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Abstract. We investigate the distribution of eigenvalues of the
weighted Laplacian on closed weighted Riemannian manifolds of
nonnegative Bakry-Émery Ricci curvature. We derive some uni-
versal inequalities among eigenvalues of the weighted Laplacian
on such manifolds. These inequalities are quantitative versions of
the previous theorem by the author with Shioya. We also study
some geometric quantity, called multi-way isoperimetric constants,
on such manifolds and obtain similar universal inequalities among
them. Multi-way isoperimetric constants are generalizations of the
Cheeger constant. Extending and following the heat semigroup ar-
gument by Ledoux and E. Milman, we extend the Buser-Ledoux
result to the k-th eigenvalue and the k-way isoperimetric constant.
As a consequence the k-th eigenvalue of the weighted Laplacian and
the k-way isoperimetric constant are equivalent up to polynomials
of k on closed weighted manifolds of nonnegative Bakry-Émery
Ricci curvature.

1. Introduction

1.1. Eigenvalues of the weighted Laplacian. Let (M,µ) be a pair
of a Riemmanian manifold M and a Borel probability measure µ on
M of the form dµ = exp(−ψ)d volM , ψ ∈ C2(M). We call such a
pair (M,µ) an weighted Riemannian manifold. We define the weighted
Laplacian (also called the Witten Laplacian) △µ by

△µ := △−∇ψ · ∇,

where △ is the usual positive Laplacian onM . IfM is closed, then the
spectrum of the weighted Laplacian △µ is discrete, where △µ is consid-
ered as a self-adjoint operator on L2(M,µ). We denote its eigenvalues
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with multiplicity by

0 = λ0(M,µ) < λ1(M,µ) ≤ λ2(M,µ) ≤ · · · ≤ λk(M,µ) ≤ · · · .

Our purpose in this paper is to understand the relationships be-
tween the eigenvalues λk(M,µ) for different k. For that purpose let
us focus on diameter estimates in terms of eigenvalues of the weighted
Laplacian due to Li and Yau [30, Theorem 10] and Cheng [9, Corol-
lary 2.2] (see also [46]). Combining their results one could obtain that
λk(M,µ) ≤ c(k, n)λ1(M,µ) for any natural number k and any closed

weighted Riemannian manifold (M,µ) of nonnegative Bakry-Émery
Ricci curvature, here c(k, n) is a constant depending only on k and
the dimension n of M . The dependence of the constant c(k, n) on n
comes from Cheng’s result. In order to bypass the dimension depen-
dence of the inequality by Cheng, we consider the observable diameter
ObsDiam((M,µ);−κ), κ > 0, introduced by Gromov in [22]. The ob-
servable diameter comes from the study of ’concentration of measure
phenomenon’ and it might be interpreted as a substitute of the usual
diameter. See Definition 5.5. The observable diameter is closely related
with the first nontrivial eigenvalue of the weighted Laplacian as was
firstly observed by Gromov and V. Milman in [21]:

ObsDiamR((M,µ);−κ) ≤ 6√
λ1(M,µ)

log
1

κ
.(1.1)

Under assuming the nonnegativity of Bakry-Émery Ricci curvature,
E. Milman obtained the opposite inequality ([39, 40, 41]):

ObsDiamR((M,µ);−κ) ≥ 1− 2κ

2
√
λ1(M,µ)

.

See (2.3), Proposition 2.12, and Lemma 5.6 for the proof of the above
two inequalities. Observe that these two inequalities are independent
of the dimension of the underlying manifold. One might regard the
Gromov-V. Milman inequality as a dimension-free Cheng’s inequality
for k = 1 and also the E. Milman inequality as a dimension-free Li-
Yau’s inequality.

One of the main results in this paper is the following:

Theorem 1.1. There exists a universal numeric constant c > 0 such
that if (M,µ) is a closed weighted Riemannian manifold of nonnegative

Bakry-Émery Ricci curvature and k is a natural number, then we have

λk(M,µ) ≤ exp(ck)λ1(M,µ).
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Theorem 1.1 also holds for a convex domain with C2 boundary in
a closed weighted Riemannian manifold of nonnegative Bakry-Émery
Ricci curvature and with the Neumann boundary condition, the proof
of which is identical.

The crucial point of Theorem 1.1 is that the constant exp(ck) is inde-
pendent of the dimension of the underlying manifold and quantitative.
In [18, Theorem 1.1] the author proved with Shioya that the fraction
λk(M,µ)/λ1(M,µ) is bounded from above by some universal constant
depending only on k. However the estimate was not quantitative since
the proof in [18] relies on some compactness argument.

In Theorem 1.1, the nonnegativity of Bakry-Émery Ricci curvature
is necessary as was remarked in [18]. In fact for any ε > 0 there exists
a closed Riemannian manifold M of Ricci curvature ≥ − ε such that
λ2(M)/λ1(M) ≥ 1/ ε. Taking an appropriate scaling, some ’dumbbell
space’ becomes such an example, see [18, Example 4.9] for details.

The following corollary corresponds to Cheng’s inequality for general
k:

Corollary 1.2. There exists a universal numeric constant c > 0 such
that if (M,µ) is a closed weighted Riemannian manifold of nonnegative

Bakry-Émery Ricci curvature and k is a natural number, then we have

ObsDiamR((M,µ);−κ) ≤ exp(ck)√
λk(M,µ)

log
1

κ
.

Corollary 1.2 follows from Theorem 1.1 together with the Gromov-
V. Milman inequality (1.1).

In order to treat the k-th eigenvalue we will work on the notion of
’separation’, which is regarded as a generalization of the concentration
of measure phenomenon (see Subsection 2.2). It tells the information
whether or not there exists a pair which are not separated in some
sense among any k + 1-tuple subsets with a fixed volume. According
to the work of Chung, Grigor’yan, and Yau [10, 11], it is related with
the information of general eigenvalues of the weighted Laplacian (see

Theorem 2.10). Under assuming the nonnegativity of Bakry-Émery
Ricci curvature, we prove that if a nonseparated pair always exists
among any k + 1-tuple of subsets, then it also holds among any k-
tuple of subsets. In order to prove it, we use the curvature-dimension
condition CD(0,∞) in the sense of Lott-Villani [32] and Sturm [49,

50], which is equivalent to the nonnegativity of Bakry-Émery Ricci
curvature. Idea of the proof of Theorem 1.1 will be discussed in Section
3 in more detail.
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1.2. Multi-way isoperimetric constants. Let (M,µ) be a closed
weighted Riemannian manifold. Recall that Minkowski’s (exterior)
boundary measure of a Borel subset A ofM , which we denote by µ+(A),
is defined as

µ+(A) := lim inf
r→0

µ(Or(A))− µ(A)

r
,

where Or(A) denotes the open r-neighborhood of A. We consider the
following geometric quantity:

Definition 1.3 (Multi-way isoperimetric constants). For a natural
number k, we define the k-way isoperimetric constant as

hk(M,µ) := inf
A0,A1,··· ,Ak

max
0≤i≤k

µ+(Ai)

µ(Ai)
,

where the infimum runs over all collections of k+1 non-empty, disjoint
Borel subsets A0, A1, · · · , Ak of M . h1(M,µ) is also called the Cheeger
constant.

Note that hk(M,µ) ≤ hk+1(M,µ) by the definition. We are inter-
ested in the distribution of h1(M,µ), h2(M,µ), · · · , hk(M,µ), · · · on the
real line and the relation between λk(M,µ) and hk(M,µ).

The Cheeger-Maz’ja inequality ([33, 34, 35] and [7], see [39, Theorem
1.1]) states that

h1(M,µ) ≤ 2
√
λ1(M,µ).(1.2)

In [28], resolving a conjecture by Miclo [37] (see also [14]), Lee, Gharan,
and Trevisan obtained a higher order Cheeger-Maz’ja inequality for
general graphs. Although they proved it for graphs, by an appropriate
modification of their proof (e.g., by replacing sums with integrals), it
is also valid for weighted Riemannian manifolds. In Appendix, we will
discuss a point that we have to be care when we treat their argument
for the smooth setting.

Theorem 1.4 (Lee et al. [28, Theorem 3.8]). There exists a universal
numerical constant c > 0 such that for all closed weighted Riemannian
manifold (M,µ) and a natural number k we have

hk(M,µ) ≤ ck3
√
λk(M,µ).

Lee et al. proved the above order k3 can be improved to k2 for graphs
([28, Theorem 1.1]). Since it is uncertain that Lemma 4.7 in [28] holds
or does not hold for the case of weighted Riemannian manifolds, the
author does not know k3 order in Theorem 1.4 can be improved to k2

order.
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The opposite inequality of the Cheeger-Maz’ja inequality (1.2) was
shown by Buser [6] and Ledoux [26]. They proved the existence of a
universal numeric constant c > 0 such that

c
√
λ1(M,µ) ≤ h1(M,µ)(1.3)

for any closed weighted Riemannian manifold (M,µ) of nonnegative

Bakry-Émery Ricci curvature. Combining Theorems 1.1 and 1.4 with
(1.3) we obtain

hk(M,µ) . k3
√
λk(M,µ) . k3 exp(ck)

√
λ1(M,µ) . k3 exp(ck)h1(M,µ),

where A . B denotes A ≤ CB for some universal numeric constant
C > 0. Consequently we have the following:

Theorem 1.5. There exists a universal numeric constant c > 0 such
that if (M,µ) is a closed weighted Riemannian manifold of nonnegative

Bakry-Émery Ricci curvature and k is a natural number, then we have

hk(M,µ) ≤ k3 exp(ck)h1(M,µ).

M. Mimura obtained similar universal inequalities among multi-way
isoperimetric constants for Cayley graphs.

Following and extending the heat semigroup argument by Ledoux
[26] and E. Milman [41], we obtain the extension of the Buser-Ledoux
Theorem:

Theorem 1.6. Assume that a closed weighted Riemannian manifold
(M,µ) has nonnegative Bakry-Émery Ricci curvature. Then for any
natural number k we have

(80k3)−1
√
λk(M,µ) ≤ hk(M,µ).

As a consequence hk(M,µ) and
√
λk(M,µ) are equivalent up to poly-

nomials of k under assuming the nonnegativity of Bakry-Émery Ricci
curvature.

1.3. Applications to the stability of eigenvalues of the weighted
Laplacian and multi-way isoperimetric constants. In [41, Sec-
tion 5] and [42, Section 5.2], E. Milman obtained several stability results
of the Cheeger constants. Although one could apply Theorems 1.1 and
1.5 to several stability results by E. Milman, we apply our results to
only one of his theorems in [41]. The interested reader is referred to
[41, 42] for further information

For a domain Ω with C2 boundary in a complete Riemannian man-
ifold, we denote by ηk(Ω) the k-th eigenvalue of Laplacian with Neu-
mann condition.
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Corollary 1.7. Let K, L be two bounded convex domains in Rn and
assume that both K and L have C2 boundary. If

vol(K ∩ L) ≥ vK vol(K) and vol(K ∩ L) ≥ vL vol(L),

then

ηk(K) ≥ exp(−ck)v4K
{log(1 + 1/vL)}2

ηk(L),

and

hk(K) ≥ exp(−ck)v2K
k3 log(1 + 1/vL)

hk(L).

where c > 0 is a universal numeric constant.

In particular, if vol(K) ≃ vol(L) ≃ vol(K ∩L) then ηk(K) ≃k ηk(L)
and hk(K) ≃k hk(L). Here A ≃ B (resp., A ≃k B) stands for A and
B are equivalent up to universal numeric constants (resp., constants
depending only on k).

E. Milman obtained the above corollary for k = 1 ([41, Theorem
1.7]). The above corollary follows from his theorem together with The-
orems 1.1 and 1.5.

In the same spirit we investigate the (rough) stability property of
eigenvalues of the weighted Laplacian and multi-way isoperimetric con-
stants with respect to perturbation of spaces (Section 5). We discuss
the case where two weighted manifoldsM and N of nonnegative Bakry-
Émery Ricci curvature are close with respect to the concentration topol-
ogy introduced by Gromov in [22]. Roughly speaking, the two spaces
M and N are close with respect to the concentration topology if 1-
Lipschitz functions on M are close to those on N in some sense.

1.4. Organization of the paper. Section 2 collects some back ground
material. In Section 3, after explaining some basics of the theory of
optimal transportation, we prove Theorem 1.1. In Section 4, we prove
Theorem 1.6. In Section 5 we study the (rough) stability property
of eigenvalues of the weighted Laplacian and multi-way isoperimetric
constants with respect to the concentration topology. In Section 6 we
discuss several questions concerning this paper and some conjecture
raised in [18].

2. Preliminaries

We review some basics needed in this paper.
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2.1. Concentration of measure. In this subsection we explain the
known relation among the 1st eigenvalue of the weighted Laplacian,
the Cheeger constant, and the concentration of measure in the sense of
Lévy and V. Milman ([29], [43]).

Let X be an mm-space, i.e., a complete separable metric space with
a Borel probability measure µX .

Definition 2.1 (Concentration function, [1]). For r > 0 we define the
real number αX(r) as the supremum of µX(X \ Or(A)), where A runs
over all Borel subsets of X such that µX(A) ≥ 1/2. The function
αX : ( 0,+∞ ) → R is called the concentration function.

Lemma 2.2 ([1], [27, Lemma 1.1]). If µX(A) ≥ κ > 0, then

µX(X \Or+r0(A)) ≤ αX(r)

for any r, r0 > 0 such that αX(r0) < κ.

The following Gromov and V. Milman’s theorem asserts that Poincaré
inequalities imply appropriate exponential concentration inequalities
([21], [27, Theorem 3.1]).

Theorem 2.3 ([21]). Let (M,µ) be a closed weighted Riemannian man-
ifold. Then we have

α(M,µ)(r) ≤ exp(−
√
λ1(M,µ)r/3)

for any r > 0. In particular, we have

α(M,µ)(r) ≤ exp(−h1(M,µ)r/6)(2.1)

for any r > 0.

The second statement (2.1) follows from the first statement together
with the Cheeger-Maz’ja inequality (1.2).

Remark 2.4. Integrating Cheeger’s linear isoperimetric inequality also
implies the second inequality (2.1) (see [38, Proposition 1.7]).

In the series of works [39, 40, 41], E. Milman obtained the converse of

Theorem 2.3 under assuming the nonnegativity of Bakry-Émery Ricci
curvature. He proved that a uniform tail-decay of the concentration
function implies the linear isoperimetric inequality (Cheeger’s isoperi-

metric inequality) under assuming the nonnegativity of Bakry-Émery
Ricci curvature. E. Milman’s theorem plays a key role in the proof of
Theorem ??.

For an weighted Riemannian manifold (M,µ), we define the (infinite-

dimensional) Bakry-Émery Ricci curvature tensor as

Ricµ := RicM +Hessψ.
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Theorem 2.5 (E. Milman, [40, Theorem 2.1]). Let (M,µ) be a closed

weighted Riemannian manifold of nonnegative Bakry-Émery Ricci cur-
vature. If α(M,µ)(r) ≤ κ for some r > 0 and κ ∈ ( 0, 1/2 ), then

h1(M,µ) ≥ 1− 2κ

r
.

In particular, we have

λ1(M,µ) ≥
(1− 2κ

2r

)2

.

The key ingredient of E. Milman’s approach to the above result is the
concavity of isoperimetric profile under the assumption of the nonnega-
tivity of Bakry-Émery Ricci curvature, the fact based on the regularity
theory of isoperimetric minimizers (see [39, Appendix]). See also [27]
for the heat semigroup approach to Theorem 2.5.

2.2. Separation distance. We define the separation distance which
plays an important role when treating eigenvalues of the weighted
Laplacian. The separation distance was introduced by Gromov in [22].

Definition 2.6 (Separation distance). For any κ0, κ1, · · · , κk ≥ 0 with
k ≥ 1, we define the (k-)separation distance Sep(X;κ0, κ1, · · · , κk) of
X as the supremum of mini̸=j dX(Ai, Aj), where A0, A1, · · · , Ak are any
Borel subsets of X satisfying that µX(Ai) ≥ κi for all i = 0, 1, · · · , k.

It is immediate from the definition that if κi ≥ κ̃i for each i =
0, 1, · · · , k, then

Sep(X;κ0, κ1, · · · , κk) ≤ Sep(X; κ̃0, κ̃1, · · · , κ̃k).
Note that if the support of µX is connected, then

Sep(X;κ0, κ1, · · · , κk) = 0

for any κ0, κ1, · · · , κk > 0 such that
∑k

i=0 κi > 1.
For a Borel subset A of an mm-space X we put

µA :=
µX |A
µX(A)

Lemma 2.7. If A satisfies µX(A) ≥ κ, then

Sep((A, µA);κ0, κ1, · · · , κk) ≤ Sep(X;κκ0, κκ1, · · · , κκk)
for any κ0, κ1, · · · , κk > 0.

Proof. Take k+1 Borel subsets A0, A1, · · · , Ak of A such that µA(Ai) ≥
κi for any i. The lemma immediately follows from that µX(Ai) ≥
µX(A)κi ≥ κκi. �
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We denote the closed r-neighborhood of a subset A in a metric space
by Cr(A).

Lemma 2.8. Let X be an mm-space and put r := Sep(X, κ0, κ1, · · · , κk).
Assume that k Borel subsets A0, A1, · · · , Ak−1 of X satisfy µX(Ai) ≥ κi
for every i = 0, 1, · · · , k − 1 and dX(Ai, Aj) > r for every i ̸= j. Then
we have

µX

( k−1∪
i=0

Cr(Ai)
)
≥ 1− κk.

Proof. Suppose that for some ε0 > 0,

µX

( k−1∪
i=0

Cr+ε0(Ai)
)
≤ 1− κk.

PuttingAk := X\
∪k−1

i=0 Cr+ε0(Ai) we have µX(Ak) ≥ κk and dX(Ak, Ai) ≥
r + ε0 for any i = 0, 1, · · · , k − 1. Thus we get

r < min
i ̸=j

dX(Ai, Aj) ≤ Sep(X;κ0, κ1, · · · , κk) = r,

which is a contradiction. Hence µX(
∪k−1

i=0 Cr+ε(Ai)) > 1 − κk for any
ε > 0. Letting ε→ 0 we obtain the conclusion. �

The following lemma asserts that exponential concentration inequal-
ities and logarithmic 2-separation inequalities are equivalent:

Lemma 2.9. Let X be an mm-space.

(1) If X satisfies

Sep(X;κ, κ) ≤ 1

C
log

c

κ
(2.2)

for any κ > 0, then we have αX(r) ≤ c exp(−Cr) for any r > 0.
(2) Conversely, if X satisfies αX(r) ≤ c′ exp(−C ′r) for any r > 0,

then we have

Sep(X;κ, κ) ≤ 2

C ′ log
c′

κ

for any κ > 0.

Proof. (1) Assume that X satisfies (2.2) and let A ⊆ X be a Borel
subset such that µX(A) ≥ 1/2. For r > 0 we put κ := µX(X \Or(A)).
Since

r ≤ dX(X \Or(A), A) ≤ Sep(X;κ, 1/2) ≤ Sep(X;κ, κ) ≤ 1

C
log

c

κ
,

we have κ ≤ c log(−Cr), which gives the conclusion of (1).
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(2) Assuming that αX(r) ≤ c′ exp(−C ′r), we take two Borel sub-
sets A,B ⊆ X such that µX(A) ≥ κ, µX(B) ≥ κ, and dX(A,B) =
Sep(X;κ, κ). Let r̃ be any positive number satisfying

αX(r̃) ≤ c′ exp(−C ′r̃) < κ,

i.e.,

r̃ >
1

C ′ log
c′

κ
.

Since µX(A) ≥ κ, by Lemma 2.2, we have

1− µX(O2r̃(A)) ≤ αX(r̃) < κ.

Hence we have

µX(O2r̃(A) ∩B) > (1− κ) + κ− 1 = 0,

which yields Sep(X;κ, κ) = dX(A,B) ≤ 2r̃. Letting r̃ → C ′−1 log(c′/κ)
we obtain (2). �

Theorem 2.3 together with Lemma 2.9 (2) implies that for any closed
weighted Riemannian manifold (M,µ) we have

Sep((M,µ);κ, κ) ≤ 6√
λ1(M,µ)

log
1

κ
.(2.3)

Chung, Grigor’yan, and Yau generalized the above inequality in the
following form:

Theorem 2.10 (Chung et al. [11, Theorem 3.1]). Let (M,µ) be a
closed weighted Riemannian manifold. Then, for any k ∈ N and any
κ0, κ1, · · · , κk > 0, we have

Sep((M,µ);κ0, κ1, · · · , κk) ≤
1√

λk(M,µ)
max
i̸=j

log
( e

κiκj

)
.

Combining Theorems 1.4 and 2.10 we obtain the following proposi-
tion:

Proposition 2.11. There exists a universal numeric constant c > 0
such that for all closed weighted Riemannian manifold (M,µ), a natural
number k, and κ0, κ1, · · · , κk > 0, we have

Sep((M,µ);κ0, κ1, · · · , κk) ≤
ck3

hk(M,µ)
max
i̸=j

log
e

κiκj
.

We end this subsection reformulating Theorem 2.5 in terms of the
separation distance for later use.
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Proposition 2.12. Let (M,µ) be a closed weighted Riemannian mani-

fold of nonnegative Bakry-Émery Ricci curvature. Then, for any κ > 0,
we have

Sep((M,µ);κ, κ) ≥ 1− 2κ

h1(M,µ)

and

Sep((M,µ);κ, κ) ≥ 1− 2κ

2
√
λ1(M,µ)

.

Proof. We prove only the first assertion. The proof of the second
assertion is identical to the first one. According to Theorem 2.5, if
r ∈ ( 0,∞ ) and κ ∈ ( 0, 1/2 ) satisfy

r <
1− 2κ

h1(M,µ)
,(2.4)

then we have α(M,µ)(r) > κ. There exists A ⊆M such that µ(A) ≥ 1/2
and µ(M \Or(A)) > κ. Hence we have

r = dM(A,M \Or(A)) ≤ Sep((M,µ); 1/2, κ) ≤ Sep((M,µ);κ, κ).

Combining the above inequality with (2.4) gives the conclusion. �
Since Sep((M,µ);κ, κ) ≤ diamM , the second inequality of Theorem

2.12 recovers the Li-Yau inequality [30].

2.3. Three distances between probability measures. Let X be a
complete separable metric space. We denote by P(X) the set of Borel
probability measures on X.

Definition 2.13 (Prohorov distance). Given two measures µ, ν ∈
P(X) and λ ≥ 0, we define the Prohorov distance diλ(µ, ν) as the
infimum of ε > 0 such that

µ(Cε(A)) ≥ ν(A)− λε and ν(Cε(A)) ≥ µ(A)− λε(2.5)

for any Borel subsets A ⊆ X.

For any λ ≥ 0, the function diλ is a complete separable distance
function on P(X). If λ > 0, then the topology on P(X) determined
by the Prohorov distance function diλ coincides with that of the weak
convergence (see [4, Section 6]). The distance functions diλ for all
λ > 0 are equivalent to each other. Also it is known that if µ(Cε(A)) ≥
ν(A) − λε for any Borel subsets A of X, then diλ(µ, ν) ≤ ε. In other
words, the second inequality in (2.5) follows from the first one (see [4,
Section 6]).

For (x, y) ∈ X × X, we put proj1(x, y) := x and proj2(x, y) :=
y. For two finite Borel measures µ and ν on X, we write µ ≤ ν if
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µ(A) ≤ ν(A) for any Borel subset A ⊆ X. A finite Borel measure π on
X ×X is called a partial transportation from µ ∈ P(X) to ν ∈ P(X)
if (proj1)∗(π) ≤ µ and (proj2)∗(π) ≤ ν. Note that we do not assume
π to be a probability measure. For a partial transportation π from µ
to ν, we define its deficiency def π by def π := 1 − π(X × X). Given
ε > 0, the partial transportation π is called an ε-transportation from
µ to ν if it is supported in the subset

{(x, y) ∈ X ×X | dX(x, y) ≤ ε}.

Definition 2.14 (Transportation distance). Let λ ≥ 0. For two prob-
ability measures µ, ν ∈ P(X), we define the transportation distance
Traλ(µ, ν) between µ and ν as the infimum of ε > 0 such that there
exists an ε-transportation π from µ to ν satisfying def π ≤ λε.

The following theorem is due to V. Strassen.

Theorem 2.15 ([51, Corollary 1.28], [22, Section 31
2
.10]). For any

λ > 0, we have

Traλ = diλ .

Let (X, dX) be a complete metric space. We indicate by P2(X) the
set of all Borel probability measures ν ∈ P(X) such that∫

X
dX(x, y)

2dν(y) < +∞

for some x ∈ X.

Definition 2.16 ((L2-)Wasserstein distance). For two probability mea-
sures µ, ν ∈ P2(X), we define the L2-Wasserstein distance dW

2 (µ, ν)
between µ and ν as the infimum of(∫

X×X
dX(x, y)

2dπ(x, y)
)1/2

,

where π ∈ P2(X×X) runs over all couplings of µ and ν, i.e., probability
measures π with the property that π(A×X) = µ(A) and π(X ×A) =
ν(A) for any Borel subset A ⊆ X. It is known that this infimum is
achieved by some transport plan, which we call an optimal transport
plan for dW

2 (µ, ν).

If the underlying space X is compact, then the topology on P(X)
induced from the L2-Wasserstein distance function coincides with that
of the weak convergence (see [51, Theorem 7.12]).
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3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we need to explain some useful tools
from the theory of optimal transportation. Refer to [51, 52] for more
details.

Let (X, dX) be a metric space. A rectifiable curve γ : [0, 1] → X is
called a geodesic if its arclength coincides with the distance dX(γ(0), γ(1))
and it has a constant speed, i.e., parameterized proportionally to the ar-
clength. We say that a metric space is a geodesic space if any two points
are joined by a geodesic between them. It is known that (P2(X), dW

2 )
is compact geodesic space as soon as X is ([50, Proposition 2.10]).

LetM be a close Riemannian manifold. For two probability measures
µ0, µ1 ∈ P2(M) which are absolutely continuous with respect to d volM ,
there is a unique geodesic (µt)t∈[0,1] between them with respect to the
L2-Wasserstein distance function dW

2 ([36, Theorem 9]).
For an mm-space X let us denote by Γ the set of minimal geodesics

γ : [0, 1] → X endowed with the distance

dΓ(γ1, γ2) := sup
t∈[0,1]

dX(γ1(t), γ2(t)).

Define the evaluation map et : Γ → X for t ∈ [0, 1] as et(γ) := γ(t).
A probability measure Π ∈ P(Γ) is called a dynamical optimal trans-
ference plan if the curve µt := (et)∗Π, t ∈ [0, 1], is a minimal geodesic
in (P2(X), dW

2 ). Then π := (e0 × e1)∗Π is an optimal coupling of µ0

and µ1, where e0 × e1 : Γ → X × X is the “endpoints” map, i.e.,
(e0 × e1)(γ) := (e0(γ), e1(γ)).

Lemma 3.1 ([32, Proposition 2.10]). If (X, dX) is locally compact,
then any minimal geodesic (µt)t∈[0,1] in (P2(X), dW

2 ) is associated with
a dynamical optimal transference plan Π, i.e., µt = (et)∗Π.

Let µ and ν be two probability measures on a set X. We define
the relative entropy Entµ(ν) of ν with respect to µ as follows. If ν is
absolutely continuous with respect to µ, writing dν = ρdµ, then

Entµ(ν) :=

∫
M

ρ log ρdµ,

otherwise Entµ(ν) := ∞.

Definition 3.2 (Curvature-dimension condition, [32], [49, 50]). Let K
be a real number. We say that an mm-space satisfies the curvature-
dimension condition CD(K,∞) if for any ν0, ν1 ∈ P2(X) there exists
a minimal geodesic (νt)t∈[0,1] in (P2(X), dW

2 ) from ν0 to ν1 such that

EntµX
(νt) ≤ (1− t) EntµX

(ν0) + tEntµX
(ν1)−

K

2
(1− t)t d

W
2 (ν0, ν1)

2
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for any t ∈ [0, 1].

In the above definition, assume that both ν0 and ν1 are absolutely
continuous with respect to µX . Then Jensen’s inequality applied to the
convex function r 7→ r log r gives

log µX(Supp νt)

(3.1)

≥ − (1− t)

∫
M

ρ0 log ρ0dµX − t

∫
M

ρ1 log ρ1dµX +
Kt(1− t)

2
d
W
2 (µ0, µ1)

2,

where ρ0 and ρ1 are densities of ν0 and ν1 with respect to µX respec-
tively. In particular, for two Borel subsetsA,B ⊆ X with µX(A), µX(B) >
0, we have

log µX(Supp νt)

(3.2)

≥ (1− t) log µX(A) + t log µX(B) +
Kt(1− t)

2
d
W
2

( µX |A
µX(A)

,
µX |B
µX(B)

)2

([50]).

Theorem 3.3 ([12, 13], [44], [48]). For a complete weighted Riemann-
ian manifold (M,µ), we have Ricµ ≥ K for some K ∈ R if and only if
(M,µ) satisfies CD(K,∞).

Theorem 1.1 follows from the following key theorem together with
Theorem 2.10 and Proposition 2.12.

Theorem 3.4. Let (M,µ) be a closed weighted Riemannian manifold

of nonnegative Bakry-Émery Ricci curvature. If (M,µ) satisfies

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k+1 times

) ≤ 1

D
log

1

κ2
(3.3)

for any κ > 0, then we have

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

) ≤ c

D
log

1

κ2
(3.4)

for any κ > 0 and for some universal numeric constant c > 0.

The idea of the proof of Theorem 3.4 is the following. It turns
out that it is enough to prove (3.4) for sufficiently small κ > 0 and
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sufficiently large c > 0. We suppose the converse of this, i.e.,

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

) >
c

D
log

1

κ2

for sufficiently small κ > 0 and sufficiently large c > 0. Put α :=
(c/D) log(1/κ). By the definition of the separation distance there exists
k Borel subsets A0, A1. · · · , Ak−1 ⊆ M such that mini̸=j d(Ai, Aj) > α
and µ(Ai) ≥ κ for any i. If we choose the constant c large enough so
that

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

, κ100) ≤ Sep((M,µ);κ100, κ100, · · · , κ100︸ ︷︷ ︸
k+1 times

) ≤ α/100,

then by Lemma 2.8 we have

µ
( k−1∪

i=0

Cα/100(Ai)
)
≥ 1− κ100.

It means that if κ > 0 is sufficiently small, the measure of the set∪k−1
i=0 Cα/100(Ai) is nearly 1. Although it is not true, we assume that

µ
( k−1∪

i=0

Cα/100(Ai)
)
= 1(3.5)

in order to tell the idea of the proof. Putting A := Cα/100(A0) and B :=∪k−1
i=1 Cα/100(Ai), we have M = A∪B, A∩B = ∅, µ(A) ≥ κ, µ(B) ≥ κ,

and d(A,B) ≥ α/2.
Let (µt)t∈[0,1] be a geodesic from µA := (1/µ(A))µ|A to µ with respect

to dW
2 . For sufficiently small t > 0 we have d(x,A) < α/2 ≤ d(A,B) for

any x ∈ Suppµt, which gives Suppµt ⊆ A. This leads a contradiction
since by (3.2) we have

log µ(A) ≥ log µ(Suppµt) ≥ (1− t) log µ(A) + t log µ(M),

which implies log µ(A) ≥ 0. Although (3.5) is always not true, we show
below that the above idea can be accomplished by controlling separated
subsets and estimating average distances between them.

Proof of Theorem 3.4. It suffices to prove that there exist two universal
numeric constants c0, κ0 > 0 such that

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

) ≤ c0
D

log
1

κ2
(3.6)
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for any κ ≤ κ0. In fact, if κ ≥ 1/2, then the left-hand side of the above
inequality is zero and there is nothing to prove. In the case where
κ0 < κ ≤ 1/2, by (3.6) we have

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

) ≤ Sep((M,µ);κ0, κ0, · · · , κ0︸ ︷︷ ︸
k times

)

≤
c0 log

1
κ2
0

D log 1
κ2

log
1

κ2

≤
c0 log

1
κ2
0

D log 4
log

1

κ2
,

which implies the conclusion of the theorem.
Suppose the contrary to (3.6), i.e.,

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

) >
c1
D

log
1

κ2
,(3.7)

where c1 > 0 is a sufficiently large universal numeric constant and
κ > 0 is a sufficiently small number. Both the largeness of c1 and
the smallness of κ will be specified later. Note that the assumption
(3.7) immediately gives kκ < 1 (otherwise, the left-hand side of (3.7)
is zero). We denote the right-hand side of (3.7) by α, i.e.,

α :=
c1
D

log
1

κ2
.

Claim 3.5. If c1 > 0 (resp., κ > 0) in (3.7) is large enough (resp.,
small enough), then there exist two closed subsets B0, B1 ⊆ M such
that B0 ⊆ B1, κ/4 ≤ µ(B0) ≤ 1/2, µ(B1) ≥ 1− κ6, and

dM(B0, B1 \B0) ≥ c2max
{
α,

κ√
λ1(M,µ)

}
for some universal numeric constant c2 > 0.

Proof. The assumption (3.7) implies the existence of k Borel subsets
A0, A1, · · · , Ak−1 ⊆M such that µ(Ai) ≥ κ for any i and

dM(Ai, Aj) ≥ α for any i ̸= j.

If κ < 1/8 and c1 ≥ 8, then by (3.3) we have

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k times

, 1/8) ≤ Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k+1 times

) ≤ 1

D
log

1

κ2
≤ α

8
.
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Hence Lemma 2.8 yields

µ
( k−1∪

i=0

Cα/8(Ai)
)
≥ 7

8
.(3.8)

Note that

dM(Cα/8(Ai), Cα/8(Aj)) ≥ α/4(3.9)

for any i ̸= j. According to Proposition 2.12 we take X0, X1 ⊆M such
that

µ(Xi) ≥
1

2
− κ

4
(i = 0, 1)(3.10)

and

dM(X0, X1) ≥
κ

8
√
λ1(M,µ)

.(3.11)

Set Y := X0 ∪X1. By (3.10) we have µ(Y ) ≥ 1− κ
2
and thus

µ(Y ∩ Cα/8(Ai)) ≥ µ(Y ∩ Ai) ≥
(
1− κ

2

)
+ κ− 1 ≥ κ

2

for each i = 0, 1, · · · , k − 1. Suppose that µ(Xi ∩ Cα/8(Al)) < κ/4 for
some i ∈ {0, 1} and for any l = 0, 1, · · · , k − 1. Then we have

µ
(
Xi ∩

k−1∪
l=0

Cα/8(Al)
)
≤ kκ

4
<

1

4
.

Combining (3.8) with (3.10) we also get

µ
(
Xi ∩

k−1∪
l=0

Cα/8(Al)
)
≥

(1
2
− κ

4

)
+

7

8
− 1 ≥ 1

4
,

which is a contradiction (we have used κ < 1/8). Therefore for each
l = 0, 1, · · · , k − 1 we may choose nl ∈ {0, 1} so that

µ(Xnl
∩ Cα/8(Al)) ≥ κ/4(3.12)

and

Ii := {l ∈ {0, 1, · · · , k − 1} | nl = i} ̸= ∅ (i = 0, 1).

For each i = 0, 1, we set

A′
i := Xi ∩

∪
l∈Ii

Cα/8(Al).

Combining (3.9) with (3.11) yields

dM(A′
0, A

′
1) ≥ max

{ κ

8
√
λ1(M,µ)

,
α

4

}
=: β.(3.13)
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Since

Sep
(
(M,µ);

κ

2
,
κ

2
, · · · , κ

2︸ ︷︷ ︸
k times

, κ6
)
≤ Sep((M,µ);κ6, κ6, · · · , κ6︸ ︷︷ ︸

k+1 times

) ≤ c3
D

log
1

κ2

for some universal numeric constant c3 > 0, we get

Sep
(
(M,µ);

κ

2
,
κ

2
, · · · , κ

2︸ ︷︷ ︸
k times

, κ6
)
≤ α

16

(
≤ β

4

)
provided that c1 in (3.7) is large enough. Put B0 := Cα/16(A

′
0) and

B1 := Cα/16(A
′
0)∪Cα/16(A

′
1). We may assume that µ(Cα/16(A

′
0)) ≤ 1/2.

Thanks to Lemma 2.8 it is easy to check that µ(B1) ≥ 1 − κ6. By
(3.12) and (3.13), we see that B0 and B1 possess the other desired
properties. �

We consider two Borel probability measures µBi
, i = 0, 1, defined by

µBi
:=

µ|Bi

µ(Bi)
.

The following claim is essentially due to Gromov [22] (see also [18,
Claim 5.10]). He used it in the context of the convergence theory of
mm-spaces without detailed proof. Since our context is different from
his one, we include the proof for the concreteness of this paper. The
proof below is shorter than the one in [18, Claim 5.10].

Claim 3.6 ([22, Section 31
2
.47]). There exist a universal numeric con-

stant c4 > 0 and a coupling π of µB0 and µB1 such that

π
({

(x, y) ∈M ×M | dM(x, y) >
c4 log

1
κ2√

λ1(M,µ)

})
≤ κ6.

Proof. We use the identity diλ(µB0 , µB1) = Traλ(µB0 , µB1) (Theorem
2.15). Put δ := c4√

λ1(M,µ)
log 1

κ2 , where c4 > 0 is a numeric universal

constant which will be determined later. We shall prove that

µB1(Cδ(A)) ≥ µB0(A)− κ6(3.14)

for any Borel subset A ⊆ B1, which implies the claim. In fact, applying
(3.14) to Theorem 2.15 gives that there exists a δ-transportation π0
from µB0 to µB1 such that def π0 ≤ κ6. If def π0 = 0, then we set
π := π0. If def π0 > 0, then set

π := π0 +
1

def π0
(µB0 − (proj1)∗π0)× (µB1 − (proj2)∗π0).

It is easy to check that π fulfills the desired property.
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To prove (3.14) we may assume that µB0(A) ≥ κ6, which yields that

µB1(A) ≥ µ(A) ≥ κ6µ(B0) ≥ κ7/4.

Using Lemma 2.7 and (2.3) we choose c4 > 0 so that

Sep
(
(B1, µB1);

κ7

4
,
κ7

4

)
≤ Sep

(
(M,µ); (1− κ6)

κ7

4
, (1− κ6)

κ7

4

)
≤ c4√

λ1(M,µ)
log

1

κ2
(= δ).

Lemma 2.8 implies that

µB1(Cδ(A)) ≥ 1− κ7

4
≥ 1− κ6 ≥ µB0(A)− κ6,

which is (3.14). �
We set

∆ :=
{
(x, y) ∈M ×M | d(x, y) ≤

c4 log
1
κ2√

λ1(M,µ)

}
.

We consider two Borel probability measures µ0 := a(proj1)∗(π|∆) and
µ1 := a(proj2)∗(π|∆), where a := π(∆)−1. By Claim 3.6 we have

1 ≤ a ≤ 1

1− κ6
(3.15)

and

d
W
2 (µ0, µ1)

2 ≤ a

∫
M×M

d(x, y)
2dπ|∆(x, y) ≤

{ c4 log
1
κ2√

λ1(M,µ)

}2

.(3.16)

Take an optimal dynamical transference plan Π such that (ei)∗Π = µi

for each i = 0, 1. Putting r := dM(B0, B1 \B0), we consider

Γt := {γ ∈ SuppΠ | dM(e0(γ), et(γ)) ≤ r/2}.
By (3.16) we have

r2

4
Π(Γ \ Γt) ≤ d

W
2 ((e0)∗Π, (et)∗Π)

2 = t2 d
W
2 (µ0, µ1)

2 ≤
{ c4t log

1
κ2√

λ1(M,µ)

}2

.

According to Claim 3.5 we thus get

Π(Γt) ≥ 1−
c5t

2
(
log 1

κ2

)2

κ2
(3.17)

for some universal numeric constant c5 > 0. For s ∈ [0, 1] we put

νs := (es)∗
Π|Γt

Π(Γt)
. By the definition of νs we obtain the following.

Claim 3.7. Supp νt ∩B1 ⊆ B0.
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By using Claim 3.7, we get

log µ(B0) +
κ6

µ(B0)
≥ log µ(B0) + log

(
1 +

κ6

µ(B0)

)
(3.18)

= log(µ(B0) + κ6)

≥ log{µ(Supp νt ∩B1) + µ(Supp νt \B1)}
= log µ(Supp νt)

Note that (νs)s∈[0,1] is a geodesic between ν0 and ν1. Since

νi =
(ei)∗Π|Γt

Π(Γt)
≤ (ei)∗Π

Π(Γt)
=

µi

Π(Γt)
≤ a

Π(Γt)
(proji+1)∗π =

a

Π(Γt)
µBi

(3.19)

for i = 0, 1, each νi is absolutely continuous with respect to µ, and
especially the above geodesic (νs)s∈[0,1] is unique. For each i = 0, 1, we
write dνi = ρidµ. By (3.1), we get

log µ(Supp νt) ≥ −(1− t)

∫
M

ρ0 log ρ0dµ− t

∫
M

ρ1 log ρ1dµ.(3.20)

For a subset A ⊆M we denote by 1A the characteristic function of A,
i.e., 1A(x) := 1 if x ∈ A and 1A(x) := 0 if x ∈M \ A.

Claim 3.8. We have

ρi log ρi ≤
ct1Bi

µ(Bi)
log

ct1Bi

µ(Bi)
(i = 0, 1),

where ct := a/Π(Γt).

Proof. By (3.19) we have ρi ≤ (ct/µ(Bi))1Bi
. Since ct ≥ 1 and u log u ≤

v log v for any two positive numbers u, v such that u ≤ v and v ≥ 1,
we obtain the claim. �

Combining Claim 3.8 with (3.18) and (3.20) we have

log µ(B0) +
κ6

µ(B0)

≥ − (1− t)

∫
M

ct1B0

µ(B0)
log

ct1B0

µ(B0)
dµ− t

∫
M

ct1B1

µ(B1)
log

ct1B1

µ(B1)
dµ

= − ct log ct + ct(1− t) log µ(B0) + ctt log µ(B1).
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Substituting t := κ3, we thereby obtain

log(1/2) + 4κ2(3.21)

≥ log µ(B0) +
κ6

κ3µ(B0)

≥ − ct
κ3

log ct +
ct − 1

κ3
(1− κ3) log µ(B0) + ct log µ(B1).

Using (3.15) and (3.17) we estimate each term on the right-side of the
above inequalities as

ct log ct
κ3

=
a

Π(Γt)
· log a− log Π(Γt)

κ3

≤ 1

1− κ6

(
1−

c5κ
6
(
log 1

κ2

)2

κ2

)−1

× 1

κ3

(
log

1

1− κ6
− log

(
1−

c5κ
6
(
log 1

κ2

)2

κ2

))
≤ 1

1− κ6

(
1− c5κ

4
(
log

1

κ2

)2)−1

· 2
(
κ3 + c5κ

(
log

1

κ2

)2)
,

∣∣∣ct − 1

κ3
log µ(B0)

∣∣∣ ≤ a− Π(Γt)

κ3Π(Γt)
log

2

κ

≤
1

1−κ4 − 1 + c5κ
4
(
log 1

κ2

)2

κ3Π(Γt)
log

2

κ

≤ κ
1 + c5(1− κ4)

(
log 1

κ2

)2

(1− κ4)
(
1− c5κ4

(
log 1

κ2

)2) log
2

κ
,

and

|ct log µ(B1)| ≤
a

Π(Γt)
log

1

1− κ6
≤ 2κ6

(1− κ6)
(
1− c5κ4

(
log 1

κ2

)) .
These estimates imply the right-side of the inequalities (3.21) is close
to zero for sufficiently small κ > 0. Since the left-side of the inequality
(3.21) is about log(1/2) < 0 for sufficiently small κ > 0, this is a
contradiction. This completes the proof of the theorem. �
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4. Proof of Theorem 1.6

On a closed weighted Riemannian manifold (M,µ), denote by (Pt)t≥0

the semigroup associated with the infinitesimal generator ∆µ. For each
t ≥ 0, Pt : C

∞(M) → C∞(M) is a bounded linear operator and we
extend the action of Pt to L

p(µ) (p ≥ 1).
The following gradient estimate of the heat semigroup is due to Bakry

and Ledoux [3]. One might regard it as a dimension-free Li-Yau para-
bolic gradient inequality [31].

Lemma 4.1 (Bakry-Ledoux, [3, Lemma 4.2]). Let (M,µ) be a closed

weighted Riemannian manifold of Bakry-Émery Ricci curvature bounded
from below by a nonpositive real number K. Then for any t ≥ 0 and
f ∈ C∞(M) we have

c(t)|∇Pt(f)|2 ≤ Pt(f
2)− (Pt(f))

2,

where

c(t) :=
1− exp(2Kt)

−K
(= 2t if K = 0).

Corollary 4.2. If (M,µ) has nonnegative Bakry-Émery Ricci curva-
ture, then for any t ≥ 0, p ≥ 2, and f ∈ C∞(M), we have

∥|∇Pt(f)|∥Lp(µ) ≤
1√
2t
∥f∥Lp(µ).

From Corollary 4.2 Ledoux obtained the following lemma:

Lemma 4.3 (Ledoux, [26, (5.5)]). Assume that (M,µ) has nonnegative

Bakry-Émery Ricci curvature. Then for any f ∈ C∞(M), we have

∥f − Pt(f)∥L1(µ) ≤
√
2t∥|∇f |∥L1(µ).

Proof of Theorem 1.6. Take any k+1 non-empty, disjoint Borel subsets
A0, A1, · · · , Ak ⊆ M . We may assume that µ(A0) ≤ µ(A1) ≤ · · · ≤
µ(Ak), and thus

k−1∑
i=0

µ(Ai) ≤ 1− 1

k + 1
and µ(Ai) ≤ 1/2 for any i = 0, 1, · · · , k − 1.

We put t := 4k(k + 1)/λk(M,µ). We shall prove that there exists i0,
0 ≤ i0 ≤ k − 1, such that

µ+(Ai0) ≥ (80k3)−1
√
λk(M,µ)µ(Ai0).(4.1)
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For each i = 0, 1, · · · , k−1, let 1Ai,ε(x) := min{0, 1− 1
ε d(x,Ai)} denote

a Lipschitz approximation of 1Ai
. Note that

µ(Cε(Ai))− µ(Ai)

ε
≥

∫
M

|∇1Ai,ε|dµ,

where for a Lipschitz function f :M → R and x ∈M , we put

|∇f |(x) := lim sup
y→x

|f(y)− f(x)|
dM(y, x)

.

Letting ε→ 0, by Lemma 4.3 we have

√
2tµ+(Ai) ≥ ∥1Ai

− Pt(1Ai
)∥L1(µ).

Since the right-side of the above inequality can be written as∫
Ai

(1− Pt(1Ai
))dµ+

∫
M\Ai

Pt(1Ai
)dµ

= 2
(
µ(Ai)−

∫
Ai

Pt(1Ai
)dµ

)
= 2

(
µ(Ai)(1− µ(Ai))−

∫
M

(Pt(1Ai
)− µ(Ai))(1Ai

− µ(Ai))dµ
)
,

we obtain

√
2tµ+(Ai)(4.2)

≥ 2
(
µ(Ai)(1− µ(Ai))−

∫
M

(Pt(1Ai
)− µ(Ai))(1Ai

− µ(Ai))dµ
)
.

Observe that Pt(1Ai
) − µ(Ai), i = 0, 1, · · · , k − 1, are linearly in-

dependent and orthogonal to constant functions on M . Thus the
Rayleigh quotient representation of λk(M,µ) yields that there exist
a0, a1, · · · , ak−1 ∈ R such that

λk(M,µ) ≤
∥|∇(

∑k−1
i=0 ai(Pt(1Ai

)− µ(Ai)))|∥2L2(µ)

∥
∑k−1

i=0 ai(Pt(1Ai
)− µ(Ai))∥2L2(µ)

.(4.3)

Put f0 :=
∑k−1

i=0 ai1Ai
. We consider the following two cases: (I) ∥f0 −∫

M
f0dµ∥L2(µ) ≥ 2∥f0 − Pt(f0)∥L2(µ), (II) ∥f0 −

∫
M
f0dµ∥L2(µ) ≤ 2∥f0 −

Pt(f0)∥L2(µ).
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We prove that the case (I) cannot happen from the our choice of t.
Suppose that (I) holds. In this case we get

∥
k−1∑
i=0

ai(Pt(1Ai
)− µ(Ai))∥L2(µ) =

∥∥∥Pt(f0)−
∫
M

f0dµ
∥∥∥
L2(µ)

(4.4)

≥ 1

2

∥∥∥f0 − ∫
M

f0dµ
∥∥∥
L2(µ)

.

We estimate the right-side of the above inequality from below:

Claim 4.4. We have∫
M

( k−1∑
i=0

ai(1Ai
− µ(Ai))

)2

dµ ≥ 1

k + 1

k−1∑
i=0

a2i

∫
M

(1Ai
− µ(Ai))

2dµ.

Proof. Since ∫
M

(1Ai
− µ(Ai))

2dµ = µ(Ai)(1− µ(Ai))(4.5)

and∫
M

( k−1∑
i=0

ai(1Ai
− µ(Ai))

)2

dµ =
k−1∑
i=0

a2iµ(Ai)−
( k−1∑

i=0

aiµ(Ai)
)2

,

it suffices to prove

(
1− 1

k + 1

) k−1∑
i=0

a2iµ(Ai) +
1

k + 1

k−1∑
i=0

a2iµ(Ai)
2 ≥

( k−1∑
i=0

aiµ(Ai)
)2

.

(4.6)

Since ( k−1∑
i=0

aiµ(Ai)
)2

=
( k−1∑

j=0

µ(Aj)
)2

·
( k−1∑

i=0

µ(Ai)∑k−1
j=0 µ(Aj)

ai

)2

≤
( k−1∑

j=0

µ(Aj)
)2

k−1∑
i=0

µ(Ai)∑k−1
j=0 µ(Aj)

a2i

≤
(
1− 1

k + 1

) k−1∑
i=0

a2iµ(Ai),

we have (4.6). This completes the proof of the claim. �
Claim 4.4 together with (4.3) and (4.4) implies the existence of i0,

0 ≤ i0 ≤ k − 1, such that

λk(M,µ)∥1Ai0
− µ(Ai0)∥2L2(µ) ≤ 4k(k + 1)∥|∇Pt(1Ai0

)|∥2L2(µ).
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Using Corollary 4.2 and t = 4k(k + 1)/λk(M,µ) we obtain

λk(M,µ)∥1Ai0
− µ(Ai0)∥2L2(µ) ≤

2k(k + 1)

t
∥1Ai0

− µ(Ai0)∥2L2(µ)

= 2−1λk(M,µ)∥1Ai0
− µ(Ai0)∥2L2(µ),

which is a contradiction.
Since (II) holds, Lemma 4.3 yields

1

4

∥∥∥f0 − ∫
M

f0dµ
∥∥∥2

L2(µ)
≤ ∥Pt(f0)− f0∥2L2(µ)(4.7)

≤ k

k−1∑
i=0

a2i ∥Pt(1Ai
)− 1Ai

∥2L2(µ)

≤ k
k−1∑
i=0

a2i ∥Pt(1Ai
)− 1Ai

∥L1(µ)

≤ k
√
2t

k−1∑
i=0

a2i ∥|∇1Ai
|∥L1(µ)

= k
√
2t

k−1∑
i=0

a2iµ
+(Ai).

According to Claim 4.4 and (4.7), there exists i0, 0 ≤ i0 ≤ k − 1, such
that

∥1Ai0
− µ(Ai0)∥2L2(µ) ≤ 4k(k + 1)

√
2tµ+(Ai0).

Thus we get∫
M

(Pt(1Ai0
)− µ(Ai0))(1Ai0

− µ(Ai0))dµ ≤ ∥1Ai0
− µ(Ai0)∥2L2(µ)

≤ 4k(k + 1)
√
2tµ+(Ai0).

Since µ(Ai0) ≤ 1/2, it follows from (4.2) that

(8k2 + 8k + 1)
√
2tµ+(Ai0) ≥ 2µ(Ai0)(1− µ(Ai0)) ≥ µ(Ai0).

Recalling that t = 4k(k + 1)/λk(M,µ), we finally obtain

µ+(Ai0) ≥
√
λk(M,µ)

(16k(k + 1) + 2)
√

2k(k + 1)
µ(Ai0) ≥

√
λk(M,µ)

80k3
µ(Ai0),

which implies (4.1). This completes the proof of the theorem. �
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Remark 4.5. From the proof of [3] Bakry-Ledoux’s lemma (Lemma 4.1)

follows from the following Bakry-Émery type L2-gradient estimate:

|∇Pt(f)|2(x) ≤ e−2KtPt(|∇f |2)(x)(4.8)

for any Lipschitz function f and any x ∈ X. Gigli, Kuwada, and
Ohta proved the gradient estimate (4.8) for compact finite-dimensional
Alexandrov spaces satisfying CD(K,∞) ([19, Theorem 4.3]). Here
Alexandrov spaces are metric spaces whose ’sectional curvature’ is
bounded from below in the sense of the triangle comparison property.
In particular the same argument in this section implies that Theorem
1.6 holds for compact finite-dimensional Alexandrov spaces satisfying
CD(0,∞). Refer to [24] for the Laplacian on Alexandrov spaces. We
remark that Theorem 1.4 holds for compact finite-dimensional Alexan-
drov spaces from the proof of [28]. Consequently the k-th eigenvalue
of Laplacian and the k-way isoperimetric constant are equivalent up
to polynomials of k for compact finite-dimensional Alexandrov spaces
satisfying CD(0,∞). In particular it is also valid for compact finite-
dimensional Alexandrov spaces of nonnegative curvature, since such
spaces satisfy CD(0,∞) ([45], [53]).

5. Rough stability of eigenvalues of the weighted
Laplacian and multi-way isoperimetric constants

We first review the concentration topology. Recall that the Hausdorff
distance between two closed subsets A and B in a metric space X is
defined by

dH(A,B) := inf{ ε > 0 | A ⊆ Cε(B), B ⊆ Cε(A) }.

Let (I, µ) be a probability space. We denote by F(I,R) the space of
all µ-measurable functions on I. Given λ ≥ 0 and f, g ∈ F(I,R), we
put

meλ(f, g) := inf{ ε > 0 | µ(|f − g| > ε) ≤ λε },

where µ(|f − g| > ε) := µ({x ∈ I | |f(x) − g(x)| > ε}). Note that, if
any two functions f, g ∈ F(I,R) with f = g a.e. are identified to each
other, then meλ is a distance function on F(I,R) for any λ ≥ 0 and its
topology on F(I,R) coincides with the topology of the convergence in
measure for any λ > 0. The distance functions meλ for all λ > 0 are
mutually equivalent.

Let d be a semi-distance function on I, i.e., a nonnegative symmetric
function on I × I satisfying the triangle inequality. We indicate by
Lip1(d) the space of all 1-Lipschitz functions on I with respect to d .
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Note that Lip1(d) is a closed subset in (F(I,R),meλ) for any λ ≥ 0.
For λ ≥ 0 and two semi-distance functions d and d ′ on I, we define

HλLι1(d , d ′) := dH(Lip1(d),Lip1(d ′)),

where dH is the Hausdorff distance function in (F(X,R),meλ). HλLι1
is a distance function on the space of all semi-distance functions on
X for all λ ≥ 0, and the two distance functions HλLι1 and Hλ′Lι1
are equivalent to each other for any λ, λ′ > 0. We denote by L the
Lebesgue measure on R.

For any mm-spaceX there exists a Borel measurable map φ : [ 0, 1 ) →
X with φ∗L = µX (see [23, Theorem 17.41]). We call such a map φ a
parameter of X. Note that a parameter of X is not unique in general.
For a parameter φ ofX, we define a function φ∗ dX : [ 0, 1 )×[ 0, 1 ) → R
by φ∗ dX(s, t) := dX(φ(s), φ(t)) for any s, t ∈ [ 0, 1 ).

Definition 5.1 (Observable distance function). For two mm-spaces X
and Y we define

HλLι1(X,Y ) := infHλLι1(φ∗
X dX , φ

∗
Y dY ),

where the infimum is taken over all parameters φX : [ 0, 1 ) → X and
φY : [ 0, 1 ) → Y .

We say that two mm-spaces are isomorphic to each other if there is
a measure preserving isometry between the spaces. Denote by X the
space of isomorphic classes of mm-spaces. The function HλLι1 is a
distance function on X for any λ ≥ 0. Note that HλLι1 and Hλ′Lι1
are equivalent to each other for any λ, λ′ > 0.

Definition 5.2 (Concentration topology). We say that a sequence of
mm-spaces Xn, n = 1, 2, · · · , concentrates to an mm-space Y if Xn

converges to Y as n → ∞ with respect to H1Lι1. The topology on
the set X induced by the observable distance function is called the
concentration topology.

The term ’concentration topology’ comes from the following: We say
that a sequence of mm-spaces {Xn} is a Lévy family if limn→∞ αXn(r) =
0 for any r > 0. Due to Lévy’s lemma ([29], [27, Proposition 1.3]) we
obtain the following:

Proposition 5.3 ([22]). A sequence {Xn}∞n=1 of mm-spaces is a Lévy
family if and only if it concentrates to the one-point mm-space.

For example, the sequence of n-dimensional unit spheres in Rn+1,
n = 1, 2, · · · , concentrates to the one-point space by Lévy’s result([29]).

The concentration topology is strictly weaker than the measured
Gromov-Hausdorff topology on the space of mm-spaces ([16]). We
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mention that the concentration topology coincides with the measured
Gromov-Hausdorff topology on the set of mm-spaces satisfying CD(K,N)
for fixed K and N < +∞. In fact, the set becomes compact with re-
spect to the measured Gromov-Hausdorff topology because we have
the doubling condition with a uniform doubling constant under the
condition CD(K,N).

Answering a conjecture by Fukaya in [15], Cheeger and Colding
proved the continuity of eigenvalues of Laplacian on Riemmanian man-
ifolds with respect to the measured Gromov-Hausdorff topology under
the condition CD(K,N) for fixed K,N ∈ R ([8]). We consider an
analogy of the above Cheeger-Colding result with respect to the con-
centration topology:

Corollary 5.4. There exists a universal numeric constant c > 0 satis-
fying the following. Let {(Mn, µn)} be a sequence of closed weighted

Riemannian manifolds of nonnegative Bakry-Émery Ricci curvature
and assume that the sequence concentrates to a closed weighted Rie-
mannian manifold (M∞, µ∞). Then for any natural number k we have

lim sup
n→∞

max
{ λk(Mn, µn)

λk(M∞, µ∞)
,
λk(M∞, µ∞)

λk(Mn, µn)

}
≤ exp(ck)(5.1)

and

lim sup
n→∞

max
{ hk(Mn, µn)

hk(M∞, µ∞)
,
hk(M∞, µ∞)

hk(Mn, µn)

}
≤ k3 exp(ck).(5.2)

Note that dimension of Mn may diverge to infinity as n→ ∞.
The rest of this subsection is devoted to prove Corollary 5.4. For the

proof we first recall the definition of observable diameter introduced by
Gromov in [22]:

Definition 5.5 (Observable diameter). Let κ > 0. We define the
partial diameter

diam(µX , 1− κ)

of µX as the infimum of diamA over all Borel subsets A ⊆ X with
ν(A) ≥ 1− κ. Define the observable diameter

ObsDiamR(X;−κ)

ofX as the supremum of diam(f∗µX , 1−κ) over all 1-Lipschitz functions
f : X → R.

The idea of the observable diameter comes from the quantum and
statistical mechanics, i.e., we think of µX as a state on a configuration
space X and f is interpreted as an observable.
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The next lemma expresses the relation between the observable di-
ameter and the separation distance. The proof of the lemma is found
in [17, Subsection 2.2]

Lemma 5.6 ([22]). Let X be an mm-space. For any κ, κ′ > 0 with
κ > κ′, we have

(1) Sep(X;κ, κ) ≤ ObsDiamR(X;−κ′),
(2) ObsDiamR(X;−2κ) ≤ Sep(X;κ, κ).

Lemma 5.7. Let X,Y be two mm-spaces and assume that H1Lι1(X,Y ) <
ε < 1. Then for any κ ∈ ( ε, 1 ) we have

ObsDiamR(Y ;−κ) ≤ ObsDiamR(X;−(κ− ε)) + 2 ε .

Proof. The condition H1Lι1(X, Y ) < ε implies the existence of two
parameters φX : [ 0, 1 ) → X and φY : [ 0, 1 ) → Y such that

dH(φ
∗
X Lip1(X), φ∗

Y Lip1(Y )) < ε .

Hence, for any f ∈ Lip1(Y ), there exists g ∈ Lip1(X) such that

L(|f ◦ φY − g ◦ φX | > ε) < ε .

Take a Borel subset A ⊆ R such that g∗µX(A) ≥ 1 − κ + ε and
diam(g∗µX , 1− (κ− ε)) = diamA. Putting

B := f ◦ φY ({|f ◦ φY − g ◦ φX | ≤ ε} ∩ (g ◦ φY )
−1(A)),

we find

f∗µY (B) ≥ (1− ε) + (1− κ+ ε)− 1 = 1− κ.

Given s, t ∈ {|f ◦ φY − g ◦ φX | ≤ ε} ∩ (g ◦ φY )
−1(A) we have

|f ◦ φY (s)− f ◦ φY (t)|
≤ |f ◦ φY (s)− g ◦ φX(s)|+ |g ◦ φX(s)− g ◦ φX(t)|

+ |g ◦ φX(t)− f ◦ φY (t)|
≤ diamA+ 2 ε,

which implies diam(f∗µY , 1 − κ) ≤ diamA + 2 ε. This completes the
proof. �
Lemma 5.8. Let (M,µM) and (N,µN) be two closed weighted Rie-

mannian manifolds of nonnegative Bakry-Émery Ricci curvature such
that H1Lι1((M,µM), (N,µN)) < 1/2. Assume that two positive num-
bers ε, δ satisfies H1Lι1((M,µM), (N,µN)) < ε < 1/2 and ε+δ < 1/2.
Then we have

λ1(N,µN) ≥ λ1(M,µM)
{ δ

2 ε
√
λ1(M,µM)− 6 log(1

4
− ε

2
− δ

2
)

}2

(5.3)
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and

h1(N,µN) ≥ h1(M,µM) · δ

ε h1(M,µM)− 6 log(1
4
− ε

2
− δ

2
)
.(5.4)

Proof. Combining (2.3), Lemmas 5.6 and 5.7 gives that for any κ > ε
we have

ObsDiamR((N,µN);−κ) ≤ ObsDiamR((M,µM);−(κ− ε)) + 2 ε

≤ Sep
(
(M,µM);

κ− ε

2
,
κ− ε

2

)
+ 2 ε

≤ 6√
λ1(M,µM)

log
2

κ− ε
+ 2 ε .

Lemma 5.6 again yields

Sep((N,µN);κ, κ) ≤
6√

λ1(M,µM)
log

2

κ− ε
+ 2 ε .

As in the proof of Lemma 2.9 (1) we obtain

α(N,µN )(r) ≤ ε+2 exp(−6−1
√
λ1(M,µM)(r − 2 ε))

for any r > 2 ε. By subsutituting

r := 2 ε−
6 log(1

4
− ε

2
− δ

2
)√

λ1(M,µM)

we obtain α(N,µN )(r) ≤ 2−1 − δ. Applying Theorem 2.5 then implies
the inequality (5.3). The proof of (5.4) is similar and we omit it. �

Proof of Corollary 5.4. Due to Theorem 2.5 we have supn∈N λ1(Mn, µn) <
+∞ unless {(Mn, µn)} concentrates to the one point space. Since the
condition CD(0,∞) is preserved under the concentration topology ([18,
Theorem 1.2]), the limit weighted manifold (M∞, µ∞) has nonnegative

Bakry-Émery Ricci curvature. Combining Lemma 5.8 with Theorem
1.1 we obtain the corollary. �

The proof of Corollary 5.4 also follows from the following lemma and
corollary together with Theorems 1.1 and 2.5:

Lemma 5.9. Let X, Y be two mm-spaces such that H1Lι1(X,Y ) <
ε < 1/(k+1). Then for any κ0, κ1, · · · , κk, κ′0, κ′1, · · · , κ′k > 0 such that
κi − (k + 1) ε ≥ κ′i for any i, we have

Sep(Y ;κ0, κ1, · · · , κk) ≤ Sep(X;κ′0, κ
′
1, · · · , κ′k) + 2 ε .
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Proof. Take k+1 Borel subsets A0, A1, · · · , Ak ⊆ Y such that µY (Ai) ≥
κi for any i and mini ̸=j dY (Ai, Aj) = Sep(Y ;κ0, κ1, · · · , κk). Since
H1Lι1(X, Y ) < ε there exist two parameters φX : [ 0, 1 ) → X and
φY : [ 0, 1 ) → Y such that H1Lι1(φ∗

X dX , φ
∗
Y dY ) < ε. For each

i = 0, 1, · · · , k, we put fi(x) := dY (x,Ai). Since each fi is 1-Lipschitz,
the condition H1Lι1(φ∗

X dX , φ
∗
Y dY ) < ε implies the existence of k + 1

1-Lipschitz functions gi : X → R, i = 0, 1, · · · , k, such that me1(fi ◦
φY , gi ◦ φX) < ε. Putting

Ĩ :=
k∩

i=0

{|fi ◦ φY − gi ◦ φX | ≤ ε}

we have L(Ĩ) ≥ 1−(k+1) ε. For each i = 0, 1, · · · , k we define Bi ⊆ X
as Bi := φX(φ

−1
Y (Ai) ∩ Ĩ). Note that µX(Bi) ≥ L(φ−1

Y (Ai) ∩ Ĩ) ≥
κi− (k+1) ε. For any ai ∈ φ−1

Y (Ai)∩ Ĩ , aj ∈ φ−1
Y (Aj)∩ Ĩ, i ̸= j, we get

dX(φX(ai), φX(aj)) ≥ |gi(φX(ai))− gj(φX(aj))|
≥ |fi(φY (ai))− fj(φY (aj))| − 2 ε

≥ dY (Ai, Aj)− 2 ε,

which implies that

min
i ̸=j

dX(Bi, Bj) ≥ min
i̸=j

dY (Ai, Aj)− 2 ε = Sep(Y ;κ0, κ1, · · · , κk)− 2 ε .

This completes the proof. �
Corollary 5.10. Assume that a sequence {Xn} of mm-spaces concen-
trate to an mm-space Y . Then we have

lim inf
n→∞

Sep(Xn;κ
′
0, κ

′
1, · · · , κ′k) ≥ Sep(Y ;κ0, κ1, · · · , κk)(5.5)

and

lim sup
n→∞

Sep(Xn;κ0, κ1, · · · , κk) ≤ Sep(Y ;κ′0, κ
′
1, · · · , κ′k)(5.6)

for any κ0, κ1, · · · , κk, κ′0, κ′1, · · · , κ′k > 0 such that κi > κ′i.

6. Questions

In this section we raise several questions which are concerned with
this paper. We also discuss the conjecture which was posed in [18].
Throughout this section, unless otherwise stated, we will always assume
that (M,µ) is a closed weighted Riemannian manifold of nonnegative

Bakry-Émery Ricci curvature.

Question 6.1. Independent of k, is it possible to bound λk+1(M,µ)/λk(M,µ)
or hk+1(M,µ)/hk(M,µ) from above by a universal numeric constant ?
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Masato Mimura asked me about the fraction of λk+1(M,µ)/λk(M,µ).
Theorem 1.1 leads to the above question for eigenvalues of the weighted
Laplacian. Due to Theorems 2.10 and 3.4, in order to give an affirma-
tive answer to Question 6.1 for eigenvalues it suffices to extend E. Mil-
man’s theorem (Theorem 2.5) in terms of λk(M,µ) and the k-separation
distance, i.e., any k-separation inequalities imply appropriate lower
bounds of the k-th eigenvalue λk(M,µ). Or more weakly, it suffices to
prove that any logarithmic k-separation inequalities of the form (3.3)
give appropriate estimates of the k-th eigenvalue λk(M,µ) from below.
This can also be considered as an extension of [20, Theorem 1.14]. In
[20] Gozlan, Roberto, and Samson proved that any exponential con-
centration inequalities imply appropriate Poincaré inequalities under
assuming CD(0,∞). Notice that by Lemma 2.9 exponential concentra-
tion inequalities are nothing but logarithmic 2-separation inequalities.

For multi-way isoperimetric constants, we also need to improve k3

order in Proposition 2.11 to some universal numeric constant. The
following integration argument makes possible to improve k3 order but
it is not logarithmic separation inequalities:

Proposition 6.2. Let (M,µ) be a closed weighted Riemannian mani-
fold and k a natural number. Then for any κ > 0 we have

Sep((M,µ);κ, κ, · · · , κ︸ ︷︷ ︸
k+1 times

) ≤ 2

log 2
· log(2/κ)

hk(M,µ)κ
.

Proof. Let A0, A1, · · · , Ak be k+1 Borel subsets ofM such that µ(Ai) ≥
κ for any 0 ≤ i ≤ k. Our goal is to prove the following inequality:

D := min
i̸=j

dM(Ai, Aj) ≤
2

log 2
· log(2/κ)

hk(M,µ)κ
.(6.1)

In order to prove (6.1) we may assume that each Ai is given by a
finite union of open balls. For r ∈ [0, D/2) we put Bi := Or(Ai),

i = 0, 1, · · · , k − 1, and Bk := M \
∪k−1

i=0 Bi. By the definition of
hk(M,µ), we have µ+(Bi0) ≥ hk(M,µ)µ(Bi0) for some i0. Assume first
that i0 = k. Since each Bi consists of a finite union of open balls we
obtain

k−1∑
i=0

µ+(Bi) = µ+(Bk) ≥ hk(M,µ)µ(Bk) ≥ hk(M,µ)κ.

In the case where i0 ≤ k − 1, we get

k−1∑
i=0

µ+(Bi) ≥ µ+(Bi0) ≥ hk(M,µ)µ(Bi0) ≥ hk(M,µ)κ
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Combining the above two inequalities implies that

µ
( k−1∪

i=0

Or(Ai)
)
− µ

( k−1∪
i=0

Ai

)
=

∫ r

0

k−1∑
i=0

µ+(Os(Ai))ds ≥ hk(M,µ)κr,

which yields

µ
(
M \

k−1∪
i=0

Or(Ai)
)
≤ (1− hk(M,µ)κr)µ

(
M \

k−1∪
i=0

Ai

)
.(6.2)

What follows is a straightforward adaption of Gromov-V. Milman’s
argument in [21, Theorem 4.1]. Put ε := (2κhk(M,µ))−1. If ε ≤ r,
then there exists a natural number j such that j ε ≤ r < (j + 1) ε.
Iterating (6.2) k times shows

µ
(
M \Or

( k−1∪
i=0

Ai

))
≤ µ

(
M \Oj ε

( k−1∪
i=0

Ai

))
≤ (1− hk(M,µ)κ ε)µ

(
M \O(j−1) ε

( k−1∪
i=0

Ai

))
· · ·

≤ (1− hk(M,µ)κ ε)jµ
(
M \

k−1∪
i=0

Ai

)
≤ (1− hk(M,µ)κ ε)j

= exp(−j log 2)
≤ exp(−(r/ ε) log 2)

= exp(−hk(M,µ)rκ2 log 2).

If r < ε, then we have

µ
(
M \Or

( k−1∪
i=0

Ai

))
≤ 1 ≤ 2 · 2− ε−1 r ≤ 2 exp(−hk(M,µ)rκ2 log 2)

Put r := D/2. Combining the above two inequalities we obtain

κ ≤ µ(Ak) ≤ µ
(
M \OD

2

( k−1∪
i=0

Ai

))
≤ 2 exp(−hk(M,µ)Dκ log 2),

which implies (6.1). This completes the proof. �

Question 6.3. What is the right order of
√
λk(M,µ)/hk(M,µ), λk(M,µ)/λ1(M,µ),

and hk(M,µ)/h1(M,µ) in k? Especially can we bound λk(M,µ)/λ1(M,µ)
and hk(M,µ)/h1(M,µ) from above by some polynomial function of k ?
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The following two questions are concerned with the stability of eigen-
values of the weighted Laplacian and multi-way isoperimetric con-
stants.

Question 6.4. Is it true that if two convex domains K,L ⊆ Rn satisfy
vol(K) ≃ vol(L), then ηk(K) ≃ ηk(L) or hk(K) ≃ hk(L)?

Question 6.5. Can we get the stability of eigenvalues of the weighted
Laplacian and multi-way isoperimetric constants with respect to the
concentration topology ? Or more weakly can we replace exp(ck) and
k3 exp(ck) in Corollary 5.4 with some universal numeric constant ?

In view of Corollary 5.10 an extension of E. Milman’s theorem for the
k-separation distance and the k-th eigenvalue would imply the latter
question in Question 6.5.

In [18, Conjecture 6.11] we raised the following conjecture.

Conjecture 6.6. For any natural number k there exists a positive
constant Ck depending only on k such that if X is a compact finite-
dimensional Alexandrov space of nonnegative curvature, then we have

λk(X) ≤ Ckλ1(X).

Since Theorems 1.4 and 1.6 hold for compact finite-dimensional Alexan-
drov spaces of nonnegative curvature, the above question amounts to
saying the existence of Ck such that hk(X) ≤ Ckh1(X).

We remark that Theorem 2.10 holds for compact finite-dimensional
Alexandrov spaces. In fact, the only we need in the proof is the Davies-
Gaffney heat kernel estimate∫

A

∫
B

pt(x, y)dµ(x)dµ(y) ≤
√
µ(A)µ(B) exp

(
− d2(A,B)

4t

)
for any Borel subsets A,B and asymptotic expansion of heat kernel by
eigenvalues and eigenfunctions of Laplacian ([10]). These are true for
compact finite-dimensional Alexandrov spaces ([47], [24]). However it
is not known the corresponding theorem of E. Milman’s theorem (The-
orem 2.5) for Alexandrov spaces. Note that we used Theorem 2.5 in
the proof of Theorem 3.4. In order to give an affirmative answer to
Conjecture 6.6, it suffices to prove that any concentration inequalities
imply appropriate exponential concentration inequalities under assum-
ing CD(0,∞) or Theorem 3.4 holds for general CD(0,∞) spaces by
Gozlan-Roberto-Samson’s theorem [20, Theorem 1.14].
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Appendix

The only point we need to be care when we prove Lee-Gharan-
Trevisan’s theorem (Theorem 1.4) for the smooth setting is the fol-
lowing lemma:

Lemma 6.7 ([28, Lemma 2.1]). Let X be an mm-space and f : X →
Rn a Lipschitz map. Then there exists a closed subset A of X such that
A ⊆ Supp f and

µ+
X(A)

µX(A)
≤ 2

∥|∇f |∥L2(µX)

∥f∥L2(µX)

.

Proof. For any positive real number t we put

At := {x ∈ X | |f(x)|2 ≥ t}.
Note that At ⊆ Supp f for any t > 0 and∫ ∞

0

µX(At)dt = ∥f∥2L2(µX)(6.3)

The co-area inequality ([5, Lemma 3.2]) implies that∫ ∞

0

µ+
X(At)dt ≤

∫
M

|∇(|f |2)|(x)dµX(x)(6.4)

≤ 2

∫
M

|f(x)||∇f |(x)dµX(x)

≤ 2∥f∥L2(µX)∥|∇f |∥L2(µX).

Combining (6.3) with (6.4) gives∫∞
0
µ+
X(At)dt∫∞

0
µX(At)dt

≤ 2
∥|∇f |∥L2(µX)

∥f∥L2(µX)

,

which implies the conclusion of the lemma. �


