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1. INTRODUCTION

Ladder approximations have been one of the most basic attempts to simplify and truncate Dyson—
Schwinger equations in field theory in a still meaningful way. From a mathematical viewpoint they simplify
the combinatorics of the forest formula considerably, and are solvable by a scaling Ansatz for sufficiently
simple kinematics.

Here, we discuss such a scenario, but iterate one- and two-loop skeletons jointly, combining some analytic

progress with a thorough discussion of the underlying algebraic properties.

1.1. Purpose of this paper. The main purpose is to sum an infinite series of graphs based on the iteration
of two underlying skeleton graphs. We progress in a manner such that our methods can be generalized to
any countable number of skeletons. We restrict to linear Dyson Schwinger equations, a case relevant for
theories at a fixpoint of the renormalization group. We proceed using one-dimensional Mellin transforms, a

privilege of linearity of which we make full use. See [, 2, B, 4] for the general approach.

2. THE DYSON—SCHWINGER EQUATION

2.1. The integral equation. The equation which we consider is in massless Yukawa theory in four-
dimensional Minkowski space M, for pedagogical purposes. We define a renormalized Green function de-
scribing the coupling of a scalar particle to a fermion line by
d*k (1 1 1
Gr(a,In(—q¢*/u? = 1—a/ ,—{—GR a,In(—k? /> —7}
(. In(~? /1) | S O RN s
+a2/ ﬂ/ )+ H)Gra, In(=(k+1*/u*))J + K)H +¢)
m 12 Sy o [(k+ 1?21 (k + q)*k*(1 — q)? =
where {}_ indicates subtraction at u? = —¢?, so that Gg(a,0) = 1:
(2) {Gr(a,In(—k?*/p*))} _ = Gr(a,In(=k*/4?)) = Gr(a,1n(~k*/ — ¢*)).

The kinematics are such that the fermion has momentum ¢ and the external scalar particle carries zero

(1)

momentum. The equation can graphically be represented as
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where the blob represents the unknown Green function Gg(a,In(—q?/u?)). This linear Dyson—Schwinger

equation can be solved by a scaling solution, L = In(—¢*/u?),
3) Gr(a, L) = exp{—ryc(a)L}.
Indeed, this satisfies the desired normalization and leads to the equation
(4) exp {—c(a)L} =1+ (exp {—9c(a)L} — 1) [aFi (1) + a*F2(7e)] |
where the two Mellin transforms are the functions determined by
-p
®) o= [t (%)

and similarly

. Ak [ d /(W +q) (k)
(6) FQ"’_)/MW/MW k+l2l2(k+Q)2k2(l—q){ v ] |

Clearing the factor [exp{—~g(a)L} — 1] in this equation gives
(7) 1= aFi(y6) + d*F(va).

It remains to determine F}, F5 explicitely and solve this implicit equation for v in terms of a. We do so in

the next sections but first discuss the perturbative structure behind this solution.

2.2. The algebraic structure. We can identify any graph in this resummation with a word in two letters

u, v say, for example:

(8)

We have renormalized Feynman rules ¢r such that

9) dr(u)(L) = —Liig% pF1(p),
and
(10) 6r(0)(L) = ~L Ty pF(p).

The Green function Gg(a, L) is obtained as the evaluation by ¢r of the fixpoint of the combinatorial

Dyson Schwinger equation

(11) X(a) =1+ aB%(X(a)) + a*B% (X (a)).
We have
(12) X(a) =14+ au+ a*(uu+v) + ... = expy [au + a?v],

where Y is the shuffle

(13) Hlin X Hlin - Hlirn

(14) B (w1) Y B (wp) = B (w1 Y B (w2)) + B (w2 Y B, (w1)),

Vi, j € {u,v}. Note that for example u Y u = 2uu.



The two maps Bﬁr are Hochschild one-cocycles, and X (a) is group-like:

(15) AX(a) = X(a) ® X(a).
Correspondingly, decomposing X (a) =1+ ;- akey, we have
k
(16) ACk = Z Cj 039 Ck—ja
3=0

with ¢g = 1. This is a decorated version of the Hopf algebra of undecorated ladder trees ¢, with coproduct

At, = Z?:o t; ® tp,—j. Feynman rules become iterated integrals as

(17) or(BY (w))(L) = / {o(w)(In k*/p?)dpi (k) } _,

where dp; is the obvious integral kernel for ¢ € w, v, cf. [Il). Apart from the shuffle product, we have disjoint

union as a product which makes the Feynman rules into a character

(18) P(wr - w2) = p(wr)P(ws).
These two commutative products Y,- allow to express the primitive elements associated with shuffles of

letters u, v, see for example [6]:

Theorem 1. The primitive elements are given by polarization of the primitive elements p, of the undecorated

ladder trees t,. These are given by p, = 2[S*Y](ty).

Here, Y denotes the grading operator, defined by Y (¢x) = ktx and the star product is defined as usual by
01 %02 = -0 (01 ® O3) o A. Polarization of the undecorated primitive elements p,, means that we decorate
each vertex of p, with u + v.

The set P(u,v) of primitive elements is hence spanned by elements p;, ;,, where the integeres 4,, 4, count
the number of letters u and v in the polarization of ¢; 4, . For example the primitive element corresponding

to the undecorated ladder tree g is py = t5 — %tltl. Polarization yields
1 1
(19) P2,0 = §(UYU—U'U):UU— QU Po2 = §(UYU—U'U) == 5UeY,
PLi=uYv—u-v=uv+0U—1Uu-0.
3. THE MELLIN TRANSFORMS

The general structure of the Mellin transform can be obtained from quite general considerations. The

crucial input comes from powercounting and conformal symmetry.
Theorem 2. The Mellin transforms above are invariant under the transformation p — 1 — p.

Proof: Explicit computation. We give it here for F;. We assume p > 0 so that F; is well defined as a

function. Then, the conformal inversion k,, — k;, = k. / k? gives explicitly

aAE 1 2\
(20) - / — | =
im? KA = q)? \ ¢

for Fy. F5 can be treated similarly by conformal inversion in both Minkowski spaces. O

3.1. The Mellin transform of the one-loop kernel. This Mellin transform is readily integrated to deliver
1

(21) Fi(p) =

p(1—p)’
exhibiting the expected conformal symmetry.



3.2. The Mellin transform of the two-loop kernel. Determining this Mellin transform is the core part
of this paper. We proceed by making use of the advantage that we remain in four dimensions, and use results

of [5]. We are interested in the integral

d4k d4l —(+ k)2~

Integration is over the eight dimensional cartesian product of two Minkowski spaces furnished with a qua-

dratic form
(23) a? = a2 —a} — a3 — d?.
A simple tensor calculus delivers
1
(24) FQ(p) = 5 {_2G4(17 1+ p)G4(17 1+ p) + 16(17 15 12 17 15 2— p) + 16(15 17 1+ P 15 17 1- p)} 5

where

T'(a+b— D/2)T(D/2— a)[(D/2 - b)
T(a)D(0)T(D —a — b) ’

(25) Gp(a,b) =

so that G4(1,1+ p) = ﬁ. We use the notation of [5] for Is. In this notation, we have Iy = Is. Setting
u— 0and v = —por v =1—p we can determine the two Is integrals as a limit v — 0 in Eq.(19)(op.cit.) as
(26) I6(1,1,1 = v,1,1,140) =8 nlans1(1—27")0*" 2,

n=1

and similarly for v =1 — p. We hence find the above DSE in the form

(27) 1:—aﬁ_a2{’yé(%_4znc2n+l 1—-92~ Zn)[ 2n— 2+(1_7G)2n2]}-

4. THE SOLUTION

We can solve for 7¢ in the above in two different ways, expressing the solution as an infinite product or

via the logarithmic derivative of the I' function.

4.1. Solution as an infinite product. We have:

(28) Gr(a, L) = exp Z al¢r(p)(L)

PEP(u,v)
Here, the sum is over all primitives p € P(u,v), where P is the set of primitives assigned to any tree t,
decorated arbitrarily by letters in the alphabet u, v, as described above. The proof is an elementary exercise
in the Taylor expansion of the two Mellin transforms. Note that ¢r(p)(L) is linear in L for primitive p,
92 ¢r(L) = 0. We hence find for v¢(a)

(29) va(a) = - 81DG|L —0=— ZGIPI@%

Convergence of the sum is covered by the implicit function theorem, which provides for 4 through the two

Mellin transforms in the DSE. We hence proceed to the second way of expressing the solution.
4



4.2. Solution via the y-function. We can express the DSE using the logarithmic derivative of the I’
function and we obtain

1 , 1
B0 1= el e {Wé(l—%)z
oo 0 (14 76) = o (L= 10+ 7o [ (2= 76) = ¥ ()
G Rl
1 ’ ’ 1 / 3— / 1
o [+ 5) - (- )] - [ (59) - (5291
Here
(31) Y (x) = & InT(z).

dx?
Again, the two-loop solution shows explicitly the conformal symmetry v — 1 — . Note that the apparent
second order poles at ¢ = 0 and g = 1 on the rhs are only first order poles upon using standard properties
of the logarithmic derivative of the I' function, as it has to be. This provides an implicit equation for 7,

which can be solved numerically.

5. CONCLUSIONS

We determined the Mellin transform of the two-loop massless vertex in Yukawa theory. We used it to
resum a linear Dyson—Schwinger equation. Following [Il 2 [3], more complete applications will be provided
elsewhere. The same two-loop Mellin transform also appears in setting up the full DSE in other renormal-
izable theories [4].
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