Lifetime of a massive particle in a de Sitter universe
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We study particle decay in de Sitter space-time as given by first order perturbation theory in
an interacting quantum field theory. We show that for fields with masses above a critical mass m.
there is no such thing as particle stability, so that decays forbidden in flat space-time do occur there.
The lifetime of such a particle also turns out to be independent of its velocity when that lifetime is
comparable with de Sitter radius. Particles with lower mass are even stranger: The masses of their
decay products must obey quantification rules, and their lifetime is zero.

Some important progress in the astronomical observa-
tions of the last ten years [1, 2] have led to the surprising
conclusion that the recent universe is dominated by an
exotic form of energy density with a negative pressure
that acts repulsively at large scales, opposing itself to
the gravitational attraction. It has become customary
to characterize such energy density by the term ”dark”.
The simplest and best known candidate for the ”dark
energy” is the cosmological constant. As of today, the
ACDM (Cold Dark Matter) model, which is obtained by
adding a cosmological constant to the standard model, is
the one in best agreement with the cosmological obser-
vations. In addition, if the description provided by the
ACDM model is correct, the other energy components
must in the future progressively thin out and eventually
vanish thus letting the cosmological constant term alone
survive. In this context, the de Sitter geometry, which
is the homogeneous and isotropic solution of the vacuum
Einstein equations with cosmological term, appears to
take the double role of reference geometry of the uni-
verse, namely the geometry of spacetime deprived of its
matter and radiation content and of the geometry that
the universe approaches asymptotically.

One might think that the presence of a cosmological
constant, while having a huge impact on our understand-
ing of the universe as a whole, would not influence micro-
physics in its quantum aspects. This is also the viewpoint
taken in the context of inflationary models [3], where the
effective cosmological constant is many orders of magni-
tude larger than the one observed today. However this
conclusion may have to be reassessed. Indeed, in the
presence of a cosmological constant, however small, it is
the notion of elementary particle itself which has to be
reconsidered, since the usual asymptotic theory is based
on concepts which refer closely to Minkowski spacetime
and to its Fourier representation, and do not apply to
the de Sitter universe which is not asymptotically flat.
A possible approach is perturbation theory. Unfortu-
nately, calculations of perturbative amplitudes which in
the Minkowskian case would be simple or even trivial
become rapidly prohibitive or impossible in the de Sitter
case: this in spite of the fact that one is dealing with a

maximally symmetric manifold.

In this letter we have tackled one such calculation,
namely that of the mean lifetime of de Sitterian unsta-
ble scalar particles. This task already presents consid-
erable mathematical difficulties. The results exhibit sig-
nificant differences compared to the Minkowskian case
and processes which are forbidden in the absence of cur-
vature become possible and, viceversa, processes that
are possible become forbidden. For the Poincaré group,
the tensor product of two unitary irreducible represen-
tations of masses my and ms decomposes into a direct
integral of unitary irreducible representations of masses
m > mq + mg. For the de Sitter group this is not al-
ways so: all representations of mass larger than a critical
value (principal series) appear in the decomposition of
the tensor product of any two unitary irreducible rep-
resentations of positive mass. This fact was shown in
[4] for the two-dimensional case and will be established
here in general. This means that the de Sitter symmetry
does not prevent a particle with mass in the principal
series from decaying into e.g. pairs of heavier particles.
This phenomenon also implies that there can be nothing
like a mass gap in that range. This is a major obstruc-
tion to attempts at constructing a de Sitter S-matrix;
the Minkowskian asymptotic theory makes essential use
of an isolated point in the spectrum of the mass operator,
and this will generally not occur in the de Sitter case. In
fact a true asymptotic theory does not exist at present
for de Sitter space, although it still makes sense to follow
Wigner [5] in associating a particle with a unitary irre-
ducible representation of the de Sitter group, labeled by
a mass parameter, as we do here. We will also show that
the tensor products of two representations of sufficiently
small mass below the critical value (complementary se-
ries) contains an additional finite sum of discrete terms
in the complementary series itself (at most one term in
dimension four). This implies a form of particle stabil-
ity, but the new phenomenon is that a particle of this
kind cannot disintegrate unless the masses of the decay
products have certain quantized values.

We will resort to first order perturbation theory in our
calculations. These are made trivial in the Minkowski



case by the use of momentum-space, but this is not so in
the de Sitter space. We restrict at first our attention to
the principal series and start by deriving a general for-
mula expressing the decay probability of a particle which
applies to both Minkowski and de Sitter space-times in d
dimensions where the de Sitter manifold is identified with
the hyperboloid {z € R*" : 22 =a% -2} —... — 22 =
—R?} in the (d + 1)-dimensional Minkowski space. Dif-
ferences will come in later.

A Klein-Gordon neutral scalar field ¢ with mass m > 0,
in d-dimensional Minkowski or de Sitter space-time, is
fully characterized by its two-point vacuum expectation
value

(2, o(x) (y)Q). (1)

wy, (2, y) is uniquely specified up to a constant factor by
requiring invariance, locality, and a suitable spectral con-
dition that can be formulated both in Minkowski and de
Sitter spaces by imposing that w,,(z, y) be the boundary
value of an analytic function of (z — y)? in the complex
plane cut along the positive real axis (for the physical in-
terpretation of this property see [6, 7]). The knowledge of
w,y, allows the reconstruction of the Fock space of the the-
ory and of a representation of the invariance group that
is irreducible when restricted to the one-particle space.
In the de Sitter case, it can be labeled by a dimensionless
parameter v as follows

2
m?R? = (d;l) + 2. (2)
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The range m > m, = (d — 1)/2R corresponds to the
principal series (v real) while 0 < m < m,. corresponds to
the complementary series (v imaginary). These restric-
tions ensure that w,, is positive definite and therefore
a quantum theoretical interpretation is available. Two
properties are crucial in our derivation:

a) The projector identity (dy denotes either the Poincaré
or the de Sitter invariant measure):

2)dy = C(m)d(m? — m"?)w,(z, 2).
3)
The proof of this property is easy in the flat case and not
trivial for de Sitter theories; it holds as such only for fields
of the principal series. C'(m) = 27 in the Minkowskian
case, while in the de Sitter case C(v) = 2x| coth(mv)|.
b) The Kdllén-Lehmann type representation for the prod-
uct of n two-point functions:
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(4)
Again, the proof of the existence of p is non-trivial in de
Sitter space. An explicit calculation of the weights p is
easy in the Minkowski case for n = 2, while difficult or
impossible in other cases.
Consider now N + 1 independent neutral Klein-
Gordon scalar fields ¢g, ¢1, ..., ¢y with masses

H?:l W, (z, y) = f da2p(a2; mi, ...

mg, m1, ..., my respectively, operating in a Fock space
‘H, and an interaction term of the form

[ra@ @ s, £@) = oa@or()" .. on(o)
where g is a smooth spacetime dependent ”switching-on
factor” which, in the end, should be made to tend to
the constant 1. Self-interactions £(x) = : ¢(z)™ : are a
special case of this coupling. At first order the transition
amplitude between two orthogonal states 1y and 1 is

(o, iTi(vg)br), Tilyg) = / Y9(z) L) de . (5)

Let 1/10 be a one-particle state of the form
[ fz x)Qdz; the smooth wave-function f con-
tains the physmal details about the quantum state of
the unstable particle whose disintegration we aim to
study. Let Hp 4 be the space of all states containing ¢
particles of type 1,..., ¢n particles of type N, and Fp 4 be
the projector onto this space. If 1)y has norm 1, Wick’s
theorem gives the probability of its transition to any
possible g-particle state of Ho 4:

I'(Toiqis---an) = (Yo, Ti(vg)Po,qT1(vg)* o) =
= [dzdydudv f(x) f(y) g(u) g(v)x (6)
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We now replace one of the switching-on factors by 1 in the
above expression. By using Eqgs. (4) and (3) we find the
following general formula for the transition probability:

72 C(myg) 2dx
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qu p(mEimy,....,my,...,mu,...,my).(7)

Here F(z) = [wm,(x, y) f(y)dy; the denominator is
the squared norm of ¥y which is no longer assumed to
be one. This formula has an interesting simple structure:
the first factor does not depend on the number or nature
of the decay particles but only on the wavefunction of
the incoming unstable particle. The infrared problem is
contained in this factor and has to be overcome when
letting the remaining g(z) tend to 1 (adiabatic limit).
The second factor is the relevant Kéllén-Lehmann weight
times the right combinatorial factor. Let us now focus
on the decay of a particle of mass mg into two identical
particles of mass my.
Case of Minkowski space

Here the availability of momentum space renders sim-
ple both the adiabatic limit and the evaluation of the
weight p. For the adiabatic limit, the common choice is
to let g(z) be the characteristic function of some time in-
terval T. It is then found that the transition probability



(7) is proportional to T" and thus diverges when 7' — oc.
Fermi’s golden rule tells us that the transition probabil-
ity per unit time (see e.g. [8]) has a finite limit as follows
(f(p) is the Fourier transform of the wavepacket f(z)):
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The weight p can be computed by Fourier transforming
the squared v.e.v. w2, (z,y). The (well-known) result is

) dp

(®)
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It is seen here that the decay of one particle into two
that are globally heavier is forbidden. This is a familiar
consequence of the Poincaré invariance of the theory.

Let us examine the dependence of the result (8) on
the wavepacket f. The decay rate of a particle at rest
(zero momentum) in our frame can be obtained by let-
ting |f(p)|2 tend to 6(5). Any wavepacket of the form
g1=4)/2 (p/a) will do the job. In the limit £ — 0 the
factor (2pY)~! in the numerator of (8) becomes (2mg)~*
and everything else cancels:

m 4m =N
(047T 1> O(m3 —4m3).  (10)
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Had we chosen a particle of sharp momentum p, we would
have obtained the Lorentz factor with the corresponding
velocity v = cp/p°:

7(7) =
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Case of de Sitter space
We use the dimensionless parameter v (see Eq. 2) to
label the two-point functions; they can be expressed in
terms of Legendre functions of the first kind as follows:

I'(%2 +iv)T (452 —iv)
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z,z" are events belonging to the complex de Sitter space-
time; Im z belongs to the past cone of the ambient space-
time whereas Im 2z’ belongs to the future cone; the scalar
product ¢ = z - 2'/R? is in the ambient spacetime sense
(see [6] for details).

The first task is to compute the Kallén-Lehmann
weight p(k%;v,v) = p,(k). To this purpose we use the
following (suitably normalized) generalized Mehler-Fock
transform of the squared two-point function:

(I‘ (% + iu) r (% — iu))2 sinh 7k
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This integral is well defined for masses such that | Imv| <
%; this includes the principal series and a portion of the
complementary series. Inversion [9] gives precisely

w? = /000 dr?py, (K)we(z,y) = /OO kdkp, (K)we. (14)
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The integral (13) can be directly computed for odd d
[10]. For even spacetime dimensions computing (13) is far
from obvious. We have devised a method based on Mellin
transform techniques [11] that allows the computation for
any dimension d (real or complex). Similar techniques are
at present used to evaluate quite complicated Feynman
integrals in flat spacetime [12]. Here is the result:
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The weight p never vanishes. This means that for m >
m. decay processes into heavier particles are always pos-
sible. In particular in that range of masses one is not
allowed to draw conclusions about the stability of a cer-
tain particle just from its being the lightest in a hierarchy.
This result has nothing to do with the standard thermal
interpretation of the de Sitter ”vacuum”. A similar com-
putation in flat thermal field theory does not exhibit this
phenomenon in two-particle decays. The Minkowskian
result (9) is recovered in the limit of zero curvature that
is achieved by setting kK = mgR and v = m R:

(16)

B}lm p(K%;v,v) dr? = p(m3;my,my) dm3.

Lowest order corrections to the flat case give:

RzpmlR(mOR) ~
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Am = mg — 2m;. The lack of particle stability (Am <
0) is exponentially small in R. If Am > 0 there is a
correction to the flat case of the order of the cosmological

constant A = %. In the four dimensional case
17 107 17
= 2~ 7+ 2 (18)
64 (m1 + %) 24:777’0 64 (7 — ml)

All these effects are of course extremely small with
the current value of the cosmological constant. What
about particle physics at inflation? At that epoch mR ~
m x 10715GeV™! « % for every particle of reasonable



mass. Our results should therefore be extended to the
remaining portion of the complementary series |Imv| >
% where all scalar particles lie at the inflation era (but:
there is no complementary series in the Fermionic case).

By analytic continuation of Eq. (15) in v,
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where p = (d — 1)/2. The number of discrete terms is
the largest N satisfying N < 14 |Imv|— /2, or 0 if this
is negative. A particle of the complementary series with
parameter k = i3 can only decay into two particles with
parameter v = %(|3|4p+2n), where n is any integer such
that 0 < 2n < p — |8|, and the decay is instantaneous.
A particle with mass m < m, can only decay into two
particles of mass my ~ m/\/§

Even if the geometry of the universe at inflation was
not exactly de Sitterian, this example indicates that
quantum field theoretical arguments concerning particle
physics at inflation might need revision.

We now turn to the adiabatic limit and its meaning in
the de Sitter context, in the case when all particles are in
the principal series. A first complication is the existence
of several choices of cosmic time, having different phys-
ical implications and the result might depend on one’s
preferred choice. In the closed model, the cosmic time
t is related to the ambient space coordinates as follows:
2% = Rsinh (t/R). In strict analogy to the Minkowski
case, g(x) can be chosen as the indicator function of some
cosmic time interval T, say g(z) = gr(x) = 0(T/2 — |t]).

In the flat model the situation is a bit more tricky.
Cosmic time is now defined by the relation x° + z¢ =
R exp(t/R); flat coordinates cover only half of the de
Sitter manifold, namely all the events such that 20 +2% >
0. If we introduce the characteristic function hr(z) =
O(ReT/?1 — 20 — 24 9(2° + 2% — Re~T/2E) then we have
to add the contribution coming from the other half, i.e.
g(x) = gr(x) = hp(x) + hp(—z). With these premises
we have found that in both models the first factor in (7)
diverges like T'; thus it has to be divided by T to extract
a finite result which is the same in both models:

- 7207(53) [ g(z) |F(z)]?dx _ 27 coth(rk)?
T=oo T [ f(z)ws(z, y) f(y) dxdy ||

Here the second (unforeseen) result comes in: in con-
trast to the Minkowskian case the limiting probability
per unit of time does not depend on the wavepacket!
This result seems to contradict what we see everyday
in laboratory experiments, a well known effect of special
relativity (Eq. 11). Furthermore, in contrast with the
violation of particle stability that is exponentially small

(19)

in the de Sitter radius, this phenomenon does not depend
on how small is the cosmological constant. How can we
solve this paradox and reconcile the result with every-
day experience? The point is that the idea of probability
per unit time (Fermi’s golden rule) has no scale-invariant
meaning in de Sitter: if we use the limiting probability
to evaluate amplitudes of processes that take place in a
short time we get a grossly wrong result. This is in strong
disagreement with what happens in the Minkowski case
where the limiting probability is attained almost imme-
diately (i.e. already for finite T"). Therefore to describe
what we are really doing in a laboratory we should not
take the limit 7' — oo and rather use the probability per
unit of time relative to a laboratory consistent scale of
time. In that case we will recover all the standard wis-
dom even in presence of a cosmological constant. But, if
an unstable particle lives a very long time (>> R) and we
can accumulate observations then a nonvanishing cosmo-
logical constant would radically modify the Minkowski
result and de Sitter invariant result will emerge. This
result should not be shocking: after all erasing any in-
homogeneity is precisely what the quasi de Sitter phase
is supposed to do at the epoch of inflation; in the same
way, from the viewpoint of an accelerating universe all
the long-lived particles look as if they were at rest and so
their lifetime would not depend on their peculiar motion.
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