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Abstract. Consider a smooth projective family of complex polarized manifolds with
semi-ample canonical sheaf over a quasi-projective manifold V . When the associated
moduli mapV → Ph from the base to coarse moduli space is quasi-�nite, we prove that
the generalized big Picard theorem holds for the base manifold V : for any projective
compacti�cation Y of V , any holomorphic map f : ∆ − {0} → V from the punctured
unit disk to V extends to a holomorphic map of the unit disk ∆ into Y . This result
generalizes our previous work on the Brody hyperbolicity of V (i.e. there are no entire
curves on V ), as well as a more recent work by Lu-Sun-Zuo on the Borel hyperbolicity
of V (i.e. any holomorphic map from a quasi-projective variety to V is algebraic). We
also obtain generalized big Picard theorem for bases of log Calabi-Yau families.
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0. Introduction

The classical big Picard theorem says that any holomorphic map from the punctured
disk ∆∗ into P1 which omits three points can be extended to a holomorphic map ∆→ P1,
where ∆ denotes the unit disk. Therefore, we say the (generalized) big Picard theorem
holds for a quasi-projective variety V if for some (thus any) projective compacti�cation
Y of V , any holomorphic map f : ∆∗ → V extends to a holomorphic map f̄ : ∆ → X .
This property is interesting for it implies the Borel hyperbolicity1 of V : any holomor-
phic map from a quasi-projective variety to V is necessarily algebraic. A natural ques-
tion is to �nd algebraic varieties satisfying the big Picard theorem. By the fundamen-
tal work of Kobayashi (see [Kob98, Theorem 6.3.6]), big Picard theorem holds for the
quasi-projective manifoldV which admits a projective compacti�cation Y such thatV is
hyperbolically embedded into Y (see [Kob98, Chapter 3. §3] for the de�nition). This gives
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1The notion of Borel hyperbolicity was �rst introduced by Javanpeykar-Kucharczyk in [JK18].
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us an important criteria for varieties satisfying the big Picard theorem. By the work
of Fujimoto [Fuj72] and Green [Gre77], complements of 2n + 1 general hyperplanes in
Pn are hyperbolically embedded into Pn. More recently Brotbek and the author [BD19]
proved that the complement of a general hypersurface in Pn of high degree is also hy-
perbolically embedded into Pn. By A. Borel [Bor72] and Kobayashi-Ochiai [KO71], the
quotients of bounded symmetric domains by torsion free arithmetic groups are hyper-
bolically embedded into its Baily-Borel compacti�cation. Hence these results provide
examples of quasi-projective manifolds satisfying the big Picard theorem.

However, quasi-projective manifoldV being hyperbolically embedded into some pro-
jective compacti�cation Y is minimal in the sense that, for any birational modi�cation
µ : Ỹ → Y by blowing-up the boundary Y \ V , µ−1(V ) ' V is no more hyperbolically
embedded into Ỹ , while the big Picard theorem does not depends on its compacti�cation.
The �rst result in this paper is to establish a more �exible criteria for big Picard theorem.
For our de�nition of Finsler metric (which is slightly di�erent from the usual one in the
literature), see De�nition 1.6.

Theorem A (=Theorem 1.7). Let X be a projective manifold and let D be a simple normal
crossing divisor onX . Leth be a (possibly degenerate) Finsler metric ofTX (− logD). Assume
that f : ∆∗ → X \ D is a holomorphic map from the punctured unit disk ∆∗ to X \ D such
that | f ′(t)|2

h
. 0, and

√
−1∂∂ log | f ′(t)|2h ≥ f ∗ω

for some smooth Kähler metric ω on X . Then f extends to a holomorphic map f̄ : ∆→ X
of the unit disk into X .

Theorem A is inspired by fundamental vanishing theorem for jet di�erentials vanishing
on some ample divisor by Siu-Yeung [SY97] and Demailly [Dem97, §4], and its proof is
mainly based on a logarithmic derivative lemma by Noguchi [Nog81].

The motivation of Theorem A is to study the hyperbolicity of moduli spaces of polar-
ized manifolds with semi-ample canonical bundle. By the fundamental work of Viehweg-
Zuo [VZ02,VZ03], and the recent development by Popa et al. [PS17,PTW18] and [Den18a,
Den18b,Den19,LSZ19], a special Higgs bundle, the so-called Viehweg-Zuo Higgs bundle
in De�nition 2.1 below, turns out to be a powerful technique in studying hyperbolicity
problems. For a quasi-projective manifold V equipped with a Viehweg-Zuo Higgs bun-
dle, in [Den18a, Den18b] we prove that V can be equipped with a generically positively
de�nite Finsler metric whose holomorphic sectional curvature is bounded from above
by a negative constant. In particular, we prove thatV is always pseudo Kobayashi hyper-
bolic. The second aim of this article is to give a new curvature estimate for that Finsler
metric on V .

TheoremB (=Theorem 2.8). LetX be a projectivemanifold equippedwith a smooth Kähler
metricω and letD be a simple normal crossing divisor onX . Assume that there is a Viehweg-
Zuo Higgs bundle over (X ,D). Then there are a positive constant δ and a Finsler metric h
on TX (− logD) which is positively de�nite on a dense Zariski open set V ◦ of V := X \ D,
such that for any holomorphic map γ : C → V from any open subset C of C to V with
γ (C) ∩V ◦ , ∅, one has

√
−1∂∂ log |γ ′|2h ≥ δγ

∗ω .

In particular, by Theorem A, for any holomorphic map f : ∆∗ → X \D, with f (∆∗) ∩V ◦ ,
∅, it extends to a holomorphic map f̄ : ∆→ X .

By the work [VZ02, VZ03, PTW18], Viehweg-Zuo Higgs bundles exist on bases of
maximally varying, smooth family of projective manifolds with semi-ample canonical
bundle. Combining their results and Theorem B, we prove the big Picard theorem for
moduli of polarized manifolds with semi-ample canonical bundle.
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Theorem C. Consider the moduli functor Ph of polarized manifolds with semi-ample
canonical sheaf introduced by Viehweg [Vie95, §7.6], where h is the Hilbert polynomial
associated to the polarization. Assume that for some quasi-projective manifoldV over which
there exists a smooth polarized family (fU : U → V ,L ) ∈ Ph(V ) such that the induced
moduli map φU : V → Ph is quasi-�nite. Let Y be an arbitrary projective compacti�cation
ofV . Then any holomorphic map γ : ∆∗ → V from the punctured unit disk ∆∗ toV extends
to a holomorphic map from the unit disk ∆ to Y .

Under the same assumption as Theorem B, we have already in [Den18b] proved the
Brody hyperbolicity of V : there exists no entire curves γ : C→ V . Based on the in�ni-
tesimal Torelli-type theorem proven in [Den18b, Theorem C] (see Theorem 2.3 below),
more recently, Lu-Sun-Zuo [LSZ19] proved the Borel hyperbolicity of V : any holomor-
phic map from a quasi-projective variety toV is algebraic. The use of Nevannlina theory
in this article is inspired by their work, although our methods are di�erent from theirs
(see Remark 3.1).

Finally, let us mention that in [Den19], we construct Viehweg-Zuo Higgs bundles over
bases of maximally varying, log smooth families of Calabi-Yau families (see De�nition 3.2
for the de�nition of log smooth family). Applying Theorems A and B to this result, we
also obtain big Picard theorem for these base manifolds.

TheoremD (=Theorem 3.4). Let f ◦ : (X ◦,D◦) → Y ◦ be a log smooth family over a quasi-
projective manifold Y ◦. Assume that each �ber (Xy,Dy) := (f ◦)−1(y) of f ◦ is a klt pair, and
KXy + Dy ≡Q 0. Assume that the logarithmic Kodaira-Spencer map

TY ◦,y → H 1 (Xy,TXy (− logDy)
)

is injective for any y ∈ Y ◦. Then for any projective compacti�cation Y of the base Y ◦, any
holomorphic map γ : ∆∗ → Y ◦ extends to a holomorphic map from ∆ to Y .

0.1. Acknowledgments. I would like to thank Professors Jean-Pierre Demailly and
Emmanuel Ullmo for their encouragements and supports. This work is supported by
Institut des Hautes Études Scienti�ques.

1. A differential geometric criteria for big Picard theorem

In the similar vein as the fundamental vanishing theorem for jet di�erentials vanish-
ing on some ample divisor by Siu-Yeung [SY97] and Demailly [Dem97], in this section
we will establish a di�erential geometric criteria for big Picard type theorem via the
logarithmic derivative lemma by Noguchi [Nog81].

1.1. Preliminary inNevannlina theory. LetD∗ := {t ∈ C | |t | > 1}, andD := D∗∪∞.
Then via the map z 7→ 1

z , D∗ is isomorphic to the punctured unit disk ∆∗ and D is
isomorphic to the unit disk ∆. Therefore, for any holomorphic map f from the punctured
disk ∆∗ into a projective variety Y , f extends to the origin if and only if f (1z ) : D∗ → Y
extends to the in�nity.

Let (X ,ω) be a compact Kähler manifold, and γ : D∗ → X be a holomorphic map. Fix
any r0 > 1. Write Dr := {z ∈ C | r0 < |z | < r }. The order function is de�ned by

Tγ ,ω(r ) :=
∫ r

r0

dτ

τ

∫
Dτ

γ ∗ω .

As is well-known, the asymptotic behavior of Tγ ,ω(r ) as r → ∞ characterizes whether
γ can be extended over the ∞ (see e.g. [Dem97, 2.11. Cas «local »] or [NW14, Remark
4.7.4.(ii)]).

Lemma 1.1. Tγ ,ω(r ) = O(log r ) if and only if γ is extended holomorphically over∞. �

The following lemma is well-known to experts (see e.g. [Dem97, Lemme 1.6]).
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Lemma 1.2. Let X be a projective manifold equipped with a hermitian metric ω and let
u : X → P1 be a rational function. Then for any holomorphic map γ : D∗ → X , one has

Tu◦γ ,ωFS (r ) ≤ CTγ ,ω(r ) +O(1)
where ωFS is the Fubini-Study metric for P1. �

The following logarithmic derivative lemma by Noguchi is crucial in the proof of The-
orem A.

Lemma 1.3 ( [Nog81, Lemma2.12], [Dem97, 3.4. Cas local]). Let u : D∗ → P1 be any
meromorphic function. Then we have

1
2π

∫ 2π

0
log+ |(logu)′(reiθ )|dθ ≤ C(log+Tu,ωFS (r ) + log r ) +O(1) ‖,

for some constant C > 0 which does not depend on r . Here the symbol ‖ means that the
inequality holds outside a Borel subset of (r0,+∞) of �nite Lebesgue measure. �

We need the lemma by E. Borel.

Lemma 1.4 ( [NW14, Lemma 1.2.1]). Let ϕ(r ) ≥ 0(r ≥ r0 ≥ 0) be a monotone increasing
function. For every δ > 0,

d

dr
ϕ(r ) ≤ ϕ(r )1+δ ‖.

�

We recall two useful formulas (the second one is the well-known Jensen formula).

Lemma 1.5. Write log+ x := max(logx, 0).

log+(
N∑
i=1

xi) ≤
N∑
i=1

log+ xi + logN for xi ≥ 0.(1.1.1)

1
π

∫ r

r0

dτ

τ

∫
Dτ

√
−1∂∂v =

1
2π

∫ 2π

0
v(reiθ )dθ −

1
2π

∫ 2π

0
v(r0e

iθ )dθ(1.1.2)

for all functions v so that
√
−1∂∂v exists as measures (e.g. v is the di�erence of two sub-

harmonic functions). �

1.2. A criteria for big Picard theorem.

De�nition 1.6 (Finsler metric). Let E be a holomorphic vector bundle on a complex
manifold X . A Finsler metric on E is a real non-negative continuous function h : E →
[0,+∞[ such that

h(av) = |a |h(v)

for any a ∈ C andv ∈ E. The metric h is degenerate at a point x ∈ X if h(v) = 0 for some
nonzero v ∈ Ex , and the set of such degenerate points is denoted by ∆h .

We shall mention that our de�nition is a bit di�erent from that in [Kob98, Chapter 2,
§3], which requires convexity, and the Finsler metric therein can be upper-semi contin-
uous.

Let us now state and prove the main result in this section.

Theorem 1.7 (Criteria for big Picard theorem). Let X be a projective manifold and let D
be a simple normal crossing divisor on X . Let h be a (possibly degenerate) Finsler metric of
TX (− logD). Assume that f : D∗ → X \ D is a holomorphic map such that | f ′(t)|2

h
. 0,

and
1
π

√
−1∂∂ log | f ′(t)|2h ≥ f ∗ω(1.2.1)

for some smooth Kähler metric ω on X . Then f extends to a holomorphic map f̄ : D→ X .
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The proof is an application of logarithmic derivative lemma, which is inspired by
[Dem97, §4] and [NW14, Lemma 4.7.1].

Proof of Theorem 1.7. We take a �nite a�ne covering {Uα }α∈I ofX and rational functions
(xα1, . . . , xαn) on X which are holomorphic on Uα so that

dxα1 ∧ · · · ∧ dxαn , 0 on Uα

D ∩Uα = (xα,s(α)+1 · · · xαn = 0)

Hence

(eα1, . . . , eαn) := (
∂

∂xα1
, . . . ,

∂

∂xαs(α)
, xα,s(α)+1

∂

∂xα,s(α)+1
, . . . , xαn

∂

∂xαn
)(1.2.2)

is a basis for TX (− logD)|Uα . Write

(fα1(t), . . . , fαn(t)) := (xα1 ◦ f , . . . , xαn ◦ f ).

With respect to the trivialization ofTX (− logD) induced by the basis (1.2.2), f ′(t) can be
written as

f ′(t) = f ′α1(t)eα1 + · · · + f ′αs(α)(t)eαs(α) + (log fα,s(α)+1)
′(t)eα,s(α)+1 + · · · + (log fαn)

′(t)eαn .

Let {ρα }α∈I be a partition of unity subordinated to {Uα }α∈I . Since h is Finsler metric for
TX (− logD) which is continuous and locally bounded from above by De�nition 1.6, and
I is a �nite set, there is a constant C > 0 so that

ρα ◦ f · | f
′(t)|2h ≤ C

( s(α)∑
j=1

ρα ◦ f · | f
′
αj(t)|

2 +

n∑
i=s(α)+1

|(log fαi)
′(t)|2

)
∀t ∈ D∗(1.2.3)

for any α . Hence

Tf ,ω(r ) :=
∫ r

r0

dτ

τ

∫
Dτ

f ∗ω
(1.2.1)
≤

∫ r

r0

dτ

τ

∫
Dτ

1
π

√
−1∂∂ log | f ′|2h

(1.1.2)
≤

1
2π

∫ 2π

0
log | f ′(reiθ )|hdθ −

1
2π

∫ 2π

0
log | f ′(r0e

iθ )|hdθ

≤
1

2π

∫ 2π

0
log+ | f ′(reiθ )|hdθ +O(1) =

1
2π

∫ 2π

0
log+

∑
α

|ρα ◦ f · f
′(reiθ )|hdθ +O(1)

(1.1.1)
≤

∑
α

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′(reiθ )|hdθ +O(1)

(1.2.3)
≤

∑
α

n∑
i=s(α)+1

1
2π

∫ 2π

0
log+ |(log fαi)

′(reiθ )|dθ

+
∑
α

s(α)∑
j=1

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′αj(re

iθ )|dθ +O(1)

Lemma 1.3
≤ C1

∑
α

n∑
i=s(α)+1

(
log+Tfαi ,ωFS (r ) + log r

)
+

∑
α

s(α)∑
j=1

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′αj(re

iθ )|dθ +O(1) ‖

Lemma 1.2
≤ C2(log+Tf ,ω(r ) + log r ) +

∑
α

s(α)∑
j=1

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′αj(re

iθ )|dθ +O(1) ‖.

(1.2.4)
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where C1 and C2 are two positive constants which do not depend on r .

Claim 1.8. For any α ∈ I and any j ∈ {1, . . . , s(α)}, one has

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′αj(re

iθ )|dθ ≤ C3(log+Tf ,ω(r ) + log r ) +O(1) ‖(1.2.5)

for positive constant C3 which does not depend on r .

Proof of Claim 1.8. The proof of the claim is borrowed from [NW14, eq.(4.7.2)]. Pick
C > 0 so that ρα

√
−1dxαj ∧ dx̄αj ≤ Cω. Write f ∗ω :=

√
−1B(t)dt ∧ dt̄ . Then

1
2π

∫ 2π

0
log+ |ρα ◦ f · f ′αj(re

iθ )|dθ =
1

4π

∫ 2π

0
log+(|ρ2

α ◦ f | · | f
′
αj(re

iθ )|2)dθ

≤
1

4π

∫ 2π

0
log+ B(reiθ )dθ +O(1) ≤

1
4π

∫ 2π

0
log(1 + B(reiθ ))dθ +O(1)

≤
1
2

log(1 +
1

2π

∫ 2π

0
B(reiθ )dθ ) +O(1) =

1
2

log(1 +
1

2πr
d

dr

∫
Dr

rBdrdθ ) +O(1)

=
1
2

log(1 +
1

2πr
d

dr

∫
Dr

f ∗ω) +O(1)

Lemma 1.4
≤

1
2

log(1 +
1

2πr
(

∫
Dr

f ∗ω)1+δ ) +O(1) ‖

=
1
2

log(1 +
rδ

2π
(
d

dr
Tf ,ω(r ))

1+δ ) +O(1) ‖

Lemma 1.4
≤

1
2

log(1 +
rδ

2π
(Tf ,ω(r ))

(1+δ )2) +O(1) ‖

≤ 4 log+Tf ,ω(r ) + δ log r +O(1) ‖.

Here we pick 0 < δ < 1 to apply Lemma 1.4. The claim is proved. �

Putting (1.2.5) to (1.2.4), one obtains

Tf ,ω(r ) ≤ C(log+Tf ,ω(r ) + log r ) +O(1) ‖

for some positive constantC . HenceTf ,ω(r ) = O(log r ). We apply Lemma 1.1 to conclude
that f extends to the∞. �

2. The negatively curved metric via Viehweg-Zuo Higgs bundles

In [VZ02, VZ03], Viehweg-Zuo introduced a special type of Higgs bundles over the
bases of smooth families of polarized manifolds with semi-ample canonical sheaves to
study the hyperbolicity of such bases. It was later developed in [PTW18]. For any
quasi-projective manifold V endowed with a Viehweg-Zuo Higgs bundle, we construct
in [Den18a, Den18b] a generically positively de�nite Finsler metric over V whose holo-
morphic sectional curvature is bounded from above by a negative constant. In this sec-
tion we will re�ne curvature estimate in [Den18a] to prove big Picard theorem for such
quasi-projective manifold V .

2.1. Viehweg-ZuoHiggs bundles and their propermetrics. The de�nition for Viehweg-
Zuo Higgs bundles we present below follows from the formulation in [VZ02, VZ03]
and [PTW18].

De�nition 2.1 (Abstract Viehweg-Zuo Higgs bundles). LetV be a quasi-projective man-
ifold, and let Y ⊃ V be a projective compacti�cation ofV with the boundary D := Y \V
simple normal crossing. A Viehweg-Zuo Higgs bundle over (Y ,D) (or say over V abu-
sively) is a logarithmic Higgs bundle (Ẽ , θ̃ ) over Y consisting of the following data:
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(i) a divisor S on Y so that D + S is simple normal crossing,
(ii) a big and nef line bundle L over Y with B+(L) ⊂ D ∪ S ,
(iii) a Higgs bundle (E , θ ) :=

(⊕n
q=0 E

n−q,q,
⊕n

q=0 θn−q,q
)

induced by the lower canoni-
cal extension of a polarized VHS de�ned over Y \ (D ∪ S),

(iv) a sub-Higgs sheaf (F ,η) ⊂ (Ẽ , θ̃ ),
which satisfy the following properties.

(1) The Higgs bundle (Ẽ , θ̃ ) := (L−1⊗E , 1⊗θ ). In particular, θ̃ : Ẽ → Ẽ ⊗ΩY
(
log(D+S)

)
,

and θ̃ ∧ θ̃ = 0.
(2) The sub-Higgs sheaf (F ,η) has log poles only on the boundary D, that is, η : F →

F ⊗ ΩY (logD).
(3) Write Ẽk := L−1 ⊗ En−k,k , and denote by Fk := Ẽk ∩ F . Then the �rst stage F0

of F is an e�ective line bundle. In other words, there exists a non-trivial morphism
OY → F0.

As shown in [VZ02], by iterating η for k-times, we obtain

F0

k times︷      ︸︸      ︷
η ◦ · · · ◦ η
−−−−−−−−−→ Fk ⊗

(
ΩY (logD)

)⊗k
.

Since η ∧ η = 0, the above morphism factors through Fk ⊗ SymkΩY (logD), and by (3)
one thus obtains

OY → F0 → Fk ⊗ SymkΩY (logD) → L−1 ⊗ En−k,k ⊗ SymkΩY (logD).

Equivalently, we have a morphism

τk : SymkTY (− logD) → L−1 ⊗ En−k,k .(2.1.1)

It was proven in [VZ02, Corollary 4.5] that τ1 is always non-trivial. In [Den18b] we prove
that τ1 : TY (− logD) → L−1 ⊗ En−1,1 in (2.1.1) is generically injective.

We will follow [PTW18] to give some “proper” metric on Ẽ = ⊕n
k=0L

−1 ⊗En−k,k . Write
the simple normal crossing divisor D = D1 + · · · + Dk and S = S1 + · · · + S` . Let fDi ∈

H 0 (Y ,OY (Di)
)

and fSi ∈ H
0 (Y ,OY (Si)) be the canonical section de�ning Di and Si . We

�x smooth hermitian metrics дDi and дSi on OY (Di) and OY (Si). After rescaling дDi and
дS j , we assume that | fDi |дDi < 1 and | fS j |дSj < 1 for i = 1, . . . ,k and j = 1, . . . , `. Set

rD :=
k∏
i=1
(− log | fDi |

2
дDi
), rS :=

∏̀
j=1
(− log | fS j |

2
дSj
).

Let д be a singular hermitian metric with analytic singularities of the big and nef line
bundle L such that д is smooth on Y \ B+(L) ⊃ Y \ D ∪ S , and the curvature current
√
−1Θд(L) > ω for some smooth Kähler form ω on Y . For α ∈ N, de�ne

hL := д · (rD · rS )α

The following proposition is a slight variant of [PTW18, Lemma 3.1, Corollary 3.4].

Proposition 2.2 ( [PTW18]). When α � 0, after rescaling fDi and fSi , there exists a
continuous, positively de�nite hermitian form ωα on TY (− logD) such that

(i) over V0 := Y \ D ∪ S , the curvature form
√
−1ΘhL (L)�V0 > r−2

D · ωα�V0,
√
−1ΘhL (L) ≥ ω

where ω is a smooth Kähler metric on Y .
(ii) The singular hermitian metric h := h−1

L ⊗ hhod on Ẽ = L−1 ⊗ E is locally bounded on
Y , and smooth outside (D + S), where hhod is the Hodge metric for the Hodge bundle
E . Moreover, h is degenerate on D + S .
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(iii) The singular hermitian metric r 2
Dh on L−1 ⊗ E is also locally bounded on Y and is

degenerate on D + S . �

Hence by De�nition 1.6, h and r 2
Dh are both Finsler metrics on Ẽ .

2.2. Construction of negatively curved Finsler metric. We adopt the same nota-
tions as § 2.1 throughout this subsection. Assume that the log manifold (Y ,D) is en-
dowed with a Viehweg-Zuo Higgs bundle. In [Den18a, §3.4] we construct Finsler metrics
F1, . . . , Fn on TY (− logD) as follows. By (2.1.1), for each k = 1, . . . ,n, there exists

τk : SymkTY (− logD) → L−1 ⊗ En−k,k .(2.2.1)

Then it follows from Proposition 2.2.(ii) that the Finsler metric h on L−1 ⊗ En−k,k induces
a Finsler metric Fk on TY (− logD) de�ned as follows: for any e ∈ TY (− logD)y ,

Fk(e) := h
(
τk(e

⊗k)
) 1
k(2.2.2)

Let C ⊂ C be any open set of C. For any γ : C → V , one has

dγ : TC → γ ∗TV ↪→ γ ∗TY (− logD).(2.2.3)

We denote by ∂t := ∂
∂t the canonical vector �elds in C ⊂ C, ∂̄t := ∂

∂t̄ its conjugate. The
Finsler metric Fk induces a continuous Hermitian pseudo-metric on C , de�ned by

γ ∗F 2
k =
√
−1Gk(t)dt ∧ dt̄ .(2.2.4)

Hence Gk(t) = |τk
(
dγ (∂t )

⊗k
)
|

2
k
h

, where τk is de�ned in (2.1.1). The reader might worried
that all Gk(t) will be identically equal to zero. In [Den18b, Theorem C], we prove that
‘generically’ this cannot happen.

Theorem 2.3 ( [Den18b]). There is a dense Zariski open set V ◦ ⊂ V0 = Y \ (D + S) of V ◦

so that τ1 : TY (− logD)|V ◦ → L−1 ⊗ En−1,1 |V ◦ is injective. �

We now �x any γ : C → V with γ (C) ∩V ◦ , ∅. By Proposition 2.2.(ii), the metric h
for L−1 ⊗ E is smooth and positively de�nite over V0. It then follows from Theorem 2.3
that G1(t) . 0. Let C◦ ⊂ C be an (non-empty) open set whose complement C \ C◦ is a
discrete set so that
• The image γ (C◦) ⊂ V ◦.
• For every k = 1, . . . ,n, either Gk(t) ≡ 0 on C◦ or Gk(t) > 0 for any t ∈ C◦.
• γ ′(t) , 0 for any t ∈ C◦.

By the de�nition of Gk(t), if Gk(t) ≡ 0 for some k > 1, then τk(∂
⊗k
t ) ≡ 0 where τk is

de�ned in (2.1.1). Note that one has τk+1(∂
⊗(k+1)
t ) = θ̃

(
τk(∂

⊗k
t )

)
(∂t ), where θ̃ : L−1 ⊗ E →

L−1 ⊗ E ⊗ΩY (log(D +S)) is de�ned in De�nition 2.1. We thus conclude thatGk+1(t) ≡ 0.
Hence it exists 1 ≤ m ≤ n so that the set {k | Gk(t) > 0 over C◦} = {1, . . . ,m}, and
G`(t) ≡ 0 for all ` =m + 1, . . . ,n. From now on, all the computations are made over C◦.

In [Den18a] we proved the following curvature formula.

Theorem 2.4 ( [Den18a, Proposition 3.12]). For k = 1, . . . ,m, over C◦ one has

∂2 logG1

∂t∂t̄
≥ ΘL,hL (∂t , ∂̄t ) −

G2
2

G1
if k = 1,(2.2.5)

∂2 logGk

∂t∂t̄
≥

1
k

(
ΘL,hL (∂t , ∂̄t ) +

Gk
k

Gk−1
k−1
−
Gk+1
k+1

Gk
k

)
if k > 1.(2.2.6)

Here we make the convention thatGn+1 ≡ 0 and 0
0 = 0. We also write ∂t (resp. ∂̄t ) for dγ (∂t )

(resp. dγ (∂̄t )) abusively, where dγ is de�ned in (2.2.3). �
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Let us mention that in [Den18a, eq. (3.3.58)] we drop the term ΘL,hL (∂t , ∂̄t ) in (2.2.6),
though it can be easily seen from the proof of [Den18a, Lemma 3.9]. As we will see
below, such a term is crucial in deriving the new curvature estimate.

By Theorem 2.4 we see that the curvature of Fk is not the desired type (1.2.1) for
applying the criteria for big Picard theorem in Theorem 1.7. In [Den18a, §3.4], following
ideas by [TY15, Sch17] we introduce a new Finsler metric F on TY (− logD) by taking
convex sum in the following form

F :=

√√
n∑

k=1
kαkF

2
k
.(2.2.7)

where α1, . . . ,αn ∈ R
+ are some constants which will be �xed later. By Theorem 2.3,

the set of degenerate points of F de�ned in De�nition 1.6, denoted by ∆F , is contained
in a proper Zariski closed subset Y \ V ◦. In [Den18a, Theorem 3.8] we prove that the
holomorphic sectional curvature of F is bounded from above by a negative constant. Let
us now prove a new curvature formula for F in this section.

For the above γ : C → V with γ (C) ∩V ◦ , ∅, we write

γ ∗F 2 =
√
−1H (t)dt ∧ dt̄ .

Then

H (t) =
n∑

k=1
kαkGk(t),(2.2.8)

where Gk is de�ned in (2.2.4). Recall that for k = 1, . . . ,m, Gk(t) > 0 for t ∈ C◦.
We �rst recall a computational lemma by Schumacher.

Lemma 2.5 ( [Sch17, Lemma 17]). Let αj > 0 and Gj be positive real numbers for j =
1, . . . ,n. Then

n∑
j=2

(
αj
G j+1
j

G j−1
j−1

− αj−1
G j
j

G j−2
j−1

)
>

1
2

(
−
α3

1

α2
2
G2

1 +
αn−1
n−1

αn−2
n

G2
n +

n−1∑
j=2

(α j−1
j−1

α j−2
j

−
α j+2
j

α j+1
j+1

)
G2
j

)
(2.2.9)

�

Now we are ready to compute the curvature of the Finsler metric F based on Theo-
rem 2.4.

Theorem 2.6. Fix a smooth Kähler metric ω on Y . There exist universal constants 0 <
α1 < . . . < αn and δ > 0, such that for any γ : C → V with C an open set of C and
γ (C) ∩V ◦ , ∅, one has

√
−1∂∂ log |γ ′(t)|2F ≥ δγ

∗ω(2.2.10)

Proof. By Theorem 2.3 and the assumption that γ (C) ∩V ◦ , ∅,G1(t) . 0. We �rst recall
a result in [Den18a, Lemma 3.11], and we write its proof here for it is crucial in what
follows.

Claim 2.7. There is a universal constant c0 > 0 ( i.e. it does not depend on γ ) so that
ΘL,hL (∂t , ∂̄t ) ≥ c0G1(t) for all t .

Proof of Claim 2.7. Indeed, by Proposition 2.2.(i), it su�ce to prove that
|∂t |

2
γ ∗(r−2

D ·ωα )

|τ1(dγ (∂t ))|
2
h

> c0(2.2.11)
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for some c0 > 0, where ωα is a positively de�nite Hermitian metric onTY (− logD). Note
that

|∂t |
2
γ ∗(r−2

D ·ωα )

|τ1(dγ (∂t ))|
2
h

=

|∂t |
2
γ ∗(r−2

D ·ωα )

|∂t |
2
γ ∗τ ∗1h

=
|∂t |

2
γ ∗(ωα )

|∂t |
2
γ ∗τ ∗1 (r

2
D ·h)

,

where τ ∗1 (r
2
D · h) is a Finsler metric (indeed continuous pseudo hermitian metric) on

TY (− logD) by Proposition 2.2.(iii). Since Y is compact, there exists a constant c0 > 0
such that

ωα > c0τ
∗
1 (r

2
D · h).

Hence (2.2.11) holds for any γ : C → V with γ (C) ∩V ◦ , ∅. The claim is proved. �

By [Sch12, Lemma 8],

√
−1∂∂̄ log(

n∑
j=1

jαjGj) >

∑n
j=1 jαjGj

√
−1∂∂̄ logGj∑n

i=1 jαjGi
(2.2.12)

Putting (2.2.5) and (2.2.6) to (2.2.12), and making the convention that 0
0 = 0, we obtain

∂2 logH (t)
∂t∂t̄

≥
1
H

(
− α1G

2
2 +

n∑
k=2

αk
(Gk+1

k

Gk−1
k−1
−
Gk+1
k+1

Gk−1
k

) )
+

∑n
k=1 αkGk

H
ΘL,hL (∂t , ∂̄t )

=
1
H

( n∑
j=2

(
αj
G j+1
j

G j−1
j−1

− αj−1
G j
j

G j−2
j−1

))
+

∑n
k=1 αkGk

H
ΘL,hL (∂t , ∂̄t )

(2.2.9)
≥

1
H

(
−

1
2
α3

1

α2
2
G2

1 +
1
2

n−1∑
j=2

(α j−1
j−1

α j−2
j

−
α j+2
j

α j+1
j+1

)
G2
j +

1
2
αn−1
n−1

αn−2
n

G2
n

)
+

∑n
k=1 αkGk

H
ΘL,hL (∂t , ∂̄t )

Claim 2.7
≥

1
H

(
α1

2
(c0 −

α2
1

α2
2
)G2

1 +
1
2

n−1∑
j=2

(α j−1
j−1

α j−2
j

−
α j+2
j

α j+1
j+1

)
G2
j +

1
2
αn−1
n−1

αn−2
n

G2
n

)
+

1
H
(
1
2
α1G1 +

n∑
k=2

αkGk)ΘL,hL (∂t , ∂̄t )

One can take α1 = 1, and choose the further αj > αj−1 inductively so that

c0 −
α2

1

α2
2
> 0,

α j−1
j−1

α j−2
j

−
α j+2
j

α j+1
j+1

> 0 ∀ j = 2, . . . ,n − 1.(2.2.13)

Hence
∂2 logH (t)
∂t∂t̄

≥
1
H
(
1
2
α1G1 +

n∑
k=2

αkGk)ΘL,hL (∂t , ∂̄t )
(2.2.8)
≥

1
n
ΘL,hL (∂t , ∂̄t )

over C◦. By Proposition 2.2.(i), this implies that
√
−1∂∂ log |γ ′|2F =

√
−1∂∂ logH (t) ≥

1
n
γ ∗
√
−1ΘL,hL ≥ δγ

∗ω(2.2.14)

over C◦ for some positive constant δ , which does not depend on γ . Since |γ ′(t)|2F is
continuous and locally bounded from above over C , by the extension theorem of sub-
harmonic function, (2.2.14) holds over the whole C . Since c0 > 0 is a constant which
does not depend on γ , so are α1, . . . ,αn by (2.2.13). The theorem is thus proved. �

In summary of results in this subsection, we obtain the following theorem.



BIG PICARD TYPE THEOREM 11

Theorem 2.8. LetX be a projective manifold and letD be a simple normal crossing divisor
on X . Assume that there is a Viehweg-Zuo Higgs bundle over (X ,D). Then there are a
Finsler metric h on TX (− logD) which is positively de�nite on a dense Zariski open set
V ◦ of V := X \ D, and a smooth Kähler form on X such that for any holomorphic map
γ : C → V from any open subset C of C with γ (C) ∩V ◦ , ∅, one has

√
−1∂∂ log |γ ′|2h ≥ γ

∗ω .

In particular, by Theorem A, for any holomorphic map f : ∆∗ → X \D, with f (∆∗) ∩V ◦ ,
∅, it extends to a holomorphic map f̄ : ∆→ X . �

3. Generalized Big Picard theorems

We will apply Theorems 1.7 and 2.8 to prove the big Picard theorem for moduli of po-
larized manifolds with semi-ample canonical sheaf, and for bases of log smooth families
of Calabi-Yau pairs.

3.1. Big Picard theorem for moduli of polarized manifolds.

Proof of Theorem C. Let Z be the Zariski closure of γ (∆∗) in Y . Take an embedded desin-
gularization of singularities µ : Ỹ → Y so that the strict transform of Z , denoted by Z̃ ,
is smooth. Write Z̃ ◦ := Z̃ ∩ µ−1(V ), which is a dense Zariski open set of Z̃ . We take the
base change

X ◦ = U ×V Z̃ ◦ U

Z̃ ◦ V

fX ◦ fU

ι

Then polarized family (fX ◦ : X ◦ → Z̃ ◦, ι∗L ) ∈ Ph(Z̃
◦). We denote by φX ◦ : Z̃ ◦ → Ph

the moduli map associated to fX ◦ . Then φX ◦ = φU ◦ ι, which is generically �nite. Hence
fX ◦ is of maximal variation. By [VZ02,PTW18], after passing to a birational modi�cation
ν : W → Z̃ , there exists a Viehweg-Zuo Higgs bundle onW ◦ := ν−1(Z̃ ◦). By Theorem 2.8,
there is a dense Zariski open set W ′ ⊂ W ◦ so that any holomorphic map ∆∗ → W ◦

extends to ∆→W provided that its image is not contained inW \W ′. Since γ : ∆∗ → Z
is Zariski dense, it thus does not lie on the discriminant locus of the birational morphism
µ |Z̃ ◦ ν : W → Z , and thus γ̃ = (µ |Z̃ ◦ ν )

−1 ◦ γ : ∆∗ →W exists with its image contained
in W ◦. Moreover, γ̃ : ∆∗ → W is also Zariski dense, and thus γ̃ (∆∗) ∩W ′ , ∅. By
Theorem 1.7, γ̃ : ∆∗ →W extends to a holormorphic map γ̃ : ∆→W . The holomorphic
map µ ◦ν ◦γ̃ : ∆→ Y is the desired extension of γ : ∆∗ → V . The theorem is proved. �

Remark 3.1. Based on the fundamental work [VZ02,VZ03,PTW18], in [Den18b] we prove
that the base V in Theorem C is both Brody hyperbolic and pseudo Kobayashi hyper-
bolic. In [LSZ19], Lu-Sun-Zuo combine the original approach in [VZ03] with our Torelli
type result Theorem 2.3 to construct negatively curved pseudo hermitian metric on any
algebraic curve inV , so that they can apply the celebrated work of Gri�ths-King [GK73]
to prove the Borel hyperbolicity of V .

3.2. Big Picard theorem for bases of log Calabi-Yau families. In [Den19], we prove
that for maximally varying, log smooth family of Calabi-Yau pairs, its base can be equipped
with a Viehweg-Zuo Higgs bundle. Let us start with the following de�nition.

De�nition 3.2 (log smooth family). Let X ◦ and Y ◦ be quasi-projective manifolds, and
let D◦ =

∑m
i=1 aiD

◦
i be a Kawamata log terminal (klt for short) Q-divisor on X ◦ with

simple normal crossing support. The morphism f ◦ : (X ◦,D◦) → Y ◦ is a log smooth
family if f ◦ : X ◦ → Y ◦ is a smooth projective morphism with connected �bers, and
D◦ is relatively normal crossing over Y ◦, namely each stratum D◦i1 ∩ · · · ∩ D◦ik of D◦ is
dominant onto and smooth over Y ◦ under f ◦.
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Let us recall the main result in [Den19].

Theorem 3.3 ( [Den19, Theorem A]). Let f ◦ : (X ◦,D◦) → Y ◦ be a log smooth family
over a quasi-projective manifold Y ◦. Assume that each �ber (Xy,Dy) := (f ◦)−1(y) is a klt
pair, and KXy + Dy ≡Q 0. Assume that the logarithmic Kodaira-Spencer map ρ : TY ◦ →
R1 f ◦∗

(
TX ◦/Y ◦(− logD◦)

)
is generically injective. Then after replacing Y ◦ by a birational

model, there exists a Viehweg-Zuo Higgs bundle over Y ◦. �

By Theorem 3.3, one can perform the same proof as that of Theorem C to conclude
the following result.

Theorem 3.4. In the setting of Theorem 3.3, assume additionally that the logarithmic
Kodaira-Spencer map

TY ◦,y → H 1 (Xy,TXy (− logDy)
)

is injective for any y ∈ Y ◦. Then for any projective compacti�cation Y of the base Y ◦, any
holomorphic map γ : ∆∗ → Y ◦ extends into the origin. �
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