Dyson’s Theorem for curves.
C. Gasbarri

ABSTRACT. Let K be a number field and x, and X, two smooth projective curves
defined over it. In this paper we prove an analogue of the Dyson Theorem for
the product X, xXx,. If x; =P, we find the classical Dyson theorem. In general, it
will imply a self contained and easy proof of Siegel theorem on integral points on
hyperbolic curves and it will give some insight on effectiveness. This proof is new
and avoids the use of Roth and Mordell-Weil theorems, the theory of Linear Forms
in Logarithms and the Schmidt subspace theorem.

1 Introduction.

After the proof of the Mordell conjecture by Faltings (the first proof is in [Fal, but
[Fa2], [B2] and [Vo2] are nearer to the spirit of this paper), most of the qualitative results
in the diophantine approximation of algebraic divisors by rational points over curves are
solved.

Historically, the first concluding result is the Siegel theorem: An affine hyperbolic
curve contains only finitely many S-integral points; we know that we cannot suppose
less on the geometry of the involved curve: A! and G,, have, as soon as the field is
sufficiently big, infinitely many integral points.

After a long and interesting story of partial results (Liouville, Thue, Siegel, Dyson,
Gelfand. . .), Roth proved that, if « is an algebraic number then, for every x > 2, the
equation
o 23‘ < b

q| ~ lal*
admits only finitely many solutions £ € Q. Here again, by Dirichlet theorem, we know

q
that for kK = 2 the equation may have infinitely many solutions.

Eventually, the already quoted theorem of Faltings close the story: a compact hy-
perbolic curve contains only finitely many rational points.

It is a fact that, from a quantitative point of view, we are still very far from a
satisfactory answer (up to the very interesting partial results in [B1], [B3], [BVV] and
[BC]): In each of the three problems quoted above we are not able to give an upper
bound for the heights of the searched solution. And, even worst, we are not able to say
if there is any solutions to each of these problems.

Let’s have a closer look to the Siegel theorem: the modern proof of it rely upon the
Roth theorem and on the Mordell Weil theorem or on the theory of the Linear Forms
in Logarithms and again on the Mordell-Weil theorem; recently, a new proof, based on
the Schmidt subspace theorem have been given [CZ]. Consequently, if one try to find
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an effective proof by refining the existing proof, one will crash into the problems of
effectiveness in Roth theorem and in the computation of a basis for the Mordell-Weil
group of the Jacobian (problem which seems easier but not yet completely solved) or
in the effectiveness in Schmidt theorem. Nevertheless some very important cases of
effective Siegel theorem are given in [Bi]. So, at a first glance, an effective version of
Siegel theorem will be consequence of the solutions of other problems, which seems to be
even more difficult. This is very unsatisfactory, also because a strong effective version
of it will imply a version of the abc-conjecture ([Sul).

In this paper we prove a theorem in the spirit of the Dyson Theorem [B1] over
the product of two curves. It will easily imply Siegel theorem. Up to standard facts
in algebraic geometry and in the theory of heights, the theorem is self contained and
essentially elementary. Consequently it release Siegel theorem from other big theorems.
In this way Siegel theorem becomes a result which is completely independent and,
perhaps an effective version of it can be studied in its own.

We now give a qualitative statement of the main theorem of this paper; for a precise
statement, cf. section 2.

Let K be a number field, let Ly, ... L, be finite extensions of K and n := max{[L;-L; :
K], denote by A the K—algebra ®L;. Let X; and X5 be smooth projective curves over
K and D; = Spec(A4) — X, be effective geometrically reduced divisors on X;; note
that the D;’s can have different degrees. Let H; be line bundle of degree one over X;
and hpg, () height functions associated to H;. Finally, let S be a finite set of places of
K and for every v € S let Ap, ,(-) be Weil functions associated to D; and v.

1.1 Theorem. Let ¥, 99 and € be three rational numbers such that 91 - 99 > 2n + ¢
and ¥; > 1. Let ¢ : S — [0,1] be a function such that ) _q¢(v) = 1. Then the set of
rational points (P, Q) € X1(K) x X2(K) such that for every v € S

)\Dlﬂ)(P) > SD(U) ’ 791 'hHl (P)

and
ADsw(Q) > ¢p(v) - V2 - hp, (Q)

is contained in a proper closed subset whose irreducible components are either fibers or
points.

If we apply the theorem to P; x Py and 1 = ¥ = v/2n + € we reobtain the classical
theorem of Dyson (cf. [B1]):

1.2 Corollary. Let o be an algebraic number of degree n over Q then there are only
finitely many % € Q such that

Pl - 1
(0% q_qm_’_e.



If we apply the theorem to C' x C where C' is an arbitrary curve, D a reduced divisor
such that x(C\D) > 0 we obtain the following generalization:

1.3 Corollary. Let C be a smooth projective curve over a number field K; let D be
a reduced divisor of degree n over C' then for all p € C(K) we have

Ap.s(p) < (V2n + €) har(p) + O(1) .

The involved constant is not effective.

Corollary 1.3 easily imply Siegel theorem on S-integral points. We first recall the
definition of integral points: let C' be a smooth projective curve defined over a number
field K. Let D be a effective reduced divisor on C'. Suppose that we fixed a logarithmic
height function hp(-) with respect to D. Let S be a finite set of places of K and Ap s(-)
be a Weil function associated to S and D (cf. §2 for definitions and references). Let
I C C(K) be a set of rational points. The set I is said to be integral with respect to D
and S (or (D, S)—integral) if there exists a constant C' such that, for every point P € I

|hp(P) = As,p(P)| < C

(for short, we will write Ag p(P) = hp(P)+ O(1)).

1.4 Corollary. (Siegel Theorem) Let K be a number field and S be a finite set of
places of it. Let C' be a smooth projective curve of genus g defined over a number
field K. Let D be a reduced effective divisor on C' different from zero. Suppose that
2g — 2+ deg(D) > 0. Then every set of (D, S)—integral points is finite.

Proof: Fix a line bundle M of degree one on C'. For every positive number €, standard
properties of heights (cf. for instance [HS]) give the existence of a constant A such that
deg(D)hn () < (14+€)hp(-)+A. Suppose that deg(D) > 3. In this case 2g—2+deg(D) >
0 independently on the genus. Let I be a set of (D, S)—integral points. By definition
hp(P) = As.p(P)+ O(1). Fix € very small and apply 1.3; we obtain, for every P € I,

deg(D)hn (P) < (1+€)hp(P) = (14 €)As,p(P)
< (14 ¢€)(v/2deg(D) + €1)hp(P) + O(1).

Since, provided that € and €; are sufficiently small, deg(D)—(1+¢€)(1/2deg(D)+¢€1) > 0;
consequently the height, with respect to M, of points P in I is bounded independently
on P. From this we conclude in this case.

Suppose that D is arbitrary. Suppose that g > 1. In this case take an étale covering
f:C" — C of degree bigger then three. Then deg(f*(D) > 3. By the theorem of
Chevalley and Weil ([Se] Theorem 4.2) there is a finite extension K’ of K such that
fY(C(K)) c C(K'). Apply the previous case to C’, f*(D) and I’ := f~!(I) and
conclude.



If g = 0 then we can find a covering f: C’ — C such that:
— f is étale over C'\ D;
— the support of f*(D) has degree at least three.

We apply [Se| §8.2 point (3) and proceed as before.

Using Roth theorem and the weak Mordell-Weil theorem one obtains

Ap,s(p) < ehn(p) +O(1);

which is much stronger then 1.3 (but, it implies the same qualitative result on integral
points). Nevertheless, as already said, the proof we propose here is much simpler and
its uneffectiveness is essentially self contained: it does not depend on other theorems.

A remark on the language and the methods used: In this paper we decided to use
the language of arithmetic geometry a la Grothendieck and the Arakelov geometry;
although this needs a little bit of background, which nowadays is (or should be) standard,
this language allows to better understand and compute the involved constants and
to understand their nature. It is our opinion that, Algebro geometric and Arakelov
methods, being more intrinsic and conceptual, are more adapted to understand the
strategy and the ideas of a proof in diophantine geometry. In any case, in the paper we
tried to recall the background in Arakelov geometry needed to understand it. For an
introduction to the Arakelov geometry used in this paper cf. [MB] or the more general
[BGS]. A very fast introduction to the Arakelov geometry of arithmetic surfaces is in

[Ga).

2 Statement of the main theorem and notations.

Let K be a number field and Og be its ring of integers. We will denote by Mg the
set of (finite and infinite) places of K. Let M., be the set of infinite places of K. Let S
be a finite subset of My . We will denote by Og the ring of S-integers of K. For every
v € Mg let K, be the completion of K at the place v, O, be the local ring of v and k,
be its residue field. For every scheme X — Spec(Og) we will denote by X, the base
change of it from Spec(Ok) to Spec(K,), by Xo, the base change of it to Spec(O,) and
by Xk the base change of it to Spec(K).

Let Ly,..., L, be finite extensions of K and Oy, be the ring of integers of L;. We
will denote by A the Og-algebra @ Oy, .

We will denote by K the algebraic closure of K.

Let X — Spec(Of) be an Ox—scheme. An hermitian vector bundle E of rank 7 over
X is a couple (E, (-, ")s)sem., Where
— F is a vector bundle of rank r over X.

— for every infinite place o, the vector bundle E, is an holomorphic vector bundle over
the C—scheme X, ; then (-, ), is a C'°™ metric on FE,.



If M is an hermitian vector bundle of rank one, we will call it hermitian line bundle.
If M is an hermitian line bundle over Spec(Ok) we will define its Arakelov degree by
the following formula: Let s € M \ {0}; then

deg(M) := Card(M/s - O) — Y _ log|s].
oc€EMo

This formula is well defined because of the product formula (cf. for instance [SZ]).

If £ is an arbitrary hermitian vector bundle over Spec(Ox) then the line bundle
A" E is canonically equipped with an hermitian metric; consequently we can define
the hermitian line bundle A™** E. We then define deg(E) := deg(A\™*(E).

Suppose that E; and E; are hermitian vector bundles over Spec(Og) and f: E; — Ej
is a linear map. Then, for every infinite place o, f induces a linear map f,: (E1), —
(E2)s; Let || fo|lo be the norm of it. Then we define || f|| := sup{|| f5|lo toenr. -

More generally: Suppose that X — Spec(Og) is an arithmetic scheme and E is an
hermitian vector bundle over it. Suppose that, for every o € M, the complex variety
X,(C) is projective and smooth and that we fixed a smooth hermitian metric on it.
Under these conditions the Ox—module H°(X, E) has a natural structure of hermi-
tian Ox—module: indeed, for every o € M., the complex vector space H°(X, E), is
equipped with the L? hermitian metric induced by the metric on X, (C) and on E,. For
every infinite place o, the complex vector space H°(X, E), is naturally equipped with
the sup norm: || f|sup,o := supex, () {llfll(z)}. The L? and sup norms are comparable
(as explained for instance in [Bo]); consequently we can work with the one we prefer.

Let f1 : X1 — B := Spec(Og) and f5 : X5 — B be two regular, semistable arithmetic
surfaces over Ok. Let A; — Xy xp &; (i = 1,2) be the diagonal divisor. The divisor
A; is, a priori, just a Weil divisor (the scheme X; x X; may be not regular); let X; X X;
be the blow up of it along A; and A, be the exceptional divisor.

For every infinite place o, we fix a symmetric hermitian structure on the line bundle
(O(A))s (i =1,2). Let 0 € Mg be an infinite place and P € (X;),(C); denoting by
tp (X))o (C) — (X; x X;)o(C) the embedding tp(z) := (z, P), we have a canonical
isomorphism ¢, O(A) ~ O(P). For every place o and P € (X;),(C), we put on O(P)
the metric obtained taking the pull back metric via ¢,. As a consequence, for every
divisor D of A&j;, the line bundle O(D) is equipped with a canonical metric (depending
only on the choices made until now).

Let D be an effective divisor on (X;)k. For every finite set of places S € Mg we
can choose a canonical representative for the Weil function Ap s(+) in the following way:
First of all we take the schematic closure of D on AX;; this will be a Cartier divisor over
Xi.

— Suppose that S := ¢ is an infinite place; let Ip be the canonical section of (O(D)),-.
Let || - [[(-) be the metric on O(D), defined above; then we define, for every z €
(Xi)o (C) \ {D}:

Ap,o(z) == —log||Ip||(z)



— Suppose that S := v is a finite place. Since D and (X;), are generic fibers of their
models over Spec(O,), as explained in [D], the line bundle (O(D)), over the K,—scheme
(X;)o is equipped with a v—adic norm; consequently the Weil function Ap ,(-) is defined
similarly.
— If S is arbitrary, then Ap g(-) is defined as sum if local terms as explained for instance
in [HS] chapter B 8.

The choice of a metric on the diagonal induces a metric on the relative dualizing
sheaf wy,,p; we fix such a metric; remark that, by construction, the adjunction formula
holds: for every section P : B — A&; we have a canonical isomorphism

wx,/Blp =~ O(=P)|p

of hermitian line bundles on B. For a general reference on this cf. [MB]. For a reference
on Weil functions cf. [HS].

For every hermitian line bundle M := (M;]| - ||) over X; we can define a height
function

har(): (%) (K) — R

in the following way:

Let P € Xk (K). It is defined over a finite extension L. Let (&;)o, — Spec(Or) be the
minimal regular model of (X;)r. The point P corresponds to a section P:Spec(Or) —
(X))o, ; we define

= g des(P ().

An hermitian line bundle M on X; is said to be arithmetically ample if its degree on
the projective curve X is positive and hp(-) > 0.

Fix arithmetically ample hermitian line bundles (M, || - ||ar,) on &; of generic degree
one.

We will denote by (+;-) the Arakelov intersection pairing on each of the X; as defined
for instance in [BGS] or [MB].

If D is a effective reduced divisor over X;; write D := ) D, where each D; is an
irreducible divisor. Define the following three numbers associated to it:
— Let L; be an extension of K where D; split as sum of points: if f;(X;)r — & is the
minimal regular model of the base change of X; to Spec(Oyr) then f7(D;) = > Py; +V;
where Pj; are sections and V' is a vertical divisor: Then we define

S(D) = max{= 1 (O(Py ) O(P))i 1)
H(D) = max{har, (Pij); 1}

and



We eventually fix a positive integer and three positive rational numbers ¥, 92 and e
such that
Y 1 192 > 2n+e€.

The main theorem of this paper is the following generalization of Dyson theorem:

2.1 Theorem. Under the hypotheses above there exist two effectively computable
constants R, and Ry, depending only on the X;, the hermitian line bundles M;, the
metrics on the diagonals, the ¥; and the constant ¢ for which the following holds:

Let Ly, ..., L, be finite extensions of K ; denote by n the number n := max{[L; - L; :
K]}, by O, the ring of integers of L; and by A the Ok-scheme A := Spec(® Oy, ). Let
©:S — [0,1] be a function such that ) .q¢(v) = 1.

Let

D;,: A— X

be reduced effective divisors over X; (i =1,2).
If (P,Q) € X1 (B) x Xa(B) is a couple of rational points such that

(a) har, (P) = Ry - T(Dy) - T(Dy)
(b) for every v € S

ADw(P) > @) - U1 - har, (P) and Ap, o(Q) > ¢(v) - J2 - ha, (Q);

then
ha,(Q) < Ro - T(D1) - T(D2) - har, (P) -

This will easily imply the qualitative theorem and its corollaries.
In the following sections we will introduce the tools we need for the proof of 2.1, we
will give it in the final section.

3 Small sections.

Let L be a finite extension of K of degree n and Oy its ring of integers.

Let £ be a line bundle over B := Spec(Ok); we will denote by O[L] the Ok-algebra
Sym( LZ™) and by O[L] the Og-algebra [] L®" with the multiplicative structure
given by (an) - (bn) := (cn) where ¢, := 3, ., a; ®b; (if £ is the trivial line bundle
Op then O]Og] is the usual ring of power series O [X]). If £1 and Lo are two line
bundles we define O[L1, L] and O[L1, L2] in a similar way.

Let fr : V(L) — B be the affine B-scheme Spec(O|L]) then it is easy to verify that:

(a) there is a canonical isomorphism f*(L) ~ Q%,( £)/B



—

(b) if 0 : B — V(L) is the canonical section, there is a canonical isomorphism V(L), ~

Spf(OLL]).

Suppose that £; and Ly are hermitian line bundles. Let o € M. For every positive
integer n, the complex vector space @, ,_, (LF* ® £$%), has a natural structure of
hermitian vector space. Consequently also (O[L1, L2])o = P50 Bospn (L @ £5%),
has a natural structure of hermitian vector space. Let J C O[L1, L2] be an ideal;
since (O[L1, L2])s is direct sum of finite dimensional hermitian vector space, we can
find an hortonormal basis B, of (O[L1, L2]), such that B, is disjoint union of B; and
B2 with B; hortonormal basis of J,. Consequently the vector space (O[L1,Ls]/J)s is
canonically (via the projection) isomorphic to J3-, thus it is equipped with the structure
of hermitian vector space. Moreover, suppose that J; C Js, then the metric induced by
the canonical projection O[Lq, L3]/J2 — O[L1, L2]/J: is the given metric.

Let f : X — Spec(Ok) be an arithmetic surface as in the previous section and let
D : Spec(Oyp) — X be a reduced divisor over X.

Let fr, : X — Spec(Or) := By, be a desingularization of the arithmetic surface
X xp Spec(Opr). The base change of the morphism D give rise to a section Sp : By, —
Xr; moreover, if p : X, — X is the natural projection, by construction we have that
poSp =D.

3.1 Proposition. Let (/'/\’Z)D be the completion of X1, around Sp(Bp); then there is
a natural isomorphism

Up: (X)p — Spf(O[O(=Sp)|sp]) -

Proof: Since (X;), is regular and Sp is a section, Sp(Bp) is contained in the smooth
open set of the structural morphism f;. Consequently we can find an open neighborhood
U of Sp(Byr) in XL, and an étale map gp : U — V(O(—Sp)|s, sending Sp(Br) to the
zero section. From this the proposition follows.

Let X; (i = 1,2) be the arithmetic surfaces fixed in the previous section. Let D; :
Spec(Op,) — &; and Dy : Spec(Op,) — Xs be effective reduced divisors on X} and X,
respectively; let L := Ly - Ly be the composite of L1 and Lo over K. As before they
define two sections S; : Spec(Or) — X, (i =1,2), . Let {p, p, : Br, — (X1 X X2)1, be
the point obtained from S; and S;. and denote by (X1/>-<\X2)
(X1 x Xz)r, around €p, p,. As corollary of 3.1 we obtain:

¢p,.p, the completion of

3.2 Corollary. Let (X1/><\X2)5D1,D2
Then there is a natural isomorphism

the completion of (X; x AXy)r, around &p, p,-

Up,.p, 1 (X1 X Xa)ep, . — SPE(O[O(=51)]5,; O(—S2)|s,]) -

Let Mj, be the set of places of L; and ¢ € My, be an infinite place. As explained
before, the Op-algebra (O[(O(—=5S1)|s,; O(—952)|s,])s is naturally equipped with the



structure of hermitian vector space because of the choice of the metrics as in the first
section.

If p; : (X)L X (X2)r, — (X)L is the natural projection, and N is a line bundle
on (X;)r, by abuse of notation, we will denote again by N the line bundle p!(/N) on
(X)L x (X2)rL.

In this section we will construct sections of small norm of suitable line bundles with
high order of vanishing along & 2. As usual the key lemma is the Siegel Lemma. Before
we give the statement (and the proof) of the Siegel Lemma we need, we recall without
proof all the tools we need; for the proofs we refer to [Bo] §4.1 and [Sz]:

a) If E is an hermitian vector bundle over O, then we call the real number pu, (E) :=

ﬁ . %%E))’ the slope of E;

b) within all the sub bundles of a given hermitian vector bundle E, there is one having
maximal slope; we call its slope the mazimal slope of E and denote it by pimax(F);

c) if F; and E5 are two hermitian vector bundles, we have that pimax(F1 @ F2) =
max{fimax(F1); fmax(F2)};

d) let f + E — F be an injective morphism between hermitian vector bundles; then
deg(E) < 7k(E)(pmax (F) + log || f]);

e) There is a constant x(K') depending only on K (for the precise value we refer to [Sz))
such that, if £ is an hermitian vector bundle on K with d/e\g(E) > —rk(E)x(K),
then there is a non torsion element v € E such that, for every infinite place o we
have ||v||o < 1; we define || - ||sup to be sup{| - ||lo }oerr.;

f) Let My be the set of infinite places of K and A := (A\g)sear.. be an element of RI<Q
with A\, = Az; we denote by O(\) the hermitian line bundle (Og, ||1]|s = exp(—As)).
If F is an hermitian vector bundle over Ok then we denote by E(\) the hermitian
vector bundle £ @ O(\).

g) (Hilbert-Samuel Formula) There is a constant C', depending on the choices made (but
not on the d;’s), such that, if d; and dy are sufficiently big, the Hermitian O x-module
H? = (X x &y, Eill ® LSQ) is generated by elements of sup-norm, less or equal then
Cditdz,

We will also need the following

3.3 Lemma. Let
0O0—-F —F—Fy,—0

be an exact sequence of hermitian vector bundles; then

Mmax(E) S maX{Nmax(El)y Nmax(EQ)} .

The proof is straightforward and left to the reader.
The Siegel Lemma we need is the following:



3.4 Lemma. (Siegel Lemma) Let V and W be hermitian vector bundles over Ok .
Let v : V. — W be a non injective morphism. Let m = rk(V) and n := rk(Ker(y)).
Suppose that there is a constant C' > 1 such that:

i) V is generated by elements with sup norm at most C;
i) |yl < C;
then, there is a non zero element x € Ker(vy) with

X(K)
[K:Q]

sup {log(l¢]lo)} < < 2 10g(C2) + (= 1) (W) -

og€eM.

Proof: Denote by U the hermitian vector bundle Ker(+y) with the induced metric. Ob-
serve that, by property (e) above, if deg(U(\)) > —nx(K), then there is a non torsion
element x € U such that

sup {log(f|lzfls)} < sup {As}.
ocEM €M
An easy computation gives d/eTg(U()\)) = d/e\g(U) +n-> Ao Let W’ be the image
of . Put on W’ the metric induced by the surjection. Thus we have

deg(U(N)) = deg(V) — deg(W') + 1> A, .

—

By property (d) we have d[K( ) ) < (m—n)(max(W)+log(C)) and by the very definition
) > —m[K : Q]log(C). Consequently

of Arakelov degree, deg(

deg(U(N)) = deg(V) — deg(W') +n- Y A,

> — 2m[K : Q]log(C) — (m — n)[K : Qlptmax (W Z Ao

thus, take A\, = [KIQ] (m 10g(C?) + (2 — 1) prmax(W) — f;g%)] + 6) and apply the ob-

servation above. The conclusion follows.
Let ¥4, Y5 and § be three positive rational numbers. For every couple of positive
integers (d,dz) we denote by Zy 54 the ideal sheaf of (X1); x (A2)r, defined by

> O(—iS1) ® O(—358Ss). (3.5.1)
%-1914-%-19225
i<dy,j<da
In the same way, we will denote by Iy 54 the ideal of O[O(—51)ls,, O(—52)|s,]| defined
by a condition analogous to condition 3.5.1.
We denote by Ay 5,4 the subscheme of (X1)r, x (X2)r defined by the ideal Zy 54 and
by Wy 5.4 the O, algebra O[O(—51)|s,, O(=S52)|s,]/19,54. Then:



(i) the isomorphism W oni pre induces an isomorphism Wy 2 0 Ay 54 — Spec(Wy s.4);
1 P2 - = - =

(ii) The Or, module Wy 54 has a natural structure of hermitian Or-module. Moreover
the Op-module Wy 54 has a filtration by Op-submodules F'* such that F“/F“Jrl ~
O(—i57)]S1 ® O(—jS2)|s, with % -1 + o - ¥2 < §; this filtration is isometric.

3.5 Proposition. Let ¢ > 0 be a rational number and § := 2 + €; suppose that
Y1 -2 > (24 €)[L : K]+ ¢, then there exists a constant A depending only on X;, M,
[L, K|, ¥; and € such that the following holds:

For every couple of irreducible divisor D1 — X, and Dy — X5 as above and every
couple of sufficiently big integers (dy,ds), there is a non zero section f € H%(X; x
X, Mld1 ® MQdQ) vanishing along Ay s q and such that, for every infinite place o € Mk
we have

log((1fll+) < 2 T(D1) - T(D2) - (dh + )

where the T'(D;) are defined as in §2.

Proof: Let va4,.4, : HO(X1 x X, M x M$?) — Wy 5.0 @ (M")|s, ® (M§?)|s, be the
composite of the inclusion map i : HO(Xy x Xy, M x M&2) — HO((X)) 1 x (Xa) 1, M x
M{?) and the restriction HO((Xy)r, x (X2)r, M{* x M§?) — Wy 540 (M{*)|s, @ (M5?)|s,
and let K(dy,ds) be its kernel. We have to prove that there exists an element in
K(dy,d3) having bounded norm.

In the sequel of this proof, ”absolute constant” will be equivalent to say ”a constant
which depends only on the X;, on the hermitian line bundles M; and on the metrics on
the diagonals; but independent on the D;’s and on the d;’s”.

By 3.3 and (ii) above we can find an absolute constant A such that pimax(Wy 5.4 ®
(M5, ® (M2)]s, < A-T(Dy) - T(Ds) - (dy + da).

By (g) above, we can find an absolute constant A for which HO(X] x X, M x MJ?)
is generated by elements with norm bounded by A+,

Now we come to the main part of the proof: we can find an absolute constant C' for
which the Og-module HO(X] x Xo, M™ x MJ$?) has rank which is bounded below by
C - dy - dy. The rank of the Op-module Wy 54 ® (M{")|s, ® (M3?)|s, can be bounded
from above as follows: the number of the terms of the filtration described in (ii) is the
number of couples of positive integers (7, j) with ¢ < dy, j < d and dil + % < d; as soon
as d; and ds are sufficiently big, this number is bounded above by d; - ds multiplied by
the area of the triangle with vertices (0,0), ( 19%, 0), and (0, %) plus a very small error
term, consequently

(2+¢)?

L: K ",
29, o, L Kl te

rhow (Wasa ® (M{")|s, ® (Mg?)]s, ) < di - d -



Consequently there is an absolute constant A such that

rhow (hO(X x X, M{" x M3?))
T]COK (K(dl,dg))

<

o |

For every infinite place o of K, we cover the Riemann surface X;, with a finite
number of disks over which the line bundle M, trivializes; inside each disk we take a
disk with same center and radius one half of the radius of it; we may suppose that also
these smaller disks cover the Riemann surface (we suppose that this covering is fixed
once for all, in particularly independently of the D;’s). From the lemma 3.6 below we
deduce that we can find a constant A, independent on the D;’s, such that for every
infinite place o we have ||v4,.4,/lc < A%T%. We apply now 3.4 to this situation and
conclude the proof of the proposition.

3.6 Lemma. Let Apr be the disk of radius R. Let f(x,y) be an holomorphic function
on Agp X Ag and (21,22) € Agjs X Ag/o then for every (i, j)

< 2i+{i!j! '

T R e

(21,22)

ot f
’ 0ztoyJ

max (| (z,)l}.

lyll=R

The proof of the Lemma is a straightforward application of the maximum modulus
principle and the Cauchy inequality.

4 Index Theorem.

In this section we prove that, under suitable hypotheses, the section of 3.4 has a
small order of vanishing along a point verifying the inequality of the main theorem. We
will prove an analogue of the “Roth index theorem” in this contest.

4.1 Remark. In a first version of the paper we deduced the index theorem from a
generalization of the Vojta version of Dyson lemma for curves [Vol; but, due to the
“admissibility hypothesis” in this kind of theorems, this could be applied only in the
case when both the D;’s have the same degree.

Let X} and X5 be the arithmetic surfaces. Let M be a line bundle over (X7 X X3)k
and f € HO((Xy x X))k, M). We fix two positive rational numbers 9J; > 1.

Let dy and dy be two positive integers such that d;/¥; € Z.

Let P := (P, P;) € (X1 x X3)k (K) be a point and z; be local coordinate around P,
in X; (i =1,2). Let e be a local generator of M around P; consequently, near P, we
can write f = g-e where g is a regular function around P. We will say that f has index
at least § in P with respect to d; and dy and we will write indp(f,d;,ds) > 6 if, near
P, we write g = >

C sl ) R
i @i 21 " % and a; ; = 0 whenever

i J
— - =y <.
4 1+d2 2 S



The definition of the index is independent on the choices.

Let Zs(f) be the subset of points P of (X} x X3)k for which indp(f,dy,ds) > 4§ (in
the notation, the dependence on the d;’s is clear from the contest). It is a, possibly
empty closed set of (& x Xs) k.

Let M; be the line bundles of generic degree one on &; (i = 1,2) fixed in the previous
section. As in the previous section we will denote by M; the line bundle pr}(M;) on
X1 x Xy (pri: X1 x X5 — X; being the natural projection).

The main theorem of this section is:

4.2 Theorem. Let C and € be positive real numbers. Then we can find constants
B; = B;(C,¢€) depending only on C, the U1, and € (and on the other choices made until
now), but independent on the d;’s, having the following property:

Suppose that:

(a) f e HO(X, x Xop; M @ MJ2) is a global section with sup, e LI fllo} < Cldrtd2);
(b) the d;’s are sufficiently big and divisible and dy/dy > By;
(c) P:= (P, Py) € X1 x X3(K) is a rational point such that

har,(P2) _ dy
By < h (P, d /222> .
then

indp(f, dl,d2> S €.

4.3 Remark. The proof of the statement above is directly inspired by the Faltings
product theorem [Fa] and can be deduced from it; we propose here a self contained
proof (which is simpler then the proof of the product theorem in this situation).

One can develop a height for subvarieties of a fixed variety (cf.[BGS]); this theory
extends the height theory for points. We will not recall here the definitions but we will
recall the properties of the heights that we need. Indeed, the only things we need of the
theories are the properties quoted below (consequently a reader whi do not know the
theory can simply admit them).

We will use the following standard facts from the height theory of subvarieties, one
can find the proofs on [Fa2] or on [Ev]; if Z is a closed subscheme of X; x Xy and M is
an hermitian line bundle, then we denote by hjs(Z) the height of Z with respect to M
as defined in [BGS]; by linearity, the height function is also defined on cycles:

(a) Suppose that Z; are closed irreducible reduced subschemes of X of relative dimension
d; (over Z) then

h

(Zy X Za) = (81 4 G + 1)1 - df* - d52 - (dl () th(Z2)) ;

M+ M2 (6, +1)! (62 + 1)!

this is proved in [Ev Lemma 8§].



(b) Suppose that X; = P! and M; = O(1) and C is a real constant. Then there is a
constant R, depending only on C and the chosen metrics, such that the following
holds: let fi,..., fr € HO(X) x X,0(d1) + O(dz)) be integral global sections such
that sup, ¢y {llfillo} < C; let Y be the subscheme of &} x A defined as the zero
set of {f1,...,fr}; Let X be an irreducible component of Y with multiplicity mx
then

mx - ho)+0(d)(X) < R-dy - da - (di + d2);

this is proved in [Fa2 Prop.2.17] or [Ev Lemma 9.
(c) If f e HO(X) x Xy, M + MZ2) then

. d d 2.
Pogas g pgta (V) = Pypar g an (X x )+ ;M: /mx»@a log || £l (c1 (M M), ) ;

this is a direct consequence of the definition of height (cf. [BGS]); consequently (using
point (a)), given a positive constant C' we can find a positive constant R, depending
only on C, for which the following holds: if f € HO(X; x Xy, M + M) is such
that sup,enr {||fllo} < C then

h div(f)) < R-dy - dy - (dy + d + log(C)) .

M +M§2(
Proof: (of 4.2): Let f be the given section and Z be a geometrically irreducible reduced
component of Z.(f). Extending K if necessary, we may suppose that Z is defined over
K. Tt sufficies to prove that, under the hypotheses of the theorem (with explicit and

suitable B;’s) the point P do not belong to Z. There are two cases, depending on the
dimension of Z.

Case 1: Dimension of Z equal to one: Let Y := div(f); since Z is a divisor contained

in Y we have
YK:mz-Z—I—D;

where D is an effective divisor on (X; x X3)x. We claim that, if di/de > 91 /(e - 92)
then either there is a point A € X5(K) such that Z = (&) x {A}, or there is a point
B € X1 (K) such that Z = {B} x (X2)k:

4.4 Lemma. Suppose that Z is not as claimed and g—i > g—z, then myz > € - g—i.

Let’s show how the lemma implies the claim: Suppose that Z is not as claimed,
then (Z; My) > 0; consequently, denoting by (+;-) the intersection pairing on the surface
(X1 x X))k,

do = (Y;My) > edy(Z; My) > €- g—,
1

so dy /ds < 91 /€; contradiction.

Proof: (of the lemma): Let n be a generic point of Z not contained in D; we may



suppose that the restriction of both projections are étale in a neighborhood of n. Let 21
and z9 be local coordinates about the projections of 7. In a formal neighborhood of 7,
the divisor Z is defined by a irreducible element h € K|[z1, 23] and Y is defined by the
ideal (h™2); because of our choice of 1, we have h(z1, z2) = a1021 +ag122 +O((21 + 22)?)
with ag; - a19 # 0, moreover, by definition of Z.(f),

(h(z1,22))™ = aij - 21 - 23
,J

with a;; = 0 whenever di'l -+ % ¥y < e

Consider the covering
v K[z, 20] — Kwy,ws]

2

P
Z1 — Wy

251

91
Z9 > Wy

by construction ¢(h(z1, 22)) = ayg - wtliz/ﬂz T agy 'w;h/z?l + O((wtliz/ﬂz + w1211/191)2) and

o(h(z1,22)m2) = >, 1 bk - wh - wh with h’jlld'f? + k'jllcifQ > €. On the other side,

4y .
o(h(z1,29)™2) = ajt? - w,? ey O(wy + wy)™7%2/92+1 (here we use the fact that

dy /Y1 > da /1) consequently
do dy - dy

mz-—>€

192 = 191 . 192 ;
the lemma follows.

We now come to the arithmetic part of the proof, in this case: Z is either (X7)x x {A}
or {B} x (Xs)k for suitable A and B; remark that in the first case B = P, and in the
second case A = P;. It is easy to see that my is € - g—z in the first case and ¢ - % in the
second: indeed it suffices to compute mz on a smooth point of the support of Z and Y.
In the first case, by applying properties (a) and (c) above of the heights, the fact that
the height is additive on cycles and the hypotheses, we can find an explicit constant Ry

depending only on C such that:

my - thlJngz (Z) = myz -di(dy - hy, (X1) + 2da - hag, (A))

< th1+M;12 (div(f)) < Ry - dy - da(dy + d2);
consequently, since myz = ¢ - g—i,
€ - d1 . d2
19—2 . (dl . hMl (Xl) + 2d2 . hMQ(A)) < Rq- dl . d2(d1 + dg)
thus R
dy - hary (A) € ——2(dy + da)



Similarly, in the second case, we obtain

€~d1'd2

9 . (le . hMl (B) + ds - hM2(.)('2)) < Ry-di-dy- (dl + dg),

thus

Ry ds
By<—=.(1+—/].
b (B) < 72 (14 )

This implies that, if dy/dy > 1, the point (P;, P») cannot be on Z as soon as j—f .
hM2 (PQ) Z hMl (Pl) Z % -max{ﬂl,ﬂg}.

Case 2: Dimension of Z equal to zero: Denote by (P, Q) € (X1 x X2)k (K) the support
of Z. In this case we need to project on P! x P'. We fix once for all a finite set of
coverings ;. j : (X;)xk — P! with the following property: if U; ; C (X;)x is the open set
over which v; ; is étale, then (J; U; ; = (X;) k and 7] ;(O(1)) ~ (M;)%- for suitable t; (we
fix such isomorphisms). We also suppose that each +; ; extends to a generically finite
morphism v, ; : X; — IP})K (this can be obtained after a suitable blow up of &;). We
equip the line bundle O(1) on P! with the Fubini-Study metric || - || rs. Fix a constant
A such that

A7 les) < I Iy < Avs5 (1 Hles) -
We may suppose that (P, Q) € (X; x X,)(K) is contained in U; ;1 X Us ;. Denote by
' the morphism 11 X 712 : X1 x Xo — P! x PY. Put d; = t; - a;; then ['*(O(ay,a2)) =
MM 4+ M2 and g .= T.(f) € H(P' x P',O(d, - ta,dy - t1). It is easy to verify that
there exists an absolute constant A; such that

di+d
lgllrs < AT 1)

and that (P, Q") := I'(P,Q) is contained in Z.(g). Consequently it suffices to prove
the theorem when X; = X, = P, M; = My = O(1) and O(1) is equipped with the
Fubini-Study metric.

We first look to the irreducible components Z’ of Z /5 containing (P’,Q’). If there is
such a Z’ of dimension one, then we are reduced to the previous case and we are done.
We may then suppose that the support of Z" is (P’,Q") too. Let I. and I,/ be the
ideal of Z and Z’ in the completion K[z, 23] of the local ring of P! x P! in (P’,Q’); let

h=a-z"25> + ... be an element of I/, then

ail +io

_ (ri—i1)’_(r2—i2)’
50 8izh—a1z1 2 + ...
2t -0z
1 2

(where (a)’ := sup{a,0}) for a suitable a;; and «; is zero only if « is zero or a # 0

and one of the (r; — ;) is zero. If fl—ll -9 + 2—22 -2 < 5 and h € I /5 then (f&h €

zil-az;Z
I. C (#1,%2). This implies that h, and consequently I/, is contained in the ideal

(zidl/@‘ﬁl), zng/(Mz)). Thus, the multiplicity of Z" in Z/5(g) is at least ﬁ'(i)?dldg.



. . i1+i2 . i i
Every differential operator fﬁW with 2—11 -1 + 7 -2 < § can be seen as a linear
217 0%y

endomorphism D(1:%2) of HO(P! x P!, O(dy, ds)). For every infinite place 0 € M, the
norm of the operator D(":%2) (with i; and iy bounded as above) is bounded from above
by 2max{d1,¥2}(ditd2) We apply property (b) above and the hypotheses and we find a
constant R’, depending only on C'

mz: - (dy - h@(l)(Pl) +d?- h@(l)(Q/)) <R -di-dy- (dy + da);
consequently, since my: > ﬁ . (2)2 -dq - do, we obtain

nt
dy - ho)(P') 4+ da - ho1)(Q") < 01 -0y - (—) - R'(dy + d2) .

€

If we suppose that 191}192 . (%)2 R < ho)(P1) < hoa)(P2) the point P cannot belong
to Z’ and this concludes the proof of the theorem.

5 Generalized Cauchy inequalities.

Fix ¥; € Q>1 and the divisors D; : Spec(Oyr) — X; as in section 3. For every rational
positive § and couple of positive integers (di,dz), let Iy 54 be the ideal sheaf of X} x X
defined in section 3. Let p : 2\?5 — X1 X X3 be the blow up along Zy 54 and let Ejs be
the corresponding exceptional divisor on it. We can find a very small positive constant
a such that, if the d; are sufficiently big, there is a surjection

652 @ O(—il Dl) ®O(—’LQ Dg) —HIQ’(S’Q'
ST 01+ 2 9:<o+a

To simplify notations we will denote by H the set

(21,22)€Z><Z/5<— 191—1—— Yo <d+ayp .
dy do
Let M be an hermitian line bundle on A} x X5; by abuse of notation, we will denote
again by M the pull back of M to Xs.
The surjection 5 above induces a surjection

- @ O(-ir- D) ® O(~iz- Da) — Ox_(~Fs);

(’Ll,lg)GH

consequently the line bundle O X, (Es) is naturally equipped with the structure of her-
mitian line bundle.

If P, € X;(K) are K-rational points of X, they extend to sections P;: B := Spec(OK)
X;. We will denote by P: B — X x X5 the section P; x P, and by P:B — X5 the strict
transform of P.

The theorem we want to prove in this section is the following:



5.1 Theorem. Let M be an hermitian line bundle on X; x X5 and A and € be positive
constants. There is a constant C' depending only A, on the models, the metrics, the
¥;’s etc. but independent on the d;’s for which the following holds:

Let f € H°(Xy x Xp, M®Zy 5,4) be a global section such that sup, ¢y, {||fllo} < A. Let
P := Py x Py : Spec(Og) — X1 x Xy be a rational point such that indp(f,dq,ds) < €;
then there exists € < €, two positive integers i1 and i, such that fl—ll -9y + ;—22 ¥y < €
and a non zero global section f € HO(P, M ® wEI/B ® "‘)332/3 ® O(—FEs_.)) such that

sup {[|fllo} < A- Ol

ocEM o

Before we start the proof of the theorem, we need to introduce some notations and
some tools.

Let £1 and L2 be two line bundles on Spec(Of ). For every couple of positive integers
(i1,12) we define the differential operator

D(ihiz) . O[[£1,£2]] — O[[ﬁhﬁz]] & ﬁlll X £Z22

in the following way: let ey (resp. e2) be a local generator of £1 (resp. of Lo) then we
define
D) (ef @ e3) = (za ) ' <zb) i @ey " @ (ef ®ey)
1 2

and extend it linearly to O[L1, L2]; one easily verify that this definition do not de-
pends on the choice of the local generators. The module O[L;, Lo] ® L1 @ L2 has
a natural structure of O[Lq, Lo]-module (multiplication on the right). one can easily
verify that D(1:%2) is a differential operator: it is Og-linear (by definition) and it sat-
isfy the (iterated) Leibnitz-rule; for instance D™0(f-g) =3 (") -DEO(f)- D(n=40)(g)
(DEO(f) € O[L1, L2]®LE and D40 (g) € O[L1, L2]RLY ™), consequently DO (f).-
D=1 (g) € O[L1, L2] ® L}).

If o € My is an infinite place, then O[L1, L2], is (non canonically) isomorphic to
the ring of formal power series in two variables and the operators D(*?) are the usual
iterated derivatives.

Although it is not necessary, we will tacitly authorize ourself to pass to the Hilbert
class field extension: consequently we will suppose that every line bundle on B is trivial;
this is not necessary, but highly simplify the notations.

Denote by (Xl/x\?(g) p the formal completion of X; x Xy around P. By 3.2, we find
a canonical isomorphism

Up: (X1/>-<\X2)P — Spf(o[[o(_Pl)|P17O(_PQ)‘PQ]]) .

We will denote by Ip C O[O(—PF1)|p,, O(—PF2)|p,] the ideal corresponding to the ideal
of definition of (X; x X5)p defining the point section P (with the reduced structure).

Proof: (Of theorem 5.1) Let p; : X1 x X3 — X, the projection. Denote by Zp the



restriction of the ideal sheaf pf(O(—D;)) to (Xl/x\XQ)p. The image of Zp by ¥ is
a principal ideal of O[O(—P1)|p,, O(—P2)|p,] generated by an element G;. If § is a
positive rational number, we denote then by Isq C O[O(—P1)|p,, O(—F2)|p,] the ideal
generated by the elements G - G% with d% “h + % -1 > 0. The ideal I5 4 is the image,
via W, of the restriction to (Xl/x\Xg) p of the ideal sheaf Zy 5 4. Consequently, a global
section f € HY(Xy x Xo; M ®Iy,s5,4) restricted to (X1/>-<\X2) p will determine an element

a1t 02>8

If (i1,12) is a couple of indices such that Cil—ll -+ 3—22 -1} < € then a direct computa-
tion using the iterated Leibnitz rule gives D1%2)(F) € I5_. 4 ® M|p ® O(—i1 P1)|p, ®
O(_iZPZ)‘P2'

Since the index indp(f,dy,dz2) of f at P is less or equal then ¢, then we can find a
couple of positive integers (i1, 72) such that C’l—ll -0+ 2—22 199 < € and such that the class f
of D) (f) in (O[O(=P1)|p,, O(=P2)|p,] @ M|p® O(=ir P1)|p, @ O(=i2 )| p,) /1P =
HO(P,M ® O(—i1P1)|p, ® O(—iaP3)|p,) is non zero. Thus, using adjunction formula,

we find a non zero section in f € H(P,M ® cui,él/BhD1 ® w3§2/3|p2 ®Ty,5—e,d)-

Let 0 € M, be an infinite place. we fix once for all a covering of (X;), by open sets
Ui; analytically equivalent to a disk (with coordinate z)for which the following holds:
— The line bundle O(4;) is trivial on U;; x Us; and we fix once for all a trivialization.
— The line bundle M, is trivial on U; ; x Ua .

Let || - ||¢ be the metric on the line bundle O(Fy),. Let I, be the canonical section of

O(Py)o. There is a C* function py;; on U;; such that

pe.ij(2)
Iylle(2) = —————.
Itelle() = AL
Due to our choices, we can find (and fix once for all) two constants A; and As
independent on the P; such that

Ay < prij(z) < As.

Thus, we apply 3.6 and we find an absolute constant C, independent on P and on the
d;, such that

sup{[|f]l,} < A-C{HT®)

The section f extends to a section, denote it again by f ,of (M ® wﬁ,}l ® w%)g on a
neighborhood of P, which we may suppose to be one of the products of the U; above;
a similar argument shows that sup{||f||} < A - C’fdﬁdz).

Let X — X1 X Xy be the blow up along the ideal Zy 5_c 4 and Es_. be the exceptional
divisor; let P : Spec(Ok) — X be the strict transform of P. By definition f will give a

non zero section (which we will denote with the same symbol) f € HO(P, M ® wgil /B ®



X / p(—Es5_c)). We will now give an upper bound for the norm of f. As before, once
we take a suitably chosen (once for all) open covering of (X;),, in the analytic topology,
the existence of the upper bound as in the statement of the theorem is consequence of
5.2 below.

Let D be an open disk, 0 € D be a point on it and z be a coordinate with a simple
zero on 0. Suppose that p;(z) (i = 1,2) are two C*> functions on D; suppose that we
can find two positive constants By and By such that B; < p;(z) < Bs. We define two
metrics || - ||; on O(0) by the formula ||Iy||; = |z]pi(2).

Let p; : D x D — D the i-th projection, we will denote by O(—0;) the line bundle
p(O(—0)) and by z; the holomorphic function p;(z) (it is the canonical section of O(0;)).
We will suppose that O(0;) is equipped with the pull-back, via p; of the metric || - ||;.

Fix positive rational numbers ¢; and §. For every couple of sufficiently divisible
positive 1ntegers (dl,dg) define Zy 54 to be the ideal sheaf of Opyp generated by the
monomials z}* ’2 with 1 -+ Zf <99 > 0.

Let b: X - DxD be the blow up of Zy 54 and E := Es C X be the exceptional
divisor. In the same way as before, if the d; are sufficiently big, we have a surjection

P O(—i1-01) @ O(—iz-02) — Tysa-
(il,ig)eH

which induces a metric on O(E).

5.2 Theorem. There exists a constant B depending only on y;,d and the constants
A; such that if the d;’s are sufﬁaently big and divisible, f € HO(D xD,Zys.4) and f is
the corresponding section in H°(X,O(—E)) then, for every z € X,

1F1(=) < [1F (b)) - BUHe).

Proof: Denoting by P the projective bundle Proj(€D;, ;,)ex O(—i1-01) ® O(—iz-02))
over D x D we get a commutative diagram

ind L

X < P
N !
DxD.

Moreover, by construction we have an isometry t*(O(1)) ~ O(—F). Remark that P is
isomorphic to D x D x PV for a suitable N. Denote by [u;, i,](i,.i)en the homogeneous
coordinates on PV; the blow up X is defined by the equations

R S U - g1, L J2
Ujgy,ga " 21 "R = Uiyip "R " 2D

for all (’il,ig) and (jl,jg) in H.

Let’s work on the local chart w;, ;, # 0; a local computation shows that over this



chart

‘zil . Zi2| . LN\ 2
1B =2 ST (lagal - )

wiial N\ i Gmren

Let f € H'(D x D, Iy54). The pull-back b*(f) naturally defines a global section fe
H°(X,0(—~E)). Over the chart u;, ;, # 0 we can find a holomorphic function h such
that f = 2! - 222 . h. In order to conclude the proof of the theorem we have to give an
upper bound for

h| . \/Z |u]'1’j2|2 ’ p% ’ p%

‘uihh’

Fix a very small positive €; we may suppose that we are in the disk

(5.3.1)

|uj'r‘1 aj?"2 | < 1 + €:
— Y
’ui17i2|

if this is not verified, it suffices to change the local chart. consequently, we can find a
constant B; depending only on the norms (in particular independent on the d;’s) for
which the expression in 5.3.1 is bounded from above by

di+d
h]- By

Since h is holomorphic, the function |h| will assume its maximum on the border. We

5-dq
may assume that the d; are such that dq;—'_‘s € N. On our chart, 21T = zqf . z;Q ‘US|
sdy 1 o
(resp. 2,2 = 2 - 22 S, (sﬂﬂ) and |U6§ﬂ ol (resp. u, %ﬁ) is less or equal to 1 + e.
79 2’ 7 92
5-dy 5-do

Consequently, if [2,"* | =1 (resp. |2,"% | = 1) then 1 < |28 - 22| . (1 + ¢) thus

< — g

|1 -2

the conclusion of the theorem easily follows.
6 Proof of Theorem 2.1.

In this section we will give the proof of the main theorem of the paper: Theorem 2.1
. For simplicity we will assume that the set of places S has cardinality one. The general
case is similar and can be obtained mutatis mutandis as explained for instance in [HS
D.2.2.1].

We recall all the tools and the ingredients: X; are two regular arithmetic surfaces
projective over B := Spec(Og) over which we fixed arithmetically ample hermitian
line bundles M; and symmetric hermitian metrics on O(4;) (A; being the diagonal on
X; x X;). Eventually we fix a place o € M.



We fix two finite extensions L; of K and two reduced divisors D; : By, := Spec(Op,) —
X;. We denote by L the composite field L;-Ls and by n the degree of the extension L/K.
We fix two positive rational numbers 9; > 1 and a positive € such that ¢ - 95 > 2n +e.
We will denote by T'(D;) the positive real number introduced in §2. Theorem 2.1 will
be consequence of the following:

6.1 Theorem. There exists a constant A depending only on the arithmetic surfaces
X;, the 9;, the €, the hermitian line bundles M;, the symmetric metrics on the diagonals
O(A;) and the place S, for which the following holds:

Let D; C X; be divisors as above, and P; € X;(B) be two rational sections such that

(1) )\Dl,S(Pl) > v - hM1 (Pl) and )\D275(P2) > U - hM2 (PQ),‘
(ii) har, (P1) > A-T(Dy) - T(D2).
Then
har, (Po) < A-T(Dy) - T(Dy) - har, (Py).

Proof: We first treat the case when P; is "far from D;”. Suppose that S is an infinite
place, then take a covering of (&;)g by open sets U,;, analytically equivalent to the disk
of radius 1 and such that the open subsets analytically equivalent to the disk of radius
1/2 also cover the (&X;)s. We can then find a constant Ay such that if U;;, are the open
sets containing the (D;)s and (F;)g are not contained in the U;;, then Ap, s(P;) < As.
Consequently, we see that, taking A much bigger then A5 (which is independent on the
D;), in this case condition (i) and condition (ii) are in contradiction. In particular the
theorem holds in this case. A similar argument holds if S is a finite place.

Suppose that ¥ - 9o = 2n + €; define €1 := n;—l—l and 6 := 2+ ¢;.

Here again, ”absolute constant” will be equivalent to sat ”a constant which depends
only on the &;, the hermitian line bundles M;, the metrics on the diagonals, the 19;’s,
but independent on the D;’s and on the d;’s”.

For every couple of positive integers d; and da, let Zy 5 4 be the ideal sheaf on &} x A
defined in §3 and having support on Dy x Dy C X X Xb.

Fix an absolute constant Az such that A, ,(-) < As - hag(-) and let € such that
€ < 1_’_62—11%)

We apply 3.5 and we find an absolute constant constant A4 such that, each time d;’s
are sufficiently big and divisible we can find a non zero global section f € HY(X; x
KXo, M{" @ M§> @ Ty 5.4) such that

sup {log||flo} < A~ T(Dr) - T(Da)(dr + do).
ocEMoo

One apply Theorem 4.2 with C = Az - T(D1) - T(D2) and € = €3 and deduce the
existence of a constant As for which, if a point P verify (a), (b) and (c) of loc cit. then

the index indp(f,d;,ds) < €a; following the proof one can see that As is again of the
form Ag - T'(D1) - T(D2) with Ag independent on the D;’s.



Suppose that P; : B — X are two sections which satisfy hypothesis (i) and such that
hM2 (PQ) > A6 . T(Dl) . T(DQ) hMl (Pl)

we will prove that there exists a constant A7 such that hys, (P1) < A7 - T(D) - T(D3),
and this will be the conclusion of the proof.

In the sequel we will denote by h; the real numbers hyy, (F;).

Take d to be a very big and divisible positive integer; let d; be integers such that
d;h; ~ d and such that

he _ da

hi = do
(in order to keep the proof as readable as possible we avoid to introduce more small
constants).

Let f be the section whose existence is assured by theorem 3.5.

The hypotheses of theorem 4.2 are satisfied consequently the index of f at P; x P
is smaller then e5. Let X — X; x X be the blow up of the ideal Ty s, ¢ and Es_,
(notations as in §5) be the exceptional divisor; let P : B — X be the strict transform
of P := P; x P,. We apply theorem 5.1 and deduce the existence of an absolute
constant Ag, a couple of indices (i1,72) and a non zero section f € HO(P, Mld1 Q Mgd2 R
cuz,él/BhD1 ®w;§2/3(—E5_€2)) such that ;—11 -0 + 3—22 -y < € and sup, ¢y {log || fllo} <
Ag - T(Dq) - T(D2)(dy + da).

A local computation implies that there exist two indices j; and js such that 2—1 -9+
g—z -9 > § — €9 such that

deg(P*(Es—c,)) > j1 - Apy.s(P1) + j2 - Apy.s(P2)
(recall that d/e;g() denotes the Arakelov degree). Thus we deduce
— Ag - T(Dy) - T(D2)(d1 + d2)
<dihy+dyhe s hey (P iz hey, o (P2) — deg(P*(Bs_e,))

“dy - hey ,m (P2) = (41 Apy,s(P1) + J2 - Ap,,s(12))

11 12
§2d+d—1'd1'th1/B(P1)+d—2
<2d+2A3-€5-d— j—1~191‘h1'd1—|—j—2'192~h2~d2

dy ds
< ((2+2€2-A3)—(2+61—62))'d

from this and by our choice of the ¢;’s, we deduce

11
—Ag - T(Dy) - T(Ds) - (h_l + h—2) < —e5



where €3 = €1 — (1 + 2A43) - €9; thus

2. Ag

€3

hy <

T (Dy) - T(Dy)

and from this the conclusion follows.
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