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Abstract

Using Matrix theory, we compute the entanglement entropy between a supergravity
probe and modes on a spherical membrane. We demonstrate that a membrane stretched
between the probe and the sphere entangles these modes and leads to an expression for
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seen by the probe. We propose in particular that this entanglement entropy measures
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1 Introduction and Highlights

Classical gravity is a phenomenon of geometrical origin, encoded in the curvature of space-
time. Quantum considerations however, whether in the setting of string theory or otherwise,
suggest that the geometrical picture of gravity may be an effective long distance approxi-
mation scheme. At Planckian distances, a fundamental rethinking of the nature of gravity
sets in. There have also been recent suggestions that the perception of gravity is entropic,
arising from quantum entanglement [1]-[8]. And subsequently, one talks about the concept
of ‘emergent geometry’: the idea that gravitational geometry is a collective phenomenon
associated with underlying microscopic degrees of freedom.

In attempting to understand these ideas in a concrete computational setting, the Banks-
Fishler-Shenker-Susskind (BFFS) Matrix model [9] – and its related cousin, the Berenstein-
Maldacena-Nastase (BMN) system [10] – provide for a rich playground. They purport to
describe quantum gravity in a non-perturbative and complete framework, that of light-cone
M-theory. The degrees of freedom are packaged into matrices that, in principle, encode
geometrical gravity data at long enough distances. Spacetime curvature is then expected to
arise from the collective dynamics of these matrix degrees of freedom. Unfortunately, the
map between emergent geometry and matrix dynamics has proven to be a difficult one to
unravel (but see recent progress in this direction [11]-[18]).

A crude cartoon of Matrix theory dynamics goes as follows. The degrees of freedom,
arranged in matrices, represent an interlinked complex web of membranes and fivebranes. At
low energies, one can find settings where a hierarchy separates the different matrix degrees of
freedom. Sub-blocs of the matrices, modes that remain light and slow, describe localized and
widely separated lumps of energy; while other ‘off-diagonal’ modes become heavy and frozen
in their ground states – heuristically corresponding to membranes and fivebranes stretched
between the lumps. The effective dynamics of the lumps leads to the expected low energy
supergravity dynamics, and hence a notion of emergent geometry. From this perspective, it
is not surprising that a mechanism of entanglement across the degrees of freedom in sub-
blocs of the matrices is key to the notion of emergent spacetime geometry. However, to our
knowledge the role of quantum entanglement has not yet been explored in this context. In
this work, our goal is to take the first steps in understanding how geometry is encoded in
Matrix theory degrees of freedom through the phenomenon of quantum entanglement.

We consider a particularly simple setup in an attempt to make the otherwise challeng-
ing computation feasible. We will arrange a spherical membrane in light-cone M-theory,
stabilized artificially so as to source a smooth spherically symmetric curved spacetime; and
then we will add a probe supergravity particle a large distance away from the spherical
source. Realizing the setup in matrices, we are immediately led to explore fluctuations of
matrix modes that describes membranes stretched between sphere and probe. Using the
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configuration as a background scaffolding, we then focus on the dynamics of the fermionic
modes. Zero modes of the fermionic degrees of freedom describe a system of qubits with a
dense network of interactions. The qubit states map onto the eleven dimensional supergrav-
ity multiplet; hence, one is describing the interactions of supergravity modes in the given
background. The setup for example has been used recently to demonstrate fast scrambling
of supergravity modes in Matrix theory [19, 20].

We then can pose a concrete physical question. Given a bosonic matrix configuration,
what is the vacuum of the qubit system? Some of the qubits will be associated with the
spherical membrane, others with the probe. We can then compute the entanglement en-
tropy between the sphere and probe qubits in the vacuum. Effectively, through the BFSS
conjecture, we would be computing the entanglement between supergravity modes on the
sphere and on the probe. The computation can be carried out using an expansion in a small
parameter, the ratio of the sphere-probe distance to the radius of the sphere. That is, we
compute the entanglement entropy in the regime the probe is far away from the sphere.

We then analyze the result in relation to spin chain systems arising in the literature.
We see suggestive qualitative similarities – a logarithmic dependence on the sphere-probe
distance – that allow us to present an interpretation of the results. Our conclusion is that
space geometry is indeed encoded in the computed entanglement entropy. Unlike a similar
map between entanglement and geometry through an area law [2, 1], our suggestion has a
local character – possibly relating the rate of convergence of geodesics to a coefficient in the
entanglement entropy.

The presentation is organized as follows. Section 1 gives an overview of the Matrix the-
ory of interest and sets up the sphere-probe background configuration. Section 2 presents
the dynamics of the fermionic modes in the given background, shows the derivation of the
effective Hamiltonian and the corresponding vacuum. Section 3 shows the computation of
the Von Neumann entropy in the vacuum, summarizes an overview of what is known about
similar observables in the condensed matter literature, and collects a series of observations
and speculations about the interpretation of the result. Finally, section 4 collects some con-
cluding thoughts and directions for the future. Two appendices summarize several technical
details that arise in the main text.

2 The setup

2.1 BFSS matrix theory

The BFSS theory is a 0 + 1 dimensional supersymmetric matrix theory (the dimensional
reduction of the 10d super Yang-Mills) describing the dynamics of D0 branes. For N D0
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branes, the Lagrangian is given by [9, 21, 22, 23]

L = Tr

[
1

2R
DtXiDtXi +

R

4
[Xi, Xj]

2 + iΨ† I ·DtΨ
I −RΨ† I · σi ·

[
Xi,Ψ

I
]]

. (1)

The Xi’s are bosonic matrices, while the ΨI
α’s are fermionic – both in the adjoint of U(N).

The full theory has SO(9) symmetry, but for the purposes of the current work, we focus on a
scenario where six of the nine target space directions are compactified and the corresponding
bosonic excitations are frozen. Hence, we are left with SO(3) – the index i on Xi runs from
1 to 3. Correspondingly, we also write the spinors using SU(4) × SU(2) notation: on the
ΨI
α’s, I denotes the SU(4) index and α is the SU(2) label (not shown in the equation above).

The σi’s are then the 2× 2 Pauli matrices. Fixing the static gauge, the covariant derivative
Dt becomes simply the time derivative – at the cost of the constraint

i[Xi,Π
i] + 2ΨI ·Ψ† I = 0 , (2)

where the Πi’s are the Xi’s canonical momenta. The system is parameterized by

R =
gs
ls
, (3)

where gs is the string coupling and ls is the string length. In our conventions, X and Ψ are
dimensionless, and time has unit of length2.

The BFSS conjecture purports that this Lagrangian fully describes M-theory in the light-
cone frame with N units of light-cone momentum, pLC = N/R. The matrix Hamiltonian is
then identified with M-theory’s light-cone energy

H =
M2 + p2

i

2 pLC

. (4)

While the BFSS conjecture was originally formulated in the large N regime, the BFSS
Matrix theory at finite N is also believed to described discrete light-cone quantized (DLCQ)
M-theory [24, 22]. However, to make our computation more concise, we will assume that we
are dealing with large matrices

N � 1 . (5)

This is necessary because we want to arrange for a configuration of matrices which enough
energy content to source a smooth curved spacetime for a probe.

2To change to the conventions used in [9], write X = g−1/3X, t = g−2/3t, and hence H = g2/3H where the
variables with bars correspond to the ones in [9] in ls = 1 units. X is then length scale in eleven dimensional
Planck units.
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A massless supergravity particle with one unit of light-cone momentum is realized through
a U(1) configuration: the bosonic part of the Hamiltonian reproduces the expected light-
cone dispersion relation for a massless particle, while the zero modes of ΨI

α’s give rise to the
eleven dimensional supergravity multiplet – the 256 polarizations of the gravitons, gravitinos,
and the 3-form gauge field. For more interesting setups, one starts with block diagonal
configurations that break U(N)→ U(N1)× U(N2)× · · · , and each matrix block can realize
supergravitons or membranes or fivebranes or black holes carrying different amounts of light-
cone momentum [9, 25, 26, 27, 28]. By developing the quantum effective Hamiltonian for
these blocks, one then reproduces eleven dimensional light-cone M-theory interactions.

Consider the matrix configuration given by

Xi = rLi , Ψ = 0 (6)

The Lis are the angular momenta matrices, satisfying [Li, Lj] = i εijkLk, in an N dimensional
representation. This configuration represents an M-theory spherical membrane with N units
of light-cone momentum – sometimes called a non-commutative or fuzzy sphere – of radius

Radius ≡ R = lP

√
TrX2

i

N
' lP

rN

2
for large N � 1 (7)

where lP is the eleven dimensional Planck scale. The matrix Hamiltonian then leads to the
light-cone energy

H =
R

2N
M2 ⇒M =

1

lP

N2r2

2
= T2 × 4πR2 (8)

where T2 = 1/2π l3P is the tension of the membrane. This configuration however is not
a solution to the equations of motion. In particular, the potential [Xi, Xj]

2 appearing in
the Hamiltonian provides for flat directions corresponding to mutually commuting matrices.
Physically, this implies that it is energetically and entropically advantageous for this spherical
membrane to explode into widely separated supergravitons.

The BFSS conjecture has survived numerous checks (see for example [9, 25, 21]) and
may be considered to be a background-dependent non-perturbative definition of light-cone
M-theory. More recently, the BMN matrix model extended the setup to light-cone M theory
in a plane wave background – with the additional flux and curvature of the background
geometry lifting the flat directions we alluded to above. The fuzzy sphere configuration then
becomes a BPS stable configuration in the BMN system. These M-theory inspired matrix
models can also be related to the AdS/CFT or gravitational holography conjecture [29, 30].
In practice however, the latter provides for a more precise dictionary between a gauge theory
and string theory, while computations in the BFSS and BMN matrix theories quickly become
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technically very challenging and conceptually more difficult to interpret from the M-theory
side.

Paramount amongst the difficulties plaguing the BFSS/BMN settings is the challenge of
understanding how the perception of spacetime is to emerge from matrix degrees of freedom.
One natural approach is to identify the eigenvalues of the bosonic matrices Xi as position
labels (after all, they are related to the position of the underlying D0 branes). Implicit in
this is that the usual notion of space geometry arises in the limit of commuting matrices.
When matrix eigenvalues (or D0 brane positions) are widely separated, the off-diagonal ma-
trix modes become heavy and frozen, leading to an effective dynamics of the eigenvalues
that reproduces the supergravity interactions. Hence, in Matrix theory language, it seems
the key to emergent gravitational geometry – that is, the encoding of spacetime curvature
information into matrix degrees of freedom – lies in the interplay between the matrix eigen-
values and heavy off-diagonal modes. In the dual M-theory language, off-diagonal matrix
degrees of freedom correspond to membranes stretched between the gravitating parts of the
system. Presumably, it is then such a network of stretched M-theory membranes that under-
lies – in the right low energy limit – the perception of an emergent curved space. This may
appear like an unusual perspective on emergent geometry, yet it syncs well with a seemingly
independent line of thought that has recently risen in various other contexts: the concept
of geometry or gravity emergent from quantum entanglement [1]-[7]. A network of stretched
membranes as represented by off-diagonal modes of matrices provides for a natural mecha-
nism for entangling supergravity modes. Hence, in the right setting, we may be expect to
read off spacetime geometry data by looking at entanglement entropy in Matrix theory.

It is worthwhile noting that there have been several other different yet related approaches
to the problem of emergent geometry in Matrix theory. In [13, 31], the focus has been on
the bosonic dynamics of the matrix degrees of freedom. The system is highly non-linear and
known to be chaotic [32, 33] and the idea here is that geometry emerges once one averages
over the complex chaotic evolution of the matrix degrees of freedom. In the commuting
matrix regime, methods from random matrix theory (see for example [34] for a review)
can be employed to extract statistical information about the eigenvalue distribution and
corresponding geometry. In [14], the role of the fermionic degrees were also considered in
decoding geometry from matrices in the context of matrix black holes. Beyond the details,
our approach also differs conceptually from previous attempts in that it focuses on a key
new quantity – the entanglement entropy of the fermionic matrix degrees of freedom.

2.2 Bosonic scaffolding

We want to set up a computational framework that allows us to extract spacetime geometry
from matrix degrees of freedom and entanglement entropy. For this purpose, we want to
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arrange for a fixed configuration in light-cone M-theory that seeds a simple yet non-trivial
background geometry. We consider a spherical membrane of radius R with N � 1 units
of light-cone momentum, plus a massless particle with one unit of light-cone momentum a
distance x from the center of the membrane. We consider the regime x� R so thatR/x� 1
will serve as a small expansion parameter3. The configuration is obviously unstable but we
are not concerned with dynamics: we pin down the membrane and probe using the necessary
external forces and we ask within Matrix theory: what is the geometry experienced by the
probe as a function of R/x?

In Matrix theory language, we start with a static arrangement of (N + 1) × (N + 1)
matrices of the form

Xi,Ψ
I →

 N ×N

 . (9)

For the bosonic degrees of freedom, we write

Xi =

(
r Li 0

0 xi

)
+

(
0 δxi
δx†i 0

)
(10)

where the δxi’s are N dimensional vectors, and the xi’s are numbers. The first part of
equation (10) represents a fuzzy sphere at the origin, plus a probe at xi. Using external
means, we pin down the sphere and the probe: that is, we assume the necessary terms are
added to the Lagrangian so that perturbations within the N ×N and the 1× 1 blocks can
classically be set to zero. The second part of equation (10) can be thought of as fluctuations
corresponding to stretched membranes between the sphere and the probe. Note however
that we will not need to assume that the δxi’s are small, hence allowing for even a classical
profile for these off-diagonal modes. Qualitatively, the dynamics is very similar to the usual
story in Matrix theory. We can guess that the δxi’s will settle in their quantum oscillator
ground state where contributions from their zero point energy cancels with the zero point
energy from the fermionic degrees of freedom thanks to supersymmetry [35, 22]. At one and
two loop levels in these fluctuations, one would then reproduce the momentum dependent
effective gravitational potential between probe and sphere. Hence, the 〈δx2〉’s end up with
non-zero quantum expectation values as is typical for Gaussian ground states. From the
perspective of the fermionic degrees of freedom, we will see that this non-zero quantum

3We expect that, when the probe is close to the sphere, it will become sensitive to the non-commutative
matrix nature of the spherical configuration. We are trying to focus on extracting smooth geometry data,
where the Planckian substructure of D0 branes is smoothed over.
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expectation value of the off-diagonal modes results in quantum entanglement between the
supergravity modes associated with the spherical membrane and the probe.

Without loss of generality, we may arrange the probe so that x1 = x2 = 0, and x3 ≡ x.
Using (7), the condition that the probe is far away from the sphere then reads

x� r N . (11)

Furthermore, we also have
x� 1 , r N � 1 (12)

which translate in terms of dimensionfull coordinates to distance and radius being much
greater than the eleven dimensional Planck length. The configuration should still have
rotational symmetry about the 3 axis. In matrix language, we require[(

L3 0
0 0

)
, Xi

]
= i εij3Xj , (13)

which is the algebra obeyed for the sphere configuration alone – without the probe and the
δxi’s. This immediately leads to the conditions on the δxi’s

L3δx3 = 0 , L3δx+ = δx+ , L3δx− = −δx− (14)

where δx± ≡ δx1 ± iδx2. We then write

δx3 = C3 |J0〉 , δx+ = C+ |J1〉 , δx− = C− |J − 1〉 (15)

where N = 2 J + 1, the C’s are complex constants to be determined, and the |JM〉 are
the usual angular momentum eigenstates of spin J . An alternative approach is to require
this azimuthal symmetry on expectation values in the vacuum, allowing for the spin J to
be integer or half-integer – and hence N to be odd or even. At large N , we expect there
would be no difference in conclusions between the case where N is odd and where N is even;
and it is more computationally convenient to impose the symmetry conditions directly as
in (15): this however means that we will be dealing with integer J , and henceforth N is an
odd integer.

The bosonic potential is given by

Vpot = −R
4

Tr [Xi, Xj]
2 , (16)

where the commutator becomes

[Xi, Xj] =

(
iεijkr

2Lk + δxi ⊗ δx†j − δxj ⊗ δx
†
i xjδxi − xiδxj + r Li · δxj − r Lj · δxi

−xjδx†i + xiδx
†
j − δx

†
j · r Li + δx†i · r Lj δx†i · δxj − δx

†
j · δxi

)
.

(17)
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We can then write the potential in terms of the C’s

Vpot =
R

8

[
r2

(
J2 + 4

x

r
+ 2

x2

r2

)
|C−|2 + r2

(
J2 − 4

x

r
+ 2

x2

r2

)
|C+|2

+4J2r2|C3|2 − 2J2r2C+C
∗
− + 4Jr2C3C

∗
−

(
1 +

x

r

)
− 4Jr2C3C

∗
+

(
1− x

r

)
+ |C−|4 + |C+|4 − 2|C−|2|C+|2

]
+ c.c. , (18)

where we have made use of J = N/2 � 1, and we have dropped the constant term arising
from the energy of the spherical membrane (the probe does not contribute energy, it is a
massless supergravity particle with a single unit of light-cone momentum). We note that the
potential has a symmetry under the exchange of C+ ↔ C− in the regime x� r N .

The minimum of (18) is at C+ = C− = C3 = 0 as one can easily verify. The normal modes,
labeled a, b, and c, are straightforward to identify and one gets, in the regime x � r N , to
second order in r N/x

C3 =
1

4

√
R

[√
2

(
2− J2 r

2

x2

)
Ca + 2J

r

x

(
1− r

x

)
Cb + 2J

r

x

(
1 +

r

x

)
Cc

]
C+ = −1

4

√
R

[
2
√

2J
r

x

(
1 +

r

x

)
Ca + J2 r

2

x2
Cb −

(
4− J2 r

2

x2

)
Cc

]
C− =

1

4

√
R

[
−2
√

2J
r

x

(
1− r

x

)
Ca +

(
4− J2 r

2

x2

)
Cb − J2 r

2

x2
Cc

]
(19)

with associated frequencies

ωa = Rr
J2r2

x2
, ωb = ωc = Rx . (20)

written to leading order in r N/x. The kinetic terms for the Ca, Cb, and Cc modes are
normalized to unity, which then quickly allows us to write the vacuum expectation values of
the normal mode oscillators in the Gaussian ground states

〈C∗aCa〉 =
1

2Rr

1

J2

x2

r2
, 〈C∗cCc〉 = 〈C∗bCb〉 =

1

2Rr

r

x
. (21)

This then allows us to estimate the vacuum expectation values of the original oscillator
degrees of freedom

〈C∗3C3〉 =
1

4 r

1

J2

x2

r2
,
〈
C∗+C+

〉
=
〈
C∗−C−

〉
=
〈
C∗+C−

〉
=

1

4 r

〈C∗3C+〉 = 〈C∗3C−〉 = − 1

4 r

1

J

x

r
. (22)
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This scaling of the correlators of the C’s with x may at first appear problematic given the
form of (18) and the inherent small fluctuation assumption in arriving at (22); but a quick
comparison of the terms in the potential confirms that the quartic terms are sub-leading
since x� r, N � 1, and r � 1. Note also that these relations imply, at the quadratic order
in expectation values, the following

C+ = C− , C3 = − x

J r
C− . (23)

It will also be helpful, as we shall see, if we can understand the global structure of the
potential at the classical level when the fluctuations are not small. Extremizing equation (18)
with respect to C3, for x� r N , we get

C3 = − x

2 J r
(C− + C+) . (24)

Extremizing with respect to C+ and C−, once again for x� r N , gives

4C+C
∗
+ = −2C−C

∗
− +

x2

r2
±

√(
2C−C∗− −

x2

r2

)2

+ 8C∗+C−
x2

r2
(25)

and a similar expression with C+ ↔ C−. These equations imply that the phases of C+, C−,
and C3 must be in sync; and we confirm that there is only one minimum of the potential,
located at C3 = C− = C+ = 0. However, there is a valley in the potential with a shallow
curvature in the regime where x � r N (in the x → ∞ limit, it is a flat direction for the
δxi’s). Focus on the case where all the C’s have the same phase4, and minimizing the resulting
potential in the C3, C+, and C− in the large x regime, we easily obtain the conditions

C+ = C− = −J r
x
C , C3 = C (26)

where C is a yet to be determined real parameter which runs along the shallow-slopped valley
of the potential. This is indeed what we found near the origin by looking at small quantum
fluctuations in the vacuum from (23). We now see that the shape of these fluctuations sits
along a valley that extends from the origin on a global scale. In particular, evaluating the
full non-linear potential along this valley, we get

Vpot = r2R
J2r2

x2
C2 (27)

4Note that there is no non-trivial topological profile that we can construct through the overall phase.
Hence, we may safely take all the C’s to be real.
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for all C. The curvature of the valley goes as J2r2/x2 � 1 indicating a parametrically small
cost in energy for C ∼ 1. For ground state quantum fluctuations, we have from (22)

C = − 1

2 J

x

r3/2
. (28)

Due to the form of the fermionic terms in (1), we will see that only terms quadratic in the
C’s will appear in the final effective action. Hence, we will be able to treat quantum and
classical profiles for the δxi’s in a unified notation by writing the off-diagonal profiles as

δx+ = C+ |J1〉 =
J r

x
C |J1〉 , δx− = C− |J − 1〉 =

J r

x
C |J − 1〉 , δx3 = C3 |J0〉 = −C |J0〉 .

(29)
For C of quantum mechanical origin, we can use (28): all quadratic expressions in the C’s
should then be interpreted as quantum expectation values in the harmonic oscillator ground
states. On the other hand, in the same final expression, we can also take C as a arbitrary
fixed classical profile along the shallow valley of the potential that extends from the origin.

In summary, our setup qualitatively corresponds to a spherical membrane, a probe, and
a membrane stretched between them. Equation (10), along with (29) and (28), constitute
our bosonic configuration that will serve as scaffolding for the fermionic matrix degrees of
freedom. The latter represent the supergravity modes on the sphere, the probe, and the
stretched membrane.

3 Fermion dynamics

Based on the scaffolding from the previous section, we arrange the fermionic degrees of
freedom as

ΨI =

(
ΨI δψI

δψ
I

ψI

)
(30)

where the ΨI ’s are N ×N matrices, the δψI ’s are N -vectors, and the δψI is a 1× 1 matrix

entry. Note that δψ
I

is not the complex conjugate of δψI . The zero modes of these fermions
determine the supergravity modes on the spherical membrane (from the ΨI ’s), the probe
(from the ψI), and the stretched membrane (from the δψI ’s). The Hamiltonian for the static
setup then takes the form

HF = H0 +H1 +H2 , (31)

where the subscript labels the number of off-diagonal fermion variables in the corresponding
term. Substituting the bosonic scaffolding into (1), we get

H0

R
= rTr

(
Ψ† · σi · LiΨ−Ψ† · σi ·ΨLi

)
(32)
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H1

R
= −δx†i (Ψ−ψ)·σTi ·δψ

†−δx†i (Ψ†−ψ†)·σi·δψ−δψ†·σi·(Ψ−ψ)δxi−δψ·σTi ·(Ψ†−ψ†)δxi (33)

H2

R
= δψ · σTi · (r Li − xi)δψ

†
+ δψ† · σi · (r Li − xi)δψ (34)

where we henceforth suppress the SU(4) indices. As we shall see, this describes a system of
qubits with a dense network interactions. Our task is to find the vacuum of this system. We
are eventually aiming to compute the entanglement entropy in this vacuum – between the
qubits associated with the probe and the qubits associated with the sphere.

3.1 Diagonalization I

We start by diagonalizing the Hamiltonian in the off-diagonal fermions, the δψ’s. We need
to solve the eigenvalue problem

σi · (r Li − xi)δψ = λδψ (35)

We denote the corresponding eigenvalues as λ
(i)
M for i = 1, 2 with the eigenvectors written as

|M〉(1) and |M〉(2). Similarly, we need to solve the eigenvalue problem

σTi · (r Li − xi)δψ
†

= λδψ
†

(36)

We denote these eigenvalues as λ
(i)

M for i = 1, 2 with the corresponding eigenvectors written
as |M〉(1) and |M〉(2). We first unravel the SU(2) spinorial structure, and write

δψ =

(
δψ+

δψ−

)
=
∑
M

δηM |M〉(1) +
∑
M

δχM |M〉(2) (37)

where δψ+, δψ−, δηM , and δχM are vectors in the fundamental of U(N). Explicitly, we find
the solution

δψ =
∑
M

(
δηM k+

1 (M) |JM〉+ δχM k+
2 (M) |JM〉

δηM k−1 (M) |JM + 1〉+ δχM k−2 (M) |JM + 1〉

)
(38)

where 2J + 1 = N , M = −J . . . J , and we will henceforth write |JM〉 → |M〉. Similarly, we
easily find

δψ
†

=
∑
M

δη
†
M |M〉(1) +

∑
M

δχ
†
M |M〉(2)

=
∑
M

(
δη
†
M k

+

1 (M) |M〉+ δχ
†
M k

+

2 (M) |M〉
δη
†
M k

−
1 (M) |M − 1〉+ δχ

†
M k

−
2 (M) |M − 1〉

)
(39)
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The full form of the eigenvalues and the constants k±1,2(M) are given in Appendix A. The
diagonalized Hamiltonian then takes the form

H1 +H2 = r R
∑
M

λ
(1)
M δη†MδηM + λ

(2)
M δχ†MδχM + λ

(1)

M δη
†
MδηM + λ

(2)

M δχ
†
MδχM

+ r R
∑
M

J†χMδχM + δη†MJηM + δχ†MJχM + J†ηMδηM

+ r R
∑
M

δχMJ
†
χM + JηMδη

†
M + JχMδχ

†
M + δηMJ

†
ηM (40)

with the ‘currents’ defined as

JηM = k−1 (M)
(
〈M + 1|Ψ′− |0〉C3 − 〈M + 1|Ψ′+ |1〉C+

)
− k+

1 (M)
(
〈M |Ψ′− |−1〉C− + 〈M |Ψ′+ |0〉C3

)
(41)

JχM = k−2 (M)
(
〈M + 1|Ψ′− |0〉C3 − 〈M + 1|Ψ′+ |1〉C+

)
− k+

2 (M)
(
〈M |Ψ′− |−1〉C− + 〈M |Ψ′+ |0〉C3

)
(42)

JηM = k
−
1 (M)

(
〈0|Ψ′− |M − 1〉C3 − 〈−1|Ψ′+ |M − 1〉C−

)
− k

+

1 (M)
(
〈−1|Ψ′− |M〉C− + 〈0|Ψ′+ |M〉C3

)
(43)

JχM = k
−
2 (M)

(
〈0|Ψ′− |M − 1〉C3 − 〈−1|Ψ′+ |M − 1〉C−

)
− k

+

2 (M)
(
〈−1|Ψ′− |M〉C− + 〈0|Ψ′+ |M〉C3

)
(44)

In these expressions, we use
Ψ′ ≡ Ψ− 1ψ . (45)

We can now integrate out the off-diagonal fermionic modes and write an effective Hamiltonian
for the remaining fermionic degrees of freedom arising from the sphere and probe. Generally,
for a Hamiltonian of the form

H = Λ f †f + J† f + f † J (46)
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where the f is a fermionic mode, the partition function becomes

logZ = −
∫
dt

∫
dsJ†(t)DF (t, s)J(s) (47)

where the Feynman propagator is given by [36]

DF (t, s) = θ(t− s)eiΛ(t−s) . (48)

This generally leads to an effective Hamiltonian non-local in time. But for the regime where
x� r N , our eigenvalues are given by (see Appendix A)

λ
(i)
M → (−1)i

x

r
, λ

(i)

M → (−1)i
x

r
. (49)

The exponent in the Feynman propagator (48) takes the form ∼ eiR x (t−s). In units of light-
cone energy R, x � 1 then implies that the off-diagonal modes are heavy (remember that
in M-theory dimensionfull variables, this condition is the statement that the probe is much
further away from the sphere than a Planck distance.). Hence, integrating out these heavy
modes generates a contact Fermi-like interaction

D(t, s)→ i

Λ
δ(t− s) . (50)

The partition function then takes the form

logZeff →
i

Λ

∫
dt J†(t)J(t) (51)

with the effective Hamiltonian given by

Heff = i logZeff . (52)

We then want to read equation (51) in two possible ways. For the bosonic degrees of freedom
in their ground state, we imply

J†J →
〈
J†J

〉
(53)

where we take the expectation value of the C’s appearing in (41)-(44) in the harmonic
oscillator ground state using (22). Alternatively, treating the C’s as describing a fixed
classical profile along the valley of the potential, we can use (26) instead. Given the quadratic
form of the expression, and the similar local and global structure of the bosonic potential
along the valley of interest, we can see from (23) and (26) that we can treat both cases
simultaneously by using (26) and writing the effective Hamiltonian in terms of the external
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parameter C. But then, for tackling the case of ground state quantum fluctuations, we
simply replace C using (28).

Putting things together for our scenario, we have

Heff = r R
∑
M

1

λ
(1)
M

J†ηMJηM +
1

λ
(2)
M

J†χMJχM +
1

λ
(1)

M

J†ηMJηM +
1

λ
(2)

M

J†ηMJηM . (54)

To quadratic order in r N/x, we then get

Heff = r R
C2

x2
J
(
ψ−† 〈−1|Ψ+ |0〉 − ψ−† 〈0|Ψ+ |1〉 − ψ+† 〈0|Ψ− |−1〉+ ψ+† 〈1|Ψ− |0〉

)
+r R

C2

r2

J∑
M=−J

r2

x2

(
−
√

(J −M)(J +M + 1) 〈0|Ψ−† |M + 1〉 〈M |Ψ+ |0〉

+
√

(J −M + 1)(J +M) 〈M |Ψ+† |0〉 〈0|Ψ− |M − 1〉
J
(
−〈M |Ψ+† |−1〉 〈0|Ψ− |M〉 − 〈M |Ψ+† |0〉 〈1|Ψ− |M〉

+ 〈−1|Ψ−† |M〉 〈M |Ψ+ |0〉 − 〈0|Ψ−† |M〉 〈M |Ψ+ |1〉
)

+
1

2

(
r

x
+
r2

x2
M

)(
〈0|Ψ−† |M〉 〈M |Ψ− |0〉 − 〈M |Ψ−† |0〉 〈0|Ψ− |M〉

− 〈0|Ψ+† |M〉 〈M |Ψ+ |0〉+ 〈M |Ψ+† |0〉 〈0|Ψ+ |M〉
)

+c.c. (55)

The ψ± are the fermionic modes associated with the probe, while the 〈M |Ψ± |M ′〉’s are
associated with the sphere. We then see that, integrating out the off-diagonal fermions, the
δψ’s and the δψ’s, we generate qubit couplings between probe and sphere. In addition, we
also get corrections to the masses of the 〈M |Ψ± |M ′〉 modes. The task is now to add this
effective Hamiltonian to H0 from (32) and compute the entanglement between sphere and
probe qubits.

3.2 Diagonalization II

The form of equation (32) suggests an alternate decomposition of the qubits on the sphere:
instead of looking at matrix elements 〈M |Ψ± |M ′〉, it is advantageous to decompose the Ψ±’s
in terms of matrix spherical harmonics [37, 38, 39]

Ψ =
∑
j,m

ΨjmY
j
m (56)
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The matrix spherical harmonics Y j
m are N × N matrices with j = 1, . . . , N − 1 and m =

−j, . . . , j [37, 38] and they form a complete basis for U(N) 5

N−1∑
j=0

(2j + 1) = dim[U(N)] (57)

They satisfying the algebra [39][
Y j
m, Y

j′

m′

]
=

2

N

√
(2j + 1)(2j′ + 1)(2j′′ + 1)f jm j′m′

j′′m′′ (−1)m
′′
Y j′′

−m′′ (58)

where

f jm j′m′

j′′m′′ = (−1)NN3/2 ×
(

j j′ j′′

m m′ m′′

)
×
{

j j′ j′′
N−1

2
N−1

2
N−1

2

}
(59)

written in terms of 3j and 6j symbols. We also have the normalization condition

Tr
(
Y j
mY

j′

m′

)
= (−1)mNδjj′δ−mm′ (60)

We then write each of the two components of the fundamental of the SU(2), Ψ±, in terms
of SU(4) spinors ηjm(t) (fundamental) and χjm(t) (anti-fundamental) [37]

Ψ =

 ∑N−1
j=0

∑j
m=−j−1 Y

j
m

√
j+m+1√
(2j+1)N

ηj m+1 −
∑N−1

j=1

∑j−1
m=−j Y

j
m

√
j−m√

(2j+1)N
χj m+1∑N−1

j=0

∑j+1
m=−j Y

j
m

√
j−m+1√
(2j+1)N

ηj m +
∑N−1

j=1

∑j
m=−j+1 Y

j
m

√
j+m√

(2j+1)N
χj m

 , (61)

once again suppressing the SU(4) index to avoid clutter. This diagonalizes H0 and we get

H0 = r R
N−1∑
j=0

j+1∑
m=−j

j η†j mηj m − r R
N−1∑
j=1

j∑
m=−j+1

(1 + j)χ†j mχj m (62)

To combine this expression with (55), we then need to express the matrix elements 〈M |Ψ± |M ′〉
in terms of the ηjm’s and the χjm’s. This is easily achieved using [39]

〈M |Ψ |M ′〉 =
∑
j,m

Ψjm 〈M |Y j
m |M ′〉

=
∑
j,m

(−1)J−M
√

2j + 1
√

2J + 1

(
J j J
−M m M ′

)
Ψjm (63)

5The j = 0 case corresponds to the center of mass degree of freedom – the U(1) in U(N).
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Putting things together, our final Hamiltonian for the sphere and probe qubits takes the
form

1

r R
Htot
eff =

1

2

∑
j

j η†j0ηj0 + j η†j1ηj1 −
1

2

∑
j

(j + 1)χ†j0χj0 + (j + 1)χ†j1χj1

+C2 (−1)JJ

x2

∑
j

(
(−1)j+2J + 1

)
T (j)

[√
j + 1

(
χ†j0ψ

− − χ†j,1ψ+
)
−
√
j
(
η†j0ψ

− + η†j1ψ
+
)]

+
C2(−1)2J

r x

∑
j

∑
j′

(
(−1)j+j

′+1 + 1
)
T (j)T (j′)

[√
j
√
j′ + 1

(
χ†j′,0 · ηj,0 − χ

†
j′,1 · ηj,1

)
−1

2

√
j
√
j′
(
η†j′,0 · ηj,0 + η†j′,1 · ηj,1

)
− 1

2

√
j + 1

√
j′ + 1

(
χ†j′,0 · χj,0 + χ†j′,1 · χj,1

)]
+
C2

r x

∑
j

(2 j + 1)T 2
j + c.c. + decoupled higher harmonic terms (64)

We have defined the following 3j symbols

Tj ≡
(

J J j
−1 0 1

)
(65)

And the sums over j’s run from 0 to N − 1 when the index appears on a ηjm, and it runs
from 1 to N − 1 when it appears on a χjm. In arriving at this expression, we have also
expanded in r N/x to the order we will need later on in computing the leading contribution
to the entanglement entropy. However, consistent to the order of expansion we have, there
are also additional mass terms for the η’s and χ’s that we have not shown coming it at order
1/x2: as we shall see, they will be inconsequential to our analysis and we have not shown
them to avoid unnecessary clutter. Finally, we have used several 3j symbol identities listed
in Appendix B to simplify the result.

Quantizing the fermionic modes in the usual manner, we get{
η†jm, ηj′m′

}
= δjj′δmm′ ,

{
χ†jm, χj′m′

}
= δjj′δmm′ ,

{
ψ+†, ψ+

}
=
{
ψ−†, ψ−

}
= 1 . (66)

We then see that each mode represents a qubit that can be turned on or off: the ψ± on the
probe, the ηj0, ηj1, χj0, and χj1 on the sphere. We have a total of 4 × (2N − 1) qubits on
the sphere and 4 × 2 qubits on the probe – entangled together through a dense network of
interactions (the 4 arises from the suppressed SU(4) structure on each qubit): basically each
ψ± is interacting with all the other qubits. Modes for higher spherical harmonics |m| > 1
decouple from this entanglement dynamics. The entanglement coupling is tuned by C2,
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the expectation value of the off-diagonal bosonic modes – i.e. a contribution that we can
interpret as a stretched membrane between sphere and probe. For this mode frozen in its
harmonic oscillator ground state, we know from (28) that C ∼ x. At first, it may seem
that our large x expansion is then in trouble. But note that the fermionic Hamiltonian in
Matrix theory involves only a coupling bilinear in the fermions with linear dependence on
the bosonic modes. This immediately implies that the effective Hamiltonian would scale as
C2 and no higher power of C would come in. Hence, we are guaranteed a well defined large
x expansion of the form C2 ×

∑
n anx

n for negative powers n.

3.3 Spectrum and vacuum

3.3.1 Diagonalization III

The Hamiltonian (64) is our central result. We want to find its vacuum; then, we want
to compute the Von Neumann entanglement entropy between the probe qubits ψ± and the
sphere qubits ηj0, ηj1, χj0, and χj1 in this vacuum. To do this, we need to diagonalize the
Hamiltonian (64) one more time and determine the sign of the eigenvalues. This will allow
us to identify the Fermi vacuum, and then we can compute the correlators of the ψ± in
this vacuum. We will demonstrate in the next section that this would then tell us the Von
Neumann entropy of interest.

Before we proceed, note that (64) involves a constant term (the last line of the equation).
For C ∼ 1, this term is sub-leading to energies appearing in the first line of the equation;
hence, it is inconsequential to the analysis in the case where we treat C as a classical fixed
paramater. On the other hand, for the bosonic modes frozen in the ground state, we have
C ∼ x and it appears that this constant term affects the total balance of vacuum energy –
competing with the first terms in the expression. However, this constant term is the zero
point energy from the fermions, scaling as Rx: if we were to include the ground state energy
from the perturbations of the bosonic modes, this ground state energy (scaling also as Rx)
would cancel this fermionic contribution. This is the mechanism by which Matrix theory
overcomes a confining potential and instead generates light-cone supergravity interactions
that die down with distance as needed [22, 23]. Hence, the constant term in (64) is a red
herring and can safely be dropped.

To diagonalize (64), we proceed by defining the 4 × (4N − 1) dimensional vector (the
additional factor of 4 comes from SU(4).

(· · · η†j0 · · ·︸ ︷︷ ︸
j=0···N−1

· · · η†j1 · · ·︸ ︷︷ ︸
j=1···N−1

· · ·χ†j0 · · ·︸ ︷︷ ︸
j=1···N−1

· · ·χ†j1 · · ·︸ ︷︷ ︸
j=1···N−1

ψ+† ψ−†) (67)
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We then write (64) as
1

r R
Htot
eff = H0 + V (68)

where H0 is the block-diagonal matrix form

H0 = r R


jδjj′ 0 0 0 0 0

0 jδjj′ 0 0 0 0
0 0 (−j − 1)δjj′ 0 0 0
0 0 0 (−j − 1)δjj′ 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (69)

and V is defined as

V = r R



−
√
jj′Ajj′ 0

√
j′(j + 1)Ajj′

0
√
jj′Ajj′ 0√

j(j′ + 1)Aj′j 0 −
√

(j′ + 1)(j + 1)Ajj′

0
√
j(j′ + 1)Aj′j 0

0 −
√
jD∗j 0

−
√
jD∗j 0

√
j + 1D∗j

· · ·

· · ·

0 0 −
√
j′Dj′√

j′(j + 1)Ajj′ −
√
j′Dj′ 0

0 0
√
j′ + 1Dj′√

(j + 1)(j′ + 1)Ajj′ −
√
j′ + 1Dj′ 0

−
√
j + 1D∗j 0 0

0 0 0

 , (70)

where we have defined

Ajj′ =
C2

r2
(−1)2J r

x

(
1− (−1)j+j

′
)
TjTj′ +

C2

r2

r2

x2
fjj′

Dj =
C2

r2

r2

x2
(−1)J((−1)j+2J + 1)J Tj (71)

The fjj′ ’s are not shown since they play no role in the analysis, but must be included for
consistency in the expansion. The essential structure of this potential tells us the following:
the A terms perturb the masses of modes on the sphere; the D terms are the key terms
that introduce couplings between qubits on the sphere and the probe. Note that they come
at order 1/x2: the 1/x contribution exactly cancels. To determine the vacuum, we need
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to diagonalize this system. We will do this treating V as a perturbation to H0, which
implies we need to verify that all terms in V are smaller than terms in H0. Looking at the
matrix entries, we see two types of terms, and correspondingly two needed conditions for a
well-defined perturbation problem

|J Ajj′| ∼
J C2

r2

r

x
|Tj|2 <

C2

r2

r

x
� 1 , ||

√
JDj|| ∼

√
J
C2

r2

r2

x2
J |Tj| <

C2

r2

r2

x2
J � 1 . (72)

where we used the asymptotic behavior of the Tj for large J from Appendix B. For C ∼ 1,
each entry in V is much less than those in H0 in the regime we have been considering. When
the bosonic modes are in their quantum ground state however, we know from (28) that
C ∼ x/Jr3/2. This means a perturbation analysis requires in addition the condition

1� x

r J
� J . (73)

This is a parametrically controllable regime as long as J is large. Hence, we can safely
proceed with a diagonalization procedure using V as a perturbation to H0 as long as we
add (73) to our regime of interest.

A glance ahead reveals that, to capture the leading order qubit mixing effect between
probe and sphere, we will need to consider second order in perturbation. The second order
perturbation relations are shown at the end of Appendix A, equations (123) and (124). But
these expressions in their full glory are actually unnecessary for our purposes. First, looking
at the eigenvalues, we only care about their sign since this is what determine where the
Fermi sea level is. By construction, the perturbations are small and cannot change the signs.
Denoting the new modes that diagonalize the potential with under-bars, i.e. η

j0
, η

j1
, χ

j0
,

χ
j1

, ψ+, and ψ−, we can immediately write the eigenvalues as6

η
j0

: j + small , η
j1

: j + +small

χ
j0

: −j − 1 + small , χ
j1

: −j − 1 + small

ψ+ : 0 , ψ− : 0 (74)

In the regime we are considering, the modes χ
j0

, χ
j1

continue to have negative eigenvalues,

implying that the Fermi vacuum contains non-zero condensates

〈Ω|χ†
j0
χ
j0
|Ω〉 = 〈Ω|χ†

j1
χ
j1
|Ω〉 = 1 for j = 1, . . . , N (75)

6Note that the perturbation for the j = 0 eigenvalue vanishes identically.
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Next, looking at the new eigenvectors, for the purposes of computing entanglement entropy
we will only need to look at the correlators of ψ± in the vacuum. For this purpose, only the
boxed term in (124) gives a non-zero contribution. We get

ψ+ = ψ+ −
∑
j

Dj√
j
η
j1

+
∑
j

Dj√
j + 1

χ
j1

(76)

ψ− = ψ− −
∑
j

Dj√
j
η
j0
−
∑
j

Dj√
j + 1

χ
j0
. (77)

In short, while consistency in expanding for large x requires a second order perturbation
treatment, for the quantity we end up computing, only first order terms contribute due to
the form of the effective Hamiltonian. The key point here is that, coming in at order x−2,
there is mixing between the probe qubits ψ± and the mode excited in the Fermi vacuum χ

j0

and χ
j1

. This is the origin of entanglement between sphere and probe. As we shall see next,

this allows us to compute the entanglement entropy between the supergravity modes on the
probe and on the sphere.

4 Spectral analysis and entropy

Let us illustrate the key to the entanglement mechanism between probe and sphere in more
general terms. Consider a qubit system with Hamiltonian

H =
∑

amnf
†
mfn (78)

for arbitrary amn. Diagonalizing the system through

Fk =
∑
m

ckmfm (79)

we end up with a Hamiltonian of the form

H =
∑
k

λkF
†
kFk . (80)

The Fermi vacuum |Ω〉 of the system then has a condensate of fermionic modes for all λn < 0

〈Ω|F †kFl |Ω〉 = δkl for all λk < 0 . (81)
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This in turn in general implies a non-zero vacuum expectation value for the original fermionic
modes

〈Ω| f †mfn |Ω〉 6= 0 . (82)

for fm modes that overlap with the excited Fk’s as determined from (79). Now imagine that
we pick a subset of the fm modes and ask for the entanglement entropy for these modes with
the rest of the system in the vacuum. Because the original system is that of free fermions –
with a Hamiltonian that is quadratic in the fm’s, we can proceed as follows. The reduced
density matrix must take the form [40]

ρ′ =
1

Z
e−H =

1

Z
e−hmnf

†
mfn (83)

where Z is the normalization constant so that Trρ′ = 1; and H is known as the entanglement
Hamiltonian. The sum in the exponent includes only the qubits in the subsystem of interest.
And the coefficient hmn can be found by computing the relevant correlators from the original
Hamiltonian (78), that is the 〈Ω| f †mfn |Ω〉’s for m and n in the subsystem of interest. Wick’s
theorem guarantees that all correlator data is indeed packed in these two-point correlators.
It is easier to derive the entanglement Hamiltonian if we diagonalize it so that

ρ′ =
1

Z
e−

∑
k εkF

†
kFk (84)

where the sum is over the subsystem degrees of freedom. Writing

〈Ω|F †kFl |Ω〉 = ckδkl (85)

we easily find

εk = ln
1− ck
ck

. (86)

Hence, by computing two point correlators in the original Hamiltonian, we find the ck’s and
we can construct the reduced density matrix from (84) and (86). And the Von Neumann
entropy then takes the standard form

S = −Trρ′ ln ρ′ =
∑
k

ln
(
1 + e−εk

)
+

εk
eεk + 1

. (87)

Now, let us come back to the system at hand. From (84), and choosing the probe qubits
ψ± as our subsystem, we can immediately write the reduced density matrix as

ρ′ =
1

Z
e−ε ψ

+† Iψ+ I−ε ψ+† Iψ+ I

(88)
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Noting that the Fermi vacuum has a condensate of χ modes as determined in (75), we can
now compute the two point correlators of the original probe modes using (76) and (77)

〈
ψ+†ψ+

〉
=

〈
ψ−†ψ−

〉
=

1

r2R2

1

x4

N−1∑
j=1

|Dj|2

j + 1

=
4 J2C4

x4

N−1∑
j=1

∣∣1 + (−1)j+2J
∣∣2

j + 1

∣∣∣∣( J J j
−1 0 1

)∣∣∣∣2 ≡ c (89)

Since J is a large integer, and noting that we chose earlier N = 2J + 1 to be odd for
convenience, we have

c =
C4

x4
4 J2

J∑
k=1

1

2k + 1

∣∣∣∣( N/2 N/2 2k
−1 0 1

)∣∣∣∣2 . (90)

For large N or J , we get from Appendix B

c = ξ2C
4

x4
(91)

where ξ2 is a number of order one, independent of the parameters of the problem. Summa-
rizing, we have found that the non-zero correlators of interest are〈

ψ+† Iψ+ I′
〉

=
〈
ψ−† Iψ− I

′
〉

= ξ2C
4

x4
δII′ (92)

where we have added the SU(4) indices to the qubit modes. The Von Neumann entanglement
entropy (87) then takes the form

S = 8

(
c ln

(
1

c
− 1

)
+ ln

(
1

1− c

))
. (93)

with the factor of 8 coming from counting all modes with equal contribution (2 from ψ±,
and 4 from the SU(4) multiplicity). It is worthwhile noting that the maximum of this
entanglement entropy occurs at

c =
1

2
. (94)

For the regime we have been focusing on, whether due to quantum fluctuations or classical
profile for the off-diagonal bosonic modes, we can verify that we always have c� 1. We can
then write this expression to leading order in small c

S = 8 c ln c−1 . (95)
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For quantum fluctuations, we have from (28) and (91), to leading order

c =
ξ2

N4r6
⇒ S = ξ2 32

N4r6
lnNr3/2 . (96)

For a classical profile with fixed C, we get instead

c = ξ2C
4

x4
⇒ S = ξ2 32C4

x4
lnx , (97)

where C is then to be viewed as an externally fixed classical parameter. These expressions
represent the entanglement entropy between supergravity modes from the probe and from
the sphere. We next will try to interpret these results and see how geometrical information
may be encoded in the entropy expressions.

4.1 Some background

In attempting to understand the results given by (96) and (97), it is instructive to look at
other related systems that have been extensively studied in the literature – in the hopes to
get inspired. The investigation of entanglement entropy in the vacuum for qubit systems
is a vast area of research in condensed matter physics (see for example [41]-[45] ) where
entanglement entropy is used to probe criticality and spin chain dynamics. In general, one
can interpret the entanglement entropy as (see [46] for a nice review)

S ∼ lnMeff (98)

where Meff is the number of states in the Schmidt decomposition of the reduced density
matrix – or alternatively an estimate of the effective number of entangled states between
the subsystems in question. In most cases, one studies one dimensional setups with sparse
qubit-qubit interactions. Ours is unusual in that the network of qubit interactions is dense.
It is believed [47, 48] that this attribute is key in making the BFSS Matrix model a candidate
for a theory of quantum gravity. Effectively, the dense network of qubit interactions can be
thought of as describing an infinite dimensional spin chain – leading for example to the fast
scrambling phenomena required of black holes [19, 20]. We note that, in fermionic critical
systems, the entanglement entropy of a sub-block of L qubits is expected to scale as

S ∼ Ld−1 lnL (99)

where L � 1 and d is dimensionality of space. For d = 1, the coefficient of the logarithm
is related to the central charge of the system. For d > 1, the coefficient is also believe to
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be related to some measure of the number of degrees of freedom. Beside the size of the
sub-system, the setup can involve coupling parameters on which the entanglement entropy
can depend. In our case for example, the separation between probe and sphere x appears in
the effective qubit Hamiltonian as a coupling constant. To compare and contrast, consider a
specific one dimensional spin chain, the Ising model with transverse field, described by the
Hamiltonian

H = −
∑
n

σzn − λ
∑
n

σxnσ
x
n+1 (100)

with a sparse nearest neighbor interaction tuned by the parameter λ. For λ < 1, the
entanglement entropy for a half-chain is given by [40]

S = − c
6

ln(1− λ) ∼ ln ξ (101)

where c is the central charge, and we see a typical logarithmic dependence on the coupling
parameter λ. ξ is the correlation length and we also see the entanglement entropy typically
scales as the logarithm of the correlation length.

To make better contact with our BFSS system, let us look at another spin chain model
that has a key shared feature: a dense network of qubit interactions. The Lipkin-Meshkov-
Glick system [49, 50] is described by the Hamiltonian

H = − λ
N

∑
i<j

σixσ
j
x + γσiyσ

j
y − h

∑
i

σix (102)

where λ, γ, and h are coupling parameters. For the isotropic case γ = 1, the entanglement
entropy can be computed exactly [49]. To mimic our BFSS scenario, take the subsystem to
be one qubit, then one finds

S = 1− 1

2
(1− h) ln(1− h)− 1

2
(1 + h) ln(1 + h) , (103)

where for simplicity we have chosen h to be an integer multiple of 2/N . Once again, we see
a logarithmic dependence on the coupling h, with a coefficient that also depends on h. For
γ 6= 1, the system can be studied numerically. For a large number of qubits and a large size
of the subsystem, one finds once again a logarithmic behavior

S ∼ ln(1− γ) . (104)

These are very interesting results since the system is not one dimensional; yet, the entangle-
ment entropy continues to exhibit logarithmic behaviour in the parameters, characteristic of
a one dimensional system.

24



The general theme from a survey of qubit systems leads to the following observations.
The entanglement entropy often scales logarithmically with the size of the subsystem and
the coupling parameters of the theory. The pre-factor of the logarithm can often be related
to a measure of the effective number of degrees of freedom that are entangled. We will now
proceed to use these insights for proposing an interpretation of (96) and (97).

4.2 Speculations

Let us start by focusing on (97), the case where the off-diagonal bosonic modes are fixed
classically along a shallow valley of the potential. The x dependence of the entropy takes
the form

S ∼ 1

x4
lnx . (105)

Here, x plays the role of a coupling parameter in the effective Hamiltonian, and we see a
characteristic logarithmic dependence on x – in addition to the x dependent pre-factor. x is
also the correlation length between the supergravity modes for x� 1, which also syncs well
with expectations from our previous discussion. The x−4 pre-factor is however potentially
much more interesting for the purposes of unravelling geometry. If we are to interpret it as
some sort of measure of effective number of entangled degrees of freedom, its x dependence
may be similar to connections between entropy and geometry from proposals such as [4].
One’s natural inclination would then to be to suggest a connection to area. Yet, unlike the
proposal of [4], our setup has a local character: the probe sits at a point in space, as opposed
to being a surface area extending globally. There is a natural local geometrical quantity that
is known to be related to area and that has risen previously in the context of gravitational
holography in describing effective number of degrees of freedom: the rate of convergence of
a congruence of null geodesics.

Consider the M-theory metric seen by the probe for the setup at hand7

ds2
11 =

(
1 +

q

r

)−1/2 [
−dt2 + dx2

11

]
+
(

1 +
q

r

)1/2 [
dr2 + r2dΩ2

]
(106)

where x11 is the light-cone direction. This is easily obtained by uplifting the D0 brane metric
from IIA supergravity [51]: at asymptotically large distances from the D0 branes, we expect
the metric of the spherical shell to look like that of N D0 branes at the origin. In the BFSS
limit, we also have 1+q/r → q/r. If we were to project a congruence of null geodesics radially
toward r = 0, the rate of convergence of the geodesics is given by (see for example [52])

θ = ∇an
a = −1

r
(107)

7Note that seven of the ten space dimensions have been compactified, one being the light-cone direction
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where na is the tangent to the geodesics, normalized to absorb numerical factors and the
energy on the right hand side. Geometrically, θ is the rate of change of a transverse area
element A along the geodesic flow

θ ∝ 1

A

dA

dλ
(108)

where λ is a geodesic affine parameter.
In the context of gravitational holography, the condition that θ < 0 has been proposed

to determine whether a region of space can be holographically encoded in a dual boundary
theory [53]. In another work, θ was related to a c-function of the boundary theory [52].
Along with the null energy condition, it can be shown that this c-function is monotonically
decreasing and has the right scaling with the parameters of the dual theory [52, 54, 55].

These observations suggest that the pre-factor of the logarithm in (105) should perhaps
be related to the rate of convergence of geodesics. However, there is a conceptual obstacle
that we need to understand first: when the off-diagonal modes are allowed to relax in the
harmonic oscillator ground state, as they would want to, the entropy expression is given
by (96) instead, with no x dependence. Furthermore, if we were to allow C to settle instead
in a configuration that maximizes entanglement entropy, this leads to C ∼ x – corresponding
to an excited harmonic oscillator state for the off-diagonal modes – and once again a maximal
entanglement entropy agnostic of the coordinate distance x between probe and sphere (and
even of N). Why do we then ‘see geometry’ in the entanglement entropy expression in some
of these scenarios but not in others?

Our setup corresponds to artificially fixed source and probe. If the probe was to be
allowed to in-fall, it would not feel gravity by the equivalence principle. On the other,
if held up by necessarily x-dependent external forces that exactly cancel the gravitational
pull, it would also experience no net force. Finally, it should feel an x dependence force if
the gravitational pull is not balanced, say by virtue of some x-independent external forces.
Entanglement entropy – which focuses on a particular subsystem – is naturally tied to a fixed
perspective, a fixed observer of the underlying space geometry. Hence, this may suggest that
when looking at entanglement entropy of the supergravity modes one is implicitly focusing
on the local geometry or gravity seen by the probe in question. When C is allowed to freeze
in the ground state of the off-diagonal mode oscillators, this corresponds to the physical
situation of an exact balance of gravitational and external forces, the stable setup: no net
force is experienced by the probe and we have an entanglement entropy that is independent
of x given by (96). If C is allowed to have an arbitrary x-independent classical value,
this corresponds to an unstable configuration as C sits in a shallow potential that is not
strictly flat: the gravitational and external forces on the probe are not balanced, there is
a net force depending on C and on x, and hence we see the entanglement entropy depend
on both parameters. Furthermore, C being independent of x, the dependence on x in the
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entropy should reflect local gravitational geometry. We can take this line of thought one step
further. When the classical profile for C is allowed to run so as to maximize entanglement
entropy, we use (94) and find C ∼ x. We propose that this scenario – where maximizing the
entanglement entropy ‘back reacts’ on the off-diagonal modes – corresponds to switching to
the perspective of the in-falling probe: hence there is no gravity or forces to be detected and
the entropy expression takes an x and N independent form.

Our suggestion is then that the entanglement entropy quantity we computed between
supergravity modes on the probe and the sphere does encode net force or gravitational
geometry information. But to demonstrate this in the setup at hand where source and probe
are fixed externally, we needed to allow for arbitrary C, an unbalanced dynamical situation,
and hence consider the expression given by (97). Once this is arranged, we can try to extract
local geometry information from the entropy expression.

Hence, coming back to the x dependence of the pre-factor in (97), we can now hint at a
possible map:

S ∼ |θ|D lnx , (109)

where D is the number of spacetime dimensions. The D depedence is at best an educated
guess. This implies that this entanglement entropy of supergravity modes can perhaps be
used to extract local geometry information. If true, it would be a local version of an area-
entropy proposal akin to [1].

Finally, we note that the entanglement entropy (96) for the case where the off-diagonal
matrix modes are dynamically frozen in the ground state scales logarithmically with the
number of entangled qubits N . This is as expected from our previous discussion of spin
chains. The N dependence of the prefactor is curious, coming in as N−4; the fourth power
may be reflecting the dimensionality of the target spacetime. We have however no further
substantive interpretation of this observation.

5 Conclusions and Outlook

In this work, we have taken the first steps into developing a new approach for probing
emergent geometry in Matrix theory: looking at the entanglement of the fermionic modes.
We have identified a controllable computational regime – corresponding to widely separated
source and probe – where one can decode geometric information from the entanglement
entropy. This map is local in character, allowing one in principle to read off the rate of
geodesic convergence at any point in space.

This however is far from a complete story, and we are lead to a myriad of new open ques-
tions in the grand problem of relating geometry to matrices and entanglement entropy. First,
to establish and confirm the connection between geodesic convergence rate and entanglement
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entropy, other scaffolding configurations need to be set up and the corresponding entropies
need to be computed. For example, one can arrange for a string or cylindrical source, or a
non-commutative plane – each having a different scaling of convergence rates with distance.
The matrix configurations for these shapes are known [25, 56, 57, 58, 59] and the technology
to compute the corresponding entanglement entropies would be a straightforward extension
of the work presented here. One can also consider higher dimensional target spaces as well,
and even consider configurations involving five brane source. However, we expect that the
latter case would present a significant technical challenge [60, 61, 23].

Another parallel issue that needs attention has to do with the fact that our setups are not
dynamical, and they involve external pinning forces. We saw that this created subtelties in
reading off geometry from entanglement entropy as the latter seems to be sensitive to the net
forces acting on the probe. This required us to consider an unstable, unbalanced snapshot of
the configuration to be able to decode geometry from the entropy expression. However, one
can also consider a full dynamical situation and see how the entanglement entropy evolves
in time. This would be an alternate approach to extracting geometrical data as a probe sifts
through patches of curved spacetime.

Furthermore, in developing an interpretation of the entanglement entropy, we suggested
that switching perspectives to an in-falling probe perhaps involves maximizing the entan-
glement entropy. This was inspired by the realization that: (1) the entropy is by its nature
a probe-specific observable; and (2) the maximal entropy is independent of all parameters
in the problem, distance as well as mass of the source. These may indicate a potential link
with the idea of the equivalence principle, the abscence of gravitational forces for point-like
in-falling probes. Physically, the entropy maximization procedure corresponds to exciting
the off-diagonal matrix modes that correspond to a membrane stretched between probe and
source. In the dual picture, the in-falling perspective sees flat space – known to be char-
acterized by strong quantum entanglement (see for example [62]). This syncs well with
notions of black hole complementary [63] and may be a hint at a resolution of the firewall
issue [64]. Indeed, a wormwhole connecting modes inside and far away from a black hole has
been proposed already as a means to evade the firewall issue [6]. Computations involving
Matrix black holes and qubits have appeared recently in [65, 14, 20]. Hence, it would be
very interesting to explore the Matrix-black-hole-plus-probe scenario along the line we have
developed in this work, looking at qubit entanglement.
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6 Appendices

6.1 Appendix A: Diagonalization

We collect in this appendix the coefficients arising in the procedure of diagonalizing the
off-diagonal fermionic modes in the BFSS Hamiltonian. The eigenvalues are found (without
any expansion for large x)

λ
(1)
M = −1

2
− 1

2

√
N2 − 4

x

r
(2M − 1) + 4

x2

r2
, (110)

λ
(2)
M = −1

2
+

1

2

√
N2 − 4

x

r
(2M − 1) + 4

x2

r2
; (111)

and also

λ
(1)

M =
1

2
− 1

2

√
N2 − 4

x

r
(2M − 1) + 4

x2

r2
, (112)

λ
(2)

M =
1

2
+

1

2

√
N2 − 4

x

r
(2M − 1) + 4

x2

r2
. (113)

The coefficients in the expressions for the eigenvectors take the form

k+
i (M) =

λ
(i)
M +M + 1− (x/r)√

(λ
(i)
M − (x/r) +M + 1)2 − (J −M)(J +M + 1)

; (114)

k−i (M) =

√
(J −M)(J +M + 1)√

(λ
(i)
M − (x/r) +M + 1)2 + (J −M)(J +M + 1)

; (115)

k
+

i (M) =
λ

(i)

M +M − 1− (x/r)√
(λ

(i)

M − (x/r) +M − 1)2 − (J +M)(J −M + 1)

; (116)

k
−
i (M) =

√
(J +M)(J −M + 1)√

(λ
(i)

M − (x/r) +M − 1)2 + (J +M)(J −M + 1)

; (117)

Once again, before any large x expansion. For x� r N , we find to order x−2, the expressions
for the eigenvalues

λ
(i)
M → (−1)i

x

r
, λ

(i)

M → (−1)i
x

r
. (118)
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Similarly, in this regime, the eigenvector coefficients become

k+
1 (M)→ −1 , r k+

2 (M)→ N2 − 4M(M + 1)− 1

8
√

(J −M)(J +M + 1)

r

x
, (119)

k−1 (M)→ (J −M)(J +M + 1)

2

r

x
, r k−2 (M)→ 1 , (120)

k
+

1 (M)→ −1 , r k
+

2 (M)→ N2 − 4M(M − 1)− 1

8
√

(J +M)(J −M + 1)

r

x
, (121)

k
−
1 (M)→ (J +M)(J −M + 1)

2

r

x
, r k

−
2 (M) .→ 1 (122)

We also will need to implement diagonalization through a second order perturbation
scheme. We collect here the formal expressions for the eigenvalues

λn = λ(0)
n + Vnn −

∑
m 6=n

|Vmn|2

λ
(0)
m − λ(0)

n

. (123)

And for the eigenvectors, we get8

|n〉(0) =

(
1− 1

2

∑
m6=n

|Vmn|2(
λ
(0)
m −λ

(0)
n

)2
)
|n〉

+
∑
m 6=n

 Vnm

λ
(0)
m −λ

(0)
n

− VnmVmm(
λ
(0)
m −λ

(0)
n

)2 +
∑

m′ 6=m
Vnm′Vm′m(

λ
(0)
m −λ

(0)
n

)(
λ
(0)
m −λ

(0)

m′

)
 |m〉 . (124)

Only the boxed term however will play a role in computing the entanglement entropy.

6.2 Appendix B: 3j symbol identities

In dealing with matrix spherical harmonics, we invariably encounter Wigner’s 3j symbols.
To simplify expression, we make use of the following identities. Under even permutations of
columns, we have

Peven

(
j1 j2 j3

m1 m2 m3

)
=

(
j1 j2 j3

m1 m2 m3

)
. (125)

8Note also that our Hamiltonian is already diagonal in the subspace with degenerate eigenvalues.
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Under odd permutations of columns, we instead have

Podd

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

m1 m2 m3

)
. (126)

Furthermore, we can also flip lower row signs(
j1 j2 j3

−m1 −m2 −m3

)
= (−1)j1+j2+j3

(
j1 j2 j3
m1 m2 m3

)
. (127)

Note also that the 3j symbols vanish unless m1 +m2 +m3 = 0.
We also need asymptotic forms of some of these 3j symbols. In particular, the following

expression arises throughout

Tj ≡
(

J J j
−1 0 1

)
(128)

in the regime where J � 1. For j odd or even, this expression has different asymptotic form
in J . However, we can look for a bound on the maximum of |Tj| for all j. We find

max |Tj| < J−1/2 . (129)

We can establish this by numerical evaluation: the result is very robust for J > 10, with
numerical fit errors being less than a fraction of a percent. We note that the standard
asymptotic expression for 3j symbols – sometimes called Flude or Edmonds asymptotics
– is not applicable for the expression of interest to us, hence the need for a numerical
determination.

We also will need the large integer J asymptotic form of

K = 4 J2

J∑
k=1

1

2k + 1

∣∣∣∣( N/2 N/2 2k
−1 0 1

)∣∣∣∣2 . (130)

Once again, through straightforward numerical fits, it is very easy to determine

K = ξ2 (131)

where ξ2 is a J independent numerical factor of order one. That is, the sum goes as J−2 and
cancels the pre-factor.
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