ `qqis,

for i “ 1, 2, and with

2φptq “ tM rp1´ `qα ` p1` `qγs ` t´1N rp1` `qα ` p1´ `qγs,

2ψptq “ tM rp1´ `qβ ` p1` `qδs ` t´1N rp1` `qβ ` p1´ `qδs.

It is useful here and hereafter to introduce the notation

Si “
pqiα ´ piγqpqiβ ´ piδq

pqpi ´ pqiq2
, for i “ 1, 2.
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Lemma 5.1. For i “ 1, 2, we have the identities

AiBi “
pqpi ´ pqiq

2

d2 ´ 1
p1´ 2Siq,

ABi ´BAi “ 2
qpi ´ pqi
?
d2 ´ 1

.

In particular, it follows that Ai and Bi have the same sign provided
pqpi ´ pqiq# ‰ 0. In this case, if pi, qi ą 0, then also Ai, Bi ą 0, and
pi ď qi if and only if exppDqAi

Bi
ď 1.

Proof. For the first identity, compute

AiBi “MN rpp1´ `qpi ` p1` `qqisrp1` `qpi ` p1´ `qqis

“
1

2pd` 1q

"

p1´ `2qpp2i ` q
2
i q ` 2p1` `2qpiqi

*

“
1

2pd` 1q

"ˆ

1´
d` 1

d´ 1

˙

pp2i ` q
2
i q ` 2

ˆ

1`
d` 1

d´ 1

˙

piqi

*

“
1

d2 ´ 1

"

´p2i ´ q
2
i ` piqirp1q2 ` p2q1 ´ 2pq ` 2pαδ ` γβqs

*

“
1

d2 ´ 1

"

´p2i ´ q
2
i ` p

2
i q1q2 ` q

2
i p1p2 ´ 2piqirpq ´ pαδ ` γβqs

*

“
1

d2 ´ 1

"

p2i pq
2
´ 2γδq ` q2i pp

2
´ 2αβq ´ 2piqirpq ´ pαδ ` γβqs

*

“
1

d2 ´ 1

"

pqpi ´ pqiq
2
´ 2pqiα ´ piγqpqiβ ´ piδq

*

,

as was asserted. The second identity follows directly from the defini-
tions and elementary algebra.

For the final assertions, let us first note that

exppDq
Ai
Bi

“
p1´ `qpi ` p1` `qqi
p1` `qpi ` p1´ `qqi

since exppDqM
N
“ ``1

`´1
M
N
“ 1. Now, 0 ă qi ď pi implies that pi ` qi ą

`pqi ´ piq, so Bi ą 0, whence Ai ą 0. Furthermore, exppDqAi

Bi
ď 1

is equivalent to p1´ `qpi ` p1` `qqi ď p1` `qpi ` p1´ `qqi, which is in
turn equivalent to qi ď pi. In the contrary case, 0 ă pi ď qi implies that
pi ` qi ą `ppi ´ qiq, so Ai ą 0, whence Bi ą 0. Again, expp´DqBi

Ai
ď 1

is equivalent to p1` `qpi ` p1´ `qqi ď p1´ `qpi ` p1` `qqi, which is in
turn equivalent to pi ď qi. �
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Our aim is to explicitly compute
ş

PQ
ω in this section in order to

apply Stokes’ Theorem in the next section, and we first assert that

ω̄ptq “
dt

2

2
ÿ

i“1

p´1qi
pA` t´2BqBi

t2Ai `Bi

.(5.1)

To see this, compute directly that

dloge
tA1 ` t

´1B1

tA2 ` t´1B2

“
2t´1pB2A1 ´B1A2q

ptA1 ` t´1B1qptA2 ` t´1B2q

and by partial fractions that

1

ptA1 ` t´1B1qptA2 ` t´1B2q
“

1

B2A1 ´B1A2

"

B2

t2A2 `B2

´
B1

t2A1 `B1

*

.

Eqn. 5.1 follows immediately.
Next we compute directly from the definitions that

4φptqψptq “ pαδ ` γβqrpt2M2
` t´2N2

qp1´ `2q ` 2MNp1` `2qs

` αβ rtMp1´ `q ` t´1Np1` `qs2

` γδ rtMp1` `q ` t´1Np1´ `qs2

Collecting like powers of t, we find

φptqψptq “ Xt2 ` Y t´2 ` Z,(5.2)

where

4X “M2
rp1´ `q2αβ ` p1` `q2γδ ` p1´ `2qpαδ ` γβqs

4Y “ N2
rp1` `q2αβ ` p1´ `q2γδ ` p1´ `2qpαδ ` γβqs

4Z “ 2MN rp1´ `2qpαβ ` γδq ` p1` `2qpαδ ` γβqs .

Lemma 5.2. Suppose that 0 ă p1 ă q1 and 0 ă q2 ă p2. Then we
have

ż

PQ

ω “ pA1B2 ´B1A2q

„

AX

p`´ 1qA1A2

´
BY

p`` 1qB1B2



`
ÿ

i“1,2

p´1qip1´ Siq

„

1` Z ´X
Bi

Ai
´ Y

Ai
Bi



arctan

„

qpi ´ pqi
pi ` qi

p1´ Siq



` π signpqp2 ´ pq2qp1´ S2q

„

1` Z ´X
B2

A2

´ Y
A2

B2



.

Proof. Setting

W ptq “
B2

t2A2 `B2

´
B1

t2A1 `B1
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and combining Eqns. 5.1 and 5.2, we find that

2ω “

"

t2AX`t0rBX`Ap1`Zqs`t´2rAY`Bp1`Zqs`t´4BY

*

W ptqdt.

Together perturbing P and Q by OSpp1|2q if necessary to arrange
that ppqi ´ qpiq# ‰ 0, we have Ai, Bi ą 0 by Lemma 5.1 and our
hypotheses that pi, qi ą 0, for i “ 1, 2. We may then apply the following
indefinite integrals

ż

t2dt

t2u` v
“ ´

c

v

u3
arctan

ˆ
c

u

v
t

˙

`
t

u
,

ż

dt

t2u` v
“

1
?
uv

arctan

ˆ
c

u

v
t

˙

,

ż

t´2dt

t2u` v
“ ´

c

u

v3
arctan

ˆ
c

u

v
t

˙

´
1

vt
,

ż

t´4dt

t2u` v
“

c

u3

v5
arctan

ˆ
c

u

v
t

˙

´
v ´ 3ut2

3v2t3

to conclude that

2

ż

PQ

ω “ AXt

„

B2

A2

´
B1

A1



`BY t´1
„

A1

B1

´
A2

B2



`
AB2 ´BA2
?
A2B2

„

1` Z ´X
B2

A2

´ Y
A2

B2



arctan

ˆ

c

A2

B2

t

˙

´
AB1 ´BA1
?
A1B1

„

1` Z ´X
B1

A1

´ Y
A1

B1



arctan

ˆ

c

A1

B1

t

˙

evaluated between the limits t “ 1 and t “ exppDq “ ``1
`´1

.

Now, we compute

arctan

ˆ

c

Ai
Bi

t

˙

ˇ

ˇ

ˇ

ˇ

ˇ

t“exppDq

t“1

“ arctan

ˆ

c

Ai
Bi

exppDq

˙

´ arctan

ˆ

c

Ai
Bi

˙

“ arctan

"

b

Ai

Bi
pexppDq ´ 1q

1` Ai

Bi
exppDq

*

` ki π,

using standard formulas for the difference of arctangents, our hypothe-

ses on pi, qi, and the last part of Lemma 5.1, where ki “

#

0, if i “ 1;

1, if i “ 2.
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Meanwhile, we have
?
AiBi rexppDq ´ 1s

Ai exppDq `Bi

expp´D
2
q

expp´D
2
q
“

?
AiBi sinhpD

2
q

Ai exppD
2
q `Bi expp´D

2
q
,

and moreover,

Ai expp
D

2
q `Bi expp´

D

2
q “

c

`` 1

`´ 1

ˆ

`´ 1

2`

˙„

p1´ `qpi ` p1` `qqi



`

c

`´ 1

`` 1

ˆ

`` 1

2`

˙„

p1` `qpi ` p1´ `qqi



“

?
`2 ´ 1

`
ppi ` qiq

since exppDq “ ``1
`´1

implies that coshpD
2
q “ `?

`2´1
and sinhpD

2
q “ 1?

`2´1
.

Finally using the first identity in Lemma 5.1, we have

´ki π ` arctan

ˆ

c

Ai
Bi

t

˙

ˇ

ˇ

ˇ

ˇ

ˇ

t“exppDq

t“1

“ arctan

ˆ

2
?
AiBi sinhpd

2
q coshpd

2
q

pi ` qi

˙

“ arctan

ˆ

sinhpDq
?
d2 ´ 1

|qpi ´ pqi|

pi ` qi
p1´ Siq

˙

“ arctan

ˆ

|qpi ´ pqi|

pi ` qi
p1´ Siq

˙

since d “ coshpDq.

It follows from Lemma 5.1 that

ABi ´BAi
?
AiBi

“ 2
qpi ´ pqi
|qpi ´ pqi|

p1´ Siq “ 2 signpqpi ´ pqiq p1´ Siq,

and so

ABi ´BAi
?
AiBi

«

arctan

ˆ

c

Ai
Bi

t

˙

ˇ

ˇ

ˇ

ˇ

ˇ

t“exppDq

t“1

ff

“ 2 p1´ Siq arctan

„

qpi ´ pqi
pi ` qi

p1´ Siq



` 2π ki signpqpi ´ pqiq p1´ Siq

since arctangent is an odd function. �
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6. Area of a Super Triangle

Let 4 denote a super triangle with vertices

P “ pp1, p2, p|α, βq,

Q “ pq1, q2, q|γ, δq,

R “ pr1, r2, r|ε, φq.

Lemma 6.1. Without loss of generality by applying an element of
OSpp1|2q and possibly relabeling the vertices, we may assume that we
have α “ γ “ ε, 0 ă p1 ă q1 ă r1 and 0 ă r2 ă q2 ă p2.

Proof. First recall that the classical isometry from IH1 to the upper half
plane is given by Π : px1, x2, yq ÞÑ

i´y
x2

, where i “
?
´1. (This extends

to an analogous mapping from IH to the super upper half plane with
complex coordinates z, η by

px1, x2, y|φ, ψq ÞÑ z “
i´ y ´ iφψ

x2
, η “

ψ

x2
p1` iyq,

but we shall not need this here. Each of these mappings is appropriately
equivariant.)

It is thus geometrically clear that by translation in xSL2, we may
arrange that ΠpPq,ΠpQq,ΠpRq each have positive imaginary part and
negligible squared real part divided by imaginary part. This implies
that pp1p2q, pq1q2q, pr1r2q are all nearly equal to unity. Now perturb

in xSL2 so that these imaginary parts are all distinct and relabel if
necessary so that 0 ă r2 ă q2 ă p2, from which it then follows that
also 0 ă p1 ă q1 ă r1.

Next further perturb the resulting 4 with an element of xSL2 so that

t “ pqp1 ´ pq1q ` prq1 ´ qr1q ` ppr1 ´ rp1q

has non-zero body. Given fermions ξ, η, let us suppose that upξ, ηq.P “
pp11, p

1
2, p

1|α1, β1q, and likewise respectively γ1 and ε1 for Q and R. One
computes that

α1 “ p1ξ ` pη ` αp1`
3
2
ξηq,

γ1 “ q1ξ ` qη ` γp1`
3
2
ξηq,

ε1 “ r1ξ ` rη ` εp1`
3
2
ξηq.

We therefore seek fermions ξ, η so that in particular

0 “ α1 ´ γ1 “ pp1 ´ q1qξ

„

1`
3

2

pγ ´ αqη

p1 ´ q1



` pp´ qqη ` pα ´ γq.
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Multiplying through by r1´ 3
2
pγ´αqη
p1´q1

s yields

pp1 ´ q1qξ ` pp´ qqη

„

1´
3

2

pγ ´ αqη

p1 ´ q1



“ pγ ´ αq

„

1´
3

2

pγ ´ αqη

p1 ´ q1



,

or equivalently pp1 ´ q1qξ ` pp ´ qqη “ γ ´ α. We likewise find in
particular for α1 “ ε1 that pp1 ´ r1qξ ` pp´ rqη “ ε´ α.

Thus, we find the necessary and sufficient linear system
ˆ

p1 ´ q1 p´ q
p1 ´ r1 p´ r

˙ˆ

ξ
η

˙

“

ˆ

γ ´ α
ε´ α

˙

with solution

ξ “
1

t

„

pp´ rqpγ ´ αq ` pq ´ pqpε´ αq



,

η “
1

t

„

pr1 ´ p1qpγ ´ αq ` pp1 ´ q1qpε´ αq



,

where the determinant

t “ pp´ rqpp1 ´ q1q ´ pp´ qqpp1 ´ r1q

“ pqp1 ´ pq1q ` prq1 ´ qr1q ` ppr1 ´ rp1q

has non-zero body by construction. �

For the rest of this paper, we shall assume that the triangle 4 with
vertices P,Q,R has been normalized and possibly relabeled to arrange
that α “ γ “ ε, 0 ă p1 ă q1 ă r1 and 0 ă r2 ă q2 ă p2. In fact, no
subsequent fermionic product of degree two will include βδ, δφ, or φβ.
Thus α “ γ “ ε divides all subsequent fermionic expressions, whence
the product of any two of them must vanish. We shall refer to this fact
as being due to fermionic degree.

Attempting to mitigate the inevitable proliferation of notation, set

V̄ “ pA1B2 ´B1A2q

„

AX

p`´ 1qA1A2

´
BY

p`` 1qB1B2



,

Hi “ pZ ´X
Bi

Ai
´ Y

Ai
Bi

q, for i “ 1, 2,

in the notation of the previous section, so that
ż

PQ

ω “ V̄ ` π signpqp2 ´ pq2q p1`H2 ´ S2q

`
ÿ

i“1,2

p´1qip1`Hi ´ Siq arctan

„

qpi ´ pqi
pi ` qi

p1´ Siq


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since HiSi “ 0 due to fermionic degree. This equation, together with
its analogues for QR and RP, provides a dreadful but explicit closed-
form expression

ş

4 Ω “
ş

PQ
ω `

ş

QR
ω `

ş

RP
ω for the area of 4 by

Stokes’ theorem.
Rather than explicate this expression and with our eye on the An-

gle Defect Formula, let us instead proceed to compute cosp
ş

PQ
ωq and

sinp
ş

PQ
ωq. These are tractable since cospaq “ 1 and sinpaq “ a for any

super number a with a2 “ 0, and since a product of any two factors
V̄ , H1, H2, S1, S2 must vanish due to fermionic degree.

Theorem 6.2. We have the identities

cos

ż

PQ

ω “
C ` ĉ

F
, and sin

ż

PQ

ω “
S ` ŝ

F
,

where

C “ ´2rpp` qq2 ` pd` 1qp1´ pqqs and S “ pp` qqpp1q2 ´ p2q1q,

F “ 2pd` 1q
?
p1p2q1q2, ĉ “ SV ´ c̄ and ŝ “ ´CV ´ s̄ ,

with
c̄ “ 2rpqα ´ pγqpqβ ´ pδq ` pα ` γqpβ ` δqs

` pS1 ` S2qpqp1 ´ pq1qpqp2 ´ pq2q,

s̄ “ S1pp2 ` q2qpqp1 ´ pq1q ´ S2pp1 ` q1qpqp2 ´ pq2q,

and

V “ V̄ ` π signpqp2 ´ pq2qpH2 ´ S2q

`
ÿ

i“1,2

p´1qi pHi ´ Siq arctan

„

qpi ´ pqi
pi ` qi

p1´ Siq



.

Proof. We have derived
ş

PQ
ω “ pU2 ´ U1q ` V ` π signpqp2 ´ pq2q in

Lemma 5.2, where

Ui “ arctan

„

qpi ´ pqi
pi ` qi

p1´ Siq



, for i “ 1, 2.

Standard trigonometric identities give

´cos

ż

PQ

ω “ cosU2 cosU1 ` sinU2 sinU1

´ V rsinU2 cosU1 ´ cosU2 sinU1s,

´sin

ż

PQ

ω “ rsinU2 cosU1 ´ cosU2 sinU1

` V rcosU2 cosU1 ` sinU2 sinU1s,
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where the leading minus signs derive from π signpqp2´ pq2q and where
V 2 “ 0 follows from considerations of fermionic degree, the latter of
which implies that cosV “ 1 and sinV “ V .

The usual identities cos arctan x “ 1?
1`x2

, sin arctan x “ x?
1`x2

imply that

cosUi “
pi ` qi

a

2 piqi pd` 1q
,

sinUi “
pqpi ´ pqiqp1´ Siq
a

2 piqi pd` 1q
,

for i “ 1, 2, using the equation

ppi ` qiq
2
` pqpi ´ pqiq

2
“ 2rpd` 1qpiqi ` pqpi ´ qpiq

2 Sis,

which relies upon xP,Qy “ d and xP,Py “ 1 “ xQ,Qy. A further
similar calculation gives

pp1 ` q1qpp2 ` q2q ` pqp1 ´ pq1qpqp2 ´ pq2q

“ 2rpp` qq2 ` pd` 1qp1´ pqq ´ pqα ´ pγqpqβ ´ pδq ´ pα ` γqpβ ` δqs,

and a more elementary direct calculation gives

pp` qqpq1p2 ´ q2p1q “ pp1 ` q1qpqp2 ´ pq2q ´ pp2 ` q2qpqp1 ´ pq1q.

It remains only to collect the fermionic terms. �

Adopting for QR and RP the analogous respective alphabetic no-
tation introduced for PQ, Corollary 6.2 provides the expressions

cos

ż

QR

ω “
D ` d̂

G
and sin

ż

QR

ω “
T ` t̂

G
,

cos

ż

RP

ω “
E ` ê

H
and sin

ż

RP

ω “
U ` û

H
,

where for example

D “ ´2rpq ` rq2 ` pe` 1qp1´ qrqs and T “ pq ` rqpq1r2 ´ q2r1q,

E “ ´2rpr ` pq2 ` pf ` 1qp1´ rpqs and U “ pr ` pqpr1p2 ´ r2p1q,

G “ 2pe` 1q
?
q1q2r1r2 and H “ 2pf ` 1q

?
p1p2r1r2,

with e “ xQ,Ry, f “ xR,Py.

Corollary 6.3. We have the identity

cos

ż

4
Ω “ P `R,
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where
pFGHqP “ ĉpDE ´ TUq ´ ŝpDU ` ET q

` d̂pCE ´ SUq ´ t̂pCU ` ESq

` êpCD ´ ST q ´ ûpCT `DSq,

pFGHqR “ CDE ´ CTU ´DSU ´ EST,

with FGH “ 8pd` 1qpe` 1qpf ` 1q p1p2q1q2r1r2.

Proof. This follows directly from Corollary 6.2 and its analogues for
QR and RP, using standard trigonometric formulas. �

7. Angle Defect

Lemma 7.1. The cosine of the sum of the interior angles of 4 is given
by

L “ 1´
1` 2def ´ d2 ´ e2 ´ f 2

pd` 1qpe` 1qpf ` 1q
,

where we have d “ xP,Qy, e “ xQ,Ry, and f “ xR,Py as before.

Proof. Let x, y, z be the respective cosines of the interior angles of 4
at P,Q,R, so for example

x “ ´x
Q´Pd
?
d2 ´ 1

,
R´Pf
a

f 2 ´ 1
y “

df ´ e
?
d2 ´ 1

a

f 2 ´ 1

by Corollary 2.3. The usual formula for the sum of arccosines gives

arccosx` arccos y ` arccos z

“ arccos

„

xyz ´ z
a

p1´ x2qp1´ y2q

´ y
a

p1´ x2qp1´ z2 ´ x
a

p1´ y2qp1´ z2q



,

with for example

x
a

p1´ y2qp1´ z2q “ pdf ´ eq
p1` 2def ´ d2 ´ e2 ´ f 2q

pd2 ´ 1qpe2 ´ 1qpf 2 ´ 1q

by direct calculation, noting that 1 ` 2def ě d2 ` e2 ` f 2 by the
Hyperbolic Law of Cosines for 4.

Thus, we find

pd2 ´ 1qpe2 ´ 1qpf 2
´ 1qL “ pef ´ dqpdf ´ eqpde´ fq

` p1` 2def ´ d2 ´ e2 ´ f 2
qpd` e` f ´ ef ´ df ´ edq.

Dividing this equation by the common factor pd ´ 1qpe ´ 1qpf ´ 1q of
its two sides finally yields the asserted identity. �
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In the notation of the previous section, define

R “
CDE ´ CTU ´DSU ´ EST

FGH
.(7.1)

Let us also define I “ p1q2`p2q1, J “ q1r2`q2r1, and K “ r1p2`r2p1,
with i “ αδ ` γβ “ d ´ 1

2
I ` pq, j “ γε ` δφ “ e ´ 1

2
J ` qr and

k “ εβ ` αφ “ f ´ 1
2
K ` rp, and with Θ “

αβ
p2`1

`
γδ
q2`1

`
εφ
r2`1

.

Lemma 7.2. We have L`R “ Q with

8pd` 1qpe` 1qpf ` 1qQ

“´ 4

„

εφI2

r2 ` 1
`
αβJ2

p2 ` 1
`
γδK2

q2 ` 1



` 8rIi` Jj `Kks ´ 2riJK ` jIK ` kIJs

` 2ΘrI2pr2 ´ 1q ` J2
pp2 ´ 1q `K2

pq2 ´ 1qs

´ 4ΘrIJp1` rpq ` JKp1` pqq ` IKp1` qrqs

´ 8ΘrIpr2 ` 1qp1´ pqq ` Jpp2 ` 1qp1´ qrq `Kpq2 ` 1qp1´ rpqs

´ 2

„

KJippq ` 1q

pp2 ` 1qpq2 ` 1q
`

KIjpqr ` 1q

pq2 ` 1qpr2 ` 1q
`

IJkprp` 1q

pp2 ` 1qpr2 ` 1q



` 4pp` qqpq ` rqpr ` pq
„

Ji` iJ

pq2 ` 1qpr ` pq
`

Jk `Kj

pr2 ` 1qpp` qq
`

Ki` iK

pp2 ` 1qpq ` rq



` 4
pp` qqpq ` rqpr ` pq

pp2 ` 1qpq2 ` 1qpr2 ` 1q
„

Ii
p1´ pqqpr2 ` 1q

p` q
` Jj

p1´ qrqpp2 ` 1q

q ` r
`Kk

p1´ rpqpq2 ` 1q

r ` p



` 8pp` qqpq ` rqpr ` pq

«I

ˆ

αβ
p2`1

`
γδ
q2`1

˙

´ i

p` q
`

J

ˆ

γδ
q2`1

`
εφ
r2`1

˙

´ j

q ` r
`

K

ˆ

αβ
p2`1

`
εφ
r2`1

˙

´ k

r ` p

ff

.

One critical conclusion, which is tantamount to the classical Angle
Defect Theorem, is that the body Q# “ 0 vanishes.
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Proof. First note for example that

IJ “ q1q2K ` p1q
2
2r1 ` p2q

2
1r2,

so
pp1q2 ´ p2q1qpq1r2 ´ q2r1q “ q1q2K ´ p1q

2
2 ´ p2q

2
1r2

“ 2q1q2K ´ IJ,

and likewise

pq1r2 ´ q2r1qpr1p2 ´ r2p1q “ 2r1r2I ´ JK,

pp1q2 ´ p2q1qpr1p2 ´ r2p1q “ 2p1p2J ´ IK.

It follows that

IJK “ q1q2K
2
` pp1q

2
2r1 ` p2q

2
1r2qK

“ q1q2K
2
` p1p2pq

2
1r

2
2 ` q

2
2r

2
1q ` r1r2pp

2
1q

2
2 ` p

2
2q

2
1q

“ q1q2K
2
` p1p2rpq1r2 ` q2r1q

2
´ 2q1q2r1r2s

` q1q2rpp1q2 ` p2q1q
2
´ 2p1p2r1r2s

“ q1q2K
2
` p1p2J

2
` r1r2I

2
´ 4p1p2q1q2r1r2,

and moreover that

pp1q2 ´ q1p2qpq1r2 ´ q2r1qK “ q1q2K ´ p1p2J ´ r1r2I ` 4p1p2q1q2r2r2,

pp1q2 ´ q1p2qpr1p2 ´ r2p1qJ “ p1p2J ´ q1q2K ´ r1r2I ` 4p1p2q1q2r2r2,

pq1r2 ´ q2r1qpr1p2 ´ r2p1qI “ r1r2I ´ p1p2J ´ q1q2K ` 4p1p2q1q2r2r2.

Turning first to L and setting L1 “ 8pd` 1qpe` 1qpf ` 1qL, we find
from Lemma 7.1 that

L1 “ ´def ` d` e` f ` de` ef ` df ` d2 ` e2 ` f 2.

A moderate computation from the definitions using the expression
above for IJK and collecting like terms, we find that

L1 “ 4p1p2q1q2r1r2

` 8rp2q2r2 ` p2q2 ` q2r2 ` r2p2 ` pqrpp` q ` rq ´ pq ´ qr ´ rps

` I2r2´ r1r2s ` 4Ir1´ pqr2 ´ rpp` qq ´ 2pqs

` J2
r2´ p1p2s ` 4Jr1´ p2qr ´ ppq ` rq ´ 2qrs

`K2
r2´ q1q2s ` 4Kr1´ pq2r ´ qpr ` pq ´ 2rps

` 2rIJp1` rpq ` JKp1` pqq ` IKp1` qrqs

´ 2iJK ` 4irJ `K ` Jrp`Kqrs ` 8ir1´ pqr2 ` I ´ 2pq ´ rpp` qqs

´ 2jIK ` 4jrI `K ` Irp`Kpqs ` 8jr1´ p2qr ` J ´ 2qr ´ ppr ` qqs

´ 2kIJ ` 4krI ` J ` Iqr ` Jpqs ` 8kr1´ pq2r `K ´ 2rp´ qpr ` pqs.
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Turning now to the calculation of R and using the previous formulas,
we find that

´ CTU “ 2pq ` rqpr ` pqpp2 ` 1qpq2 ` 1qr2r1r2I ´ JKs

` 2ipq ` rqpr ` pqp1´ pqqr2r1r2I ´ JKs

` pq ` rqpr ` pqp1´ pqqrr1r2I
2
´ q1q2K

2
´ p1p2J

2
` 4p1p2q1q2r1r2s,

´DSU “ 2pp` qqpr ` pqpq2 ` 1qpr2 ` 1qr2p1p2J ´ IKs

` 2jpp` qqpr ` pqp1´ qrqr2p1p2J ´ IKs

` pp` qqpr ` pqp1´ qrqrp1p2J
2
´ r1r2I

2
´ q1q2K

2
` 4p1p2q1q2r1r2s,

´ EST “ 2pp` qqpq ` rqpr2 ` 1qpP 2
` 1qr2q1q2K ´ IJs

` 2kpp` qqpq ` rqp1´ rpqr2q1q2K ´ IJs

` pp` qqpq ` rqp1´ rpqrq1q2K
2
´ p1p2J

2
´ r1r2I

2
` 4p1p2q1q2r1r2s,

´ CDE “ 8pp2 ` 1q2pq2 ` 1q2pr2 ` 1q2

` p1´ pqqp1´ qrqp1´ rpqrIJK ` 2IJk ` 2JKi` 2IKjs

` 2pp2 ` 1qpq2 ` 1qp1´ qrqp1´ rpqrJK ` 2kJ ` 2jKs

` 2pq2 ` 1qpr2 ` 1qp1´ pqqp1´ rpqrIK ` 2iK ` 2kIs

` 2pp2 ` 1qpr2 ` 1qp1´ pqqp1´ qrqrIJ ` 2iJ ` 2jIs

` 4pp2 ` 1q2pq2 ` 1qpr2 ` 1qp1´ qrqrJ ` 2js

` 4pp2 ` 1qpq2 ` 1q2pr2 ` 1qp1´ rpqrK ` 2ks

` 4pp2 ` 1qpq2 ` 1qpr2 ` 1q2p1´ pqqrI ` 2is.

It is now purely a matter of using the earlier expression for IJK
and collecting like terms to derive the asserted expression for Q. The
vanishing of the body of Q is equivalent to the classical Angle Defect
Theorem and gives an internal consistency check. �

Combining the previous Theorem with Corollary 6.3, we finally have:

Theorem 7.3. [The Angle Defect Theorem for Super Triangles]
The angle defect D minus the area A of the super triangle 4 is given
by the fermionic correction

D ´A “ P `Q
?

1´R2
,
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where P and Q are respectively given explicitly in Corollary 6.3 and
Lemma 7.2, and R is expressed in Eqn. 7.1. This fermionic correction
is not identically zero.

Proof. We have derived in the referenced results that

cosA “ R ` P and cosS “ Q´R,

where S is the sum of the interior angles of 4. The standard formulas

arccosx “ π
2
´
ř8

n“0
p2nq!

22npn!q2
x2n`1

2n`1
and d

dx
arccosx “ ´ 1?

1´x2
therefore

give

A “ arccosR ´
P

?
1´R2

, and S “ π ´ arccosR ´
Q

?
1´R2

since P 2 “ Q2 “ 0. The asserted formula therefore follows since by
definition D ´A “ pπ ´ Sq ´A.

It is a triviality that our fermionic correction is not identically zero
on super triangles. Indeed, suppose D ´A does vanish for some super
triangle 4, so in particular A# “ A by the classical Angle Defect
Theorem. Modify 4 by translating its two fermionic coordinates by
respective odd constants φ and ψ with φψ ‰ 0. The resulting defect
D1 “ D is unchanged, and yet the resulting area A1 “ Ap1 ` φψq “
A#p1`φψq according to the formula for the area primitive. Thus, our
fermionic correction D1 ´A1 “ A# φψ cannot then also vanish for the
modified triangle.

�

Appendix: Ideal Super Triangles

In this appendix, we show that the fermionic part of the area of a
super ideal triangle diverges. To this end given e1, f 1,g1 P L`, define

e “

d

2xf 1,g1y

xe1, f 1y xg1, e1y
e1, f “

d

2xg1, e1y

xe1, f 1y xf 1,g1y
f 1, g “

d

2xe1, f 1y

xf 1, f 1y xg1, e1y
g1 ,

so that xe, fy “ xf ,gy “ xg, ey “ 2, and introduce coordinates

e “ pp1, p2, p|α, βq,

f “ pq1, q2, q|γ, δq,

g “ pr1, r2, r|ε, φq.

These define respective super geodesics

E “ t1
2
ptf ` t´1gq P IH : 0 ă t ă 8u ,

F “ t1
2
ptg ` t´1eq P IH : 0 ă t ă 8u ,

G “ t1
2
pte` t´1fq P IH : 0 ă t ă 8u ,
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as in Theorem 2.1, bounding a super ideal triangle.
The OSpp1|2q-invariant two-form Ω on IH admits the same primitive

ω as in Section 4, and we begin by computing
ş

G
ω. The calculations

in Section 5 apply directly to conclude that

2ω “

"

t2pX` t0rqX`pp1`Zqs` t´2rpY `qp1`Zqs` t´4qY

*

Uptq dt,

where 4X “ αβ, 4Y “ γδ, 4Z “ αδ` γβ, and Uptq “ q2
t2p2`q2

´
q1

t2p1`q1
,

and moreover that

2

ż

G

ω “ pXt

„

q2
p2
´
q1
p1



` qY t´1
„

p1
q1
´
p2
q2



`
pq2 ´ qp2
?
p2q2

„

1` Z ´X
q2
p2
´ Y

p2
q2



arctan

ˆ
c

p2
q2

t

˙

´
pq1 ´ qp1
?
p1q1

„

1` Z ´X
q1
p1
´ Y

p1
q1



arctan

ˆ
c

p1
q1

t

˙

,

but in this instance evaluated between the limits t “ 0 and t “ 8.
The latter two summands are bounded, and the former two sum-

mands give

pXt

„

q2
p2
´
q1
p1



` qY t´1
„

p1
q1
´
p2
q2



“ pp1q2 ´ p2q1q

„

Xt

p
`
Y

qt



.

This expression diverges for the specified limits provided only that we
have p1q2 ‰ p2q1.

There can be no cancellation from
ş

E
ω and

ş

F
ω, since these involve

different fermionic products, and it follows that the fermionic part of
the area of an ideal triangle indeed diverges. One can readily trace
through the remainder of the calculations in the main text to confirm
that the body of this area equals π.
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Heinrich Lambert. Critical edition with French translation and mathe-
matical and historical commentaries, ed. Blanchard, coll. Sciences dans
l’Histoire, Paris, 214 p., (2014).

[8] Papadopoulos, A. and Penner, R. A characterization of pseudo-Anosov
foliations Pacific Journal of Mathematics 130 (1987), 359-377.

[9] —, Enumerating pseudo-Anosov conjugacy classes, Pacific Journal of
Math 142 (1990), 159-173.

[10] —, The Weil-Petersson symplectic structure at Thurston’s boundary,
Transactions of the American Math Society 335 (1993), 891-904.

[11] —, La forme symplectique de Weil-Petersson et le bord de Thurston de
l’espace de Teichmüller, Comptes Rendus Acad. Sci. Paris 312 Série I
(1991), 871-874.

[12] —, Broken hyperbolic structures, Annals of Global Analysis and Geometry
27 (2005), 53-77.

[13] —, Hyperbolic metrics, measured foliations and pants decompositions for
non-orientable surfaces, Asian Journal of Mathematics 20 (2016), 157-182.

[14] Penner, R. Decorated Teichmüller Theory, QGM Masters Class Series,
volume 1, European Math Society (2012).

[15] —, Super Hyperbolic Law of Cosines: same formula with different content,
Festschrift for Norbert A’Campo’s 80th birthday.

[16] Penner, R. and Zeitlin, A. Decorated super-Teichmüller space, Journal of
Differential Geometry 111 (2019), 527–566.

[17] Rogers, A. Supermanifolds: Theory and Applications, World Scientific,
Singapore (2007).
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