BIG PICARD THEOREM FOR MODULI SPACES OF POLARIZED MANIFOLDS

YA DENG

ABSTRACT. Consider a smooth projective family of complex polarized manifolds with semi-ample canonical sheaf over a quasi-projective manifold V. When the associated moduli map $V \to P_h$ from the base to coarse moduli space is quasi-finite, we prove that the generalized big Picard theorem holds for the base manifold V: for any projective compactification Y of V, any holomorphic map $f: \Delta - \{0\} \to V$ from the punctured unit disk to V extends to a holomorphic map of the unit disk Δ into Y. This result generalizes our previous work on the Brody hyperbolicity of V (*i.e.* there are no entire curves on V), as well as a more recent work by Lu-Sun-Zuo on the Borel hyperbolicity of V (*i.e.* any holomorphic map from a quasi-projective variety to V is algebraic). We also obtain generalized big Picard theorem for bases of log Calabi-Yau families.

CONTENTS

0. Introduction	1
0.1. Acknowledgments.	3
1. A differential geometric criteria for big Picard theorem	3
1.1. Preliminary in Nevannlina theory	3
1.2. A criteria for big Picard theorem	4
2. The negatively curved metric via Viehweg-Zuo Higgs bundles	6
2.1. Viehweg-Zuo Higgs bundles and their proper metrics	6
2.2. Construction of negatively curved Finsler metric	8
3. Generalized Big Picard theorems	11
3.1. Big Picard theorem for moduli of polarized manifolds	11
3.2. Big Picard theorem for bases of log Calabi-Yau families	11
References	12

0. Introduction

The classical big Picard theorem says that any holomorphic map from the punctured disk Δ^* into \mathbb{P}^1 which omits three points can be extended to a holomorphic map $\Delta \to \mathbb{P}^1$, where Δ denotes the unit disk. Therefore, we say the (generalized) big Picard theorem holds for a quasi-projective variety V if for some (thus any) projective compactification Y of V, any holomorphic map $f:\Delta^* \to V$ extends to a holomorphic map $\bar{f}:\Delta \to X$. This property is interesting for it implies the *Borel hyperbolicity* of V: any holomorphic map from a quasi-projective variety to V is necessarily *algebraic*. A natural question is to find algebraic varieties satisfying the big Picard theorem. By the fundamental work of Kobayashi (see [Kob98, Theorem 6.3.6]), big Picard theorem holds for the quasi-projective manifold V which admits a projective compactification Y such that V is hyperbolically embedded into Y (see [Kob98, Chapter 3. §3] for the definition). This gives

Date: Wednesday 25th December, 2019.

²⁰¹⁰ Mathematics Subject Classification. 32Q45, 32A22, 53C60.

Key words and phrases. big Picard theorem, logarithmic derivative lemma, Viehweg-Zuo Higgs bundles, negatively curved Finsler metric, moduli of polarized manifolds, log Calabi-Yau family.

¹The notion of Borel hyperbolicity was first introduced by Javanpeykar-Kucharczyk in [JK18].

us an important criteria for varieties satisfying the big Picard theorem. By the work of Fujimoto [Fuj72] and Green [Gre77], complements of 2n + 1 general hyperplanes in \mathbb{P}^n are hyperbolically embedded into \mathbb{P}^n . More recently Brotbek and the author [BD19] proved that the complement of a general hypersurface in \mathbb{P}^n of high degree is also hyperbolically embedded into \mathbb{P}^n . By A. Borel [Bor72] and Kobayashi-Ochiai [KO71], the quotients of bounded symmetric domains by torsion free arithmetic groups are hyperbolically embedded into its Baily-Borel compactification. Hence these results provide examples of quasi-projective manifolds satisfying the big Picard theorem.

However, quasi-projective manifold V being hyperbolically embedded into some projective compactification Y is minimal in the sense that, for any birational modification $\mu: \tilde{Y} \to Y$ by blowing-up the boundary $Y \setminus V$, $\mu^{-1}(V) \simeq V$ is no more hyperbolically embedded into \tilde{Y} , while the big Picard theorem does not depends on its compactification. The first result in this paper is to establish a more flexible criteria for big Picard theorem. For our definition of Finsler metric (which is slightly different from the usual one in the literature), see Definition 1.6.

Theorem A (=Theorem 1.7). Let X be a projective manifold and let D be a simple normal crossing divisor on X. Let h be a (possibly degenerate) Finsler metric of $T_X(-\log D)$. Assume that $f: \Delta^* \to X \setminus D$ is a holomorphic map from the punctured unit disk Δ^* to $X \setminus D$ such that $|f'(t)|_h^2 \not\equiv 0$, and

$$\sqrt{-1}\partial \overline{\partial} \log |f'(t)|_h^2 \ge f^* \omega$$

for some smooth Kähler metric ω on X. Then f extends to a holomorphic map $\bar{f}: \Delta \to X$ of the unit disk into X.

Theorem A is inspired by *fundamental vanishing theorem* for jet differentials vanishing on some ample divisor by Siu-Yeung [SY97] and Demailly [Dem97, §4], and its proof is mainly based on a *logarithmic derivative lemma* by Noguchi [Nog81].

The motivation of Theorem A is to study the hyperbolicity of moduli spaces of polarized manifolds with semi-ample canonical bundle. By the fundamental work of Viehweg-Zuo [VZ02,VZ03], and the recent development by Popa et al. [PS17,PTW18] and [Den18a, Den18b,Den19,LSZ19], a special Higgs bundle, the so-called Viehweg-Zuo Higgs bundle in Definition 2.1 below, turns out to be a powerful technique in studying hyperbolicity problems. For a quasi-projective manifold V equipped with a Viehweg-Zuo Higgs bundle, in [Den18a,Den18b] we prove that V can be equipped with a generically positively definite Finsler metric whose holomorphic sectional curvature is bounded from above by a negative constant. In particular, we prove that V is always pseudo Kobayashi hyperbolic. The second aim of this article is to give a new curvature estimate for that Finsler metric on V.

Theorem B (=Theorem 2.8). Let X be a projective manifold equipped with a smooth Kähler metric ω and let D be a simple normal crossing divisor on X. Assume that there is a Viehweg-Zuo Higgs bundle over (X, D). Then there are a positive constant δ and a Finsler metric h on $T_X(-\log D)$ which is positively definite on a dense Zariski open set V° of $V:=X\setminus D$, such that for any holomorphic map $\gamma:C\to V$ from any open subset C of $\mathbb C$ to V with $\gamma(C)\cap V^\circ\neq\varnothing$, one has

$$\sqrt{-1}\partial\overline{\partial}\log|\gamma'|_h^2 \geq \delta\gamma^*\omega.$$

In particular, by Theorem A, for any holomorphic map $f: \Delta^* \to X \setminus D$, with $f(\Delta^*) \cap V^\circ \neq \emptyset$, it extends to a holomorphic map $\bar{f}: \Delta \to X$.

By the work [VZ02, VZ03, PTW18], Viehweg-Zuo Higgs bundles exist on bases of maximally varying, smooth family of projective manifolds with semi-ample canonical bundle. Combining their results and Theorem B, we prove the big Picard theorem for moduli of polarized manifolds with semi-ample canonical bundle.

Theorem C. Consider the moduli functor \mathscr{P}_h of polarized manifolds with semi-ample canonical sheaf introduced by Viehweg [Vie95, §7.6], where h is the Hilbert polynomial associated to the polarization. Assume that for some quasi-projective manifold V over which there exists a smooth polarized family $(f_U:U\to V,\mathscr{L})\in\mathscr{P}_h(V)$ such that the induced moduli map $\varphi_U:V\to P_h$ is quasi-finite. Let Y be an arbitrary projective compactification of V. Then any holomorphic map $\gamma:\Delta^*\to V$ from the punctured unit disk Δ^* to V extends to a holomorphic map from the unit disk Δ to Y.

Under the same assumption as Theorem B, we have already in [Den18b] proved the Brody hyperbolicity of V: there exists no entire curves $\gamma:\mathbb{C}\to V$. Based on the infinitesimal Torelli-type theorem proven in [Den18b, Theorem C] (see Theorem 2.3 below), more recently, Lu-Sun-Zuo [LSZ19] proved the Borel hyperbolicity of V: any holomorphic map from a quasi-projective variety to V is algebraic. The use of Nevannlina theory in this article is inspired by their work, although our methods are different from theirs (see Remark 3.1).

Finally, let us mention that in [Den19], we construct Viehweg-Zuo Higgs bundles over bases of maximally varying, log smooth families of Calabi-Yau families (see Definition 3.2 for the definition of log smooth family). Applying Theorems A and B to this result, we also obtain big Picard theorem for these base manifolds.

Theorem D (=Theorem 3.4). Let $f^{\circ}: (X^{\circ}, D^{\circ}) \to Y^{\circ}$ be a log smooth family over a quasiprojective manifold Y° . Assume that each fiber $(X_y, D_y) := (f^{\circ})^{-1}(y)$ of f° is a klt pair, and $K_{X_y} + D_y \equiv_{\mathbb{Q}} 0$. Assume that the logarithmic Kodaira-Spencer map

$$T_{Y^{\circ},y} \to H^1(X_y, T_{X_y}(-\log D_y))$$

is injective for any $y \in Y^{\circ}$. Then for any projective compactification Y of the base Y° , any holomorphic map $\gamma: \Delta^* \to Y^{\circ}$ extends to a holomorphic map from Δ to Y.

0.1. **Acknowledgments.** I would like to thank Professors Jean-Pierre Demailly and Emmanuel Ullmo for their encouragements and supports. This work is supported by Institut des Hautes Études Scientifiques.

1. A differential geometric criteria for big Picard Theorem

In the similar vein as the fundamental vanishing theorem for jet differentials vanishing on some ample divisor by Siu-Yeung [SY97] and Demailly [Dem97], in this section we will establish a differential geometric criteria for big Picard type theorem via the logarithmic derivative lemma by Noguchi [Nog81].

1.1. **Preliminary in Nevannlina theory.** Let $\mathbb{D}^* := \{t \in \mathbb{C} \mid |t| > 1\}$, and $\mathbb{D} := \mathbb{D}^* \cup \infty$. Then via the map $z \mapsto \frac{1}{z}$, \mathbb{D}^* is isomorphic to the punctured unit disk Δ^* and \mathbb{D} is isomorphic to the unit disk Δ . Therefore, for any holomorphic map f from the punctured disk Δ^* into a projective variety Y, f extends to the origin if and only if $f(\frac{1}{z}) : \mathbb{D}^* \to Y$ extends to the infinity.

Let (X, ω) be a compact Kähler manifold, and $\gamma : \mathbb{D}^* \to X$ be a holomorphic map. Fix any $r_0 > 1$. Write $\mathbb{D}_r := \{z \in \mathbb{C} \mid r_0 < |z| < r\}$. The *order function* is defined by

$$T_{\gamma,\omega}(r) := \int_{r_0}^r \frac{d au}{ au} \int_{\mathbb{D}_{ au}} \gamma^* \omega.$$

As is well-known, the asymptotic behavior of $T_{\gamma,\omega}(r)$ as $r \to \infty$ characterizes whether γ can be extended over the ∞ (see *e.g.* [Dem97, 2.11. Cas «local »] or [NW14, Remark 4.7.4.(ii)]).

Lemma 1.1. $T_{\gamma,\omega}(r) = O(\log r)$ if and only if γ is extended holomorphically over ∞ . \square

The following lemma is well-known to experts (see e.g. [Dem97, Lemme 1.6]).

Lemma 1.2. Let X be a projective manifold equipped with a hermitian metric ω and let $u: X \to \mathbb{P}^1$ be a rational function. Then for any holomorphic map $\gamma: \mathbb{D}^* \to X$, one has

$$T_{u \circ v, \omega_{FS}}(r) \leq CT_{v,\omega}(r) + O(1)$$

where ω_{FS} is the Fubini-Study metric for \mathbb{P}^1 .

The following logarithmic derivative lemma by Noguchi is crucial in the proof of Theorem A.

Lemma 1.3 ([Nog81, Lemma2.12], [Dem97, 3.4. Cas local]). Let $u: \mathbb{D}^* \to \mathbb{P}^1$ be any meromorphic function. Then we have

$$\frac{1}{2\pi} \int_0^{2\pi} \log^+ |(\log u)'(re^{i\theta})| d\theta \le C(\log^+ T_{u,\omega_{FS}}(r) + \log r) + O(1) \quad \|,$$

for some constant C > 0 which does not depend on r. Here the symbol \parallel means that the inequality holds outside a Borel subset of $(r_0, +\infty)$ of finite Lebesgue measure.

We need the lemma by E. Borel.

Lemma 1.4 ([NW14, Lemma 1.2.1]). Let $\phi(r) \ge 0 (r \ge r_0 \ge 0)$ be a monotone increasing function. For every $\delta > 0$,

$$\frac{d}{dr}\phi(r) \le \phi(r)^{1+\delta} \quad \|.$$

We recall two useful formulas (the second one is the well-known Jensen formula).

Lemma 1.5. *Write* $\log^+ x := \max(\log x, 0)$.

(1.1.1)
$$\log^{+}(\sum_{i=1}^{N} x_{i}) \leq \sum_{i=1}^{N} \log^{+} x_{i} + \log N \quad \text{for } x_{i} \geq 0.$$

$$(1.1.2) \qquad \frac{1}{\pi} \int_{r_0}^r \frac{d\tau}{\tau} \int_{\mathbb{D}_{\tau}} \sqrt{-1} \partial \overline{\partial} v = \frac{1}{2\pi} \int_0^{2\pi} v(re^{i\theta}) d\theta - \frac{1}{2\pi} \int_0^{2\pi} v(r_0 e^{i\theta}) d\theta$$

for all functions v so that $\sqrt{-1}\partial \overline{\partial} v$ exists as measures (e.g. v is the difference of two subharmonic functions).

1.2. A criteria for big Picard theorem.

Definition 1.6 (Finsler metric). Let E be a holomorphic vector bundle on a complex manifold X. A *Finsler metric* on E is a real non-negative *continuous* function $h: E \to [0, +\infty[$ such that

$$h(av) = |a|h(v)$$

for any $a \in \mathbb{C}$ and $v \in E$. The metric h is *degenerate* at a point $x \in X$ if h(v) = 0 for some nonzero $v \in E_x$, and the set of such degenerate points is denoted by Δ_h .

We shall mention that our definition is a bit different from that in [Kob98, Chapter 2, §3], which requires *convexity*, and the Finsler metric therein can be upper-semi continuous.

Let us now state and prove the main result in this section.

Theorem 1.7 (Criteria for big Picard theorem). Let X be a projective manifold and let D be a simple normal crossing divisor on X. Let h be a (possibly degenerate) Finsler metric of $T_X(-\log D)$. Assume that $f: \mathbb{D}^* \to X \setminus D$ is a holomorphic map such that $|f'(t)|_h^2 \not\equiv 0$, and

(1.2.1)
$$\frac{1}{\pi}\sqrt{-1}\partial\overline{\partial}\log|f'(t)|_{h}^{2} \geq f^{*}\omega$$

for some smooth Kähler metric ω on X. Then f extends to a holomorphic map $\bar{f}: \mathbb{D} \to X$.

The proof is an application of logarithmic derivative lemma, which is inspired by [Dem97, §4] and [NW14, Lemma 4.7.1].

Proof of Theorem 1.7. We take a finite affine covering $\{U_{\alpha}\}_{{\alpha}\in I}$ of X and rational functions $(x_{\alpha 1},\ldots,x_{\alpha n})$ on X which are holomorphic on U_{α} so that

$$dx_{\alpha 1} \wedge \cdots \wedge dx_{\alpha n} \neq 0 \text{ on } U_{\alpha}$$

 $D \cap U_{\alpha} = (x_{\alpha,s(\alpha)+1} \cdots x_{\alpha n} = 0)$

Hence

$$(1.2.2) (e_{\alpha 1}, \ldots, e_{\alpha n}) := (\frac{\partial}{\partial x_{\alpha 1}}, \ldots, \frac{\partial}{\partial x_{\alpha s(\alpha)}}, x_{\alpha, s(\alpha)+1}, \frac{\partial}{\partial x_{\alpha, s(\alpha)+1}}, \ldots, x_{\alpha n}, \frac{\partial}{\partial x_{\alpha n}})$$

is a basis for $T_X(-\log D)|_{U_\alpha}$. Write

$$(f_{\alpha 1}(t),\ldots,f_{\alpha n}(t)):=(x_{\alpha 1}\circ f,\ldots,x_{\alpha n}\circ f).$$

With respect to the trivialization of $T_X(-\log D)$ induced by the basis (1.2.2), f'(t) can be written as

$$f'(t) = f'_{\alpha 1}(t)e_{\alpha 1} + \dots + f'_{\alpha s(\alpha)}(t)e_{\alpha s(\alpha)} + (\log f_{\alpha,s(\alpha)+1})'(t)e_{\alpha,s(\alpha)+1} + \dots + (\log f_{\alpha n})'(t)e_{\alpha n}.$$

Let $\{\rho_{\alpha}\}_{{\alpha}\in I}$ be a partition of unity subordinated to $\{U_{\alpha}\}_{{\alpha}\in I}$. Since h is Finsler metric for $T_X(-\log D)$ which is continuous and locally bounded from above by Definition 1.6, and I is a finite set, there is a constant C>0 so that

$$(1.2.3) \quad \rho_{\alpha} \circ f \cdot |f'(t)|_{h}^{2} \leq C \left(\sum_{j=1}^{s(\alpha)} \rho_{\alpha} \circ f \cdot |f'_{\alpha j}(t)|^{2} + \sum_{i=s(\alpha)+1}^{n} |(\log f_{\alpha i})'(t)|^{2} \right) \quad \forall t \in \mathbb{D}^{*}$$

for any α . Hence

$$T_{f,\omega}(r) := \int_{r_{0}}^{r} \frac{d\tau}{\tau} \int_{\mathbb{D}_{\tau}} f^{*}\omega \overset{(12.1)}{\leq} \int_{r_{0}}^{r} \frac{d\tau}{\tau} \int_{\mathbb{D}_{\tau}} \frac{1}{\pi} \sqrt{-1} \partial \overline{\partial} \log |f'|_{h}^{2}$$

$$\overset{(11.2)}{\leq} \frac{1}{2\pi} \int_{0}^{2\pi} \log |f'(re^{i\theta})|_{h} d\theta - \frac{1}{2\pi} \int_{0}^{2\pi} \log |f'(r_{0}e^{i\theta})|_{h} d\theta$$

$$\leq \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |f'(re^{i\theta})|_{h} d\theta + O(1) = \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} \sum_{\alpha} |\rho_{\alpha} \circ f \cdot f'(re^{i\theta})|_{h} d\theta + O(1)$$

$$\overset{(11.1)}{\leq} \sum_{\alpha} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |\rho_{\alpha} \circ f \cdot f'(re^{i\theta})|_{h} d\theta + O(1)$$

$$\overset{(11.2.3)}{\leq} \sum_{\alpha} \sum_{i=s(\alpha)+1}^{s(\alpha)} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |(\log f_{\alpha i})'(re^{i\theta})| d\theta$$

$$+ \sum_{\alpha} \sum_{j=1}^{s(\alpha)} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |\rho_{\alpha} \circ f \cdot f'_{\alpha j}(re^{i\theta})| d\theta + O(1)$$

$$\overset{Lemma}{\leq} C_{1} \sum_{\alpha} \sum_{i=s(\alpha)+1}^{s(\alpha)} (\log^{+} T_{f_{\alpha i},\omega_{FS}}(r) + \log r)$$

$$+ \sum_{\alpha} \sum_{j=1}^{s(\alpha)} \frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |\rho_{\alpha} \circ f \cdot f'_{\alpha j}(re^{i\theta})| d\theta + O(1) \quad \|$$

$$(1.2.4)$$

 $\stackrel{Lemma \ 1.2}{\leq} C_2(\log^+ T_{f,\omega}(r) + \log r) + \sum_{\alpha} \sum_{j=1}^{s(\alpha)} \frac{1}{2\pi} \int_0^{2\pi} \log^+ |\rho_{\alpha} \circ f \cdot f_{\alpha j}'(re^{i\theta})| d\theta + O(1) \quad \|$

where C_1 and C_2 are two positive constants which do not depend on r.

Claim 1.8. For any $\alpha \in I$ and any $j \in \{1, ..., s(\alpha)\}$, one has

$$(1.2.5) \qquad \frac{1}{2\pi} \int_0^{2\pi} \log^+ |\rho_{\alpha} \circ f \cdot f'_{\alpha j}(re^{i\theta})| d\theta \le C_3(\log^+ T_{f,\omega}(r) + \log r) + O(1) \quad \|$$

for positive constant C_3 which does not depend on r.

Proof of Claim 1.8. The proof of the claim is borrowed from [NW14, eq.(4.7.2)]. Pick C > 0 so that $\rho_{\alpha} \sqrt{-1} dx_{\alpha j} \wedge d\bar{x}_{\alpha j} \leq C\omega$. Write $f^*\omega := \sqrt{-1}B(t)dt \wedge d\bar{t}$. Then

$$\begin{split} &\frac{1}{2\pi} \int_{0}^{2\pi} \log^{+} |\rho_{\alpha} \circ f \cdot f_{\alpha j}'(re^{i\theta})| d\theta = \frac{1}{4\pi} \int_{0}^{2\pi} \log^{+} (|\rho_{\alpha}^{2} \circ f| \cdot |f_{\alpha j}'(re^{i\theta})|^{2}) d\theta \\ &\leq \frac{1}{4\pi} \int_{0}^{2\pi} \log^{+} B(re^{i\theta}) d\theta + O(1) \leq \frac{1}{4\pi} \int_{0}^{2\pi} \log(1 + B(re^{i\theta})) d\theta + O(1) \\ &\leq \frac{1}{2} \log(1 + \frac{1}{2\pi} \int_{0}^{2\pi} B(re^{i\theta}) d\theta) + O(1) = \frac{1}{2} \log(1 + \frac{1}{2\pi r} \frac{d}{dr} \int_{\mathbb{D}_{r}} rB dr d\theta) + O(1) \\ &= \frac{1}{2} \log(1 + \frac{1}{2\pi r} \frac{d}{dr} \int_{\mathbb{D}_{r}} f^{*} \omega) + O(1) \\ &\stackrel{Lemma 1.4}{\leq} \frac{1}{2} \log(1 + \frac{1}{2\pi} (\int_{\mathbb{D}_{r}} f^{*} \omega)^{1+\delta}) + O(1) \quad \| \\ &= \frac{1}{2} \log(1 + \frac{r^{\delta}}{2\pi} (\frac{d}{dr} T_{f,\omega}(r))^{1+\delta}) + O(1) \quad \| \\ &\stackrel{Lemma 1.4}{\leq} \frac{1}{2} \log(1 + \frac{r^{\delta}}{2\pi} (T_{f,\omega}(r))^{(1+\delta)^{2}}) + O(1) \quad \| \\ &\leq 4 \log^{+} T_{f,\omega}(r) + \delta \log r + O(1) \quad \| . \end{split}$$

Here we pick $0 < \delta < 1$ to apply Lemma 1.4. The claim is proved.

Putting (1.2.5) to (1.2.4), one obtains

$$T_{f,\omega}(r) \le C(\log^+ T_{f,\omega}(r) + \log r) + O(1)$$

for some positive constant C. Hence $T_{f,\omega}(r) = O(\log r)$. We apply Lemma 1.1 to conclude that f extends to the ∞ .

2. The negatively curved metric via Viehweg-Zuo Higgs bundles

In [VZ02, VZ03], Viehweg-Zuo introduced a special type of Higgs bundles over the bases of smooth families of polarized manifolds with semi-ample canonical sheaves to study the hyperbolicity of such bases. It was later developed in [PTW18]. For any quasi-projective manifold V endowed with a Viehweg-Zuo Higgs bundle, we construct in [Den18a, Den18b] a generically positively definite Finsler metric over V whose holomorphic sectional curvature is bounded from above by a negative constant. In this section we will refine curvature estimate in [Den18a] to prove big Picard theorem for such quasi-projective manifold V.

2.1. **Viehweg-Zuo Higgs bundles and their proper metrics.** The definition for Viehweg-Zuo Higgs bundles we present below follows from the formulation in [VZ02, VZ03] and [PTW18].

Definition 2.1 (Abstract Viehweg-Zuo Higgs bundles). Let V be a quasi-projective manifold, and let $Y \supset V$ be a projective compactification of V with the boundary $D := Y \setminus V$ simple normal crossing. A *Viehweg-Zuo Higgs bundle* over (Y, D) (or say over V abusively) is a logarithmic Higgs bundle $(\tilde{\mathcal{E}}, \tilde{\theta})$ over Y consisting of the following data:

- (i) a divisor S on Y so that D + S is simple normal crossing,
- (ii) a big and nef line bundle *L* over *Y* with $\mathbf{B}_{+}(L) \subset D \cup S$,
- (iii) a Higgs bundle $(\mathscr{E}, \theta) := \left(\bigoplus_{q=0}^n E^{n-q,q}, \bigoplus_{q=0}^n \theta_{n-q,q}\right)$ induced by the lower canonical extension of a polarized VHS defined over $Y \setminus (D \cup S)$,
- (iv) a sub-Higgs sheaf $(\mathscr{F}, \eta) \subset (\tilde{\mathscr{E}}, \tilde{\theta})$,

which satisfy the following properties.

- (1) The Higgs bundle $(\tilde{\mathscr{E}}, \tilde{\theta}) := (L^{-1} \otimes \mathscr{E}, \mathbb{1} \otimes \theta)$. In particular, $\tilde{\theta} : \tilde{\mathscr{E}} \to \tilde{\mathscr{E}} \otimes \Omega_Y (\log(D+S))$, and $\tilde{\theta} \wedge \tilde{\theta} = 0$.
- (2) The sub-Higgs sheaf (\mathcal{F}, η) has log poles only on the boundary D, that is, $\eta : \mathcal{F} \to \mathcal{F} \otimes \Omega_Y(\log D)$.
- (3) Write $\hat{\mathcal{E}}_k := L^{-1} \otimes E^{n-k,k}$, and denote by $\mathcal{F}_k := \hat{\mathcal{E}}_k \cap \mathcal{F}$. Then the first stage \mathcal{F}_0 of \mathcal{F} is an *effective line bundle*. In other words, there exists a non-trivial morphism $O_Y \to \mathcal{F}_0$.

As shown in [VZ02], by iterating η for k-times, we obtain

$$\mathscr{F}_0 \xrightarrow{\widetilde{\eta \circ \cdots \circ \eta}} \mathscr{F}_k \otimes (\Omega_Y(\log D))^{\otimes k}.$$

Since $\eta \wedge \eta = 0$, the above morphism factors through $\mathscr{F}_k \otimes \operatorname{Sym}^k \Omega_Y(\log D)$, and by (3) one thus obtains

$$O_Y \to \mathscr{F}_0 \to \mathscr{F}_k \otimes \operatorname{Sym}^k \Omega_Y(\log D) \to L^{-1} \otimes E^{n-k,k} \otimes \operatorname{Sym}^k \Omega_Y(\log D).$$

Equivalently, we have a morphism

(2.1.1)
$$\tau_k : \operatorname{Sym}^k T_Y(-\log D) \to L^{-1} \otimes E^{n-k,k}.$$

It was proven in [VZ02, Corollary 4.5] that τ_1 is always non-trivial. In [Den18b] we prove that $\tau_1: T_Y(-\log D) \to L^{-1} \otimes E^{n-1,1}$ in (2.1.1) is generically injective.

We will follow [PTW18] to give some "proper" metric on $\tilde{\mathcal{E}} = \bigoplus_{k=0}^n L^{-1} \otimes E^{n-k,k}$. Write the simple normal crossing divisor $D = D_1 + \cdots + D_k$ and $S = S_1 + \cdots + S_\ell$. Let $f_{D_i} \in H^0(Y, O_Y(D_i))$ and $f_{S_i} \in H^0(Y, O_Y(S_i))$ be the canonical section defining D_i and S_i . We fix smooth hermitian metrics g_{D_i} and g_{S_i} on $O_Y(D_i)$ and $O_Y(S_i)$. After rescaling g_{D_i} and g_{S_j} , we assume that $|f_{D_i}|_{g_{D_i}} < 1$ and $|f_{S_j}|_{g_{S_i}} < 1$ for $i = 1, \ldots, k$ and $j = 1, \ldots, \ell$. Set

$$r_D := \prod_{i=1}^k (-\log |f_{D_i}|_{g_{D_i}}^2), \quad r_S := \prod_{j=1}^\ell (-\log |f_{S_j}|_{g_{S_j}}^2).$$

Let g be a singular hermitian metric with analytic singularities of the big and nef line bundle L such that g is smooth on $Y \setminus \mathbf{B}_+(L) \supset Y \setminus D \cup S$, and the curvature current $\sqrt{-1}\Theta_g(L) \geqslant \omega$ for some smooth Kähler form ω on Y. For $\alpha \in \mathbb{N}$, define

$$h_L := q \cdot (r_D \cdot r_S)^{\alpha}$$

The following proposition is a slight variant of [PTW18, Lemma 3.1, Corollary 3.4].

Proposition 2.2 ([PTW18]). When $\alpha \gg 0$, after rescaling f_{D_i} and f_{S_i} , there exists a continuous, positively definite hermitian form ω_{α} on $T_Y(-\log D)$ such that

(i) over $V_0 := Y \setminus D \cup S$, the curvature form

$$\sqrt{-1}\Theta_{h_L}(L)_{|V_0} \geqslant r_D^{-2} \cdot \omega_{\alpha|V_0}, \quad \sqrt{-1}\Theta_{h_L}(L) \ge \omega$$

where ω is a smooth Kähler metric on Y.

(ii) The singular hermitian metric $h := h_L^{-1} \otimes h_{hod}$ on $\tilde{\mathscr{E}} = L^{-1} \otimes \mathscr{E}$ is locally bounded on Y, and smooth outside (D+S), where h_{hod} is the Hodge metric for the Hodge bundle \mathscr{E} . Moreover, h is degenerate on D+S.

(iii) The singular hermitian metric $r_D^2 h$ on $L^{-1} \otimes \mathcal{E}$ is also locally bounded on Y and is degenerate on D + S.

Hence by Definition 1.6, h and $r_D^2 h$ are both Finsler metrics on $\tilde{\mathscr{E}}$.

2.2. Construction of negatively curved Finsler metric. We adopt the same notations as § 2.1 throughout this subsection. Assume that the log manifold (Y, D) is endowed with a Viehweg-Zuo Higgs bundle. In [Den18a, §3.4] we construct Finsler metrics F_1, \ldots, F_n on $T_Y(-\log D)$ as follows. By (2.1.1), for each $k = 1, \ldots, n$, there exists

(2.2.1)
$$\tau_k : \operatorname{Sym}^k T_Y(-\log D) \to L^{-1} \otimes E^{n-k,k}.$$

Then it follows from Proposition 2.2.(ii) that the Finsler metric h on $L^{-1} \otimes E^{n-k,k}$ induces a Finsler metric F_k on $T_Y(-\log D)$ defined as follows: for any $e \in T_Y(-\log D)_y$,

$$(2.2.2) F_k(e) := h(\tau_k(e^{\otimes k}))^{\frac{1}{k}}$$

Let $C \subset \mathbb{C}$ be any open set of \mathbb{C} . For any $\gamma : C \to V$, one has

$$(2.2.3) d\gamma: T_C \to \gamma^* T_V \hookrightarrow \gamma^* T_Y(-\log D).$$

We denote by $\partial_t := \frac{\partial}{\partial t}$ the canonical vector fields in $C \subset \mathbb{C}$, $\bar{\partial}_t := \frac{\partial}{\partial \bar{t}}$ its conjugate. The Finsler metric F_k induces a continuous Hermitian pseudo-metric on C, defined by

$$(2.2.4) \gamma^* F_k^2 = \sqrt{-1} G_k(t) dt \wedge d\bar{t}.$$

Hence $G_k(t) = |\tau_k(d\gamma(\partial_t)^{\otimes k})|_h^{\frac{2}{k}}$, where τ_k is defined in (2.1.1). The reader might worried that all $G_k(t)$ will be identically equal to zero. In [Den18b, Theorem C], we prove that 'generically' this cannot happen.

Theorem 2.3 ([Den18b]). There is a dense Zariski open set $V^{\circ} \subset V_0 = Y \setminus (D+S)$ of V° so that $\tau_1 : T_Y(-\log D)|_{V^{\circ}} \to L^{-1} \otimes E^{n-1,1}|_{V^{\circ}}$ is injective.

We now fix any $\gamma: C \to V$ with $\gamma(C) \cap V^{\circ} \neq \emptyset$. By Proposition 2.2.(ii), the metric h for $L^{-1} \otimes \mathscr{E}$ is smooth and positively definite over V_0 . It then follows from Theorem 2.3 that $G_1(t) \not\equiv 0$. Let $C^{\circ} \subset C$ be an (non-empty) open set whose complement $C \setminus C^{\circ}$ is a discrete set so that

- The image $\gamma(C^{\circ}) \subset V^{\circ}$.
- For every k = 1, ..., n, either $G_k(t) \equiv 0$ on C° or $G_k(t) > 0$ for any $t \in C^{\circ}$.
- $\gamma'(t) \neq 0$ for any $t \in C^{\circ}$.

By the definition of $G_k(t)$, if $G_k(t) \equiv 0$ for some k > 1, then $\tau_k(\partial_t^{\otimes k}) \equiv 0$ where τ_k is defined in (2.1.1). Note that one has $\tau_{k+1}(\partial_t^{\otimes (k+1)}) = \tilde{\theta}(\tau_k(\partial_t^{\otimes k}))(\partial_t)$, where $\tilde{\theta}: L^{-1} \otimes \mathscr{E} \to L^{-1} \otimes \mathscr{E} \otimes \Omega_Y(\log(D+S))$ is defined in Definition 2.1. We thus conclude that $G_{k+1}(t) \equiv 0$. Hence it exists $1 \leq m \leq n$ so that the set $\{k \mid G_k(t) > 0 \text{ over } C^\circ\} = \{1, \ldots, m\}$, and $G_\ell(t) \equiv 0$ for all $\ell = m+1, \ldots, n$. From now on, all the computations are made over C° . In [Den18a] we proved the following curvature formula.

Theorem 2.4 ([Den18a, Proposition 3.12]). For k = 1, ..., m, over C° one has

(2.2.5)
$$\frac{\partial^2 \log G_1}{\partial t \partial \bar{t}} \ge \Theta_{L,h_L}(\partial_t, \bar{\partial}_t) - \frac{G_2^2}{G_1} \qquad if \ k = 1,$$

$$(2.2.6) \frac{\partial^2 \log G_k}{\partial t \partial \bar{t}} \ge \frac{1}{k} \left(\Theta_{L,h_L}(\partial_t, \bar{\partial}_t) + \frac{G_k^k}{G_{k-1}^{k-1}} - \frac{G_{k+1}^{k+1}}{G_k^k} \right) if k > 1.$$

Here we make the convention that $G_{n+1} \equiv 0$ and $\frac{0}{0} = 0$. We also write ∂_t (resp. $\bar{\partial}_t$) for $d\gamma(\partial_t)$ (resp. $d\gamma(\bar{\partial}_t)$) abusively, where $d\gamma$ is defined in (2.2.3).

Let us mention that in [Den18a, eq. (3.3.58)] we drop the term $\Theta_{L,h_L}(\partial_t,\bar{\partial}_t)$ in (2.2.6), though it can be easily seen from the proof of [Den18a, Lemma 3.9]. As we will see below, such a term is crucial in deriving the new curvature estimate.

By Theorem 2.4 we see that the curvature of F_k is not the desired type (1.2.1) for applying the criteria for big Picard theorem in Theorem 1.7. In [Den18a, §3.4], following ideas by [TY15, Sch17] we introduce a new Finsler metric F on $T_Y(-\log D)$ by taking convex sum in the following form

$$(2.2.7) F := \sqrt{\sum_{k=1}^{n} k\alpha_k F_k^2}.$$

where $\alpha_1, \ldots, \alpha_n \in \mathbb{R}^+$ are some constants which will be fixed later. By Theorem 2.3, the set of degenerate points of F defined in Definition 1.6, denoted by Δ_F , is contained in a proper Zariski closed subset $Y \setminus V^\circ$. In [Den18a, Theorem 3.8] we prove that the holomorphic sectional curvature of F is bounded from above by a negative constant. Let us now prove a new curvature formula for F in this section.

For the above $\gamma: C \to V$ with $\gamma(C) \cap V^{\circ} \neq \emptyset$, we write

$$\gamma^* F^2 = \sqrt{-1} H(t) dt \wedge d\bar{t}.$$

Then

$$(2.2.8) H(t) = \sum_{k=1}^{n} k\alpha_k G_k(t),$$

where G_k is defined in (2.2.4). Recall that for k = 1, ..., m, $G_k(t) > 0$ for $t \in C^{\circ}$. We first recall a computational lemma by Schumacher.

Lemma 2.5 ([Sch17, Lemma 17]). Let $\alpha_j > 0$ and G_j be positive real numbers for j = 1, ..., n. Then

(2.2.9)
$$\sum_{j=2}^{n} \left(\alpha_{j} \frac{G_{j}^{j+1}}{G_{j-1}^{j-1}} - \alpha_{j-1} \frac{G_{j}^{j}}{G_{j-1}^{j-2}} \right)$$

$$\geqslant \frac{1}{2} \left(-\frac{\alpha_{1}^{3}}{\alpha_{2}^{2}} G_{1}^{2} + \frac{\alpha_{n-1}^{n-1}}{\alpha_{n}^{n-2}} G_{n}^{2} + \sum_{j=2}^{n-1} \left(\frac{\alpha_{j-1}^{j-1}}{\alpha_{j}^{j-2}} - \frac{\alpha_{j}^{j+2}}{\alpha_{j+1}^{j+1}} \right) G_{j}^{2} \right)$$

Now we are ready to compute the curvature of the Finsler metric *F* based on Theorem 2.4.

Theorem 2.6. Fix a smooth Kähler metric ω on Y. There exist universal constants $0 < \alpha_1 < \ldots < \alpha_n$ and $\delta > 0$, such that for any $\gamma : C \to V$ with C an open set of $\mathbb C$ and $\gamma(C) \cap V^{\circ} \neq \emptyset$, one has

(2.2.10)
$$\sqrt{-1}\partial\overline{\partial}\log|\gamma'(t)|_F^2 \ge \delta\gamma^*\omega$$

Proof. By Theorem 2.3 and the assumption that $\gamma(C) \cap V^{\circ} \neq \emptyset$, $G_1(t) \not\equiv 0$. We first recall a result in [Den18a, Lemma 3.11], and we write its proof here for it is crucial in what follows.

Claim 2.7. There is a universal constant $c_0 > 0$ (i.e. it does not depend on γ) so that $\Theta_{L,h_L}(\partial_t, \bar{\partial}_t) \geq c_0 G_1(t)$ for all t.

Proof of Claim 2.7. Indeed, by Proposition 2.2.(i), it suffice to prove that

(2.2.11)
$$\frac{\left|\partial_{t}\right|_{\gamma^{*}\left(r_{D}^{-2}\cdot\omega_{\alpha}\right)}^{2}}{\left|\tau_{1}\left(d\gamma(\partial_{t})\right)\right|_{h}^{2}}\geqslant c_{0}$$

for some $c_0 > 0$, where ω_{α} is a positively definite Hermitian metric on $T_Y(-\log D)$. Note that

$$\frac{|\partial_{t}|_{\gamma^{*}(r_{D}^{-2}\cdot\omega_{\alpha})}^{2}}{|\tau_{1}(d\gamma(\partial_{t}))|_{h}^{2}} = \frac{|\partial_{t}|_{\gamma^{*}(r_{D}^{-2}\cdot\omega_{\alpha})}^{2}}{|\partial_{t}|_{\gamma^{*}\tau_{1}^{*}h}^{2}} = \frac{|\partial_{t}|_{\gamma^{*}(\omega_{\alpha})}^{2}}{|\partial_{t}|_{\gamma^{*}\tau_{1}^{*}(r_{D}^{2}\cdot h)}^{2}},$$

where $\tau_1^*(r_D^2 \cdot h)$ is a Finsler metric (indeed continuous pseudo hermitian metric) on $T_Y(-\log D)$ by Proposition 2.2.(iii). Since Y is compact, there exists a constant $c_0 > 0$ such that

$$\omega_{\alpha} \geqslant c_0 \tau_1^* (r_D^2 \cdot h).$$

Hence (2.2.11) holds for any $\gamma: C \to V$ with $\gamma(C) \cap V^{\circ} \neq \emptyset$. The claim is proved. \square By [Sch12, Lemma 8],

(2.2.12)
$$\sqrt{-1}\partial\bar{\partial}\log(\sum_{i=1}^{n}j\alpha_{j}G_{j}) \geqslant \frac{\sum_{j=1}^{n}j\alpha_{j}G_{j}\sqrt{-1}\partial\bar{\partial}\log G_{j}}{\sum_{i=1}^{n}j\alpha_{j}G_{i}}$$

Putting (2.2.5) and (2.2.6) to (2.2.12), and making the convention that $\frac{0}{0} = 0$, we obtain

$$\begin{split} \frac{\partial^{2} \log H(t)}{\partial t \partial \bar{t}} &\geq \frac{1}{H} \bigg(-\alpha_{1} G_{2}^{2} + \sum_{k=2}^{n} \alpha_{k} \Big(\frac{G_{k}^{k+1}}{G_{k-1}^{k-1}} - \frac{G_{k+1}^{k+1}}{G_{k}^{k-1}} \Big) \Big) + \frac{\sum_{k=1}^{n} \alpha_{k} G_{k}}{H} \Theta_{L,h_{L}}(\partial_{t}, \bar{\partial}_{t}) \\ &= \frac{1}{H} \bigg(\sum_{j=2}^{n} \bigg(\alpha_{j} \frac{G_{j}^{j+1}}{G_{j-1}^{j-1}} - \alpha_{j-1} \frac{G_{j}^{j}}{G_{j-1}^{j-2}} \bigg) \bigg) + \frac{\sum_{k=1}^{n} \alpha_{k} G_{k}}{H} \Theta_{L,h_{L}}(\partial_{t}, \bar{\partial}_{t}) \\ &\stackrel{(2.2.9)}{\geq} \frac{1}{H} \bigg(-\frac{1}{2} \frac{\alpha_{1}^{3}}{\alpha_{2}^{2}} G_{1}^{2} + \frac{1}{2} \sum_{j=2}^{n-1} \bigg(\frac{\alpha_{j-1}^{j-1}}{\alpha_{j}^{j-2}} - \frac{\alpha_{j}^{j+2}}{\alpha_{j+1}^{j+1}} \bigg) G_{j}^{2} + \frac{1}{2} \frac{\alpha_{n-1}^{n-1}}{\alpha_{n-2}^{n-2}} G_{n}^{2} \bigg) \\ &+ \frac{\sum_{k=1}^{n} \alpha_{k} G_{k}}{H} \Theta_{L,h_{L}}(\partial_{t}, \bar{\partial}_{t}) \\ &\stackrel{Claim}{\geq} \frac{2.7}{H} \bigg(\frac{\alpha_{1}}{2} (c_{0} - \frac{\alpha_{1}^{2}}{\alpha_{2}^{2}}) G_{1}^{2} + \frac{1}{2} \sum_{j=2}^{n-1} \bigg(\frac{\alpha_{j-1}^{j-1}}{\alpha_{j}^{j-2}} - \frac{\alpha_{j}^{j+2}}{\alpha_{j+1}^{j+1}} \bigg) G_{j}^{2} + \frac{1}{2} \frac{\alpha_{n-1}^{n-1}}{\alpha_{n-2}^{n-2}} G_{n}^{2} \bigg) \\ &+ \frac{1}{H} \bigg(\frac{1}{2} \alpha_{1} G_{1} + \sum_{l=2}^{n} \alpha_{k} G_{k} \bigg) \Theta_{L,h_{L}}(\partial_{t}, \bar{\partial}_{t}) \end{split}$$

One can take $\alpha_1 = 1$, and choose the further $\alpha_i > \alpha_{i-1}$ inductively so that

(2.2.13)
$$c_0 - \frac{\alpha_1^2}{\alpha_2^2} > 0, \quad \frac{\alpha_{j-1}^{j-1}}{\alpha_j^{j-2}} - \frac{\alpha_j^{j+2}}{\alpha_{j+1}^{j+1}} > 0 \quad \forall j = 2, \dots, n-1.$$

Hence

$$\frac{\partial^2 \log H(t)}{\partial t \partial \bar{t}} \ge \frac{1}{H} \left(\frac{1}{2} \alpha_1 G_1 + \sum_{k=2}^n \alpha_k G_k \right) \Theta_{L,h_L}(\partial_t, \bar{\partial}_t) \stackrel{(2.2.8)}{\ge} \frac{1}{n} \Theta_{L,h_L}(\partial_t, \bar{\partial}_t)$$

over C° . By Proposition 2.2.(i), this implies that

$$(2.2.14) \sqrt{-1}\partial \overline{\partial} \log |\gamma'|_F^2 = \sqrt{-1}\partial \overline{\partial} \log H(t) \ge \frac{1}{n} \gamma^* \sqrt{-1} \Theta_{L,h_L} \ge \delta \gamma^* \omega$$

over C° for some positive constant δ , which does not depend on γ . Since $|\gamma'(t)|_F^2$ is continuous and locally bounded from above over C, by the extension theorem of subharmonic function, (2.2.14) holds over the whole C. Since $c_0 > 0$ is a constant which does not depend on γ , so are $\alpha_1, \ldots, \alpha_n$ by (2.2.13). The theorem is thus proved.

In summary of results in this subsection, we obtain the following theorem.

Theorem 2.8. Let X be a projective manifold and let D be a simple normal crossing divisor on X. Assume that there is a Viehweg-Zuo Higgs bundle over (X, D). Then there are a Finsler metric h on $T_X(-\log D)$ which is positively definite on a dense Zariski open set V° of $V:=X\setminus D$, and a smooth Kähler form on X such that for any holomorphic map $\gamma:C\to V$ from any open subset C of $\mathbb C$ with $\gamma(C)\cap V^{\circ}\neq\varnothing$, one has

$$\sqrt{-1}\partial\overline{\partial}\log|\gamma'|_h^2 \ge \gamma^*\omega.$$

In particular, by Theorem A, for any holomorphic map $f: \Delta^* \to X \setminus D$, with $f(\Delta^*) \cap V^\circ \neq \emptyset$, it extends to a holomorphic map $\bar{f}: \Delta \to X$.

3. Generalized Big Picard Theorems

We will apply Theorems 1.7 and 2.8 to prove the big Picard theorem for moduli of polarized manifolds with semi-ample canonical sheaf, and for bases of log smooth families of Calabi-Yau pairs.

3.1. Big Picard theorem for moduli of polarized manifolds.

Proof of Theorem C. Let Z be the Zariski closure of $\gamma(\Delta^*)$ in Y. Take an embedded desingularization of singularities $\mu: \tilde{Y} \to Y$ so that the strict transform of Z, denoted by \tilde{Z} , is smooth. Write $\tilde{Z}^\circ := \tilde{Z} \cap \mu^{-1}(V)$, which is a dense Zariski open set of \tilde{Z} . We take the base change

$$X^{\circ} = U \times_{V} \tilde{Z}^{\circ} \longrightarrow U$$

$$f_{X^{\circ}} \downarrow \qquad \qquad \downarrow f_{U}$$

$$\tilde{Z}^{\circ} \longrightarrow V$$

Then polarized family $(f_{X^\circ}: X^\circ \to \tilde{Z}^\circ, \iota^*\mathcal{L}) \in \mathcal{P}_h(\tilde{Z}^\circ)$. We denote by $\varphi_{X^\circ}: \tilde{Z}^\circ \to P_h$ the moduli map associated to f_{X° . Then $\varphi_{X^\circ} = \varphi_U \circ \iota$, which is generically finite. Hence f_{X° is of maximal variation. By [VZ02,PTW18], after passing to a birational modification $v: W \to \tilde{Z}$, there exists a Viehweg-Zuo Higgs bundle on $W^\circ := v^{-1}(\tilde{Z}^\circ)$. By Theorem 2.8, there is a dense Zariski open set $W' \subset W^\circ$ so that any holomorphic map $\Delta^* \to W^\circ$ extends to $\Delta \to W$ provided that its image is not contained in $W \setminus W'$. Since $\gamma: \Delta^* \to Z$ is Zariski dense, it thus does not lie on the discriminant locus of the birational morphism $\mu|_{\tilde{Z}} \circ v: W \to Z$, and thus $\tilde{\gamma} = (\mu|_{\tilde{Z}} \circ v)^{-1} \circ \gamma: \Delta^* \to W$ exists with its image contained in W° . Moreover, $\tilde{\gamma}: \Delta^* \to W$ is also Zariski dense, and thus $\tilde{\gamma}(\Delta^*) \cap W' \neq \emptyset$. By Theorem 1.7, $\tilde{\gamma}: \Delta^* \to W$ extends to a holormorphic map $\tilde{\gamma}: \Delta \to W$. The holomorphic map $\mu \circ v \circ \tilde{\gamma}: \Delta \to Y$ is the desired extension of $\gamma: \Delta^* \to V$. The theorem is proved. \square

Remark 3.1. Based on the fundamental work [VZ02,VZ03,PTW18], in [Den18b] we prove that the base V in Theorem \mathbb{C} is both Brody hyperbolic and pseudo Kobayashi hyperbolic. In [LSZ19], Lu-Sun-Zuo combine the original approach in [VZ03] with our Torelli type result Theorem 2.3 to construct negatively curved pseudo hermitian metric on any algebraic curve in V, so that they can apply the celebrated work of Griffiths-King [GK73] to prove the Borel hyperbolicity of V.

3.2. **Big Picard theorem for bases of log Calabi-Yau families.** In [Den19], we prove that for maximally varying, log smooth family of Calabi-Yau pairs, its base can be equipped with a Viehweg-Zuo Higgs bundle. Let us start with the following definition.

Definition 3.2 (log smooth family). Let X° and Y° be quasi-projective manifolds, and let $D^{\circ} = \sum_{i=1}^{m} a_i D_i^{\circ}$ be a Kawamata log terminal (klt for short) \mathbb{Q} -divisor on X° with simple normal crossing support. The morphism $f^{\circ}: (X^{\circ}, D^{\circ}) \to Y^{\circ}$ is a log smooth family if $f^{\circ}: X^{\circ} \to Y^{\circ}$ is a smooth projective morphism with connected fibers, and D° is relatively normal crossing over Y° , namely each stratum $D_{i_1}^{\circ} \cap \cdots \cap D_{i_k}^{\circ}$ of D° is dominant onto and smooth over Y° under f° .

Let us recall the main result in [Den19].

Theorem 3.3 ([Den19, Theorem A]). Let $f^{\circ}: (X^{\circ}, D^{\circ}) \to Y^{\circ}$ be a log smooth family over a quasi-projective manifold Y° . Assume that each fiber $(X_y, D_y) := (f^{\circ})^{-1}(y)$ is a klt pair, and $K_{X_y} + D_y \equiv_{\mathbb{Q}} 0$. Assume that the logarithmic Kodaira-Spencer map $\rho: T_{Y^{\circ}} \to R^1 f_*^{\circ} (T_{X^{\circ}/Y^{\circ}}(-\log D^{\circ}))$ is generically injective. Then after replacing Y° by a birational model, there exists a Viehweg-Zuo Higgs bundle over Y° .

By Theorem 3.3, one can perform the same proof as that of Theorem C to conclude the following result.

Theorem 3.4. In the setting of Theorem 3.3, assume additionally that the logarithmic Kodaira-Spencer map

$$T_{Y^{\circ},y} \to H^1(X_y, T_{X_y}(-\log D_y))$$

is injective for any $y \in Y^{\circ}$. Then for any projective compactification Y of the base Y° , any holomorphic map $\gamma : \Delta^* \to Y^{\circ}$ extends into the origin.

REFERENCES

- [BD19] Damian Brotbek and Ya Deng, *Kobayashi hyperbolicity of the complements of general hypersurfaces of high degree*, Geometric and Functional Analysis (2019), https://doi.org/10.1007/s00039-019-00496-2.↑2
- [Bor72] Armand Borel, Some metric properties of arithmetic quotients of symmetric spaces and an extension theorem, J. Differential Geometry 6 (1972), 543–560, http://projecteuclid.org/euclid.jdg/1214430642.↑2
- [Dem97] Jean-Pierre Demailly, *Variétés hyperboliques et équations différentielles algébriques*, Gaz. Math. (1997), no. 73, 3−23. ↑ 2, 3, 4, 5
- [Den18a] Ya Deng, Kobayashi hyperbolicity of moduli spaces of minimal projective manifolds of general type (with the appendix by Dan Abramovich), arXiv:1806.01666 (2018). ↑ 2, 6, 8, 9
- [Den18b] ______, Pseudo Kobayashi hyperbolicity of base spaces of families of minimal projective manifolds with maximal variation, arXiv:1809.05891 (2018). ↑ 2, 3, 6, 7, 8, 11
- [Den19] _____, Hyperbolicity of bases of log Calabi-Yau families, hal-02266744 (2019). ↑ 2, 3, 11, 12
- [Fuj72] Hirotaka Fujimoto, *On holomorphic maps into a taut complex space*, Nagoya Math. J. **46** (1972), 49-61, http://projecteuclid.org/euclid.nmj/1118798592.↑2
- [GK73] Phillip Griffiths and James King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta Math. **130** (1973), 145–220, https://doi.org/10.1007/BF02392265. ↑ 11
- [Gre77] Mark L. Green, The hyperbolicity of the complement of 2n+1 hyperplanes in general position in P_n and related results, Proc. Amer. Math. Soc. **66** (1977), no. 1, 109–113, https://doi.org/10.2307/2041540. \uparrow 2
- [JK18] Ariyan Javanpeykar and Robert A. Kucharczyk, *Algebraicity of analytic maps to a hyperbolic variety*, arXiv e-prints (2018), arXiv:1806.09338. ↑ 1
- [KO71] Shoshichi Kobayashi and Takushiro Ochiai, Satake compactification and the great Picard theorem, J. Math. Soc. Japan 23 (1971), 340-350, https://doi.org/10.2969/jmsj/02320340.↑2
- [Kob98] Shoshichi Kobayashi, *Hyperbolic complex spaces*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 318, Springer-Verlag, Berlin, 1998, https://doi.org/10.1007/978-3-662-03582-5.↑1, 4
- [LSZ19] Steven Lu, Ruiran Sun, and Kang Zuo, Nevanlinna Theory on Moduli Space and the big Picard Theorem, arXiv e-prints (2019), arXiv:1911.02973. ↑ 2, 3, 11
- [Nog81] Junjiro Noguchi, Lemma on logarithmic derivatives and holomorphic curves in algebraic varieties, Nagoya Math. J. 83 (1981), 213-233, http://projecteuclid.org/euclid.nmj/ 1118786486. ↑ 2, 3, 4
- [NW14] Junjiro Noguchi and Jörg Winkelmann, Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 350, Springer, Tokyo, 2014, https://doi.org/10. 1007/978-4-431-54571-2.↑3, 4, 5, 6
- [PS17] Mihnea Popa and Christian Schnell, Viehweg's hyperbolicity conjecture for families with maximal variation, Invent. Math. 208 (2017), no. 3, 677-713, https://doi.org/10.1007/s00222-016-0698-9.↑2

- [PTW18] Mihnea Popa, Behrouz Taji, and Lei Wu, *Brody hyperbolicity of base spaces of certain families of varieties*, arXiv:1801.05898 (2018). ↑ 2, 6, 7, 11
- [Sch12] Georg Schumacher, *Positivity of relative canonical bundles and applications*, Invent. Math. **190** (2012), no. 1, 1–56, https://doi.org/10.1007/s00222-012-0374-7. ↑ 10
- [Sch17] Georg Schumacher, Moduli of canonically polarized manifolds, higher order Kodaira-Spencer maps, and an analogy to Calabi-Yau manifolds, arXiv e-prints (2017), arXiv:1702.07628. ↑ 9
- [SY97] Yum-Tong Siu and Sai-Kee Yeung, Defects for ample divisors of abelian varieties, Schwarz lemma, and hyperbolic hypersurfaces of low degrees, Amer. J. Math. 119 (1997), no. 5, 1139-1172, http://muse.jhu.edu/journals/american_journal_of_mathematics/v119/119.5siu.pdf.↑2,3
- [TY15] Wing-Keung To and Sai-Kee Yeung, Finsler metrics and Kobayashi hyperbolicity of the moduli spaces of canonically polarized manifolds, Ann. of Math. (2) **181** (2015), no. 2, 547–586, https://doi.org/10.4007/annals.2015.181.2.3.↑9
- [Vie95] Eckart Viehweg, *Quasi-projective moduli for polarized manifolds*, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 30, Springer-Verlag, Berlin, 1995, https://doi.org/10.1007/978-3-642-79745-3.↑3
- [VZ02] Eckart Viehweg and Kang Zuo, *Base spaces of non-isotrivial families of smooth minimal models*, Complex geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 279–328. ↑ 2, 6, 7, 11
- [VZ03] _____, On the Brody hyperbolicity of moduli spaces for canonically polarized manifolds, Duke Math. J. 118 (2003), no. 1, 103-150, https://doi.org/10.1215/S0012-7094-03-11815-3. \uparrow 2, 6, 11

Institut des Hautes Études Scientifiques, Université Paris-Saclay, 35 route de Chartres, 91440, Bures-sur-Yvette, France

Email address: deng@ihes.fr

URL: https://www.ihes.fr/~deng