THE STRUCTURE OF DOUBLE GROUPOIDS

NICOLAS ANDRUSKIEWITSCH AND SONIA NATALE

ABSTRACT. We give a general description of the structure of a discrete
double groupoid (with an extra, quite natural, filling condition) in terms
of groupoid factorizations and groupoid 2-cocycles with coefficients in
abelian group bundles. Our description goes as follows: in a first step
we prove that every double groupoid is obtained as an extension of its
pith groupoid, which is an abelian group bundle, by its frame double
groupoid. The frame satisfies that every box is determined by its edges,
and thus is called a 'thin’ double groupoid. In a second, independent,
step we prove that every thin double groupoid with filling condition is
completely determined by a factorization of a certain canonically defined

"diagonal’ groupoid.

INTRODUCTION

The main result of this paper is the determination of the structure of
a discrete double groupoid -satisfying a natural filling condition- in terms
of groupoid data. By ’discrete’ we mean here that no additional structure
(differential, measurable, topological, etc.) is assumed. The problem of
describing all double groupoids in terms of more familiar structures was
explicitly raised by Brown and Mackenzie in [BM92, p. 271].

Double groupoids were introduced by Ehresmann [E63] in the early sixties,
and later studied by several people because of their connection with different
areas of mathematics, such as homotopy theory, differential geometry and
Poisson-Lie groups. See for instance [B04, BJ04, BM92, L82, M92, M99,
MO0, P74, P77] and references therein.

A double groupoid is a groupoid object in the category of groupoids. This
can be interpreted as a set of 'boxes’ with two groupoid compositions —the
vertical and horizontal compositions—, together with compatible groupoid
compositions of the edges, obeying several conditions, in particular and most
importantly the so called interchange law.
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The double groupoids we consider satisfy the following filling condition:
for every configuration of matching edges

X

(0.1) g,
there is at least one box
x
[ g
in the double groupoid, called a ’filling’ of (0.1); see (2.2). This condi-
tion is often assumed in the case of double groupoids arising in differential
geometry, and is discussed by Mackenzie in [M0O].

Concerning the structure of double groupoids, some very early results on
‘special double groupoids with special connections’ were obtained in [BS76].
For more general double groupoids, only those in a few classes were known
to be determined by ’groupoid data’. One of them is the class of vacant
double groupoids (i.e. those for which every configuration as in (0.1) has
a unique filling): it was proved by Mackenzie in [M92, M00], that vacant
double groupoids are essentially the same thing as exact factorizations of
groupoids. Another one is the class of transitive or locally trivial double

groupoids: in the paper [BM92], R. Brown and Mackenzie show that such a
double groupoid is determined by its core diagram.

In the paper [AN05] we proved that vacant finite double groupoids gave
rise, in a natural way, to a class of tensor categories. Thus the results
of [ANO5] generalized a well-known construction in Hopf algebra theory
studied, among others, by G. I. Kac, Majid and Takeuchi.

Later, in [ANOG6], this result was extended to the much more general class
of finite double groupoids satisfying only the filling condition (2.2). It turns
out that double groupoids giving rise through this construction to a special
class of tensor categories called fusion categories must be thin. We discuss
this class of double groupoids in more detail in the last section of the paper.
We plan to apply the results of this last section to the determination of the
corresponding fusion categories in a subsequent publication.

This paper is organized as follows. In Section 1 we recall some basic facts
and constructions on groupoids and their actions on bundles. We also recall
here the definition and special features of double groupoids. In Section
2 we define the pith and the frame of a double groupoid and show that,
together with some extra cohomological data, they determine completely
the structure of the double groupoid, see Theorem 2.8. The pith groupoid
turns out to be an abelian group bundle, while the frame is what we call
a thin double groupoid; that is, a double groupoid in which every box is
uniquely determined by its edges. In Section 3 we prove that thin double
groupoids satisfying a natural filling condition are classified by groupoid
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factorizations. See Theorem 3.7. Finally, in Section 4 we discuss a special
class of thin double groupoids motivated by the paper [ANO0G].
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Notation. Along this paper we fix a nonempty set P. A groupoid G on
the base P, with source s and target e, will be indicated by s,e : G = P
or simply G if no confusion arises. Composition in G will be indicated by
juxtaposition of arrows; so that if g,h € G, such that e(g) = s(h), their
composition will be denoted by gh € G. The cardinality of a set S will be
indicated by |S].

1. PRELIMINARIES ON GROUPOIDS

1.1. Orbits of groupoid actions.

Let s,e : G = P be a groupoid. Let P,Q € P. As usual, G(P,Q) is
the set of arrows from P to @ and G(Q) = G(Q, Q). Recall the equivalence
relation induced by G on P: P ~ @ if and only if G(P,Q) # 0. We denote

by @ the equivalence class of Q). We set

Gro={9cG elg) = Q)= [[9P.Q) = [] 9(P. @),

PcP Peé
the set of arrows with target Q. It is clear from the above that
Grql =1Q x |G(Q).
We shall consider the fiber bundle s : G~ — P.
Let K be a subgroup of G(Q). We define the quotient G~q/K :=
G~q/ =Kk, where = is the equivalence relation in G~¢ given by
g=x h <= g 'hekK.

Clearly, the source map descends to the quotient and we can consider the
fiber bundle s : G~g/K — P. Hence,

QI x 19(Q)

gm K| =
90/ K| =
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Let p: £ — P be a fiber bundle. Recall that a left action of G on p is a
map > : G %, E — £ such that

plgpz) = s(g),  go(hew) = ghex,  idp(z)vw ==,

for all g,h € G, x € &£ composable in the appropriate sense. Hence, if
&, := p~1(b), then the action of g € G is an isomorphism g>__: Eig) — Es(g)-
For example G acts on s : G~ — P by left multiplication.

Assume that G acts on p: & — P. Let x € £ and define

O, ={gpx:g9€G,e(g) =p(x)}, the orbit of x,
G ={9€G:gox=2x}<G(p(x)), the isotropy subgroup of x.

The groupoid G still acts on the orbit O,. Then there is an isomorphism
of G-fiber bundles ¢ : G_,(;,)/G* — O, induced by g +— g>x. In particular,

p(x)] x |G(p(z))]
17 '

‘Ow| =

1.2. Free product of groupoids.

In this subsection we work in the category of groupoids over P; morphisms
are the identity on P.

We briefly recall the basic properties of the free product construction for
groupoids. We refer the reader to [H71] for a detailed exposition.

Let V and ‘H be groupoids. Let V = (X |R), H = (Y|S), be presentations
of ¥V and H by generators and relations [H71, Chapter 9]. Let V xH =
(XTIY|R]IS) be the free product of the groupoids V and H; V x H is the
coproduct of V and H in the category of groupoids over P. In other words,
the groupoid V * 'H is characterized by the following universal property: for
every groupoid G and groupoid maps¢: H — G, j : V — G, there is a unique
morphism of groupoids f : V «H — G such that f|y = j, and f| = j. In
particular it does not depend on the choice of the presentations of V and H.

Note that our free product of V and H is close to, but not the same as,
the free product in [H71, Chapter 9]; precisely, it is the free product with
amalgamation of identities from loc. cit.

An alternative way of describing the free product is the following. Con-
sider the set Path(Q) of all paths of the quiver @ = H][V. An element in
Path(Q) is either a an element P € P that will be indicated by [P], or a
sequence (ug,...,u,), n > 1, with u; € Q, e(u;) = s(ujy1).

A path U € Path(Q) is called reduced if either U = [P], P € P, or
U= (ut,...,un), n>1, u; € Q, and the following conditions hold:

e 1o u; is an identity arrow,
e u; and wu;4+1 do not belong to the same groupoid H or V.

For instance, the horizontal identity idy P € H, P € P, is a path which
is not reduced.
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Every path (u1, ug, ..., uy,), with n > 0, can be transformed into a reduced
path by means of a finite number of reductions, that is, operations of one of
the following types:

e removing u; if u; is an identity arrow and n > 1,

e replacing (u1) by [P] if u; =idy P or idy P, P € P,

e replacing (Ui, ..., Uj Uit1,---sUp) DY (Ul e oy Ullig1y .o, Up), if u;
and u;4+1 belong to the same groupoid H or V.

These two operations generate an equivalence relation in Path(Q). Fol-
lowing the lines of the proof of [H71, Theorem 5, Chapter 11], it is possible
to see that in any equivalence class there is a unique reduced path.

The set of all reduced paths on Q forms a groupoid under the operation
of concatenation followed by reduction. Compare also with the analogous
construction for groups [S82, p. 186].

Also, the set of all reduced paths on Q with this product is isomorphic
to V x H. Clearly V x H contains both V and H as wide subgroupoids. In
conclusion, any element u of V * H has a unique standard form, namely:

e u € P (elements of length 0), or
e U = ujus...uUy, where the u;’s belong alternatively to different
groupoids V or ‘H, no w; is an identity (elements of length n > 0).

In such case we shall say that uy, respectively wu,,, is the first, respectively
the last, letter of u.

Lemma 1.1. Let p =p1...pN, ¢ = q1--.qup be reduced paths in V x 'H of
lengths N and M respectively.

(i). If pn and q belong to different groupoids ¥V or 'H, then length (pq) =
N+ M.

(ii). If pxy and g1 belong to the same groupoid V or H, but py # (q1)~!
then length (pq) = N + M — 1.

(iii). If px and g belong to the same groupoid V or H, py = (q1)~" but
pn_1 # (q2)7! then length (pqg) = N + M — 2. O

2. DOUBLE GROUPOIDS

Let B be a double groupoid [E63, BS76]; we follow the conventions and
notations from [ANO05, Section 2] and [ANO06, Section 1]. As usual, we
represent B in the form of four related groupoids

B = H
i i
Vv = P

subject to a set of axioms. The source and target maps of these groupoids
are indicated by t,b: B—H; rl:B—=V; rl:H—->P; t,b:V —>7P
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(‘top’, ‘bottom’; ‘right” and ‘left’). An element A € B is depicted as a box

A=1 D r
b
where t(A) = t, b(A) = b, 7(A) = r, I[(A) = [, and the four vertices of
the square representing A are tl(A) = t(A), tr(A) = rt(A), bl(A) = Ib(A),
br(A) = rb(A). The notation A|B means that r(A) = [(B) (A and B are
horizontally composable); the corresponding horizontal product is denoted

A
AB. Similarly, 5 means that b(A) = t(B) (A and B are vertically compos-

able) and the vertical product is denoted B
The notation A = i means that t(A) is an identity; analogously, B =

D means that [(B) is an identity, etc.

These four groupoids should satisfy certain axioms, see e. g. [AN05]. In
particular, ididy P = ididy P, for any P € P; this box is denoted ©p and
clearly it is of the form i

2.1. Core groupoids.
We recall the core groupoid E of B introduced by Brown and Mackenzie
[M00, BM92]. See also [AN06]. Let

={Ee€B: r(E),t(E) € P}

Thus, elements of E are of the form E There is a groupoid structure
s,e:E2 P, s(E) =0b(E), e(E) =br(E), E € E, identity map id : P — E,
P — ©p, and composition E.xs; E — E, given by

(2.1) EoM := {idlij) idé‘{M)} .

: -1
M, E € E. The inverse of E € E is ECV = (Bidb(E)~)" = {ldlg%) }

If @ € P, the group E(Q) consists of boxes in B of the form @, with
Yy
y € H(Q), h e V(Q).

2.2. Corner functions.

Let B be a finite double groupoid. We discuss the ’corner’ functions
defined in [AN06]. There are four of them but it is enough to consider one.
If (z,9) € H,x:V and B € B then we set

il‘ﬁ(x,g):{UeB:U: Dg}, UR(B) = UR(L(B), r(B)).
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Let 7: H,rx;V — NU{0} and " : B — N be given by (z, g) = |UR(z, g)|
and (B) = |UR(B)|. The other corner functions are defined similarly.
Recall that the filling condition on B is

(2.2) Nz,g9) >0 for any (x,9) € H,x¢ V.

We now interpret the corner functions in terms of orbits of an action of
the core groupoid. Let v : B — P be the ‘left-bottom’ vertex, v(B) = Ib(B).

For the next result the finiteness of B is not required.

Proposition 2.1. (a). There is an action of E on v : B — P given by

(2.3) E—A:= {id{b&f“) idg‘(‘A)} , AcB,EcE.

b). Let B € B. Then Og = UR(B) and EP is trivial.
(b)

Proof. (a) is straightforward. (b): it follows from Definition (2.3) that Op C
UR(B). Then observe that for any C' € UR(B), there exists a unique £ € E

such that E—B = C, namely F = {Bg} idb(B)~L. O

Let B € B and Q = v(B) = bl(B). Consider the relation ~ on P induced
by E. Recall that 0(Q) is the common value

S(idy Q,idy Q) ="(idy @,1dx Q) = L(idy Q,idy Q) = "(idy Q,1dn Q).

The preceding proposition, together with the discussion in Subsection 1.1,
implies the following formula for the corner function:

(2.4) (B) = 1Q| x [E(@Q)]-
Applied to B = Og, the formula implies that
0(Q) ="(0q) = Q| x [E(Q)| ="(B).

Hence 0(Q) is also given by (2.4). That is, the corner functions on a box
depend only on the vertex ’opposite’ to the corner of that box. Formula
(2.4) provides easy alternative proofs of the following facts— see [ANOG]:

(a) Let P,Q € P. If P ~ Q, then §(P) = 0(Q).
L | M
(b) Let L, M, N € B. Suppose that T‘i Then

"(L) ="(M), (L) =a(M), "(L)=1c(N), (L)=a(N).
(c) Let X,Y,Z € B such that )Z( Y Then

AXY) =7(X), T <)Z(> =1(Z), L(XY)=.(Y), L<)Z<> = L(X).

(d) The double groupoid is vacant if and only if the core groupoid is
trivial.
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2.3. Pith groupoids.
The intersection K of all four core groupoids is the pith groupoid of B:

K = {K € B: t(K),b(K),l(K),r(K) € P}.

Thus a box is in K if and only if it is of the form @ Let p: K — P be

the ‘common vertex’ function, say p(K) = [b(K). For any P € K, let K(P)
be the fiber at P; K(P) is an abelian group under vertical composition,
that coincides with horizontal composition. This is just the well-known
fact: “a double group is the same as an abelian group”. Indeed, apply the

interchange law
i) = (3) ()

to four boxes K, L, M, N € K(P): if L = M = ©p, this says that & = KN
and the two operations coincide. If, instead, K = N = ©p, this says that

]\IZ = M L, hence the composition is abelian. Note that this operation in K

coincides also with the core multiplication (2.1). In short, K is an abelian
group bundle over P.

The vertical and the horizontal groupoids V and ‘H act on K by vertical,
respectively horizontal, conjugation:

idg
(2.5) If g e V(Q,P) and K € K(P) then g- K := 'dK L € K(Q).
ag

(2.6) If z € H(Q, P) and K € K(P) then z- K =idzKidz~! € K(Q).

Both actions are by group bundle automorphisms.

2.4. Frame of a double groupoid.
Let P be a set and V, H be groupoids over P denoted vertically and

horizontally, respectively. Let O(V,H) be the set of quadruples | f ’ g
with z,y € H, f,g € V such that ’
W(z) =t(f), r(x)=*tg), Uy)=0b(f), r(y) =0blg)
x

If no confusion arises, we shall denote a quadruple as above by a box h D g.
Yy
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OV,H) = H
The collection || ] forms a double groupoid, called the coarse
1% = P

double groupoid with sides in V and H, with horizontal and vertical compo-
sitions given by

X
T ! xx’ hDg T
hDggD,g/thg’, S VAT
y y

7 Y 7
vy N D q v,
%

for all z,y,2',y € H, g,h,g’, b €V appropriately composable.

B = H
Let || Il be a double groupoid. There is a map I : B — O(V, H)
vV = P
given by
x T x
alfl]gl=f 9], [fl]loeB
Yy Yy Yy

Clearly, IT induces a morphism of double groupoids B — O(V, H).

Definition 2.2. We shall say that B is thin if IT is injective (any box is
determined by its sides).

Let F be the image of II. The frame of B is the thin double groupoid

F = H
U U
Vv = P

Let B be a double groupoid. Several properties on B are controlled by its
frame F. Recall the following definitions [BM92, Definition 2.3].

(a) B is horizontally transitive if every configuration of matching sides
u can be completed to at least one box in B.

(b) B is vertically transitive if every configuration of matching sides j
can be completed to at least one box in B.

(¢) Bis transitive or locally trivial if it is both vertically and horizontally
transitive.

Remark 2.3. Let B be a double groupoid. Then

(i) B satisfies the filling condition (2.2) if and only if so does F.
(ii) B is horizontally (vertically) transitive if and only if so is F.
(iii) If B is vacant then it is thin.
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Our aim is to show that B is determined as an extension of its frame
double groupoid by its pith groupoid. Let us fix a section u : F — B of II.
Recall the action (2.3) of the core groupoid.

Lemma 2.4. For all B € YR(u(F)), there is a unique K € K such that B =
K—pu(F). In other words, the map ¥ : K ,xF — B given by V(K,F) =
K—u(F) is a bijection.

Proof. Note that IT(K—u(F)) = F. Hence, K—u(F) = K'—u(F’) implies
F = F'; thus K—u(F) = K'—u(F), and K = K’ by Proposition 2.1 (b).
That is, ¥ is injective. We show that it is surjective. Let B € B and let
F = 1I(B). Since B and u(F) have the same sides, there exists K € E such
that B = K—u(F'), again by Proposition 2.1. But clearly K € K. O

We next introduce vertical and horizontal cocycles to control the lack

of multiplicativity of the section p. We define 7 : F,.x; F — K and o :
fbxtf — K by

(2.7) w(F)u(G) = 7(F,G)—pu(FG),  r(F)=1(G),
(2.8) 555; = o(F,G)—p (g) . b(F) = Q).
That is,

idI(F)  p(FG)
W(F)u(G) = 7(F.G) idb(FG),

MEng idI(F)I(G) M(@)
MO L Ee )

for appropriate F';, G € F. The cocycles o and 7 are well-defined in virtue
of Lemma 2.4. If we assume that p(idz) = idz and u(idg) = id g for any
x € H and g € V then ¢ and 7 are normalized:

(2.9) 7(F,idr(F)) = Oyp) = T(1dI(F), F),
(2.10) o(F,idb(F)) = Oypy = o(idt(F), F).

Now we can reconstruct the horizontal and vertical products of B in terms
of the pith groupoid K, the frame thin double groupoid F, the actions (2.6),
(2.5) and the cocycles o and 7. If K, L € K, F,G € F then
(2.11) (K — uw(F)) (L — w(G)) = (KOB(F) - L)7(F,G)) — n(FG),
if r(F) =1(G) and

(2.12) {IL{:L‘((Q} = (U9)™ K)Lo(F,G)) — (g)
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if b(F) = t(G).

2.5. Extensions of double groupoids by abelian group bundles.
The description in the preceding subsection suggests the following con-

F = H

struction. Let || 1l be any double groupoid (not necessarily thin) and
y = P

let v : K — P be any abelian group bundle. Assume that V and H act on K

by group bundle isomorphisms. Let 7 : F,.x;F — K and 0 : Fpyx; F - K

be maps such that

(2.13) Yo (F,G)) = bl(G),  if b(F) = t(G),
(2.14) V(T (F,G)) = bi(F),  ifr(F) =1

X
normalized by (2.9) and (2.10). Consider the collection ||
1%

NE X

=
=
where:

e The maps t,b,l,7 on K ,x, F are defined by those in F: ¢(K,F) =
t(F') and so on.
e The horizontal and vertical products in K ,x F are given by

(2.15) (K,F)(L,G) = (K (b(F) - L) 7(F,G),FG),  if F|G,
(2.16) ((lli’g)):<(Z(G)_1-K)LJ(F,G),Z>, ifg.

e The identity maps id : V — K,x, F, id : H — K, x, F are given
by idg = (@b(g),idg), ide = (@l(m),idl‘), geV, zeH.
e The inverse of (K, F') with respect to the horizontal and vertical
products are respectively given by
(2.17) (K, F)! = (b(F)*1 - (K*IT(F, Fh)*l) ,Fh) ,
(2.18) (K, F)" = ((z(F) CK) L o(F, P F) .

Proposition 2.5. K %, F is a double groupoid if and only if, for all
F.G,H € F,

(2.19) 7(F,G)7(FG,H) =7(F,GH) (b(F)-7(G,H)), F|G|H;

(220)  o(G,H)o (F fl) = ((H)™  o(F.G)) o (g H) ,

=[]

(2.21) (H)™ - (t(H)-L)=bH) - (r(H)™ - L), LeK(tr(H));
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(222) ((H)™'-7(F,G))r(H,J)o(FG,HJ)

= (b0(H) - 0(G, J))o(F, H)7 (fl Cj) , %%

If these conditions hold, we say that the double groupoid K ,x, F is an
abelian extension of the abelian group bundle K by F.

Proof. The associativity of the horizontal and vertical compositions are re-
spectively equivalent to (2.19) and (2.20).

We have to check the axioms of double groupoid as in [BS76]; we follow
[ANO5, Lemma 1.2]. All the axioms are consequences of the definitions
(since the axioms hold in F) except the interchange law, which is equivalent
to (2.21) and (2.22). Indeed, let H € F and L € K(tr(H)). Computing

idt(H) L

H idr(H)

to the interchange law in this case. Next, consider

in two different ways, we see that (2.21) is equivalent

F
(K,F), (L,G), (M,H), (N, J) € K,x, F such that ¢

Compute {{((ﬁ: .}FFI))(({Z;\;,C,;]))}} and {((ﬁ: FFP)} {EZI\/]ZFJB} The resulting ex-

pressions are equal if and only if

(H)™ L (W(F)-L)I(H)™ - 7(F,G)r(H,J)o(FG,HJ)

=b(H)-(I(J)t - L)b(H) - o(G, J)o(F,H)T (;?)

It is not difficult to see that this is equivalent to (2.21) and (2.22). O

Remark 2.6. As we shall see later, see Section 3, the thin double groupoid F
determines a ’diagonal’ groupoid D endowed with groupoid maps j: V — D,
i : H — D. In terms of this groupoid, Condition (2.21) means that the
actions of H and V come from an action of D on K.

Remark 2.7. Conditions (2.19) and (2.20) are cocycle conditions on the
horizontal and vertical composition groupoids. Together with (2.22) they

give a cocycle condition in the double complex associated to the double
groupoid F as considered in [AN05, AMOG6].

Assume that the hypotheses in Proposition 2.5 are fulfilled. Let us identify
K with a subset of K x,F via K — (K,0p), if K € K(P). Also, let
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p:F — Kpxy F, u(F) = (Opy, ). Then

_dUF) u(F)
() =" ey

Hence the formulas (2.15) and (2.16) are equivalent to (2.11) and (2.12),
respectively. In particular we have

for any (K, F) € K px, F.

Theorem 2.8. Any double groupoid is an abelian extension of its pith group
bundle by its frame. O

3. THIN DOUBLE GROUPOIDS AND FACTORIZATIONS OF GROUPOIDS

Let V and H be groupoids over P. In this section we describe all thin
double groupoids satisfying the filling condition (2.2) whose groupoids of
vertical and horizontal edges coincide with ¥V and H, respectively.

3.1. Double groupoid associated to a diagram of groupoids.
Let us say that a diagram (D, j,i) over V and H is a groupoid D over P
endowed with groupoid maps over P

i:H—>D, j:V—D.
The class of all diagrams (D, j,4) over V and H is a category with morphisms
(D, j,i) — (D', j',i') being morphisms f : D — D’ of groupoids over P such
that fi =4 and fj = j'.
Consider the full subcategory of diagrams (D, j,7) with D = j(V)i(H);
that is, such that every arrow in D can be written as a product j(g)i(x), for

some g € V, x € H, with b(g) = I(z). An object in this subcategory will be
called a (V, H)-factorization of D.

Each diagram (D, j, i) has an associated double groupoid (D, j, i) defined
as follows. Boxes in (J(D, j,¢) are of the form

x
A:hDgeD(V,H),
Yy
with z,y € ‘H, g,h € V, such that

i(2)7(g) = j(h)i(y) in D.

Notice that (D, j,4) is stable under vertical and horizontal products in
O(V, H); therefore it is itself a double groupoid. By its very definition,
0(D, j,1i) is thin.

The assignment (D, j,i) — (D, j,) just defined is clearly functorial.

R. Brown has kindly pointed out to us that the construction of the double
groupoid (D, j,i) was found by him long time ago, and that it was taken
up by Lu and Weinstein [LW89].
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Example 3.1. Let G be a simply connected Poisson-Lie group, g its Lie
algebra. It is well known that g is a Lie bialgebra; let g* be the dual Lie
algebra and let 0 be the correspondig Drinfeld double. Let G* and D be
simply connected Lie groups with Lie algebras g* and 0, respectively. Then
the maps G — D and G* — D give rise to a double symplectic groupoid
[LW89, Theorem 3].

Lemma 3.2. The core groupoid of (D, j,i) is isomorphic to the groupoid
VOpj X; H = {(g,x) e VP, x;H: j(g) = i(l’fl)} C VP, x; H.

Proof. An isomorphism is given by the map E — V°P; x; H, defined by
E — (I(E),b(E)). This map is surjective by construction of (D, j,4); it is
injective as a consequence of the thin condition on (D, j,1). O

Remark 3.3. If D = j(V)i(H) is a factorization, then O(D, j,4) satisfies the
filling condition (2.2). Indeed, if g € V, € H, are such that r(x) = t(g),
then the condition D = j(V)i(H) implies that there exist y € H, h € V,
x
such that j(h)i(y) = i(x)j(g). Then, by construction, the box h D gisa
)
x

filling in O(D, j,4) for T g.

Example 3.4. Suppose D = P? is the coarse groupoid on P. Let the maps

i:H—D,j:V — D, be defined by i(z) = (I(z),r(x)), x € H, and j(g) =

(t(g),b(9)), g € V. Let B = O(P2,4,i) be the associated double groupoid.

The relations i(x)j(g) = j(h)i(y) are satisfied in D, for all z,y € H, g,h € V,

such that r(z) = t(g), b(h) = l(y), l(x) = t(h), r(y) = b(g). Hence, for all
x

such x,y, g, h there is a box h D g in B. According to the composition rules

Yy
in B, it turns out that B is exactly the coarse double groupoid O(V, H).

We shall show that double groupoids of the form (D, j,4) exhaust the
class of thin double groupoids which satisfy the filling condition (2.2).

3.2. Diagonal groupoid of a thin double groupoid.
Let B be a double groupoid. In the free product V x H, we denote

x
(A :=zgy th7t, if A=h D geB.
Yy
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Define the ’diagonal’ groupoid D(B) to be the quotient of the free product
V * 'H modulo the relations [A4], A € B.

In the rest of this section we suppose that B is thin and satisfies the filling
condition (2.2).

Lemma 3.5. The subgroupoid J generated by all relations [A], A € B, is a
normal subgroup bundle of the free product V = H.

Hence, if B satisfies (2.2), then D(B) = (V*«H)/J.

x
Proof. 1t is clear that J is a subgroup bundle of V « H. Let A = h D g
Y
be a box in B. We shall show that the expressions z(zgy~'h~!)z~! and
f(xgy=*h=1)f~! both belong to J, for all z € H, f € V, such that r(z) =
[(x) = b(f). This implies normality because V and H generate V x H. Let
z, f as above. We have r(z) = [(x) = t(h). Hence, since B satisfies (2.2),
z

we may pick a box r D h in B. Then the horizontal composition

s
z x ZT
r D hh D g=r D g
$ Yy Y
is in B. Therefore, the expressions X = zhs '~ ! and Y = zagy s 1r~!

both belong to J. Hence so does the product Y X! = z(zgy~'h~1)2~1. To
show that f(zgy~'h™1)f~! belongs to J, we argue as before, now picking a

u
box B = f D v in B and then taking the vertical composition i inB. O
x

Composing the inclusions H,V — V % H with the canonical projection
VY % H — D we get canonical groupoid mapsi: H — D, j:V — D.

The diagram (D(B), j, 1) is characterized by the following universal prop-

erty: for every diagram (G, jo,i9) over V and H, such that ig(z)jo(g) =
x

jo(R)io(y), whenever the box h[ |g is in B, there is a unique morphism of

Y
diagrams f : D(B) — G.

It is clear that the assignment B — (D(B), j,1) is functorial.
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The filling condition on B corresponds to the factorizability condition on
D(B), as we show next.

Lemma 3.6. D(B) = j(V)i(H).
In particular, if B is finite then D(B) is a finite groupoid.

Proof. Every element in V % H writes as a product wy . .. w,,, where each wj;
is an element of H or V. Hence every element in D factorizes as Wy . . . Wny,,
where w; is the image of w; under the canonical projection, which coincides
with i(w;) or j(w;) according to whether w; is an element of H or V.
Therefore it is enough to see that every product i(z)j(g), v € H,g € V,
belongs to j(V)i(H). Indeed, this implies that the elements in the factor-
ization may be appropriately reordered to get an element in j(V)i(H). To
see this we use the assumption of condition (2.2) on B: since the product

T

i(z)j(g), x € H,g € V, is defined, then there is a box h Dg in B. By
Yy

construction of D, i(x)j(g) = j(h)i(y). The lemma follows. O

3.3. Main result.
We can now prove the main result of this section. Lemma 3.8 encapsulates
the most delicate part of the proof.

Theorem 3.7. The assignments B — D(B) and D — (D, j,i) determine
mutual category equivalences between

B = H
(a) The category of thin double groupoids || 1l satisfying the filling
yV = P

condition (2.2), with fized V and H, and

(b) The category of (V,H)-factorizations of groupoids D on P.

Proof. Tt remains to show that the assignments are mutually inverse. Sup-
pose first that D = j(V)i(H) is a factorization as in (b). Let D’ be the
diagonal groupoid associated to the double groupoid (D, j,1); so that there
are groupoid maps j' : V — D', i’ : H — D’ such that D' = j/(V)i'(H), in
view of Lemma 3.6.

The universal property of D’ implies the existence of a unique groupoid
map f : D' — D such that fi’ = ¢ and fj' = j. Moreover, f is surjective
because of the condition D = j(V)i(H). To prove injectivity of f, let P € P
and let z € D'(P) such that f(z) € P. Write z = j/(9)i'(z), g € V, € H,
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such that b(g) = I(x). Applying f to this identity, we get idp = f(z) =
j(g)i(z). In particular ¢t(g) = P = r(x), and i(idp)j(idp) = j(g)i(x) in D.

The definition of O(D, j,7) implies that the box L is in O(D, j,4).
X

Therefore, in view of the defining relations in D', we have z = j'(¢)i'(z) =
idp. This proves that f is injective and thus an isomorphism.

Let now B be a double groupoid as in (a), D = D(B) the associated
diagonal groupoid with the canonical maps i : H — D, j : V — D, and
x
B = 0O(D,j,i). Let h D g be a box in B. Then i(z)j(g) = j(h)i(y) in
Yy
x
D and this relation determines a unique box h D g in B, since B’ is thin.

Yy
This defines a map F : B — B’ that, because of the thin condition on B,

turns out to be an injective map of double groupoids.
We claim that F' is also surjective, hence an isomorphism. To establish

this claim, we shall need the presentation of the free product V x'H given in

T
Subsection 1.2. Let A =h D g be a box in B, which means that
Yy
(3.1) i(x)j(g) = i (h)i(y)
x
in D. We shall prove that there is a box h D g in B. First, using the filling
Y
x
condition (2.2) in B, there is a box Ay = hg D g € B. Then it is enough to
Yo

show that the box F = / E is also in B, where f = hglh and z = yyo_l.
z

In fact, if £ € B, then £ — Ay € B is the desired box.

Since Ag belongs to B, i(z)j(g) = j(ho)i(yo) in D; combined with (3.1),
this gives j(f)i(z) € P. The definition of D combined with Lemma 3.5
implies that the path fz belongs to the normal group bundle J. The proof
of the Theorem will be achieved once the following Lemma is established. [J

Lemma 3.8. Let f € V and z € H such that



18 ANDRUSKIEWITSCH AND NATALE

o t(f)=r(z) =P and b(f) =1(z).
o There exist A1,..., A, € B, €1,...,6, € {£1} such that

(3.2) Fr= (A1) (A

Then there exists E € E such that E = ! E
z

Proof. We proceed by induction on n. Note that the case n = 0 means that
fz =idp in V *H, so that f = id%, z = idg, since the word fz is not
reduced; thus E = ©p is the desired element in P.

Proof when n = 1. We need to work out this case by technical reasons,
see Sublemma 3.10 below. We shall assume that f ¢ P, z ¢ P, so that the
path fz is reduced; if either f € P or z € P the arguments are similar. We
have fz = [A1]€!. If ¢; = 1 this says that fz = zgy~'h~! where we omit the
subscript 1 for simplicity. Hence, the right-hand side is not reduced. Since
the letters x, g, y, h belong alternatively to different groupoids, at least one
of them should be in P. If z = idy P, then fz = gy~ 'h~! hence necessarily

z
If z ¢ P then it should be cancelled because the left-hand side begins by

feV:thusge P, y=a""'and fz = h, a contradiction.

h=idyP, f=g, 2=y ' and A = lf Thus E = (A;)" does the job.

Assume now that e; = —1, that is, fz = hyg 'z~!. Again, the right-

hand side is not reduced and one of the letters should be in P. If h = idy P

1 1 1

then fz = yg~'z~' hence necessarily y = idy P, f = ¢~ and

E = (A1)~ ! does the job. If h ¢ P then either

, 2 = T

idh
(A~
b)) y¢P,geP, f=h,z=yz ' and E = Ay ido~" does the job.

(@) yeP, f=hgl,z=2"land E = { } does the job; or

Assume now that the claim is true for n —1. Assume that (3.2) holds for
n. Our aim is to reduce the right-hand side of (3.2) to n — 1 factors, or to
achieve a contradiction by comparison of the lengths in both sides.

Before we begin to analyze contiguous brackets, where ‘bracket’” means

an element of the form [A;]*!, let us set up some preliminaries. Let us say

that A; € Bis of class £ if exactly £ of its sides are not in P. We shall assign

a ‘type’ to any bracket [A;]*!.
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o If ¢ =0, all the sides of A; are in P; hence [A;] can be extirpated
from the right-hand side of (3.2) and we are done by the inductive

hypothesis. Hence, we can assume that £ > 0 for all 7.

e If / =1, we distinguish two types.

J

(a): A; has a non-trivial vertical side. We can assume that A; = h;
- ~ id gt
gi then [A;] = [A4;] where A; = {1 Ji } =g

FOI‘, if Al = ‘E
Ai
Moreover if [4;] is of type (a) then [4;]7! = [AY], again of type («).
T

(8): A; has a non-trivial horizontal side. We can assume that A; = B
Moreover if [A;] is of type (3) then [A4;]7! = [A}], again of type (8). In
particular, if £ = 1, then we can assume ¢; = 1.

e If / = 2, we can assume that the two non-trivial sides live in dif-
g; then [A;] = [A;] where

—

ferent groupoids. For, if A; = h;

| J

larly, if A; has two non-trivial horizontal sides then [A4;]% can be

=g, Yhi |, whose bracket is of type (). Simi-

i - e

replaced by a bracket of type (3).

We distinguish two types.
T Tj

(7): [Ai] € HV. We can assume that A; = hiD-‘- For, if A; = D g; then

X
[A;] = [A;] where A; = 1 Ail = g7 | Similarly, if A; = EJ then
idg; Yi

-1
Yi

(6): [Ai] € VH. Then A; = ] i
Yi

Moreover if [A4;] is of type (y) then [A;]7! = [B], where B = (A;idt(A4;)~1)"
is of type (6). In particular, if £ = 2 then we can assume ¢; = 1.
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e If / = 3, we can assume that the identity sides are either z; or h;;
otherwise we replace the box by one with £ = 2. There are two types.

(€): Aizﬂj% (n) : Ai:h’ygz,
Yi !

Moreover if [A;] is of type (¢) then [A;]7! = [AY] is again of type (¢); if
[A4;] is of type (1) then [4;]7! = [A}] is again of type (7). In particular, if
¢ = 3 then we can assume ¢; = 1.

o If { =4, we distinguish two types.

0): e=1, (k): e=-—1

In conclusion the right-hand side of (3.2) is a product of n brackets of
types (a), ..., (k) with the exponent ¢; = 1 except for the type (k).

Next, we can assume several restrictions on the contiguity of these brack-
ets, as summarized in the following statement. We prove below that, when-
ever these restrictions do not hold, then we can replace the pair of contiguous
brackets by a single bracket and hence apply the inductive hypothesis.

Restrictions 3.9. Let 1 <i<n.

(1). If [Ai] is of type (c), then i > 1 and [A;—1]%* is of type (k). Also, if
i <mn then [Ajp1]9+t is of type (0).

(2). If [Ai] is of type (B), then i < n and [Aiy1]9+* is of type (k). Also, if
i>1 then [A;_1]%-1 is of type (0).
(3). If [Ai] is of type (vy), then:
(a): Ifi > 1 then [A;—1]%" is of type (n), (0), or (k) with x;—1 # x;.
(b): Ifi < n then [Aiy1]9** is of type (), (0), or (k) with hix1 # h;.
(4). If [A;] is of type (0), then:
(a): Ifi > 1 then [Ai—1]%1 is of type (C), (0), (k), or (0) with hi—1 #

Gi-
(b): If i <n then [A;1]“*" is of type (n), (k), or (0) with xi41 # y;.
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(5). If [A;] is of type (C), then:

(a): Ifi > 1 then [A;i—1]%" is of type (7), (C), (n), (8) or (k). Also,
(1) if [Ai—1] is of type (C) then yi—1 # xi;
(2) if [Ai—1]“" is of type (k) then x;_1 # ;.

(b): Ifi < n then [Aj11]“*! is of type (9), (), (n), (0) or (k). Also,
(1) if [Aisa] is of type (C) then yi # Tiv1;
(2) if [Aiga]“+1 ds of type (0) then y; # iy

(6). If [A;] is of type (n), then:

(a): Ifi > 1 then [A;—1]%" is of type (0), (), (n), (0) or (k). Also,
(1) if [Ai—1] is of type (n) then hi_1 # gi;
(2) if [Ai—1]%" is of type (6) then hi—1 # g;.

(b): If i < n then [Ait1]9t* is of type (), (), (n), (0) or (k). Also,
(1) if [Ai1] is of type (n) then git1 # hi;
(2) if [Aiga]“+1 is of type (k) then i1 # hi.

(7). If [A;]% and [Ais1]“+* are both of types (8) or (k) for some i, 1 < i <
n — 1, then either

® €, = €;4+1, OT

e ¢, = 1= —€i41, and hz # hi+1;‘ or

o ¢, =1=—¢€41, hi = hjy1 and y; - Yit1, OT
o ¢, =—1=—¢€y1 and x; # x;11; or

® ¢ =—1=—€11, = Tiy1 and g; # git1-

We deal with (1). If [A;] is of type () then hy fz = [A2] ... [A,]; by the
h
inductive hypothesis there exists F1 € E such that E; = if E Then FE =
z

(A1)"

1
that i > 1 and [A;_1]“~* is not of type (k). We show that [A;_1][A4;] = [B];
hence the right-hand side of (3.2) has really n — 1 factors and the existence

does the job. Thus we do not consider this possibility. Assume

of E follows from the inductive hypothesis. Thus we do not consider this
possibility. Explicitly, B € B is given as follows.

o If [A;_1] is of type («) or (n) then B = {AAi }
i1

o If [A;_4] is of type (B) then B = {A;l_l}.
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Ai
o If [A;_1] is of type () then B = { id hi !,
Aia
o If [A;_1] is of type (§) or () then B = A; A;_;.
o If [A;_4] is of type (0) then B = {AAiC} Ch, where C € B is a
i1

-1
box filling the configuration %
9i

Now, if i < n then write [A;11]*! = [Aiy1] " Then [Aj][Aip] =
~ -1
<[Ai+1]7€i“ [Af]) . We discard this possibility by the previous discussion

unless [A;11]7 %+ is of type (k), that is, unless [4;41]“*! is of type (6).

We deal with (2). If [A,] is of type (8) then fzx, ! = [A1] ... [A,_ 1] 1;

by the inductive hypothesis there exists F; € E such that F; = / E—Jf
2x,

Then E = FE1(A,)" does the job. Thus we do not consider this possibil-

ity. Assume that ¢ < n and [A;41]“" is not of type (k). We show that

[Ai][Ait1] = [B]; hence the right-hand side of (3.2) has really n — 1 factors

and the existence of E follows from the inductive hypothesis. Thus we do

not consider this possibility. Explicitly, B € B is given as follows.

o If [A;+1] is of type («) or (n) then B = As
Ait1
o If [A;+1] is of type () or () or (¢) then B = A; Aj41.
o If [A;1] is of type (v) then B = A; .Aitll
idh;
A Aip1
o If [A;41] is of type (0) then B = ‘1 ¢ , where C' € B is a
C’L}

box filling the configuration = _, Yitt
hiJrl

If i > 1, we may write [A;,_1]“"* = [A;_1] %1, hence [4;_1]“1[A;] =

<[A£‘] [L_l]*ei*) . We discard this, unless [A;_1]“~! is of type ().

We deal with (3a). We may assume that [A;_1]“~! is neither of type («)
nor () by (1) and (2). If [4;—1]%! is of type (), (9), ({), or (k) with
xi—1 = x;, then [A;_1]1[A4;] = [B]; hence the right-hand side of (3.2)
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has n — 1 factors and, by the inductive hypothesis, we do not consider this
possibility. Here B € B is:
Ai
o If [A;_4] is of type () then B = id hy !,
{Al id 1'1_1}
o If [A;_41] is of type () or (¢) then B = A; ida; ' A;_;.
-1
o If [A; 1]7 ' is of type (k) with ;1 = x;, then B = Ai/lld 1 }
i1
We deal with (3b). We may assume that [A; ;1] is neither of type («)
nor (3) nor () by (1), (2) and (3a). If [A;41]“+* is of type (0), (n), or (k)
with h; = hit1 then [4;][Ai41]9* = [B]. By the inductive hypothesis, we
do not consider this possibility. Here B € B is:

A;
e If [A; 1] is of type (8) or (n) then B = < id h; !
Aip
1 . A’L v
o If [A;+1]7" is of type (k) with h; = h;y; then B = P AYL.

Now (4a) follows from (3b), and (4b) follows from (3a), by the inversion
argument as for the second parts of (1) and (2).

We deal with (5a). If [A;_1] is of type (¢) and y;—1 = x4, then [A;_1][A;] =
Ai1

(- If [A;_1]7 ! is of type (k) and 2; 1 = x;, then

[B] where B = {

AY

[A;_1]7'[A;] = [B]~! where B = A * 5. By the inductive hypothesis, we
i1

do not consider this possibility. Now (5b) follows from (5a) by the inversion

argument.

We deal with (6a). If [A;_1] is of type (n) and h;—1 = g;, then [4;_1][A;] =
[B] where B = A;A;—1. If [A;—1] is of type (0) and h;—; = g;, then
[A;—1][A;] = [B] where B = A;A;_1. By the inductive hypothesis, we do
not consider this possibility. Now (6b) follows from (6a) by the inversion

argument.

We deal with (7) If € = 1 = —€i+1, hi = hz’+1 and Yi = Yi+1, then
A;

A’U

[4;][Ai11]7! = [B] where B = {
i+1
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Ife, = —-1= —€i+1, Tj = Tij41 and 9i = 9i+1, then [Ai]_l[AH_l] = [B]_l

where B = AiA?H.

To conclude the proof of the lemma, and a fortiori of the theorem, we

need to establish the following fact.

Sublemma 3.10. Let n > 2. Consider an element P, € V x H, such that

(3.3) P, =[A1] .. [An]

where Ay, ..., A € B, €1,... €, € {Z1}; the brackets [A;]5 are of type (o),
.., (k), 1 <i<mn; and contiguous brackets satisfy Restrictions 3.9. Then

(i) the last letter of P, is the last letter of [An]™,
(i) if [Ay])has type (0) or (k) then the last two letters of P,

equal the last two of [Ap], and
(1ii) the length of P, > 2.

Proof. If n = 2 the claim follows by inspection of the possible cases; in
fact, the length of P turns out to be > 5. Now assume that the claim is
true for n > 2. Consider P,41 as in (3.3) and write P41 = Pp[Ap41]t.
By hypothesis, the length of P5 is > 2 and its last letter is that of [A,]".
Now the pair [A,]"[Ay41]+! satisfies Restrictions 3.9. The sublemma now

follows from Lemma 1.1. O

We can now finish the proof of the Lemma. If the right-hand side of (3.2)
satisfies Restrictions 3.9, then the sublemma gives a contradiction, since the
left-hand side has length < 2. Thus at least one bracket can be eliminated
in the right-hand side and the Lemma follows by induction. U

4. FUSION DOUBLE GROUPOIDS

Let B be a finite double groupoid satisfying the filling condition (2.2).
The following definition is motivated by [AN06, Proposition 3.16].

Definition 4.1. We say that B is fusion if and only if the following hold:
(F1) The vertical groupoid V =2 P is connected.
(F2) For any x € H, there exists at most one E € E such that b(F) = x.

Observe that condition (F2) in the definition is equivalent to injectivity
of the morphism b : E — H of groupoids over P.
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Let E be the core groupoid of B and let & be the core groupoid of its
frame F. Then there is an exact sequence of groupoids

1 K E ¢ 1.
In particular, for any P € P, we have
(4.1) [E(P)| = [K(P)||€(P)].

Proposition 4.2. Suppose that B is fusion. Then B is thin.

Proof. 1t follows immediately from condition (F2) in Definition 4.1. O

Then, in view of Theorem 3.7, a fusion double groupoid B is determined
by a (V, H)-factorization of its diagonal groupoid D = D(B).

Proposition 4.3. The following are equivalent:

(i) B is fusion.

(il) V = P is connected and j : V — D(B) is injective.
In particular, if B is fusion, then its diagonal groupoid D = D(B) is con-
nected.

Proof. 1t is enough to see that injectivity of the map b : E — H is equivalent
to injectivity of the map j. Suppose first that b : E — H is injective. Let
g € V such that j(g) € P. By Theorem 3.7, B ~ B(D, j,i). Then there is a
box g@ € B. Since this box belongs to the core groupoid E, the injectivity
of b implies that g € P. Hence j is injective.

Conversely, suppose that j is injective. Let E' € E such that b(E) € P, so
that F = g@, for some g € V. The construction of D implies that j(g) € P
and therefore g € P. The thin condition on B now guarantees that £ € P.
Thus b is injective. O
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