EIGENVALUES OF LAPLACIAN AND MULTI-WAY
ISOPERIMETRIC CONSTANTS ON WEIGHTED
RIEMANNIAN MANIFOLDS

KEI FUNANO

ABSTRACT. We investigate the distribution of eigenvalues of the
weighted Laplacian on closed weighted Riemannian manifolds of
nonnegative Bakry—Emery Ricci curvature. We derive some uni-
versal inequalities among eigenvalues of the weighted Laplacian
on such manifolds. These inequalities are quantitative versions of
the previous theorem by the author with Shioya. We also study
some geometric quantity, called multi-way isoperimetric constants,
on such manifolds and obtain similar universal inequalities among
them. Multi-way isoperimetric constants are generalizations of the
Cheeger constant. Extending and following the heat semigroup ar-
gument by Ledoux and E. Milman, we extend the Buser-Ledoux
result to the k-th eigenvalue and the k-way isoperimetric constant.
As a consequence the k-th eigenvalue of the weighted Laplacian and
the k-way isoperimetric constant are equivalent up to polynomials
of k£ on closed weighted manifolds of nonnegative Bakry—Emery
Ricci curvature.

1. INTRODUCTION

1.1. Eigenvalues of the weighted Laplacian. Let (M, i) be a pair
of a Riemmanian manifold M and a Borel probability measure p on
M of the form dyp = exp(—)dwvoly, ¥ € C*(M). We call such a
pair (M, ) an weighted Riemannian manifold. We define the weighted
Laplacian (also called the Witten Laplacian) A, by

Nyi=NA—Vi-V,

where A is the usual positive Laplacian on M. If M is closed, then the
spectrum of the weighted Laplacian A, is discrete, where A, is consid-
ered as a self-adjoint operator on L?*(M, ). We denote its eigenvalues
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2 KEI FUNANO
with multiplicity by
0= No(M,p) < A\i(M,p) < Xo(M, ) <-0 < Np(Myp) <--0

Our purpose in this paper is to understand the relationships be-
tween the eigenvalues A, (M, u) for different k. For that purpose let
us focus on diameter estimates in terms of eigenvalues of the weighted
Laplacian due to Li and Yau [30, Theorem 10] and Cheng [9, Corol-
lary 2.2] (see also [46]). Combining their results one could obtain that
Me(M, ) < e(k,n)\ (M, ) for any natural number k£ and any closed
weighted Riemannian manifold (M, ;) of nonnegative Bakry-Emery
Ricci curvature, here c(k,n) is a constant depending only on &k and
the dimension n of M. The dependence of the constant c(k,n) on n
comes from Cheng’s result. In order to bypass the dimension depen-
dence of the inequality by Cheng, we consider the observable diameter
ObsDiam((M, u); —k), k > 0, introduced by Gromov in [22]. The ob-
servable diameter comes from the study of ’concentration of measure
phenomenon’ and it might be interpreted as a substitute of the usual
diameter. See Definition 5.5. The observable diameter is closely related
with the first nontrivial eigenvalue of the weighted Laplacian as was
firstly observed by Gromov and V. Milman in [21]:

6 1

(1.1) ObsDiamg ((M, pu); —k) < ——=1log —.
/\1(Ma M) k

Under assuming the nonnegativity of Bakry—Emery Ricci curvature,
E. Milman obtained the opposite inequality ([39, 40, 41]):

1 -2k

ObsDiamg((M, pt); —k) > ———.

r((M, ) ) 5 /—/\1(M, )
See (2.3), Proposition 2.12, and Lemma 5.6 for the proof of the above
two inequalities. Observe that these two inequalities are independent
of the dimension of the underlying manifold. One might regard the
Gromov-V. Milman inequality as a dimension-free Cheng’s inequality
for £k = 1 and also the E. Milman inequality as a dimension-free Li-
Yau’s inequality.

One of the main results in this paper is the following:

Theorem 1.1. There exists a universal numeric constant ¢ > 0 such
that if (M, ) is a closed weighted Riemannian manifold of nonnegative
Bakry-Emery Ricci curvature and k is a natural number, then we have

)\k(Mv :u) < eXp(C/ﬂ))\l (M7 :u>'
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Theorem 1.1 also holds for a convex domain with C? boundary in
a closed weighted Riemannian manifold of nonnegative Bakry—Emery
Ricci curvature and with the Neumann boundary condition, the proof
of which is identical.

The crucial point of Theorem 1.1 is that the constant exp(ck) is inde-
pendent of the dimension of the underlying manifold and quantitative.
In [18, Theorem 1.1] the author proved with Shioya that the fraction
A (M, ) /A1 (M, 1) is bounded from above by some universal constant
depending only on k. However the estimate was not quantitative since
the proof in [18] relies on some compactness argument.

In Theorem 1.1, the nonnegativity of Bakry—Emery Ricci curvature
is necessary as was remarked in [18]. In fact for any € > 0 there exists
a closed Riemannian manifold M of Ricci curvature > — e such that
Ao(M) /A1 (M) > 1/e. Taking an appropriate scaling, some ’dumbbell
space’ becomes such an example, see [18, Example 4.9] for details.

The following corollary corresponds to Cheng’s inequality for general
k:

Corollary 1.2. There exists a universal numeric constant ¢ > 0 such
that if (M, 1) is a closed weighted Riemannian manifold of nonnegative
Bakry-Emery Ricci curvature and k is a natural number, then we have

ObsDiamg ((M, u); —k) < exp(ck) !

< ———log —.
V )\k(MMu) k

Corollary 1.2 follows from Theorem 1.1 together with the Gromov-
V. Milman inequality (1.1).

In order to treat the k-th eigenvalue we will work on the notion of
'separation’, which is regarded as a generalization of the concentration
of measure phenomenon (see Subsection 2.2). It tells the information
whether or not there exists a pair which are not separated in some
sense among any k + 1-tuple subsets with a fixed volume. According
to the work of Chung, Grigor'yan, and Yau [10, 11], it is related with
the information of general eigenvalues of the weighted Laplacian (see
Theorem 2.10). Under assuming the nonnegativity of Bakry—Emery
Ricci curvature, we prove that if a nonseparated pair always exists
among any k + 1-tuple of subsets, then it also holds among any k-
tuple of subsets. In order to prove it, we use the curvature-dimension
condition CD(0,00) in the sense of Lott-Villani [32] and Sturm [49,
50], which is equivalent to the nonnegativity of Bakry—Emery Ricci
curvature. Idea of the proof of Theorem 1.1 will be discussed in Section
3 in more detail.
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1.2. Multi-way isoperimetric constants. Let (M, pu) be a closed
weighted Riemannian manifold. Recall that Minkowski’s (exterior)
boundary measure of a Borel subset A of M, which we denote by pu*(A),
is defined as

A)) — u(A
r—0 T
where O,.(A) denotes the open r-neighborhood of A. We consider the

following geometric quantity:

Definition 1.3 (Multi-way isoperimetric constants). For a natural
number k, we define the k-way isoperimetric constant as

o GY)
hk<M7 LL) = Ao,fllgank (]Hglzag}i ,u(AZ)

Y

where the infimum runs over all collections of £+ 1 non-empty, disjoint
Borel subsets Ag, Ay, -+, Ax of M. hy(M, p) is also called the Cheeger
constant.

Note that hy(M,u) < hgy1(M, p) by the definition. We are inter-
ested in the distribution of hy (M, p), ho(M, ), -+, hi(M, ), - - - on the
real line and the relation between A\, (M, p) and hy (M, p).

The Cheeger-Maz’ja inequality ([33, 34, 35] and [7], see [39, Theorem
1.1]) states that

(1.2) hi(M, 1) < 2¢/ M (M, ).

In [28], resolving a conjecture by Miclo [37] (see also [14]), Lee, Gharan,
and Trevisan obtained a higher order Cheeger-Maz’ja inequality for
general graphs. Although they proved it for graphs, by an appropriate
modification of their proof (e.g., by replacing sums with integrals), it
is also valid for weighted Riemannian manifolds. In Appendix, we will
discuss a point that we have to be care when we treat their argument
for the smooth setting.

Theorem 1.4 (Lee et al. [28, Theorem 3.8]). There exists a universal
numerical constant ¢ > 0 such that for all closed weighted Riemannian
manifold (M, ) and a natural number k we have

hie (M, 1) < ck3/ Ne(M, o).

Lee et al. proved the above order &% can be improved to k2 for graphs
(28, Theorem 1.1]). Since it is uncertain that Lemma 4.7 in [28] holds
or does not hold for the case of weighted Riemannian manifolds, the
author does not know k* order in Theorem 1.4 can be improved to k2
order.
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The opposite inequality of the Cheeger-Maz'ja inequality (1.2) was
shown by Buser [6] and Ledoux [26]. They proved the existence of a
universal numeric constant ¢ > 0 such that

(1'3) Y, )‘1(M7 M) < hl(Mv M)

for any closed weighted Riemannian manifold (M, ) of nonnegative

Bakry-Emery Ricci curvature. Combining Theorems 1.1 and 1.4 with
(1.3) we obtain

hi (M, 1) S KN/ M(M, 1) S B exp(ek) v/ M (M, i) S k2 exp(ek)ha (M, ),

where A < B denotes A < C'B for some universal numeric constant
C > 0. Consequently we have the following:

Theorem 1.5. There exists a universal numeric constant ¢ > 0 such
that if (M, 1) is a closed weighted Riemannian manifold of nonnegative

Bakry-Emery Ricci curvature and k is a natural number, then we have
hi(M, 1) < E° exp(ck)hy (M, 11).

M. Mimura obtained similar universal inequalities among multi-way
isoperimetric constants for Cayley graphs.

Following and extending the heat semigroup argument by Ledoux
26] and E. Milman [41], we obtain the extension of the Buser-Ledoux
Theorem:

Theorem 1.6. Assume that a closed weighted Riemannian manifold
(M, ) has nonnegative Bakry-Emery Ricci curvature. Then for any
natural number k we have

(80K) /N, 1) < ha(M, ).

As a consequence hg (M, 1) and /A, (M, 1) are equivalent up to poly-

nomials of £ under assuming the nonnegativity of Bakry—Emery Ricci
curvature.

1.3. Applications to the stability of eigenvalues of the weighted
Laplacian and multi-way isoperimetric constants. In [41, Sec-
tion 5] and [42, Section 5.2], E. Milman obtained several stability results
of the Cheeger constants. Although one could apply Theorems 1.1 and
1.5 to several stability results by E. Milman, we apply our results to
only one of his theorems in [41]. The interested reader is referred to
[41, 42] for further information

For a domain Q with C? boundary in a complete Riemannian man-
ifold, we denote by 7,(Q2) the k-th eigenvalue of Laplacian with Neu-
mann condition.
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Corollary 1.7. Let K, L be two bounded conver domains in R"™ and
assume that both K and L have C* boundary. If

vol(K N L) > vk vol(K) and vol(K N L) > vy vol(L),
then

() > exp(—ck)vy

Z Tog(1 5 1/v,)32 B

and

exp(—ck)v¥
>
hu(K) 2 k3log(1+ 1/vp)

where ¢ > 0 is a universal numeric constant.

In particular, if vol(K) ~ vol(L) ~ vol(K N L) then ng(K) =~ ni(L)
and hy(K) =~ hi(L). Here A ~ B (resp., A ~ B) stands for A and
B are equivalent up to universal numeric constants (resp., constants
depending only on k).

E. Milman obtained the above corollary for & = 1 ([41, Theorem
1.7]). The above corollary follows from his theorem together with The-
orems 1.1 and 1.5.

In the same spirit we investigate the (rough) stability property of
eigenvalues of the weighted Laplacian and multi-way isoperimetric con-
stants with respect to perturbation of spaces (Section 5). We discuss
the case where two weighted manifolds M and N of nonnegative Bakry-
Emery Ricci curvature are close with respect to the concentration topol-
ogy introduced by Gromov in [22]. Roughly speaking, the two spaces
M and N are close with respect to the concentration topology if 1-
Lipschitz functions on M are close to those on NN in some sense.

hi(L).

1.4. Organization of the paper. Section 2 collects some back ground
material. In Section 3, after explaining some basics of the theory of
optimal transportation, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.6. In Section 5 we study the (rough) stability property
of eigenvalues of the weighted Laplacian and multi-way isoperimetric
constants with respect to the concentration topology. In Section 6 we
discuss several questions concerning this paper and some conjecture
raised in [18].

2. PRELIMINARIES

We review some basics needed in this paper.
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2.1. Concentration of measure. In this subsection we explain the
known relation among the 1st eigenvalue of the weighted Laplacian,
the Cheeger constant, and the concentration of measure in the sense of
Lévy and V. Milman ([29], [43]).

Let X be an mm-space, i.e., a complete separable metric space with
a Borel probability measure pux.

Definition 2.1 (Concentration function, [1]). For r > 0 we define the
real number ax(r) as the supremum of px(X \ O,(A)), where A runs
over all Borel subsets of X such that ux(A) > 1/2. The function
ax : (0,+00) — R is called the concentration function.

Lemma 2.2 ([1], [27, Lemma 1.1]). If ux(A) > k > 0, then
x (X \ Orprg(A)) < ax(r)
for any r,ro > 0 such that ax(ro) < k.

The following Gromov and V. Milman’s theorem asserts that Poincaré

inequalities imply appropriate exponential concentration inequalities
([21], [27, Theorem 3.1]).

Theorem 2.3 ([21]). Let (M, 1) be a closed weighted Riemannian man-
ifold. Then we have

QM) (T> < eXp(_ V A (Mv /L)?“/?))

for any r > 0. In particular, we have

(21) At (r) < exp(—hi (M, )1 /6)
for any r > 0.

The second statement (2.1) follows from the first statement together
with the Cheeger-Maz’ja inequality (1.2).

Remark 2.4. Integrating Cheeger’s linear isoperimetric inequality also
implies the second inequality (2.1) (see [38, Proposition 1.7]).

In the series of works [39, 40, 41], E. Milman obtained the converse of
Theorem 2.3 under assuming the nonnegativity of Bakry—Emery Ricci
curvature. He proved that a uniform tail-decay of the concentration
function implies the linear isoperimetric inequality (Cheeger’s isoperi-
metric inequality) under assuming the nonnegativity of Bakry—Emery
Ricci curvature. E. Milman’s theorem plays a key role in the proof of
Theorem ?7.

For an weighted Riemannian manifold (M, i), we define the (infinite-
dimensional) Bakry—Emery Ricci curvature tensor as

Ricy, = Ricy + Hess 1.
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Theorem 2.5 (E. Milman, [40, Theorem 2.1]). Let (M, u) be a closed

weighted Riemannian manifold of nonnegative Bakry-Emery Ricci cur-
vature. If aaryy (1) < & for some r >0 and k€ (0,1/2), then
1—-2k

hl(Malu’) Z r .

In particular, we have

1 —2Kr\2
MM, p) = ( 2r ) '

The key ingredient of E. Milman’s approach to the above result is the
concavity of isoperimetric profile under the assumption of the nonnega-
tivity of Bakry—Emery Ricci curvature, the fact based on the regularity
theory of isoperimetric minimizers (see [39, Appendix]). See also [27]
for the heat semigroup approach to Theorem 2.5.

2.2. Separation distance. We define the separation distance which
plays an important role when treating eigenvalues of the weighted
Laplacian. The separation distance was introduced by Gromov in [22].

Definition 2.6 (Separation distance). For any ko, k1, -+ , kg > 0 with
k > 1, we define the (k-)separation distance Sep(X; kg, K1, -+ , ki) of
X as the supremum of min, ; dx (A;, A;), where Ag, Ay, - -+, Ay are any

Borel subsets of X satisfying that ux(A;) > k; for alli =0,1,--- | k.

It is immediate from the definition that if x; > K; for each ¢ =
0,1,---,k, then
Sep(Xa Ko, k1, -+ 7’%19) < Sep(X7 '%07 /%17 T '%k)
Note that if the support of px is connected, then

Sep(X; ko, K1, -+ ki) =0

for any kg, k1, -+ , Kk > 0 such that Zf:o ki > 1.
For a Borel subset A of an mm-space X we put
A = bix |4
px (A)

Lemma 2.7. If A satisfies ux(A) > k, then
Sep((A, pa); ko, k1, -+ 5 kk) < Sep(X; Kk, Kk, - 5 Kikg)
for any ko, k1, -+, ki > 0.

Proof. Take k+1 Borel subsets Ag, Ay, -+ , Ag of A such that pa(A4;)
k; for any 7. The lemma immediately follows from that ux(A;)
px(A)k; > KR;.

VALY
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We denote the closed r-neighborhood of a subset A in a metric space
by C,(A).

Lemma 2.8. Let X be an mm-space and put r := Sep(X, ko, K1, , Kk)-
Assume that k Borel subsets Ay, Ay, -+, Ar_1 of X satisfy px(A;) > k;
for everyi=0,1,--- ,k—1 and dx(A;, Aj) > r for every i # j. Then
we have

k-1
MX( U Cr(Ai)) > 1 — K.
i=0
Proof. Suppose that for some gy > 0,
k—1
i (U CrranlA4) <11,
i=0

Putting Ay := X\ Cpiep(As) we have px (Ay) > kg and dx (Ag, A7) >
r—+eoforany i =0,1,--- , k — 1. Thus we get

r < rr;ln dX(A“A]) S Sep(X;’%O?'%la e 7/{”6) =T,
i#j

which is a contradiction. Hence p X(Uf:_ol Crie(4;)) > 1 — Ky, for any
€ > 0. Letting € — 0 we obtain the conclusion. U

The following lemma asserts that exponential concentration inequal-
ities and logarithmic 2-separation inequalities are equivalent:

Lemma 2.9. Let X be an mm-space.
(1) If X satisfies

(2.2) Sep(X; K, k) < élogg

for any k > 0, then we have ax(r) < cexp(—Cr) for anyr > 0.
(2) Conwversely, if X satisfies ax(r) < ¢ exp(—C'r) for any r > 0,

then we have
/

2 c
Sep(X; kK, k) < Elog;
for any k > 0.
Proof. (1) Assume that X satisfies (2.2) and let A C X be a Borel
subset such that px(A) > 1/2. For r > 0 we put & := ux(X \ O,(A)).
Since

F < dy (X \ On(A), A) < Sep(X: 1, 1/2) < Sep(X: 4, 1) < — log <

Elog—

K )
we have k < clog(—C'), which gives the conclusion of (1).
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(2) Assuming that ax(r) < dexp(—C'r), we take two Borel sub-
sets A, B C X such that ux(A) > &, ux(B) > &, and dx(A,B) =
Sep(X; k, k). Let 7 be any positive number satisfying

ax () < dexp(—C'T) < K,

ie.,

- 1 1 d

> —log —.

C’ & K
Since px(A) > K, by Lemma 2.2, we have
1-— IU)(<027:(A)) < &X(F> < K.
Hence we have
/LX(OQf(A) N B) > (1 — K,) +r—1=0,

which yields Sep(X; k, k) = dx (A, B) < 27. Letting 7 — C"'log(c'/k)
we obtain (2). O

Theorem 2.3 together with Lemma 2.9 (2) implies that for any closed
weighted Riemannian manifold (M, ) we have

6 1
(2.3) Sep((M, p); ki, k) £ ——=—==log —.
>\l (M> :u) il
Chung, Grigor’yan, and Yau generalized the above inequality in the
following form:

Theorem 2.10 (Chung et al. [11, Theorem 3.1]). Let (M,u) be a
closed weighted Riemannian manifold. Then, for any k € N and any
Ko, K1, , ki > 0, we have

1 e
Sep((M, p); ko, k1, -+ , ki) < ——=max]lo ( )
P((M, p); ko, k1 k) SWOTAD AT
Combining Theorems 1.4 and 2.10 we obtain the following proposi-
tion:

Proposition 2.11. There exists a universal numeric constant ¢ > 0
such that for all closed weighted Riemannian manifold (M, 1), a natural
number k, and ko, k1, -+, ki > 0, we have

ck?
max lo

e
Sep((M, j1); ko, K1y« v+, Kg) < ——— _—
p(( /L) 0, V1 k) hk(M, M) it g’fi"fj

We end this subsection reformulating Theorem 2.5 in terms of the
separation distance for later use.
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Proposition 2.12. Let (M, 1) be a closed weighted Riemannian mani-

fold of nonnegative Bakry-Emery Ricci curvature. Then, for any k > 0,
we have

1 -2k
Sep((M, ), k, k) > ———
(M. ) =
and
1—-2k

Sep((M, p); K, k) =

2\/ )\1(]\/[,,&)

Proof. We prove only the first assertion. The proof of the second
assertion is identical to the first one. According to Theorem 2.5, if
r € (0,00) and k € (0,1/2) satisfy

- 1—-2k
r T ar .\

h1<M7 /’L>

then we have aaz,,)(r) > #. There exists A C M such that u(A) > 1/2
and u(M \ O,(A)) > k. Hence we have

r=du(A, M\ O:(A)) < Sep((M, n); 1/2, k) < Sep((M, p); 5, ).

Combining the above inequality with (2.4) gives the conclusion. O

(2.4)

Since Sep((M, p); k, k) < diam M, the second inequality of Theorem
2.12 recovers the Li-Yau inequality [30].

2.3. Three distances between probability measures. Let X be a
complete separable metric space. We denote by P(X) the set of Borel
probability measures on X.

Definition 2.13 (Prohorov distance). Given two measures p,v €
P(X) and A > 0, we define the Prohorov distance diy(u,v) as the
infimum of € > 0 such that

(2.5) w(C(A)) > v(A) — Ae and v(C(A)) > u(A) — Ae
for any Borel subsets A C X.

For any A > 0, the function diy is a complete separable distance
function on P(X). If A > 0, then the topology on P(X) determined
by the Prohorov distance function diy coincides with that of the weak
convergence (see [4, Section 6]). The distance functions diy for all
A > 0 are equivalent to each other. Also it is known that if ;(C.(A)) >
v(A) — e for any Borel subsets A of X, then diy(u,v) < €. In other
words, the second inequality in (2.5) follows from the first one (see [4,
Section 6]).

For (z,y) € X x X, we put proj,(x,y) := x and projy(x,y) =
y. For two finite Borel measures p and v on X, we write p < v if
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1(A) < v(A) for any Borel subset A C X. A finite Borel measure 7 on
X x X is called a partial transportation from p € P(X) to v € P(X)
if (projy)«(m) < w and (proj,).«(m) < v. Note that we do not assume
7 to be a probability measure. For a partial transportation 7 from p
to v, we define its deficiency def m by defm := 1 — (X x X). Given
e > 0, the partial transportation 7 is called an e-transportation from
i to v if it is supported in the subset

{(z,y) € X x X | dx(2,y) <e}.

Definition 2.14 (Transportation distance). Let A > 0. For two prob-
ability measures p,v € P(X), we define the transportation distance
Tray(u, v) between p and v as the infimum of € > 0 such that there
exists an e-transportation 7 from p to v satisfying def 7 < Ae.

The following theorem is due to V. Strassen.
Theorem 2.15 ([51, Corollary 1.28], [22, Section 31.10]). For any
A >0, we have
TI‘a)\ = dl)\ .

Let (X, dx) be a complete metric space. We indicate by P?*(X) the
set of all Borel probability measures v € P(X) such that

/de(x,y)2dl/(y) < 400

for some z € X.

Definition 2.16 ((L?-)Wasserstein distance). For two probability mea-
sures p,v € P*(X), we define the L?-Wasserstein distance dy’ (i1, v)
between p and v as the infimum of

(] axoraren)”,

where T € P?*(X x X) runs over all couplings of 1 and v, i.e., probability
measures 7 with the property that 7(A x X) = u(A) and m(X x A) =
v(A) for any Borel subset A C X. It is known that this infimum is
achieved by some transport plan, which we call an optimal transport
plan for d)¥ (p,v).

If the underlying space X is compact, then the topology on P(X)
induced from the L2-Wasserstein distance function coincides with that
of the weak convergence (see [51, Theorem 7.12]).



EIGENVALUES AND ISOPERIMETRIC CONSTANTS 13

3. PROOF OF THEOREM 1.1

In order to prove Theorem 1.1 we need to explain some useful tools
from the theory of optimal transportation. Refer to [51, 52| for more
details.

Let (X, dx) be a metric space. A rectifiable curve v : [0,1] — X is
called a geodesic if its arclength coincides with the distance dx(v(0),v(1))
and it has a constant speed, i.e., parameterized proportionally to the ar-
clength. We say that a metric space is a geodesic space if any two points
are joined by a geodesic between them. It is known that (P?(X), d)")
is compact geodesic space as soon as X is ([50, Proposition 2.10]).

Let M be a close Riemannian manifold. For two probability measures
to, p1 € P?*(M) which are absolutely continuous with respect to d voly,
there is a unique geodesic (t)sejo,1) between them with respect to the
L*-Wasserstein distance function )" ([36, Theorem 9)).

For an mm-space X let us denote by I' the set of minimal geodesics
v :[0,1] = X endowed with the distance

dr(71,72) == sup dx(7(t),72(1)).
t€[0,1]

Define the evaluation map e; : I' — X for t € [0,1] as e;(y) := v(¢).
A probability measure IT € P(I') is called a dynamical optimal trans-
ference plan if the curve p; := (e;),I1, ¢ € [0, 1], is a minimal geodesic
in (P%(X),d)"). Then 7 := (eg x e;),II is an optimal coupling of 1y
and gy, where eg x e : I' =& X x X is the “endpoints” map, i.e.,
(€0 X €1)(7) := (eo(7), €1(7)).

Lemma 3.1 ([32, Proposition 2.10]). If (X, dx) is locally compact,
then any minimal geodesic (pit)teo1] i (P*(X), &) is associated with
a dynamical optimal transference plan 11, i.e., p, = (e;).11.

Let 1 and v be two probability measures on a set X. We define
the relative entropy Ent,(v) of v with respect to p as follows. If v is
absolutely continuous with respect to u, writing dv = pdu, then

Ent,(v) ::/ plog pdy,
M

otherwise Ent,(v) := ooc.

Definition 3.2 (Curvature-dimension condition, [32], [49, 50]). Let K
be a real number. We say that an mm-space satisfies the curvature-
dimension condition CD(K,oo) if for any vy, v; € P?(X) there exists
a minimal geodesic (14)iejo.1) in (P*(X), d”) from vy to v; such that

K
Ent,, (v;) < (1 —t)Ent,, (1) +tEnt,, (1n) — ?(1 —t)t dQVV(I/Q, V1)2
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for any ¢ € [0, 1].

In the above definition, assume that both 1y and v, are absolutely
continuous with respect to ux. Then Jensen’s inequality applied to the
convex function r — rlogr gives

(3.1)
log pux (Supp 1)

Kt(l1—1t
2 —(1_75)/ pologpod,ux—t/ pllogpldﬂX‘i‘g
M M

9 d2vv<:u07:u1)27

where py and p; are densities of vy and vy with respect to pux respec-
tively. In particular, for two Borel subsets A, B C X with ux(A), ux(B) >
0, we have

(3.2)
log ux (Supp v;)
> (1 —t)log ux(A) +tlog ux(B) +

([50]).-

Theorem 3.3 ([12, 13|, [44], [48]). For a complete weighted Riemann-
ian manifold (M, ji), we have Ric, > K for some K € R if and only if
(M, p) satisfies CD(K, 00).

Kt(1—1t) w( pxla  pxlp 2
5 4 Gy i)

Theorem 1.1 follows from the following key theorem together with
Theorem 2.10 and Proposition 2.12.

Theorem 3.4. Let (M, u) be a closed weighted Riemannian manifold
of nonnegative Bakry-Emery Ricci curvature. If (M, ) satisfies

1 1
(33) Sep((Mv M);Kla Kye-e 7'%) < Blog?
k+1 times
for any k > 0, then we have
1
(3.4) Sep((M, )i, - ) < log —
k times

for any k > 0 and for some universal numeric constant ¢ > 0.

The idea of the proof of Theorem 3.4 is the following. It turns
out that it is enough to prove (3.4) for sufficiently small x > 0 and
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sufficiently large ¢ > 0. We suppose the converse of this, i.e.,

c 1

S M, u); > —log —

ep(( ’m”fﬁ,_?’i) D 082
k times

for sufficiently small x > 0 and sufficiently large ¢ > 0. Put a :=
(¢/D)log(1/k). By the definition of the separation distance there exists
k Borel subsets Ag, Ay. -+, Ax_1 € M such that min;.; d(A4;, 4;) > «
and p(A;) > k for any i. If we choose the constant ¢ large enough so
that

Sep((M, p); ki, k- -+, &, 619 < Sep((M, p); M, k1% - - k1) < /100,
D . ~ /
k times k+1 times

then by Lemma 2.8 we have

k—1
N( U C'a/mo(Ai)) > 1 — 100,
i=0

It means that if K > 0 is sufficiently small, the measure of the set
Ui:ol Caj100(A;) is nearly 1. Although it is not true, we assume that

(3.5) M(an/momi)) =1

in order to tell the idea of the proof. Putting A := Cy/100(Ao) and B :=
U Cajroo(As), we have M = AUB, ANB =0, u(A) > &, u(B) > &,
and d(A, B) > «a/2.

Let (f1¢):e(0,1) be a geodesic from pug == (1/p1(A)) |4 to p with respect
to dy¥. For sufficiently small ¢ > 0 we have d(x, A) < a/2 < d(A, B) for
any x € Supp i, which gives Supp uy € A. This leads a contradiction
since by (3.2) we have

log p1(A) > log u(Supp ) > (1 —t)log u(A) + tlog u(M),

which implies log pi(A) > 0. Although (3.5) is always not true, we show
below that the above idea can be accomplished by controlling separated
subsets and estimating average distances between them.

Proof of Theorem 3.J. It suffices to prove that there exist two universal
numeric constants cg, kg > 0 such that
(3.6) Sep((M, p) )< Digg
. e TRy Ry k) < —=log —
p ) M ) ) ) ) — D g /{:2

k times
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for any k < kg. In fact, if K > 1/2, then the left-hand side of the above
inequality is zero and there is nothing to prove. In the case where
Ko < k < 1/2, by (3.6) we have

Sep((MJ IU’)7 Ry R, 7"€> S Sep((M7 :u’)7 Ro, Ro, " " * 7’i0)
— —
k times k times
Co logﬁl2 1
 log —
Dlog% &2
_ Co log,{i%1 1
= Dilogd & r2

IN

which implies the conclusion of the theorem.
Suppose the contrary to (3.6), i.e.,

C1 1
(37) Sep((M7”);’%7’%7"' 7/{) > BIOg?’
k times

where ¢; > 0 is a sufficiently large universal numeric constant and
k > 0 is a sufficiently small number. Both the largeness of ¢; and
the smallness of x will be specified later. Note that the assumption
(3.7) immediately gives kx < 1 (otherwise, the left-hand side of (3.7)
is zero). We denote the right-hand side of (3.7) by a, i.e.,

C1 1 1
a:=—log—.
D k2
Claim 3.5. If ¢, > 0 (resp., k > 0) in (3.7) is large enough (resp.,

small enough), then there exist two closed subsets By, By C M such
that By C By, k/4 < u(By) < 1/2, u(By) > 1 — k%, and

R
dM(BO7 Bl \ BO) Z CoMmax &, ———=
{ )\1(M7 H’)}

for some universal numeric constant co > 0.

Proof. The assumption (3.7) implies the existence of k Borel subsets
Ap, A1, -+, Ag—1 € M such that u(A;) > & for any ¢ and

dv (A, Aj) > o for any @ # j.

If Kk <1/8 and ¢; > 8, then by (3.3) we have

A
0| 0

1
S M7 sRy Ry -y 718 SS Ma sy Ry Ry oy S_
ep((M, p); K, & K, 1/8) < Sep((M, p); K, K K) < log—
k times k+1 times
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Hence Lemma 2.8 yields

k—1
(3.5) p(U Cusan) = &
Note that
(3.9) dar(Cays(Ai), Cays(Ay)) > a/4

for any ¢ # j. According to Proposition 2.12 we take X, X; C M such
that

1 K .
(3.10) X)) 25 -7 (1=0,1)
and
K
(3.11) dv (Xo, X1) > ———.
8 )‘1(M7:U’)

Set Y := Xo U X1. By (3.10) we have (YY) > 1 — & and thus
PV 0 Cags(A) Z p(Y N A) = (1= 5) +n—12 2

for each i = 0,1,--- ,k — 1. Suppose that p(X; N Cy/s(A;)) < k/4 for
some ¢ € {0,1} and for any [ = 0,1,--- ,k — 1. Then we have

ol i) < o1
(G < <

Combining (3.8) with (3.10) we also get

. 1w\ 7 1
p(Xin U Conl)) = (3-7) +5-12 7
which is a contradiction (we have used k < 1/8). Therefore for each
[=0,1,--- ,k —1 we may choose n; € {0,1} so that
(3.12) (X, N Coys(Ar)) > k/4
and
L:={le{0,1,--- k—1}|m=1i}#0 (i=0,1).
For each + = 0,1, we set
A= X0 Cags(A)).
el

Combining (3.9) with (3.11) yields
(3.13) (A, ALY > max{% 2=
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Since
1
Sep <(M7:U’)7gaga 7%7’16) < Sep((Mnu);IiGa"iﬁu"' 7’%6) < %1OgF
m k+1 times

for some universal numeric constant c3 > 0, we get

K K K Q 15}
Sep((M’/”L)’§7§a7§7K6>S1_6<§Z>
——

k times
provided that ¢; in (3.7) is large enough. Put By := Cy/16(Ap) and
By = Cy16(A5)UC/16(A7). We may assume that p(Co/16(Aj)) < 1/2.
Thanks to Lemma 2.8 it is easy to check that u(B;) > 1 — k% By
(3.12) and (3.13), we see that By and B; possess the other desired
properties. 0

We consider two Borel probability measures pp,, ¢ = 0, 1, defined by

M|Bi
u(Bi)

The following claim is essentially due to Gromov [22] (see also [18,
Claim 5.10]). He used it in the context of the convergence theory of
mm-spaces without detailed proof. Since our context is different from
his one, we include the proof for the concreteness of this paper. The
proof below is shorter than the one in [18, Claim 5.10].

KB =

Claim 3.6 ([22, Section 33.47]). There exist a universal numeric con-
stant ¢y > 0 and a coupling m of up, and pp, such that

W({(a:,y) EMXM| du(z,y) > %}> < &S,

>\1(M> IU/)
Proof. We use the identity diy(pp,,ts,) = Trax(us,, pip,) (Theorem
2.15). Put § := \/ﬁbg %, where ¢, > 0 is a numeric universal

constant which will be determined later. We shall prove that

(3.14) 1, (Cs(A)) = ppy (A) — £°

for any Borel subset A C By, which implies the claim. In fact, applying
(3.14) to Theorem 2.15 gives that there exists a d-transportation g
from pp, to pp, such that defmy < k5. If defmy = 0, then we set
7w = my. If def my > 0, then set

1 . .
T =m0 + ——— (1B, — (Projy)«mo) X (g, — (Projy).mo).
defﬂo

It is easy to check that 7 fulfills the desired property.
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To prove (3.14) we may assume that pg,(A) > x°, which yields that

)
pe,(A) > p(A) > K°u(Bo) > kT /4.

Using Lemma 2.7 and (2.3) we choose ¢4 > 0 so that

7 7 7 7

k' K K K
< 1 e
Sep ((Br, s, )i ) < Sep (M) (1 = k), (1= 1))
Cy 1
< ———log— (=90).
B )\1(M7:u) g/ﬁz ( )
Lemma 2.8 implies that
7
K
i, (Co(A) 2 1= " > 1= 0 > g (4) — 1,
which is (3.14). O
We set
0410g%
A=< (z,y) € M x M| d(z,y) < ——L—.
{@v) | dfe) < =]

We consider two Borel probability measures pg := a(proj; )«(7|a) and
1 := a(projy)«(m|a), where a := w(A)~!. By Claim 3.6 we have

(3.15) 1§a§1_ﬁﬁ
and

calog 5 12
3.16 Vo, 2<a/ d(z,y)dr|a(z,y) < { —=_} .
316) & uom)? <a | e yidiaten) < { s

Take an optimal dynamical transference plan II such that (e;). 11 = p;
for each ¢ = 0, 1. Putting r := dp(Bo, B1 \ Bo), we consider

Py = {y € Supp Il | dur(eo(v), ex(v)) < r/2}.
By (3.16) we have

tlog % 2
PIHA T < d (eo)o T (e T = 2 a8 o, )7 < {10822 17

)\1 (M7 /“L)
According to Claim 3.5 we thus get

(3.17) () > 1 -

for some universal numeric constant ¢; > 0. For s € [0,1] we put

Vg 1= (es)*rllI llft) By the definition of v, we obtain the following.

Claim 3.7. Suppv; N B; C By.



20 KEI FUNANO

By using Claim 3.7, we get

v

(3.18) log u(By) + log u(By) + log <1 +

log(1(Bo) + K°)
> log{p(Supp vy N By) 4+ p(Supp vy \ By)}
= log pu(Supp 1)

1(Bo) M(Bo)>

Note that (v)sepo,1] is a geodesic between 14 and v;. Since

(3.19)
_(ea)uMr, _ (el g a . a
Vi = I(T,) S I(T,) - II(T,) < () (PTOJi+1)*7T = mﬂ&

for « = 0,1, each y; is absolutely continuous with respect to u, and
especially the above geodesic (v4)s¢(o,1) is unique. For each ¢ = 0,1, we
write dv; = p;du. By (3.1), we get

(3.20)  log u(Suppry) > —(1 —t)/ Po 10gpodu—t/ p1log prdp.
M M

For a subset A C M we denote by 14 the characteristic function of A,

le, la(x):=1ifr € Aand 14(x):=0if x € M\ A.

Claim 3.8. We have

CtlB- CtlB. .
pilog p; < ~ log - (1=0,1),
M(Bi) M(Bi> (

where ¢, :== a/II(T).

Proof. By (3.19) we have p; < (¢;/u(B;))1p,. Since ¢; > 1 and ulogu <
vlogwv for any two positive numbers u, v such that u < v and v > 1,
we obtain the claim. 0

Combining Claim 3.8 with (3.18) and (3.20) we have

6

lo By) +
g 1(Bo) 1 1(Bo)
Ct]-B CtlB CtlB Ct]-B
Z—l—t/ % log Odu—t/ L log Ldu
=0 ) alBo) 8 uBo) ™ =y n(B1) 8 u(By)

= —cloge + (1 —t)log u(Bo) + citlog pu(By).
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Substituting t := k3, we thereby obtain

(3.21) log(1/2) + 4x>

K
> 1 B _
- Og,LL( 0) + I{SM(BO)

e — 1
! (1 — k%) log p(By) + ¢ log pu(By).

Ct —
> - 3 log ¢, + 3
Using (3.15) and (3.17) we estimate each term on the right-side of the
above inequalities as

¢ log ¢y
3
~a  loga—loglI(I;)
- IN(T) K3
2
1 c5/{6<10g %) -1
- )
—1—kS ( K2
2
1 c5f<a6(log %)
XE(IO% 6_1°g<1_ K2 ))
1 4 1\2\ -1 3 2
R D)
+ — 1 a — H(Pt) 2
log u(B ’ < log =
’ (3 Og“( 0) /{3H(Ft) Og,{
2
— —1+c5/<o4<10g—2> | 9
< -
- r3I(TY) &%
2
1+c5(1—/§4)<10gni2> 9
<K 2 10g_7
(1—/@4)<1—c5/£4<10g5—12> ) :
and
1 2k0
v log ju(By)| < = log "

T = (1 et (10 5))

These estimates imply the right-side of the inequalities (3.21) is close
to zero for sufficiently small k > 0. Since the left-side of the inequality
(3.21) is about log(1/2) < 0 for sufficiently small x > 0, this is a
contradiction. This completes the proof of the theorem. O
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4. PROOF OF THEOREM 1.6

On a closed weighted Riemannian manifold (M, p), denote by (P,)¢>o
the semigroup associated with the infinitesimal generator A,,. For each
t >0, P,: C®°(M) — C>®(M) is a bounded linear operator and we
extend the action of P, to LP(u) (p > 1).

The following gradient estimate of the heat semigroup is due to Bakry
and Ledoux [3]. One might regard it as a dimension-free Li-Yau para-
bolic gradient inequality [31].

Lemma 4.1 (Bakry-Ledoux, [3, Lemma 4.2]). Let (M, u) be a closed

weighted Riemannian manifold of Bakry—Emery Ricci curvature bounded
from below by a nonpositive real number K. Then for any t > 0 and

f € C®(M) we have
c(t)|VP()I? < P(f?) = (B(f))?,

where

1 —exp(2Kt)

c(t) : e (=2t if K=0).

Corollary 4.2. If (M, ) has nonnegative Bakry-Emery Ricci curva-
ture, then for anyt >0, p > 2, and f € C*(M), we have

1
9P s < e

From Corollary 4.2 Ledoux obtained the following lemma:

Lemma 4.3 (Ledoux, [26, (5.5)]). Assume that (M, ) has nonnegative
Bakry-Emery Ricci curvature. Then for any f € C*°(M), we have

1 = Py < V2V F]] 21 -

Proof of Theorem 1.6. Take any k41 non-empty, disjoint Borel subsets
Ag, Ay, -+ Ay € M. We may assume that u(Ag) < p(A;) < -+ <
w(Ayg), and thus

1
1andu(Ai)§1/2foranyi:0,1,--- Jk—1.

We put t := 4k(k + 1)/ (M, ). We shall prove that there exists i,
0 <19 <k —1, such that

(4.1) ' (Aig) > (80K%) ™/ A(M, Ay, ).
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Foreachi=0,1,--- ,k—1,let 14, .(x) :== min{0,1—1 d(z, 4;)} denote
a Lipschitz approximation of 14,. Note that

u(Cs(Ai)g) — 1A 2/ [V14,e

dp,
where for a Lipschitz function f: M — R and x € M, we put

IV fl(x) = h?f;lp%-

Letting € — 0, by Lemma 4.3 we have
V2ipt(Ay) > 14, = P(1a) o

Since the right-side of the above inequality can be written as

/Ai<1 ~ Pt(lAi))d,u-i-/ oLy )

M\A;

= 2(u(4) - /A P )dn)
—2(u4)(1 - u(4)) - |

| (PLa) = p(A)) (14, = (A ).

we obtain
(4.2)  V2tut(A)
> 2<H(Ai)(1 — u(A)) — /

| (B(14) = p(AD) (L, — (A dn).

Observe that Pi(14,) — p(A4;), ¢ = 0,1,--- ,k — 1, are linearly in-
dependent and orthogonal to constant functions on M. Thus the
Rayleigh quotient representation of A\g(M,u) yields that there exist
ag, a1, -+ ,ar_1 € R such that

V(A a(PLa) — (A 2sgs
43) (M, p) < = .
W3 M) S e B ) — p(@) e

Put fo := Zf;ol a;14,. We consider the following two cases: (I) || fo —
Jar odpil 22y > 201 fo — Pi(fo)ll 2wy, () 1fo — [y fodullr2g < 211 fo —

Pi(fo)llz2(u)-
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We prove that the case (I) cannot happen from the our choice of t.
Suppose that (I) holds. In this case we get

(4.4) | i ai(P(1a,) = p(A)) |22y = ’

Pt(fo)—/Mfodﬂ

1
> | —/ d .
5 Jo Mfo I 2

We estimate the right-side of the above inequality from below:

Claim 4.4. We have

L2(w)

/M (i(n(lAi - M(Ai))>2d,u > k—j_l ’11 a?/M(lAi (A

Proof. Since

(45) [ (L= i) P = () 1 - (4)
M
and
k—1 ) k—1 k—1 )
[ (T atta - utan) du= Y auta) - (S an4)
M=o i=0 =0
it suffices to prove
(4.6)
= = k—1 )
2
_ >
(1-9) D atu(A) + g D oalu A 2 ( aip(4))
Since
k—1 ) k-1 , k-1
f1(As) 2
aipi(A;) ) = p(A;) - i
<ZZ ) (j—O > ( i=0 Ef:é 1(A;) )
k—1 5 k-1
(A
< () Y A
=0 =0 2j—o 1(4;)
k—1
<(1--— 2
— (]‘ k—}—l);alﬂ(Al)’
we have (4.6). This completes the proof of the claim. O

Claim 4.4 together with (4.3) and (4.4) implies the existence of i,
0 <19 <k —1, such that

M (M, 1) [ La,y = 16(Aio) 12y < 4k(E + DIV Pe(La Z2 -
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Using Corollary 4.2 and t = 4k(k + 1) /\e(M, 1) we obtain

2k(k+1)
Ae(M )Ly = 1(Ai) 2 < == 1Tay, = #(Aio)lIZ2(,

= 27 N (M, )11, — (A 72,05

which is a contradiction.
Since (II) holds, Lemma 4.3 yields

(4.7) %leo—/MfodM

2
2
gy < 1B = Blltag
k—1

< kZG?HPt(lAz') — 1y,
1=0
k—1

< kY a|Pla) = Talliig

1=0

k—1
< kV2tY a}|||Vig,
=0

2
L2 ()

L' (w)
k-1
= k\/2_tz azut(4;).
i=0
According to Claim 4.4 and (4.7), there exists ig, 0 < iy < k — 1, such

that

1Ly — 1A 22y < 4k(k + DV (A).

Thus we get
[ (P11 = 1)L, = A < L, = A0 g
< Ak(k + 1)V2tut (Ay).
Since p(A;) < 1/2, it follows from (4.2) that
(8K + 8k + 1)V2tut (Aig) = 201(Aig) (1 — i(Aig)) = p(As)-
Recalling that t = 4k(k + 1) /A\e(M, ), we finally obtain

(16k(k + 1) + 2)\ 2kt D) ) = 7 80k

N+ (Aio ) >

M(Aio)a

which implies (4.1). This completes the proof of the theorem. O
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Remark 4.5. From the proof of [3] Bakry-Ledoux’s lemma (Lemma 4.1)
follows from the following Bakry-Emery type L?-gradient estimate:

(4.8) VPP () < e P(VfI*)(2)

for any Lipschitz function f and any x € X. Gigli, Kuwada, and
Ohta proved the gradient estimate (4.8) for compact finite-dimensional
Alexandrov spaces satisfying CD(K,00) ([19, Theorem 4.3]). Here
Alexandrov spaces are metric spaces whose ’sectional curvature’ is
bounded from below in the sense of the triangle comparison property.
In particular the same argument in this section implies that Theorem
1.6 holds for compact finite-dimensional Alexandrov spaces satisfying
CD(0,00). Refer to [24] for the Laplacian on Alexandrov spaces. We
remark that Theorem 1.4 holds for compact finite-dimensional Alexan-
drov spaces from the proof of [28]. Consequently the k-th eigenvalue
of Laplacian and the k-way isoperimetric constant are equivalent up
to polynomials of k for compact finite-dimensional Alexandrov spaces
satisfying CD(0,00). In particular it is also valid for compact finite-
dimensional Alexandrov spaces of nonnegative curvature, since such
spaces satisfy CD(0, co) ([45], [53]).

5. ROUGH STABILITY OF EIGENVALUES OF THE WEIGHTED
LAPLACIAN AND MULTI-WAY ISOPERIMETRIC CONSTANTS

We first review the concentration topology. Recall that the Hausdorff
distance between two closed subsets A and B in a metric space X is
defined by

di(A,B) :=inf{e > 0| AC C.(B), BC C.(A) }.

Let (I, p) be a probability space. We denote by F(I,R) the space of
all p-measurable functions on I. Given A > 0 and f,g € F(I,R), we
put

mex(f,g) ==inf{e>0[pu(|f—g|>¢c) <A},

where pu(|f —g| > €)== u({x € I | |f(z) — g(z)| > €}). Note that, if
any two functions f, g € F(I,R) with f = g a.e. are identified to each
other, then me, is a distance function on F(I,R) for any A > 0 and its
topology on F(I,R) coincides with the topology of the convergence in
measure for any A > 0. The distance functions me, for all A > 0 are
mutually equivalent.

Let d be a semi-distance function on I, i.e., a nonnegative symmetric
function on [ x [ satisfying the triangle inequality. We indicate by
Lip,(d) the space of all 1-Lipschitz functions on I with respect to {.
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Note that Lip,(d) is a closed subset in (F(I,R), me,) for any A > 0.
For A > 0 and two semi-distance functions ¢ and 4’ on I, we define

Hy\Luy(d,d") == du(Lip,(d), Lip,(d")),

where dg is the Hausdorff distance function in (F(X,R), mey). H Lty
is a distance function on the space of all semi-distance functions on
X for all A > 0, and the two distance functions H)Lt; and Hy Ly
are equivalent to each other for any A, A’ > 0. We denote by L the
Lebesgue measure on R.

For any mm-space X there exists a Borel measurable map ¢ : [0,1) —
X with ¢, L = px (see [23, Theorem 17.41]). We call such a map ¢ a
parameter of X. Note that a parameter of X is not unique in general.
For a parameter ¢ of X, we define a function ¢* dx : [0,1)x[0,1) = R
by ¢ dx(s,) = dx(@(s), @(t)) for any s,t € [0,1).

Definition 5.1 (Observable distance function). For two mm-spaces X
and Y we define

H,\L0,(X,Y) == inf H\Luy (¢ dx, ¢y dy),

where the infimum is taken over all parameters ¢x : [0,1) — X and
Yy [O, 1) —Y.

We say that two mm-spaces are isomorphic to each other if there is
a measure preserving isometry between the spaces. Denote by X the
space of isomorphic classes of mm-spaces. The function H,L¢; is a
distance function on X for any A > 0. Note that H,L:; and H, Lt
are equivalent to each other for any A\, A’ > 0.

Definition 5.2 (Concentration topology). We say that a sequence of
mm-spaces X,, n = 1,2,---, concentrates to an mm-space Y if X,
converges to Y as n — oo with respect to H,L¢;. The topology on
the set X induced by the observable distance function is called the
concentration topology.

The term ’concentration topology’ comes from the following: We say
that a sequence of mm-spaces { X, } is a Lévy family if lim,, o ax, (1) =
0 for any r > 0. Due to Lévy’s lemma ([29], [27, Proposition 1.3]) we
obtain the following:

Proposition 5.3 ([22]). A sequence { X, }5°, of mm-spaces is a Lévy
family if and only if it concentrates to the one-point mm-space.

For example, the sequence of n-dimensional unit spheres in R***,
n=1,2,---, concentrates to the one-point space by Lévy’s result([29]).
The concentration topology is strictly weaker than the measured
Gromov-Hausdorff topology on the space of mm-spaces ([16]). We
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mention that the concentration topology coincides with the measured
Gromov-Hausdorff topology on the set of mm-spaces satisfying CD(K, N)
for fixed K and N < +oo. In fact, the set becomes compact with re-
spect to the measured Gromov-Hausdorff topology because we have
the doubling condition with a uniform doubling constant under the
condition CD(K, N).

Answering a conjecture by Fukaya in [15], Cheeger and Colding
proved the continuity of eigenvalues of Laplacian on Riemmanian man-
ifolds with respect to the measured Gromov-Hausdorff topology under
the condition CD(K, N) for fixed K, N € R ([8]). We consider an
analogy of the above Cheeger-Colding result with respect to the con-
centration topology:

Corollary 5.4. There exists a universal numeric constant ¢ > 0 satis-
fying the following. Let {(My,,u,)} be a sequence of closed weighted
Riemannian manifolds of nonnegative Bakry—Emery Ricct curvature
and assume that the sequence concentrates to a closed weighted Rie-
mannian manifold (Mu, piso). Then for any natural number k we have

5.1 lim su max{ ,

} < exp(ck)

and

5.2 lim su max{ ,

Note that dimension of M, may diverge to infinity as n — oco.

The rest of this subsection is devoted to prove Corollary 5.4. For the
proof we first recall the definition of observable diameter introduced by
Gromov in [22]:

Definition 5.5 (Observable diameter). Let x > 0. We define the
partial diameter

} < kP exp(ck).

diam(puy, 1 — k)
of pux as the infimum of diam A over all Borel subsets A C X with
v(A) > 1 — k. Define the observable diameter
ObsDiamg (X; —k)

of X as the supremum of diam( f,x, 1—r) over all 1-Lipschitz functions
f: X —=R.

The idea of the observable diameter comes from the quantum and
statistical mechanics, i.e., we think of ux as a state on a configuration
space X and f is interpreted as an observable.
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The next lemma expresses the relation between the observable di-
ameter and the separation distance. The proof of the lemma is found
in [17, Subsection 2.2]

Lemma 5.6 ([22]). Let X be an mm-space. For any k,k’ > 0 with
k > K, we have

(1) Sep(X;k, k) < ObsDiamg(X; —+'),
(2) ObsDiamg(X; —2k) < Sep(X; K, k).

Lemma 5.7. Let X, Y be two mm-spaces and assume that H,L11(X,Y)
e < 1. Then for any k € (€,1) we have
ObsDiamg (Y; —k) < ObsDiamg(X; —(k —€)) + 2¢.

Proof. The condition H,L:;(X,Y) < € implies the existence of two
parameters px : [0,1) — X and ¢y : [0,1) — Y such that

du (@ Lipy (X), oy Lipy (V) <e€.
Hence, for any f € Lip,(Y), there exists g € Lip,(X) such that
L(fopy —gopx|>¢) <e.
Take a Borel subset A C R such that g.ux(A) > 1 — k + € and
diam(g.ux,l — (k —€)) = diam A. Putting
B:=fopy({lfopy —gopx| <efn(gowy) ' (4)),
we find
fay(B) > (1—e)+(1—k+e)—1=1—k.
Given s,t € {|fopy —gopx| <e}n(gopy) t(A) we have
[foey(s) = foey(t)
< |fowy(s) —gowx(s) +lgowx(s) —goex(t)
+lgopx(t) = foey(t)
< diam A + 2¢,
which implies diam(f.uy,1 — k) < diam A + 2. This completes the
proof. O

Lemma 5.8. Let (M, py) and (N, un) be two closed weighted Rie-

mannian manifolds of nonnegative Bakry-Emery Ricci curvature such
that H, Loy (M, par), (N, pun)) < 1/2. Assume that two positive num-
bers €,0 satisfies H, Loy ((M, par), (Nypun)) <€ <1/2 and e+ < 1/2.
Then we have

(5.3) M(N, pn) ZAI(MHU’M){ ’ € 5)}2
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and

J

(5.4)  hi(N,pn) > ha (M, par) -

Proof. Combining (2.3), Lemmas 5.6 and 5.7 gives that for any x > ¢
we have

ObsDiamg ((N, pn); —k) < ObsDiamg ((M, prr); —(k — €)) + 2¢
K—¢€

< Sep((M,MM); 5 ,K;€>+28
6 2
< log +2¢.
)\I(M7 :U’M) k—¢
Lemma 5.6 again yields
6 2
Sep((N, pun); £, k) < +2e.

log
\/)\1(M7MM) k—¢&

As in the proof of Lemma 2.9 (1) we obtain

AN ) (1) < € +2exp(—67" /A1 (M, par) (r — 2€))

for any r > 2¢. By subsutituting

)\1(M>ﬂM)

we obtain ay (1) < 271 — 4. Applying Theorem 2.5 then implies
the inequality (5.3). The proof of (5.4) is similar and we omit it. [

Proof of Corollary 5.4. Due to Theorem 2.5 we have sup,,cy A\t (M, pin) <
+o00 unless {(M,, u,)} concentrates to the one point space. Since the
condition C'D(0, 0o) is preserved under the concentration topology ([18,
Theorem 1.2]), the limit weighted manifold (M, ttoo) has nonnegative
Bakry—Emery Ricci curvature. Combining Lemma 5.8 with Theorem
1.1 we obtain the corollary. 0

The proof of Corollary 5.4 also follows from the following lemma and
corollary together with Theorems 1.1 and 2.5:

Lemma 5.9. Let XY be two mm-spaces such that H L11(X,Y) <
e <1/(k+1). Then for any ko, k1, - , Kk, Ko, Ky, -+ -, K, > 0 such that
ki — (k+1)e > k] for any i, we have

Sep(Y'; ko, k1, -+, k) < Sep(X; kg, K, -+, Ky) +2€.
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Proof. Take k+1 Borel subsets Ag, Ay, -+, Ax C Y such that uy (A4;) >
r; for any i and min,z; dy(Ai, A;) = Sep(Y; ko, k1, -+, k). Since
H Li1(X,Y) < € there exist two parameters px : [0,1) — X and
vy : [0,1) — Y such that HiLu(¢% dx, 9y dy) < €. For each
i=0,1,--- k, we put fi(z):= dy(x, A;). Since each f; is 1-Lipschitz,
the condition H1Lu1(¢% dx, ¢y dy) < € implies the existence of k + 1
1-Lipschitz functions ¢; : X — R, ¢ = 0,1,--- |k, such that me;(f; o
¢y, gi © px) < €. Putting
k
I:= ﬂ{|fz oy —giopx| <e}
i=0
we have £(I) > 1— (k+1)e. Foreachi=0,1, -,k we define B; C X
as B; == px(pyt(A4;) NI). Note that ux(B ) > Ly (A)NT) >
(k—'—l) For any a; € (pY (AZ)QI,CL] = ()OY (A])ﬂ], i 7&]7 we get
dx (px(ai), px(a;)) = |g:(px(ai) — g;(ex(a;))]
> | filey (@) — fi(ey(a;))] — 2¢
> dy(Ai Aj) —2¢
which implies that

H;in dx(Bi, B;) > H;ln dy(Ai, A;) —2e = Sep(Y; Ko, k1, - -+, ki) — 2€.
1#£] 1F]

This completes the proof. U

Corollary 5.10. Assume that a sequence {X,} of mm-spaces concen-
trate to an mm-space Y. Then we have

(5.5) hﬂgf Sep(Xn; kg, K1, -+ 5 k) > Sep(Ys ko, Ky, -+, Kg)
and

(5.6) lim sup Sep(X,.; ko, k1, -+, kk) < Sep(Y; kg, K, -+, Ky)

n—oo

for any ko, k1, -, K, K, K, - -+, Ky, > 0 such that k; > K.

6. QUESTIONS

In this section we raise several questions which are concerned with
this paper. We also discuss the conjecture which was posed in [18].
Throughout this section, unless otherwise stated, we will always assume
that (M, u) is a closed weighted Riemannian manifold of nonnegative
Bakry—Emery Ricci curvature.

Question 6.1. Independent of k, is it possible to bound g1 (M, )/ \i.(M, )
or hyy1 (M, ) /he(M, 1) from above by a universal numeric constant ?
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Masato Mimura asked me about the fraction of A\gi1 (M, p) /A (M, ).
Theorem 1.1 leads to the above question for eigenvalues of the weighted
Laplacian. Due to Theorems 2.10 and 3.4, in order to give an affirma-
tive answer to Question 6.1 for eigenvalues it suffices to extend E. Mil-
man’s theorem (Theorem 2.5) in terms of A, (M, p) and the k-separation
distance, i.e., any k-separation inequalities imply appropriate lower
bounds of the k-th eigenvalue Ay (M, ). Or more weakly, it suffices to
prove that any logarithmic k-separation inequalities of the form (3.3)
give appropriate estimates of the k-th eigenvalue A\, (M, i) from below.
This can also be considered as an extension of [20, Theorem 1.14]. In
[20] Gozlan, Roberto, and Samson proved that any exponential con-
centration inequalities imply appropriate Poincaré inequalities under
assuming CD(0, 00). Notice that by Lemma 2.9 exponential concentra-
tion inequalities are nothing but logarithmic 2-separation inequalities.

For multi-way isoperimetric constants, we also need to improve k?
order in Proposition 2.11 to some universal numeric constant. The
following integration argument makes possible to improve k? order but
it is not logarithmic separation inequalities:

Proposition 6.2. Let (M, i) be a closed weighted Riemannian mani-
fold and k a natural number. Then for any k > 0 we have

2 log(2/k)
Sep(( 7“)’m,_”3) ~log2 hi(M,p)k

k+1 times

Proof. Let Ao, A1, -+, A be k+1 Borel subsets of M such that u(A4;) >
k for any 0 <1 < k. Our goal is to prove the following inequality:

. 2 log(2/k)

(6.1) D := min du(4;, Aj) < log? (M. )

In order to prove (6.1) we may assume that each A; is given by a
finite union of open balls. For r € [0,D/2) we put B; := O,(4;),
i =0,1,---,k—1, and By := M\ U B;. By the definition of
hi,(M, 1), we have pt(B;,) > hi,(M, pu)p(By,) for some ig. Assume first
that i = k. Since each B; consists of a finite union of open balls we
obtain

e

-1

p(B;) = " (By) = hy(M, p)p(Br) = (M, po)5.

Il
=)

i

In the case where ig < k — 1, we get

ZM+<Bi) > M+(Bio) > hk(M7 H)M(Bio> > hk(M, ,u)/i
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Combining the above two inequalities implies that

k—1 k—1 r k-1
(Uoia)) -n(Ua) - / > 1 (OL(A s > (M.

which yields

(6.2) u(M\'onAZ-)) < (1— (M, u)m)u(M\UAi).

What follows is a straightforward adaption of Gromov-V. Milman’s
argument in [21, Theorem 4.1]. Put ¢ := (2xh(M,p))"t. If e < r,
then there exists a natural number j such that je < r < (j+ 1)e.
Iterating (6.2) k times shows

M<M\OT(QA1>) < M(M\Ojs(gAi)>

< (1 — hy(M, u)ffff)u(M\OuDE(UAi))

< (U= (M, p)re) (M \%L__JIAZ-)

(1 = hi(M, p)r )’
exp(—jlog2)

< exp(—(r/¢€)log2)
exp(—hg(M, pu)rr2log2).

IN

If r < €, then we have
k—1
u(]\/[ \ OT< U Al>) <1<2-275"" < 2exp(—hy(M, p)re2log 2)
i=0
Put r := D/2. Combining the above two inequalities we obtain
k—1
o < (A) < (MO (|JA)) < 2exp(—hi(M, i) Drlog2),
i=0

which implies (6.1). This completes the proof. O

Question 6.3. What is the right order of \/ \i(M, 1)/ hp(M, p), Ne(M, ) /A (M, ),
and hy, (M, p)/ha(M, ) in k? Especially can we bound \i,(M, ) /A (M, 1)
and hi (M, ) /hi(M, p) from above by some polynomial function of k ¢
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The following two questions are concerned with the stability of eigen-
values of the weighted Laplacian and multi-way isoperimetric con-
stants.

Question 6.4. Is it true that if two convexr domains K, L C R"™ satisfy
vol(K) ~ vol(L), then np(K) ~ ng(L) or hy(K) ~ hi(L)?

Question 6.5. Can we get the stability of eigenvalues of the weighted
Laplacian and multi-way isoperimetric constants with respect to the
concentration topology ¢ Or more weakly can we replace exp(ck) and
k3 exp(ck) in Corollary 5.4 with some universal numeric constant ?

In view of Corollary 5.10 an extension of E. Milman’s theorem for the
k-separation distance and the k-th eigenvalue would imply the latter
question in Question 6.5.

In [18, Conjecture 6.11] we raised the following conjecture.

Conjecture 6.6. For any natural number k there exists a positive
constant Cy, depending only on k such that if X is a compact finite-
dimensional Alexandrov space of nonnegative curvature, then we have

Ae(X) < Cph(X).

Since Theorems 1.4 and 1.6 hold for compact finite-dimensional Alexan-
drov spaces of nonnegative curvature, the above question amounts to
saying the existence of Cj such that hi(X) < Cphy(X).

We remark that Theorem 2.10 holds for compact finite-dimensional
Alexandrov spaces. In fact, the only we need in the proof is the Davies-
Gaffney heat kernel estimate

2

[ [ nteduterinty) < ValbuB e (- H5)
for any Borel subsets A, B and asymptotic expansion of heat kernel by
eigenvalues and eigenfunctions of Laplacian ([10]). These are true for
compact finite-dimensional Alexandrov spaces ([47], [24]). However it
is not known the corresponding theorem of E. Milman’s theorem (The-
orem 2.5) for Alexandrov spaces. Note that we used Theorem 2.5 in
the proof of Theorem 3.4. In order to give an affirmative answer to
Conjecture 6.6, it suffices to prove that any concentration inequalities
imply appropriate exponential concentration inequalities under assum-
ing CD(0,00) or Theorem 3.4 holds for general CD(0,00) spaces by
Gozlan-Roberto-Samson’s theorem [20, Theorem 1.14].
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APPENDIX

The only point we need to be care when we prove Lee-Gharan-
Trevisan’s theorem (Theorem 1.4) for the smooth setting is the fol-
lowing lemma:

Lemma 6.7 ([28, Lemma 2.1)). Let X be an mm-space and f : X —
R"™ a Lipschitz map. Then there exists a closed subset A of X such that
A C Supp f and

px(A) _ MV 12
px(A) = 20

Proof. For any positive real number ¢ we put
Ay={z e X ||f(x)]* >t}
Note that A; C Supp f for any ¢ > 0 and

(6.3) /0 px (Ag)dt = || 117205

The co-area inequality ([5, Lemma 3.2]) implies that
(6.4) | k< [ 190 I@ans )
0

<2 [ If @97 (@)dux (2
M
< 2l NIV 2600
Combining (6.3) with (6.4) gives

ooO M}(At)dt < |||Vf|||L2(uX)
I nx(Agdt = (1 fllzequx
which implies the conclusion of the lemma. U




