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1 Structures and Metaphors.
Every sentence I utter must be understood not as an affirmation,
but as a question. Niels Bohr.1

1I could not find on the web when and where Bohr said/wrote it. Maybe he never did.
But here and everywhere, a quote is not an appeal to an authority but an acknowledgment of
something having been already said.
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Our ultimate aim is to develop mathematical means for designing learning
systems L that would be similar in their essential properties to the minds of hu-
mans and certain animals but we limit ourselves at this point to mathematically
describing expected properties of such systems.

Learning and Structures. We want to understand the process(es) of
learning, e.g. of mother tongue or of a mathematical theory, in the context
of what we call ergostructures. Such structures, as we see them, are present
in the depth of the human (some animal?) minds, in natural languages, in
logical/combinatorial organizations of branches of mathematics and, in a less
mature form, in biological systems – from metabolic and regulatory networks in
living cells up to, possibly, ecological networks.

Learning from this perspective is
a dynamical process of building the internal ergostructure of an L
from the raw structures in the incoming flows FS of signals, where
FS may or may not itself contain an ergostructure or its ingredients.

Such an L interacting with a flow of signals is similar to a a photosynthesizing
plant growing in a stream of photons of light or to an amoeba navigating in a see
of chemical nutrients and/or of smaller microbes: L recognizes and selects what
is interesting for itself in such a flow and uses it for building its own structure.

This analogy is not fully far fetched. There is no significant difference be-
tween human activities and those by amoebas and even by bacteria, well,... on
the grand scale. Say, the probability of finding first 109 digit of e = 2.718....
"written" at some location u of a universe U increases by a factor > 10100, if you
find a bacterium kind machine feeding on a source of almost amorphous free
energy at a point u′ within a few billion light years from u.

Besides, what enters the brain mainly comes from plants, animals, humans
and human artifacts – it would be little to learn for our nose, ears and even
your eyes if not for Life around us.

This, however, does not apply to your somatosensory input: much of it
comes from non-biological external sources. The somatosensory system is also
exceptional in several other respects: it is short range and, most significantly,
proprioception – your "body/muscle sense" is almost fully interactive. This is
because the brain’s output is mostly directed toward the muscles in the body
and to feel your body you have to move it. (Besides muscles, the brain sends
signals to the endocrine system and also it "talks to itself" but the conscious
control over these brain activities is limited.)

And the integrated picture of the world that remains stable under trans-
formation by Euclidean isometries of space and scaling transformations – the
crowning creation of your visual+somatorsensory system2, has little to do with
surrounding life, but nearly all interesting visual sensations are of the biological
origin, except, maybe, for the hypnotizing charm of wandering water streams
and the irresistible beauty of cloud shapes sliding overhead.

It is virtually impossible to say something of substance on mind, thinking,
intellegence, without a resort to metaphors that serve to create an illusion of

2An essential part of "somatorsensory" in understanding geometric space is proprioception
– the sense of your body that is coupled with the motor system; the tactile/touch feeling is
also involved but to a lesser(?) extent.
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understanding and to hide inconsistency of the ideas they purport to convey.3

To make any sense of learning, understanding, etc., one has to to find math-
ematical counterparts of these concepts. These for us are certain unknowns x
the essential properties P of which we try to guess with x satisfying P thought
of as equations P (x). Only when such an equation is "written down" one may
proceed to search for its solutions, that is designing a leaning system L imple-
menting x.

Eventually, we have to express this in truly mathematical terms, but we
resort to a metaphoric language for a while, since we do not want to narrow our
field of vision and miss the target with prematurely precise definitions.

(Being non-precise is tolerable in mathematics, since the ambience of math-
ematical structures, allows, within certain limits, a non-rigorous yet productive
discourse with concepts that are not immediately clearly defined.)

Understanding and modeling human thinking processes is dissimilar to other
problems in science and engineering but the following example may be instruc-
tive.

How to get to the Moon.
People might have been wondering about this for millennia but the follow-

ing formulation(s) of the question became possible only with development of
physical science and mathematics in the last three of centuries.

What are all conceivably possible orbits/trajectories for bodies traveling
between the Earth and the Moon?
What kind of propulsion mechanism(s) can bring you to such an orbit?
It is unthinkable to plan a trip to the Moon prior to forming adequate con-

cepts of equations mathematically describing properties of these "orbits"4 and
of "mechanisms".5

Similarly, without a proper reformulation of the problem and a mathematical
description of essential, partly conjectural, properties of

thinking/learning/understanding systems,
it is unimaginable to make a radical advance in the study of "thinking mech-
anisms"; also a "blind design" of a functional model of a "thinking system"
appears unrealistic.

1.1 Universality, Freedom and Curiosity
Out of chaos God made a world,
and out of high passions comes a people.

Byron.

Our inspiration for design of learning systems comes from what may seem as
an almost godlike ability of a human (and some animal) infant’s brain of building
a consistentmodel of external world from an apparent chaos of electric/chemical
signals that come into it.

3In poetry, unlike how it is in science, we joyfully welcome illusions created by the beauty
of metaphors.

4Orbits are described by differential equations of motion in a graviton field.
5A basic aspect of a relevant "mechanism" is described by the Tsiolkovsky ideal rocket

equation.
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We conjecture that an infant’s learning process follows an universal set of
simple rules for extracting structural information from these not truly "chaotic"
signals, where
these rules must indiscriminately apply to diverse classes of incoming signals.
Universality is the most essential property we require from our learning sys-

tems – this is the key that opens the door for a non-cosmetic use of mathemat-
ics;6 reciprocally, if successful, mathematics will furnish universality in learning.

At the moment, one may only speculate in favor of universality by appealing
to "evolutionary thrift of Nature" and to "brain plasticity". Ultimately, we
want to write down a short list of universal rules for "extracting" mathematical
structures from general "flows of signals". And these flows may come in many
different flavors – well organized and structured as mathematical deductions
processes, or as unorderly as "a shower of little electrical leaks" depicted by
Charles Sherrington in his description of the brain..

Of course, nontrivial structures can be found by a learning system, (be it
universal or specialized) only in "interesting" flows of signals. For instance,
nothing can be extracted from fully random or from constant flows. But if
signals are modulated by something from "real world" we want to reconstruct
as much of the mathematical structure of this something with these rules as the
brain of a human infant can do.

Universality necessitates non-pragmatic character of learning. Indeed, for-
mulating each utilitarian goal is specific for this goal – there is no universal
structure on the "set of goals". Thus,

the essential mechanism of learning is goal free
and independent of an external reinforcement7

.
Georg Cantor’s words

The essence of mathematics lies in its freedom
equally apply to learning in place of mathematics. Freedom for us means free-
dom to learn.

Universal learning systems, must be designed as self propelled learners that
need no purpose, no instruction, no reinforcement for learning.

This, a priori, is no more paradoxical than, say, your digestive system func-
tioning with no teacher instruction or a mechanical system moving by inertia
with no external forces. External constrains and forces change the behaviour of
such systems, but they hardly can be regarded as the source of motion.

It would be unrealistic making any conjecture on how such rules could be
implemented by the neurophysiology of the human brain, although it seems
plausible that they are incorporated into the "architecture of pathways" of signal
processing’s in the brain. But we shall try to guess as much as possible about
these rules by looking at the universal learning problem from a mathematical

6This is meaningless unless you say what kind of mathematics you have in mind. Mathe-
matical creatures, such, for example, as Turing machine and Pythagorean theorem differ one
from another as much as a single-stranded RNA virus form a human embryo.

7Feeling of pain when you fall down or bump into something may be helpful in learning
to run – this is debatable; but contrary to what a behavioristically minded educator would
think, reward/punishment reinforcement does not channel the learning process by reinforcing
it, but rather by curtailing and constraining it. Compare [13] [11].
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perspective.
Cuiriosity as Intrinsic Motivation. The idea of what we call ergosystems

is close to what was earlier proposed by Oudeyer, Kaplan and Hafner,8 in the
context of robotics under the name of Intrinsically Motivated Curiosity Driven
Robots.

This "motivation" is implemented by a class of predictor programs, that
depend on a parameter B which is coupled with (e.g. by being a function of)
the behaviour of robots. These programs Pred = Pred(H,B) "predict" in a
certain specified way incoming signals on the basis of the history H, while the
robots (are also programed to) optimize (in a specific formally defined way)
the quality of this prediction by varying B. Curiousity driven robots are being
designed and build in Ouduer’s lab.

Information/Prediction Profile.

The Maximal Prediction idea is also central in our thinking on ergosystems
but we emphasize "structure" instead of "behaviour", with degree of predictabil-
ity being seen as a part of the structure of flows of signals within and without
an ergosystem.

This "degree" is defined as a function in three (groups of) variables: that
are

the system L itself and two fragment F1 and F2 in the flow of signals FS,
where
L predicts "something of F2" on the basis of its knowledge of F1.
This "something" refers to the result of some reduction procedure applied

to F2, where such a reduction may be suggested by L itself or by another
ergosystem, e.g. by a human ergobrain.

An instance of that would be predicting a class of a word W in a text S
on the basis of several preceding words or classes of such words. Such a class
may be either syntactic, such as part of speech: verb/noun/..., or semantic,
e.g. referring to vision, hearing, motion, an animal, an inanimate object or
something else.

And "degree of predictability" of a class of a word W derived from correla-
tions of this class with words that follow as well as precedeW is also structurally
informative.

In fact, the proper direction, that is "follow" versus "proceed" relation, is not
intrinsic for (a record of) a flow of speech. But, possibly, it can be reconstructed
via some universal feature of the "predictability (information) profile" of such
a flow common to all languages9, similarly (but not quite) to how the arrow
of time is derived from evolution of macroscopic observables of large physical
ensembles

Besides the structure in S, this degree also tells you how competent the ergo
learner L is, where one can also judge the ability of L to learn by evaluating

8See [OKH] – (Oudeyer, P., Kaplan, F., Hafner, V.V.: Intrinsic Motivation Systems for
Autonomous Mental Development. IEEE Transactions on Evolutionary Computation 11:1,
(2007) and [www.pyoudeyer.com].

9Phonetics of a recorded speech suggests an easy solution but it would be more interesting
to do it with a deeper levels of the linguistic structures. In English, for instantce, the corre-
lation of a short word W1 with a neighboring W2 is stronger if W2 follows W1 rather than
proceeds it; but this may be not so in other languages.
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how much this competence increases with extra information about S getting
available to L.

The idea of "interesting", that is the feature of a structure that excites
"curiosity" of an L, can be best grasped by looking at the extreme instances of
uninteresting flows of signals – the constant ones:
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

There is (almost) nothing to predict here, nothing to learn, there is no
substance is this flow for building your internal ergostructure. (If you were
deprived of freedom to learn by being confined to an infinite flat plane with
no single distinguished feature on it, you will be soon mentally dead; boredom
cripples and kills – literally, not metaphorically.)

And random stochastically constant sequences do not look significantly more
interesting.
○ ● ○ ● ● ○ ○ ● ● ○ ● ○ ○ ○ ● ● ○ ○ ● ● ● ○ ● ● ● ○ ○ ● ● ○ ○ ○ ○ ● ● ● ○ ● ○ ○ ● ● ○ ● ○ ● ○ ● ● ● ● ○ ●○

This appears "non-interesting" because one loses control over incoming sig-
nals: ours ergo idea of "interesting" is suspended in balance between maximal
novelty of what comes and being in control of what happens.

(Pure randomness looks boringly uneventful to your eye but your vestibular
and the proprioceptive/somatosensory systems10 would enjoy propelling your
body through a rugged terrain with occasional random jumps from one rocky
stone to another making the trip dangerous, exciting and interesting11.)

On (Im)Practicality of Universality. Multi-purpose gadgets are not among
Greatest Engineering Achievements of the Twentieth Century: flying submarines,
if they were a success, then only in James Bond films.12 On the other hand,
the 20th century machine computation has converged to universality; the basic
machine learning will, most probably, follow this path in the 21st century.

1.2 Throwing Stones and Learning to Speak.
Mastering accurate throwing, a uniquely human13 capacity, could have been,
conceivably, a key factor in the early hominid brain evolution.14 According to
the unitary hypothesis, the same neural circuitry may be responsible for other
sequential motor activities, including those involved into the speech production
and language. [1], [12]

Let us draw a parallel between several aspects of mechanics of throwing and
different perspectives on learning.

From a thrower point of view the most important is his/her aim, that must
be achieved with a correct initial condition – the velocity vector of a stone –

10These sensory systems tell you what the current (absolute and relative) positions, ve-
locities and accelerations of your body and of its parts are, with most accelerations being
perceived via stresses in your skeletal muscles.

11Only rarely, grown-up non-human animals are able to derive pleasure from doing some-
thing irrational.

12There are sea birds, e.g. pelagic cormorants and common murres who are (reasonably)
good flyers and who also can dive, some up to more than 50(150?)m. The technology for
building comparably universal/adaptable machines may be waiting ahead of us.

13Elephants may be better than humans at precision throwing.
14500 000-year-old hafted stone projectile points, 4-9cm long, were found in the deposits at

Kathu Pan in South Africa, http://www.newscientist.com/article/dn22508-first-stonetipped-
spear-thrown-earlier-than-thought.html
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that then will follow the trajectory toward a desired target. You may (and you
better do) fully forget the laws of Newtonian mechanics for this purpose.

But from a physicist’s point of view, it is the second law + the force field
(graviton and the air resistance) that determine the motion – the initial condi-
tion is a secondary matter.

A mathematician goes a step further away from the ancient hunter and em-
phasizes the general idea of time dependent processes being described/modeled
by differential equations.

We – physicists and mathematicians with all our science would not stand
a chance against Homo heidelbergensis15 in a stone or spear throwing contest;
however, we, at least some of us, shall do better in mathematically designing
gravity-assist trajectories from Earth to other Solar system bodies.

(This would not convince Homo heidelbergensis in our intellectual superiority
but rather would make him/her lough at the fools engaged in the useless activity
of aiming at inedible targets.

It [science] triumphantly tells him[/her]: how many million miles it is from
the earth to the sun; at what rate light travels through space; how many
million vibrations of ether per second are caused by light, and how many
vibrations of air by sound; it tells of the chemical components of the Milky
Way, of a new element – Helium – of micro-organisms and their excrements,
of the points on the hand at which electricity collects, of X-rays, and similar
things.
"But I don’t want any of those things," says a plain and reasonable
[Heidelberg] man[/woman] –"I want to know how to live".

Lev Tolstoy, 1903.)
Formally, the concept of goal free learning is analogous to a mathematical

physicist’s view on mechanical motion: there is nothing special, nothing intrin-
sically interesting neither in the hunter’s aim A, no matter how hungry he/she
is, nor in the initial condition I, although much skill is needed to achieve it. But
the transformation T = TL from I to A, that incorporates the laws of motion
expressed by differential equations, is regarded as something universal and the
most essential from our point of view.

There are many possible aims A and initial conditions I but not so many
fundamental laws L and of transformations T = TL ∶ I ↦ A associated to them.16

This what makes these laws so precious in our eyes.
Similarly, one may think of learning as of a transformation of an initial input

and/or of a learning instruction I to the final aim A of learning.
Here we are even in a poorer position than the ancient hunter: we have

hardly an inkling of what the corresponding "transformation by learning" TL
does as it brings you from the initial input/instruction I to our your aim A:

What is the "space" where all this happens?
What is the structure of the trajectory that leads from I to A?

15Homo heidelbergensis, a probable ancestor of Homo sapiens as well as of Neanderthals
and of Denisovans, lived in Africa, Europe and western Asia between 1 000 000 and 200 000
years ago.

16This stands in a sharp contradiction with Cantor’s theorem: there are more logically
conceivable functions f ∶ x ↦ y = f(x) than arguments x. But logic should not be taken
literally when it comes to the "real life mathematics".
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And, unlike a teaching instructor, we are not concerned with observable I
and A, but with mathematical models of invisible intrinsic structures of trans-
formations T that are built according to "universal laws of learning".

It is not that we deny importance of goals, instructions and external stimuli
for learning, but we relegate them to the secondary roles in the formula TL ∶ I ↦
A. We try to understand learning processes regardless of their specific aims, or,
rather, we want to see general aim generating mechanisms within the "universal
laws" of learning.

Why Universal? It would be probably unrealistic (?) to expect that the
evolution had time enough to select for many long sequential learning programs
specific to different goals. On the other hand we do see manifestation of uni-
versality even for rather simple programs, e.g. the one that underlies what is
called Hawk/Goose effect: a baby animal who learns to distinguish frequently
observed shapes sliding overhead from those that appear rarely. The former
eventually stops soliciting hide! response, while every unusual kind of a shape,
e.g. that of a hawk, makes an animal run for cover.

This and more sophisticated learning programs develop in the environment
of evolutionary older general "ideas" that are kind of tugs, such as danger-
ous/harmless, edible/useless, etc., selectively associated in an animal/human
brain with a variety of particular "real somethings" in the world. But such pro-
grams themselves, if they are complicated, must be rather universal, since it is
improbable(?) to have many different long programs, each being individually
evolutionary selected for a specific task.

Well... nothing in biology, no universality is ever mathematically perfect –
"laws of biology" are no brothers of laws of physics. A mathematician would
hardly call a correspondence between the set of 64 quadruples of four units
and the set of twenty other units, "universal", while such a correspondence is,
probably, the most fundamental general feature of Life on Earth. (The primal
universality in biology from a mathematician’s point of view is one-dimensional
organization of polynucleotides and polypeptides along with the "information
transfer" implemented by 3D-folding of heteropolimers.)

1.3 Facets of Learning.
There are, in a rough outline, two actively pursued directions in the study of
learning:

(1) The study of the neuro-physiological mechanisms of learning and com-
puter design of (conjecturally) similar mechanisms.

(2) Description of various specific learning problems, a study of how are
these are solved by humans and/or animals and an algorithmic approach to
their solution.

To have just a glimpse of an idea of what goes on look at the corresponding
pages in Wikipedia:

"learning", "memory", "motor learning", "language acquisition",
"mental representation" "outline of artificial intelligence",
"machine learning", "computer vision".
We do not attempt to contribute anything either to (1) or to (2) but we shall

try to look at learning from a different perspective.
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Our first objective is to identify a maximally general (quasi)mathematical
concept reflecting essential features of learning processes.

Such a process must apply to an abstractly defined class of "incoming flows of
signals", denote these by [In], like those entering the brain via sensory receptor
cells; then learning is seen as some kind of transformation applied to these flows.
The results of such a transformation are twofold:

(A) The "visible" part of such a transformation is an outgoing flow of signals,
we denote this flow by [Out]. The basic example of it is what goes from the
brain to the muscles of the body.17 This flow modulates an interaction – think
of this as a "conversation" or a "game" – of the brain with the external world.

(B) What is invisible is incorporation of results of the [In] → [Out] trans-
formation in the internal structure of the learning system. Building this (ergo)
structure, call it [ErgSt], constitutes the major part of the activity of the "brain
who learns", but this process is invisible18; hopefully, we may guess how this
[ErgSt] looks like by imagining how a mathematician would proceed in making
such a structure.

However, even the apparently easy problem of developing a language for
speaking of incoming flows [In] is by no means trivial since

on the one hand, we want to describe the incoming signals in mathematical
terms with no reference to the external world where they originate from;

on the other hand, we want to keep track of the "real world meaning" of
these flows.

We shall follow the usual recipe for solving this dilemma by resorting to
doublespeak: we shall manipulate with [In] as with an abstract mathematical
entity but shall speak of it in metaphorical terms as if it were still residing in
the "real world".

An essential issue in artificial learning, as we see it, is finding mathematical
means for description of [ErgSt]. Without understanding this structure, at-
tempts to reconstruct the transformation [In] → [Out] are like planning a trip
to the Moon with no idea of rocket propulsion in your mind.

17What we know of the structure/message carried by [Out] is mainly manifested by the
(broadly understood) behavior of an organism.

18This is similar to metabolism versus digestion: the product of the latter is visible without
being especially interesting. But the energy transfers and biochemical building processes in
the cells are not discernible to the causal eye, but this is what we find fascinatingly interesting.
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If you have succeeded in explaining your new theory to an Australian penguin
you ought to have devised a cleverer theory.

Ernest Rutherford (misquote)

Two (Seemingly Far-fetched) Examples. (i) When he was 16, Ramanujan
read a book by G. S. Carr. "A Synopsis of Elementary Results in Pure and
Applied Mathematics" that collected 5000 theorems and formulas. Then in the
course of his short life, Ramanujan has written down about 4000 new formulas,
where one of the first was

√

1 + 2

√
1 + 3

√
1 + 4

√
1 + 5

√
1 +⋯ = 3.

What kind of mathematical structure could adequately describe "mysterious
something" in the human brain/mind that caused the transformation from the
flow of written symbols from Carr’s book to the formulas written by Ramanujan?

Unless we develop a fair idea of what such a structure can be, we would
not accept any speculation on the nature of mathematics, be it suggested by a
psychologist or by a mathematician.

(ii) If a 4 years old child sees somebody balancing a stick on the tip of the
finger, the child will try to imitate this; eventually, without any help or approval
by adults, he/she is likely to master the trick.

What is the mathematics behind this?
A naive/trivial solution would be reformulating the problem in terms of

classical mechanics and control theory. The balancing problem is easily solvable
in these terms but this solution has several shortcomings:

● It does not apply where the external forces are unknown.
● It does not scale up: no such robot came anywhere close do a healthy

human in its agility.
● It does not account for what make a child to be persistent in learning the

trick.
● And, worst of all, the control theory and similar mathematical theories

suggest no hint at a universal mechanism behind balancing sticks and inventing
mathematical formulas.

(We share our inborn ability to count as well as the intuitive perception
of the Euclidean geometry with many animals, pigeons, for example.19 But
enchantment of "useless formulas" and fascination by "meaningless tricks" can

19Human thinking, unlike(?) that of pigeons, is intertwined with the language learned in
the cradle. Separating inborn from acquired needs collecting and filtering data on several
culturally isolated ethnicities. The extreme difficulty of this is witnessed by the experience of
Keren and Daniel Everetts who lived for many years with Pirahã people of Amazonia.
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not be seriously studied on an animal model. The essence of being human is
our inexplicable attraction to "meaningless and useless" things.)

1.4 Ego and Ergo.
Man is so complicated a machine that it is impossible
to get a clear idea of the machine beforehand,
and hence impossible to define it.
Julien Offray de La Mettrie, Man a Machine. 1748.

Nature shows us only the tail of the lion.
But... the lion belongs with it even if he
cannot reveal himself to the eye all at once
because of his huge dimension.

Albert Einstein. Letter to H. Zangger 1914.

In our [SLE] paper20 we collect evidence for the basic learning mechanisms in
humans (and some animals) being universal, logically simple and goal free. An
organized totality of these mechanisms is what we call ergobrain – the essential,
albeit nearly invisible, "part" of human mind – an elaborate mental machine that
serves as an interface between the neuro-physiological brain and the (ego)mind.

We bring this "invisible" into focus by rewriting the Cartesian
I think therefore I am

as
cogito ergo sum.

"I think" and "I am" are what we call ego-concepts – structurally shallow
products of common sense. But ergo – a mental transformation of the seem-
ingly chaotic flow of electric/chemical signals the brain receives into a coherent
picture of a world that defines your personal idea of existence has a beautifully
organized mathematical structure.

Apparently, mind contains two quite different separate entities, that we call
egomind and ergobrain.

Egomind is what you see as your personality. It includes all what you per-
ceive as your conscious self – all your thoughts, feelings and passions, with sub-
conscious as a byproduct of this ego. Most (all) of what we know of egomind is
expressible in the common sense language – this language, call it ego-reasoning,
that is a reflection of egomind, is perfectly adapted to to our every day life as
well as to the needs of a practicing psychologist.

An essential (but not the only one) difficulty in accounting for the passage
brain ; (ego)mind

is incompatibility of the languages used for description of the electrochemical
processes in the brain and of the mental processes in the (ego)mind.21

Ergobrain, that is supposed to serve as an interface between the brain and the
mind, mediates this transformation from electrochemical dynamics of neuronal
networks to what we perceive as our "thinking".

20Structures, Learning and Ergosystems, [www.ihes.fr/∼gromov/PDF/ergobrain.pdf].
21This is similar to the incompatibility of the classical and quantum languages in physics

called collapse of quantum states.
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Ergobrain is something abstract and barely existing from ego’s point of view.
Ultimately, ergobrain is describable in the language of what we call (mathemati-
cal universal learning) ergosystems but it is hard to say at the present point what
ergobrain truly is, since almost all of it is invisible to the conscious (ego)mind.
(An instance of such an "invisible" is the mechanism of conditional reflexes that
is conventionally regarded as belonging with the brain rather than with the
mind.)

Certain aspects of ergo may be seen experimentally, e.g. by following sac-
cadic eye movements, but a direct access to ergo-processes is limited.22

But there are properties of the working ergo in our brain/mind that are,
however, apparent. For example, the maximal number N○ of concepts our er-
gobrain can manipulate with without structurally organizing them ("chunking"
in the parlance of psychologists) equals three or four.23 This is seen on the
conscious level but such a bound is likely to apply to all signal processing by
the ergobrain.

For instance, this N○ for (the rules of) chess is between three and four: the
three unorganized concepts are those of "rook", "bishop" and "knight", with a
weak structure distinguishing king/queen.

Contrary to what many linguists say, similar constrains are present in the
structures of natural language where they bound the number of times operations
allowed by a generative grammar may be implemented in a single sentence.

About Emotions.

Animal (including human) emotional responses to external stimuli seem
rather straightforward with no structurally elaborate ergo mediating between
neuronal and endocrine systems.

We think of emotions as colors or typefaces – a couple of dozen of different
kinds of them, which the brain may choose for writing a particular message,
such as

run! run! RUN! RUN!

1.5 Ergo-Ideas and Common Sense.
Common sense is the collection of prejudices acquired by age eighteen.

Einstein.

This saying by Einstein is not intentionally paradoxical. There is a long list
of human conceptual advances based on non-trivial refutations of the old way
which is also the common-sense way.24 The first entry on this list – heliocentrism
– was envisioned by by Philolaus, albeit not quite as we see it today, twenty
four centuries ago. The age of enlightenment was marked by the counterintuitive
idea of Galileo’s inertia, while the 20th century contributed quantum physics –
absurd from the point of view of common sense – in Richard Feynman’s words.
(Amusingly, Einstein sided with common sense on the issue of quantum.)

22This is similar to how it is with the cellular/molecular structures and functions, where
the "ergo of the cell", one might say, is the machinery controlled by the housekeeping genes
that is not directly involved in any kind of production by the cell.

23Some people claim their N○ is as large as (Miller’s) "magical seven" but this seems unlikely
from our mathematical perspective; also some psychologists also find the number four more
realistic.

24This is the way of thinking by a plain, reasonable working man as Lev Tolstoy tells his
readers.
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Your egomind with its pragmatic ego-reasoning – common sense as much as
your emotional self, is a product of evolutionary selection. The two "selves"
stay on guard of your survival and passing on your genes.

But ergo, unlike ego, was not specifically targeted by selection – it was
adopted by evolution out of sheer logical necessity as, for example, the 1-
dimensionality of DNA molecules.

A pragmatically teleological ego-centered mode of thinking that was installed
by evolution into our conscious mind along with the caldron of high passions
seems to us intuitively natural and logically inescapable. But this mode was
selected by Nature for25 our social/sexual success and personal survival, not at
all for a structural modeling of the world including the mind itself.

The self-gratifying ego-vocabulary of
intuitive, intelligent, rational, serious, objective,
important, productive, efficient, successful, useful.

will lead you astray in any attempt of a rational description of processes of
learning; these words may be used only metaphorically. We can not, as Lavoisier
says,

to improve a science without improving the language or nomenclature
which belongs to it.
The intuitive common sense concept of human intellegence – an idea in-

sulated in the multilayered cocoon of teleology –purpose, function, usefulness,
survival, is a persistent human illusion. If we want to to understand the struc-
tural essence of the mind, we need to to break out of this cocoon, wake up from
this illusion and pursue a different path of thought.

It is hard, even for a mathematician, to accept that your conscious mind,
including the basic (but not all) mathematical/logical intuition, is run by a blind
evolutionary program resulting from "ego-conditioning" of your animal/human
ancestor’s minds by million years of "selection by survival" and admit that
mathematics is the only valid alternative to common sense.

Yet, we do not fully banish common sense but rather limit its use to con-
cepts and ideas within mathematics. To keep on the right track we use a semi-
mathematical reasoning – we call it ergologic – something we need to build along
the way. We use, as a guide, the following

Ergolist of Ideas.

interesting, meaningful, informative, funny, beautiful,
curious, amusing, amazing, surprising,
confusing, perplexing, predictable, nonsensical, boring.

These concepts, are neither "objective" nor "serious" in the eyes of the ego-
mind, but they are universal, unlike say "useful" that depend on what, specifi-
cally, "useful" refers to. These ergo-ideas will direct us toward understanding of
how the ergobrain works, and especially will help us to model processes running
in a child’s mind, that hardly can be called serious, rational or objective, the
processes that build a coherent world out of chaos of signals that enter child’s
brain.

Those who dance are often thought mad
25This embarrassing "for" is a fossilized imprint of the teleological bent in our language.
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by those who hear no music.
Tao Te Ching.

What we wrote on the above few pages can hardly convince anybody in the
credibility of the idea of some invisible mathematical ergobrain running along
with your pragmatic (ego)mind and in the existence of performant (universal
goal free learning) ergosystems.

("Performant" is, in truth, no more applicable to an ergosystem than to a
child at play: both do not follow your instructions and do not get engaged into
solving your problems. From the ego perspective what ergo does, e.g. composing
a most beautiful but utterly useless chess problem, appears plain stupid and
meaningless. Reciprocatory, utilitarian ego’s activity, e.g. laboriously filing tax
returns, is dead boring for ergo.)

An evidence in favor of ergobrain – a powerful mathematically elaborate
machine hidden in everybody’s head that is responsible for non-pragmatic mech-
anism(s) of learning can be seen in

● mastering bipedal locomotion in a heterogeneous environment by human
infants – walking, running and not bumping into things, as well as learning to
speak, to read and to write, including learning languages and writing poetry by
deaf-blind people;26

● possession of almost supernatural artistic or mathematical abilities by ex-
ceptionally rare people, e.g. by the mathematician Srinivasa Ramanujan;27

● non-pragmatic playful nature of learning in animal (including human) in-
fants during the periods of their lives when the responsibility for their survival
resides in the paws of their parents;

● attraction to useless (from survival perspective) activities by human and
by certain animals;

● creating and communicating mathematics, e.g. the potential ability by
many (probably, by several hundred, if not thousands or even millions, people
on Earth) to understand Fermat’s last theorem28 by reading a thousand-page
written proof of it.

We bring forth specific example on the above points in our [SLE]-paper but
a justification of the concept of ergobrain, is not, formally speaking, needed
for a mathematical theory of ergosystems. However, it provides you with a
psychological support in groping toward such a theory. And imagining how
ergobrain thinks and trying to understand what ergo-logic can conceivably be,
will not only help you in developing mathematics of ergosystems but also may
guide you in a search for other mathematical structures.

Ergo in Science

The mental set-up that makes the very existence of science possible is of
ergo. Here is how Poincaré puts it:

The scientist does not study nature because it is useful to do so.
He studies it ... because it is beautiful.

26We make no conjecture on whether the logical architecture of "the art of walking" is
similar or dissimilar to that of "the art of speaking".

27Writing off these rare events to "mere accidents", is like judging explosions of supernovae
as "random and nothing else", just because only a dozen of supernovae were recorded in our
galaxy with more than hundred billion stars (none since October 9, 1604);

28No integers x > 0, y > 0, z > 0 and n > 2 satisfy xn + yn = zn.
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... intimate beauty which comes from the harmonious
order of its parts, and which a pure intelligence can grasp.

But grasping, embracing this beauty in your mind may be prohibitively
difficult. Nothing in Nature that is worth understanding comes in "a few simple
words". If you happen to learn something novel for you in science without much
intellectual effort and hard work – this is either not especially novel or it is not
science.

Even most familiar and apparently simple things in science are intuitively
hard to accept, such as the second law of Newton that presents a manifestly
mathematical (ergo)way of thinking about motion:

Lex II: Mutationem motus proportionalem esse vi motrici impressae,
et fieri secundum lineam rectam qua vis illa imprimitur.

This law, even more so than the first law, runs against how our visual and
somatosensory (mainly proprioception– the body sense) systems represent prop-
erties of motion in our mind.29 Yet, some people find themselves comfortable
with Newtonian laws; analyzing how they learn to understand them may shade
some light on general mechanisms of ergo learning.30

Science is a child of the art of not understanding. If we want to approach
the problem of thinking machines we must visualize the extent and the source
of our non-understanding thinking. The key question is not "can a machine
think?" but:

Is there enough structural universality in the process of "thinking"
in order to allow a mathematical modeling of this process?

Formulating questions about "thinking" without making guesses on the na-
ture of the underlying mathematical structure(s) is like talking about Laws of
physics with no ideas of number and space in your head.

There is no visible non-trivial mathematical structure in what we conciously
perceive in our (ego)mind and it is unlikely that there is a realistically describable
structure (mathematical model) of human (neuro)brain capable to account for
such mental processes as learning a language, for example. But we conjecture
that such structure(s) does reside in the ergobrain.

On being trivial.

Triviality is a mathematician’s scarecrow but no-trivial constructions are
often made with a few trivial constituents.

For instance, certain structures are "trivial" when taken in isolation, such as
highly disconnected (often bipartite) graphs that represent the [object]–[name]
relations where the edges join words with the corresponding visual images or
[question]–[answer] graphs of human dialogs – the brains of the stupidest animals
depend on such graphs. Yet, mathematical derivations issuing from several
trivial graphs make non-trivial structures in the human ergobrain.

29The essential logic of this reconstruction is of ergo but it serves the survival of our ego
and serves it well, better than mathematical Newtonian model would do.

30Majority of us, even if we can correctly recite the three laws of motion, do not believe
in these laws. We intuitively reject them in view of the apparent inconsistency of these laws
with much of what we see with our own eyes, such as the motion of a pendulum that visibly
contradicts to the conservation of momentum law.
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What is abstract and what is obvious?

Explaining "simple and apparent things" by means of something "abstract
and difficult", that may not a priori even exist, is against common sense, but
this is how it is in science and in mathematics.

For example, the "obvious" properties of light and matter we see everywhere
around us make sense only in the context of quantum theory of electromagnetic
fields, with the energy source of the sunlight being inconceivable without the
theory of strong interactions in atomic nuclei.

Something as simple as the air we breath is the product of unbelievably
complicated quantum-chemical process of photosynthesis and the whole edi-
fice of Life on Earth is based on statistical mechanics of large heteropolymeric
molecules .

1.6 Ergo Perspective on Chess
Arithmetical or algebraical calculations are, from their very nature,
fixed and determinate.... [But] no one move in chess necessarily follows
upon any one other.

Edgar Allan Poe, "Maelzel’s Chess-Player", April 1836.

In the early 19th century, when Poe was writing his article on Maelzel’s
Chess-Player Automaton, an ability to play chess was seen by many (all?) as
a quintessential instance/measure of the intellectual power of the human mind.
But the mere existence of chess algorithms is obvious.31

You play white. Let eva0(P ∗), where ∗ = ○ or ∗ = ●, depending on whether
a move by white(○) or by black(●) is pending, be a "natural" numerical32 eval-
uation function of a position P ∗, e.g. the sum of judicially assigned weights to
the pieces – positive weights to the white pieces and negative to the black ones.

Inspect possible white moves wh for all P ○, denote by P ○ +wh the resulting
new positions, and similarly consider all P ●+bl . Define new evaluation function
eva1(P ) by

eva1(P ○) = max
wh

eva0(P ○ +wh)

eva1(P ●) = min
bl

eva0(P ● + bl).

Keep doing this and get

eva0 ⇒ eva1 ⇒ eva2 ⇒ eva3 ⇒ ...⇒ evaN ⇒ ...

Stop, say, at N = 20 and let your computer (that plays white) maximize
eva20(P +wh) for all its moves wh. Such a program, probably, will beat any-
body, but... no computer can inspect twenty half-moves in realistic time.

As recently as in 1950’s, Hubert Dreyfus, a critic of artificial intelligence
believed that a child would beat any chess program.

31This, must(?) have been understood by Wolfgang von Kempelen, the creator of Chess-
Player, and by contemporary mathematicians and scientists, e.g. by Benjamin Franklin who
played with this "automaton". But I could not find a reference.

32This is unnatural, there is nothing intrinsically numerical in chess. Logically, what we need
for an evaluation is (somewhat less than) an order relation on positions. But "ergo-evaluation"
is more subtle and less logical.

16



In 1957, Dreyfus was defeated by a eva2 chess program that was implemented
on a computer by Alex Bernstein and his collaborators.33

Fourty years later in 1997, Deep Blue (non-impressively) defeated the wold
champion Kasparov, 3.5-2.5. The computer could evaluate 200 million positions
per second; it inspected, depending on the complexity a position, from N = 6 to
N ≈ 20 half-moves. The program contained a list of endgames and it adjusted
the evaluation function by analyzing thousands of master games.

So, when Poe insists that
... no analogy whatever between the operations of the Chess-Player,
and those of the calculating machine of Mr. Babbage,

one might judge him as mathematically naive; yet, Poe’s conclusion was fully
correct.

It is quite certain that the operations of the Automaton
are regulated by mind, and by nothing else.

... this matter is susceptible of a mathematical demonstration, a priori.
The idea behind what Poe says is valid: Turing(Babbage) machines and eva-

algorithms make poor chess players – they can match ergobrain programs only
if granted superhuman resources of computational power.

This does not preclude, however, an approach with a quite different, possibly
yet unknown to us, (ergo?)mathematics, but some people conjecture that the
human (ego?)mind is "fundamentally non-algorithmic".

In his book Shadows of the Mind, Roger Penrose, who opposes the idea of
thinking machines,34 presents a chess position where

black has eight pawns, while white, in addition to eight pawns, has two rooks
(and the white squared bishop, if you wish). The black pawns stay on black
squares in an unbroken chain (as in the above drawing) that separates the black
king from the white pieces. White pawns are positioned in front of the black
ones and fully shield them from the rooks.

Thus, the black king is safe in-so-far as black pawns do not change positions.
But if a black pawn captures a white rook, then the chain of the black pawns
will be disrupted and the black king eventually mated.

Any current computer-chess program would accept a sacrifice of a white
rook, since "eventually" shows only in another twenty-thirty half-moves, while
no human player will make such a silly mistake.

But Doron Zeilberger, who fights against the Human Supremacy idea, in-
sists35 that

symbol-crunching [program], valid for an m × n board rather than only
33In 1945, the first(?) chess program was written by Konrad Zuse in his Plankalkül – a

high-level programming language.
34See more on www.calculemus.org/MathUniversalis/NS/10/01penrose.html
35www.math.rutgers.edu/∼zeilberg/Opinion100.html.
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an 8 × 8 board, will perform as good as a human player.
Also, Zeilberger is critical of Penrose’s use of Gödel’s incompleteness theorem

(see 2.1) as an argument against thinking machines.
Chess has been supplying an experimental playground to all kind of people

pondering over the enigma of the human mind.
Logicians-philosophers marvel at how formal rules but not, say, the shape,

color or texture of the pieces, determine what players do with them.
For example, Wittgenstein instructs (mocks?)36 the reader:

The meaning of calling a piece "the king"
is solely defined by its role in the game.

He continues –
imagine alien anthropologists landing on planet earth ...
discover ... a chess king...
[It] remains an enigma to their understanding.
Without ... other artifacts, the chess king is
only a chunk of wood (or plastic, or... ).

(It is hard to resist continuing with ...or chocolate... . But what the philoso-
pher had in mind was not as trivial as it looks.)

Unlike logicians, students of the egomind search for the meaning of chess in
apparent or hidden urges of players to compete, to win, to grab, where making
checkmate for a male chess player substitutes for killing his father in accordance
with Oedipus complex.37

From the human ergobrain perspective, the relevance of chess is seen in its
intrinsic attractiveness to certain people38 and the central problem of chess in
designing a (relatively) simple learning (ergo)program L that would find chess
interesting and/or will be able (and "willing") to learn playing chess by itself
whenever it is given an access to the records of sufficiently many (how many?)
chess positions, chess problems and/or (fragments of) chess games.

And since chess, as most (all?) ergo-activities, is interactive, a learning will
go faster if L is allowed an access to computer chess programs.

We conjecture the existence of such an L, that is, moreover will be (rather)
universal – not chess-special in a remotest way. It may come from somebody
who has never heard of chess or of any other human game. However, such a
program L, being a pure ergo, may behave differently from a human player, e.g.
it will not necessarily strive to win.

36Wittgenstein is often quoted with A serious and good philosophical work could be written
consisting entirely of jokes.

37Was it intended by Freud as a macabre joke? Sphinx might have accepted this solution
to the riddle of chess, but we feel more at ease with Flatulus complex see [SLE] §6.7 [3].

38If you remold the piece "king" into "sphinx", the game will not loose its attractiveness to
more than half of chess perceptive people.
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Such self-taught ergolearner program implemented on a modern computer
will play chess better than any human or any existing specialized computer chess
program, but this is not the main ergo issue. And it is nether the power of logical
formality – something trivial from the ergo (and from general mathematical)
point of view, what makes chess attractive and interesting.

An ergolearner delights in the beauty of the structure of CHESSergo, some
kind of combinatorial arrangement of "all" interesting games and/or positions.
An ergolearner tries to understand (ergo)principles of chess that transcend the
formal rules of the game

These "principles" enable one, for instance, to distinguish positions arising
in (interesting) games from meaningless positions, as it is seen in how chess
masters memorize meaningful positions that come from actual games but they
are as bad as all of us when it comes to random arrangements39 of chess pieces
on the board. In its own way, chess tells us us something interesting about
meaning.

1.7 Meaning of Meaning.
Meanings of words are determined to a large extent
by their distributional patterns.

Zelig Harris.

This "meaning" of Harris is quite different from the common usage of the
word "meaning" that invariably refers to "the real world" with "meaningful"
being almost synonymous to what is advantages for preservation and propaga-
tion of (observable features encoded by) your genes. (The speakers of the word
are usually blissfully unaware of this and they are getting unhappy with such
interpretation of meanings of their actions.)

The former is a structural meaning the full extent of which may be discerned
only in the dynamics of the learning processes in humans, while the latter –
the concept pragmatic meaning, is shared by all living organisms, at least by all
animals from insects on. This idea of meaning – the commandment to survive –
was firmly installed in our brain hardware by the evolutionary selection several
hundred million years before anything resembling humans came to existence.

A possible way to look beyond the survival oriented mode of thinking is
to turn your mind toward something like chess, something that does not (con-
trary to what Freudists say) carry a significantly pronounced imprint of the
evolutionary success of your forefathers.

But even if you manage to switch your mind from ego- to ergo-mode, you
may remain skeptical about (ergo)chess telling you something nontrivial about
learning languages and understanding their meanings.

Superficially (this is similar but different to what was was suggested by
Wittgenstein), one may approach a dialog in a natural language as a chess-like
game that suggests an idea of (ergo) meaning: the meaning of an uttering U
is derived similarly to that of the meaning of a position P in chess: the latter
is determined by the combinatorial arrangement of P within the ergostructure
CHESSergo of "all" ergo-interesting chess positions/games while the former is

39The number of possible chess positions is estimated around 1045. Probably, 1012-1018

among them are "meaningful".
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similarly determined by its location in the architecture of T ONGUEergo of a
language.

More generally, we want to entertain the following idea.
The meanings assigned by ergostructures (e.g. by our ergobrains) to signals
are entirely established by patterns of combinatorial arrangements
and of statistical distributions of "units of signals", be they
words, tunes, shapes or other kinds of "units".
Understanding is a structurally organized ensemble of these patterns
in a human/animal ergobrain or in a more general ergosystem.
But even leaving aside the lack of precision in all these "pattern", "arrange-

ment", etc. one may put forward several objections to this idea.
The most obvious one is that words, and signals in general, are "just names"

for objects in the "real world"; the "true meaning" resides in this world. But
from the brain perspective, the only "reality" is the interaction and/or com-
munication of the brain with incoming flows of signals. The "real word" is an
abstraction, a model invented by the brain, a conjectural "external invisible
something" that is responsible for these flows. Only this "brain’s reality" and
its meaning may admit a mathematical description and be eventually tested on
a computer.40

(There are many different answers to the questions "What is meaning?",
"What is understanding?" offered by linguists, psychologists and philosophers.41

We, on the other hand, do not suggest such an answer, since we judge our under-
standing of the relevant ergo-structures as immature. The expression "struc-
turally organized ensemble" is not intended as a definition, but rather as an
indication of a possible language where the concept of understanding can be
productively discussed.)

Another objection may be that learning chess and understanding its mean-
ing, unlike learning native languages by children, depends on specific verbal
instructions by a teacher.

However, certain children, albeit rarely – this was said about Paul Morphy,
Jose Raul Capablanca, Mikhail Tal and Joshua Waitzkindo – learn chess by
observing how adults play. And as for supernovas, it would be foolish to rejects
this evidence as "statistically insignificant".

More serious problems that are harder to dismiss and that we shall address
later on are the following.

(○) The structures T ONGUEergo of natural languages are qualitatively dif-
ferent from CHESSergo in several respects.

Unlike how it is with chess, the rules of languages are non-deterministic, they
are not explicitly given to us and many of them remain unknown. Languages
are bent under the load of (ego)pragmatics and distorted by how their syntactic
tree-like structures are packed into 1-dimensional strings.

Self and Time. The most interesting feature of natural languages – self-
referentiality of their (ergo)syntax (e.g. expressed by pronouns and/or by cer-
tain subordinate clauses) that allows languages to meaningfully "speak" about
themselves.

40We do not want to break free from the real world, but from the hypnosis of the words
existence/non-existence coming along with it.

41References can be found on the corresponding pages of Wikipedia.
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This is present in most condensed form in anaphoras such as in
X thinks he is a good chess player,

and related features common to all human languages are seen in deixis, such as
in

but I am afraid you may be disappointed by the naivety of his moves,
along with various forms of grammatical aspects linked to the idea of time.

(It is hard to say how much of time in the mind is necessitated by the time
dynamics of the neurobrain, what had been installed by the evolution and what
comes with flows of incoming signals. And it is unclear if time is an essential
structural component of the ergobrain and if should it be a necessary ingredient
of universal learning programs.)

None of these have counterparts in chess42 or in any other non-linguistic
structure, e.g. in music. Yet, self-referentiality is seen in mathematics on its
borders with a natural language, e.g. in Gödel’s incompleteness theorem.

(○○) The internal combinatorics of T ONGUEergo may be insufficient for the
full reconstruction of the structure of the corresponding language.

For example, linguistic signals a child receives are normally accompanied,
not necessarily synchronously, by what come via all his/her sensory systems,
mainly visual and/or somatosensory signals – feeling of touch, heat, pain, sense
of the position of the body parts, as well as olfactory and gustatory perceived
signals.

The full structure of T ONGUEergo and/or the meaning of an individual word
may depend on (ergo)combinatorics of VISION ergo coupled with T ONGUEergo
not on T ONGUEergo alone.
VISION ergo is vast and voluminous – more than half of the primate (in-

cluding human) cortex is dedicated to vision, but the depth of structure of
"visual" within T ONGUEergo seems limited, as it is witnessed by the ability of
deafblind people to learn to speak by essentially relying on their tactile sensory
system that is feeling of touch.

The role of proprioception (your body/muscle sense) and the motor control
system in learning (and understanding?) language is more substantial than that
of vision, since production of speech is set in motion by firing motor neurons
that activate muscles involved in speech production – laryngeal muscles, tongue
muscles and hordes of other muscles (hand/arms muscles of mute people); thus,
an essential part of human linguistic memory is the memory of sequential orga-
nization of these firings.

(Proprioception, unlike vision, hearing and olfaction, has no independent
structural existence outside your body; also it is almost 100% interactive –
you do not feel much your muscles unless you start using them. The inter-
nal structure of proprioception is quite sophisticated, but, probably, it is by
no means "discretized/digitalized" being far remote from what we see in lan-
guage. It is hard to evaluate how much of language may exist independently of
PROPRIOCEPT ION ergo(+T ACT ILEergo[?]) coupled with the motor con-
trol system, since a significant disfunction of these systems at early age makes
one unable to communicate.)

42Does the "meaning" of the following sentence reside in the game being played or in the
conjunction of syntactic self-referentiality loops in there?

I thought I understood why X’s white knight was placed on a1 square but his next move
caught me by surprise.
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The above notwithstanding, (ergo)programs (as we see them) for learning
chess and a language, and accordingly, the corresponding ideas of meaning and
understanding have much in common.

To imagine what kinds of programs these may be, think of an ergo-entity,
call it EE , from another Universe to whom you want to communicate the
idea/meaning of chess and with whom you want to play the game.

A preliminary step may be deciding whether EE is a thinking entity; this
may be easy if EE possesses an ergobrain similar to ours, which is likely if ergo
is universal.

For example, let EE have a mentality of a six-year-old Cro-Magnon child,
where this "child" is separated from you by a wall and where the only means of
communication between the two of you is by tapping on this wall.

Could you decide if the taps that come to you ears are produced by a pos-
sessor of an ergobrain – more versatile than yours if you are significantly older
than six, or from a woodpecker?

If you happens to be also six year old, the two of you will develop a common
tap language-game and enjoy meaningfully communicating by it, but possessors
of two mature human minds separated by a wall will do no better than two
adult woodpeckers.

To be a good teacher of chess (or of anything else for this matter), you put
yourself into EE ’s shoes and think of what and how yourself could learn from
(static) records of games and how much a benevolent and dynamic chess teacher
would help. You soon realize that this learning/teaching is hard to limit to chess
as it is already seen at the initial stage of learning.

Even the first (ergo-trivial) step – learning the rules of moves of pieces on
the board will be virtually insurmountable in isolation, since these rules can
not be guessed on the basis of a non-exhaustive list of examples, say, thousand
samples, unless, besides ergo, you have a simple and adequate representation of
the geometry of the chess board in your head.

If your are blind to the symmetries of the chessboard, the number of possible

moves by the white rook R in the presence of the white kingK, that you
must learn (in 64 ⋅ 63 positions), is > 64 ⋅ 63 ⋅ 13 > 50 000. "Understanding"
space with its symmetries, be this "understanding" preprogramed or acquired
by a learning process of spacial structre(s), is a necessary prerequisite not only
for learning chess but also for communication/absorbtion of the rough idea of
chess.43

But if you have no ergo counterparts to such concepts as "some piece on a
certain line"44 in your head, you’ll need to be shown the admissible moves of
the rook in all(> 1045) possible chess positions.

And the more you think about it the clearer it becomes that the only re-
alistic way to design a chess learning/understanding program goes via some
general/universal mathematical theory equally applicable to learning chess and
learning languages.

43The geometry of the board can be reconstructed from a moderate list of sample chess
games with Poincaré’s-Sturtivant space learning algorithms (see §4 in [4]), but these algorithms
are slow.

44Such "abstractions" are probably acquired by the visual ergo-system of a child well before
to something as "concrete" as white knight in a particular position on a chessboard, for
example.
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1.8 Seven Flows.
... think of some step that flows into the next one, and

the whole dance must have an integrated pattern.
Fred Astaire

Incoming flows of signals can be divided according to the sensory receptors
and pathways by which they enter the brain: visual, auditory and somatosensory
where the two relevant aspect of the latter are proprioception – the body sense,
and tactile, i.e. touch perception.

(Perception of temperature, pain as well gustatory and olfactory signals are
are not ergo-relevant as being comparatively structurally shallow, at least in
humans.)

But from an ergo-learner perspective, signals differ by how one learns their
"meanings", how one interacts with them, how one arrives at understanding of
their structures.

1. Spoken language depends on the auditory and sensory-motor systems;
ears to listen and sensory-motor systems to generate speech. However, deaf-
mute people speak in sign language and deafblind people communicate in tactile
sign language.45

2. Written language (whenever it naturally exists) is likely to have a huge
overlap with the spoken one in the human brain (of a habitual reader) but it
also makes a world of its own. It is not inherently interactive, at least not so
superficially46, and it is not bound to the flow of time. Persistence of written
literature is hard to reconcile with a naive selectionist’s view on co-evolution of
language and the brain.

3. Mathematics. Learning mathematics is an interactive process but it is
hard to say exactly in what sense.

The images a mathematician generates in his/her mind are neither of Lan-
guage nor do they belong with any particular "sensory department". Think-
ing mathematics is like driving an imaginary bicycle or performing/designing a
dance with elaborate movements entirely in your head. (This may differ from
person to person.)

4. Languages of games. We are able to enjoy and to learn a variety of
mental and physical games. Probably, these are divided into several (about
dozen?) classes depending on how they are incorporated into our erghobrains.
Written language and mathematics may be particular classes of games.

5. Music. People gifted in music replay melodies in their minds and they can
reproduce melodies vocally and/or with musical instruments; the rare few may
generate new melodies. But melodies, unlike sentences in a Language, can not
talk about themselves and there is no general context where one can formulate
what human (unlike that of birds) music is and/or what should be regarded as
"understanding of music".

(An avalanche of superlatives that a music lover pours on you when he/she
speaks about music tells you something about endorphins release into his/her

45Most amazingly, some deafblind people can understand spoken language by picking up
the vibrations of the speaker’s throat.

46Writing and reading is kind of talking to oneself.
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blood triggered by music but nothing about music related (ergo)structures in
his/her brain.)

6. Proprioceptive/somatosensory system. Running over a rough unpre-
dictable terrain is kind of talking to the road with the muscles in your body.
This is much simpler than the ordinary language but is still beyond the ability
of computers that control robots. Neither a present day robot is able to hand
sew a button on your shirt.

7. Vision. At least half of the neocortex in humans is dedicated to vision,
but this may be mainly due to the sheer volume of the information that is being
processed and stored, rather than to the structural depth of visual images.
And amazingly, vision impairment, even vision+hearing impairment, do not
significantly affect human ergo. The ergo is robust and independent of particular
sensory inputs.

Three flows among these: Language, Mathematics, Music have an essential
feature in common: the receiver of such a flow F develops an ability, with no
external reinforcement, to creatively generate a new flow F ′ in the class of F .
(In the case of Mathematics and Music this happens rarely, but the miracles of
this having happened in the brains of Mozart and Ramanujan outweighs any
statistics.)

Modeling the transformation F ↦ F ′ is one of the key aspects in our picture
of the universal learning problem. (Possibly, there are counterparts of F ′ for
other incoming flows F , but they may be kind of internal.)

The most interesting object for the study among these is the learning mech-
anism of native languages by children that is, probably, similar to how mathe-
matics is learned by mathematicians.

Of course, the structure of a most sophisticated mathematics we build in
our minds is by far simpler than that of natural languages (not speak of the
vision), but it is still quite interesting, while the corresponding learning process
may be more accessible, due, besides its relative simplicity, to a great variance
in people’s abilities in learning mathematics47 and a presence of criteria for
assessing its understanding.

Learning to Read by Learning to Speak.

The original form of signals carried by the above seven flows is different
from what arrives at your sensory systems. For instance, visual images result
from 2D projections of three dimensional patterns to the retina in your eyes;
moreover, brain’s analysis of these projections is coupled with the activity of
the brain’s motor system that controls movements of the eyes that continuously
modify these projections.

Similarly, the flow of speech as it is being generated in one’s mind is, ac-
cording to tenets of generative grammar has a tree-like structure that is then
"packed" into single time line.

Reconstruction of Forig from the flow F you receive is an essential and most
difficult aspect of understanding the message carried by this F . For example,
understanding a flow F of speech is coupled with one’s ability to speak, i.e. to
reconstruct/generate Forig, or something close to it, in one’s ergobrain.

47Every sane person understands his/her mother tongue and has an adequate visual picture
of the world. This uniformity makes understanding of these "understandings" as difficult as
would be understanding motion in the world where all objects moved in the same way.
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This only aspect of this reconstruction we shall discuss is what can be ex-
pressed as an annotation to F .

For instance, upon receiving a flat image F on its screen (retina), an ergo
learner Lmust correctly resolve depth in interpositions/occlusions and/or "guess"
relative values of the third coordinates at essential points of F .

And the background tree structure in a (record of a) flow F of speech can be
indicated with parentheses properly inserted into F . (An annotation may also
include additional syntactic and/or semantic comments concerning particular
words and sentences.)

Such annotations performed by a human ergobrain depend on an elaborate
guesswork that is by no means simple or automatic and it is still poorly under-
stood. And besides annotating flows of signals, the ergobrain augments them
by something else.

For instance, formation of a visual image in one’s mind depends on the
activity of motor neurons involved in eye movements and "understanding" of
these images depends on structural matching this activity with similar actions
of these neurons in the past.

This active process of perception can be seen as a conversation or a kind of a
game of the ergobrain with the environment. But such games, unlike anything
like chess, are not easy to mathematically formalize.

1.9 Brain, Mind and Computations.
It had been realized millennia ago48 that,
the power of the brain to synthesize sensations makes it the seat of thought49

but our understanding of the logic of the arrow
Brain ; Mind

has advanced little, if at all, from the time of antiquity.
This is amazing. Ancients had no idea of cell and could not fathom how

the brain works — the beauty of the cellular structure of the brain and the
neuronal-synaptic principle of its function have been established only at the
turn of the twenties century.50

But neither this principle, nor the enormity of the experimental data on the
(electrochemical) neurophysiology of the brain accumulated to-day, helps us to
make sense of this arrow ";" or just to find a suitable "name" for it.

Is the mind
caused/produced/generated/constructed or determined/controlled/run

by the brain?
Probably, none of the above and any attempt of compressing it to a single

word strikes one as silly.51 If you want to keep close to the truth you had better
to resort to words of poetry.

48A Hole in the Head, More Tales in the History of Neuroscience, Charles G. Gross The
MIT Press, 2009

49Attributed to Alcmaeon of Croton (≈450 BCE).
50This was expounded by Charles S.Sherrington in his 1906 publication The Integrative

Action of the Nervous System.
51This is akin to the "impliction" genotype ; phenotype with the enormous machinery of

embryonic development behind this arrow.
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The eye sends ... into the cell-and-fibre forest of the brain throughout the
waking day continual rhythmic streams of tiny, individually evanescent, electri-
cal potentials.

This throbbing streaming crowd of electrified shifting points in the sponge-
work of the brain bears no obvious semblance in space pattern, and even in tem-
poral relation resembles but a little remotely the tiny two-dimensional upside-
down picture of the outside world which the eyeball paints on the beginnings of
its nerve fibers to the brain.

But that little picture sets up an electrical storm. And that electrical storm
so set up is one which effects a whole population of brain cells. Electrical charges
having in themselves not the faintest elements of the visual - having, for instance,
nothing of "distance," "right-side-upness," nor "vertical," nor "horizontal," nor
"color," nor "brightness," nor "shadow," nor "roundness," nor "squareness,"
nor "contour," nor "transparency," nor "opacity," nor "near," nor "far," nor
visual anything - yet conjure up all these.

A shower of little electrical leaks conjures up for me, when I look, the land-
scape; the castle on the height, or, when I look at him approaching, my friend’s
face, and how distant he is from me they tell me.

Taking their word for it, I go forward and my other senses confirm that he
is there.

Sherrington, Man on his Nature, 1942

But if you are on a quest for the scientific rather than a poetic truth you
have to turn to mathematics. Below is an example.

Different types of brain injury produce different psychological/behaviorial
impairments,52 and advanced experimental/observational neurophysiology (ide-
ally) delivers a correspondence between the "set" M of "states µ of mind" and
the set N = N(µ) of subsets of those neurons in the brain that are active in the
presence of µ.

Since the anatomy of the brain is, roughly, the same for all people, this
allows a comparison of similar pattern µ and µ′ in different individuals.

For instance, if experiencing particular colors µ were universally recognizable
in terms of N(µ) for all people (animals), one would be tempted to attribute
the "predicate of existence" to "qualia of these colors".

More interestingly, the set M inherits the natural metric/distance53 from N
via the map M → N for µ ↦ N(µ) ∈ N , and the resulting metric distN on M
makes an essential structural ingredient of the mind.

(If such a metric on M were a reality, psychology would be equated with
"geometry of the mind(s)" but deciding which particular metric is relevant for
scientific understanding of human psychology, one needs to go deeper into its
inner structure; this is not possible with the current state of knowledge. But
some mathematics must be in the structure of the mind – it could not be so
beautiful otherwise. And [without] mathematics it is difficult to get across a
real feeling as to the beauty, the deepest beauty, of nature as Richard Fynmann
says.)

52This has been known since about 3000 BCE and recorded in Edwin Smith Surgical Papyrus
that was written about 1000 BCE and discovered in the middle 1800s.

53The distance between two subsets N1 and N2 in a set of cardinality N is defined as
1
N

(card(N1 ∪N2) − card(N1 ∩N2)).
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It has been attempted, since the advent of electronic computers, to model
the Brain/Mind system in the language of computations. This might seem not
a bad idea, since the language of computations universally apples to all time
processes, such as the dynamics of the brain, for instance.

However, this very universality precludes a fine tuning of this language to
specific problems and limits structural richness of mathematical theories based
on computations. Nothing achieved in the "theory of algorithms and computa-
tions" comes close in its depth and structural beauty to, say, Galois theory or
Algebraic topology.

If we want to understand this mysterious nameless arrow ;, we have to
borrow from all kind of ideas that mathematics has to offer.

The expressive power of the 21st century mathematical language exceeds
anything dreamed of fifty years ago. But, probably, this language still falls
short of accounting for this ;, and, to be understood, the ergobrain structure
that stands behind this arrow needs an input of yet unknown to us mathematics.

2 Mathematics and its Limits.
Geometry is one and eternal shining in the mind of God.

Johannes Kepler.

We are no gods and our minds are not pure ergo. To build a mathematical
frame for "ergo" we need to recognize what of our mathematics is ready to
serve as "parts" of ergosystems, what should be rejected and what needs to be
be made anew.54 And "ergo-criteria" for these "ergo-parts" are exactly those
we use everywhere in mathematics:

naturality, universality, logical purity and childish simplicity.

Universality of (many) learning programs in our ergobrains EB can be seen
in the fact that we, humans, at least some of us, enjoy and learn many logically
complicated games (and not only games). This suggests, for example, that a
chess learning program in somebody’s EB must be a specialization of a universal
learning program for a rather generous concept of "universality".

On the other hand, why such programs should be simple? After all
The human brain is the most complicated object in the Universe. Isn’t it?
But being mathematicians, we know that most general/universal theories

are logically the simplest ones.55 What is not simple is formulating/discovering
such theories.

Also, as mathematicians we are ready to accept that we are hundred times
stupider than the evolution is but we do not take it for the reason that evolution
is able to make miracles, such as a logically complicated brain at birth. Believers
into simplicity, we are compelled to seek our own solution to the universal
learning problem.

As we aim at the very source of mathematics – ergobrain itself and try to
develop a theory of ergosystems, purity and simplicity of the building blocks of

54Mathematics is the last born child of ergobrain and a mathematician is an ergobrain’s
way of talking to itself – as Niels Bohr would say.

55The simplicity of a universal idea, e.g. of Gödel’s incomleteness theorem, may be obscured
by plethora of technical details.
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such theory becomes essential. It is not logical rigor and technical details that
are at stake – without clarity you miss diamonds – they do not shine in the fog
of an ego-pervaded environment.

But our thinking is permeated by ego that makes hard for us to tell "true
and interesting" from "important" and that makes the (ergo)right choices diffi-
cult. For instance, in the eyes of the egomind, simple and concrete is what you
see in front of you; much of mathematics appears abstract and difficult. But
this simplicity is deceptive and unsuitable for "ergo-purposes": what your eyes
"see" is not simple – it is an outcome of an elaborate image building by your
visual ergosystem that is, probably, more abstract and difficult than most of
our mathematics.

Evolution of mathematical concepts in their convergence to clear shapes
suggests how one may design ergosystems. Our mathematical diamonds have
been polished and their edges sharpened – century after century, by scratching
away layers of ego from their facets, especially for the last fifty years. Some
of what came out of it may appear as "abstract nonsense" but, as Alexander
Grothendieck points out,
The introduction of the cipher 0 or the group concept was general nonsense too,
and mathematics was more or less stagnating for thousands of years because
nobody was around to take such childish steps.

Yet, not all routes we explored had lead us to the promised land; under-
standing what and why did not work may be more instructive than celebrating
our successes.

2.1 Logic and Rigor.
Contrariwise, if it was so, it might be;
and if it were so, it would be;
but as it isn’t, it ain’t.
That’s logic. Lewis Carroll

According to tenets of logicism of Frege, Dedekind, Russell and Whitehead
mathematics is composed of atomic laws of thought dictated by formal logic
and the rigor of formal logic is indispensable for making valid mathematical
constructions and correct definitions.

Admittedly, logicians participated in dusting dark corners in the foundations
of mathematics but... most mathematicians have no ear for formal logic and for
logical rigor.56 We are suspicious of "intuitive mathematical truth" and we do
not trust metamathematical rigor of formal logic.

(Logicians themselves are distrustful one of another. For example, Bertrand
Russell, pointed out that Frege’s Basic Law V was self-contradictory, while in
Gödel’s words,
[Russel’s] presentation ... so greatly lacking in formal precision in the foun-

dations ... presents in this respect a considerable step backwards as compared
with Frege.

56We happily embrace model theory, set theory, theory of algorithms and other logical
theories that became parts of mathematics.
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Russel’s words "Mathematics may be defined as the subject in which we
never know what we are talking about, nor whether what we are saying is true"
apply to formal logic rather than to mathematics.)

Cleanness of things does not make them beautiful in the eyes of a mathe-
matician. We care for logic no more than a poet for the rules of grammar.

Soundness of mathematics is certified by an unbelievably equilibrated har-
mony of its edifices rather than by the pedantry of the construction safety rules.
Criticism of insufficient rigor in mathematics by George Berkeley (1734) as well
the idea of "redemption" of Leibniz’ calculus by Abraham Robinson (1966)
strike us as nothing but puny in the presence of the miraculous formula

1 − 1

3
+ 1

5
− 1

7
+ 1

9
− ... = π

4

for π = 3.14159265... being one half of the length of the unit circle. (Leibniz,
1682).57

Historically, the system of calculus rolling on fuzzy wheels of infinity and
infinitesimals, has been the main intellectual force driving the development of
mathematics and science for more than three hundred years. But just a step
away from mathematics, volumes of philosophical speculations on the "true
nature" of infinity remain on libraries shelves covered in dust year after year.

(Yet, almost unbelievably, as recently as at the beginning of the 20th century,
Florian Cajori, then a leading historian of mathematics, hailed The Analyst –
the treatise by George Berkeley where he attacks "non-rigorous infinitesimals"
as the most spectacular event of the [18th] century in the history of British
mathematics.

The landscape of the 18th century British mathematics was, indeed, so
bleak that even The Analyst was noticeable. But there were, however, two
English mathematicians who left non-trivial imprints on the 18th century sci-
ence –Thomas Bayes who suggested what is now called a Bayesian approach to
empirical probability58 and Edmond Halley, who is most famous for computing
the orbit of Halley’s Comet.59)

We can not take seriously anything like (a, b) ∶= {{a},{a, b}}60 but for some
inexplicable reason this century old foundational dust finds its way to our text-
books under pretext of rigor as, e.g., in the following definition of a graph G
as
an ordered [by whom?] pair G = (V,E) comprising a set V of vertices...

We better keep clear of this "rigor".

Not everything in logic is collecting, cleaning and classifying morsels of com-
mon sense. In 1931, the logician Kurt Gödel defied everybody’s intuition, in-
cluding that of the mathematician David Hilbert who formulated the question
a few yeas earlier, by mathematically proving that

57The achievement of Robinson from a working mathematician perspective was not so much
in justification of Leibniz’ idea of infinitesimals but rather in a vast and powerful extension of
this idea.

58Bayesian approach relies on continuous updating of conditional probabilities of events
rather then on integrated frequencies; it is systematically used now-a-days inmachine learning.

59Halley is the only short-period comet that is clearly visible from Earth when it returns to
the inner solar system, approximately with 75 year intervals.

60This is the 1921 definition of an ordered pair by Kuratowski. To get "convinced" that this
definition is worth making, you must accept logicians’ appeal to metamathematical intuition.
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Every formalization of mathematics contains
unprovable propositions that can not but be regarded as being "true".

Geometrically speaking,
the "body of mathematical truth" is disconnected.

(In fact, this "body" consists of infinitely many islands with no bridges of
deductive logic joining them.61)

Here "formalization of mathematics", denoted MAT H, means a "formal
mathematical system or theory" – a language with a prescribed vocabulary and
grammar rules. An essential property of such aMAT H needed for the validity
of Gödel’s theorem is thatMAT H contains a sufficient vocabulary for speaking
about languages Y regarded as mathematical objects. Basically, what one needs
is the concept of a certain mathematical property to be satisfied by a given word
(a sentence if you wish) y in Y and/or to have a proof inMAT H. Then what
MAT H says about itself translates to Gödel’s proof of the theorem.

Nothing special about MAT H is needed for Gödel’s theorem – it is valid
for all "reasonable formal systems". One does not even have to know what a
formal language is; all one needs is to spell out "reasonable" in general terms
and apply Cantor’s Diagonal Argument to some function F in two variables p
and s, where this F says in effect that a certain "property" depending on p is
satisfied or not by an s.

And to be "rigorous" one has to suffer through half a page of (inevitably?)
boring definitions.

The vocabulary of aMAT H must include the following.
● A set S, the members s ∈ S of which are called sentences in the the language

of MAT H.
● A set T called the set of truth values for MAT H. (In the "every day

MAT H" this T consists of two elements true and untrue where meaningless
sentences s are regarded as untrue.)

● A class F of T -valued functions f(s) on S called functions defined in
MAT H. (In "real math", such an f tells you whether a sentence s is true or
untrue/meaningless.)

● A subset P ⊂ S where sentences p ∈ P are called proofs.
● A reduction map R ∶ p ↦ f ∈ F from P to F where the functions f(s) in

the image of R are called provably defined inMAT H. (This means that every
proof p includes a "statement" of what it proves; this "statement" is called
R(p) ∈ F .)

Then Gödel’s incompleteness theorem says that under the following
assumptions (A) and (B)

61Udi Hrushovski was explaining to me several times (not that I understood it) that this
metaphor applies only to "bridges on a given level". Also he pointed out to me that what
we call and prove here under the heading of Gödel’s theorem is what logicians call Tarski’s
"undefinability of truth" theorem.
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the map R can not be onto:
there exist functions defined inMAT H that can not be provably defined.

(A) The "P -diagonal" F (p, p) of the T -valued function in two variables
F (p, s) = R(p)(s) admits an extension to a function on S ⊃ P , say fR(s),
that is defined inMAT H.

(B) There exists a transformation τ ∶ T → T , such that
(B1) the composed functions τ ○ f ∶ S → T are defined inMAT H
for all f ∈ F ,
(B2) τ has no fixed point: τ(t) ≠ t for all t ∈ T .

(Properties (A) and (B1) are satisfied by the "real world math" almost by
definition, while (B2) says that no sentence can be simultaneously true and
untrue.)

Proof of Gödel’s Theorem. By (A), the function f○(s) = τ ○ fR(s) is defined
inMAT H; this f○(s) is different from the functions fp(s) = R(p)(s) for all p,
since fp(s) ≠ τ ○ fR(s) = τ ○R(p)(s) at s = p because of (B2).

Discussion. (a) Cantor’s diagonal argument was designed for showoing that
the set (space) of all functions f ∶ S → T is greater than P for all P ⊂ S and all
T of cardinality at least two. This greater is strengthened and "quantified" in
many geometric categories as follows.

No family fp = fp(s) of functions on S contains generic f = f(s).
This, applies, for instance, with several geometrically defined notions of generic-
ity62 for maps between Euclidean spaces where functions f may be continuous,
smooth analytic or algebraic (and where genericity is accompanied by transver-
sality).

On the other hand, explicitly described functions that one finds in "real
life" (e.g. on Google) are, as we mentioned earlier, more scarce than, say,
natural numbers n, partly, because descriptive (less so graphical) presentation
of "interesting" functions occupies more space than that for numbers. We shall
see similar patterns in the hierarchical organization of our ergosystems.

(b) The childish simplicity of the proof of Gödel’s theorem63 does not un-
dermine its significance. Metamathematics is similar in this respect to other
non-mathematical sciences where a mathematical argument is judged not by its
difficulty but by its applicability to "real life". Nontriviality of Gödel’s theorem
resides in a possibility of a meaningful metamathematical interpretation of the
above "provably defined".

In logical practice, the truth value set T usually (but not always) consists
of two elements, say, yes and no with τ interchanging the two and, in Gödel’s

62Geometry is non-essential here: concept of "genericity" belongs with mathematical logic.
The universal logical power of "genericity" was forcefully demonstrated by Paul Cohen in
his proof that the cardinality of "a generic subset" in continuum is strictly pinched between
"countable" and "continuum".

63Originally, Gödel’s theorem was stated for a certain formalization ARIT H of arithmetic
that was designed for talking about numbers rather than about languages; that necessitated
a lengthy translation from the language of ARIT H to the language in which one could
formulate the theorem.

A transparant categorical rendition of Gödel’s theorem is presented in "Conceptual Mathe-
matics" by Lawvere and Schanuel [8]. This was pointed out to me by Misha Gavrilovich who
also explained how the above proof may be seen as an adaptation of their argument.
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case, one takes P = S. Our functions f(s) are associated with "properties" Π
describable in the language ofMAT H", with fΠ(s), equal yes or no, depending
upon whether Π is satisfied or not by s, where, in general, the truth value comes
without being accompanied by a proof.

For example, a sentence smay describe an equation with Π saying "solvable",
where an equation, is either solvable or not regardless of an availability of a proof
of this in a givenMAT H. (The certainty of this "either yes or no" is debatable
even for Diophantine equations f(x1, ..., xk) = 0, i.e. where f is a polynomial
with integer coefficients and where one speaks of integer solutions (x1, ..., xk).)

By definition of P , a proof p ∈ P that certifies correctness of the truth values
fΠ(s) at all s, "says" in particular, what is the property Π that this p proves;
this information is extracted from p by the reduction map R.

But anything that can be called "rigor" is lost exactly where the things
become interesting and nontrivial – at the interface between mathematics and
"logical reality". For instance, a variation of Gödel’s theorem may tells you that
there exists a mathematical proposition that can be written, say, on 10 pages
but the proof of which will need between 101010

and 100010001000

pages. This is
perfectly acceptable within mathematics but becomes non-sensical if you try to
apply it to mathematics "embedded into the real world".

To see what makes us preoccupied with these "logical trifles", look closely
at what stands behind the following kindergarten Ramsey theorem:

Given a group of six chess players, then necessarily,
either there are three of them where every two of these players once met
over a chessboard,
or there are three such that no game was ever played between
any two of them.
A child may instantaneously visualize a graph with green (played a game)

and a red (never played a game) strings/sticks/edges between the pairs of these
six people for vertices. (The child does not have to know graph theory.) Then
the proof of the existence of a monochromatic triangle will come after a few
minutes (hours?) thought.

Moreover, a mathematically inclined child will soon generalize this to the
full Ramsey theorem:

if the subsets of an infinite set X are colored either in green or in yellow,
then, for every k = 1,2,3, ...,, this X contains an infinite k-monochromatic
subset Y = Y (k) ⊂X, i.e. where all k-element subsets are of the same color.64

No existing computer program is anywhere close to doing this. The main
difficulty is not finding proofs of mathematically stated Ramsey level theorems -
these may be within the range of "symbol crunching" programs. It is automatic
translation of the "real world" problems to mathematical language what remains
beyond our reach. Probably, only a universal ergoprogram that would teach
itself by reading lots of all kinds of texts will be able to achieve such translation.

Logic in Science.

Mathematical rigor and logical certainty are absent not only from logical
foundations of mathjematics but also from all natural sciences even from theo-
retical physiscs. Einstein puts it in words:

64Graphs correspond to k = 2, while 6 and 3 are equated with ∞ in kindergartens.
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As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

But "the physical level of rigor" is higher on certainty than the logical one,
since reproducible experiments are more reliable than anybody’s, be it Hilbert’s,
Einstein’s or Gödel’s, intuition.

2.2 Polynomialas, Equations, Computations.
Formal languages do not walk on the streets occupying themselves with proving
Gödel’s style theorems one about another. But we humans are walking com-
puters that are programmed, among other things, to guess and to imitate each
other’s mental computations.

"Computation" as it is used in the science of the brain and in science in
general is a metaphor for elaborated, yet, structurally organized process. But
there is no clarity with this notion.

Does, for instance, a planetary system perform a computation of, say, its
total potential energy? You would hardly say so on the microsecond time scale
but it may look as a "computation" if the time measured in million years.

In mathematics, there are several specific models of computation but there
is no readymade language for describing all conceivable models.

Mind you, there is an accepted class COMPN→N (that parallels the class of
provably defined functions) of what is called computable or recursive functions,
R(n) that send N → N for N being the set of natural numbers i.e. of positive
integers n = 1,2,3,4,5, .... Yet, there is no single distinguished natural descrip-
tion of this class as it is witnessed by the presence of many suggestions for its
"best" description with the following five being most prominent.

Recursion + Inversion (Skolem, Gödel, Herbrand, Rózsa Péter),
λ-calculus (Church),
Turing machines and programs (Babbage, Ada Lovelace, Turing),
cellular automata (Ulam, von Neumann, Conway),
string rewriting systems (Markov).
These definitions of "computable" reflect their author’s ideas on what is

"simple, useful, natural" with the corresponding schemes of computation being
quite different. None of them can be taken for the "normal" or "canonical" form
of computation.65 Besides, all these definitions of COMP are decades old and
they have not undergone the post-Grothendieck category theoretic renovation.66

But the traces of the following ideas, that underly the concept of computation,
will be seen in our ergo-models.

● Compositions and Categories. Composabilty says that if a compu-
tation with the input from some (constructive set? class?) X1 and output in
X2, denote it C1 ∶ X1 ↝ X2, is followed by C2 ∶ X2 ↝ X3, then the tautological
composition C3 = C2 ○ C1 ∶ X1 ↝ X3, where C2 is performed right after C1,

65It is hard to argue for or against something being "natural". Feets, meters and miles may
seem natural physical units of distance for some people. But, probably, there is neither a
truly canonical normal form nor a convincing mathematical concept of equivalence applicable
to different models of computation.

66Computations are not bound to N but I am not certain if there is a proper definition of
"computable objects", e.g. sets with some structures representing suitable functors, in (yet,
hypothetical) "computable categories".
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is a computation again.67 Thus, computations make what one calls categories
provided the identity [non]-computations are in there as we shall always assume.

(Composability is a fundamental but non-specific feature of computations –
almost everything you do in mathematics can be "composed" if you think about
it.)

Moreover, many computation schemes operate with functions in several vari-
ables with arguments and/or values in a certain setX, that may be the setX = N
of natural numbers, the set X = Z of integers and the set X = R of real numbers.,
where "complicated" computable functions are successively built from "simple
modules" by composing these "modules".For instance, the following four func-
tions:

two one variable functions: the constant x↦ 1 and the identity x→ x
and two functions in two variables:
subtraction (x1,x2) ↦ x1 − x2 and multiplication (x1,x2) ↦ x1 ⋅ x2

generate, in an obvious sense, all polynomials that are sums of products of
constants (coefficients) and powers of variables:

P (x1, ..., xk) = ∑
d1,...dk≤D

ad1,,...dkx
d1
1 ⋅ ... ⋅ xdkk .

with integer coefficients ad1,...,dk for all k = 1,2, ... and all degrees D = 0,1,2, ....

Superpositions, clones, multicategories, operads.

The algebraic skeleta of sets of functions in several x-variables closed under
compositions, also called superpositions in this context, go under the names of
"abstract clones" in mathematical logic and universal algebra and and/or "op-
erads" in algebraic topology. More generally, if the domains and ranges of maps
are not assumed to coincide, than one speak of multicategories. These, simi-
larly to ordinary categories, are described in terms of of classes of diagrams of
(multi)arrows that mimic the obvious associativity-like properties of superposi-
tions of functions.

The operad structures underly neural networks models of the brain. They
will be also present in our ergosystems, where we shall insist on assigning specific
structures to what goes under the heading "several" and/or "multi". (A newly
born ergobrain does not know what the set {1,2, ..., k} is and it can not operate
with functions presented as f(x1, x2, ..., xk)).

● Inversions. Inverting a function y = P (x), that is finding x that satisfy
the equation P (x) = y for all y in the range of P , may be frustratingly difficult
even for simple function P ∶ X → Y . An instance of this is computing (the
integer part of) √

y for integer y that is much harder than taking y = x2.
In general, the inverse map P −1 sends a point x ∈ X not to a single point

but to a (possibly empty) subset called P −1(x) ⊂ Y , namely, to the set of those
y ∈ Y where P (y) = x. But a composition of such P −1 with some map Q ∶ Y → Z
may be a bona fide point map denoted R = Q ○ P −1 ∶ X → Z. This happens if
P −1(x) is non-empty for all x ∈ X, i.e. P is onto, and if Q is constant on the
subsets P −1(x) for all x ∈X. In this case

R equals the unique solution of the equation R ○ P = Q.
67There is no consensus for writing C2 ○C1 or C1 ○C2. Although the Zermelo Buridan’s ass

axiom allows a choice of one of the two, remembering which one is impossible – how can one
tell "←" from "→" in a symmetric Universe?
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Thus, extensions of classes of maps by adding such inverses may be described
in category theoretic terms as follows. Let P be a subcategory of a category S,
e.g a class of maps p between sets that is closed under composition.

The invertive extension R of P in S is, by definition, obtained by adding to
P the solutions R ∈ S of the equations R ○P = Q for all P and Q in P whenever
such a solution exists and is unique.

(This R may be non-closed under composition of morphisms and it can be
enlarged further by generating a subcategory in S out of it.)

Such an extension may be incomparably greater than P itself, where the
basic example of this is as follows.

Let S be the category (semigroup in this case) of functions N → N for N =
{1,2,3,4,5, ...} and let P consist of primitively recursive functions.

Then the invertive extension R ⊂ S of P equals the set
of all recursive (i.e. computable) functions N→ N.

"Primitively recursive" is a currently accepted formalization of "given by an
explicit formula". Such formalizations and the resulting P may be somewhat
different but the corresponding R are all the same.

A convincing instance of this is
DPRM Theorem.68 The invertive extension R of the subcategory P of

polynomial maps Nk → Nl, k, l = 1,2,3,4,5, ..., in the category S of all maps
equals the category of recursive (i.e. computable) maps Nk → Nl.

In other words,
every computable function R ∶ N → N, can be decomposed as R = Q ○ P −1,

where
● P,Q ∶ Nk → N are integer polynomials,
● the map P ∶ Nk → N is onto,
● Q is constant on the subsets P −1(n) ⊂ Nk for all n ∈ N.
(Moreover, there is a universal bound on k, e.g. k = 20 suffices.)
The way the theorem is proven allows an explicit construction of polynomials

P and Q, e.g. in terms of a Turing machine (defined later on) that presents an
R. For instance, these P and Q can be actually written down for the nth prime
number function n↦ pn.

However, this theorem does not and can not shed any light on the structure
of prime numbers69. All it shows is that Diophantine equations, that make
a tiny fragment of the world of mathematics, have, however, a capability of
"reflecting" all ofMAT H within itself: any given (properly formalized) math-
ematical problem Π can be translated to the solvability problem for such an
equation. This, in conjunction with Gödel’s theorem, tells you that
solvability of general equations P (x1, x2, ..., xk) = n is an intractable problem.

There is a host of similar theorems for all kinds of (not at all Diophantine)
"simple equations" that make mathematics, seen from a certain angle, look like a
fractal composed of infinitely many "Gödel’s fragments" where each "fragment"
multiply reflectsMAT H as a curved fractal mirror with every reflected image of

68Conjectured by Martin Davis (Emil Post?) in 1940’s and finalized by Matiyasevich in
1970 following Davis, Putnam and Robinson.

69Probably, nothing what-so-ever about prime numbers can be seen by looking at such P
and Q, not even that there are infinitely many of primes.
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MAT H being transfigured by a chosen translation ofMAT H to the language
of this "fragment".

A translation of a "general difficult problem" Π to a "concrete and simple"
equation whenever such a translation is available by a DPRM kind of theorem,
does not help solving Π but rather shows that an apparent simplicity of the
corresponding class of "equations" is illusory with Gödel’s theorem guarding
you from entering blind alleys of naive solvability problems.70

For instance, the solvability problem for a Diophantine equation P (x1, ..., xk) =
0 transforms by a particular translation algorithm ALGpart built into a given
proof of DPRM to the solvability problem for an equation Pnew(x1, ..., xl) = 0
with the (integer) polynomial Pnew being by far more complicated (i.e. with
larger coefficients) than the original P , where it is virtually impossible to recon-
struct P back from Pnew even if you know ALGpart.

The DPRM theorem itself was a response to David Hilbert who suggested
in his 10th problem:

to devise a process according to which it can be determined in a finite number
of operations whether the equation is solvable in rational integers.
This idea of a possible effective resolution of all Diophantine problems was

in line with Hilbert’s (pre-Gödel) optimistic:
Wir müssen wissen – wir werden wissen!

[We must know – we will know!)]
(Hilbert also articulated this position is his 2nd problem: a direct method

is needed for the proof of the compatibility of the arithmetical axioms.)
But the DPRM theorem showed that Hilbert’s suggestion taken literally was
unsound and, if followed, must be coupled with a search for particular classes
of equations where integer solutions are well structurally organized.

The "true Diophantine beauty", as we see it to-day, resides not in inte-
ger solutions of P (x1, ..., xk) = 0, but in non-Abelian higher dimensional "reci-
procity laws" associated to integer polynomials P . Roughly, such laws can be
seen as analytic relations between infinitely many numbers Np(P ) for all prime
p = 2,3,5,7,11,13,17, ..., where Np(P ) equals the number of solutions of the
congruence P = 0 mod p.

70Even without Gödel, anything as easy to formulate as the solvability problem makes one
wary, be these Diophantine or other kinds of equations.
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Such relations are expected to generalize Riemann’s functional equation

ζ(1 − s)
ζ(s) = α(s)

α(1 − s) ,

where

ζ(s) =∏
p

1

1 − p−s and α(s) = 1

2
π−s/2 ∫

∞

0
e−tt

s
2−1dt for s > 1,

where both functions, ζ (that harbors the deepest mysteries of prime numbers)
and α (an apparently insignificant child of simple minded analysis) admit mero-
morphic extensions to all complex s-plane and where the thus defined functional
equation, applied at different s, encompasses infinitely many relations between
the prime numbers p = Np(P ) for P = P (x1, x2) = x1 − x2.

The above is just a hint at what is known as the Langlands program71

that predicts a presence of unexpectedly strong and simple structural constrains
(laws) that are satisfied by quite general and complex objects like the above P
and that is opposite to the spirit of the DPRM style theorems where one is keen
at exhibiting special and apparently simple objects that display an arbitrarily
complex behaviour not constrained by any "law".

The lesson we draw from the "Diophantine story", where properties P of
unknown objects x are expressed by algebrac equations, is that

identifying essential properties P of an x and formulating structurally
significant questions about these P is more instructive than straightforward
attempts to construct x.

We believe, this as much applies to yet unknown objects x that mathemati-
cally represent thinking and learning processes as to k-tuples of integers x =
(x1, ..., xk).

Networks behind Formulas.

Arithmetic operations such as x1+x2 and x1 ⋅x2 becomes progressively more
and more elaborate as the numbers x1 and x2 grow, but they are decomposable
into sequences of a few elementary operations over the decimals of these numbers
as every schoolgirl knows.

And general "complicated computations" can be realized by networks of "el-
ementary computational steps" with no explicit use of anything mathematically
elaborate (e.g. addition and multiplication of integers) as it is done in our com-
puters and, probably, in our brains (where "elementary steps" may go far from
computers).

In fact, (almost?) all multivariable functions "in real life" come as sums
of simple superpositions of functions in one and two variable such as (general-
ized) tensorization – the most common decomposition of functions into sums of
products :

F (xS) = ∑
i∈I
∏
s∈S

fs,i(xs),

where
● S is a finite set that enumerates the x-variables:

71This program goes along the lines of Hilbert’s 9th and 12th problems on the most general
law of reciprocity in any number field and on Abelian extensions of such fields.
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● each x-variable xs, s ∈ S, runs over a given domain set denoted X ∋ xs;
● xS is denotes the totality of the variables xs, that is an element of the

Cartesian S-power of X:

xS ∈XS =X ×X × ... ×X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S

;

● I ∋ i is a finite set that enumerates functions fs,i on X;
● the functions fs,i on X and F on XS take values in a set called Y .
In order to be able to make "sums of products" ∑i∏s, we endow the set

Y with two binary operations that are functions in two variables Y × Y → Y
denoted y1 ⊞ y2 and y1 ⊠ y2 and we suppose that

Y contains two elements, called "zero", denoted 0 ∈ Y and "one" 1 ∈ Y
with their usual arithmetic properties:
y ⊞ 0 = 0 ⊞ y for all y ∈ Y,
y ⊠ 0 = 0 ⊠ y = 0 for all y ∈ Y,
y ⊠ 1 = 1 ⊠ y = y for all y ∈ Y, y ≠ 0.
If the functions f(x) = fs,i(xs) are atomic i.e. different from "zero" (at

most) at a single element in X (depending on s and i) and if, for each i ∈ I,
there is at most single s ∈ S such that the non-zero value of fs,i is different from
"one" (this is a kind of "multiplicative atomicity"), then the above ∑i∏s makes
sense. Moreover, (this is obvious)

every function F (xS) that equals "zero" away from a finite subset in XS

admits a "tensorial" decomposition into atomic functions in the variables xs.
In fact, one does not truly need ⊞ as it can be obtained by composing ⊠ with

the one variable function y ↦ y� that interchanges 0 ↔ 1 and keeps all other
y ∈ Y unchanged. Indeed, the operation

y1"⊞"y2 =def (y�1 ⊠ y�2)�

does satisfy the above properties required of ⊞.

Polynomials in real variables xs ∈ R are most common examples of such
"tensors", but computationally/logically the simplest case is where X = Y =
F2 = {0,1}, that is the field of integers mod 2 (where 1+ 1 =def 0), rather than
R. Here, observe, (this equally applies to all finite fields Fpn)

every atomic F2-valued function on F2; hence, every F2-valued function
on FS2 , is representable by a polynomial.72

72One can discard multiplication in writing down polynomials over the fields Fpn for the
primes p ≠ 2, because x1x2 = 1

4
((x1 + x2)2 − (x1 − x2)2). This does not work for p = 2, e.g. in

F2 where, instead, one can discard addition by expressing it as a superposition of the functions
x↦ x + 1 and (x1, x2) ↦ x1 ⋅ x2.
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The architecture of tensorial representations of functions is clearly visible.
For instance, there are 22card(S)

different polynomials over Z2 in xs, s ∈ S, that
correspond to subsets in the power set 2S .

But general representations of functions by a superposition of two binary
operations, say of "+" and "×" are combinatorially more elaborate: these are
formulas, such as

((∗o(∗o∗))o∗)o(((∗o∗)o(∗o∗)o∗)),
where

∗ substitutes for xs-variables;
and

o stands either for + or for ×.
These formulas express computations as strings in four types of symbols:

∗ o ( )
but depicting computation by one dimensional strings is an artifact of the
way we speak and write73 that does not faithfully reflect the geo-combinatorial
structure behind such formulas.

The essential reason for his is that the rule of brackets that restricts admis-
sible configurations of right and left brackets symbols ")" and "(" is non-local
in the string geometry74 unlike, for instance, the prohibition of oo or )∗ for
consecutive pairs of symbols in the strings.75

"Spaces" between pairs of brackets, (regardless of symbols written in there),
such as ((...)... (...(..).. ...)), make a nested family of subsets (intervals). The
natural partial order (by inclusion) between these subsets can be depicted by a
tree – a binary tree76 in the present case, where some vertices are labeled by
two "colors" that are + and ×.

In general, let (V,
→
E) be a directed graph where there are three kinds of

vertices:
● input vertices v = vin: these have no incoming edge-arrows at them;
● output vertices v = vout: these have no outgoing edge-arrows;
● operational vertices v = vo also called o-vertices: these have two incom-

ing and several (a single one for the trees depicting the above string-formulas)
outgoing edges.

An additional structure in this graph is an o-labeling:
o-vertices are labeled either by + or by × and, accordingly,
denoted by v+ and v×.

Now, given a set X with symmetric binary operations + and ×, this graph
defines

A stationary description of computation
over X-values of functions on the input vertices in V .

This computation, that applies to arrays of values xin = x(v) ∈X, v ∈ Vin, is
represented by

73Like it or not, there is a non-trivial reason why languages are condemned to this one-
dimensionality. Nature herself could not write her messages on 2D DNA.

74An essential (not the only) aspect of this rule is the equality:
the number of the left brackets "(" = the number the right ones ")" .

75Only eight (out of 16) consecutive pairs are allowed: ∗o o∗ )) (( (∗ ∗) )o o( .
76The (artificial) linear order structure in strings disappears when we pass to this tree.
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an X-valued function on V , say x(v) that extends xin from Vin to all of V ,
such that

x(v+) = x(v1) + x(v2) and x(v×) = x(v1) × x(v2)
for all +-vertices and ×-vertices in V and the of vertices pairs of vertices v1 and
v2 adjacent to them by v1Ð→vo←Ðv2, where o substitutes for the corresponding
+ or × label at this vo.

If such an extension exists, as it is the case for trees, the computation is
truly defined and one may speak of

the output of the computation that is the restriction of x(v) to the subset
Vout ⊂ V of the output vertices in the graph.

Notice that this output consists of a single x ∈ X in the case of string-
formulas where these graphs are rooted trees with Vout being a single vertex –
the root of this tree.

In order to arrive at the polynomial (rather than a computation of its par-
ticular value) defined by such a graph one needs three extra ingredients.

(1) Division of the input subset of vertices, Vin ⊂ V into two disjoint subsets
corresponding to constants and to variables V = Vin,const ∪ Vin,var;

(2) Giving specific values, say cv to all x(v), v ∈ Vin,const;
(3) Joining some vertices in Vin,var by edges, representing equalities between

the values of x at the corresponding vertices, where the set of these edges is
denoted E=

in.
This latter serves to remove the set S indexing the variables xs from the def-

inition of a polynomial by (implicitly) replacing it with the set of the connected
components of the graph (Vin,var,E=

in):
The graph (V,E) with extra (1), (2), (3) ingredients, defines a polynomial

in variables indexed by the connected component of this (Vin,var,E=
in), at least

in the case where this (V,E) itself is a rooted tree.
(Supression of "amorphous" sets like S from the description of mathematical

objects is very much in the spirit of ergo logic, where an alternative is giving
"interesting structures" to such sets S.)

The following problem raised about half a century ago remans wide open.
Let P1 and P2 be two sets of polynomials over F2 = {0,1} that are defined by

two "simply combinatorially describable" classes C1 and C2 of o-labeled graphs
(V,E ∪ E=

in), where, to simplify, we assume that Xin = Xin,var and so the
corresponding polynomials contain no constant terms.

When can one tell that P1 equals P2 or that P1 is included into P2?
In particular,
can one bound from below the "complexity" of graphs from C1 (e.g. the

minimal possible number of vertices in such a graph77) that represent the same
polynomials as given graphs in C2?

77The famous P ≠? NP dilemma is an instance of a precise formulation of this complexity
problem.
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2.3 Games of Life.
The idea of decomposing logical reasoning into elementary computational steps
was suggested by Leibniz three centuries ago, who introduced what is now-
a-days called the Boolean algebra that is generated by three operations over
binary variables x, i.e. with two possible values ○ and ●. The one of the three
operations, called NO, is unary, i.e. it maps {○, ●} → {○, ●} and the other two
are binary, {○, ●}2 → {○, ●}, called AND and OR:

NO: ● �↔ ○,
AND: (x1, x2) ↦ x1 ∧ x2; this, by definition, equals ● if x1 = x2 = ●
and x1 ∧ x2 = ○ if either x1, or x2, or both equal ○,
OR: (x1, x2) ↦ x1 ∨ x2 =def (x�1 ∧ x�2)�; this equals ○
if and only if x1 = x2 = ○.

Since x1∧x2 equals the product x1 ⋅x2 in the field F2 = {0,1} for {○ ↔ 0, ● ↔ 1}
and since addition as a function F2 × F2 → F2 can be expressed via multipli-
cation,78 all binary functions {○, ●}S → {○, ●} are superpositions of the above
three. (This, apparently, was one of Leibniz’ motivations for introducing these
∧ and ∨.)

General purpose programmable computers based on similar decompositions
were designed by Charles Babbage in the mid-1800’s and the modern perspective
on machine/network computations was opened by a 1936 paper by Alan Turing.

The idea of Turing was to show that an arbitrary computational process X
can be effectuated by a "simple minded bug" who crawls back and forth along a
given string of letters (or digits) and performs a computation over such a string
by modifying the letters along its path according to an instruction given to it.
(A definition is given later on in this section.)

However, contrary to what Leibniz dreamed, decomposing "complicated
processes, call them Ψ⋆ into "elementary (bug’s) steps" does not render Ψ⋆

amenable to any kind of "simple algebraic analysis", but rather shows that the
apparent simplicity of decomposed Ψ⋆ is illusory. In fact, even a simplest op-
eration, say squaring of integers n ↦ n2, may become nearly incomprehensible
when translated to the language of instructions executed by a "Turing bug".

The network "core" of the bug computational model is so simple that it
is almost invisible: it is the ideal memory tape [0,∞) decomposed into unit
segments s = [i, i + 1], i = 0,1,2, ...,
0 –|—|—|—|—|—|—|—|—|—|—|—|—|—|—|—|—|—|— |— |— ∣

i
— ∣

i+1
—|—|—|—|—|—|—|—|—|—|—|—|—|—...,

that is represented by the graph where the edges correspond to the pairs of
adjacent segments.

A geometer as well as a "true bug" would feel rather constrained on the 1D
tape and be more comfortable on the 2-plane divided into squares.

Langton Ant (1986).
This "ant" crawls from square to square on an infinite sheet S of squared

paper, with a letter L or R written in each square s.
The ant is depicted by an arrow that may be oriented in four different ways:

{↑, ↓,→,←}.
78OR is similar to the sum in in F2, except that 1 ∨ 1 = 1 while 1 + 1 = 0.
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At a given moment, the ant makes one step ahead from its current position
at s to the adjacent square s′.

Upon stepping to s′, the ant turns either left (counterclockwise) or right
(clockwise) by 90○ depending on L or R written at s′.

Simultaneously, the letter written at s′ switches to the other one:
L ↦ R or R ↦ L.

The path taken of by the ant in S may be amazingly complicated even for an
initially constant {L,R} valued function on S, where the bug starts by creating
rather symmetric, {L,R} patterns that become progressively more and more
irregular.

Eventually the ant runs to infinity along a "highway" made of 104 steps that
repeat indefinitely. (This is seen in the picture below with white ◻ for L and ∎
for R .)

Conjecturally, the bug eventually takes such a "highway" to infinity for all
initial L-R distributions (functions) on S that are constant at infinity, i.e. either
with L written at all but finitely many squares or, similarly, with R written
everywhere at infinity.

(It does not seem to be even known if the bug eventually goes to infinity,
but it is clear that the route of the bug must be unbounded. In fact, if a square
s is consecutively visited twice, necessarily with different letters l and r written
in s at the two visits, then it must, obviously, have three (rather than only
two) adjacent squares s′ also visited twice or more. This shows that the set
M of multiply visited squares can not haver corners, in particularly, must be
unbounded. But, a priori, M may be equal to all of S or to something like S
minus a square.)

Langton ant, when positioned somewhere on S, starts moving and per-
forms sequence of transformations, say Ψ1,Ψ2,Ψ3, ...,Ψi, ... of {L,R}-valued
functions σ = σ(s) on S. If the ant eventually goes to infinity, these trans-
formation stabilize and define a transformation that can be denoted Ψ∞, such
that Ψ∞(σ)(s) = Ψi(σ)(s) for all sufficiently large i depending on s. Notice that
there are many such transformations depending on where the starting positions
of the ant on S are.

Then every correspondence C between the set of function σ on S constant
at infinity with the set N of integers 1,2,3, ... will make Ψ∞ act on N, where
such an action can be regarded as numerical computation.

There are lots of simple correspondences C between our functions σ on S and
numbers, but none of them is natural/canonical in any way. This makes it rather
awkward to nicely formulate the question of which numerical computations can
be performed by this ant, and this awkwardness persists with other models of
computation.79

Langton ant is an instance of what is called a cellular automaton, but it
is a very atypical one, since there is "true (unsolved) mathematical problem"
associated to it. Usually (always?) what one proves or even conjectures about
such automata is that they are "universal", i.e. may behave in an arbitrarily

79Apparently, there is no mathematical theory of "computable symmetries" of N responsible
for this ambiguity that would be comparable in beauty and power to Galois theory in algebra
or to the theory of fiber bundles in topology.
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complicated manner.

Conway’s Game.

Unlimited complexity arising from apparent simplicity does not make mathe-
maticians happy: what we try to do is quite opposite – finding simple regularities
in the sea of an apparently unlimited complexity.

But in 1970, a mathematician John Conway found an unexpected beauty
among monsters of computational complexity, called

Conway’s Game of Life

with an amazing balance between "chaotic" and "regular" behaviour resembling
the real Game of Life on Earth.

Conway’s Game is played on the same field where Lannton’s ant roams, that
is on the plane divided into unit squares s, but the network/graph structure on
the set S of these squares is different: all eight squares s′ that touch an s, either
at a side or at a corner of s are regarded as adjacent to (joint by an edge with)
s.

The states of this Game are similar to what we saw before: these are func-
tions σ(s) on S with values in a two element set, but the essential difference of
this game from a wandering ant is that action may take place at many locations
s simultaneously: Conway’s S is inhabited not by a single live entity but by a
dynamic ecology of interacting cells.

Formally, the game is defined as a transformation Ψ acting on functions
σ = σ(s), where the value of Ψ(σ)(s) depends only on the values σ at s itself
and eight cells σ′ adjacent to s. The two possible values of σ are seen as

◻ = dead and ∎ = live,

where Ψ says what happens to the "life" σ(s) at the moment t + 1 depending
on the immediate surrounding of s at the time t.

This dependence is assumed being the same for all s; thus, Ψ is defined by
a single {◻,∎}-valued function ψ on the set of
binary (namely, {◻,∎}-valued) functions in nine variables.

These variables correspond to the nine "modes" of adjacency between squares
in S and they may be depicted as {●, ↑, ↓,→,←,↗,↘,↙,↖}, where ● signifies
the adjacency of a square to itself.

If you feel it is easy to find an "interesting cellular game" of this kind by a
brute force computer search and/or by trial and error, just imagine how long it
would take to single out any "interesting" binary function in nine variables,

ψ ∶ {◻,∎}9 → {◻,∎},

out of 229 = 2512 > 10150 (!) possibilities.
Apparently, human (ergo)brain is able to make such a choice by blinding its

eyes to the enormity of the problem. Thus, closing his eyes, Conway takes his
ψ that
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does not depend on the actual ◻ or ∎ values of the variables corresponding to
{↑, ↓,→,←,↗,↘,↙,↖}, but only on the number of variables where these values
equal ∎.

Since there are 9 possible values of this number: 0,1, ...,8, the total number
of possibilities for ψ is reduced to 2 ⋅ 29 ≈ 1000, where the extra "2" comes from
two possible values for the ● variable, that is the value σ(s) itself.

From this moment on, conceivably, there remains a single "interesting" pos-
sibility – the one suggested by Conway:

ψ(◻, n) = ∎ for n = 3, and
ψ(◻, n) = ◻ for n = 0,1,2,4,5,6,7,8;
(Dead come to life only in the presence of exactly three live neighbours.)
ψ(∎, n) = ∎ for n = 2,3, and
ψ(∎, n) = ◻ for n < 2 as well as for n > 3.
(Both underpopulation and overpopulation is deadly for live cells.)

The dynamics of the iterates of resulting transformation Ψ, denoted

Ψ○N = Ψ ○Ψ ○ ... ○Ψ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

is amazingly rich even if the action of Ψ; hence of Ψ○N , is restricted to the space
of finite configurations/patterns σ that are functions σ(s) that are "dead", i.e.
equal ◻ at all but finitely many s ∈ S.

The following (taken from Wikipedia) gives a rough idea of possibilities of
this dynamics.

● Some finite configurations, e.g. the following one that is localized on a
single line,

... ◻◻◻◻◻◻◻∎∎∎∎∎∎∎∎◻∎∎∎∎∎◻◻◻∎∎∎◻◻◻◻◻◻∎∎∎∎∎∎∎◻∎∎∎∎∎◻◻◻◻◻◻....
grow indefinitely in the Conway plane, (contrary to the original conjecture by
Conway).

● There are many N -periodic points of Ψ, that are finite configurations σ,
such that Ψ○M(σ) = σ exactly for M being multiples of a given N .

The simplest among these – fixed points of Ψ, that are N -periodic points
with N=1, are represented by stationary configurations where

no ∎ has exactly three ◻ adjacent to it (thus it remains "dead") and each ◻
has either two or three adjacent ◻.

The smallest 2-periodic pattern σ is the triplet:
◻◻◻◻◻◻◻ ◻◻◻◻◻◻◻ ◻◻◻◻◻◻◻◻◻◻◻◻◻◻ ◻◻◻∎◻◻◻ ◻◻◻◻◻◻◻◻◻∎∎∎◻◻ ↦ ◻◻◻∎◻◻◻ ↦ ◻◻∎∎∎◻◻◻◻◻◻◻◻◻ ◻◻◻∎◻◻◻ ◻◻◻◻◻◻◻◻◻◻◻◻◻◻ ◻◻◻◻◻◻◻ ◻◻◻◻◻◻◻

and examples of N -periodic σ are known for all but finitely many N .
● Some configurations, called gliders, move regaining their shapes:

◻◻∎◻◻ ◻◻◻◻◻ ◻◻◻◻◻◻◻◻∎◻ ◻∎◻∎◻ ◻◻∎∎◻◻∎∎∎◻ ↦ ◻◻∎∎◻ ↦ ◻∎◻∎◻◻◻◻◻◻ ◻◻∎◻◻ ◻◻◻∎◻◻◻◻◻◻ ◻◻◻◻◻ ◻◻◻◻◻
and they eventually drift away to infinity, necessarily along a straight line

(that is a diagonal for the above "pentom").
● The following "pentom" discovered by Conway stabilizes in 1103 genera-

tions at population of 116.
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◻◻◻◻◻◻◻∎∎◻◻∎∎◻◻◻◻∎◻◻◻◻◻◻◻
● The 3+4 pattern sketched in blue on the above figure, call it σ3+4, with

seven ∎ in it "dies" (that is a special kind of stabilization) after 130 generations:
Ψ130(σ3+4)(s) = ◻ for all s ∈ S.

The above examples suggest that "almost everything" can be "seen" in Con-
way’s game.... but it is hard to find a proper mathematical language for com-
prehensive expression/development of the following question:80

What can and what can not happen in Conway’s game?
Should this question and expected answers be formulated in terms of the

geometry/topology of the space of functions σ(s) and the dynamics of Ψ acting
on this space?

What are interesting (sub)spaces of functions on S, that are invariant under
the action of Ψ?

(Instances of these, besides "dead at infinity" are periodic functions σ(s)
and those depending in a "simple manner" only on the combinatorial distance
from s to some s0 ∈ S.)

Evolution of what kind of observables (properties of configurations σ) do we
want to understand?

What data, besides properties of the initial configurations, must be used for
the answers?

Could formulating/answering this kind of questions be helpful for under-
standing the real world systems?

One knows (this took a while to prove) that any computational process,
e.g. any other cellular automaton, such as Langton’s ant, for instance, can be
"simulated" by the Game of Life, but such a "simulation" the way this is usually
understood, would not look at all as the "real" ant.

Yet, the real Game of Life does have this ability as it is witnessed by
the images of computer simulations designed by human players of this Game.

Is there something mathematically discernible in the real Game of Life
that is absent from Conway’s game?
This deficiency of Conway’s game is shared by most models of universal

computation.81 The apparent (but not the only) reason for this is that "general
modeling" suppresses the time (and space?) factor processes being modeled
that is a most essential feature of a machine computation.

What would you make of an omniscient computer with 2N minute time delay
in answering your Nth question?

80This is the fundamental problem we face everywhere in science.
81"Representation of reality" by the brain is no better in this respect.
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Cellular Automata of Ulam and von Neumann.

A couple of decades prior to Conway’s game, von Neumann described "au-
tomata" that can build other "automata" and later on modeled his "construc-
tion" by Conway’s like game on the squared paper S. (The latter idea is at-
tributed to Stanislaw Ulam.)

The "game" suggested by von Neumann, that mimicked his imaginary engi-
neering of such automata, required a 29 letter alphabet X representing possible
states x of the cells s (instead of Conway’s two) and the von-Neumann’s Ψ = Ψψ

acting on function x(s) with values in this X, where this action depends, via
ψ, only on 4 + 1 (rather than 8 + 1 as in Conway’s game ) relevant neighbor-
hood/adjacency relations between cells: ↑, ↓,→,← and ● for self-adjacency of s
to s.

There are 29294+1 > 1028 000 000 different ψ ∶ X4+1 → X in this case –
no surprise that all kind of beasts roam the super-duper universe of these Ψ-
games.82 Apparently, everything can be faithfully modeled by this kind of a
"game" if there is no restriction on the number of states x of cells, but... it is
hard (impossible?) to formulate mathematically what these "everything" and
"faithfully" signify. Even the original "self-replication construction" by von
Neumann has not been formulated as a true mathematical theorem with such a
formulation not being tied up to a specific class of models beforehand.83

Von Neumann-Conway "games", often called cellular automata,84 are asso-
ciated with the values of the following (Ulam-Neumann) UN bifunctor the two
entries of which are:

(1UN ) A Y -valued function y = ψ(xd) in x-variables that are indexed
by d ∈D,

ψ ∶XD → Y,

where X and Y and D are given sets.85

For instance, X = Y = {◻,∎} in the Conway game and, in the von Neumann
case, X = Y is an alphabet with 29 letters.86

(2UN ) A D-labeled bipartite (S,T ) graph, denoted S ⇇D T .
The vertex set of this graph is the disjoint union of the sets S and T where

all edges go from t ∈ T to s ∈ S and where the edges issuing from each vertex t
are D-labeled by d ∈D for a given set D.

In other words, such a graph is defined by a map

G ∶ T ×D → S,

that we interpret as a D-family of maps
82What is more difficult, if possible at all, is finding non-trivial "laws" that would constrain

the behaviors of all these beasts.
83Yet, on the technical side, it would be interesting to have a von Neumann-Conway style

mathematical model of an ecology of interacting replicators with the resulting cut-off of the
exponential growth of population.

84Compare http://mathworld.wolfram.com/CellularAutomaton.html.
85Our definitions apply toX and Y from (a class of) categories X different from the category
S of sets, and, this is less straightforward, the exponents D, as sets with certain structures,
also may be taken from categories D different from S.

86Anything as large as this alphabet – 29 is a lot in ergo-terms – does not come as "just a
set" but always endowed with some structure(s).
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Gd ∶ T → S, for Gd(t) = G(t, d), d ∈D,
where the pairs (t,Gd(t)), d ∈ D, are seen as edges of the graph S ⇇D T that
issue from t ∈ T . Thus, all vertices t ∈ T have the same number, call it k, of
edges issuing from them for k = card(D) that is the number of elements in D.

Conversely, every graph with k = card(D) edges at all t ∈ T admits a
D-labeling, with the Cartesian T -power permT

k of the (permutation) group
aut(D) = permk of automorphisms of D acting on the set of these labeling.

(One could equally interpret maps G ∶ T ×D → S, as T -labeled (D,S) graphs
that are represented by T -families Gt ∶ D → S, but in the "real life" the set S
may be large but D is small. Moreover, in most examples, S and T are not just
larger than D, but, as a objects with structures, they lie in a category that is
different from the one to which D belongs to.)

For instance, T = S of Conway’s game equals the (infinite) set of the unit
squares in the plane, and D can seen as the set of distinguished directions or
adjacency rules that are depicted by the arrows ↑, ↓, →,←,↗,↘,↙,↖ and by ●
signifying the adjacency of a cell to itself.

Definition of the Ulam-Neumann Bifunctor.

The value of the UN bifunctor on the pair (G,ψ) for the D-family of maps
G = Gd ∶ T → S, d ∈ D, that represent the graph S ⇇D T and the function
y = ψ(xd) is

the map Ψ from the set XS of X-valued functions x(s) on S
to the set Y T of functions y(t)

that is defined by composing x(s) with Gd(t) and ψ(xd) as

t ↦
Gd

s ↦
x(s)

x↦
ψ
y = y(t);

namely
y(t) = Ψ(x)(t) = ψ(xd) for xd = x(sd) and sd = Gd(t).

Cellular automata are defined as such maps Ψ = ΨG,ψ under the assumptions
S = T and X = Y .

Usually one also assumes that
[1] The set X is finite. In this case set XS with its product topology is

compact, moreover, it is homeomorphic to the Cantor set.
[2] The set D is finite. Then then the map Ψ ∶ XS → XS is continuous in

the Cantor set topology.
[3] The automorphism group Γ of the graph S ⇇D S is transitive on S. Then

the map Ψ is Γ-equivariant, i.e. it commutes with the natural action of Γ on
XS .

The games of von-Neumann and Conway, clearly, satisfy [1], [2], [3] with Γ
being the group Z2 of pairs of integers.87

87Since Conway’s ψ ∶ {◻,∎}D → {◻,∎} is invariant under the group perm8 acting on the
eight arrows in D = {↑, ↓,→,←,↗,↘,↙,↖, ●}, the corresponding UN bifunctor is defined for
all graphs G with no labeling of the edges where one does not even have to assume that
there are exactly eight edges at all s ∈ S. This points toward a functorially finer version of
our general definitions but a satisfactory concept of "computational network" still remains
beyond our grasp.
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Being a bug

Tutng’s bugs are described in the language of cellular automata as follows88.

∗ Turing’s S = T equals the set of natural numbers N = {1,2,3, ...}, and the
set X comes with a {○,∗} valued function σ(x) ∈ {○,∗} such that σ(x(s)) = ∗
signifies that the cell s is occupied by the bug.

∗ The set D of direction in the Turing case is taken to be {●,←,→} with the
edge ←1 ∈ N interpreted as the loop 1←Ð1 rather than as 0←Ð1 for 0 being not
in N.

⋆ (Localizaton.) Functions ψ ∶X3 →X admitted in this model must be such
that the bug can move only one step at a time either to the left or to the right;
it may stand still only at s = 1; the only way a cell s may become occupied at
the moment t+1, it is by the bug moving to s from one of the adjacent locations
s + 1 or s − 1 (with convention 1 − 1 = 1) at this moment.

(This localization is exactly what turns a general cellular automaton into a
"bug".)

Eventualization.

Turing imposes these mathematically artificial conditions (in slightly differ-
ent terms) in order to achieve maximal specificity of his computation model that
he, shows, is powerful enough to perform all conceivable computations where
"unlimited complexity" achieved by an repetition of a a simple operation un-
specified number of times.

In general terms, let Ψ be a map of a space X into itself, where Turing’s
main example is the space of X-valued functions x on S = N that are sequences
x(s), s = 1,2,3, ..., and the map

Ψ = Ψψ ∶ X → X

is defined by some function ψ ∶X3 →X, via the above (UN bifunctor) construc-
tion, where the exponent "3" is a shorthand for the three-element set {●,←,→}.

Turing’s transformations Ψ = Ψψ themselves are no more complicated than
the underlying functions ψ and if X is a finite set one sees a finite level of
complexity in them. But the iterates of these maps, that are

Ψ○N = Ψ ○Ψ ○ ... ○Ψ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

∶ X → X

may become unexpectedly complicated, similarly to what we see in the familiar
image of the Mandelbrot set.

Say that Ψ stabilizes on the orbit of x ∈ X if

Ψ○N(x) = Ψ○N⋆(x) for all N ≥ N⋆ and some N⋆ that depends on x.

(A weaker concept of stabilization is possible for x that are functions x = x(s),
where the equality Ψ○N(x)(s) = Ψ○N⋆(x)(s) holds with N⋆ that may depend on
s as well as on x.

88This description may be unaccceptably abstract for a practically minded computer sci-
entist, but being mathematicians we want to find a proper place for the Turing bug in a
maximally general, hence simplest possible environment. An engineer may laugh at a mathe-
matician who start designing a square box with making up an abstract theory of symmetries
but, with a luck, we may be the ones who laugh in the end.
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More generally, if X is a topological space, one can define stabilization as
convergence of Ψ○N(x) to a fixed pont of Ψ for N →∞.)

If Ψ stabilizes on the orbits of all x in (necessarily Ψ-invariant) subset U in
X , we say that Ψ stabilizes on U and define the stabilized map

Ψ⋆ ∶ U → U

by
Ψ⋆(u) = Ψ○N⋆(u) for the above N⋆ = N⋆(u),

where an essential property of such u⋆ = Ψ⋆(u) ∈X is being fixed points of Ψ.
(The stabilized map Ψ⋆, whenever it exists, can be described in purely alge-

braic – semigroup theoretic, terms as being Ψ-bivariant, i.e. such that

Ψ ○Ψ⋆ = Ψ⋆ ○Ψ = Ψ⋆

and such that all other Ψ-bivariant Φ are, necessarily, Ψ⋆-bivariant as well.)
Passing from ψ to Ψ⋆ = Ψ⋆

ψ via Ψψ, say in the Turing case, may lead to
computations of mind-boggling complexity. The reason for this is non-specificity
of what can be called eventualization Ψ↝ Ψ⋆ that makes it impossible to decide
a priori

[A] for which x the sequence Ψ○N(x) stabilizes;
and/or to give

[B] an "effective" upper bound on the first N⋆
where the stabilization begins.

This impossibility, is "equivalent" to Gödel’s Incompleteness Theorem and
when "impossibility" is understood as non-computability it comes as

Turing’s Halting Theorem.89

Another manifestation of the unlimited complexity inherent in Ψ⋆ is Turing
Modeling Theorem that says, in effect, that

every computable (i.e. recursive) function can be "written" as Ψ⋆
ψ

for some finite set X and a function ψ ∶X3 →X.
In fact, there is a computable transformation T from the set of functions

Φ that define recursive functions x as solutions of equations "Φ(x) = 0" to the
space of Turing’s ψ, such that the functional equation "Φ(x) = 0" transforms to
the fixed point equation Ψ(x) = x where Ψ = Ψψ for ψ = T (Φ), where, moreover,
this fixed point, call it x⋆ ∈ X , is a unique attractive one.

The construction of Turing’s T is straightforward except that one needs to
specify how Turing’s sequences x(s), s = 1,2,3, ... are related with numbers –

89The equivalence Gödel ∼ Turing is rather obvious. On the other hand, there is no sim-
ple general framework where this "equivalence" would admit a mathematically acceptable
formulation. The same applies to the even more obvious equivalence [A]∼[B].
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arguments of recursive functions. There are many simple ways of doing this and
the conclusion of the theorem is valid (and pretty obvious) for any one of them.

Yet, there is no natural, distinguished or canonical T nor there is a natural
correspondence between numbers and finite sequences;90 also there is no natu-
ral extension of finite sequences that represent numbers to infinite ones where
Turing’s Ψ⋆ resides.

Serial and parallel computations.

In general, a cellular automaton performs many (similar) computations in
parallel, but the above localization property (⋆) enforces such a computation to
be sequential:

Turing’s "bug" executes a single procedure at a time,
where this procedure can be one of the three Boolean operations AND, OR,
NO over binary variables: x1 ∧ x2, x1 ∨ x2 and x↦ x�.

On the other hand, the brain’s "computations" are manifestly parallel with
millions of neurons firing simultaneously, that, apparently allows your ergo-
brain to absorb and understand flows of signals such as visual images and
words/phrases with their internal structures being by far more elaborate than
what is nodded for distinguishing binary digits, say for telling x = ○ from x = ●.

This undeniable supremacy of the brain over machines may, however, be il-
lusory, since, according to Turing’s modeling theorem, every conceivable compu-
tation can be reprogrammed into a sequential form. Besides, allowing "parallel"
does not ameliorate the computation time in many cases.

However,
there is no natural reprogramming parallel ; sequential.

Such reprogrammings destroy relevant structures in interesting non digital
flows of signals while introducing some irrelevant artificial structures. Conse-
quently, the stability under small random perturbations – an essential feature of
algorithms that direct natural ergo-processes, will be lost when you go sequen-
tial.

Besides,
there is no automatic process for introducing an ordering of branches91

of a parallel computation always preceding such a reprogramming.
Who, on Earth, can order millions of active neurons in the brain, where

even their number is unknown to us?
A mathematician would try to bypass this issue by introducing the set PO

of all possible orders, but the enormous size of this PO makes this idea compu-
tationally unusable. In fact, card(PO) = N ! = 1×2×3× ...×N for a computation
running in N parallel branches.92

90Digital representation of integers is practically convenient but there is nothing intrinsically
nice and natural about it. This, possibly, is why it was not accepted by ergo-oriented Greek
mathematicians, even though Archimedes came close to it in his Sand Reckoner.

91Rephrasing Hermann Weyl one may say that indiscriminatory ordering mathematical
objects is an act of violence whose only practical vindication is the special calculatory man-
ageability.

92If N = 2, the ordering problem, often being attributed to Buridan’s ass (1340), goes
sixteen centuries back to Aristotle. Today, we all know for sure that this problem admits
no algorithmic solution as it follows by contradiction from the existence of Möbvous’ strip.
And it is amazon to see how "a geometric unfolding" of this "asinine idea" has turned into
magnificent theory of fibered spaces accompanied by gauge theories while in algebra it has
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Maybe it is the equivalence parallel ∼ sequential that is illusory.

Discouraging Conclusion. Most (all?) classical statements concerning gen-
eral classes of computations are easy to prove, yet, they are rarely (ever?) set
into a mathematically (as opposed to "logically") satisfactory general frame-
work. On the other hand there are many open problems, such as P ≠? NP ,
with no progress being achieved toward their solutions.

This difficulty, probably, is inseparable from our non-understanding of the
logic of Life and of the Mind: we do not know what are the right questions to
ask.

As far as computations are concerned we do not know, for instance, what
are the true objects to which computation should be applied: are they numbers,
strings of digits, or we must allow general finite combinatorial structures such
as finite graphs, or some kind of (controlled?) infinite recursive (non-recursive?)
objects, or what?

Even though all such computation theories are mutually equivalent in some
philosophical sense, such "equivalence" is useless when it comes to modeling
ergo-systems by such objects.

2.4 Miracle of Numbers.
All the mathematical sciences are founded on relations
between physical laws and laws of numbers.

James Clerk Maxwell.

The existence of Mathematics as we know it strikes one as improbable as
emergence of Life on Earth. Nothing in the foundation of mathematics suggests
such thing is possible, like nothing in the Earth chemistry suggests it can beget
Life.

One may say that mathematics starts with numbers. We are so used to
the idea that we forget how incredible properties of real numbers are. The
seamless agreement of several different structures – continuity, order, addition,
multiplication, division – embodied into this single concept is amazing.

Unbelievably perfect symmetries in geometry and physics – Lie groups,
Hilbert spaces, gauge theories...–emerge in the world of numbers from the seed
of the Pythagorean theorem. Mathematics and theoretical physics are the two
facets of these symmetries that are both expressed in the essentially same math-
ematical language.

As Poincare says,
... without this language most of the intimate analogies of things would

forever have remained unknown to us; and we would never have had knowledge
of the internal harmony of the world, which is, as we shall see, the only true
objective reality.

In the "harsh real world", away from pure mathematics and theoretical
physics, the harmony of the full "symmetry spectrum" of numbers comes into
play only rarely. It may even seem that there are several different kinds of num-
bers: some may be good for ordering objects according to their size and some

developed into the Galois theory.
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may be used for addition of measured quantities. Using the all-powerful real
numbers for limited purposed may strike you as wasteful and unnatural.

For example, positive numbers appear in classical physics as masses of bulks
of matter while electric charges represent positive and negative numbers. The
relevant operation with these numbers is addition, since mass and electric charge
are naturally (nearly perfectly) additive: (a, b) ↦ a + b corresponds to bringing
two physical objects together and making a single (a + b)-object out of the two
corresponding to a and to b.

But there is no comparably simple implementation of, say, a ↦ 2a – one
can not just copy or double a physical object. And writing 2a = a + b for a = b
does not help, since mutually equal macroscopic physical objects do not come
by themselves in physics.

In contrast, doubling is seen everywhere in Life. All of us, most likely,
descend from a polynucleotide molecule which had successfully doubled about
four billion years ago. Organisms grow and propagate by doubling of cells.
Evolution is driven by doublings of genomes and of significant segments of the
whole genomes (not by the so called "small random variations").

A true numerical addition may be rarely (ever?) seen in biology proper but,
for example, additivity of electric charges in neurons is essential in the function
of the brain. This underlies most mathematical models of the neurobrain, even
the crudest ones such as neural networks. But the ergobrain has little to do
with additivity and linearity.93

The apparent simplicity of real numbers represented by points on an infinite
straight line is as illusory as that of visual images of the "real world" in front of
us. An accepted detailed exposition (due to Edmund Landau) of real numbers by
Dedekind cuts (that relies on the order structure) takes about hundred pages.
In his book On Numbers and Games, John Conway observes (and we trust
him) that such an exposition needs another couple hundred pages to become
complete.

To appreciate this "problem with numbers", try to "explain" real numbers
to a computer, without ever saying "obviously" and not resorting to anything
as artificial as decimal/binary expansions. Such an "explanation computer pro-
gram" will go for pages and pages with a little bug on every second page.

We shall not attempt to incorporate the full theory of real numbers in all
its glory into our ergosystems, but some "facets of numbers" will be of use. For
example we shall allow an ergo-learner the ability of distinguishing frequent and
rare events, such as it is seen in behaviour of a baby animal who learns not to
fear frequently observed shapes.

On the other hand, while describing and analyzing such systems we shall use
real numbers as much as we want.

The shape of the heaven is of necessity spherical.
Aristotle.

Numbers are not in your ergobrain but the idea of symmetry is in there.
Much of it concerns the symmetries of our (Euclidean) 3-space, the essential in-
gredient of which – the group of the (3-dimensional Lie) group O(3) of rotations

93"Non-linear" customary applies to systems that are set into the framework of numbers
with their addition structure being arbitrarily and unnaturally contorted.
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of the Euclidean round 2-sphere within itself – has been facinating mathemati-
cians and philosophers for millennia. And not only "the haven" but also your
eyes and some of your skeletal joints that "talk" to the brain are by necessity
spherical; hence, rotationally symmetric.

(The rotation group O(2,1) of the non-Euclidean hyperbolic plane, that is
logically more transparent than O(3) as it can be represented by symmetries of
a calender [SLE, §2.1], was discovered less than two centuries ago. This group
along with O(3) serves as as a building block for other simple Lie groups that
are representatives of essential geometric symmetries.)

A plausible (ergo)brain’s strategy for learning space, in particular, for re-
construction of spacial symmetries from the retinal images of moving objects,
was suggested by Poincaré in §IV of La science et l’hypothèse, where Poincaré
indicates what kind of mathematics may be involved in learning space by our
visual system. An aspect of our "ergo-approach" is an attempt to spell out what
Poincaré might have in mind.94

Our ergobrain is also sensitive to arithmetic symmetries that issue from
prime numbers as is seen in the recurrence of the magical pentagram figure
depicting the finite (Galois) field Z5 with the miraculous symmetry of 20(=
5 ⋅ (5 − 1)) (affine) transformations acting on it.

A fantastic vision, unimaginable to ancient mystics and to mediaeval oc-
cultists, emerges in the Langlands correspondence between arithmetic symme-
tries and the Galois symmetries of algebraic equations, where much of it is still
in the clouds of conjectures. It is tantalizing to trace the route by which the
ergobrain has arrived at comprehension of this kind of symmetries.

2.5 Big and Small.
Mathematicians treat all numbers on equal footing, be these

2, 3, 4,
or 20, 30, 40,
or 1 000, 10 000, 100 000, 1 000 000,
or 1010, 1020, 1030, 1040,

or 10102

, 101030

, 1010400

But "democracy of numbers" breaks down in the "real world", be it the
physical Universe or the human ergo-world.

94A similar idea can be seen in Sturtevant’s 1913 construction of the first genetic map as
we explain in $4 of [4].
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For example, the grammars of some languages, e.g. of Russian, distinguish
the numbers 2, 3 and 4, while 5, 6, ..., 20, 30, 40,..., 100, 200,...(but not, say 23,
101 and 202) are put, syntactically speaking to "the same basket as infinity.95

One instantaneously evaluates the cardinality of ● ● ● ●, one needs a fraction
of a second to identify "unstructured five" ● ● ● ● ●, it takes a couple of seconds
for ● ● ● ● ● ● ● (it is much faster if the symmetry is broken, for instance, as in
● ● ● ● ● ● ●) and it is impossible with

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●.
But a little structure helps:

● ● ● ● ● ●
● ● ●

● ● ● ● ● ●
And slightly larger numbers, such as

● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ●
● ● ● ● ● ●

● ● ●
if perceived, then through a lens of mathematics.

Our intuition does not work anymore when it comes to thousands, millions,
billions. Answer fast:

Do you have more hairs on your head (assuming you are not bald) than the
number of people an Olympic stadium may contain?96

What is greater the number of bacteria living in your guts or the number of
atoms in a bacterium?97

Below are ergo-relevant numbers.
● Time. Hundred years contain < 3.2 billion seconds. With the rate three

words per second you vocalize less than ten billion (1010) words in the course of
you life.

Ten billion garrulous individuals all together98 will utter at most
1010 × (3 × 3.2 ⋅ 107) × 5 ⋅ 109 < 5 ⋅ 1027

words until Sun turns into a red giant in about five billion years.
Speaking more realistically, humanity can not come up with more than 1012

-1018 different ideas — poems, theorems, computer programs, descriptions of
particular numbers, etc.99

95Amusingly, there is also a chasm in essential properties between geometric spaces of di-
mensions 1,2,3,4, and those of dimension 5 and more.

96Both numbers are about 100 000.
97There about 1011-1014 atoms in bacteria and more than 1012-1013 bacteria living in your

body, mainly in your guts.
98The human population on Earth today is slightly above seven billion.
99life on Earth, in the course of its ≈ 3.9 ⋅ 109 year history, has generated a comparable

number of "ideas" and recorded them in DNA sequences of organisms inhabiting the planet.
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1015 years of possible duration of the Universe is made of less than 1046 =
1015 × 3 ⋅ 107 × 1

3
1024 jiffie-moments.100

● Brain. The number of neurons in the human brain is estimated between
ten and hundred billion neurons with hundreds synaptic connections per neuron,
somewhere 1012-1014 synapses all together.

This gives an idea on the volume of the memory stored in the brain, that is
comparable to that on a computer hard disk of about 1012-1013 bits.

The (short time) brain performance is limited by the firing rates of neurons
– something about 100 times per second. Thus, say hundred million active
neurons can perform 1010 "elementary operations" per second101 that is what
an average computer does.102

● Space. A glass of water contains about 1025 molecules, the planet Earth
is composed of about 1050 atoms and the astronomically observable universe
contains, one estimates today, 1080 particles.103

Thus, there are (significantly) less than 10130 classical (as opposed to quan-
tum) "events" within our space-time and this grossly overestimated number
makes

an unquestionable bound of what will be ever achieved by any conceivable
(non quantum) computational/thinking device of the size of the Universe.

But... there are at least 21010 > 103 000 000 000 >> 10130 possible "texts" that
you, a humble 21st century human being, can (?) write in sequences s of 1010

bits on the hard disc of your tiny computer. Can’t you?
How comes that only a negligible percentage, less than 1

10109
of possibilities,

can be actualized?
Worse than that, it is impossible to pinpoint a single instance of non-realizable

sequence s: indicating an s will make this very s actual.
It is far from clear whether such inconsistency between "can" and "will"

admits a clean mathematical reformulation or this belongs with the paradox of
the heap. Yet, there are a few purely mathematical theorems and open problems
that address this issue, albeit not satisfactorily.

● The oldest is the so called Scolem’s paradox, that is a theorem in the
mathematical logic saying that uncountably many mathematical objects (sets)
can be "adequately represented" by countably many "verbal descriptions".

● It is often (almost always?) quite difficult to explicitly construct a single
mathematical object O that satisfies a certain (non-trivial!) property P , despite
(because of?) a presence of a counting or similar argument showing that a
"predominate majority" of objects O do satisfy P .

The most annoying open class of such problems concerns explicit construc-
tion of "simple" functions f(n), n = 1,2,3, ...., evaluation of which needs long
100Jiffy ≈ 3 ⋅ 10−24s is the time needed for light to travels the proton-sized distance.
101But the rate of learning is measured not in seconds but in hours, days, months, years.
This is so, partly, because modification of the strength of synaptic connections is slow.
102The speed of modern supercomputers is measured in petaflops corresponding to 1015

(floating point) operations per second. This is achieved with particularly designed network
architectures of processors that allow thousands (not millions as in the brain) operations
performed in parallel.
103Archimedes evaluated the number of sand grains that would fill the Universe by ≈ 1060

where exponential representation of numbers was invented by him for this purpose.
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computations.
Ad hoc Example. Let dn(π) be defined as the 10n-th digit of

π =3.1415 92653 58979 32384 62643 38327 95... .
Here, one sees that d1(π) = 3, d2(π) = 4, d3(π) = 7. As for today, ten trillion

(1013) digits of π were computed104 with a use of versions of the
Ramanujan mysterious formula

1

π
= 2

√
2

9801

∞
∑
k=0

(4k)!(1103 + 26390k)
(k!)43964k

= 2
√

2

9801
(1103 + 24 ⋅ 27493

3964
+ ...) .

Thus, one knows the values dn(π) up to n = 13.
One can envisage a similar brut force computation of dn(π) up to n = 16

or even n = 19 but, probably, the sequence d1(π), d2(π), d1(π), ..., d1000(π) is
not "written" anywhere in the space-time continuum of our Universe and the
number d1000(π) will be never determined by any superhuman civilization.105

Beside such artifacts as d1(π), d2(π), d3(π), ... there are mathematically mean-
ingful objects in the "real world" that are also beyond our present day compu-
tational prowess. For instance, it is unlikely that a genome sequence of a viable
organism, e.g. of a photosynthesizing plant, can be (re)constructed with the
only input/knowledge being "fundamental laws of physics" (if these exist) by a
computation composed of 1025-1030 "elementary steps".106

There is a "natural" class of "simply describable" functions that is called
NP . The famous P ≠ NP problem/conjecture says that there are functions
f = f(n) from NP that can not be computed in polynomial time, say, in at
most constf ⋅ n3 steps for some constant depending on f . The stark failure
in solving this problem shows how limited our vision of the basic structure of
computations in mathematics is.107

On the positive side, despite the overall lack of progress in understanding
"generic-versus-effective" in the mathematical world, there were a few successes,
e.g. specific constructions of graphs with "random, properties" e.g. of expander
graphs.

2.6 Probabilities Old and New.
The true logic of this world is the calculus of probabilities.

James Clerk Maxwell.

The notion of a probability of a sentence is an entirely useless one,
under any interpretation of this term. Naum Chomsky.

104The computation took more than a year.
105A miraculous advance in quantum computing or an equally miraculous discovery in math-
ematics of π can make it possible but this would hardly help, for instance, in deciding wether
the number digitally represented by 0.d1(π)d2(π)d3(π), ..., is transcendental.
106Nature managed doing this in something like 1050 steps.
107The concept of "computational polynomiality" makes little sense outside pure math: a
mathematician may be happy with anything like 109 ⋅ (106)3 but this is as bad (good?) as
infinity when it comes to the "real life". Learning algorithms in the (ergo)brain must be
effectively log×linear, rather than polynomial.
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Human languages carry imprints of the mathematical structure(s) of the
ergobrain and, at the same time, learning a natural (and also a mathematical108)
language is a basic instance of the universal learning process by the human
ergobrain. We hardly can understand how this process works unless we have a
fair idea of what language is. But it is hard to make a definition that would
catch the mathematical essence of the idea of language.

But isn’t a language, from a mathematical point of view, just
a set of strings of symbols from a given alphabet,

or, more generally,
a probability distribution on the set of such strings?

A linguist would dismiss such definitions with disgust, but if you are a math-
ematician these effortlessly come to your mind. Paradoxically, this is why we
would rather reject than accept them:

Mathematics is shaped by definitions of its fundamental concepts, but there
is no recipe for making "true definitions". These do not come to one’s mind
easily, nor are they accepted by everybody readily.

For example, the idea of an algebraic curve that is a geometric representation
of

solutions of a polynomial equation P (x1, x2) = 0 in the (x1, x2)-plane
by something like , originated in the work by Fermat and Descartes in 1630’s
and these curves have been studied in depth by generation after generation of
mathematicians ever since.

But what is now seen as the simplest and the most natural definition of such
a curve – the one suggested by Alexander Grothendieck in 1950s in the language
of schemes, would appear absurd, if understood at all, to anybody a few decades
earlier.

Defining "language" and/or "learning" is, non-surprisingly, more difficult
than "algebraic curve", since the former have non-mathematical as well as purely
mathematical sides to them. They are similar in this respect to the concept of
probability that by now is a well established mathematical notion.

It is instructive to see how "random" crystallized to "probability", what was
gained and what was lost in the course of this "crystallization".

Also, we want to understand how much of "random" in languages in (ergo)learning
process (including learning languages) is amenable to what Maxwell calls "the
calculus of probabilities".

The concept of chance is centuries old as is witnessed by some passages in
Aristotle (384– 322 BCE) and also in Talmud.109 And Titus Lucretius (99 –55
BCE), a follower of Democritus, describes in his poem De Rerum Natura what
is now called Einstein-Smoluchowski stocahstic model of Brownian motion110.

But mathematics of "random" was originally linked to gambling rather than
to science.

I of dice possess the science and in numbers thus am skilled
108Mathematical language for us is the language used for communication between mathe-
maticians but not a mathematical language of formal logic.
109Our sketchy outline of the history of probability relies on [10] [2], [14], [7], [6], [15] with
additional References for Chronology of Probabilists and Statisticians on Ming-Ying Leung’s
page, http://www.math.utep.edu/Faculty/mleung/mylprisem.htm
110This is the collective random movements of particles suspended in a liquid or a gas that
should be rightly called Ingenhousz’ motion.
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said Rituparna, a king of Ayodhya, after estimating the number of leaves on
a tree upon examining a single twig. (This is from Mahabharata, about 5 000
years ago; also 5 000 years old dice were excavated at an archeological site in
Iran.)

What attracts a mathematician to random dice tossing and what attracts a
gambler are the two complementary facets of the stochastic symmetry.

Randomness unravels and enhances the cubical symmetry of dice (there are
3! × 23 = 48 symmetries/rotations of a cube) – this is what fascinates a mathe-
matician.

But randomness also breaks symmetries: the only way for a donkey’ ergo-
brain (and ours as well) to solve Bouridan’s ass problem is to go random.111

Emanation of the "miraculous decision power of random" intoxicates a gambler’s
ergo.112

The first(?) documented instance of the calculus of probabilities – "mea-
suring chance" by a European113 appears in a poem by Richard de Fournival
(1200-1250) who lists the numbers of ways three dice can fall. (The symmetry
group in the case of n dice has cardinality n! × (48)n that is 664 552 for n = 3.)

Next, in a manuscript dated around 1400, an unknown author correctly
solves an instance of the problem of points, i.e. of division of the stakes.

In 1494, the first(?) treatment of the problem of points appears in print114

in Luca Paccioli’s Summa de Arithmetica, Geometria, Proportioni et Propor-
tionalita.115

Paccoli’s solution was criticized/analized by Cardano in Practica arithmetice
et mensurandi singularis of 1539 and later on by Tartaglia in Trattato generale
di numerie misure, 1556.

About Cardano.

Gerolamo Cardano was the second after Vesalius most famous doctor in
Europe. He suggested methods for teaching deaf-mutes and blind people, a
treatment of syphilis and typhus fever. Besides, he contributed to mathematics,
mechanics, hydrodynamics and geology. He wrote two encyclopedias of natural
science, invented Cardan shaft used in the to-days cars and published a foun-
dational book on algebra. He also wrote on gambling, philosophy, religion and
music.

The first(?) systematic mathematical treatment of statistic in gambling ap-
pears in Cardano’s Liber de Ludo Aleae, where he also discusses the psychology
of gambling, that written in the mid 1500s, and published in 1663.

In a short treatise written between 1613 and 1623, Galileo, on somebody’s
111No deterministic algorithm can select one of the two points in the (empty) 3-space as it
follows from the existence of the Möbius strip. And a general purpose robot that you can ask,
for instance, bring me a chair (regardless of several available chairs being identical or not)
needs a "seed of randomness" in its software.
112In the same spirit, the absolute asymmetry of an individual random ± sequence of
outcomes of coin tosses complements the enormous symmetry of the whole space S of dyadic
sequences that is acted upon by the compact Abelian group {−1,1}N for N = {1,2,3,4,5, ...}
and by automorphisms of this group.
113Some "calculus of probabilities", can be, apparently, found in the I Ching written about
31 centuries ago.
114The first book printed with movable metal type was Gutenberg Bible of 1455.
115Paccioli became famous for the system of double entry bookkeeping described in this book.
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request, effortlessly explains why upon tossing three dice the numbers (slightly)
more often add up to 10 than to 9. Indeed, both

9 =
1

1 + 2 + 6 =
2

1 + 3 + 5 =
3

1 + 4 + 4 =
4

2 + 2 + 5 =
5

2 + 3 + 4 =
6

3 + 3 + 3

and
10

1= 1 + 3 + 6
2= 1 + 4 + 5

3= 2 + 2 + 6
4= 2 + 3 + 5

5= 2 + 4 + 4
6= 3 + 3 + 4

have six decompositions, but 10=3+ 3 +4=3+4+3=4+3+3 is thrice as likely
as 9=3+3+3.

(If you smile at the naivety of people who had difficulties in solving such an
elementary problem, answer, instantaneously,

What is the probability of having two girls in a family with two children
where one of the them is known to be a girl?116)

Formulation of basic probabilistic concepts is usually attributed to Pascal
and Fermat who discussed gambling problems in a few letters (1653-1654) and
to Huygens who in his 1657 book De Ratiociniis in Ludo Aleae introduced the
idea of mathematical expectation.

But the key result – the Law of Large Numbers (hinted at by Cardano) was
proved by Jacob Bernoulli only in 1713.

This, along with the Pythagorian theorem and the quadratic reciprocity
law117 stands among the ten (±2) greatest mathematical theorems of all time.
To appreciate its power look at the following example relevant to some (ergo)-
learning algorithms.

Let X be a finite set, e.g. the set of numbers 1,2,3, ...,N and let Θ be a
collection of (test) subsets T ⊂ X. Say that a subset Y ⊂ X is Θ-median if the
cardinalities of the intersections of Y with the members T of Θ satisfy

1

3
card(T ) ≤ card(T ∩ Y ) ≤ 2

3
card(T ) for all T ∈ Θ.

A slightly refined version of the Law of Large Numbers implies that if Θ
contains at most 2M/10 (test) subsets T ⊂X, for M = minT ∈Θ card(T ), i.e. if

card(Θ) ≤ 2card(T )/10 for all T ∈ Θ,

then,
for "large" M , "most" subsets Y ⊂X with card(Y ) = 1

2
card(X) are Θ-median.

(If card(X) happened to be odd, let card(Y ) = 1
2
card(X) + 1

2
.)

In particular,
if M ≥ 10 and card(Θ) ≤ 2M/10 then X contains a Θ-median subset Y ⊂X.
What is interesting is that even if a collection Θ is defined by "simple explicit

rules", say in the case X = {1,2,3, ...,N}, there may be no "simple description"
of any Θ-median subset Y , albeit we do know that such a Y does exist. (This is
116This would take half a second for Galileo – the answer is 1/3 (±ε).
117Let p, q be odd primes and q∗ = (−1)(q−1)/2q. Then n2−p is divisible by q for some integer
n if and only if m2 − q∗ is divisible by p for some m.
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a characteristic instance of the poorly understood generic-versus-effective phe-
nomenon mentioned in the previous section.)

Example. Let X = XN equal the set of integers 1,2, ...,N and Θ = ΘM be
the set of all arithmetic progressions T of length M in this XN .

If M ≥1 000 and N ≤ 1020, then Θ-median subsets Y ⊂ {1,2, ...,10N} exist.
But exhibiting any single one of them, say for M = 1000 and N = 1012 seems

difficult.118 And effective description ofM -median subsets Y ⊂X = {1,2, ...,N}
becomes progressively harder for tricker, yet, explicitly described Θ.

"Continuous probability" was invented in 1733 by Buffon who thought of
a needle of unit length (instead of dice) randomly thrown on the plane,
where this plane was divided into parallel strips of unit width.

He proved that
the probability of crossing a line between two strips by the needle
equals 2/π for π = 3.14... being one half the length of the unit circle

About Georges-Louis Leclerc Buffon.

Besides opening the fields of geometric probability and integral geometry,
Buffon also contributed to optics: lenses for lighthouses and concave mirrors of
his design have been in use for two centuries afterwards.

But his major contribution was to what he called "natural history" – a
development of a synthetic picture of Life on Earth, where he outlined many
essential interactions between organisms and their environment, much of which
is now goes under the heading of "biogeography".

Buffon emphasized the preeminence of biological reproduction barriers be-
tween different groups of organisms over the obvious geographical ones that
suggested a definition of species that has withstood the attempts to "improve"
it by later natural philosophers including some 20th century post Darwinian
evolutionary thinkers.

Buffon was the first(?) who articulated the main premise of the evolutionary
biology – the concept of the common ancestor of all animals, including humans.

Buffon’s view on Nature and Life, expounded in hisHistoire naturelle, génèrale
et particuliere published between 1749 and 1789 in 36 volumes, became a com-
mon way of thinking among educated people in Europe for two centuries after-
wards.

With the Buffon’s needle, "random" merged with "analysis of continuum"
and were empowered by "calculus of infinitesimals". This is what was hailed
by Maxwell and exploited by generations of mathematicians and physists after
Buffon.119

118Conjecturally, if N ≥ 10M , then no Θ-median subset Y ⊂ {1,2, ...,N} exists for this
Θ = ΘM (made of arithmetic progressions of length M), but this is known only for much

larger N , e.g. for N ≥ 22
22

2N

by Gowers’ refinement of the Baudet-Schur-Van der Waerden-
Szemeredi theorem.
119The brightest supernova in the 19th century sky of science, as it is seen from the position
of the 21st century, was the 1866 article Versuche über Pflanzen- Hybriden by Gregory Mendel
who derived the existence of genes – atoms of heredity by a statistical analysis of the results
of his experiments with pea plants. The world remained blind to the light of this star for more
than 30 years.
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This calculus comes at a price: probability is a "full fledged number" with
the addition/multiplication table behind it. But assigning a precise specific
numerical value of probability to a "random event" in "real life", e.g. to a
sentence in a language, is not always possible.

Apparently, the elegance and success of probabilistic models in mathemat-
ics and science (always?) depends on (often tacitly assumed and/or hidden)
symmetry.

(A bacterium size speck of matter may contain, say, NAT = 1012 atoms
and/or small molecules in it and the number NBA of bacteria residing in your
colon is also of order 1012. If there are two possible states for everyone – be
they atoms or bacteria – then the number of the conceivable states of the entire
system, call it S, is the monstrous

M =M(S) ≥ 21012

> 103 000 000 000

where its reciprocal
1

M
< 0. 000...000

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
3 000 000 000

1

taken for the probability of S being in a particular state is too small for making
any experimental/physical/biological sense.

However, the assignment of the 1
M
-probabilities to the states is justified

and will lead to meaningful results IF, there is a symmetry that makes these
tiny meaningless states "probabilistically equivalent", where the nature of such
a symmetry, if it is present at all, will be vastly different in physics and in
biology.120

On Symmetry in Randomness.

Essentiality of "equiprobable" was emphasized by Cardano and parametriza-
tion of random systems by "independent variables" has always been the main
tenet of the probability theory. Most (all?) of the classical mathematical prob-
ability theory was grounded on (quasi)invariant Haar(-like) measures and the
year 2000 was landmarked by the most recent triumph of "symmetric probabil-
ity" – the discovery of (essentially) conformally invariant probability measures
in spaces of planar curves (and curves in Riemann surfaces) parametrized by
increments of Brownian’s processes via the Schram-Loewner evolution equation.
120It is not fully accidental that the numbers NAT and NBA are of the same order of
magnitude. If atoms were much smaller or cells much bigger, e.g. if no functional cell with
less than 1020 atoms (something slightly smaller than a Drosophila fly) were possible, then,
most probably, life, as we know it, could not have evolved in our short lived Universe with
hardly 1080 atoms in it.
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But if there is not enough symmetry and one can not postulate equiproba-
bility (and/or something of this kind such as independence) of certain "events",
then the advance of the classical calculus stalls, be it mathematics, physics,
biology, linguistic or gambling.

On Randomness in Languges.

Neither unrealistic smallness of probabilities, nor failure of "calculus with
numbers" preclude a use of probability in the study of languages and of learn-
ing processes. And if you are too timid to contradict Chomsky, just read his
"under any interpretation of this term" as "under any interpretation of the term
probability you can find in a 20th century textbook".

Absence of numbers for probabilities in languages is unsurprising – numbers
are not the primary objects in the ergoworld. Numbers are not there, but there
is a visibly present partial order on "plausibilities" of different sentences in the
language. This may look not much, but a hierarchical use of this order allows
recovery of many linguistic structures as we shall see later on.

An essential problem with probability is a mathematical definition of "events"
the probabilities of which are being measured.

The now-a-days canonized solution, suggested in 1933 by Kolmogorov in his
Grundbegriffe der Wahrscheinlichkeitsrechnung, is essentially as follows.

Any kind of randomness in the world can be represented (modeled) geomet-
rically by a subdomain Y in the unit square ∎ in the plane. You drop a points
to ∎, you count hitting Y for an event and define the probability of this event
as area(Y ).

However elegant this set theoretic frame is, (with ∎ standing for a univer-
sal probability measure space) it must share the faith of André Weil’s universal
domains from his 1946 book Foundations of Algebraic Geometry. The set the-
oretic language introduced in mathematics by Georg Cantor that has wonder-
fully served us for almost 150 years is now being supplanted by a more versatile
language of categories and functors. André Weil’s varieties were superseded by
Grothendieck’s schemes, and Kolmogorov’s definition will eventually go through
a similar metamorphosis.

A particular path to follow is suggested by Boltzmann’s way of thinking
about statistical mechanics – his ideas invite a use of non-standard analysis as
well as of a Grothendieck’s style category theoretic language. (This streamlines
Kolmogorov"s ∎ in certain applications as we explain in [5].) But a mathemat-
ical interpretation of the idea of probability in languages and in learning needs
a more radical deviation from (modification? generalization of?) this ∎.

Cardano, Galileo, Buffon. The very existence of these people chal-
lenges our vision on the range and spread of the human spirit. There is no
apparent wall between the ergos and egos in the minds of these men.

Where are such people to-day? Why don’t we see them anymore? Nobody
in the last 200 years had a fraction of Cardano’s intellectual intensity combined
with his superlative survival instinct. Nobody since Buffon has made long lasting
contributions to domains as far-distant one from another as pure mathematics
and life sciences. What needs to be done to bring Galileos back to us?

62



3 Language in the Brain.
The limits of my language means the limits of my world.

Ludwig Wittgenstein.

● Da-Da, Ma-Ma, Pa-Pa, Ba-Ba.
● Neanderthals are mobbing a mammoth; their shouts fly throw the air and

reappear as cuneiform writings on clay.
● The "run and yell" program in your brain switches to the "sit and read"

mode.
What is Language? Is it conversing, writing, reading?

A mammoth hunter scratches his head and pronounces after a minute of
concentration:

"Semiosis that relates signs with things I can eat."121

This translates in our terms to
a bipartite graph122 Σ on two vertex sets123, call them Th and Si – the sets

of "things" th and of "signs" si.
(The edges of Σ correspond to the pairs (th, si), where th and si are related

by semiosis).
The hunter interrupts and raises his ax:
"This mathematics, it is not real language."
Since the hunter is safely far away, I may state openly what I think:
If we want to say something general and structurally interesting about

121However cruel, employment of semiosis by these people in hunting was indispensable for
filling their bellies with meat and their life with meaning.
122This is not the same as an existential graph of Peirce.
123On may argue whether "signs" constitute a set in the proper meaning of the word and
this is even more dubious for "things" and "meanings".
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language, we ought to speak mathematics – the only language
available to Homo sapience for this purpose.
(Accidentally, there is a semiotic turn to it:

Mathematics is the art of giving the same name to different things.
Henri Poincaré.

Of course, this a metaphor, it is not meant to be taken literally, nor is it
intended as a definition. This sentence brings to one’s mind the image of an
exquisitely elaborate graph depicting the artful arrangements of patterns of the
body of mathematical ideas and where one sees bushes of edges sprouting from
buds of universal "abstract" concepts toward many seemingly different specific
"concrete things".)

But does it make any difference if you say "graph" rather than "semiosis"?
Different names you give to things channel your stream of thought in different

directions.124

"Semiosis" brings to you mind the images of "meaningful things" of "real
world" and "meaningless" scribbles on paper – the signs associated to these
objects .

When you say "graph", you focus on the structure of association and close
your eyes to all what you naively125 perceived as being real and meaningful.126

However, whatever you say, the bare semiosis model is more applicable to
vervet monkey alarm calls rather than to human languages.

Languages have intricate internal structures, and formation of a language in
a developing human brain plays its role in compression and structuralization of
flows of information carried by the senses under the stimuli coming from "real
things".127

Signs, objects, meanings, etc. are all about appearances, not about struc-
tures and/or structuralizing processes.

And semiosis per se for language is like applications for mathematics: it
carries only a secondary and rather shallow structure. Yet, thinking in terms of
graphs is instructive.

For instance, one may notice that "signs" and "things/meanings" appear on
an equal footing in the semiosis model and ask:

Can one tell who is who, i.e. which vertices represent signs and which things,
by the combinatorics of the graph Σ?

Also one observes by looking at graphs that a semiosis can support an inter-
esting structure only if a typical sign si ∈ Si has multiple meanings – the same
name for different things, and, moreover, if most signs come in significantly
numerous groups of synonyms.

(The multiplicity should not be excessive: even a monkey would figure our
that there is something wrong if all things th are connected with all si by
semiotic edges of Σ. A paradigm of a logically perfect language in the eyes of
124And they appeal to different groups of people: you hardly find (non-existential) "graph"
in a semiotics text or "semiosis" in an article on graph theory.
125A mammoth hunter will have another idea of who is being naive.
126This is how a Homo sapience child approaches the kindergarten Ramsey, see 2.1.
127Superficially, this is like mathematics: there have been thousands of different stones that
have crossed your field of vision (have been stored in you visual memory?) but the same word
stone stands for all of them in your brain with probably only a few neurons occupied for this
purpose.
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a vervet monkey would be a one-to-one correspondence between "signs" and
"things", that is if each signs has a unique well defined meaning, and also every
meaning is encoded by a single sign. But such a language will be no good for
hunting animals as intelligent as mammoths.)

Also, our graph suggests how one may measure distances between different
"things/meanings" in terms of signs associated to them.

Namely, given a thing th ∈ Th, one assigns to it the subset Sth ⊂ Si of all
signs si associated to th by an edge in Σ and define the Hamming distance
between th1 and th2 in terms of the cardinalities of the corresponding sets and
their intersections as follows.

distHam(th1, th2) = card(Sth1) + card(Sth2) − card(Sth1 ∩ Sth2),

and similarly, one defines a distance on Si by representing all si by subsets
Tsi ⊂ Th.

Now one can approach the above "who is who" question by comparing the
geometries of Th and Si with respect to these distances.

Are, for instance, the shapes of spaces (Si, distHam) of signs tend to be
round or oblong?

Do the spaces (Th, distHam) of things look smooth or hairy?
Taking the geometry of a space like (Si, distHam) seriously may strike you

as silly. But we shall see next that this acquires significance for a class of graphs
that are intrinsically associated to language with no reference to "things".

3.1 Words, Graphs, Categorization and Co-clustering.
There can be no isolated sign. Moreover, signs require
at least two Quasi-minds.

Charles Sanders Peirce.

Let us assume that a language we study admits a simple general definition
of word-unit and where we possess a universal rule for identification of word
boundaries. (In real life defining what is a word and devising an algorithm for
identifying them in a flow of signals is by no means easy.)

Let us try to classify words according to their functions where two words
w1 and w2 are regarded functionally similar if the other words with which they
systematically "cooperate" are themselves tend to be similar.

The condition
w1 is similar to w2 if coworkers of w1 are often similar to coworkers of w2

may strike you as being circular, but this is easily taken care of by the formal
definition below with the apparent circularity making co-clustering mathemat-
ically so nice.

What is more difficult is to define and/or identify togetherness of "doing
something" for pairs (or larger groups) of words. But it is relatively easy to
decide, without any reference to "meaning" or "function" whether two given
words, say w1 and w2, often come close together or, on the country they come
close relatively rarely.128

128This preassumes that we know what it means to be "same" for words positioned at
different locations in flows of speech or in written texts.
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This gives you what is called the co-occurrence graph on the set W of
words,129 where w1 is joined with w2 by an edge if the two often come close
together, where, moreover, one may vary "often" (measured by a frequency
an evaluation of which may need some care) and "close" (in some positional
distance) and thus obtain a family of graphs depending on two parameters.

The remarkable fact is that such graphs, if they come from "real life", have
huge redundancy in them – they are very far from anything that can be regarded
as "random".

More specifically such a G, typically admits approximate reductions to cer-
tain much smaller graphs G.

On terminology.

Division of "objects" into classes is called categorization in linguistic and
in psychology, while doing this by means of a G is called co-clustering in lin-
guistics and bi-clustering as well as two mode clustering in data mining and in
bioinformatics where one says clusters rather than of "classes".

This kind of analysis, probably, has been used in other branches of sci-
ence/statistics under different names that makes it hard to find out when and
by whom this idea was originally introduced. (Not impossibly, this was under-
stood and implicitly used by Aristotle.)

Humble Example of Bi-Clustering. Let W consist of letters (kind of) repre-
senting phonemes of the English language and let the edges in G represent those
pairs of letters that often appear next to each other, where "often" for (w1,w2)
signifies that the frequency of this pair is significantly higher than what one
would expect from a random sequence of letters. That is

prob(w1,w2) ≥ (1 + S) ⋅ prob(w1) ⋅ prob(w2)

in terms of probabilities, where S > 0 is a positive constant the specific value of
which depends on what "significant" signifies.130

Since this typically happens when one of the letters is vowel and another one
is consonant, this G (approximately) "reduces" to the two vertex graph ●—● by
dividing the vertex set W into two classes/clusters

W=vowels & consonants
vo●—co●

Let us emphasize that this partition of W does not depend on any a priori
knowledge of the "nature" of letters, but only on the relative frequencies of
letters and pairs of letters in texts; the idea of meaning we attribute to these
classes comes along with the names we assign to them.

To define graph reduction in general, it is convenient to think of G as a
{0,1}-function on the vertex set (of words) W of G, written as G(w1,w2),
where "reduction" is a representation of G as a composition, sometimes called
superposition, of a surjective (i.e. onto) reduction map R ∶ W → V for some
set V , usually significantly smaller than W , and a {0,1}-function on V , say
G(v1, v2),

G(w1,w2) = G(R(w1),R(w2)).
129We assume here that words constitute sets.
130Being vague here poses no danger of lulling ourselves into a false sense of understanding,
as it frequently happens to people carrying out speculative discussions with their intuition
unaided by mathematics.
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It is unrealistic to expect the existence of such "perfect reduction" if V is
much smaller thanW . All we may hope for is a good approximation of G(w1,w2)
by G(R(w1),R(w2)) for some R and G, where "approximation" (usually in this
context) means that the above equality holds for a "significant majority" of the
pairs (w1,w2) ∈W ×W that correspond to closeness in the l1-metric in the space
of real functions on the set W ×W .131

To get a rough idea of a possible magnitude and efficiency of such a reduction
let the set W contain 200 000 of (generously understood) "words", including
common di-grams (pairs of words ). Then, in general, the description of G
needs about

(2 ⋅ 105)2 = 40 000 000 000 – forty billion – bits of information.
This is a pretty big number, you can not learn that much during your lifetime

of three billion seconds.
On the other hand, if you reduce W to a set V with, say 300 elements –

classes of words – in it, then the pair (R,G) can be encoded with only
(log2 300)⋅ 200 000 + 3002 < 2 000 000 – two million bits.

This is more than twenty thousand-fold reduction of information!
It is the (ergo)-grammar, of course, not texts themselves written in our lan-

guage, that may admit such incredible compression. (The maximal compression
of texts is believed to be well below ten.) But this is exactly what ergo-learning
is about: it is not remembering whatever enters you brain, but classifying, for-
getting, compressing and further structuralizing the incoming "information".

Now there are three questions that beg for answers.
1. What do you gain by this compression of information if you need to know

all of G to start with in order to construct R and G?
2. Even if you are given G, say written down in your computer memory,

how can you find a reduction in practice?
3. If there are several different "reasonably looking" reductions, how can

you trust any one of them?
Ansver to 1. In order to find R and G you do not need to know all of G but

only a part of it that carries somewhat more than 2 000 000 bits fn information.
For example, a child who learns a language may recognize, in the course of
first fifteen years of his/her life, with 20% of this time being exposed to the
language (20% of 15 years make about hundred million seconds), ten million
pairs of words (w1,w2) frequently (decided according to some criterion) coming
together.

You extend G(w1,w2) = 1 at these pairs by zero everywhere else on W ×W
and search for a reduction for this incomplete version of G to a 300×300 function
G.

Answer to 2. In general, there is no simple and fast co-clustering algorithm
for finding a reduction, but certain (some are not fully understood) features of
human languages make such algorithms possible.132

For example, a presence of small body of core words that have exceptionally
high frequencies makes naive iteration algorithms quite efficient.
131There is much to be done in order to make this more specific or, on the contrary, more
general, e.g. by using other metrics on spaces of functions in two variables.
132Co-clustering programs must be present in the image processing systems of animals (all
vertebrates?) and these kind of ready made algorithms in our brain had directed the path
taken by the evolution of the "language instinct" in Homo sapience.
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Answer to 3. The existence of a sufficiently sharp approximate reduction, i.e.
with G(R(w1),R(w2)) sufficiently close to G(w1,w2), is rather exceptional and
miracles do not happen twice: if there are, say, two such reductions R1 ∶W → V1

and R2 ∶ W → V1, where the set V2 has cardinality card(V2) ≤ card(V1), then,
most likely R2 equals a reduction of R1.

This means, there exists a reduction R12 ∶ V1 → V2 of the graph G1 to
G2, such that R2 equals the composition of the two maps, R2 = R12 ○ R1, i.e.
R2(w) = R12(R1(w)), or at least R2 is "quite close" to R12 ○R1.

All of the above being said, a doubt may linger in you mind.
Isn’t this G(R(w1),R(w2)) too simple to teach you anything substantial

about learning and understanding?
Do you need mathematics to express the idea of two words being similar if

they have similar surroundings in texts?

Prior to responding to this let us make it clear that the above kind of co-
clustering is neither the final product of building a structure from "flows of
words’" nor is it an "atomic unit" of such a structure.

One rather should picture it as a large molecule with simple, yet, non-trivial,
internal architecture where this molecule, in turn, serves as a building block for
more elaborate syntactic structures.

The simplicity of this "mathematical molecule" makes it quite versatile: one
can modify it in many ways and adjust it to building a variety of different global
structures.

For instance:
● One may apply co-clustering to functions in more than two variables (this

is why we prefer "co-clustering" to "bi-clustering") where these functions may
take values in more interesting sets than {0,1}.

● Instead of a single reduction one may bring forth diagrams of several of
them, such as the above W → V1 → V2, or something combinatorially more
elaborate and interesting than that.

● On may extract more subtle and/or more substantial information about
the structure of a language by looking closer at the geometry of the set of words
W with respect to the metric (distance) induced from the space F of functions
f = f(w) on W , for the (tautological) imbedding of W to F defined as in the
previous section for the semiosis graph:

a word w0 ∈W is assigned fw0 ∈ F , such that fw0(w) = G(w0,w).
Here, unlike how it was with the semiosis graph, the geometry of (W,distF)

for the metric induced from the space F (with a suitable Hammnig-like metric
on it) is significant.

For example, co-clustering can be seen in the light of this geometry as an
ordinary (mono)clustering of (W,distF) into "loosely connected pieces" with
respect to distF .

On the other hand, the geometry of (W,distF) also suggests another classifi-
cation of words w ∈W , namely, according to the geometry of small balls around
them in (W,distF).133

133Different prepositions in English, e.g. under and over, may be accompanied by different
kinds of words, say, nouns and/or verbs; yet the geometries/combinatorics of the balls around
them in (W,distF) look, nevertheless, quite similar that may serve as in indicator of the two
belonging to the same class (cluster).

68



And this classification is not the end of the story – many structural features
of "flows of signals" are encoded by (not-quite) pseudogroups of approximate
isometries of spaces like (W,distF).

One may continue indefinitely along these lines but one has to stop some-
where. Wings of imagination supplied by the power of mathematics can bring
you beyond of whatever can be reached by a more pedestrian kind of thinking.
But if you fly too high in the sky of math you may miss your destination down
on Earth.

3.2 Similarity, Co-functionality, Reduction.
Let us make a short (and incomplete) list of four "logically (quasi)atomic con-
stituents" of (ergo)operations applied to flows of signals, in particular of those
we used for co-clustering. But we do not attempt at the present point to give
precise definitions of these "atoms", to justify their reality, and/or to explain
how one finds them in flows of signals.

1. Segmentation and Parsing. The first step in structuralizing flows of
signals is identifying/isolating units in these flows, where the simplest (but not
at all simple) process serving this purpose is segmentation: dividing a flow into
non-overlapping "geometrically simple" parts.

These may be small and frequently appearing signals, such as phonemes,
words and short phrases in the flow of speech or basic visual patterns such as
edges and T-junctions. But these may be as long as sentences, internet pages,
chapters in books or intrinsically coordinated visual images of such objects as
animals, trees, forests, buildings, mountains.

Our formalism must apply to general "flows of discretely discernible units"
where the learning consists in building structures out of "internal units" that
may be similar or dissimilar to the units of incoming flows.

Naively, unit is anything that can be given a name and/or characterized in
a few simple words, but... these words may be of very different kinds depending
not only on the intrinsic properties of such a unit, but also on how it is being
processed by a particular ergosystem, e.g. a human ergobrain.

Sentences, words, morphemes, graphemes (letters) are all units but they
belong to different categories, where, "macro-units" such as sentences come as
"parametric families of a kind" or as "formulas with free micro-unit variables in
them".134

Similarly, elaborate paintings and simple figures both may regarded as units
but they are unlikely to be filed by your visual ergosystem in the same "units-
directory".

(Processing of linguistic and visual inputs by your (ergo)brain, probably,
relies on natural parsing of incoming flows of signals followed by a combinatorial
organization of the resulting "units".

But proprioception sensory system135 and motor control of skeletal mus-
cles may also depend on continuity, since the incoming signals may be not(?)
naturally decomposable into "discrete units".)
134Straightforward attempts to make this precise may confine you to the Procrustean bed of
the traditional mathematical/logical language.
135This is the perception of motion, of stresses and of position of parts of the body.
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2. Similarity, Equivalence, Equality, Sameness. There are several
similarity relations between units of languages/images where these relations may
differ in kind and in strength.

For example, images may be similar in shape, size. color, subjects they
depict, etc. while two sentences may be similar in the kind and style of words
they employ, the idea they convey or in their syntax. The strongest similarities
in texts are letter-wise equalities of different strings.

There is a discrepancy between how the concept of equality is treated in
mathematics/logic and in in natural languages: we happily say:

2+3 equals 5
but:

5 equals 5
appears non very informative even to a most logically minded mathematician
– these two "equal" are not mutually equal and the common language has no
means to express this inequality. For example, if you try

5 is the the same as 5
this does not make it to look better. But this can be settled if we introduce an
ergosystem in the picture, where equalities as well as weaker similarities result
from certain processes, that are qualitatively different from how one arrives at
sameness.136(We discuss some of this in our [SLE]-paper.)

On Composability of Similarities. Customary, one defines an equiv-
alence as a symmetric binary relations on a set137 S, denoted, say by s1 ∼ s2,
that satisfies the transitivity property:

s1 ∼ s2 & s2 ∼ s3 ⇒ s2 ∼ s3.
It is more convenient to depict equivalences (and similarities) of signals s in

a category theoretic style by arrows with "names" attached to them, such as
s1

f↭ s2, where one think of such an arrow as an "implementation of ∼" by some
"logical/computational process", e.g. by some co-clustering algorithm.

Then one may compose arrows

s1
f↭ s2

g↭ s3 with the composition denoted s1
f◽g↭ s3.

This allows one, for instance, to say that
136The spirit of this is close to how different levels of "equivalence" are treated in the n-
category theory.
137This definition does not cover equivalencies between theories and/or between categories
since these are are not relations on sets.
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the composition f ◽ g of two "strong similarities" f and g is itself
a "weak similarity".

Also one can now speak of certain equivalencies f and g, e.g. one in color
and another one in size, being incomposable.

3. Classification, Clustering, Reduction. Equivalence relations E
on a set S go hand in hand with partitions of this S into the corresponding
equivalence classes c ⊂ S of E, where, in turn, such partitions are "essentially
the same" as reduction maps R = RE from S onto sets C, and where, conversely,
such a map R defines an equivalence relation E = ER by

s1 ∼
E
s2 if and only if R(s1) = R(s2).

However, implementations of binary relations s1 ∼
E
s2 and of unary opera-

tions R(s) are quite different from a working ergosystem point of view.138 For
instance, it is much harder to record ≈ N2 bits encoding an equivalence relation
on a set S of cardinality N , than ≈ N logN bits needed for defining R(s), where
N may be somewhere between 104 and 107. Because of this, similarities and
reductions must be treated separately.

An essential feature of reductions from our perspective is compression of
information and

"creation" of new units c from the original unites s, that are c = R(s).
A more general and less cleanly defined class of operations is called clustering

that is based on similarities that are not sharply defined and are not perfectly
transitive unlike what is usually required of "equivalence".

The tautological map R ∶ s ↦ c associated to a given clustering that assigns
to each member s of S the cluster c in S that contains s (this R may be defined
not for all s) is still called the quotient map or reduction from the original set S
to the set C of clusters. The reduction that defines co-clustering is an instance
of this.

Compression, Morphisms, Functors. Besides the above, there are re-
ductions of quite different type that correspond to "non-local" compression of
texts with limited loss of information, where one forgets non-essential in a text
(or in a visual image) while preserving the significant structure/content of it;
this is a hallmark of understanding.

It may happen, of course, that a text has little redundancy in it, such as a
telephone directory, for instance. Then no significant reduction and no under-
standing of such text is possible.

In fact, "perfect texts" with no redundancy in them are indistinguishable
from random sequences of symbols, while every meaningful text T admits many

reductions, depicted by arrows, say T
r′→ T ′, T

r′′→ T ′′, where the bulk of the the
process of understanding a text consists of a multi-branched cascade of such
reductions.

An example of a significant commonly used reduction is making a resume or
summary of a text. Also giving a title is an instance of a reduction – a terminal
reduction: you can not reduce it any further.

If we agree/assume/observe that consecutive performance of reductions, say
T1

r12→ T2 and T2
r23→ T3, make a reduction again, denoted T1

r13→ T3, also written
138This is discussed at length in the context of cognitive linguistics by George Lakoff in "Fire
Women and Dangerous Things" where classification is called categorization.
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as composition
r13 = r12 ○ r23,

then reductions between texts can be regarded as morphisms, of the category
(in the mathematical sense) of texts and reductions where, strictly speaking the
word "reduction" suggests these arrow r being epimorphisms, i.e. they add no
new information to texts they apply.

It may be amusing to encode much (all?) information about a language
L – syntax, semantics, pragmatics, in terms of such a category R = R(L) of
reductions in L, with translations from one language to another, L1 ↝ L2, being
seen as functors between these categories; but we shall not try to force categories
into languages at this point.

Reduction and Agglomeration of Similarities. There are circular
relationships between similarities of different types and/or of different strengths.
For instance two signals s1 and s2 that have equivalent or just strongly similar
reductions may be regarded as weakly similar.

Conversely, if there are "many independent" weak similarity relations be-
tween s1 and s2 then s1 and s2 are strongly similar and possibly, equal. For
instance if the numbers Ni and N ′

i of the letters on the ith pages of two books
B and B′, say with 200 pages each, satisfy Ni ≠ 0 and ∣Ni −N ′

i ∣ ≤ 2 for somehow
chosen hundred numbers i, then one can bet that B and B′ are copies of the
same book.

4. Co-functionality. Some units in a text T or in another kind of flow of
signals form relatively tightly knit groups where we say that these units perform
a common function.

A priori, co-functionality is not a binary relation (albeit we assumed so
defining co-clustering in the previous section); it can be, however, made binary
by give "names" to these "functions" and by regarding functions as new kind
of units.

Then we say that unit s performs function f and depict this by a directed
edge s←Ðf . Alternatively, we depict f -co-functional units as being joined by
f -colored edges s1←→

f
s2.

3.3 Structure of Annotations.
If we identify and indicate all of the above in a text T we shall endow it with a
graph-like combinatorial structure T with the following ingredients.

A. Colored nods – vertices of the graph. Nods in the annotated text T
correspond to units and colors represent different types of units, where most
units correspond to words and other distinguished strings and groups of strings
in T and where their total number is only slightly greater than the number of
words in the text T .

B. Colored edges. Some of edges in T correspond to similarities between
units, where the edges indicating equalities between strings, e.g. words, in
different positions in the text are most essential. But also there are other kinds
of edges, e.g. corresponding to reductions that are depicted by arrows, say as
s↦ c.
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C. Structure on Colors. There are significantly fewer colors in our examples
than of sets of nods and edges, and they carry much simpler structures. For
instance, colors may be hierarchically organized: a color of an edge may signify,
for example,

[1.] This is an equivalence;
[2.] This equivalence is of a particular kind, say F , within which composition
is allowed.
One can (should?) treat such colors as units in T , thus erasing the distinc-

tion between nods, edges and colors and enforcing circular self-referentiality
structure into T .139 Then, for instance, one may replace [2.] by introducing
equivalence relation between "[1.]-colors" where equivalent colors are, by defi-
nition, composable.140

The above does not account for the full structures in texts and/or in visual
images, where an essential omission is the category theoretic interpretation of
textual compression as morphisms. Also, besides, structural annotations one
may need(?) contextual ones that add information to a text, with something
like illustrations by images.

But combinatorics of the above ABC annotations gives you a fair idea of
how rich the structures carried by what we call flows of signals can be. This
combinatorics may harbor many other interesting structures with the above
co-clustering being a simple instance of these.

EX. Perception of language (also of vision) depends, besides ABC that
is derived from the structure of texts themselves, on a class of external anno-
tations that represent (reductions of) links between T ONGUEergo and other
(ergo)brain systems, most significantly with proprioception coupled with the
motor system and with vision.

Essential questions are:
How much of EX can be reconstructed from T ONGUE itself?
How much of external, call them EX, annotations is needed
for understanding T ONGUE?
How elaborate is the structure of the "EX-language".
Does understanding of T ONGUE stripped of EX
qualitatively differ from the "full understanding"?

One can not answer these questions at the present stage of knowledge but
we conjecture that

despite many links to other structurally elaborate systems,
T ONGUE is essentially autonomous
and that the
structure of EX representing these links" is rather simple.
Thus,
awareness of a presence of EX in TONGUE enriches one’s knowledge but
adds little to structural understanding of T ONGUE .

139Self-referentiality is indispensable for languages but there is no(?) reason to bring it into
non-linguistic flows of signals.
140This may look as silly pedantry, but an appropriate language is essential for correctly
designing working models of ergo-learning.
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For example, upon reading about an orchestra playing Mozart’s Molto Alle-
gro, Concerto in G you may get a tune in your head and/or an image of the score.
The corresponding EX-link transports you from T ONGUE to another domain
in your ergobrain but it does not significantly contribute to your understanding
of what your red as far as T ONGUE per se is concerned.141

Similarly, a gymnast who watches another gymnast’s performance mentally
undergoes the movements he/she sees – apparently, firing mirror neurons make
one feel this way. But an untrained person understands essentially the same
in what he/she sees, since activity of the mirror/motor neurons does not add
anything to the structure of the visual image in his/her mind.

The ABC structure that is supported on totality of (very) many texts/images,
even more so when it is augmented by EX, is vast – it can not, as it stands, be
incorporated into the human ergobrain and/or into any realistic ergosystems in
general. One has to decide/guess how such an annotated text could be "con-
densed" to a more compact internal structure befitting an ergo-learner.

3.4 Frozen Flows.
We shall not attempt to approach any realistic learning problem and/or struc-
turalization of general "flows of information" but we shall look at a model
problem of learning an imaginary non-human language. We assume that one
has a vast library of texts and may use a computer to analyses these but where
one has not even a whiff of knowledge of the semantic and the function of this
language. It may be not even known beforehand whether this is a language or
a digitalized record of music or of a visual image.

To see things in perspective, let us look at freezing and putting on record
non-linguistic "flows of signals."

Visual and auditory signals in the outside world are "written" on the rigid
space-time (x, t)-background. The stationary images "carved " on the x-space
are most essential in human vision142 while hearing is mostly associated with
the time t-coordinate143.

Since stationary landscapes are commonly seen in life, visual images are,
141Feeling of touch plays a most essential role in the formative years of human life and can
not be dismissed so easily.
142Vision of many animals is more dx/dt dependent than ours. For instance, frogs seem to
respond only to moving objects.
143People with fine hearing (often with impaired vision) distinguish some spacial features
around them similarly to animals with acute hearing, such as owls, for instance. But the best
are echolocating animals – bats, dolphins, porpoises, some whales and certain birds, e.g South
American oilbirds.
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psychologically speaking, the easiest to "freeze". And technology for doing this
have been existing for, probably, more than 50 000 years.144

The idea of "frozen sound" is not so obvious: we often see snapshots of
beautiful sceneries frozen in time but we hear no interesting stationary sounds.
(But light is harder to understand than sound: the idea of sound waves goes
back to Aristotle while the idea of light being of waves had to wait another two
thousand years.)

The first sound recorder was, probably, phonautograph (1857) of Scott de
Martinville, while the idea of inversion of this recording was suggested in 1877
by Charles Cros, and implemented in phonograph by Thomas Edison in 1878;
this allowed historically the first recording of human voice.145 But freezing and
recording speech in writing goes more than 5000 years back.

No Ergo in the Nose.

Humans can distinguish about 10 000 different scents. We have about thou-
sand of different kinds of olfactory receptors in our nose that are proteins146

where each kind of proteins is coded by a particular gene.
But the internal library of smells has, apparently, no ergo in its architecture

being organized simpler (this is seen not only by introspection) than how we
remember visual images, sounds, words and ideas.

Scents, unlike images and sounds that can be written and rewritten on a vari-
ety of backgrounds, are supported by specific to each of them physical/chemical
substances. No, rewriting, no simple digitalization, no universally organized
library of smells comparable to that of images or sounds seem possible.

Since olfaction, unlike vision, does not depend on your muscles, it is dis-
connected from proprioception system and we have no means of (re)producing
scents at will, albeit we we think we can recall them.

There aren’t many clearly identifiable universal smells common to large
groups of object. Non-surprisingly, languages (of urban populations?) have
few specific names for smells — about ten in English:
musky, putrid, rotten, floral, fruity, citrus, vegetative, woody, herbaceous, spicy.
(There are slightly more smell-words in certain languages, for example there are
about fifteen of them in the Kapsiki of Cameroon.)

Natural languages do not waste words for naming individual objects/properties
but rather exercise the art of giving the same name to many different things,
144No known terrestrial or aquatic animal and no randomly taken (untrained) contemporary
human is able adequately/artistically record visual images in paintings or otherwise. But this
could have been different with Neanderthals and/or Cro-Magnon people.
145Some people and birds are good as remembering and imitating strings of sounds; also
there are records of 9th century mechanical music playing devices invented by Banu Musa
brothers.
146A single class of receptors may bind a range of odor molecules, and same kind of molecules
may bind to several different receptors.
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very much as mathematical theories do. There is no grammar of scents, no
books in the language of odors, no "frozen" flows of olfactory perception.147

Frozen Assymetries.

Digital arrays on a magnetic tape have, physically speaking, little in com-
mon with flows of real sounds and/or images but recording preserves how spa-
cial/temporal symmetries are broken by these flows.

"Ideal tapes" where signals are recorded make by themselves, without record-
ings on them, a rather "symmetric community":

a directed tape segment T1 of length l1 can be placed into a segment T2

of length l2 whenever l2 ≥ l1, where every such direction preserving placement
τ ∶ T1 → T2 where τ is identified with a number τ ≤ l2 − l1 that is the distance
between the left ends, t2 of T2 and t1 of T1 inside T2.

∣
t1

—–τ—– |
t2

-----------------|———————–|

Such placements, say T1 → T2 and T2 → T3, can be obviously composed with
the result being a placement T1 → T3; thus, placements make a (rather trivial)

category in mathematical sense, denoted PT
that is is closely (and obviously) related to the additive group of real numbers.

Now, if T1 and T2 record something encoded by strings of symbols, then
there are distinguished placements, called matchings T1 → T2 that agree with
what is recorded in there. For instance if T1 with length(T1) = 5 caries the
"word" ⊡⊟⊞⊠⊟ then it admits exactly three (rather than 50) placements148 into
T2 of length(T2) = 55 with the following string in the four symbol-letters: ⊡, ⊟,
⊞, ⊠:
⊡⊟⊠⊡⊟⊞⊠⊟⊞⊠⊟⊡⊟⊡⊡⊟⊞⊡⊠⊠⊟⊡⊟⊞⊠⊟⊡⊞⊟⊞⊟⊡⊠⊡⊡⊟⊞⊠⊟⊟⊞⊞⊡⊡⊟⊡⊟⊠⊟⊡⊠⊟⊡⊡⊟
written on it.149

Matching records constitute a subcategory of PT , denotedMR. ThisMR
carries the same information as the records themselves, and it has the advantages
of being insensitive to the nature and to the size of your "alphabet".

However, "alphabets" often carry significant structures of their own; such
a structure may be lost150 unless it is incorporated into the category theoretic
setting.

Besides, perfect matching is too restrictive when it comes to real life signals
where one should deal with "approximate matchings" and other (sharp and
approximate) category theoretic arrow-morphisms, such as similarities and/or
reductions in languages.

Such "approximate morphisms" are not always composable and the category
theoretic language must be augmented with "certainty weights" assigned to
compositions of arrows.
147Perfumes do not count.
148In the fully randomly equidistributed case the probability of this "three" would be

(50/45)3 ≈ 0.008 that is less than 1%, but meaningful flows of signals are never stochas-
tically equidistributed.
149Searching for ⊡⊟⊞⊠⊟ in ⊡⊟⊠⊡⊟⊞⊠⊟⊞⊠... requires a concentrated effort on your part
but the "equivalent" problem of locating the familiar pattern pasta (stored in your long-term
memory) in

patpastastapappaspttapastapsasaptppastaassppapataptappa,
is solved by your visual system semiautomatically with rapid, 20-50ms, saccadic movements
of the eyes.
150Often structures in alphabets, e.g. the options of upper/lower cases in many languages,
can be eventually reconstructed from the global structures of texts.
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On Alignment of Sequences. Approximate matching is mathematically sim-
ilar to how bioinformaticians compare sequences of DNA, RNA and proteins
where these sequences are structurally different from what one encounters,
say, in "flows" of spoken and/or written human languages. Also, one prac-
tices multiple alignments of k-tuples of sequences, for k > 2 that are kind of
"integral curves" of alignment (similarity) "equations" in Cartesian products
T1 × T2 × T3 × ... × Tk.151

Maximal matching in vision.

A category theoretic style "matching records" description also applies to
visual images "engraved" on spacial+temporal domains S that may be taken of
dimensions d = 2,3,4.

If d > 1 it is impractical to "match records" for all kind of domains S,
since there are two many different shapes of them but one can keep track of
partial matchings between S1 and S2 e.g. of maximal connected subsets, say
S′1 ⊂ S1 and S′2 ⊂ S2, where the records match by a map from some class of
transformations with a given precision threshold and where one concentrates
only on sufficiently informative/representative maximal matching pairs S′1 and
S′2 rather independently of the ambient S1 ⊃ S1 and S2 ⊃ S2.

Pattern matching, is, probably, the most essential class of operations per-
formed by our visual ergo-system (look at the two ◻-∎ figures below) but
the mathematical (probably, neuronal as well) mechanisms implementing these
matchings remain unknown.

∎◻∎◻◻∎∎∎ ◻∎∎∎◻◻◻∎∎◻◻◻∎∎∎∎◻∎∎⊞∎ ∎∎◻∎∎ ∎∎∎◻∎∎∎∎∎◻∎∎ ◻ ∎ ◻⊞∎∎⊞◻∎∎◻◻ ⊞∎∎⊞◻∎∎◻◻⊞ ⊞⊞◻⊞∎◻⊞ ◻∎∎∎⊞◻⊞∎◻⊞∎∎∎ ∎ ∎∎∎∎ ∎ ∎∎◻∎ ∎∎ ∎◻∎ ∎◻∎∎∎◻◻◻∎∎◻◻◻∎∎∎∎◻∎∎⊞ ◻◻∎∎∎◻◻∎∎∎∎◻◻∎∎

Ergo-irrelevant(?) Definitions of Geometric Transformations. If d > 1, the
counterpart of the above PT may be taken by a category PS for domains S
in the Euclidean space Rd and some class of geometric "placements" that are
transformations (maps) P ∶ S1 → S2, where relevant classes of placements are
associated with the following transformations of Euclidean spaces.

●tra translations of Rd, where x↦ x+p for all x ∈ Rd and some p ∈ Rd (which
brings us back to PT for d = 1);

●iso isometries that are translations & rotations;
●sim similarity transformations that are translations & rotations & homoth-

eties, where the latter are maps x = (x1, x2, ..., xd) ↦ λx = (λx1, λx2, ..., λxd) for
some number λ (sometimes assumed > 0);

●aff affine transformations where translations & rotations may be addition-
ally composed with anisotropic scaling maps (x1, x2, ...xd) ↦ (λ1x1, λ2x2...λdxd);
151It is questionable if human ergo unaided by mathematical+biological knowledge could
master such alignments.

77



●pro projective transformations between domains S1, S2 ⊂ Rd that, by defi-
nition, send straight linear segments from S1 to such segments in S2.

Affine transformations of Rd are instances of these and, although it is coun-
terintuitive, there are lots of non-affine projective transformations, that are,
however, never defined on all of Rd.

Non-affine projective equivalence is not (?) detectable by the human visual
system, but projective transformations are used to create perspective in draw-
ings. In fact, such a transformation for d = 2 can be seen as a radial projection
map between planar regions S1 and S2 in the 3-space.

Namely, if p is a point in R3 away from the planes containing these regions
then the radial projection, say Prp ∶ S1 → S2, is defined, provided the straight
lines between p and all s1 ∈ S1 meet S2, say at

s2 = s2(s1, p) =def Prp(s1).

Notice that such a projection is an affine (in fact, similarity) transformation,
if S1 and S2 lie in parallel planes.

All these transformations, even parallel translations of Rd for d > 2 unlike
translation of R = R1, do not admit natural discretizations and the groups of
these transformations are non-commutative.

It remains unclear how the human visual system developes internal models
of these groups, where the coupling with the somatosensory and motor systems
is, probably, essential, at least for the isometry group, as it was suggested by
Poincaré (see section 2.4).

Libraries of Moves.

There are no external libraries storing sequences of positions, velocities and
accelerations/stresses of parts of your body along with memories of impulses
sent by motor neurons to your skeletal muscles in these positions, but each of
us has such a library in the brain.152

Structural organization of this information kept by your proprioception sys-
tem, e.g. associated with locomotion is different from how strings of words are
stored inside and outside our brains, where each "proprioceptive word-move"153

comes from a multidimensional space. (For instance, fifteen finger joints on your
hand contribute twenty active degrees of freedom to the positional part of this
space.)

Only members of a tiny sample subset S of the full "space of motions" M
of your body can be experienced during your lifetime and stored in your brain,
with an essential part of the "neuronal motor memory" being accounted for by
the temporal/sequential organization of S ∈ S.
152The nature and mechanisms of human and animal memory are still shrouded in cloaks of
mystery, but we know that even the long-term memory is fluid rather than frozen.
153These "words" are kind of moves in the game your body plays with the surrounding space.
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Apparently, this discrete sample set S of motion mathematically naturally
extrapolates to a continuous hierarchically organized "manifold" Σ ⊂M decom-
posable into simple(?) low dimensional blocks, where the geometric structure
of this block structure of Σ admits experimental/observational study. How-
ever, a mathematical (ergo) model of Σ is indispensable for understanding this
structure and/or for design of agile robots.

The tactile systems involved in handling objects and perproprioception, both
coupled with the motor control system, are the most "active" of your perception
systems154 but all perceptions are far from being entirely passive.

For instance, formation of visual images in you brain depends on elaborate
muscular movements of the eye that explores its field of view. (E.g. generation of
visual images in dreams is associated with these movements.) If this exploration
is interfered with, you visual perception suffers.

(If a lecturer blocks your field of vision on the screen and displays one word
after another rather than showing longish strings of words, these words do not
integrate into meaningful sentences in your mind. Many of us have suffered
through such lectures.

But, amazingly, one can comprehend spoken language by apparently passive
process of listening, although it is hard to listen to somebody else speaking
without opening one’s own mouth every so often.)

3.5 Understanding Structures and the Structure of Un-
derstanding.

If there was a parrot which could answer every question,
I should say at once that it was a thinking being.

Diderot, Pensees Philosophiques, 1746.

But...
It never happens that it [an automaton] arranges
its speech in various ways, in order to reply appropriately
to everything that may be said in its presence,
as even the lowest type of man can do.

Descartes, Discourse on Method, 1637.

Is Descarte justified in his belief that no machine can pass what is now-a-
days called Turing Test, i.e. to reply appropriately to everything that may be
said in its presence?

Does passing such a test certify one as a thinking being who understands
what is being said, as Didereot maintains?

What does it mean to understand, say a language or any other flow FS
of signals?

Diderot indicates a possible answer:
the continuity of ideas, the connection between propositions,
and the links of the argument that one must judge if a creature thinks.

154Auditory systems of echolocating animals are (at least) as "active" and as elaborate as
perproprioception. Designing an (ergo)system with echolocating + auditory abilities of a bat,
not to speak of a bat’s flying agility, remains a robotist’s dream.
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In general terms, understanding includes:
[●]U a certain mathematical (logical?) structure U in the understander’s
mind/brain/program;
[●][IU] a process IU of implementation of U by an ergosystem representing

"an understander";
[●][RU] the result RU of such implementation, RU = [IU](FS), where [IU]

is seen as a transformation applied to flows of signals.
The catch is that nobody has a clear idea of what kind of structure it could

be; this precludes any speculation on how and where such a structure can be
implemented. Besides such a structure is by no means unique but rather differ-
ent U are organized as a structural community that can be partly described in
category theoretic terms.

An essential feature, one may say the signature of a U , is its space/time
characteristics: U is much smaller in the volume content than the totality of
the flow FS it "understands" and application of [IU] to FS is much faster than
achieving U .

It takes, probably, ≈ l log l elementary steps for learning FS of length l
that translates to months or years when it comes to learning a language or a
mathematical theory.155 But when learning is completed, it takes a few seconds
to realize, for instance, that a certain string of symbols in the language of your
FS is completely meaningless.

On the other hand, the space/volume occupied by an understanding program
U is a few orders of magnitude greater than a learner’s program L, where
such a program is universally (independently of the total number of signals
from FS received/inspected by a learner) bounded by something like 106 bits.
Picturesquely,

⋆
L
⊛

U
≡∎–∎–∎–∎–∎–∎–∎–

where ⊛ represents the "core understanding" – a few thousand page "dictio-
nary+grammar" of FS that is augmented by several (tens, hundreds or thou-
sands depending on FS) "volumes" ∎ of loosely (imagine RAM on your com-
muter) organized "knowledge", while the available FS itself may number in
tens or even hundreds of millions of nearly unrelated units – volumes, internet
pages, images memorized by your visual system, etc:

...                         
                       ...

(We do not know for sure if understanding is a formalizable concept, since
the only convincing argument in favor of this would be designing a functional
thinking machine/program, while the only conceivable no might come from an
incredible discovery of a hitherto unknown fundamental property of the live
matter of the brain.

But impossibility of resolving the understanding and the thinking machine
problems by speculative reasoning does not abate our urge to make the world
155The true measure of time, call it ergo-time, should be multi-(two?)-dimensional, since it
must reflect parallelism in programs modeling learning and other mental processes.
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know what our gut feeling tells us about these issues.156

Amusingly, the gut feeling itself, at least the one residing in dog’s guts, unlike
the ideas propagated from human guts to human minds, was experimentally
substantiated by A. N. Drury, H. Florey157 and M. E. Florey in their study of
The Vascular Reactions of the Colonic Mucosa of the Dog to Fright, 1929.)

When we say "understanding" we mean understanding structural entities
where such an understanding is seen as a structural entity in its own right that
admits a non-trivial mathematical model/description.

We conjecture that most (all?) structures we encounter in life, such as
natural languages, mathematical theories, etc. are understandable158 and we
search for mathematics that can describe this understanding.

Answers to the following questions, let these be only approximate ones, may
serve to narrow the range of this search.

Question 1. What are essential (expected? desired?) features/architectures
of mathematical models of structural understanding?

Question 2. If such a model exists should it be essentially unique? In
particular, are the hypothetical structures of understanding, say of a language
and of chess must necessarily be closely resembling one another?

Question 3. How elaborate such a model need to be and, accordingly, how
long should be a computer program implementing such a model?

Question 4. What is an expected time required for finding such a model
and writing down the corresponding program?

Question 5. What percentage of this time may be delegated to machine
(ergo)learning with a given level of supervision?

Question 6. How much the supervision of such learning can be automated?
Question 7. What are criteria/tests for performance of "I understand"

programs?159

Question 8. Can Turing-like tests be performed with algorithmically de-
signed questions that would trick a computer program to give senseless answers?

Question 9. Are there simple rules for detecting senseless answers?
Question 10. Can the human learning (teaching?) experience be of use for

designing clever learning algorithms?
Question 11. Does ergo logic help answering the above questions?

Discussion. When we say "mathematical structure" we do not have in mind
any particular branch of the continuously growing and mostly hidden from us
enormous tree that is called mathematics. Whatever a relevant branch can
be its structure, probably, is quite elaborated; very likely this branch has not
grown yet on this tree.

But sometimes things are simple, e.g. for the vervet monkey "Alarm Call
Language" that matches a few (four?) word-signs – their alarm calls, with
156An attempt to explain the reason for the incessant flow of publicized expressions of yes
and of no opinions on this subject matter is made in section 6.5 of our SLE-paper.
157If there is a single person in the human history responsible for saving nearly hundred mil-
lion lives – this is Howard Florey whose titanic efforts had brought penicillin to the therapeutic
use by mid-40s.
158Overoptimistic? Yet, in line with the remark "... mystery of the world is its comprehen-
sibility" by Einstein.
159Designer’s own ability to pass a test is a poor criterion for designing such a test.
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object-events, that are particular predators – leopards, eagles, pythons, ba-
boons.

However, no monkey would think that a mathematical one-to-one correspon-
dence, call it ACL, between two 4-element sets understands the meaning of the
alarm calls even if this ACL is implemented by a monkey shaped robot that
properly reacts to predators by correctly emitting the corresponding calls and,
thus, passes the vervet monkey Turing test.

Why then do Decartes and Diderot, not to speak of Turing himself, attach
such significance to the Turing test?

Is there an essential difference between the correspondence "questions" Ð→
"correct answers" and the ACL correspondence?

The answer is:
Yes, there is an essential difference, an enormous difference.

Operating with tiny sets, e.g. composed of four uterings – alarm calls of
vervet monkeys and with correspondences between such sets needs no structure
in these sets. But one can not manipulate human uterings and even less so
longish strings of utterings and/or written texts in a structureless way.

It is tacitly assumed by scientifically minded people — Decartes, Diderot,
Turing... , that the above correspondence "Ð→" must be compatible with the
essential structure(s) of the human language, call it HL, used in a particular
Turing test, where the basic (but not the only) structure in HL is that of an
exponential/power set:

an uttering/sentence, say in thirty words, in a language with dictionary D
is seen as a member of the huge power set

D30 =D ×D ×D × ... ×D
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

30

.

Such structurality is indispensable for an implementation of a "thinking
automaton" and/or the program running it in a realistic space time model 160

that necessarily excludes, for instance, "imaginary programs" containing in their
memories lists of more than, say of N15, sentences with number N being com-
parable with the cardinality card(D) of the dictionary.161

("Large sets", be they finite or infinite, have no independent existence of
their own, but only as carriers of structures in them, similarly how the space-
time in physics makes no sense without energy-matter in it. This is not reflected,
however, in the set theoretic notation that may mislead a novice. For instance,
it is rarely stated in elementary textbooks that the "correspondence" x ↦ y in
the "definition" of a real variable function y = f(x) is only a metaphor and that
a function f(x), if it claims the right to exist in mathematics, must "respect"
some structure in the set of real numbers.162)
160The property of being physically realistic is often missing in philosophical discourses on
artificial intellegence.
161This very sentence: "Such structurality is... of the dictionary" contains forty words with
roughly half of then being nouns, verbs and adjectives. By varying these, one "can" generate
more than 100020 = 1060 grammatical sentences. Can one evaluate the number of meaningful
ones among them? Would you expect thousand of them or, rather, something closer to ten
thousand? Is it conceivable that "weakly meaningful" sentences number in 106, or there are
more than 1010, or even greater than 1018 of them?
162There is no accepted definition of "function" that would separate the wheat: sinx,
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A program that would imitate a human conversing in a natural language
and that is seen as "realistic" from the ergo-perspective must be within 109-
1012 bits in length. If such a program would fool somebody like Diderot, then
its level of structurality must necessarily be comparable to that of the human
ergobrain and one would be justified in saying that this program understands
what is being said.163

From Libraries to Dictionaries.

Let us limit the concept of language to that of library – a collection of written
or spoken texts – recorded strings of words pictured above as ...    ...
The length of this may be as small as 106-107 "words in strings", something
(implicitly) kept in the memory of a youngster or as large as 1012-1013 words
comprising what was ever recorded in the English language.

Even if such a library, call it LIB, is disconnected from non-linguistic flows
of signals and, being "frozen", it is not apparently interactive – this is very much
unlike how it is with "true language", an ergo learner (e.g. a human child) that
is run by a universal program would build a certain understanding U of such a
library by formally manipulating strings of symbols comprising LIB.

We think of the implementation IU of U as augmentation of texts-strings
from LIB by their structural annotations that would include identification of
linguistic units in texts, their functional associations as well as corresponding
reductions and clusters of these units.

It is unrealistic at this point to develop a clear idea of the structure of U
in an ergo-learner’s mind/program but it is easier to think of what we call
learner’s dictionary LD(LIB), that is a kind of a "concentrated extract" of
LIB that contains basically the same "information" as U and where LD by
itself stands for such "extraction/concentration" process/opearation(s). But
unlike U such an LD(LIB), may be written in the language of LIB. Presence
of an LD(LIB) would significantly facilitate building understanding U of LIB
by an ergo-learner, since most of this understanding is encrypted in LD(LIB).

To get an idea, imagine yourself in a position of such a learner with LIB
written by thinking entities that are far culturally removed from us but who
have their ergobrains organized similarly to ours.164

Alternatively, think of LIB as the totality of internet pages in English and
try to comprise LD(LIB) for a use by an ergo-learner, with a six year old
Crog-Magnon child in mind, where LD must be constructed of some univer-
sal operations that should apply not only to LIB but to many other "flows
of signals", such as libraries and /or records of speech of all kinds of human
languages, collections of images, series of mathematical theorems and theories,
lists of chess games and chess problems, etc.

Doing this, say for your native language, is mach harder than it seems: we
have as little insight into the ergo-structure165 of our mother tongues as fish have

arctanx,
√
x, logx, Rieman’s ζ(x), Dirac’s δ(x),..., from the chaff , such as the characteristic

function of the subset of rational numbers.
163Beware of ELIZA type programs that respond to everything you say by: "You are right,
it is very profound what you say. You must be very intelligent".
164One does not need another physical Universe for this – just think of a possible language
of blind aquatic echolocating creatures.
165It is hard to give definition of this "ergo" but non-ergo examples are plentiful, e.g. cats
defined as "carnivorous feline mammals" and nouns as "members of a class of words that
typically can be combined with determiners...". Ask a Cro-Magnon child what he/she thinks
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in the singularity structure of solutions of Navier-Stokes equations for motion
of liquid.166 Yet we do see, albeit rarely, such insights in textbooks written by
some people, such as Albert Sidney Hornby167 and Gilbert Taggart.168

But unlike to how it is usually done, the a grammar of a language encoded
in our LD-dictionary must be fully expressible in structure terms of LIB. For
instance, an "explanation" of distinction between "she reads" and "she is read-
ing" should depend entirely on combinatorial positions of such strings/phrases
in LIB, rather than on the concept of aspect that expresses how an action re-
lates to the flow of time. The sole perspective on the time structure within LIB
that we admit, is an interpretation of combinatorics of certain "grammatical
forms" employed in LIB.

Designing algorithms for making such "dictionaries" that would convey the
essential grammar and semantic rules of the corresponding languages will by no
means solve the fundamental ergo-learning problem, but thinking about such
LD brings us a step closer to this goal.169
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