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ANNA FELIKSON AND PAVEL TUMARKIN

Abstract. We introduce a notion of essential hyperbolic Coxeter poly-
tope as a polytope which fits some minimality conditions. The problem
of classification of hyperbolic reflection groups can be easily reduced to
classification of essential Coxeter polytopes. We determine a potentially
large combinatorial class of polytopes containing, in particular, all the
compact hyperbolic Coxeter polytopes of dimension at least 6 which are
known to be essential, and prove that this class contains finitely many
polytopes only. We also construct an effective algorithm of classifying
polytopes from this class, and realize it in four-dimensional case.
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1. Introduction

The main goal of this paper is to provide a classification algorithm for a
large class of compact hyperbolic Coxeter polytopes. A Coxeter polytope in
hyperbolic space is a convex fundamental domain for reflection group, i.e.
a polytope whose all dihedral angles are integer parts of π. For a compact
hyperbolic Coxeter polytope P we denote by d, n and p the dimension, the
number of codimension one faces (facets in the sequel), ans the number of
pairs of disjoint facets respectively. Let P be the set of polytopes satisfying
the following condition:
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P ∈ P if d ≥ 4 and p ≤ n − d − 2

Main Theorem (Theorem 5.7). The set P is finite. All polytopes of this
set can be listed by a finite algorithm provided in Section 6.

In general, the number of compact hyperbolic Coxeter polytopes is infi-
nite. In [26], Makarov constructed infinite series of polytopes in dimensions
4 and 5. In [2], Allcock used the 6-dimensional polytope constructed by
Bugaenko [9] to present an infinite series of 6-polytopes. Another source of
examples is given by right-angled compact Coxeter polytopes, they exist in
hyperbolic spaces of dimension at most 4 (see [29]).

Recently Nikulin [27] and Agol, Belolipetsky, Storm, Whyte [1] proved
that the number of maximal arithmetic hyperbolic reflection groups is fi-
nite. A similar statement concerning general reflection groups does not
hold: examples by Makarov provide fundamental domains of infinite num-
ber of non-commensurable reflection groups. However, all known examples
of infinite series of polytopes (in dimension at least 4) can be obtained from
a finite number of polytopes by a composition of two operations: taking a
fundamental domain of a finite index reflection subgroup of the correspond-
ing reflection group, or gluing two Coxeter polytopes along congruent facets.
This gives rise to a notion of essential hyperbolic Coxeter polytope which
is minimal with respect to operations above (see Section 8 for precise defi-
nitions). A classification problem of compact hyperbolic Coxeter polytopes
can be easily reduced to a classification of essential polytopes.

In dimensions 2 and 3 compact hyperbolic Coxeter polytopes are com-
pletely classified by Poincaré [28] and Andreev [4], so in this paper we re-
duce our attention to polytopes in the spaces of dimension at least 4. As
we have mentioned above, the number of known essential compact hyper-
bolic Coxeter polytopes is finite (all known polytopes can be obtained by
gluing several copies of finite number of polytopes). Moreover, all polytopes
of dimension greater than five that are known to be essential belong to P.
In Section 8 we discuss properties of essential polytopes and present a list
of them. While proving that a polytope is essential, the main tool is the
result of [18] which, roughly speaking, states that gluing operations cannot
decrease the number of facets.

All the remaining sections are devoted to the proof of the Main Theorem.
Here the plan of the proof is. First, we split the set of polytopes P in the
following way:

P =
⊔

d≥4

Pd, Pd =
⊔

n≥d+1

P(d,n)

where P(d,n) consists of polytopes from P of dimension d with n facets.
Further, each P(d,n) can be presented as

P(d,n) =
⋃

k≥2

P(d,n),k

where P(d,n),k consists of polytopes from P(d,n) with dihedral angles not less
than π/k.
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For given d, n and k there are finitely many combinatorial types of poly-
topes and finitely many ways to assign angles between facets, which implies
that P(d,n),k is finite due to the following fact proved by Andreev [3]: an
acute-angled polytope P is completely determined by its dihedral angles.
Our aim is to prove that for given d and n the set P(d,n),k is empty for large
k (which will imply that P(d,n) is finite), we do it in Section 4. The key tool
here is the trick allowing us to reduce dimension. It is based on the following
result due to Borcherds [7]: if a face F of codimension 2 is an intersection
of two facets composing a dihedral angle less than π/3, then F itself is a
Coxeter polytope.

Then we show (Section 5) that for given d the set P(d,n) is empty for
large n (which will imply that Pd is finite). In [32], Vinberg proved that
the dimension of a compact hyperbolic Coxeter polytope does not exceed
29. Therefore, we need to consider sets Pd for a finite number of dimensions
only, so P is finite.

In Section 2 we recall basic facts about Coxeter polytopes and their facets,
and reproduce the notation introduced in [16]; in Section 3 we describe the
technique of local determinants and prove several technical lemmas. In
Section 6 we construct an algorithm which allows us to list all the polytopes
of P. Section 7 is devoted to investigation of 4-dimensional case.

We would like to thank University of Fribourg, where the most part of
the work was carried out, for hospitality and nice working atmosphere, we
thank R. Kellerhals for invitation, numerous stimulating discussions, and
for partial support by SNF projects 200020-113199 and 200020-121506/1.
We are grateful to V. Emery for communicating unpublished results of [6]
and to A. Postnikov for the idea of the proof of Lemma 8.9. We also thank
IHES (where the current version of the paper was prepared) for hospitality
and excellent working conditions.

2. Coxeter polytopes and their facets

In this section we list the essential facts about Coxeter polytopes and
their faces. We mainly follow [33] and [34], see also [16].

In what follows we write d-polytope instead of “d-dimensional polytope”,
k-face instead of “k-dimensional face” and facet instead of “face of codimen-
sion one”.

2.1. Coxeter diagrams. An abstract Coxeter diagram Σ is a finite 1-
dimensional simplicial complex with weighted edges, where weights wij are
positive, and if wij < 1 then wij = cos π

k
for some integer k ≥ 3. A subdia-

gram of Σ is a subcomplex with the same weights as in Σ. The order |Σ| is
the number of nodes of the diagram Σ.

If Σ1 and Σ2 are subdiagrams of an abstract Coxeter diagram Σ, we
denote by 〈Σ1, Σ2〉 a subdiagram of Σ spanned by the nodes of Σ1 and Σ2.

Given an abstract Coxeter diagram Σ with nodes v1, . . . , vn and weights
wij , we construct a symmetric n × n matrix Gr(Σ) = (cij), where cii = 1,
cij = −wij if vi and vj are adjacent, and cij = 0 otherwise. By determinant,
rank and signature of Σ we mean the determinant, the rank and the signature
of Gr(Σ).
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We can suppress the weights but indicate the same information by labeling
the edges of a Coxeter diagram in the following way: if the weight wij equals
cos π

m
, vi and vj are joined by an (m− 2)-fold edge or a simple edge labeled

by m; if wij = 1, vi and vj are joined by a bold edge; if wij > 1, vi and vj

are joined by a dotted edge labeled by wij (or without any label).
By a multiple edge we mean an edge of weight cos π

m
for m ≥ 4. By a

multi-multiple edge we mean an edge of weight cos π
m

for m ≥ 6.

An abstract Coxeter diagram Σ is elliptic if Gr(Σ) is positive definite.
A diagram Σ is parabolic if any indecomposable component of Gr(Σ) is
degenerate and positive semidefinite; a connected diagram Σ is a Lannér
diagram if Σ is indefinite but any proper subdiagram of Σ is elliptic; Σ is
hyperbolic if its negative inertia index is equal to 1.

The list of connected elliptic and parabolic diagrams with their standard
notation is contained in [34, Tables 1,2]. See also [34, Table 3] for the list
of Lannér diagrams. We need the following properties of these lists: any
Lannér diagram of order greater than 2 contains a multiple edge.

It is convenient to describe Coxeter polytopes by their Coxeter diagrams.
Let P be a Coxeter polytope with facets f1, . . . , fr. The Coxeter diagram
Σ(P ) of the polytope P is a diagram with nodes v1, . . . , vr; two edges vi and
vj are not joined if the hyperplanes spanned by fi and fj are orthogonal; vi

and vj are joined by an edge with weight

wij =











cos π
k
, if fi and fj form a dihedral angle π

k
;

1, if fi is parallel to fj ;

cosh ρ, if fi and fj diverge and ρ is the distance between fi and fj .

If Σ = Σ(P ), then Gr(Σ) coincides with the Gram matrix of outer unit
normals to the facets of P (referring to the standard model of hyperbolic
d-space in R

d,1).
It is shown in [33] that a Coxeter diagram Σ(P ) of a compact d-dimensi-

onal hyperbolic polytope P is a connected diagram of signature (d, 1) with-
out parabolic subdiagrams. In particular, Σ(P ) contains no bold edge, and
any indefinite subdiagram is hyperbolic and contains a Lannér diagram.
Moreover, it is shown there that any compact hyperbolic Coxeter d-polytope
P is simple, and elliptic subdiagrams of Σ(P ) are in one-to-one correspon-
dence with faces of P : a k-face f corresponds to an elliptic subdiagram of
order d − k whose nodes correspond to the facets of P containing f .

Proposition 2.1 ([16], Lemma 1). Let Σ(P ) be a Coxeter diagram of a
hyperbolic Coxeter d-polytope P of finite volume. Then no proper subdiagram
of Σ(P ) is a diagram of a hyperbolic Coxeter d-polytope of finite volume.

We denote by Cd the set of all Coxeter diagrams of compact hyperbolic
Coxeter d-polytopes, and by Cd,k the set of Coxeter diagrams of compact
hyperbolic Coxeter d-polytopes containing no edges of multiplicity greater
than k − 2.
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2.2. Faces of Coxeter polytopes. Let P be a compact hyperbolic Coxeter
d-polytope, and denote by Σ(P ) its Coxeter diagram. Let S0 be an elliptic
subdiagram of Σ(P ). By [33, Theorem 3.1], S0 corresponds to a face of P
of dimension d − |S0|. Denote this face by P (S0). P (S0) itself is an acute-
angled polytope, but it might not be a Coxeter polytope. Borcherds proved
the following sufficient condition for P (S0) to be a Coxeter polytope.

Theorem 2.2 ([7], Example 5.6). Suppose P is a Coxeter polytope with
diagram Σ(P ), and S0 ⊂ Σ(P ) is an elliptic subdiagram that has no An or
D5 component. Then P (S0) itself is a Coxeter polytope.

Facets of P (S0) correspond to those nodes that together with S0 comprise
an elliptic subdiagram of Σ(P ).

Let w ∈ Σ(P ) be a neighbor of S0, so that w attaches to S0 by some edges.
We call w a good neighbor if 〈S0, w〉 is an elliptic diagram, and bad otherwise.
We denote by S0 the subdiagram of Σ(P ) consisting of nodes corresponding
to facets of P (S0). The diagram S0 is spanned by good neighbors of S0 and
by all vertices not joined with S0 (in other words, S0 is spanned by all nodes
of Σ(P ) \ S0 except bad neighbors of S0). If P (S0) is a Coxeter polytope,
denote its Coxeter diagram by ΣS0

.
In [2, Theorem 2.2], Allcock gives a receipt how to compute the dihedral

angles of P (S0). We need the following partial case of this result:

Proposition 2.3 ([2]). Suppose that P (S0) is a Coxeter polytope. If S0

has no good neighbors then S0 = ΣS0
. In particular, this always holds for

S0 = G
(m)
2 where m ≥ 6.

Proposition 2.3 allows us to identify diagrams S0 and ΣS0
for S0 being

multi-multiple edge.

3. Technical tools

In this section we recall the technique of local determinants derived in [32]
and prove several properties of determinants of hyperbolic Coxeter diagrams.

Let Σ be a Coxeter diagram, and let T be a subdiagram of Σ such that
det(Σ \ T ) 6= 0. A local determinant of Σ on a subdiagram T is

det(Σ, T ) =
detΣ

det(Σ\T )
.

The following result is the main tool in the consideration of multiplicities
of edges.

Proposition 3.1 ([32], Proposition 12). If a Coxeter diagram Σ consists
of subdiagrams Σ1, Σ2, . . . ,Σl having a unique vertex v in common, and no
vertex of Σi \ v attaches to Σj \ v for i 6= j, then

det(Σ, v) = det(Σ1, v) + · · · + det(Σl, v) − (l − 1).

Now we prove several properties of determinants of hyperbolic diagrams.
The first one concerns monotonicity.

Lemma 3.2. Let S be an elliptic diagram and x /∈ S be any node such
that 〈S, x〉 is hyperbolic. Then det(〈S, x〉) is a strictly decreasing function
on label of each edge joining x with S.
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Moreover, det(〈S, x〉) is a strictly decreasing function on label of each edge
〈v1, v2〉 such that 〈S, x〉 \ 〈v1, v2〉 is an elliptic diagram.

Proof. Denote x = v1, S = 〈v2, . . . , vd〉. Let aij be the negative of the label
of the edge 〈vi, vj〉, aii = 1, so that det(〈S, x〉) = det(aij). We will prove
that det(〈S, x〉) is a strictly decreasing function on label X = −a12 = −a21

of the edge 〈v1, v2〉.
Consider a standard expanding of det(〈S, x〉) into d! summands si (each

obtained as a product of d matrix elements). Then

det(〈S, x〉) = aX2 + bX + c

It is easy to see that

a = −det(〈S, v1〉 \ {v1, v2}) = −det(S \ v2) < 0

(since S is an elliptic diagram). Recall that X ≥ 0 as a label of an edge of
a Coxeter diagram, so it is sufficient to prove that b ≤ 0.

Each of d! summands of det(〈S, x〉) can be written as

si =

ki
∏

r=1

gr ·
li

∏

r=1

arr (∗)

where

gr = (−1)qr+1aj1j2aj2j3aj3j4 . . . ajqr j1

are products of all the weights of edges of pairwise disjoint cycles in 〈S, x〉
(following [32], we call gr cyclic products), arr = 1, and

li = (d + 1) −
ki

∑

r=1

qr

Notice that aij ≤ 0 for i 6= j implies gr ≤ 0.
If a summand si contributes to a linear part of aX2 + bX + c then si

contains exactly one of a12 and a21. We will prove that the sum of the terms
containing a12 or a21 is non-positive.

Let gr0
= (−1)qr0

+1aj1j2aj2j3 . . . ajqr0
j1 be a cyclic product containing a12,

denote by L(gr0
) the sum of all terms si containing gr0

. It is easy to see that

L(gr0
) = gr0

det(〈S, x〉 \ I),

where I = {vj1 , vj2 , . . . , vjqr0
}. Since gr0

contains a12 or a21, I contains both

v1 and v2, which imply that the diagram 〈S, x〉 \ I is elliptic, so det(〈S, x〉 \
I) > 0. Hence, L(gr0

) ≤ 0. Since at most one of gr in the decomposition (∗)
contains a12 or a21, each of si contributes to at most one of L(gr), so,

bX =
∑

r

L(gr)

which is negative. In view of the inequality X ≥ 0 we get b ≤ 0, and the
first statement of the lemma is proved.

Now one can notice that we used only the fact that 〈S, x〉 \ {v1, v2} is an
elliptic diagram, so the second statement holds by the same argument.

�
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The next two lemmas provide upper bounds for determinants of some hy-
perbolic diagrams.

Lemma 3.3. There exists a constant M1(d) which depends only on the
dimension d such that for any diagram 〈S, x〉 satisfying

1) S is an elliptic diagram of order d, 〈S, x〉 is hyperbolic;
2) either |S| ≤ 3, or S contains no multi-multiple edges;
3) 〈S, x〉 contains no dotted edges;

holds

det(〈S, x〉) ≤ −M1(d) < 0.

Proof. Denote by U the diagram obtained from 〈S, x〉 by replacing all the
edges joining x with S with labels higher than 7 by edges labeled by 7. It
is easy to see that each hyperbolic subdiagram of 〈S, x〉 remains hyperbolic
after this change, and each elliptic subdiagram remains elliptic, so det(U) <
0. By Lemma 3.2, det(〈S, x〉) is a decreasing function on a multiplicity of
each edge joining x with S. Hence, det(〈S, x〉) < det(U). If S contains
no multi-multiple edges, then given a dimension d there are finitely many
possibilities for U (since |U | = d+1), so we may take for M1(d) any positive
number smaller than minimum of |det(U)|.

If S is a diagram of order 2 or 3 containing multi-multiple edges, then
the second statement of Lemma 3.2 implies that det(〈S, x〉) is a decreasing
function on a multiplicity of each edge of 〈S, x〉 (here we use the third as-
sumption of the lemma). We replace each multi-multiple edge of 〈S, x〉 with
label higher than 7 by an edge labeled by 7, denote the obtained diagram
by U ′ and obtain finitely many possibilities for U ′, which finishes the proof.

�

Denote by Lp,q,r a Lannér diagram of order 3 containing subdiagrams

of types G
(p)
2 , G

(q)
2 and G

(r)
2 (see Fig. 3.1). Let v be the vertex of Lp,q,r

that does not belong to G
(r)
2 . Denote by D (p, q, r) the local determinant

det(Lp,q,r, v). It is easy to compute (see e.g. [32]) that

D (p, q, r) = 1 −
cos2(π

p
) + cos2(π

q
) + 2 cos(π

p
) cos(π

q
) cos(π

r
)

sin2(π
r
)

The explicit expression for D (p, q, r) shows that |D (p, q, r)| is an increasing
function on each of p, q, r tending to infinity while r tends to infinity. In
particular, one can check that |D (p, q, r)| ≥ |D (2, 3, 7)| ≈ 0.329.

p q

r

v

Figure 3.1. A diagram Lp,q,r

The next lemma shows that any Σ ∈ Cd contains a certain hyperbolic
subdiagram with determinant of relatively large absolute value.
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Lemma 3.4. For each dimension d ≥ 2 and positive integer K there exists a
constant M(d, K) depending on d and K such that for any Coxeter diagram
Σ ∈ Cd,K there exists an elliptic subdiagram S ⊂ Σ of order d and a node x
joined with S by at most one dotted edge satisfying

det(〈S, x〉) ≤ −M(d, K) < 0.

Moreover, if Σ ∈ C2 or C3, then M(d, K) = M(d) does not depend on
K, and the subdiagram 〈S, x〉 may be chosen in such a way that for some
v ∈ S the subdiagram 〈S, x〉 \ v contains no dotted edges and S \ v contains
no edges at all.

Proof. We prove the first statement of the lemma separately for 2-dimensional
case, 3-dimensional case, and the case of bounded multiplicity. Let P be a
polytope with Σ = Σ(P ).

Case 1: Σ ∈ C2. We consider 3 cases: P is either a triangle, or a right-
angled polygon, or a polygon with more than 3 sides and at least one strictly
acute angle.

If P is a Coxeter triangle, then det(〈S, x〉) is a decreasing function on the
labels of all edges of Σ (see Lemma 3.2), and it is easy to check that

det(〈S, x〉) ≤ det(L2,3,7) ≈ −0.329

Suppose now that P has at least 4 sides. Suppose that P is not right-
angled, and a1, a2, a3 and a4 are its consecutive sides such that ∠a1a2 < π/2.
Denote by v1, . . . , v4 the nodes of Σ corresponding to a1, . . . , a4 respectively.
We will prove that either det(〈v1, v2, v3〉) ≤ −1/2 or det(〈v2, v3, v4〉) ≤ −1/2.

Since P has at least 4 sides, the line containing a1 does not intersect the
line containing a3. Let h1 be a unique common perpendicular to a1 and a3

(it is easy to see that h intersects the sides a1 and a3 themselves but not the
prolongations). Since ∠a1a2 < π/2, h1 does not coincide with a2. Let h2 be
a common perpendicular to h1 and a2 (it may coincide with a3). Then the
lines a1, a2, h2 and h1 bound a Lambert quadrilateral (i.e. a quadrilateral
with 3 right angles), see Fig. 3.2.a. Denote by ρ1 and ρ2 the lengths of its
sides contained in h1 and h2 respectively. Then (see e.g. [5, Theorem 7.17.1])

sinh ρ1 sinh ρ2 = cos(∠a1a2) ≥
1

2

Therefore, either sinh ρ1 ≥ 1/
√

2 or sinh ρ2 ≥ 1/
√

2. Notice that the distance
ρ(a1, a3) between a1 and a3 is not less than ρ1, and the distance ρ(a2, a4)
between a2 and a4 is not less than ρ2. So, either cosh2 ρ(a1, a3) ≥ 3/2 or
cosh2 ρ(a2, a4) ≥ 3/2. In the former case

det(〈v1, v2, v3〉) = 1 − cos2(∠a1a2) − cos2(∠a2a3) − cosh2 ρ(a1, a3)−
− 2 cos(∠a1a2) cos(∠a2a3) cosh ρ(a1, a3) ≤ 1 − cosh2 ρ(a1, a3) ≤ −1/2,

similarly, in the latter case,

det(〈v2, v3, v4〉) ≤ 1 − cosh2 ρ(a2, a4) ≤ −1/2

Suppose now that P is a right-angled polygon. Let a1, a2, a3, . . . , an be
its consecutive sides and let A = an ∩ a1 (see Fig. 3.2.b). Let h1 be a
line through A orthogonal to a3 and h2 be a line through A orthogonal to
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a) b)

A1

a1

a1

a2

a2

a3

a3

an

an−1

an−2

h1h1
h2

h2

∠a1a2

ρ1

ρ2

Figure 3.2. Lambert quadrilateral

an−2 (notice that since P is right-angled n ≥ 5, so n − 2 ≥ 3). Then the
lines a1, a2, a3 and h1 bound a Lambert quadrilateral, as well as the lines
an, an−1, an2

and h2 do. Furthermore, at least one of the angles ∠a1h1 and
∠anh2 does not exceed π/4 (since ∠a1an = π/2). Without loss of generality
we may assume that ∠a1h1 ≤ π/4. Then

sinh ρ(a1, a3) sinh ρ(a2, a4) ≥ cos(a1h1) ≥ 1/
√

2.

As it is shown above for the case of non- right-angled polygon, this implies
that either det(〈v1, v2, v3〉) ≤ −1/2 or det(〈v2, v3, v4〉) ≤ −1/2.

Case 2: Σ ∈ C3. First suppose that P is a right-angled 3-polytope. Then
all 2-faces of P are right-angled polygons, and as it is shown in Case 1, each
of them has at least one edge with length ρ satisfying cosh ρ ≥

√

3/2. Let
e be such a long edge, f1 and f2 be the facets of P such that e = f1 ∩ f2,
and f3 and f4 be the remaining facets containing the vertices of e. Clearly,
we have cosh ρ(f1, f2) ≥

√

3/2 for the distance between f1 and f2. Denote
by v1, . . . , v4 the nodes of Σ corresponding to f1, f2, f3 and f4 respectively.
Then

det(〈v1, v2, v3, v4〉) = 1 − cosh2 ρ(f1, f2) ≤ −1/2

Suppose now that P is not right-angled. Let f1 and f2 be the facets com-
posing an acute dihedral angle, denote e′ = f1 ∩ f2 the corresponding edge,
and let V be any vertex of e′. Denote by f3 a unique facets of P such that
V = f1∩f2∩f3. Then at least one of the angles formed by f3 with f1 and f2

is right. Assume that ∠(f1f3) = π/2, and denote e = f1 ∩ f3. Let V ′ be the
other vertex of e, and f4 be the facet such that V = f1∩f3∩f4. If f2∩f4 6= ∅
then P is one of the nine 3-dimensional hyperbolic Coxeter tetrahedra, so
det(〈v1, v2, v3, v4〉) ≤ −M0 for some constant M0 > 0. Suppose that f2 does
not intersect f4. Then we have a13 = 0, a24 = − cosh ρ(f3, f4) < −1, and a12

is not equal to 0, i.e. is not greater than −1/2. Expanding the determinant
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det(aij) and taking into account that a13 = 0 and aij ≤ 0 for i 6= j, we get

det(〈v1, v2, v3, v4〉) = 1 − a2
12 − a2

14 − a2
23 − a2

24 − a2
34+

+ 2a12a24a14 + 2a23a34a24 − 2a12a23a34a14 − a2
12a

2
34 − a2

14a
2
23 =

= (1 − a2
24) − (a12 − a34)

2 − 2a12a34 − a2
14 − a2

23 − a2
12a

2
34 − a2

14a
2
23+

+ 2a24(a12a14 + a23a34) − 2a12a23a34a14 ≤ −(a12 − a34)
2 − 2a12a34

If a34 6= 0, then a34 ≤ −1/2 and det(aij) ≤ −1/2. If a34 = 0, then a12−a34 ≤
−1/2 and det(aij) ≤ −1/4.

Case 3: Σ ∈ Cd,K , d ≥ 4.
First suppose that P is not right-angled, so Σ contains at least one non-

dotted edge, say 〈v1, v2〉. Then there exists an elliptic subdiagram S ⊂ Σ
containing 〈v1, v2〉. A subdiagram S \ v1 defines an edge (1-face) of P , so it
has one more good neighbor x in Σ besides v1. By Lemma 3.2, det(〈S, x〉)
is a decreasing function on label of each edge joining x with S. Notice that
(x, v1) is the only pair of nodes in 〈S, x〉 which can be joined by a dotted
edge. If it is, replace 〈x, v1〉 by the edge labeled by 7 and denote the obtained
diagram by U , otherwise let U = 〈S, x〉. Since 〈v1, v2〉 is a non-empty edge,
the diagram U is also hyperbolic. So, det(U) < 0 and det(〈S, x〉) ≤ det(U).
Since Σ ∈ Cd,K , there are finitely many possibilities for U , so we may take
as M(d, K) any positive number smaller than minimum of |det(U)|.

Now suppose that P is right-angled. Any 2-face of P is right-angled
polygon, so, by Case 1, it has an edge V V ′ of length ρ ≥ arcsinh (1/

√
2).

Denote by f1, . . . , fd the facets containing V , we may assume that V ′ is the
intersection of facets f0, f1, . . . , fd−1. Let v0, . . . , vd be the corresponding
nodes of Σ. Then the diagram 〈v0, . . . , vd〉 contains a unique edge 〈v0, vd〉,
and det(〈v0, . . . , vd〉) ≤ −1/2.

So, the first statement of the lemma is proved. The second statement
follows immediately from the choice of 〈S, x〉 and the constant M(d) in low-
dimensional cases.

�

The following lemma provides an upper bound for a local determinant of
hyperbolic diagram of special type. Later on, we find such a subdiagram
in any Coxeter diagram of a polytope from P, and use Lemma 3.5 to get a
bound for a multiplicity of an edge.

Lemma 3.5. Given M > 0, integer k ≥ 5 and dimension d ≥ 2 there exists
a constant C(d, K, M) > 0 such that for any diagram 〈S, x, y〉 satisfying the
following five conditions

1) S is an elliptic subdiagram of order d, while 〈S, x〉 and 〈S, x, y〉 are
hyperbolic diagrams;

2) x is joined with S by at most one dotted edge;
3) if v ∈ S and 〈v, x〉 is a dotted edge, then labels of edges of S \ v do

not exceed K;
4) y is not joined with 〈S, x〉 by any dotted edge;
5) det(〈S, x〉) < −M < 0;
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holds

0 ≤ det(〈S, x, y〉, y) ≤ C(d, K, M).

Proof. The inequality 0 ≤ det(〈S, x, y〉, y) follows from the fact that both
〈S, x, y〉 and 〈S, x〉 are hyperbolic, so their determinants are non-positive.

Suppose that the diagram 〈S, x, y〉 contains no dotted edges. Then we
have |det(〈S, x, y〉)| ≤ (d + 2)! since each of the (d + 2)! summands in the

standard expansion cannot exceed 1. So, 0 < det(〈S, x, y〉, y) ≤ (d+2)!
M

.
Now, suppose that 〈S, x, y〉 contains a unique dotted edge 〈x, v〉 and de-

note by ρ the label of this edge. Then

det(〈S, x, y〉, y) =
a1ρ

2 + b1ρ + c1

a2ρ2 + b2ρ + c2
,

where |ai|, |bi|, |ci| ≤ (d + 2)! Moreover, a2 = −det(〈S \ v〉), at the same
time 〈S \ v〉 is an elliptic diagram containing no edges labeled by k ≥ K, so
we obtain |a2| ≥ N(d, K) > 0 for some constant N(d, K). We may assume
N(d, K) to be less than 1.

Therefore, for ρ ≥ 4 (d+2)!
N(d,K) we have

det(〈S, x, y〉, y) =

∣

∣

∣

a1

a2
+ b1

a2ρ
+ c1

a2ρ2

∣

∣

∣

∣

∣

∣
1 + b2

a2ρ
+ c3

a2ρ2

∣

∣

∣

≤

∣

∣

∣

a1

a2

∣

∣

∣
+

∣

∣

∣

b1
a2ρ

∣

∣

∣
+

∣

∣

∣

c1
a2ρ2

∣

∣

∣

1 −
∣

∣

∣

b2
a2ρ

∣

∣

∣
−

∣

∣

∣

c3
a2ρ2

∣

∣

∣

≤

≤

∣

∣

∣

a1

a2

∣

∣

∣
+ 1

4 + N(d,K)
8(d+2)!

1 − 1
4 − N(d,K)

8(d+2)!

<
|a1/a2| + 1/2

1/2
≤ 2(d + 2)!

N(d, K)
+ 1

For ρ < 4 (d+2)!
N(d,K) we have

0 < det(〈S, x, y〉, y) ≤
(d + 2)! + 4(d+2)!2

N(d,K) + 16(d+2)!3

N(d,K)2

M
,

so det(〈S, x, y〉, y) does not exceed maximum of these two numbers for any
ρ.

�

At the end of the section, we prove several elementary facts about Coxeter
diagrams of polytopes belonging to P.

Lemma 3.6. Let P ∈ P(d,n), and let Σ be a Coxeter diagram of P . Then
for any elliptic subdiagram S ⊂ Σ of order d there exist nodes x, y ∈ Σ \ S
such that the diagram 〈S, x, y〉 contains no dotted edges.

Proof. Denote by M the set of all nodes of Σ \ S which are not joined with
S by a dotted edge. Denote by n0 the number of nodes in M, and by
n1 = n − d − n0 the number of the remaining nodes in Σ \ S. Clearly,

n0 ≥ (n − d) − p ≥ (n − d) − (n − d − 2) = 2

Now suppose that any two elements of M are joined by a dotted edge. Then,
using that n0 ≥ 2, we may write down the following inequality for p:

p ≥ n0(n0 − 1)

2
+n1 =

n0(n0 − 1)

2
+n−d−n0 = n−d+

n0(n0 − 3)

2
≥ n−d−1
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The contradiction shows that there are at least two nodes x, y ∈ M which
are not joined by a dotted edge. Therefore, 〈S, x, y〉 contains no dotted
edges. �

The same reasoning as above gives rise to the following statement.

Lemma 3.7. Let P ∈ P(d,n), and let Σ be a Coxeter diagram of P . Then
for any elliptic subdiagram S ⊂ Σ of order d and any x ∈ Σ such that 〈S, x〉
contains no dotted edges there exists a node y ∈ Σ \ 〈S, x〉 such that the
diagram 〈S, x, y〉 contains no dotted edges.

Lemma 3.8. Suppose that P ∈ P(d,n) and S0 ⊂ Σ(P ) is an elliptic diagram

of the type G
(k)
2 , k ≥ 6. If each neighbor of S0 is joined with S0 by at least

one dotted edge then

1) P (S0) ∈ P(d′,n′) (where d′ = d−2 and n′ are the dimension of P (S0)
and the number of nodes in ΣS0

respectively);
2) For any elliptic subdiagram S ⊂ S0 of order d−2 there exists a node

x ∈ S0 \ S which is not joined with S by a dotted edge. Moreover,
there exists a neighbor y of S0 such that the diagram 〈S, x, y〉 contains
no dotted edges.

Proof. Denote by b the number of neighbors of S0. Denote by p′ the number
of dotted edges in ΣS0

. By assumption, each neighbor of S0 is joined with
S0 by at least one dotted edge, so there are at least b dotted edges “outside”
of S0. Taking into account that p ≤ n − (d + 2), we have

p′ ≤ p − b ≤ n − (d + 2) − b = n − d′ − 4 − b

On the other hand, n′ = n − |S0| − b = n − 2 − b, so n = n′ + b + 2. Thus,
we get

p′ ≤ n′ + b + 2 − d′ − 4 − b = n′ − (d′ + 2),

and the first statement is proved.
The proof of the second statement is similar to the proof of Lemma 3.6.

Denote by M the set of all nodes of S0 \S which are not joined with S by a
dotted edge. Denote n0 = |M|, and denote by n1 = n′− d′−n0 the number
of the remaining nodes in S0 \S. By Lemma 3.6, n0 ≥ 2. Now suppose that
each neighbor of S0 is joined with each node of M by a dotted edge. Then
there are bn0 dotted edges joining the neighbors of S0 with the nodes of M.
Therefore,

p ≥ bn0 + n1 ≥ b + n0 − 1 + n1 = n − d − 1 > n − d − 2

in contradiction to the assumption. Thus, there exist a neighbor y of S0 and
x ∈ M which are not joined by a dotted edge, so the lemma is proved.

�

4. Upper bound for multiplicity of edge

In this section we prove that for each d there is a lower bound for dihedral
angles of polytopes from Pd. We start from low-dimensional case.
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Lemma 4.1. Let P be a Coxeter d-polytope, and let S0 ⊂ Σ(P ) be a subdi-

agram of the type G
(k)
2 , k ≥ 6. Suppose that either d = 4, or d = 5, or S0

contains no multi-multiple edges.
There exists a constant K1(d) depending on d only such that Σ(P ) ∈

Cd,K1(d) (i.e., k ≤ K1(d)).

Proof. Consider the diagram S0. By assumptions, we may apply Lemma 3.4
with K = 5 to P (S0). Thus, there exists an elliptic subdiagram S ⊂ S0 of
order d − 2 and a node x ∈ S0 such that det(〈S, x〉) < −M0 < 0 for some
constant M0 > 0 depending only on d − 2, and 〈S, x〉 contains at most one
dotted edge.

Suppose that there exists a neighbor y of S0 such that y is not joined
with 〈S, x〉 by a dotted edge. Then the diagram 〈S, x, y〉 fits into all the
conditions of Lemma 3.5 (with K = 5 and M = M0), so there exists a
constant C (depending on d only) such that 0 < det((〈S, x, y〉, y) < C. By
Proposition 3.1,

det(〈S0, S, x, y〉, y) = det(〈S0, y〉, y) + det(〈S, x, y〉, y) − 1.

Since the diagram 〈S0, S, x, y〉 contains d + 2 nodes, det(〈S0, S, x, y〉) = 0
and hence, det(〈S0, S, x, y〉, y) = 0 and

det(〈S0, y〉, y) = 1 − det(〈S, x, y〉, y) > 1 − C.

Since det(〈S0, y〉, y) tends to (negative) infinity while k tends to infinity, we
obtain some constant K1(d) such that k ≤ K1(d).

Suppose now that each neighbor of S0 is joined with 〈S, x〉 by a dotted
edge. Then we are in assumptions of Lemma 3.8, so there exists a node
x′ ∈ S0 \ S and a neighbor y′ of S0 such that 〈S, x′, y′〉 contains no dotted
edges. Now we can apply Lemma 3.3 to 〈S, x′〉, which implies that there
exists a constant M1 > 0 depending on d only such that det(〈S, x′〉) < −M1.
Therefore, 〈S, x′, y′〉 fits into assumptions of Lemma 3.5 with K = 5 and
M = M1, so we can proceed with the diagram 〈S, x′, y′〉 in the same way as
we did in the preceding paragraph with 〈S, x, y〉. This finishes the proof.

�

Now we are able to prove the main result of the section. The following
theorem provides a uniform upper bound for multiplicity of edges of Coxeter
diagrams Σ(P ) for P ∈ Pd.

Theorem 4.2. If d ≥ 4, then there exists a constant K0(d) such that for
any P ∈ Pd the Coxeter diagram Σ(P ) belongs to Cd,K0(d).

Proof. The proof is by induction on d. The base consists of the cases d = 4
and d = 5, for which we refer to Lemma 4.1.

Suppose that d ≥ 6 and for each 4 ≤ d′ < d the theorem is already proved,
i.e. for any d′ there is a constant K0(d

′) such that for any P ′ ∈ Pd′ and for

any S0 ⊂ Σ(P ′) of type G
(k)
2 we have k ≤ K0(d

′).

Now take any subdiagram S0 ⊂ Σ(P ) of type G
(k)
2 and consider the di-

agram S0. We may assume that k ≥ 6, in particular ΣS0
= S0. If S0

contains no multi-multiple edges, we refer to Lemma 4.1. Suppose that S0
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contains at least one multi-multiple edge. Then choose any elliptic subdia-
gram S ⊂ S0 of order d− 2 containing a multi-multiple edge. We can write
S as 〈S1, . . . , Sr, R

′〉, r ≥ 1, where each of S1, . . . , Sr is a subdiagram of
order 2 consisting of a multi-multiple edge, and R′ is either a subdiagram
containing no multi-multipe edges or a subdiagram of order 2 or 3 (such a
decomposition of S may not be unique).

Denote T0 = 〈S0, S1, . . . , Sr〉, and consider T = T 0 ⊂ S0 (so, T consists of
all nodes of S0 not joined with 〈S0, S1, . . . , Sr〉). This is a Coxeter diagram
of a (d−2r−2)-polytope, where d−2r−2 ≥ 2. We may assume that either
d − 2r − 2 ≤ 3 or T contains no multi-multiple edges, otherwise we may
add a multi-multiple edge (denote it by Sr+1) to T0 to get T ′

0, and consider

T ′ = T ′
0. By Lemma 3.4, there exists a constant M0 > 0 (depending on

d only), an elliptic subdiagram R ⊂ T of order (d − 2r − 2) and a node
x ∈ T \ R such that det(〈x, R〉) < −M0.

First, suppose that there exists a neighbor y of S0 not joined with 〈x, R〉
by a dotted edge. Then, applying Proposition 3.1, we get

det(〈S, x, y〉, y)=det(〈S1, y〉, y) + · · · + det(〈Sr, y〉, y) + det(〈R, x, y〉, y) − r

Notice that det(〈S, x, y〉, y) ≥ 0 while each of det(〈Si, y〉, y) either equals
to 1 (if Si is not joined with y) or is negative (otherwise). Therefore,
det(〈Si, y〉, y) − 1 ≤ 0 for i = 1, . . . , r, and we obtain

0 ≤ det(〈S, x, y〉, y) ≤ det(〈R, x, y〉, y).

At the same time, by Lemma 3.5 applied to 〈R, x, y〉 with K = 5 and
M = M0, the local determinant det(〈R, x, y〉, y) is bounded by some constant
C (depending on d only).

Now consider the diagram 〈S0, S, x, y〉. By construction, 〈S, x〉 ⊂ S0, so
〈S0, S, x〉 is not connected, and we use Proposition 3.1 to obtain

det(〈S0, S, x, y〉, y) = det(〈S0, y〉, y) + det(〈S, x, y〉, y) − 1.

Since the diagram 〈S0, S, x, y〉 consists of d + 2 nodes, we get

0 = det(〈S0, S, x, y〉) = det(〈S0, S, x, y〉, y),

which implies

det(〈S0, y〉, y) = 1 − det(〈S, x, y〉, y) > 1 − C.

Since det(〈S0, y〉, y) tends to (negative) infinity while k tends to infinity, we
obtain some constant K2(d) such that k ≤ K2(d).

We are left to consider the case when each neighbor of S0 is joined with
〈R, x〉 by a dotted edge, suppose now that this holds. Let S be any elliptic
subdiagram of S0. According to the second statement of Lemma 3.8, there
exists a node x′ ⊂ S0 and a neighbor y′ of S0 such that the diagram 〈S, x′, y′〉
contains no dotted edges. By the first statement of Lemma 3.8, we have
P (S0) ∈ Pd−2. We may apply the induction assumption to get ΣS0

∈
Cd−2,K0(d−2). In particular, the subdiagram 〈S, x′〉 contains no edges labeled
by k′ > K0(d − 2). So, by Lemma 3.4, −M1 ≤ det〈S, x′〉 < 0 for some
M1 > 0 depending on d− 2 only, and by Lemma 3.5 there exists a constant
C1 > 0 such that 0 ≤ det(〈y, x, S〉, y) ≤ C1. This implies that

det(〈S0, y〉, y) = 1 − det(〈S, x, y〉, y) > 1 − C1
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and hence, we obtain some constant K3(d) such that k ≤ K3(d).
Now, taking as K0(d) the maximum of K2(d) and K3(d), we complete the

proof.
�

5. Finiteness of the number of polytopes

In the previous section we proved that multiplicity of edges of Coxeter
diagrams of polytopes from Pd is bounded. The current goal is to prove that
the number of facets of polytopes from Pd is also bounded by some constant
depending on d only. This will imply finiteness of Pd.

First, we estimate the order of subdiagrams without dotted edges.

Lemma 5.1. There exists a constant Q0(d, k) such that for any diagram Σ′

satisfying

1) Σ′ ⊂ Σ for some diagram Σ ∈ Cd,k;
2) Σ′ contains an elliptic subdiagram S of order d;
3) Σ′ contains no dotted edges;

holds |Σ′| ≤ Q0(d, k).

Proof. Assume that |Σ′| > d. Then there exists x ∈ Σ′ \ S. Since Σ′ ⊂ Σ ∈
Cd,k, multiplicity of each edge of 〈S, x〉 is uniformly bounded, so the number
of possible configurations 〈S, x〉 is finite, denote the number of them by
N0(d, k).

Recall that the signature of 〈S, x〉 is (d, 1). This implies that the corre-

sponding vectors in R
(d,1) (denote them v0, . . . , vd) form a basis, so for any

y ∈ Σ′ \ 〈S, x〉 the corresponding vector v ∈ R
(d,1) is completely determined

by the weights of the edges joining y with 〈S, x〉. Again, since Σ′ ⊂ Σ ∈ Cd,k,

for each 〈S, x〉 there is at most (k − 1)d+1 ways to join y with 〈S, x〉. Thus,
for each of finite number of configurations of vectors (v0, . . . , vd) there are
finitely many vectors v which may correspond to nodes of Σ′ \ 〈S, x〉, more
precisely the number is bounded by N0(d, k)(k − 1)d+1. Adding to this
number the order of 〈S, x〉, we get the bound Q0(d, k).

�

Example 5.2. To illustrate application of Lemma 5.1 we provide a very
rough bound for 4-dimensional case. Let Σ(P ) ∈ C4,k. We will estimate the
number of facets of P .

First, compute the number of distinct elliptic diagrams S of order 4.
There are 5 connected ones (A4, B4, D4, F4, and H4), 3 non-connected ones
with connected component of order 3 (direct sum of A1 and one of A3, B3,

H3), and k(k − 1)/2 diagrams of type G
(m)
2 + G

(l)
2 , 2 ≤ l ≤ m ≤ k. So, the

number of elliptic diagrams is 8 + k(k − 1)/2.
Next, compute N0(4, k). A node x ∈ Σ(P ) \ S may be attached to an

elliptic diagram S in (k−1)4 ways (this bound is very rough: we forget about
huge number of symmetries; moreover, a large part of these configurations
gives rise to elliptic or parabolic diagrams). So,

N0(4, k) ≤ (8 + k(k − 1)/2)(k − 1)4

.
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Now, any node y ∈ Σ(P ) \ 〈S, x〉 may be attached to Σ(P ) \ 〈S, x〉 in
at most (k − 1)5 ways (again, this bound is very rough). Hence, we may
estimate that |Σ(P )| ≤ Q0(4, k), where

Q0(4, k) ≤ N0(4, k)(k − 1)5 + 5 ≤ (8 + k(k − 1)/2)(k − 1)9 + 5

Lemma 5.3. There exists a constant Q1(d, k) such that for any diagram Σ′

satisfying

1) Σ′ ⊂ Σ for some diagram Σ ∈ Cd,k;
2) Σ′ contains an elliptic subdiagram S of order d and a node x /∈ S

such that
2a) 〈S, x〉 contains no dotted edges;
2b) at most one node of Σ′ \ 〈S, x〉 is joined with 〈S, x〉 by a dotted

edge;

holds |Σ′| < Q1(d, k).

Remark 5.4. Before proving Lemma 5.3 we recall some elementary fact
from linear algebra. Let (V, g) be a non-degenerate quadratic space, and let
(v0, . . . , vd) be a basis. Then a system of equations

(v, v) = 1, (v, vi) = ci, 1 ≤ i ≤ d

has at most two solutions. In other words, any vector is determined (up to
some symmetry) by its scalar products with all but one elements of basis of
V .

Proof of Lemma 5.3. We may assume that there exist y ∈ Σ′ \ 〈S, x〉 and
z ∈ 〈S, x〉 joined by a dotted edge, otherwise we take Q1(d, k) = Q0(d, k)
(see Lemma 5.1).

Now the proof is similar to the proof of Lemma 5.1. There are finitely
many diagrams 〈S, x〉, and finitely many ways to join y with 〈S, x〉 \ z.
In view of Remark 5.4, the weight of the edge 〈y, z〉 is determined by the
multiplicities of the edges joining y with 〈S, x〉\z. Thus, we get some bound
for the number of nodes in Σ′.

More precisely, we may take a rough bound

Q1(d, k) = 2(d + 1)N0(d, k)(k − 1)d

where the multiple d + 1 =
(

d+1
d

)

is the number of ways to choose z in 〈S, x〉
and N0(d, k) is the estimate for the number of possible configurations 〈S, x〉
(see proof of Lemma 5.1).

�

Lemma 5.5. For any d ≥ 4 there exists a constant n0(d) such that any
polytope from Pd has at most n0(d) facets.

Proof. Let P ∈ Pd and Σ = Σ(P ), i.e. p ≤ n − d − 2, where n = |Σ| and p
is the number of dotted edges in Σ. By Lemma 4.2, Σ ∈ Cd,k for k = K0(d)
in notations of Lemma 4.2.

Let S be any elliptic subdiagram of Σ of order d. By Lemma 3.6, there
exist x, y ∈ Σ \ S such that the diagram 〈S, x, y〉 contains no dotted edges.
Let M≤1 be the set of nodes of Σ \ 〈S, x, y〉 joined with 〈S, x, y〉 by at most
one dotted edge. By Lemma 5.3, |M≤1| ≤ Q1(d, K0(d)). Denote by M>1
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the set of nodes of Σ joined with 〈S, x〉 by two or more dotted edges. Clearly,
|M>1| ≤ p/2. Furthermore,

n = (d + 2) + |M≤1| + |M>1| ≤ (d + 2) + Q1(d, K0(d)) + p/2.

Since p ≤ n − d − 2, we have

n ≤ Q1(d, K0(d)) + n/2 + d/2 + 1

, which implies

n ≤ n0(d) = 2Q1(d, K0(d)) + d + 2.

�

Corollary 5.6. The number of polytopes in Pd is finite.

Proof. Let P ∈ Pd and Σ = Σ(P ). By Lemma 5.5, the number of nodes
in Σ is bounded by some constant n0(d) depending on d only. According
to Lemma 4.2, Σ ∈ Cd,K0(d). Clearly, the number of Coxeter diagrams with
bounded number of nodes and bounded multiplicities of edges is finite (we
do not write weights of dotted edges). By Andreev’s Theorem [4] each of
the possible diagrams corresponds to at most one Coxeter polytope. So,
there are finitely many Coxeter diagrams that may occur to be diagrams of
polytopes from Pd, which implies that Pd is finite.

�

Combining Corollary 5.6 with the result of Vinberg [32] stating that the
dimension of compact hyperbolic Coxeter polytope does not exceed 29, we
obtain the following theorem.

Theorem 5.7. The set P is finite.

6. Algorithm

In Section 5 we proved that Pd is finite. Since we have a bound on
the number of facets of any polytope P ∈ Pd, we are limited to finitely
many combinatorial types of polytopes. Given a combinatorial type, we
have finitely many possibilities to assign weights to non-dotted edges of
Σ = Σ(P ) (due to Lemma 4.2). However, the possible labels of dotted edges
remain undefined. In particular, given a combinatorial type of d-polytope
(satisfying the condition p ≤ n − d − 2) we even can not still check if there
exists a compact Coxeter polytope of this combinatorial type.

In this section we describe an algorithm which allows us to determine the
labels of the dotted edges one after another. Using the algorithm one can
check if the given combinatorial type is realizable in Pd, as well as to find
all possible realizations in this class.

The main idea of the algorithm is the following. First, for any polytope
P ∈ Pd and its Coxeter diagram Σ(P ) (with unknown labels of dotted edges)
we show the way to find out the weights of dotted edges. For this we point
out a sequence of subdiagrams

Σ0 ⊂ Σ1 ⊂ · · · ⊂ Σn−d = Σ(P ), |Σi| = d + i

together with a way to determine weights of dotted edges in Σi by the
weights of dotted edges of Σi−1.
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Next, we use results of the previous two sections to show that for any
i ≤ n0(d) there are finitely many ways only to assign weights to Σi. Then,
starting from all possible elliptic diagrams Σ0 and adding vertices one by
one, we get a (huge) list of diagrams which are candidates to be subdiagrams
of Σ(P ) for P ∈ Pd. At each step we check the signature of every diagram
and preserve only ones with correct signature (which is (d, 1)). For diagrams
with correct one we also check whether it is already a diagram of a polytope.
If at some step i the set of diagrams Σi is empty, the procedure is done. This
cannot happen later than at step number n0(d) − d.

In this way we get Coxeter diagrams of all the polytopes from Pd.

Lemma 6.1. Given a polytope P ∈ Pd and its Coxeter diagram Σ = Σ(P )
with unknown weights of dotted edges, there exists a finite algorithm which
provides the weights of dotted edges of Σ.

Proof. Let v0 ∈ Σ be a node incident to the maximal number of dotted edges
(in particular, this means that any node of Σ other than v0 is incident to at
most p/2+1 dotted edges). Let S0 ⊂ Σ be any elliptic subdiagram of order d
containing v0 (i.e., S0 is a diagram of some vertex VS0

of P , and VS0
belongs

to facet Fv0
corresponding to v0). Define Σ0 = S0. As we have explained

above, for each positive integer i ≤ n − d we will construct a subdiagram
Σi ⊃ Σi−1 of order d+ i such that in each Σi all the weights are determined.

Step 1: attaching nodes. By Lemma 3.6, there exist x, y ∈ Σ \ S0 such
that 〈S0, x, y〉 contains no dotted edges. Define Σ1 = 〈S0, x〉, Σ2 = 〈S0, x, y〉.

Denote by M≤1 the set of nodes of Σ \ Σ2 joined with Σ2 by at most
one dotted edge, and let z ∈ M≤1. According to Remark 5.4, we can
find the label of the dotted edge (if any) in 〈S0, x, z〉, so we can find the

vector in R
(d,1) corresponding to z as a linear combination of the vectors

corresponding to 〈S0, x〉, which allows us to find all the labels of the edges
joining z with Σ2. Hence, we can take Σ3 = 〈Σ2, z〉.

In the same way, we can attach to Σ3 any other element of M≤1 to get Σ4.

Indeed, we find the corresponding vector in R
(d,1) as a linear combination of

the vectors corresponding to 〈S0, x〉, and then compute scalar products with
all the vectors corresponding to the remaining nodes y, z of Σ3. Applying
this procedure for each node from M≤1, we get a subdiagram Σm ⊂ Σ,
where m = 2 + |M≤1|, |Σm| = d + 2 + |M≤1|.

Each of the remaining nodes is joined with Σ1 = 〈S0, x〉 by at least two
dotted edges. Since p ≤ n − d − 2, this implies that there are at most
(n− d− 2)/2 nodes in Σ \Σm. In other words, to this moment Σm consists
of d+2 nodes of 〈S0, x, y〉 and at least n−d−2−(n−d−2)/2 = (n−d)/2−1
attached nodes, so m ≥ (n−d+2)/2. If m = n−d then the lemma is proved,
otherwise we go to the next step.

Step 2: walking along edges of P . Let m′ ≥ m, and suppose that we
have already constructed a subdiagram Σm′ . Let S ⊂ Σm′ be any diagram
of a vertex (i.e., an elliptic diagram of order d), and let w /∈ Σm′ be a node
such that 〈S, w〉 is a complete diagram of an edge.

Claim: It is possible to attach w to Σm′ to get Σm′+1.



ESSENTIAL HYPERBOLIC COXETER POLYTOPES 19

Proof of the claim. Let x′ be any node of Σm′ \S. Since 〈S, w〉 is a complete
diagram of an edge, w can be joined with S by at most one dotted edge.

Suppose that w is not joined with S by a dotted edge. Take any x′ ∈
Σm′ \ S and notice that 〈S, x′〉 has signature (d, 1), so it corresponds to

a basis of R
(d,1). Therefore, we are able to find the corresponding vector

in R
(d,1) as a linear combination of the vectors corresponding to 〈S, x′〉,

and then compute scalar products with all the vectors corresponding to the
remaining nodes of Σm′ , so Σm′+1 = 〈Σm′+1, w〉.

Now suppose that w is joined with S by a dotted edge. If w is also joined
by a dotted edge with each of at least (n − d + 2)/2 nodes of Σm′ \ S, then
there are at least (n − d + 2)/2 + 1 ≥ p/2 + 3 dotted edges incident to w,
which contradicts the choice of v0. Thus, w is not joined by a dotted edge
with some node x′ ∈ Σm′ \ S. Therefore, w is joined with 〈S, x′〉 by exactly
one dotted edge, so we can attach w to 〈S, x′〉 and then to Σm′ to get Σm′+1.

�

According to the claim above, for any diagram S′ of a vertex VS′ con-
tained in Σm′ , m′ ≥ m, we can attach to Σm′ any complete diagram of edge
emanating from VS′ . Walking along the edges of P we can pass from VS to
any other vertex of P . Therefore, for each elliptic diagram S ⊂ Σ of order
d there exists some number mS such that S ⊂ ΣmS

. Collecting diagrams of
all the vertices of P one by one, we obtain Σn−d = Σ.

�

Lemma 6.2. Given abstract Coxeter diagram Σ with unknown weights of
dotted edges, and an integer d ≥ 4 satisfying p ≤ n − d − 2, where p is the
number of dotted edges and n = |Σ|, there exists a finite algorithm which

1) verifies if there exists P ∈ Pd such that Σ = Σ(P );
2) provides the weights of dotted edges if Σ = Σ(P ).

Proof. Let Σ be an abstract Coxeter diagram with unknown weights of dot-
ted edges. According to [33, Theorem 2.1 and Proposition 4.2], Σ ∈ Cd if
and only if its signature equals (d, 1) and the poset of elliptic subdiagrams
of Σ coincides with a poset of faces of some compact Euclidean d-polytope.
So, the following conditions on Σ are essential:

• the order of maximal elliptic subdiagram of Σ equals d;
• each elliptic diagram of order d−1 is contained in exactly two elliptic

diagrams of order d (in terms of faces of P , each edge has exactly
two vertices).

Both conditions can be easily verified without knowing weights of dotted
edges. If any of them does not hold then Σ is not a diagram of a compact
polytope. Otherwise, we need to check, whether it is possible to assign
weights to the dotted edges of Σ to get signature (d, 1).

Now we proceed as in the algorithm constructed in Lemma 6.1. The only
difference is in some additional computations. Suppose that we have already
constructed a subdiagram Σm ⊂ Σ, m ≥ d + 2. This means that we know a
configuration of m + d vectors in R

(d,1) with Gram matrix corresponding to
Σm. While attaching new node w by expressing the corresponding vector as
a linear combination of vectors corresponding to some subdiagram 〈S, x〉 ⊂
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Σ of order d + 1, we need to compute scalar products of this vector with all
the preceding m + d vectors, including ones corresponding to nodes joined
with w by non-dotted edges. If all the scalar products coincide with ones
prescribed by Σ, then we add the node to obtain Σm+1 and a configuration
of m+d+1 vectors in R

(d,1), otherwise we stop the process and deduce that
Σ is not a diagram of a polytope.

�

Lemma 6.3. There exists a finite algorithm listing Coxeter diagrams of all
the polytopes from Pd.

Proof. 1. General algorithm. In fact, Lemma 6.2 provides a way to clas-
sify all the polytopes P ∈ Pd. Indeed, according to Theorem 4.2, Σ(P ) does
not contain edges of multiplicity greater than K0(d)−2, and by Lemma 5.5,
|Σ(P )| ≤ Q(d, K0(d)). The number of Coxeter diagrams (without labels of
dotted edges) is finite, and for each of them we can find out whether there
exists a corresponding polytope P ∈ Pd.

However, the number of diagrams we need to check in this way is ex-
tremely large even for small K0(d) and Q(d, K0(d)). Below we provide a
shorter algorithm which becomes realizable for reasonable K0(d). An exam-
ple of application to d = 4 (with some further refinements) is presented in
Section 7.

2. Reduced algorithm.

We proceed as in the algorithm constructed in Lemma 6.1 by listing all
possible diagrams Σi on each step.

First, we list all possible diagrams Σ0 = S0. According to Theorem 4.2,
the multiplicity of edges of Σ0 does not exceed K0(d) − 2, so we can list
all elliptic diagrams of order d. Denote the list of all obtained diagrams by
L0. Then we construct the list L1 of diagrams Σ1 = 〈Σ0, x〉 without dotted
edges.

After constructing any diagram Σi we immediately check whether Σi is
already a diagram of a polytope. By Proposition 2.1, a Coxeter diagram
of d-polytope cannot contain a diagram of another d-polytope as a proper
subdiagram. Therefore, if we get a diagram Σi of d-polytope, we put it in
the resulting list of polytopes and exclude from further considerations.

By Lemma 3.6, there exists Σ2 = 〈Σ1, y〉 = 〈Σ0, x, y〉 without dotted
edges. In particular, the diagram 〈Σ0, y〉 should appear in L1. Therefore,
we do the following: for each pair (Σ1, Σ

′
1) of (possibly isomorphic) diagrams

from L1 constructed by the same Σ0 (i.e. Σ1 = 〈Σ0, x〉, Σ′
1 = 〈Σ0, y〉) we

compose a diagram Σ2 = 〈Σ0, x, y〉 and compute the weight of the edge
〈x, y〉 from the equation det(Σ2) = 0. We put Σ2 in the list L2 if and only if
the weight equals cos(π/k) for some positive integer k ≤ K0(d). Any Σ(P )
contains some diagram from L2 as a subdiagram.
2.1 Attaching M≤1

Define the set M≤1 as the set of nodes of future Σ(P ) joined with Σ2

by at most one dotted edge. As we have already proved (see Step 1 of the
proof of Lemma 6.1), after attaching of all the nodes of M≤1 to Σ2 we get
at least d + (n − d + 2)/2 nodes, so we obtain an inequality

|M≤1| + d + 2 ≥ (n + d + 2)/2,
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which is equivalent to
n ≤ 2|M≤1| + d + 2

Further procedure depends on |M≤1| in Σ(P ) we are looking for.
If M≤1 = ∅, then n = d + 2 and we are done.
Now suppose that |M≤1| ≥ 1. The procedure to attach the nodes is the

following. For each node v ∈ Σ1 we join a new node w with all nodes of Σ1\v
by non-dotted edges in all possible ways, and for each of them compute the
weights of the edges 〈w, v〉 and 〈w, y〉. If one of these weights is equal to
cos(π/k) for some positive integer k ≤ K0(d), and another is either equal to
cos(π/k′) or is greater than one, then we get Σ3 = 〈Σ2, w〉 and put it in the
list L3.

If we assume that |M≤1| ≥ 2, then we need to attach other nodes from
M≤1. For this we take all the pairs (Σ3, Σ

′
3) of (possibly isomorphic) dia-

grams from L3 with the same Σ2 (i.e. Σ3 = 〈Σ2, w〉, Σ′
3 = 〈Σ2, w

′〉), compose
a diagram Σ4 = 〈Σ2, w, w′〉 and compute the weight of the edge 〈w, w′〉 from
the equation det(〈Σ0, w, w′〉) = 0 (since |〈Σ0, w, w′〉| = d+2). We put Σ4 in
the list L4 if and only if the weight either is equal to cos(π/k) for some pos-
itive integer k ≤ K0(d) or is greater than one. In this case we call the pair
(Σ3, Σ

′
3) compatible. So, the list L4 consists of unions of pairs of compatible

diagrams from L3.
In the same way we can construct a list L5 as the set of triples of mutually

compatible diagrams from L3, and so on. In other words, if we are looking
for Σ(P ) with |M≤1| = m′−2, then Σ(P ) should contain a subdiagram from
the list Lm′ composed of (m′ − 2)-tuple of mutually compatible diagrams
from L3. Notice that m′ ≤ Q(d, K0(d)) − d, so the number of lists Li is
finite.
2.2 Walking along edges

Denote by m the maximal index of Li obtained at the previous step, i.e.
Lm+1 = ∅ but |Lm| ≥ 1. We fix n and look for polytopes P ∈ P(d,n). Notice
that we have a bound on n:

n ≤ 2(m − 2) + d + 2 = 2m + d − 2

Define the list L′ =
m
⋃

i=3
Li. Let L be the subset of L′ consisting of all

diagrams which are not diagrams of d-polytopes and which contain no more
than n − d − 2 dotted edges.

Consider any diagram Σi ∈ L. Σi is not a diagram of a polytope, so
it contains at least one elliptic subdiagram S of order d which belongs to
less than d complete diagrams of edges. We will attach to diagram Σi a
node v to create a new complete diagram of an edge in the following way:
for each u ∈ Σi \ S we attach v to 〈S, u〉 with at most one dotted edge,
and then compute the weights of all the other edges joining v with Σi. We
need to attach nodes with at least 2 dotted edges only, otherwise we get a
diagram Σi+1 ∈ Li+1. Here we assume that the diagram of the initial vertex
S0 contains a node incident to a maximal number of dotted edges, which
implies that v is not joined by a dotted edge with some node u ∈ Σi \S (the
proof is identical to the one provided in the claim in Step 2 of Lemma 6.1).

Let L1 be the set of all such diagrams 〈Σi, v〉 for all Σi ∈ L and 〈S, u〉 ⊂ Σi

that contain no more than n − d − 2 dotted edges.
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Creating in this way complete diagrams of edges and attaching them to
all Σi+1 ∈ L1, we obtain the set L2. In the same way we get the sets L3, L4

and so on (we attach a new node to some Σi only if Σi is not a diagram of a
d-polytope). The union (

⋃

i≤n−d−2

2

Li)∪L∗ contains diagrams Σ(P ) of all the

polytopes P ∈ P(d,n) (where L∗ is the list of all d-polytopes obtained at the
Step 2.1).

�

Remark 6.4. Even the reduced algorithm is not too fast. Below we list
some method to obtain better estimates for K0(d) and to improve the algo-
rithm.

1. Better estimate for K0(d).
Let Σ be a diagram of a polytope P ∈ P(d, n) and let k ≤ K0(d)− 2 be the
maximal multiplicity of an edge in Σ. Let S ⊂ Σ be an elliptic subdiagram
of order d containing an edge of multiplicity k. By Lemma 3.6, there exist
two points x, y such that 〈S, x, y〉 ∈ Σ contains no dotted edges and all edges
in 〈S, x, y〉 have multiplicity less or equal to k.

This gives us a way to obtain a better estimate for the maximal multi-
plicity of an edge. We consider all elliptic diagrams S of order d containing
no edges of multiplicity greater than K0(d)−2 and let k(S) be the maximal
multiplicity of an edge in S. For each of these diagrams S we consider all
indefinite diagrams 〈S, x, y〉 with zero determinant containing neither dot-
ted edges nor edges of multiplicity greater than k(S). The number of these
diagrams may not be too large. Then the maximal multiplicity amongst
ones appearing in all these diagrams can be taken into account instead of
K0(d) − 2.

2. Changing starting vertex.
In the algorithm provided in the proof of Lemma 6.3 we start from dia-
gram S0 of a vertex satisfying some requirements. More precisely, S0 should
contain a node v0 incident to maximal number of dotted edges. However,
sometimes this condition can be avoided.

Suppose that we have already attached all the nodes from M≤1 to get
Σi. Now we want to attach to Σi a new node v to get a complete diagram
of some edge 〈S, v〉 for diagram of some vertex S. As we have seen above,

n ≤ 2i + d − 2,

so we have an inequality

p ≤ n − d − 2 ≤ 2i − 4

If we assume that Σi already contains at least i − 4 dotted edges, then any
new node v is incident to at most i dotted edges, so there exists u ∈ Σi \ S
which is not joined with v by a dotted edge. Therefore, we can apply our
algorithm.

The requirement for Σi to contain at least i − 4 dotted edges is not
too restrictive. Since |M≤1| = i − 2, this condition holds, for example, if
there are no triples (Σ3, Σ

′
3, Σ

′′
3) of mutually compatible diagrams such that

〈Σ3, Σ
′
3, Σ

′′
3〉 contains no dotted edges. But while avoiding the requirement

on S0, we hugely reduce the computations. Indeed, we can now start from
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diagram S0 of any vertex. In particular, we may assume that S0 contains
an edge of the maximal multiplicity in Σ. This allows us in each case to
make calculations up to some multiplicity depending on the starting elliptic
diagram, but not up to K0(d) − 2.

7. Polytopes in dimension 4

In this section, we apply algorithm provided in Lemma 6.3 (taking into
account Remark 6.4) to classify polytopes from P4. We list the main steps
and further essential refinements.

Suppose that Σ = Σ(P ) is a Coxeter diagram of a polytope, and consider
an edge S0 of maximal multiplicity k−2 in Σ. According to the algorithm, we
want to find a subdiagram 〈S, x〉 ⊂ S0 and y ∈ Σ satisfying the assumptions
of Lemma 3.5 and to estimate its local determinant. P (S0) is a polygon, so
it is either a triangle, or has a pair of non-intersecting sides. We consider
these cases separately.
Case 1. P (S0) has more than 3 sides, k ≥ 7.
In this case its diagram ΣS0

contains a subdiagram described in Case 1 of

Lemma 3.4 with a dotted edge of weight at least
√

3/2. We introduce the
notation on Fig. 7.1: ρ is the weight of the dotted edge, and the remaining
variables are integers.

ρ

k

l
m

p

q

s

t

u xy

S0 S

Figure 7.1. A subdiagram 〈S0, S, x, y〉 ⊂ Σ, the case P (S0)
is not a triangle

Writing down the explicit formula of det(〈S, x, y〉, y), we can see that the
local determinant is a decreasing function of ρ (in the appropriate domain of
all the variables). Therefore, while looking for the estimate we may assume

that ρ =
√

3/2. We get the following expression:

det(〈S, x, y〉, y) ≤ 1 +
R(p, q, s, t, u)
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Now we will use the fact that every unknown weight is less than one. A rough
estimate (all the entries in the denominator and positive ones in the numer-
ator are zeros, and negative ones in the numerator are equal to 1) gives
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an inequality det(〈S, x, y〉, y) ≤ 17 + 6
√

6. Applying Proposition 3.1 and
taking into account that det(〈S0, S, x, y〉) = 0, we see that det(〈S0, y〉, y) ≥
−20− 8

√
6. Since the local determinant det(〈S0, y〉, y) is a decreasing func-

tion on all the weights, this implies that D (2, 3, k) ≥ −16 − 6
√

6, which, in
its turn, implies that k ≤ 35.

The bound above is very rough. We can improve it in the following
way. Suppose that p = 2. Then, repeating the considerations above for the
simplified expression, we obtain a bound k ≤ 27. By symmetry, we get the
same if q = 2. Applying the same procedure to the case t = 2 (or u = 2),
we obtain an upper bound k ≤ 26. Thus, if we assume now that k ≥ 28,
then each of p, q, t, u should exceed 2. Differentiating the expression (∗)
with respect to p we see that the local determinant decreases. This implies
that maximum is attended for p = 3, and, similarly, for q = 3. Repeating
the procedure for simplified expression we get an estimate k ≤ 9, so the
contradiction shows that k ≤ 27, and if k > 9 then at least one of p, q, t, u
is equal to 2.

Let us now improve the estimate another one time. Assume that q = 2.
Then we have two possibilities: either p = 2 or p > 2. Applying the same
procedure in the both cases we get an estimate k ≤ 19. In other words, if we
assume that k > 19, then p, q > 2. Suppose that k > 19. Suppose also that
t > 2. Then the derivative of the local determinant with respect to p occurs
to be negative, which implies k ≤ 9 as we have seen above. Thus, if k > 19,
then p, q > 2, and t = 2. Similarly, u = 2. Computing the local determinant
in these settings, we get a bound k ≤ 7. The contradiction shows that if
P (S0) is not a triangle then k ≤ 19.

Now we make the following computations. For each 8-tuple of integers
(k, l, m, p, q, s, t, u) (where 7 ≤ k ≤ 19 is the maximal one) we compute
ρ to satisfy the equation det(〈S0, S, x, y〉) = 0, and list all of them sat-

isfying ρ ≥
√

3/2. If P ∈ P4 and P (S0) is not a triangle, then Σ(P )
contains one of these subdiagrams. The list (denote it by L) is large: it
contains around 167000 diagrams. The number is approximate since while
running the program we allow ρ to be a bit smaller to prevent errors. Now
it is easy to see that there exists a node y1 ∈ Σ \ 〈S0, S, x, y〉 which is not
joined with 〈S0, S, x, y〉 by dotted edges (the proof is similar to Lemma 3.6).
Thus, the diagram 〈S0, S, x, y1〉 should be contained in the list L. More
precisely, we are looking for a pair of diagrams from L parametrized by
(k, l, m, p, q, s, t, u, ρ) and (k, l1, m1, p, q, s1, t1, u1, ρ), such that the diagram
〈S0, S, x, y, y1〉 has signature (4, 1, 2), and the nodes y and y1 are not joined
by a dotted edge, see Fig. 7.2.

So, we look for pairs of diagrams from L with the same k, p, q, and ρ, and
for every such pair compute the weight of the edge yy1. The result is empty
list.

Therefore, for each polytope from P4 with S0 being the edge of maximal
multiplicity k − 2 ≥ 5 the polygon P (S0) is a triangle.
Case 2. P (S0) is a triangle, k ≥ 7.
In this case 〈S, x〉 = ΣS0

, and y is any vertex of Σ which is not joined
with 〈S0, ΣS0

〉 by a dotted edge (it does exist by Lemma 3.7). We get the
subdiagram shown on Fig 7.3.
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Figure 7.2. A subdiagram 〈S0, S, x, y, y1〉 ⊂ Σ, the case
P (S0) is not a triangle
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Figure 7.3. A subdiagram 〈S0, S, x, y〉 ⊂ Σ, the case P (S0)
is a triangle

First, we are looking for reasonable K0(4). The considerations are very
similar to the previous case, but are much more detailed, so we show the
plan. We may assume that p ≤ q ≤ r. The first attempt to get a bound is
to consider two cases: either p = 2 or p > 2. If p > 2 then a very rough
estimate gives det(〈S, x, y〉, y) ≤ 1− 15/ det(L3,3,4), where 15 is the number
of negative summands in the denominator of the expansion of the expression
for local determinant det(〈S, x, y〉, y), and L3,3,4 is a diagram of triangle with
minimum possible determinant (while p > 2). This implies that k ≤ 41.
Doing the same for p = 2 we get a bound det(〈S, x, y〉, y) ≤ 1−9/ det(L2,3,7),
which implies k ≤ 76.

At this point we could stop and say that K0(4) = 76. However, this
estimate does not look reasonable. Making several similar refinements (con-
sidering more detailed cases for triples (p, q, r)) we can improve the bound.
For example, subdividing the case p = 2 into q = 3 and q > 3 we get an
estimate k ≤ 65 for the first case and k ≤ 48 for the latter. Therefore,
we see that K0(4) ≤ 65, and if k > 48 then p = 2 and q = 3. According
to our algorithm (see Remark 6.4) we run the following computation for
48 < k ≤ 65 in these settings: we are looking for the diagram 〈S0, y, ΣS0

〉
whose determinant vanishes, and all the entries do not exceed k. Actually,
we find nothing, which implies that K0(4) ≤ 48. Repeating the procedure
for more detailed cases of triples (p, q, r) and running short computations,
we come to a bound K0(4) ≤ 30.
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In fact, the estimate K0(4) = 30 is sharp: there exists a unique diagram
〈S0, y, ΣS0

〉 with zero determinant and k = 30, it is shown on Fig. 7.4. Here
(p, q, r) = (2, 3, 15).

xy

30

15

15

15

Figure 7.4. A subdiagram 〈S0, y, ΣS0
〉 ⊂ Σ, with k = 30

So, we found K0(d). Now we go to the first step of the reduced algorithm
(see Lemma 6.3): we want to list all the diagrams Σ2 = 〈S0, y, ΣS0

〉. We
find one diagram with k = 30 (mentioned above), one with k = 20, and 79
with 7 ≤ k ≤ 18. Then we proceed exactly as it is prescribed by the reduced
algorithm. On our way we get all the Esselmann polytopes and 4-polytopes
with 7 facets with multi-multiple edges. However, we do not get anything
new.
Case 3. k ≤ 6.
In this case we follow the reduced algorithm verbatim. Again, we meet all
the remaining Esselmann polytopes and 4-polytopes with 7 facets, but we do
not find any new polytope. This leads to the following theorem completely
describing P4:

Theorem 7.1. All the polytopes belonging to P4 have at most 7 facets.

Remark 7.2. The way to deal with the diagrams such that P (S0) contains
dotted edge can be easily generalized to higher dimensions. If the estimate
for maximal multiplicity in this case is much better than in general one (as
we have for d = 4), this may speed up the process.

8. Essential polytopes

In section 8.1 we define essential polytopes, present the list of known (to
the authors) compact Coxeter polytopes and formulate the main result of
this section, Theorem 8.3. In section 8.2 we discuss the methods allowing
to differ essential polytopes from non-essential ones. In section 8.3 we use
these methods to show that all the polytopes claimed to be essential in
Theorem 8.3 are essential, and that all other known polytopes (with possible
exclusion of two polytopes listed in Question 8.4) are not essential.

8.1. Definition of essential polytope. Let P be a hyperbolic Coxeter
polytope. We define two elementary gluing operations in the following way.

Denote by GP the reflection group generated by reflections in the facets
of P . Suppose that there exists a finite index subgroup H ⊂ GP generated
by reflections. Then the fundamental polytope P ′ of H = GP ′ consists
of several copies of P . As it is proved in [2], this procedure gives rise to
infinitely many Coxeter polytopes of finite volume in all dimensions up to
19, and infinitely many compact Coxeter polytopes in all dimensions up
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to 6. Conversely, taking a polytope F such that GP ⊂ GF , we obtain a
tessellation of P by copies of F (in this case we say that P is decomposed
with fundamental polytope F ). Clearly, a polytope minimal with respect to
this procedure is a fundamental domain of maximal reflection group.

Another operation is the following. Suppose that for some facet f of P
there exists a Coxeter polytope P ′ with a facet f ′ congruent to f , such that
sums of corresponding dihedral angles composing by f and f ′ respectively
are integral divisors of π. Then, gluing P and P ′ along f and f ′, we get a
new Coxeter polytope. Makarov [26] used this procedure to construct infinite
series of polytopes in hyperbolic spaces of dimension 4 and 5. In particular,
he produced fundamental domains of infinite number of non-commensurable
reflection groups. It is easy to describe the converse operation, i.e. dissecting
a Coxeter polytope into two smaller ones. A compact Coxeter polytope P
can be divided into two smaller Coxeter polytopes P1 and P2 if there exists
a hyperplane α dissecting P such that for every facet f of P

1) if α intersects f at interior point of f then α is orthogonal to f ;
2) if α∩f contains no interior points of f and α∩f 6= ∅ then α∩f = f∩f ′

for some facet f ′ of P , and the dihedral angles composed by α with f and
f ′ are integral divisors of π.

In this case we say that P is dissected into Coxeter polytopes P1 and P2.

Definition 8.1. We say that a Coxeter polytope P is essential if it is mini-
mal with respect to both operations above, i.e. the corresponding reflection
group GP is maximal, and P cannot be dissected by a hyperplane into two
smaller Coxeter polytopes.

Clearly, the classification of compact Coxeter hyperbolic polytopes can
be reduced to classification of essential ones. We show that all known com-
pact Coxeter polytopes of dimension greater than 3 can be glued from a
finite number of essential ones, and list all known essential compact Coxeter
polytopes. The main question we want to ask is

Question 8.2. Is the number of essential compact hyperbolic Coxeter poly-
topes of dimension greater than 3 finite?

There are two main sources of Coxeter polytopes. One is the result of
combinatorial considerations. In this way the following lists of compact
polytopes were obtained:

• simplices [25] (in other words, d-polytopes with d + 1 facets);
• d-polytopes with d + 2 facets:

◦ simplicial prisms [24];
◦ Esselmann 4-polytopes, i.e. products of two triangles [12];

• products of simplices [12] (which occurs to be a sublist of the previous
list);

• d-polytopes with d + 3 facets [11], [31];
• Napier cycles [21] (which is a sublist of the previous list);
• truncated simplices [30].

Another source is arithmetic construction. Fundamental domains of co-
compact arithmetic reflection groups were computed in [8], [9], and [10].
Amongst them there are:
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• 8-dimensional polytope with 8 + 3 = 11 facets (the only polytope in
dimension d ≥ 8 known so far);

• 7-dimensional polytope 7 + 4 = 11 facets (besides its double, the
only polytope known in dimension 7);

• 6-dimensional polytope with 34 facets (see [2, Table 2.2] where the
Gram matrix of this polytope is reproduced).

To the authors best knowledge, all the other examples of compact Coxeter
hyperbolic polytopes are defined by gluing smaller ones (see e.g. [26], [2], [29]),
but we do not care about them now since they are already glued.

Now we want to find out which polytopes from the lists above are essential.
We will refer to the list above as to the “list of known polytopes”.

Theorem 8.3. All the polytopes listed in Table 8.1 are essential. All the
remaining known compact hyperbolic Coxeter polytopes of dimension at least
4 except ones listed in Question 8.4 can be glued from these ones and the
polytopes listed in Question 8.4.

The following question remains open:

Question 8.4. Is the polytope shown on Fig. 8.1, as well as the 6-polytope
with 34 facets, essential?

Figure 8.1. 5 times truncated 4-simplex, one of the two
polytopes not proven to be essential

8.2. Properties of non-essential polytopes. The main tool in our con-
sideration is the following result:

Theorem 8.5 ([18], Theorem 1.2). Let G be an infinite indecomposable
Coxeter group, and let H ⊂ G be a finite index reflection subgroup. Then
the rank of G does not exceed the rank of H.

Applying this to the case of cocompact hyperbolic reflection groups, we
get

Corollary 8.6 ([14], Theorem 1). If GP ⊂ GF , then the number of facets
of F does not exceed the number of facets of P .

A nerve of a Coxeter group is a simplicial complex with vertices indexed
by standard generators; a set of vertices span a simplex if the corresponding
reflections generate a finite group. In case of equal numbers of facets we
have the following result.
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Theorem 8.7 ([18], Lemma 5.1). Let G be an infinite indecomposable Cox-
eter group, and let H ⊂ G be a finite index reflection subgroup of the same
rank as G. Then the nerve of H can be obtained from the nerve of G by
deleting some simplices.

Reformulating Theorem 8.7 in terms of compact Coxeter polytopes, we
obtain

Corollary 8.8. Let P and F be compact hyperbolic Coxeter polytopes of the
same dimension. Suppose that GP ⊂ GF and the numbers of facets of F
and P are equal. Then F and P are combinatorially equivalent.

We can reformulate the corollary in terms of simplicial polytopes. Re-
call that a fundamental polytope of cocompact reflection group is simple.
Therefore, for a cocompact reflection group GF its nerve coincides with face-
lattice of simplicial polytope F ′ dual to F . Hence, in view of Theorem 8.7,
Corollary 8.8 is equivalent to the following statement.

Lemma 8.9. Let F ′ be a simplicial d-polytope, and let F be its face-lattice.
Then any proper simplicial subcomplex of F with the same number of vertices
is not a face-lattice of a simplicial d-polytope.

Proof. Indeed, suppose that F1 is a proper subcomplex of F , and F1 is a
face-lattice of a simplicial polytope F ′

1. Then both F1 and F can be thought
as triangulations of a (d−1)-sphere. But since F contains F1 and they do not
coincide, the number of vertices of F should exceed the number of vertices
of F1, so we come a contradiction.

�

Now we are able to list some properties of decompositions of polytopes
into smaller ones. Lemma 8.10 concerns the case of a finite index subgroup
(i.e., decomposition), and Lemma 8.11 concerns the case of dissection.

For any polytope P we denote by Vol(P ) and by |P | its volume and the
number of its facets respectively. By a standard subgroup of GP we mean a
subgroup generated by reflection with respect to some of the facets of P .

Lemma 8.10. Let P and F be compact hyperbolic Coxeter polytopes of the
same dimension. Suppose that GP ⊂ GF . Then

(1) |F | ≤ |P |;
(2) if |F | = |P |, then P is combinatorially equivalent to F ;
(3) every standard finite subgroup of GP is a subgroup of some standard

finite subgroup of GF ;
(4) Vol(P ) = Vol(F ) [GF : GP ];

Proof. Statements (1) and (2) follow from Corollaries 8.6 and 8.8 respec-
tively. Statement (4) is evident, and (3) is proved in [13].

�

Lemma 8.11. Let P be a compact hyperbolic Coxeter polytope, and suppose
that P can be dissected by a hyperplane α into two Coxeter polytopes P1 and
P2. Then

(I) |Pi| ≤ |P |, for i = 1, 2;
(II) if |P1| = P , then P1 is combinatorially equivalent to P .
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(III) every dihedral angle of P either coincides with a dihedral angle of
some of Pi, or is tessellated by one of angles P1 and one of angles of P2;

(IV) Vol(P ) = Vol(P1) + Vol(P2).

Proof. To prove (I), consider the group GPi
. If Pi has more facets than

P does, then α intersects interior of all the facets of P , so GPi
contains

GP . Since Pi is a Coxeter polytope, this contradicts Corollary 8.6, so (I) is
proved. Statements (III) and (IV) are evident.

To prove (II), notice first that P2 has a unique facet β which is not a
facet of P1. Let f1, . . . , fn−1, β be all the facets of P and f̄i be a hyperplane
containing fi. It is sufficient to prove that for any subset I ∈ {1, . . . , n− 1}
an intersection

⋂

i∈I

fi intersects α if and only if it intersects β. Without

loss of generality we may consider maximal intersections only, namely the
intersections of d− 1 facets, or, in other words, the edges. Notice also, that
any edge of P which does not belong to β is an edge of P1 (or an edge lying
on a line that contains an edge of P1).

Let AB be any edge of P2 such that A ∈ α and B /∈ α. Then B ∈ β
(otherwise B is an intersection of d faces of P1, so B ∈ P1, by Andreev’s
theorem [3]). Hence, AB ⊂ P1, which implies AB ⊂ α in contradiction to
the assumption. This implies that if some edge of P intersects α then it
intersects β. On the other hand, if some edge XY of P intersects β (X ∈ β)
and XY 6⊂ β, then XY ⊂ l where l is a line containing some edge of P1, so
l intersects α and the condition (II) is proved.

�

An algorithm for dissections. For any given Coxeter d-polytope P ,
Lemma 8.11 allows to check if P can be dissected into two Coxeter polytopes.

To check if P can be dissected in “orthogonal way” (i.e., by a hyperplane
orthogonal to all facets of P which it does meet) we do the following. For
every d-tuple of facets (f1, . . . , fd) of P (except those composing vertices of
P ) we draw a hyperplane orthogonal to all the facets f1, . . . , fd (it is unique),
and look at the angles of α with other facets. If all of them are right for
some d-tuple of facets, we get a dissection.

To check if P can be dissected in “non-orthogonal way”, for every (d−2)-
face of P we draw a hyperplane α dissecting the corresponding dihedral angle
into two, each of those is integral divisor of π, and compute the angles of α
with the remaining facets of P . Clearly, the number of such hyperplanes is
finite since one of the new dihedral angles is not less than half of the initial
one. If all the new angles are integral divisors of π, we obtain a dissection.

However, conditions (I)−(IV) of Lemma 8.11 usually give a much shorter
way to understand if P can be dissected or not. Suppose that P is a union
of P1 and P2. Due to (I), we usually know the complete list of candidates to
be P1 and P2 (the only exceptions are the simplex truncated 5 times, and 6-
polytope with 34 facets we discuss later). Condition (II) further reduces the
number of candidates. Then we glue pairs of candidates along congruent
facets with appropriate dihedral angles and look if we get P . Condition
(IV) also allows to reduce the number of pairs in consideration when we
know volumes of polytopes (e.g. in even-dimensional case due to Poincaré
formula [34, Part I, Chapter 7] or for simplices [22]).
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Similarly, Lemma 8.10 helps to check if P is a fundamental domain of a
subgroup of some group GF . However, here we do not have an algorithm
providing the answer. For example, we cannot decide if 6-polytope with 34
facets found by Bugaenko [9] (the corresponding set of normal vectors is
reproduced in [2, Table 2.1]) is essential or not: we do not know the lists of
6-polytopes with 10 or more facets.

To simplify the considerations concerning dissections we will also use the
following technical lemma.

For any abstract Coxeter diagram Σ denote by Σodd the diagram obtained
from Σ by removing all nodes which are not incident to any edge labeled by
an odd number k (or to a simple or triple edge) (see Fig. 8.2).

Σ

10

Σodd

Figure 8.2. The diagram on the right is Σodd for the ab-
stract diagram Σ on the left

Lemma 8.12. Suppose that P can be dissected into two Coxeter polytopes
P1 and P2, both in the list of currently known polytopes. Then for any
subdiagram Σ′ ⊂ Σ(P1) such that Σ′

odd = Σ′ holds Σ′ ⊂ Σ(P ).

Proof. The dihedral angles of all currently known polytopes are in the set
π/2, π/3, π/4, π/5, π/8 and π/10. Let α be the dissecting hyperplane and
suppose that α dissects some dihedral angle of P formed by facets α1 and
α2. Clearly, ∠(α1, α2) = ∠(α, α1) + ∠(α, α2) (where (∠(α, β) stays for the
angle formed by α and β). This is possible (for the values listed above) in
the following three cases only:

∠(α, α1) = ∠(α, α2) = π/4, π/8 or π/10.

This implies that if f1 and f2 are facets of P1 forming an angle π/(2k + 1)
for some k ∈ Z then neither f1 nor f2 coincides with α. So, both f1 and f2

are facets of P .
Now, since Σ′

odd = Σ′, all nodes of Σ′ correspond to facets of P , which
proves the lemma.

�

Example 8.13. Let P be the 5-dimensional polytope with 8 facets shown
on Fig. 8.3. We use Lemma 8.12 to show that P can not be dissected.

Suppose that P is dissected into some polytopes P1 and P2. Then by
Property (I) of Lemma 8.11 each of P1 and P2 has at most 8 facets. Hence,
both P1 and P2 are in the list of currently known polytopes, and we may
apply Lemma 8.12. Notice that each diagram of a 5-polytope with at most
8 facets contains a subdiagram Σ′ such that Σ′

odd is connected and Σ′ con-
tains at least 3 simple edges. On the other hand, Σ(P ) contains only two
simple edges. The contradiction to Lemma 8.12 shows that the dissection is
impossible.
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Figure 8.3. 5-dimensional polytope with 8 facets

8.3. Proof of Theorem 8.3. We need to show that polytopes listed in
Table 8.1 are essential and that all the other known polytopes (except two
listed in Question 8.4) could be obtained from these ones.

1. First, we show how to glue the remaining known polytopes from those
listed in Table 8.1 and Question 8.4.

In dimensions 6–8 there is a unique known polytope not listed above
(see [31, Table 4.9]), it is the 6-polytope shown in Fig. 8.4, left. This polytope
is doubled polytope from Fig. 8.4, right, where the latter should be reflected
in the facet marked white.

10

Figure 8.4. 6-polytopes: the left one consists of two copies
of the right one

In dimension 5 all the remaining known polytopes are once truncated
simplices (i.e., simplicial prisms) or twice truncated simplices (see [24] and
[31, Table 4.10]). It is shown in [31, page 20] that if a simplex is not trun-
cated in orthogonal way then it is not essential. However, one of the sim-
plices truncated in orthogonal way (i.e., from the list [30, Table A.5]) is not
essential either: the polytope shown in Fig. 8.5, left, consists of two copies
of the prism to the right, the copy to glue may be obtained by reflecting in
the facet marked white.

In dimension 4 the situation is more involved due to larger number of
polytopes and combinatorial types. The simplex not listed in Table 8.1 can
be glued according to [23, Section 4] (it is a double of the simplex with both
triple and double edges in the diagram). All the prisms with one “right”
base are contained in Table 8.1. The 5 missed Esselmann polytopes [12,
Theorem 1.1] are fundamental chambers for subgroups of index 2 or 4 of the
groups generated by reflections in the facets of two Esselmann polytopes
listed in the table.

We are left to consider 4-polytopes with at least 7 facets. The twice
truncated simplices can be processed as in dimension 5. The only twice
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Figure 8.5. 5-polytopes: the left one consists of two copies
of the prism to the right

truncated simplex truncated in orthogonal way (i.e., from the list [30]) that
is not essential is shown on Fig. 8.6 to the left, it can be tessellated by 3
copies of the prism shown on Fig. 8.6 to the right (the tessellation can be
obtained by reflecting the polytope in two facets marked white and gluing
all the three copies together).

Figure 8.6. Twice truncated 4-simplex to the left consists
of three copies of the prism to the right

The polytopes with 7 facets whose diagrams have two multi-multiple edges
and one dotted edge clearly tessellate 2 or 1 polytopes drawn in the same
row (see [31, Table 4.11]): one should reflect these polytopes in the facets
having exactly one non-right angle π/8 or π/10. The polytopes shown on
Fig. 8.7,left and Fig. 8.7, middle ones, consist of two copies of one shown on
Fig. 8.7 to the right. One shown in the middle of Fig. 8.7 can be obtained
by reflecting the right one. However, the polytope shown on Fig. 8.7, left,
does not define an index two subgroup. The facet of the initial polytope
marked white is a 3-simplex whose Coxeter diagram has a symmetry. To
get the left polytope we should glue a copy along this facet, not reflected
one but symmetric to it.

Figure 8.7. 4-polytopes to the left and in the center consist
of two copies of the polytope to the right

Amongst the three times truncated simplices (they all have 8 facets) only
two are not listed in Table 8.1: these are the polytopes shown on Fig. 8.8
to the left. Each of these two polytopes can be obtained by gluing of two
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Figure 8.8. Each of two 4-polytopes to the left consists of
two copies of the corresponding polytope to the right

copies of the corresponding polytope shown on Fig. 8.8, right, where the
latter should be glued by the facet marked white.

2. To prove that all the polytopes listed in the Table 8.1 are essential we
use Lemmas 8.10, 8.11, and 8.12. As above, we go through all combinatorial
types by increasing complexity and decreasing dimension. Notice that we
should also consider decompositions of polytopes into non-essential poly-
topes.

The main consideration is that for any polytope in the Table 8.1 we know
the complete list of polytopes of the same dimension with smaller number
of facets or with the same combinatorics. Indeed, we know all d-polytopes
with at most d + 3 facets; it is shown in [17] that there exists a unique 7-
polytope with 7 + 4 = 11 facets, and all the other polytopes from Table 8.1
are three times truncated simplices, the complete list of which is also known
due to [30].

So, we have finitely many possibilities for the parts of dissection or for a
fundamental chamber of a subgroup. Lemmas 8.10 and 8.11 hugely reduce
the number of possibilities.

In dimensions 6–8 nothing is left after applying these lemmas.
In dimension 5, using Lemmas 8.10 and 8.11 together with Lemma 8.12

we reduce the problem to the following: is the group generated by the poly-
tope shown on Fig. 8.9 maximal or not? Denote this polytope by P5. To see
that GP5

is maximal, we compare the distances between the disjoint facets
in P5 and in all possible candidates to generate a larger group. Namely,
each of the polytopes satisfying the conditions of Lemma 8.10 has a pair of
disjoint facets at larger distance one from another than the maximal of the
three distances in P5, so, none of the candidates can be embedded in P5.

Figure 8.9. The polytope in dimension 5.

In dimension 4, we have many possibilities to consider, but we al-
ways can compute volumes of polytopes applying Poincaré formula (see
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e.g. [34, Part I, Chapter 7]) and then we can use properties (4) and (IV)
of Lemmas 8.10 and 8.11. Applying Lemmas 8.10 and 8.11 together with
Lemma 8.12, we reduce the problem to the following two questions:

• if GP 1

4

is a subgroup of index 2 of GP 2

4

?

• if GP 3

4

is a subgroup of index 3 of GP 4

4

?

where P 1
4 , P 2

4 , P 3
4 and P 4

4 are the polytopes shown on Fig. 8.10.

P 1
4 P 2

4

P 3
4 P 4

4

888 8
v1 v2 v3 v4 v5 v6

Figure 8.10. Some polytopes in dimension 4.

To solve the first question notice, that in case of a subgroup of index 2
we actually deal with a dissection, so, we apply Lemma 8.12 to see that the
answer is negative.

To solve the second question notice, that if GP 3

4

is a subgroup of GP 4

4

,

then the neighborhood of the vertex of P 3
4 corresponding to the subdiagram

2G
(8)
2 ⊂ Σ(P 3

4 ) is tiled by the neighborhood of the vertex of P 4
4 corresponding

to 2G
(8)
2 ⊂ Σ(P 4

4 ), which implies that the facets of P 4
4 corresponding to the

nodes v1, v2 , v5, and v6 are the facets of P 3
4 , while the remaining two facets

are not. So, two copies of P 4
4 should be attached by the facets v3 and v4,

however this does not lead to a Coxeter polytope (the polytope obtained
has an angle 2π/3).

This completes the proof of the theorem.
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Table 8.1. Essential polytopes of dimension at least 4

d = 4:

Simplices:

3,4,5

Esselmann polytopes:

108 8

Simplicial prisms:

4-polytopes with 7 facets:

10 108 8 8

8

Three times truncated simplices:

3
,
4
,
5

4
,5
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Table 8.1. Cont.

d = 5:

Simplicial prisms:

3,4

5-polytopes with 8 facets:

Three times truncated simplex:

d = 6:

10

d = 7: d = 8:
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