SMOOTHNESS AND CLASSICALITY ON EIGENVARIETIES

CHRISTOPHE BREUIL, EUGEN HELLMANN AND BENJAMIN SCHRAEN

ABSTRACT. Let p be a prime number and f an overconvergent p-adic automorphic form
on a definite unitary group which is split at p. Assume that f is of “classical weight” and
that its Galois representation is crystalline at p, then f is conjectured to be a classical
automorphic form. We prove new cases of this conjecture in arbitrary dimensions by
making crucial use of the patched eigenvariety constructed in [14].
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1. INTRODUCTION

Let p be a prime number. In this paper we are concerned with classicality of p-adic
automorphic forms on some unitary groups, i.e. we are looking for criteria that decide
whether a given p-adic automorphic form is classical or not. More precisely we work with
p-adic forms of finite slope, that is, in the context of eigenvarieties.

Let F'" be a totally real number field and F be an imaginary quadratic extension of
F*. We fix a unitary group G in n variables over F'™ which splits over F' and over all
p-adic places of F'*, and which is compact at all infinite places of F'*. Associated to such
a group G (and the choice of a tame level, i.e. a compact open subgroup of G(AZY)) there
is a nice Hecke eigenvariety which is an equidimensional rigid analytic space of dimension
n[FT : Q], see e.g. [16], [2] or [22]. One may view a p-adic overconvergent eigenform
of finite slope, or simply overconvergent form, as a point x of such an eigenvariety and
one can associate to each overconvergent form a continuous semi-simple representation
pz + Gal(F/F) — GL,(Q,) which is unramified outside a finite set of places of F and
which is trianguline in the sense of [20] at all places of F' dividing p ([34]).

A natural expectation deduced from the Langlands and Fontaine-Mazur conjectures
is that, if p, is de Rham (in the sense of Fontaine) at places of F' dividing p, then x
is a classical automorphic form (see Definition 3.2 and Proposition 3.4 for the precise
definition). However, the naive version of this statement fails for two reasons: (1) a
classical automorphic form for G(Ag+) can only give Galois representations which have
distinct Hodge-Tate weights (in each direction F' < Q,) and (2) the phenomenon of
companion forms shows that there can exist classical and non-classical forms giving the
same Galois representation. However, we can resolve (1) by requiring p, to have distinct
Hodge-Tate weights and (2) by requiring = to be of “classical” (or dominant) weight. In
fact, since the Hodge-Tate weights of p, are related to the weight of =, requiring the latter
automatically implies the former, once p, is assumed to be de Rham. As a conclusion, it
seems reasonable to expect that any overconvergent form z of classical weight such that
p. is de Rham at places of F' dividing p is a classical automorphic form (see Conjecture
3.6 and Remark 3.7).

Such a classicality theorem is due to Kisin ([35]) in the context of Coleman-Mazur’s
eigencurve, i.e. in the slightly different setting of GLy/Q. Note that, at the time of [35],
the notion of a trianguline representation was not available, and in fact [35] inspired
Colmez to define trianguline representations (]20]).

In the present paper we prove new cases of this classicality conjecture (in the above
unitary setting). In particular we are able to deal with cases where the overconvergent
form x is critical. Throughout, we assume that p, is crystalline at p-adic places. Essen-
tially the same proof should work if p, is only assumed crystabelline, but the crystalline
assumption significantly simplifies the notation.

To state our main results, we fix an overconvergent form x of classical weight such that
pz is crystalline at all places dividing p. Such an overconvergent form can be described by
a pair (p,,0d,), where p, is as above and 9, = (d,)ves, is a locally Q,-analytic character
of the diagonal torus of G(F'*®qQ,) = I1,c S, GL,(F,). Here S, denotes the set of places
of F* dividing p. There are nontrivial relations between p,, := p| Gal(FT /) and 0y,
in particular the character ¢, , defines an ordering of the eigenvalues of the crystalline
Frobenius on Deis(pz). If we assume that these Frobenius eigenvalues are pairwise
distinct, then this ordering defines a Frobenius stable flag in De,is(pz,0). We can therefore

2



associate to x for each v € S, a permutation w,, that gives the relative position of this
flag with respect to the Hodge filtration on Des(pz.), see §2.3 (where we rather use
another equivalent definition of w, , in terms of triangulations). Following [2, §2.4.3] we
say that z is noncritical if, for each v, the permutation w,, is trivial. The invariant
(Wz,w)ves, can thus be seen as “measuring” the criticality of x.

In the statement of our main theorem, we need to assume a certain number of Working
Hypotheses (basically the combined hypotheses of all the papers we use). We denote by
P, the mod p semi-simplification of p,. These Working Hypotheses are:

(i) The field F' is unramified over F© and G is quasi-split at all finite places of F'*;

(ii) the tame level of x is hyperspecial at all finite places of I * inert in F;

(iii) 7,(Cal(F/F(¢,)) is adequate ([45)) and ¢, ¢ F~"),

(iv) the eigenvalues of ¢ on De,is(ps,) are sufficiently generic for any v € S, (Definition
2.10).

Our main theorem is:

Theorem 1.1 (Cor. 3.10). Let p > 2 and assume that the group G and the tame level
satisfy (i) and (ii). Let x be an overconvergent form of classical weight such that p, is
crystalline and satisfies (i) and (iv). If wy, is a product of distinct simple reflections
for all places v of F* dividing p, then x is classical.

Note that the assumption on the w,, in Theorem 1.1 is empty when n = 2, and
already this n = 2 case was not previously known (to the knowledge of the authors).
The noncritical case of Theorem 1.1, i.e. the special case where all the w,, are trivial,
is already known and due to Chenevier ([17, Prop.4.2]). Thus the main novelty, and
difficulty, in Theorem 1.1 is that it deals with possibly critical (though not too critical)
points.

In fact we give a more general classicality criterion and prove that it is satisfied under
the assumptions of Theorem 1.1. This criterion is formulated in terms of the rigid analytic
space of trianguline representations X, (p, ) defined in [29] and [14, §2.2]. For every

tri
v € S, there is a canonical morphism from the eigenvariety to X(,,)-

Theorem 1.2 (Cor. 3.9, Rem. 3.11). Let p > 2 and assume that the group G and the
tame level satisfy (i) and (i1). Let x be an overconvergent form of classical weight such
that p, is crystalline and satisfies (iii) and (iv). If for any v € S, the image x, of x in
X5(Py.) is contained in a unique irreducible component of Xgi(p,.,), then x is classical.

According to this theorem we need to understand the local geometry of the space
Xi(Pen) at . It turns out that much of this local geometry is controlled by the
Weyl group element w, , associated to z which only depends on the image z, of x in
X5(Pyy)- For v € S, denote by lg(w,,) the length of the permutation w,, and by
d;, the rank of the Z-module generated by w, (o) — «, as a ranges over the roots of
(Resg+ /g, GLn) Xq, Q, = I 7t g, GLn- Then dyp < lg(w, ), with equality if and only

if w, , is a product of distinct simple reflections (Lemma 2.7).

Theorem 1.3 (Th. 2.13, Cor. 2.14). Let v € S, and let X C X{\(p,,) be a union of
irreducible components that contain x, and satisfy the accumulation property of Definition

2.12 at x,. Then

dim T ,, < dim X + 1g(w,,) — dpp = dim Xgi(pw) +1g(Wen) — dun,
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where T'x 5, s the tangent space to X at x,. In particular X is smooth at x, when w,
is a product of distinct simple reflections.

The accumulation condition in Theorem 1.3 actually prevents us from directly applying
it to X = X5:(p,,,) and thus directly deducing Theorem 1.1 from Theorem 1.2. Hence

tri
we have to sharpen Theorem 1.2, see Theorem 3.9.

Assuming the classical modularity lifting conjectures for p, (in all weights with trivial

inertial type), there is a certain union XU (P4.) of irreducible components of X\ (7, ,)

tri
such that J],eg, th(va) is (essentially) described by the patched eigenvariety X, (p,)
defined in [14] (see Remark 5.2). In the last section of the paper (§5), we prove (assuming
modularity lifting conjectures) that the inequality in Theorem 1.3 for X = X,El(px L) 18
an equality for all v € S,

(1.1)  dim T 05, )sn = dim X}, (7,0) + 18(wew) — d (assuming modularity),

see Corollary 5.17. The precise computation (1.1) of the dimension of the tangent space
is intimately related to (and uses in its proof) the existence of many companion points on
the patched eigenvariety X,(p,). These companion points are provided by the following
unconditional theorem, which is of independent interest.

Theorem 1.4 (Th. 5.10). Let y = ((puv)ves,.€) be a point on X,(p,). Let T be the
diagonal torus in GL,, and let § be a locally Q,-analytic character of T(F+ ®q Q,) such
that €6~ is an algebraic character of T(FT ®g Q,) and such that € is strongly linked to
§ in the sense of [32, §5.1] (as modules over the Lie algebra of T(FT ®q Qp)). Then
((pv)ves,,0) is also a point on Xp,(p,).

We also prove that the equality (1.1) for all v € S, (and thus the modularity lifting
conjectures) imply that the initial Hecke eigenvariety is itself singular at z as soon as
the Weyl element w, , is not a product of distinct simple reflections for some v € S, see
Corollary 5.18.

Let us now outline the strategy of the proofs of Theorems 1.2 and 1.3.

The proof of Theorem 1.3 crucially uses results of Bergdall ([4]), together with a fine
analysis of the various conditions on the infinitesimal deformations of p,, carried by
vectors in T ,,, see §4.2 and §4.3. Very recently, Bergdall proved an analogous bound
for the dimension of the tangent space of the initial Hecke eigenvariety at x assuming
standard vanishing conjectures on certain Selmer groups ([5]).

The proof of Theorem 1.2 makes use of the patched eigenvariety X,(p,) constructed
in [14] by applying Emerton’s construction of eigenvarieties [22] to the locally analytic
vectors of the patched Banach G(F* ®g Q,)-representation Il of [19]. As usual with
the patching philosophy, the space X,(p,) can be related to another geometric object
which has a much more local flavour, namely the space Xi;i(p,,) = [lyes, Xii(P,.,) of
trianguline representations. More precisely, by [14, Th.3.20] there is a Zariski closed
embedding:

(1.2) X, (py) = X x U? x Xtmn(pxp)

identifying the source with a union of irreducible components of the target. Here UY is an
open polydisc (related to the patching variables) and X;» is the rigid analytic generic fiber
of the framed deformation space of p, at all the “bad” places prime to p. Moreover the
Hecke eigenvariety containing = can be embedded into the patched eigenvariety X,(p,)

(see [14, Th.4.2]). As previously, we denote by z, the image of  in Xg;(p,,,) via (1.2).
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For v € S, let us write k, for the set of labelled Hodge-Tate weights of p, ,, and RD kv —er

for the quotient defined in [36] of the framed deformation ring of p,, parametmzmg

U

crystalline deformations of p, , of Hodge-Tate weight k,,, and %9 ’k”fcr for the rigid space

(Spf RD keeryrig  We relate %Qk ~ to X

2i(Pzw) DY mtroducmg a third rigid analytic
O kv —cr

space j{, ko= finite over x5 parametrizing crystalline deformations p, of 7, of

Hodge- Tate weights k,, together with an ordering of the Frobenius eigenvalues on Deis(py ),

see §2.2 for a precise definition. The space %D ko= paturally embeds into XtDrl(pM)

and contains the point z, (and is smooth at xv) We prove that there is a unique
irreducible component Zy;(z,) of Xgi(p,,,) containing the unique irreducible component

of 1%%1:}”_“ passing through x, (Corollary 2.5). Let Zyi(z) := [lyes, Zui(y), which is thus

an irreducible component of X=.(p, ) containing 2. Then Theorem 1.2 easily follows from

the following theorem (see (i) of Remark 3.11):
Theorem 1.5 (Th. 3.9). Assume that X;» x U9 x Zyi(x) C X,(p,) via (1.2). Then the

point x s classical.

Let us finally sketch the proof of Theorem 1.5 (in fact, for the same reason as above, we
have to sharpen Theorem 1.5, see Theorem 3.9). Let R, be the usual patched deformation
ring of p,, there is a canonical morphism of rigid spaces X,(p,) — X := (Spf Ry ).
Let L(A) be the finite dimensional algebraic representation of G(F'*®¢Q,) associated (via
the usual shift) to the Hodge-Tate weights (k,),cs,. Proving classicality of x turns out to
be equivalent to proving that the image of x in X is in the support of the R.,-module
I (A)" which is the continuous dual of:

Hoo(A) 1= Hompy 04, (L) e ).

By [19, Lem.4.17], the R..-module II(A)" is essentially a Taylor-Wiles-Kisin “usual”
patched module for the trivial inertial type and the Hodge-Tate weights (k,).es,. For-
getting the factors Xz» and UY which appear in X, its support is a union of irreducible

components of the smooth rigid space [],cg, %D ko= Tt is thus enough to prove that the

unique irreducible component Zs(p,) of Hues %D lzv cr

passing through (ps,)ves, con-
tains a point which is in the support of I1(\)". But it is easy to find a point y in Z;(z)
sufficiently close to = such that (py,)ves, € Zeris(pz) (in particular p,, is crystalline of
the same Hodge-Tate weights as p,,) and moreover p, , is generic in the sense of [14,
Def.2.8] for all v € S,. The assumption in Theorem 1.5 implies y € X,(p,) and it is now
not difficult to prove that such a generic crystalline point of X,(p,) is always classical,

i.e. is in the support of I ().
We end this introduction with the main notation of the paper.

If K is a finite extension of Q, we denote by Gy the absolute Galois group Gal(K /K)
and by I'x the Galois group Gal(K ((pn,n > 1)/K) where ((yn),>1 is a compatible system
of primitive p"-th roots of 1 in K. We normalize the reciprocity map recy : K* — G of
local class field theory so that the image of a uniformizer of K is a geometric Frobenius
element. We denote by e the p-adic cyclotomic character and recall that its Hodge-Tate
weight is 1.

For a € L* (where L is any finite extension of K) we denote by unr(a) the unramified
character of Gy, or equivalently of G3 or K*, sending to a (the image by reck of) a

uniformizer of K. For z € L, we let |z|g 1= p~ K@) where val(p) = 1. Welet Ky C K
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be the maximal unramified subfield (we thus have (| |x)|xx = unr(p o]y = unr(¢)
where ¢ is the cardinality of the residue field of K).

If X = SpA is an affinoid space, we write R4 i for the Robba ring associated to K
with A-coefficients (see [34, Def.6.2.1] though our notation is slightly different). Given a
continuous character § : K* — A* we write R4 x(d) for the rank one (¢, I'x)-module on
Sp A defined by ¢, see [34, Construction 6.2.4]. If X is a rigid analytic space over L (a
finite extension of Q,) and x is a point on X, we denote by k(z) the residue field of = (a
finite extension of L), so that we have x € X (k(z)). If X and Y are two rigid analytic
spaces over L, we often write X x Y instead of X xg,1 Y.

If X is a “geometric object over Q,” (i.e. a rigid space, a scheme, an algebraic group,
etc.), we denote by Xk its base change to K (for instance if X is the algebraic group GL,
we write GL,, ). If H is an abelian p-adic Lie group, we let H be the rigid analytic space
over Q, which represents the functor mapping an affinoid space X = Sp A to the group
Homeoni (H, A*) of continous group homomorphisms (or equivalently locally Q,-analytic
group homomorphisms) H — A*. Finally, if M is an R-module and I C R an ideal, we
denote by M[I] C M the submodule of elements killed by I, and if S is any finite set, we
denote by |S| its cardinality.

2. CRYSTALLINE POINTS ON THE TRIANGULINE VARIETY

We give several important definitions and results, including the key local statement
bounding the dimension of some tangent spaces on the trianguline variety (Theorem
2.13).

2.1. Recollections. We review some notation and definitions related to the trianguline
variety.

We fix two finite extensions K and L of @, such that:
Hom(K, L)| = [K : Q)

and denote by Ok, Oy, their respective rings of integers. We fix a uniformizer wx € Ok
and denote by k, the residue field of Op. We let T := KX and W := Oj. The restriction
of characters to O induces projections T — W and T, - Wy. If k :== (k;);. k1 €
ZHomEL) e denote by z¥ € T(L) the character:

(2.1) zZ—> H 7(2)k
T€Hom(K,L)

where z € K*. For k = (k;;)1<i<nr s, € (Z")HomEL) we denote by §, € T"(L) the
character:
(21, .0y 2n) H T(Zi)kT’i

1<i<n
7: K—L

where (21,...,2,) € (K*)". We also denote by Jy its image in W"(L) (i.e. its re-
striction to (Of)™). We say that a point 6 € W} is algebraic if § = 0 for some
k = (kri)i<i<nr koL € (z)Hem(K.L) \We say that an algebraic § = 8y is dominant (resp.
strictly dominant) if moreover k,; > k; ;41 (vesp. kr; > kr;41) for i € {1,...,n — 1} and
7 € Hom(K, L).
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We write Treg C 77, for the Zariski-open complement of the L-valued points z 7%, | 2| 25+,
with k = (k;)r.rer € Zggm(K’L). We write T,

(01,...,0,) such that 6;/0; € Treg for i # j. *

We fix a continuous representation 7 : G — GL,(kz) and let RY be the framed
local deformation ring of 7 (a local complete noetherian Op-algebra of residue field ky).
We write XL := (Spf RY)" for the rigid analytic space over L associated to the formal
scheme Spf RY. Recall that a representation r of Gg on a finite dimension L-vector
space is called trianguline of parameter § = (61,...,0,) if the (¢,I'x)-module Dy(r)
over Ry i associated to r admits an increasing filtration Fil, by sub-(¢, 'k )-modules
over Ry x such that the graded piece Fil;/Fil;_; is isomorphic to Ry, x(8;). We let Xi\(7)
be the associated framed trianguline variety, see [14, §2.2] and [29]. Recall that XZ.(7)
is the reduced rigid analytic space over L which is the Zariski closure in X2 x T of:

(2.2)  UL(7) := {points (r,d) in X7 x T"

reg
(the space UL (T) is denoted UZ(T)™8 in [14, §2.2]). The rigid space X{:(7) is reduced

equidimensional of dimension n? + [K : Q,)"%) and its subset UZ(7) € X (7) turns
out to be Zariski-open, see [14, Th.2.6]. Moreover by loc. cit. the rigid variety U ()
is smooth over L and equidimensional, hence there is a bijection between the set of

connected components of UL () and the set of irreducible components of X{:(7).
We denote by w : XZ:(F) — W2 the composition XZ.(F) — XE x T/ — T/ — Wi If

tri tri
r is a point of X{;(7), we write x = (r,d) where r € XX and 6 = (dy,...,d,) € T*. We
say that a point x = (r,d) € XL,(F) is crystalline if r is a crystalline representation of

tri
Ok

Lemma 2.1. Let x = (r,8) € X2(T) be a crystalline point. Then fori € {1,...,n} there

evist ki = (kri)rkor € ZHomEL) and ; € k(z)* such that:

for the Zariski-open subset of characters

such that r is trianguline of parameter J}

85 = ZMunr(y;).

Moreover the (k;;);r are the labelled Hodge-Tate weights of r and the y; are the eigenval-
ues of the geometric Frobenius on the (unramified) Weil-Deligne representation WD(r)
associated to r (cf. [25]).

Proof. The fact that the (k;;);, are the Hodge-Tate weights of r follows for instance
from [14, Prop.2.9]. By [34, Th.6.3.13] there exist for each ¢ a continuous character
0! K* — k() such that r is trianguline of parameter ¢’ := (d],...,d)) and such that
8;/0! is an algebraic character of K* (i.e. of the form z¥ for some k € ZHomUL)) 1t
thus suffices to prove that each d/ is of the form zKiunr(i;) for some k} € ZHomKL) where
the ; € k(x)* are the eigenvalues of the geometric Frobenius on WD(r), or equivalently
(using the definition of WD(r)) are the eigenvalues of the linearized Frobenius 0@l on
the Ko®q, k(x)-module Deis(r) := (Beis ®@p7")gf<. By [6, Th.3.6] there is an isomorphism
(recall t is “Fontaine’s 2i7”):

(2.3) Deris(r) 2 Drg(r) [,

and a triangulation Fil, of Dy, (r) with graded pieces giving the parameter ¢’ induces
a complete @-stable filtration F, on Des(r) such that F;/F;_; is the filtered ¢-module
associated to Ry x(0;) = Fil;/Fil;_; by the same recipee as (2.3). It follows from this and
from [34, Example 6.2.6(3)] that ¢/ is of the form z¥unr(a) where a € k(z)* is the unique
element such that p!%0®l acts on the underlying ¢-module of F;/F;_; by multiplication

by 1® a € Ky ®q, k(). This finishes the proof. 0
7



Note that Lemma 2.1 implies that if z = (r,d) € X(T) is a crystalline point, then
w(z) is algebraic (= 0k for k := (k;;)1<i<nr ko Where the k;; are as in Lemma 2.1).
We say that a point x = (r,d) € XL.(F) such that w(x) is algebraic is dominant (resp.

tri
strictly dominant) if w(zx) is dominant (resp. strictly dominant).

2.2. A variant of the crystalline deformation space. We define a certain irreducible
component Zy; () of a sufficiently small open neighbouhood U C X[\(F) containing a
crystalline strictly dominant point z (Corollary 2.5).

We fix k = (kri)i<i<nr k1 € (z)Hem(K.L) guch that kri > k:;41 for all 4,7 and
write RFD K= for the crystalline deformation ring of ¥ with Hodge-Tate weights k, i.e. the
reduced and Z,-flat quotient of RY such that, for any finite extension L’ of L, a morphism
x : Spec L' — Spec RY factors through Spec RE k=it and only if the representation G —
GL,(L') defined by x is crystalline with labelled Hodge-Tate weights (k;;)1<i<n.r: ksL-
That this ring exists is the main result of [36]. We write X" for the rigid analytic

space associated to Spf RZ*". By [36], it is smooth over L.

Let 7 : Gx — GLn(RZ* ) be the corresponding universal deformation. By [36,
Th.2.5.5] or [7, Cor.6.3.3] there is a coherent K ®q, Oyox-e-module D that is locally on

ra

XK free over Ky ®g, Oyox e together with a ¢ ® id-linear automorphism @ such
that: '
(D7 <I>cris) ®Ox9’kfcr k?(l’) = Dcris (f ®RE,k—cr k’({)f))

for all z € X", Fixing an embedding 7, : Ky < L we can define the associated family
of Weil-Deligne representations:

(WD(#), ) = (D @ky00,0,0crmoeid Ogoicmer, Perit 7 @ id)

on %E K= Whose isomorphism class does not depend on the choice of the embedding 7.

Let T"¢ = (G*#)" be the rigid analytic space over Q, associated to the diagonal torus
T C GL, and let S, be the Weyl group of (GL,,,T) acting on 7', and thus on 7"#, in the
usual way. Recall that the map:

diag(p1, 2, . - ., pn) — coefficients of (X — p1)(X — ¢2) ... (X — pn)
induces an isomorphism of schemes over Q,:
T/Sn L) Gg_l XSpech Gm

and also of the associated rigid analytic spaces. We deduce that the coefficients of the
characteristic polynomial of the Frobenius ® on WD(7) determine a morphism of rigid
analytic spaces over L:

9,kfcr Tilg/sn

T

Let us define:
A0 k—cr | O,k—cr Ti
7 ¢ = 7 ¢ XTEg/Sn TLg.
Concretely %E’kfcr parametrizes crystalline framed Gg-deformations r of 7 of labelled

Hodge-Tate weights k together with an ordering (1, ..., ¢,) of the eigenvalues of the
geometric Frobenius on WD(r).

cr

Lemma 2.2. The rigid analytic space %‘? K= s reduced.
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Proof. Tt is sufficient to prove this result locally. Let Sp C' be an admissible irreducible
affinoid open subspace of X="*" whose image in T} #/S, is contained in an admissible
affinoid open irreducible subspace Sp A of TF8/S,. As both X" and T7%/S, are
smooth over L we can find an admissible open affinoid covering of X"~ by such Sp C'.
The map 7, ,—iig — ng /S, is finite flat being the rigidification of a map of affine schemes
T, — T1/S, which is finite flat. Consequently the inverse image of Sp A in Tiig is an
admissible affinoid open subspace Sp B with B an affinoid algebra which is finite flat over
A. As B is a finite A-algebra, we have an isomorphism C®4B ~ C ®4 B. It follows, by
definition of the fiber product of rigid analytic spaces, that the rigid analytic spaces of

the form Sp(C ®4 B) form an admissible open covering of X-*™ = ¥k

- XTzig /S Tilg.
It is sufficient to prove that rings C' ®4 B as above are reduced. From Lemma 2.3 below
it is sufficient to prove that C' ® 4 B is a finite flat generically étale C-algebra. As B is
finite flat over A, the C-algebra C' ®4 B is clearly finite flat. It is sufficient to prove that
it is a generically étale C-algebra. As B is generically étale over A, it is sufficient to prove
that the map Spec C' — Spec A is dominant. It is thus sufficient to prove that the map
of rigid analytic spaces .’{E hemer T}fg /S, is open. This follows from the fact that it has,

locally on X5

, a factorization:
X — (Resky 0, GLn ko Xspo, Flag)™® xspq, Sp L — T1¢/S,

where the first map is the smooth map in the proof of Lemma 2.4 below, and the second is
the projection on (Resg, /g, GLy,k,)* followed by the base change to L of the rigidification
of the morphism Resg,/q,GLnx, = T/S, defined in [28, (9.1)]. The first map being
smooth is flat and thus open by [9, Cor.9.4.2], and the last two are easily seen to be
open. ]

The following (well-known) lemma was used in the proof of Lemma 2.2.

Lemma 2.3. Let A a commutative noetherian domain and B a finite flat A-algebra.
Then the ring B has no embedded component, i.e. all its associated ideals are minimal
prime ideals. Moreover if B is generically étale over A, i.e. Frac(A) ®a B is a finite
étale Frac(A)-algebra, then the ring B is reduced.

Proof. As B is flat over A, the map Spec B — Spec A has an open image, and A being
a domain it contains the unique generic point of Spec A, which implies that the natural
map A — B is injective. Moreover B being finite over A, the image of Spec B — Spec A
is closed, hence it is Spec A since Spec A is connected. In particular B is a faithfully
flat A-algebra. As B is a flat A-module, it follows from [11, §IV.2.6 Lem.1] applied with
E = Aand F = B that p € Ass(B) implies pN A =0 (A is a domain, so Ass(A) = {0}).
It then follows from [11, §V.2.1 Cor.1] that if p € Ass(B), then p is a minimal prime of
B. Indeed, A being noetherian and B a finite A-module, B is an integral extension of
A. We can apply loc. cit. to the inclusion q C p where ¢ is a minimal prime ideal of B
(both ideals q and p being above the prime ideal (0) of A since pNA=qnNA=0).

Let 0p/4 be the discriminant of B/A (its existence comes from the fact that B is a
finite faithfully flat A-algebra, hence a finite projective A-module). As the extension is
generically étale, we can find f € 0p/4 such that By is étale over Ay. As Ay is a domain,
By is then reduced. Thus the nilradical n of By is killed by some power of f. Replacing f
by this power, we can assume that the vanishing ideal of n contains f. Assume that n is

nonzero and let p be a prime ideal of B minimal among prime ideals containing Anng(n).
9



It follows from [11, §IV.1.3 Cor.1] that p is an associated prime of the B-module n and
consequently of B. But we have f € p which contradicts the fact that pN A = 0. U

We now embed this “refined” crystalline deformation space %E’k_cr
XH(7) as follows. We define a morphism of rigid spaces over L:

tri

into the space

(2.4) T XL TEE — XY xgp T
(ryo1, .oy on) — (1, zklunr(gol), . ,zk”unr(gon)).

This morphism is a closed embedding of reduced rigid spaces as both maps r +— r

and (p1,...,¢n) = (Z5unr(p), ..., 2% unr(p,)) respectively define closed embeddings
xRy x0 and T3 < 7. We claim that the restriction of the morphism (2.4) to:
(2.5) XN XD g THE

factors through XV

S(r) € XY xgpr T As the source of this restriction is reduced by

Lemma 2.2, it is enough to check it on a Zariski-dense set of points of %E ke,

Let » be an n-dimensional crystalline representation of Gx over a finite extension L'
of L of Hodge-Tate weights k and let ¢q,..., ¢, be an ordering of the eigenvalues of
a geometric Frobenius on WD(r), equivalently of the eigenvalues of @0l on D (r)
(that are assumed to be in L'*). Assuming moreover that the ¢; are pairwise distinct,
this datum gives rise to a unique complete ¢-stable flag of free Ky ®q, L'-modules:

0=Fo CFiCe C Fo=Denislr)

on Des(r) such that ol%o@l acts on F;/F;_; by multiplication by ¢; (this is a refinement
in the sense of [2, Def.2.4.1]). By the same argument as in the proof of Lemma 2.1 using
Berger’s dictionary between crystalline (¢, ' )-modules and filtered ¢-modules (see e.g.
(2.3)), the filtration F, induces a triangulation Fil, on Di(r). If we assume that F,
is noncritical in the sense of [2, Def.2.4.5], i.e. the filtration F, is in general position
with respect to the Hodge filtration Fil®*Dggr(r) on Dqggr(r), that is, for all embeddings
7:K— Landalli=1,...,n—1 we have:

(2.6)
(E ®KO®QPL,,T®id L/) EB (FilikT’iJﬁlDdR(T) ®K®@pL’,T®id L/) - Dcris<r) ®KQ®QPL,T®id L/
= Dar(r) ®K®QpL/,T®id L,
then F;/F;_1 is a filtered p-module of Hodge-Tate weights k;, or equivalently Fil; /Fil;_; =
R x(6;) with &; = 2Xiunr(e;).
Lemma 2.4. There are smooth (over L) Zariski-open and Zariski-dense subsets in Z%E’k_cr :
‘ZD,k—cr C ﬁ;l,k—cr C %@,k—cr
such that:

(i) a point (r, 1, ..., n) € XK lies in US™S if and only if the ; are pairwise
distinct;

(ii) @ point (r, @1, . .., on) € U= lies in V"= if and only if it satisfies assumption
(2.6) above and XX iunr(p;p; ") € Treg for i # j.

Moreover the image of Vo'~ wia (2.4) composed with (2.5) lies in ULL(T).
10



Proof. The idea of the proof is the same as that of [18, Lem.4.4]. It is enough to show
that all the statements are true locally on %E K= Let us (locally) fix a basis of the

coherent locally free Ko ®gq, O;0.x-e-module D on Xk By the choice of such a basis,

the matrix of the crystalline Frobenius ®.is and the Hodge filtration define (locally) a

morphism:

77— (Resky g, Gl i, Xspa, Flag)™ xsyq, Sp L

where Flag := (Resg/q,GLy x)/(Resk g, B) (compare [28, §8]). By [28, Prop.8.12] and
the discussion preceding it, it follows that this morphism is smooth, hence so is the
morphism:

(2.7) X — ((RGSKO/QPGLmKo)rLig Xrries, Tiig> xsp 1, Flagp®

T

where Resg,/q,GLnx, — T/S, is the morphism defined in [28, (9.1)]. On the other
hand, using that the morphism 7' — T'/S,, is obviously smooth in the neighbourhood of
a point (¢1,...,p,) € T where the ¢; are pairwise distinct, we see that the conditions of
(i), resp. (ii), in the statement cut out smooth (over L) Zariski-open and Zariski-dense
subspaces of:

(2.8) (Resiy /g, Gl io) 2% X o5, TE®) Xsp 1 Flagi®.
Their inverse images in X2 via (2.7) are thus smooth over L and Zariski-open in
Dk=er et us prove that these inverse images are also Zariski-dense in X=%". Tt is

enough to prove that they intersect nontrivially every irreducible component of %E k—er
Let Sp A be any affinoid open subset of X2 it follows from [9, Cor.9.4.2] that the
image of Sp A by the smooth, hence flat, morphism (2.7) is admissible open in (2.8). In
particular its intersection with one of the above Zariski-open and Zariski-dense subspaces
of (2.8) can’t be empty, which proves the statement. The final claim of the lemma follows

from (ii), the discussion preceding Lemma 2.4 and the definition (2.2) of UZ(T) . O

Note that Z%FD K= s equidimensional of the same dimension as E’k_cr. Indeed, by
Lemma 2.4 it is enough to prove the same statement for [7? k=er But this is clear since
the map U= — X% is smooth of relative dimension 0, hence étale, and since

ke s equidimensional ([36]). Lemma 2.4 also implies that (2.4) induces (as claimed

above) a morphism:
(2.9) et XN — XTI
which is obviously a closed immersion as (2.4) is.

Corollary 2.5. Let v = (r,0) € X.(F) be a crystalline strictly dominant point such
that w(z) = 0k and the Frobenius eigenvalues (o1, ..., pn) (¢f. Lemma 2.1) are pairwise
distinct and let U be an open subset of XL\(F) containing x.

(i) The point x belongs to u (USX"T) and there is a unique irreducible component Zess(x)
of X% containing ut(z).

(i1) If U is small enough there is a unique irreducible component Zy; y(x) of U containing

i (Zeis(z)) NU, and it is such that Zyiy(x) NU" = Zyiw(x) for any open U C U
containing x.

Proof. (i) The assumptions and Lemma 2.1 imply that x is in the image of the map ¢y

in (2.9) and the fact that the ; are pairwise distinct implies that z € 4 (U2*"). In
11



C

particular X="*" is smooth at ;' () by Lemma 2.4 and thus ;' () belongs to a unique

irreducible component Z.s(z) of .’%E k—er

(ii) We have that t(Zens(z)) NU is a Zariski-closed subset of U, and it is easy to see
that it is still irreducible if U is small enough since ty( Zewis(2)) is smooth at . Hence there
exists at least one irreducible component of U containing the irreducible Zariski-closed
subset Lk(ZcriS(.T)) N U. If there are two such irreducible components, then in particular
any point of Lk<ZcriS($)) N U is singular in U, hence in XZ\(F). But Lemma 2.4 implies

Zis(2) N VKT £ ) is Zariski-open and Zariski-dense in Z(z), hence:
(Zexis () N V) O (Zess () 0 151 (U)) £ 0

from which we get u N(Zcris(x) N f/FD’k_”) NU # (). The last statement of Lemma 2.4 also
implies t(Zeris(2) N VXYM U C UL (7), which is then a contradiction since UZ(T) is
smooth over L.

Finally, shrinking U again if necessary, we can assume that, for any open subset U’ C U
containing x, the map Z — ZNU’ induces a bijection between the irreducible components
of U containing z and the irreducible components of U’ containing x. It then follows from
the definition of Zi,; () that Zyiy(x) NU' = Zyi v (). O

Remark 2.6. (i) Since the map X2% — X% is finite, hence closed, and since
Dkemer - DR are both equidimensional (of the same dimension), the image of any

)

A k— . . . Ok— .
X7 is an irreducible component of X: . In particular

O,k—cr
T

irreducible component of
the image of Zu() in (i) of Corollary 2.5 is the unique irreducible component of X
containing r.

(ii) Either by the same proof as that for (ii) of Corollary 2.5 or as a consequence of (ii)
of Corollary 2.5, we see that there is also a unique irreducible component Z;(x) of the

whole XZ.(7) which contains the irreducible closed subset Lk(ZcriS(ZZJ)).

2.3. The Weyl group element associated to a crystalline point. We review the
definition of the Weyl group element associated to certain crystalline points on X (7)
(measuring their “criticality”) and state our main local results (Theorem 2.13, Corollary
2.14).

We keep the notation of §2.2. We let W = [[. xS, be the Weyl group of the

algebraic group:
(Resk/q,GLn k) Xspecq, Spec L = H GL, L
T K—=L

and X*((Resg/q,Tx) Xspecq, Spec L) = [I,. g, X*(T1) be the Z-module of algebraic
characters of (Resg/q,Tk) Xspecq, Spec L (recall T' is the diagonal torus in GL, and T,
Ty, its base change to K, L). We write lg(w) for the length of w in the Coxeter group
W (for the set of simple reflections associated to the simple roots of the upper triangular
matrices).

Let © = (r,8) = (r,01,...,8,) be a crystalline strictly dominant point on X.(7). Then
by Lemma 2.1 the characters ¢; are of the form §; = z¥unr(p;) where k; = (k). k1, and
the ¢; € k(x)* are the eigenvalues of the geometric Frobenius on WD(r). Assume that
the ¢; are pairwise distinct, then as in §2.2 the ordering (¢, ..., ,) defines a complete
p-stable flag of free Ky ®q, k(z)-modules 0 = Fo C Fy C --- C Fp = Deyig(1) 0n Deyis (1)
such that ¢[K0:QP] acts on F;/F;_1 by multiplication by ;. We view F; as a filtered

¢-module with the induced Hodge filtration. If we write (k. ;);.x< 1 for the Hodge-Tate
12



weights of F;/F;_1, we find that there is a unique w, = (Wyr)rksr € W = [l.xos1, S
such that:

(2.10) KL=k

T, W, 7 (1)
foralli e {1,...,n} and each 7 : K < L. We call w, the Weyl group element associated
to x. Note that F, is noncritical (see §2.2) if and only if w,, =1 for all 7: K — L, in
which case we say that the crystalline strictly dominant point x = (r,9) is noncritical.

For w € W we denote by d,, € Z>( the rank of the Z-submodule of X*((Resg/q, Tk ) Xspec,

Spec L) generated by the w(a)—a where a runs among the roots of (Resg /g, GLy, k) X spec@,
Spec L.

Lemma 2.7. With the above notations we have:
nn—1
o < la(w) < [i - @)Y
and lg(w) = dy, if and only if w is a product of distinct simple reflections.

Proof. Note first that the right hand side inequality is obvious. Let us write in this proof
X = X*((Resk/q,Tk) Xspecq, Spec L), Xg := X ®7Q, and let us denote by S the subset
of simple reflections in W (thus dimg(Xq) = [K : Qyn and |S| = [K : Q,](n — 1)). The
rank of the subgroup of X generated by the w(a) — « for a as above, or equivalently by
the w(a) — « for @ € X, is equal to the dimension of the Q-vector space (w — id)Xg
which, by the rank formula, is equal to dimg(Xg) — dimg(ker(w —id)). Let I be the set
of simple reflections appearing in w, we have |/| <lg(w) and |I| = lg(w) if and only if w
is a product of distinct simple reflections. It is thus enough to prove dimg(ker(w —id)) >
dimg(Xg) — |I| with equality when w is a product of distinct simple reflections. Note
that ker(w — id) obviously contains the Q-subvector space of Xg of fixed points by the
subgroup Wy of W generated by the elements of I, and it follows from [31, Th.1.12(c)]
that, when w is a product of distinct simple reflections, then ker(w — id) is exactly this
Q-subvector space. It is thus enough to prove that this Q-subvector space of Xg, which is
just the intersection of the hyperplanes ker(s—id) for s € I, has dimension dimg(Xg)—|/|.
However we know that for any Q-subvector space V' C Xg and any reflection s of Xg,
we have dimg(V Nker(s —id)) > dimg(V) — 1 and thus by induction:

dimg (V) ( ﬂs ker(s —id))) > dimg(V) — |9

with equality if and only if dimg (V N (ﬂseJ ker(s — id))) = dimg(V) —|J| forall J C S.
As the Q-subvector space X(S/ of fixed points by W has dimension [K : Q,] (it is generated
by the characters 7 o det for 7 : K < L), we have:

dimg (X)) = () ker(s — id) = [K : Q] = dimg(Xg) — |S].
ses
Consequently we deduce (taking V = Xg):
dimg ( () ker(s — id)) = dimg(Xq) — |1|
sel
which is the desired formula. O

Recall that, if X is a rigid analytic variety over L and x € X, the tangent space to X
at x is the k(x)-vector space:

(2.11) Tx, := Homyy, (mX7$/m§m, k(x)) = Homk(x)_alg<(’)xvx, k(x)[d/(g))
13



where my , is the maximal ideal of the local ring Ox, at x to X. If X is equidimen-
sional, recall also that dimy,) T, > dim X and that X is smooth at x if and only if
dimk(x) TX@ = dim X.

We let XZ.(F) € XLL(F) be the union of the irreducible components C' of XZ.(7) such
that CNU

ti(T) contains a crystalline point. For instance it follows from Lemma 2.4 that all
the closed embeddings (2.9) factor as closed embeddings ¢ : X2% " < X2 (7) - XHm).

tri
In particular any point € XJ.(7) which is crystalline strictly dominant is in X5:(7).

The following statement is our main local conjecture.

Conjecture 2.8. Let x € X(F) be a crystalline strictly dominant point such that the

Frobenius eigenvalues (1, ...,¢,) (cf. Lemma 2.1) are pairwise distinct, let w, be the
Weyl group element associated to x (cf. (2.10)) and let d, := d,,,. Then:
n(n+1)

i) T ), = o) — dy + dim X(7) = lg(w,) — do + 0 + [K Q)T

In particular, since dim X~
2.7 that XU

tri

reflections.

(7) = dim X}

7) =n?+[K : Q) n(n;l), we see by Lemma

(7) should be smooth at x if and only if w, is a product of distinct simple

Remark 2.9. The reader can wonder why we don’t state Conjecture 2.8 with X{;(7)
instead of X{}(F). The reason is that Conjecture 2.8 with X{}(7) is actually implied by

tri tri
other conjectures, see §5, and we don’t know if this is the case with X}(F).

In order to state our main result in the direction of (a weaker version of) Conjecture
2.8, we need the following two definitions.

Definition 2.10. A crystalline strictly dominant point x = (r,8) € XEZ.(7) is very reqular
if it satisfies the following conditions (where the (¢;)i1<i<n are the geometric Frobenius

eigenvalues on WD(r)):
(i) g’ & {l,a} for 1<i#j<n;
(i) p12...@; is a simple eigenvalue of the geometric Frobenius acting on /\};(m)WD(T)
for1 <i<n.
Remark 2.11. If x = (r,0) is crystalline strictly dominant, it easily follows from the dom-
inance property that (i) of Definition 2.10 is equivalent to 545]1 ¢ {270 2|k 2P, |2|2", h e

Zggm(K’L)} for 1 <i # j < n. In particular it implies 0 € 7.7, whence the terminology
(compare also [4, §6.1]).

Definition 2.12. Let X be a union of irreducible components of an open subset of X, (T)
(over L) and let x € X;(7) such that w(z) is algebraic. Then X satisfies the accumulation

tri

property at x if x € X and if, for any positive real number C > 0, the set of crystalline
strictly dominant points ' = (r',¢") such that:

(i) the eigenvalues of @0l on Do (r') are pairwise distinct;
(ii) «' is noncritical;
(iil) w(z) = 5’|(le()n = 0w with k;—k. ;. , > C forie{1,...,n—1}, 7 € Hom(K, L);

accumulate at x in X in the sense of [2, §3.3.1].
14



It easily follows from Definition 2.12 that X satisfies the accumulation property at x
if and only if each irreducible component of X containing x satisfies the accumulation
property at x. In particular, if x belongs to each irreducible component of X, we see that
for every C' > 0 the set of points z’ in the statement of Definition 2.12 is also Zariski-
dense in X. Since UL\(7) N X is Zariski-open and Zariski-dense in X, we also see that

each irreducible component of X containing x also contains points 2’ as in Definition 2.12

which are in UZL(7), hence each irreducible component of X containing « is in X (7).

In §4 below we will prove the theorem that follows.

Theorem 2.13. Let v € X\(T) be a crystalline strictly dominant very reqular point and
let X C Xi(F) be a union of irreducible components of an open subset of X:(F) such
that X satisfies the accumulation property at x. Then we have:
. . n(n —i— 1
dimy () Tx,r < lg(w,) — d, + dim X (F) = lg(w,) — dy + 0 + [K : Q)] ———— u )

By Lemma 2.7 we thus deduce the following important corollary.

Corollary 2.14. Let v € XZ.(7) be a crystalline strictly dominant very regular point and
let X C Xi(F) be a union of irreducible components of an open subset of X:(F) such
that X satisfies the accumulation property at x. Assume that w, is a product of distinct

simple reflections. Then X is smooth at x.

Remark 2.15. Note that for X, x as above we only have dimy,) Ty, < dimg,) T50 o
tri ’

thus Theorem 2.13 doesn’t give an upper bound on dimyy) TXD,(?) . (but Conjecture 2.8
implies Theorem 2.13). However Theorem 2.13 and Corollary 2.14 will be enough for our
purpose.

3. CRYSTALLINE POINTS ON THE PATCHED EIGENVARIETY

We state the classicality conjecture (Conjecture 3.6) and prove new cases of it (Corol-
lary 3.10).

3.1. The classicality conjecture. We review the definition of classicality (Definition
3.6, Proposition 3.4) and state the classicality conjecture (Conjecture 3.6).

We first recall the global setting, basically the same as [14, §2.4]. We fix a totally
real field F'*, we write ¢, for the cardinality of the residue field of '™ at a finite place
v and we denote by S, the set of places of F™ dividing p . We fix a totally imaginary
quadratic extension F' of F'* that splits at all places of S, and let Gr := Gal(F/F). We
fix a unitary group G in n variables over F'* (with n > 2) such that G X p+ F' = GL,,
and G(F' ®g R) is compact. We fix an isomorphism i : G Xp+ F = GL, r and, for
each v € S,, a place 0 of F dividing v. The isomorphisms F,” = Fj; and ¢ induce an
isomorphism i; : G(F}) = GL,(F;) for v € S,. We let G, := G(F,}') = GL,(F5) and
Gp = Ilyes, G(F)) = [lves, GLn(F5). We denote by K, (resp. B,, resp. B, resp. T,)
the inverse image of GL (Opv) (resp. of the subgroup of upper triangular matrices of
GL,(F}), resp. of the subgroup of lower triangular matrices of GL,(F3), resp. of the
subgroup of diagonal matrices of GL,(F};)) in G, under i; and we let K, := [Toes, Ko
(resp. B, := Ilses, By, resp. By = [lyes, Bv, tesp. T = [lyes, To). We let T)) :=
T,N Ky = Hvesp(Tv NK,).
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We fix a finite extension L of Q, that is assumed to be large enough so that [Hom(F,", L)| =
[Ft: Q) for v € S,. We let T} ey C T}z, the open subspace of characters § = (0v)ves, =
(0u,15- -+ 0un)ves, such that &,;/0,; € Tyreg for all v € S, and all i # j, where T, cq is
defined as T of §2.1 but with F” = F}; instead of K.

We fix a tame level U? = [[, U, C G(A}Y) where U, is a compact open subgroup of
G(F;) and we denote by S(U?, L) the associated space of p-adic automorphic forms on
G(Ap+) of tame level UP with coefficients in L, that is, the L-vector space of continuous
functions f : G(FT)\G(A¥,)/U? — L. Since G(FT)\G(A%¥,)/UP is compact, it is a p-
adic Banach space (for the sup norm) endowed with the linear continuous unitary action
of G, by right translation on functions. In particular a unit ball is given by the Op-
submodule S(U?,0y) of continuous functions f : G(F)\G(A®,)/U? — Oy and the
corresponding residual representation is the kp-vector space S(UP, k1) of locally constant
functions f : G(FT)\G(A%.)/U? — ki (a smooth admissible representation of G,).
Note that S(U?, k1) = @Up S(UPU,, k) where the inductive limit is taken over compact

open subgroups U, of G, and where S(UPU,, k1) is the finite dimensional k-vector space
of functions f : G(F*)\G(A%,)/UPU, — ki,. We also denote by S(UP, L) c S(U?, L)
the L-subvector space of locally Q,-analytic vectors for the action of G, ([43, §7]). This
is a strongly admissible locally Q,-analytic representation of G/.

We fix S a finite set of finite places of F'* that split in F' containing S, and the set
of finite places v { p (that split in F') such that U, is not maximal. We consider the
commutative spherical Hecke algebra:

T := lin (@ OL[UNG(E)/UL))

I vel

the inductive limit being taken over finite sets I of finite places of F'* that split in F' such
that I NS = (. This Hecke algebra naturally acts on the spaces g(Up, L), g(U”, L),
S(U?,0L), S(U?, k) and S(UPU,, kr,) (for any compact open subgroup U,). If C is a
field, # : T¥ — C' a ring homomorphism and p : Gr — GL,(C) a group homomorphism
which is unramified at each finite place of F' above a place of F'™ which splits in F' and

is not in .S, we refer to [14, §2.4] for what it means for p to be associated to 6.

Though we could state a more general classicality conjecture, it is convenient for us
to assume right now the following two extra hypothesis: p > 2 and G quasi-split at
each finite place of F'* (these assumptions will be needed anyway for our partial results,
note however that they imply that 4 divides n[F* : Q] which rules out the case n =
2, F* = Q). We fix m% a maximal ideal of T of residue field k; (increasing L if
necessary) such that §(U7’, L)ws # 0, or equivalently §(Up, OL)wms # 0, or S(UP, kp)ms =
ligUp S(UPU,, kp)wms # 0, or S(UPU,, kp)ms # 0 for some U, (note that S(UP, L)ys is

then a closed subspace of g(Up, L) preserved by G,). We denote by p = pps : Gr —
GL,(kz) the unique absolutely semi-simple Galois representation associated to m® (see
[45, Prop.6.6] and note that the running assumption F/F* unramified in loc. cit. is
useless at this point). We assume m® non-FEisenstein, that is, p absolutely irreducible.
Then it follows from [45, Prop.6.7] (with the same remark as above) that the spaces
S(UP, L)ws, S(UP, Op)ws and S(UP, kz)ms become modules over R; g, the complete local
noetherian Op-algebra of residue field kj pro-representing the functor of deformations p
of p that are unramified outside S and such that p' o ¢ = p ® "1 (where p’ is the dual
of p and ¢ € Gal(F/F™) is the complex conjugation).
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The continuous dual (S(U?, L)*%)" of S(U?, L)% := (S(UP, L)ys)™ = (S(U?, L)™)ys
becomes a module over the global sections I'(X5.5, Ox ;) where X5 5 := (Spf Rp)"® (sce
for instance [14, §3.1]). We denote by Y (UP,p) the eigenvariety of tame level UP (over

L) defined in [22] (see also [14, §4. 1]) associated to S(U?, L) , that is, the support of
the coherent O, o, “module (Jm, (S(U, L)2)) on X59 x T, where Jp, is Emerton’s

locally Q,- analytlc Jacquet functor with respect to the Borel B, and (-)' means the
continuous dual. This is a reduced closed analytic subset of X5 ¢ X T »,r. of dimension
n[FT : Q] whose points are:
(3.1)

{x = (p,8) € X35 x T,, 1, such that Homy, (5, JBp(g(Up, L)is[po] @k, k:(x))) # 0}

where p, C Rj;s denotes the prime ideal corresponding to the point p € X; g under
the identification of the sets underlying X;s = (Spf R; )" and Spm Rjs[1/p] ([33
Lem.7.1.9]) and where k(p,) is its residue field. We denote by w : Y (UP,p) — TOL the

composition Y (UP,p) — X5 5 X fpl —» fp,L —» T;?,L

Remark 3.1. If U"”” C U? (and S contains S, and the set of finite places v 1 p that split
in F such that U}, is not maximal), then a point 2 = (p, §) of Y'(U?, p) is also in Y (U", p)
since S(U?, L) [p,] C S, L)y, and Jp, is left exact.

We let Xi;;(p,) be the product rigid analytic variety [],es, Xi(p;) (over L) where p;
is the restriction of p to the decomposition subgroup of G at ¢ (that we identify with
Gr, = Gal(F;/F;)) and where X{:(p;) is as in §2.1. This is a reduced closed analytic

tri
subvariety of (Spf R} )“g x T, where RD = ®U€S RZ . Identifying B, (resp. T,)
with the upper trlangular (resp. dlagonal) matrices of GL (F5) via i, we let dp, =
@] [P ® - @] |" be the modulus character of B, and define as in [14, §2.3]

an automorphism 2, : YATU ST » by:
1(01, ..., 0n) :=0p, - (01,...,6; - (eorecy, ), ..., 8, (corecy, )" 1)

(the twist by dp, here ultimately comes from the same twist appearing in the definition
of Jg,). It then follows from [14, Th.4.2] that the morphism of rigid spaces:

(3.2) (Spf Rps)™® x T, — (SpfRZ)™ x T,
(P, Bu)ves, ) = (0 (Gots s Bumdues,) = ((Plar, Joesys (15" (Buts -5 Gum) ues, )

induces a morphism of reduced rigid spaces over L:

(33) Y(Upaﬁ) — XtErll H trl

vESH

(note that (3.3) is thus not compatible with the weight maps w on both sides). We
say that a point @ = (p,6) = (p, (0v)ves,) € Y (UP,p) is crystalline (resp. dominant,
resp. strictly dominant, resp. crystalline strictly dominant very regular etc.) if for each
v € S, its image in XtDn(pv) via (3.3) is (see §2.1 and Definition 2.10). Due to the twist 1,

beware that x = (p,d) € Y/(UP,p) is strictly dominant if and only if 0|7k, is (algebraic)
dominant for each v € .S,,.

Let 6 € fn 1, be any locally algebraic character. Then we can write 6 = 0,0qm in T, oL
where A = (A\y)ves, € [Lyes, (Z")HomF0E) 5y =[] cs, Or, (see §2.1 for 6y, € T,,1) and dgn

is a smooth character of T, with values in k(8) (the residue field of the point § € T, ).
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Using the theory of Orlik and Strauch ([41]), we define as in [14, (3.7)] the following
strongly admissible locally Q,-analytic representation of G, over k(¢):

fgj(d) o fg:(<U(9L) ) (=), 5Sm5§i)

where dp, := [l,es, 65, and where we refer to [14, §3.5] for the details and notation.

Recall that }"g” (0) has the same constituents as the locally Q,-analytic principal series
(Ind%: 5,\55m5]§;)a“ = (Ind%i 55;;)‘“1 but in the “reverse order” (at least generically). If A

is dominant (that is A, is dominant for each v in the sense of §2.1), we denote by LA(d)
the locally algebraic representation:

(3.4) LA(S) := ]-“%’(L()\)’, Sambp)) = Fa? (LN, (Indgzésm(s;;)sm)
= L()\) X, (Ind%z(;smééi)sm

where L()) is the simple U(gy)-module over L of highest weight A relative to the Lie
algebra of B, (which is finite dimensional over L since A is dominant) that we see as an
irreducible algebraic representation of G, over L, where L(\)" is its dual, and where (=)™
denotes the smooth Borel induction over k(§) (the second equality in (3.4) following from
[41, Prop.4.9(b)]). Arguing as in [41, §6] (note that L(\)" is the unique irreducible subob-
ject of (U(gr) ®y g, (—A))Y), it easily follows from [41, Th.5.8] (see also [12, Th.2.3(iii)])
and [32, §5.1] that LA(J) is identified with the maximal locally Q,-algebraic quotient of

fg:(d) (or the maximal locally algebraic subobject of (Ind%i 5(515;)&“).

It follows from (3.1) together with [13, Th.4.3] that a point z = (p,8) € X5 x T, 1, lies
in Y(UP,p) if and only if:
(3.5)
Homy, (8, Js, (S(UP, L)k [p,] @k, k() = Homg, (F5"(8), SUP, LY [Ps] ke, k() # 0.

Definition 3.2. A point x = (p,0) € Y(UP,p) is called classical if there exists a nonzero
continuous Gp,-equivariant morphism:

For(8) — S(U, L)s[p,) @y, k(x)

that factors through the locally Q,-algebraic quotient LA(6) of ]—'gp(é) (equivalently (p, )
is classical if Homg, (LA(S), S(U?, L)ws [pp] @k, k(x)) #0).

Remark 3.3. (i) This definition is [14, Def.3.14].

(ii) It seems reasonnable to expect that if x = (p,d) € Y (UP,p) is classical, then in fact
any continuous Gp-equivariant morphism ]-"g”(é) — S(UP, L)2%s[p,] @np,) k(x) factors
through LA(J). See the last statement of Corollary 3.10 below for a partial result in that
direction.

We fix an algebraic closure @, of L and embeddings jo : Q — C, j, : Q — Q,. Recall
that, if 7 = 7o ®c 7 is an automorphic representation of G(Ap+) over C where m (resp.
7s) is a representation of G(F™ ®qg R) (resp. of G(A%¥,)), then due to the compactness
of G(FT ®g R), we have that 7 is a finite dimensional irreducible representation that
comes from an algebraic representation of Resp+ oG over C (argue as in [2, §§6.2.3,6.7]).
Moreover, arguing again as in loc. cit., T, (vesp. ;) has a Q-structure given by j,, which

is stable under the action of (Resp+ oG)(Q) (resp. of G(A%.)). Hence the scalar extension

of the @-structure of 7 to Q, via j, is endowed with an action of (Resp+,gG)(Q,), thus
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in particular of (Resp+,0G)(Qp) = G(F'* ®g Q,) = G,,. This latter representation of G,
is easily seen to be defined over L and of the form L(\) for a dominant A\ as above. We
say that 7. is of weight A if the resulting representation of G, is L(\).

For the sake of completeness, we recall the following proposition showing that Definition
3.2 coincides with the usual classicality definition.

Proposition 3.4. A strictly dominant point x = (p,d) € Y(UP,p), that is such that
w(zx) = d\ for some dominant \ € Hvesp(Z")Hom(Fﬁ’L), is classical if and only if there
exists an automorphic representation ™ = T, @c 15 Q¢ T, of G(Ap+) over C such that
the following conditions hold:

(i) the G(FT ®q R)-representation T is of weight A in the above sense;

(ii) the Gp-representation p is the Galois representation associated to w (see proof be-
low);

(ili) the invariant subspace (m})Y" is nonzero;

(iv) the Gp-representation m, is a quotient of (Ind%idd;ldjg;)sln e T,

If moreover F is unramified over F™ and U, is hyperspecial when v is inert in F, then
such a 7 is unique and appears with multiplicity 1 in L*(G(FT)\G(Ap+),C).

Proof. Let W be any linear representation of G, over an L-vector space and U any
compact open subgroup of G(A%¥,), we define S(U,W) to be the L-vector space of
functions f : G(FF)\G(A¥,) — W such that f(gu) = u,"(f(g)) for g € G(AY.)
and v € U, where u, is the projection of u in ). Fixing U? as previously, we define
S(UP, W) := ligUp S(UPU,, W) (inductive limit taken over compact open subgroups U, of
G)p) endowed with the linear left action of G, given by (h,- f)(g) := hy(f(ghy)) (h, € Gp,
g € G(A%,)) where the second h,, is seen in G(A%,) in the obvious way. Note that T
also naturally acts on S(UP,W) (the representation W here playing no role since this
action is “outside p”). Then it follows from [24, §7.1.4] that there is an isomorphism of
smooth representations of G, over @p:

(3.6) S, L) @, T, = D () 95 m,) €5, T

where the direct sum is over the automorphic representations m = o ®c 7, of G(Ap+)
such that m is of weight A and (7)"" # 0 (we take the Q-structures) and where m(m)
is the multiplicity of 7w in L*(G (F*)\G(AFQ, C). We then say that a point p € X5 is
the Galois representation associated to m (with Too Of weight \) if we have:

()7 @gm) ©g,, @ S SWUP, LA s lps] @) Ty

where p, is as in (3.1) (and R; s acts on S(UP, L(\)),s again using [45, Prop.6.7]). Note
that S(UP, L(A) )ms [Po] @kp,) Q # 0 (equivalently S(UP, L(\) )us[p,] # 0) if and only if
there exists an automorphic representation 7 such that 7, is of weight A, (7 ) # 0 and
p is the Galois representation associated to 7.

Let S(U?,L)*" < S(UP,L)* be the closed G,-subrepresentation of locally L(\)-

algebraic vectors, that is the L-subvector space of S(U?, L)™ (or equivalently of S(U?, L))
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of vectors v such that there exists a compact open subgroup U, of G, such that the U)-
subrepresentation generated by v in S(U?, L)y, is isomorphic to (L(X)|y,)®? for some
positive integer d. Note that the subspace S (UP, L)*! is preserved under the action of
T% (since the latter commutes with G,). Then it follows from [22, Prop.3.2.4] and its
proof that there is an isomorphism of locally @Q,-algebraic representations of G}, over L
which is T®-equivariant (with the action of T on the right hand side given by its action
on S(UP, L(\))):

S(UP, L) = L(\) @ S(UP, L(\)).
We then deduce a G,-equivariant isomorphism of Rj; s-modules:
(3.7) S(UP, LA™ = L) @1 S(UP, L(A) s
where S(U?, L)X5" := (S(UP, L)* ) s = (S(UP, L)ps )12,

Now let = = (p,d) € Y(U?,p) with w(z) = 6, for A dominant and define p, as in (3.1).
From Definition 3.2 and the definition of S(U?, L)', we get that the point z is classical
if and only if there exists a nonzero Gp-equivariant morphism:

L) @ (Indg05,165) ™ — S(UP, L) [b,] Siee) K(2)

if and only if by (3.7) there exists a nonzero G,-equivariant morphism:
(8851650 )™ — SU?, LA s [ps] ©io,) k)

if and only if by (3.6) there exists an automorphic representation m = 7., Q¢ 7T? ®c m, of
G(Ap+) such that m., is of weight A, (W?)Up # 0, p is the Galois representation associated

to m and 7, is a quotient of (Ind%iéé{légi)sm ®k(5) @p.

Now let us prove the last assertion. According to [39, Cor.5.3|, there exists an isobaric
representation II = II; B - - - HIL, where n = mq + - - - +m, and II; nonzero automorphic
representations of GL,,,(Ar) occuring in the discrete spectrum such that II is a weak
base change of 7 in the sense of [39, §4.10]. Since p, hence p, are absolutely irreducible,
we have r = 1 and II = II; cuspidal. The equality m(7) = 1 then follows from [39,
Th.5.4] (which uses the extra assumption F/F* unramified). The uniqueness of 7 is a
consequence of the strong base change theorem [39, Th.5.9] together with the fact that
7, is unramified at finite places v of F*© which are inert in F (which uses the extra
assumption U, hyperspecial for v inert) and the fact that the L-packets at finite places

of ' which are split in F are singletons. U

Remark 3.5. With the notation of Proposition 3.4, write 05" = (Jsmv.1, - - - + Osm,v,n JveS, »
if moreover dgp v;/dsmv; & {1,] |52} for 1 <i# j <nandv € S, then we see from (iv)
of Proposition 3.4 that m, = (Indgiééf)sm Qi) Q-

We then have the following conjecture, which by Proposition 3.4 is essentially a con-
sequence of the Fontaine-Mazur conjecture and the Langlands philosophy, and which is
the natural generalization in the context of definite unitary groups of the main result of
[35] for GL2/Q (in the crystalline case).

Conjecture 3.6. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant point. Then
x s classical.

Remark 3.7. We didn’t seek to state the most general classicality conjecture. Obviously,
the assumptions that p > 2 and G is quasi-split at each finite place of F'* shouldn’t be
crucial, and one could replace crystalline by de Rham.
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3.2. Proof of the main classicality result. We prove a criterion for classicality (Theo-
rem 3.9) in terms of the patched eigenvariety of [14], which itself builds on the construction
in [19] of a “big” patching module M,,. We use it to prove our main classicality result
(Corollary 3.10).

We keep the notation of §3.1 and make the following extra assumptions (which are
required for the construction of My): F is unramified over F'* U, is hyperspecial if
v is inert in F, p(Gp(,)) is adequate in the sense of [45, Def.2.3] and (, ¢ ),
For instance if p > 2n + 1 and plg, . , is (still) absolutely irreducible, then p(Gr(c,)) is

automatically adequate ([27, Th.9]). We first briefly recall some notation, definitions and
statements and refer to [14, §3.2] for more details on what follows.

We let Rﬁiﬁ be the maximal reduced and Z,-flat quotient of the framed local deformation
ring R and set:

— —

loc . — Q 0 = 0 e 0 . ploc
R = ®v€SRﬁﬁ7 Rﬁp = ®v€S\SpRﬁﬂ’ Rﬁp = ®v€SpRﬁﬁ7 Roo =R [[ZUl ce axg]]

where g > 1 is some integer which will be fixed below. We let Xz := (Spf Rm»)"8,
Xp, = (SpfRp )" and X, := (Spf Ra)'™® so that:

(38) %oo = %ﬁp X %ﬁp x U9

where U := (Spf O [y])"® is the open unit disc over L. We also define S, := Op[y1, . .., v
where t ;== g+ [FT : Q]@ +|S|n? and a := (yi,...,y:) (an ideal of S.).

Thanks to Remark 3.1 and Proposition 3.4 we can (and do) assume that the tame level
UP is small enough so that we have:

(3.9) G(F) N (hUPK,h™") = {1} for all h € G(A%:)

(indeed, let w t p be a finite place of F'* that splits in F such that U, is maximal, replace
UP by U := U, 1,4, Uy where U}, is small enough so that U satisfies (3.9), and use
Proposition 3.4 and local-global compatibility at w to deduce classicality in level U? from
classicality in level U). Then there is a quotient R; s — R;s such that the action of

R; s on S (UP, L)ys factors through R; s, an integer g > 1 and:

(i) a continuous R..-admissible (see [14, Def.3.1]) unitary representation Il of G,
over L together with a G-stable and R.-stable unit ball 113 C Il

(ii) a morphism of local O-algebras Sy, — R such that M, := Home, (113, Oy) is
finite projective as an Soo[ K, [-module;

(iii) compatible isomorphisms Ru,/aRe = R;s and Iy[a] 2 S(UP, L)ys where the
latter is G,-equivariant.

We then define the patched eigenvariety X,(p) as the support of the coherent O

Xoo X,J/:p,L-
module Mo, = (Jp,(II%7""))" on X, X T,. (see [14, Def.3.2] for T1R=—an: strictly
speaking (Jp, (ITf="2"))" is the global sections of the sheaf My.). This is a reduced
closed analytic subset of X, x T, 1 ([14, Cor.3.19]) whose points are ([14, Prop3.7]):

(3.10) {x = (y,0) € Xoo x T}, 1, such that Homy, (6, Jp, (I [p, ] @pp,) k(x))) # 0}

where p, C R, denotes the prime ideal corresponding to the point y € X, (under the

identification of the sets underlying X, and Spm R..[1/p]) and k(p, ) is the residue field of
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p,. It follows from the proof of [14, Th.4.2] that we can recover the eigenvariety Y (U?,p)
as the reduced Zariski-closed subspace of X,(p) underlying the vanishing locus of the
ideal aI'(X, Ox..).

Lemma 3.8. The coherent sheaf M is Cohen-Macaulay over X, (p).

Proof. From the proof of [14, Prop.3.10] (to which we refer the reader for more details)
we deduce that there exists an admissible affinoid covering (U;); of X,(p) such that
['(U;, M) is a finite projective module over a ring Oyy__ (W;) whose action on I'(U;, M)
factors through a ring homomorphism O, (W;) — Ox, @ (U;). Consequently we can
deduce from [26, Prop.16.5.3] that I'(U;, M) is a Cohen-Macaulay Ox, 5 (U;)-module.

O

It follows from [14, Th.3.20] that the isomorphism of rigid spaces:
%oo X Tp,L L> %oo X j—\’p,L
(CL’, (511)1)65@) - <$7 (511,17 s 75U,n)v65p> — (l’, (251(51;,17 ce 75v,n))v€Sp)

induces via (3.8) a morphism of reduced rigid spaces over L:
(3.11) X,(p) — X x Xii(p,) x U?

which identifies the source with a union of irreducible components of the target. Note
that the composition:

3.11
Y(U?,5) = X,(p) 2 %5 x XIi(p,) x U? - X5i(p,)

is the map (3.3). An irreducible component of the right hand side of (3.11) is of the form

XP x Z x U where X? (resp. Z) is an irreducible component of X? (resp. X;(p,)). Given

an irreducible component X? C Xz, we denote by Xi; **(p,) € X;(p,) the union

(possibly empty) of those irreducible components Z C XtDri(ﬁp) such that X? x Z x UY
is an irreducible component of X,(p) via (3.11). The morphism (3.11) thus induces an

isomorphism:

tri

(3.12) X,(p) = U (27 x XE " (p,) x 1)

the union (inside Xz x X;(p,) x UY) being over the irreducible components X? of Xz».

We now state and prove the main result of this section, which gives a criterion for
classicality on Y (UP,p). Recall that, given a crystalline strictly dominant point x, =
(ry,0,) € Xti(p;) such that the geometric Frobenius eigenvalues on WD(r,) are pair-
wise distinct and V,, C X.(p;) a sufficiently small open neighbourhood of x,, we have

constructed in Corollary 2.5 an irreducible component Z,; v, (z,) of V, containing z,.

Theorem 3.9. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant point such
that the eigenvalues @1, ..., 95, of the geometric Frobenius on the (unramified) Weil-
Deligne representation WD(plg,. ) satisfy Coip5s & {1,q,} for alli # j and all v € S,,.
Let XP C X be an irreducible component such that x € XP x X~ (p,) x U9 C X,(p)
via (3.12), let x, € Xi(p5) (for v € S,) be the image of x via:

tri tri
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and let V, C X{i(p;) (forv € S,) be a sufficiently small open neighbourhood of x,, so that

Ziwiv,(xy) CV, is defined. If we have:
H Zi v, (xv) - thnp am(pp)

vES)

then the point x is classical.

Proof. Let us write p, C R for the prime ideal corresponding to the image y of z in
¥o via Y(UP,p) < X,(p) <> Xoo X T, = Xoo and p, C Ry for the prime ideal
corresponding to the global representation p. Then it follows from property (iii) above
that we have aRy, C p, and S(U?, L)us[p,] = I [p,]. From Definition 3.2 we thus need
to show that Homg, (LA(9), s [py] @k, k(2)) # 0.

As in §3.1 let us write 6 = dxdsm With A = (X,)yes, and:

Av = (A7) 1<i<n,reHom(Fy,L) € ZHom(Fs.L)
(recall that each A, is dominant with respect to B,). Consider the usual induction with
compact support ind[G(Z(L()\)|Kp) (resp. ind%” (L(\,)|k,)) where L(\,) (resp. L(),)) is
the irreducible algebraic representation of G, (resp. G,) over L of highest weight A
(resp. A,) with respect to B, (resp. B,). Let H(A) := Endgp(ind%[,()\)) and H(A,) :=
Endg, (ind L(),)) be the respective convolution algebras (which are commutative L-
algebras), we have H(A) = [[,cg, H(A,). Moreover by Frobenius reciprocity:

Mao(A) := Homy, (L(A), Ise) & Homg, (ind5 L(A), T, )
carries an action of H(A). By a slight extension of [19, Lem.4.16(1)] (see the proof of
[14, Prop.3.15]), the action of Rj on HOO()\) via R — R°® < R, factors through its
quotient Rm’krCr where, for v € S, k, (kv”)1<z<n reHom(Fy,L) With Ky r; = Ay ri —
(1—1) (note that w(z,) = 0k, and that RfD kv~ is also a quotient, of RE;)

These two actions of H(\,) and R'; K= on the L-vector space Io()) are related. By
[19, Th.4.1] and a slight extension of [19 Lem.4.16(2)] (see the proof of [14, Prop.3.15)),
there is a unique L-algebra homomorphism 7, : H(\,) — Rgﬁ’k”fcr[l /p] which interpolates
the local Langlands correspondence (in a sense given in [19, Th.4.1]) and such that the
above action of H(\,) on Il () agrees with the action induced by that of R%k” ~[1/p]
composed with the morphism 7,.

In order to show that LA(d) admits a nonzero G-equivariant morphism to oo [Py] @kp,)
k(z), we claim it is enough to show that II(\)[p,] = Hom(;p(indK L(\), I[p,]) is

nonzero. Indeed, by what we just saw, any nonzero G,-equivariant morphism ind KZ L(\) —
I [p,] induces a nonzero G,-equivariant morphism:

ind%L(}\) ®r k(z) — T [py] @,) k()
which factors through ind%’L()\) ®(n) Op, where 0, is the character:

®v65p77v

Op, - H(\) —> ®yes, By~ [1/p] — k(py) C k(2),

Yy

the last morphism being the canonical projection to the residue field k(p,) at p, (the map
Ry — Roo — Roo/p, factoring through ®v€5p Skv=er by the assumption on p). But by

the compatibility with the local Langlands correspondence in [19, Th.4.1] together with
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the assumption ¢z, /s # gv for 1 <i,5 <n and v € S, we have ind[G(’;L()\) ®un) Op, =

By the same proof as that of [19, Lem.4.17(2)], the Ro ®g, @UGSPRD:” “module
I (\)" is supported on a union of irreducible components of:

X x [ X527 x U7

vES)

and we have to prove that y is a point on one of these irreducible components. Since

y € XP X Ilyes, Zeis(ps) X U9 where Z.i5(ps) is the unique irreducible component of

pDk” “ containing p; := plg,. (recall %Q ke~ s smooth over L by [36]), it is enough to

prove that X X [],eg, chs(pv) x U9 is one of the irreducible components in the support
of I (N\)', or equlvalently that XP x [],es, Zeris(p5) x U7 contains at least one point which
is in the support of IT, ().

For each v € S, let 2/, = (1, 4") be any point in t, (Zews(z,)) NV, € Vi C© X5i(55)
where Zgis(x,) is as in (i) of Corollary 2.5 (so in particular z/ is crystalline strictly
dominant of Hodge-Tate weights k, and 7/ lies on Zgs(ps) by (i) of Remark 2.6). Then

we have z! € Z, v, (x,) for v € S, by (ii) of Corollary 2.5. From the assumption:

1 Zuiv, (20) € X35 *"(p,)
vES)
it then follows that there exists:

o (3.12)
o=, €) € X0 X [ Zuivi () x U9 C X2 x X5 4(5,) x U9 C X, (p) C Xoo x T

tri
vES)

(with ' € Xeo, € € T}, 1) mapping to a/, via X7 x X ™(5,) x U? —» XX (p,) —
Xii(p,) = Xii(ps) (so €, = 2,'(6,,)) and where ¢/ still belongs to XP X [T,es, Zeris(ps) x UY.

It is thus enough to prove that ¢’ is in the support of I (), i.e. that IIo(\)[p,] =
Hompg, (L(X), I [py]) is nonzero.

We conclude by a similar argument as in the proof of [14, Prop.3.27]. By (the proof
of) [18, Lem.4.4] and the same argument as at the end of the proof of Lemma 2.4
(using the smoothness, hence flatness, of UﬁDﬁ komer_y %ﬁuﬁ’k“_cr), we may choose z! €
Lk, (Zcris(:tv)) NV, such that the crystalline Galois representation r/ is generic in the sense
of [14, Def.2.8]. Then we claim that the nonzero G,-equivariant morphism fg”(e’ ) —
[[Ree=an[p /] ®k(p,) k(2') corresponding by [13, Th.4.3] to the nonzero T)-equivariant mor-
phism € — Jp (IT%="2"[p,| ®u(p,) k(2')) given by the point 2’ factors through its lo-
cally Q,-algebraic quotient LA(€") (which provides a nonzero K,-equivariant morphism
L(\) — II[py]). Indeed, if it doesn’t, then the computation of the Jordan-Holder fac-
tors of ]:gp(e’) ([13, Cor.4.6]) together with [12, Cor.3.4] show that there exits a point

2" = (y,€") € X,(p) such that €” is locally algebraic of nondominant weight. In particu-
lar there is some v € S, such that the image of 2" in X[(p;) is of the form (1,1, 1(¢!))

with 2;1(€”) locally algebraic not strictly dominant. This contradicts [14, Lem.2.11]. O

Let z = (p,0) € Y(UP,p) be a crystalline strictly dominant point such that for all
v € S, the eigenvalues of the geometric Frobenius on WD(p|gFﬁ) are pairwise distinct.

Recall that we have associated in §2.3 a Weyl group element w,, to the image x, of x in
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Xii(p5) via (3.3). We write:

(3.13) we = (wy,)oes, € ] ( 11 sn)

UESp Fy—L

for the corresponding element of the Weyl group of (Resg+,gG) 1, = [1,e s, (Resp, 0, GLn k)L
We then obtain the following corollary, which is our main result.

Corollary 3.10. Let x = (p,0) € Y(UP,p) be a crystalline strictly dominant very reqular
point. Assume that the Weyl group element w, in (3.13) is a product of pairwise distinct
simple reflections.  Then x is classical. Moreover all eigenvectors associated to x are
classical, that is we have (see the proof of Proposition 3.4 for S(UP, L)Y5"™):

Homy, (8, 75, (S(U”, L)25"[p,) @, k())) — Homy, (5, JBP(S(UP7L)ms[lﬂp]®k(pp)k($)))-

Proof. Keep the notation of Theorem 3.9. By Proposition 3.13 below, for each v €
S, there is a sufficiently small open neighbourhood V,, of z, in Xg;(p;) such that the
irreducible component Zi; v, (x,) of V, in (ii) of Corollary 2.5 is defined and satisfies the
accumulation property at z, (Definition 2.12).

Seeing z in X,(p) via the closed embedding Y (U?,p) — X,(p), by (3.12) there exist
irreducible components X? of Xz and Z = [],cg, Z» of XtDn( b) = [lues, Xii(py) such
that:

x€XP x ZxUY C X x Xy ™(p,) x VY c X( ).
Then it follows from Proposition 3.14 and Remark 3.15 below that Z, satisfies the accu-
mulation property at z, forallv € S,. Let Y,, C Z,NV, be a nonempty union of irreducible
components of V,, then X, := Y, U Zy,; v, (x,) satisfies the accumulation property at z,
since both Y, and Z; v, (x,) do. But X, is smooth at z, by the assumption on w,, and
Corollary 2.14 applied with (X, z) = (X,,x,), hence there can only be one irreducible
component of X, passing through z,. We deduce in particular Z;y,(z,) C Y, C Z,,
hence [T,es, Zuiv, (7o) C Ilves, Zo C X3 ™" (p,) and z is classical by Theorem 3.9. We

also deduce that the only possible Z =[], s, Zv passing through (xv)vegp is smooth at

(7y)ves,, hence that X~ aut(pp) is smooth at (z,)yes, -

Let us now prove the last statement. From the injection:
Homg, (8, Js, (S(U”, L)3s"[p,] ©xep,) k(x))) — Homg, (8, Js, (SU”, L)k [p,] ©xer,) k()

it is enough to prove that these two k(x)-vector spaces have the same (finite) dimension.
Recall from [14, §3.2] that for any 2/ = (v',¢') € X,(p) we have an isomorphism of
k(z")-vector spaces:

(3.14) Homy, (8, Jp, (TTE=""(p ] @4y, ) k(') = Moo @0, k(2.

If moreover ' = (p/,8') € Y(UP,5) < X,(p) we have S(U?, L)ws[py] = Iuo[py], hence
an isomorphism of k(z')-vector spaces:
(3.15)

Homy, (8, J5,(S(U, L) [p ] @k, k(2'))) = Homa, (&', Js, (5=~ py] @4y ) k(7))

We first claim that x is a smooth point of X,(p). Indeed, by what we proved above, it
is enough to show that its component y” = (y,)ves\s, in Xz is a smooth point. As x
is classical, by Proposition 3.4 (in particular the end of the proof) it corresponds to an
automorphic representation m of G(Ap+) with cuspidal strong base change I to GL,,(Af).

It then follows from [15, Th.1.2] that II is tempered, in particular generic, at all finite
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places of F'. Then [8, Lem.1.3.2(1)] implies that y, for v € S\, is a smooth point of
(Spf Rﬁiﬁ)rig. As M is Cohen-Macaulay (Lemma 3.8) and z is smooth on X,(p), we
conclude from [26, Cor.17.3.5(i)] that M is actually locally free at x. Consequently
there exists an open affinoid neighbourhood of z in X,(p) on which the dimension of
the fibers of M, is constant. Intersecting this neighbourhood with Y (U?,75) and using
(3.14) and (3.15), we obtain an open affinoid neighbourhood V,, of z in Y/(U?, ) on which
dimy,(,y Homy, (&', JBp(g(Up, L) [py] @k, k(2'))) is constant for 2’ = (o, d") € V.

m
Now let 2’ € V, be a very classical point in the sense of [14, Def.3.16] and write
w(z') = 6y with dominant X € [,eg, (Z")Hm»L) Tt follows from loc. cit. and [13,
Th.4.3] that we have:

Homz, (&, 7, (S L)y 11, b)) = Homa, (LAW), SWP L[y )o1K )
~ ' _la
Homa, (LA®), 807,15 byl@ucy k("))
~ ! _
= tome, (#, 5, (S0P, L)5 b, 104G, KD )

From what is proved above, it is thus enough to find a very classical point x’ in V, such
that:

(3.16)  dimpn HomTP<5’,JBP(§(Up L)X p @k(pp,)k(x/))):

dimy(z) Homr, (8, i, (S(U7, L)35" 0] @xgr,) k().

Let 2" = (p",0") € Y(UP,p) be any classical crystalline strictly dominant point and let
w(z") = 0)». By Proposition 3.4 it corresponds to a unique automorphic representation
7" which moreover has multiplicity 1, hence we have (with the notation of the proof of
Proposition 3.4):

T, (S, Lys ™ o] @i, @) = I, (LX) @1 @ 7)) @5 (7" &g, Q.
vES)
From the definition of S together with [23, Prop.4.3.6] and property (iv) in Proposition
3.4, it then easily follows that:

(317) iy Homir, (8", T, (S(U7, LYY [byr) @0 K(a"))) = dimg (@ 1),
veS\Sp

Let Z be the union of x and of the very classical points in V,,, by [14, Thm.3.18] this set

Z accumulates at x. By [15, Th.1.2], we can apply [17, Lem.4.5(ii)] to the intersection of

Z with one irreducible component of V., and obtain that, for v { p, the value dimg o U

is constant on this intersection. In particular dimg(®yess, Ty "Uv) is also constant on this
intersection, which finishes the proof by (3.17) and (3.16). O

Remark 3.11. (i) Keeping the notation of Theorem 3.9, if there is a unique irreducible
component Z of X{(p,) passing through the image of = in Xi5;(p,), or equivalently if for

tri tri

each v € S, there is a unique irreducible component of X\(p;) passing through z,, then

tri

x is classical. Indeed, in that case there is an irreducible component X? of Xz such that
x € XP x Z x U9 =X x X ™(p,) x U%. In particular, for a sufficiently small open

tri
neighbourhood V, of z, in Xi(p;), we have [T,es, Vo C Z = X " (p,) and we see that

tri
the assumption in Theorem 3.9 is a fortiori satisfied.
(i) Let us recall the various global hypothesis underlying the statements of Theorem 3.9
and Corollary 3.10: p > 2, G is quasi-split at all finite places of F*, F/F* is unramified,
U, is hyperspecial if v is inert in F', p(Gp(c,)) is adequate and ¢, ¢ Frereer),
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3.3. Accumulation properties. We prove some accumulation properties (as in Def-
inition 2.12) that are used in the proof of Corollary 3.10 in order to apply Corollary
2.14.

We first go back to the purely local set up of §2. We call a point x = (r,0y,...,4d,) €
X5 (F) saturated if there exists a triangulation of the (¢, 'k )-module D, (r) with param-
eter (d1,...,d,) (cf. §2.1). Note that, if x is crystalline strictly dominant with pairwise
distinct Frobenius eigenvalues, then x is saturated if and only if z is noncritical (cf. §§2.2,

2.3). Recall also from §2.1 that if z is saturated and if (dy,...,4,) € T2, then z € UZ (7).

Lemma 3.12. Letx = (1,01, ..., 0,) € XL (F) withw(z) = 0y for some k= (k;;)1<i<nr ks €

(zn)Hom(KL) - Assume that:

(3.18) kri = ki > K Kolval (81(ok) -+ - 6i(w))

fori e {l,....n—1}, 7 € Hom(K,L). Then x is saturated and r is semi-stable. If
moreover (01, ...,0n) € Ty, then v is crystalline strictly dominant noncritical.

Proof. By [34, Th.6.3.13] and [14, Prop.2.9] the representation r is trianguline with pa-
rameter (67, ...,d,) where 0} = 8;250 1078 for some w = (Wr)r kst €W =Tl ket S
As Diig(r), and hence /\%zk(z) KDrig(r), are p-modules over Ry, x which are pure of slope
zero (being étale (¢, ' )-modules), it follows that for all :

1< |6} (k) -+ ()|

Since &) (wk) - - - 0j(wk) = b1 (wk) - - - 0i(wk) - [T, HT(T(wK)kT»wT’lU)*kT’j) we obtain:

(3.19) va1<51(wK) a (5i(wK)) > Gk 2 D (ke = ki)
J= T

We now prove by induction on ¢ that w;1(i) =i for all 7. The inequality (3.19) for i = 1
gives val(d0;(wg)) > ﬁ > r (k1 =k, -1()- But assumption (3.18) with ¢ = 1 implies
val(01(wk)) < ﬁ S (k1 — kry) for 5 € {2,...,n} which forces w-'(1) =1 for all 7.
Assume by induction that w;!(j) = j for all j <7 — 1 and all 7. Then (3.19) gives:

Val((sl(wK) I 5,L<’WK)) Z ﬁ ;(k},i — kT,w;l(i))

and again (3.18) implies val(0;(wk) - - - 6;(wk)) < ﬁ > (kir —kj,) for j e {i,...,n}
which forces w1(i) = i for all 7. We thus have (dy,...,d,) = (d7,...,d,) which implies
that the point x = (r,01,...,0,) is saturated. Since 0 is strictly dominant, we obtain
that r is semi-stable by the argument in the proof of [18, Th.3.14] (see also the proof of
[30, Cor.2.7(i)]). By a slight generalisation of the proof of Lemma 2.1 (that we leave to
the reader), we have §; = zXiunr(yp;) where the ; are the eigenvalues of the linearized
Frobenius @@l on the Ky ®q, k(z)-module Dy(r) := (By ®q, 7)9%. If in addition
(01,...,0,) € T, then it follows from Remark 2.11 that @;¢; ' # p 5@l for 1 < <
J < n and the argument of [18, Th.3.14], [30, Cor.2.7(i)] then shows that the monodromy
operator N on Dg(r) must be zero, i.e. that r is crystalline. This finishes the proof. O

Proposition 3.13. Let © = (r,8) € XZ,(F) be a crystalline strictly dominant point
such that the eigenvalues of the geometric Frobenius on WD(r) are pairwise distinct.
Then there exists a sufficiently small open neighbourhood U of x in XZ.(T) such that the
irreducible component Zyiy(x) of U in (i) of Corollary 2.5 is defined and satisfies the
accumulation property at x.
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Proof. Recall that we have to prove that, for any positive real number C', the set of
points ' = (17,0") € Zyip(x) such that r’ is crystalline with pairwise distinct geometric
Frobenius eigenvalues on WD(7') and 2’ is noncritical with w(z") = i strictly dominant
satisfying:

(3.20) kri—kripn >C
foralli=1,...,n—1, 7: K — L accumulates at x.

:(T) as in (iii) of Corollary 2.5, i.e. such that for
any open U’ C U containing x we have Zy; y(x) N U' = Zyip (). Let Zcﬁs(x) as in (i)
of Corollary 2.5, by Lemma 2.4, the space V := t( Zens(2) N Ve"*") is Zariski-open and
Zariski-dense in Lk(ZcriS(l’)), hence accumulates in Lk(Zcris<I>> at any point of Lk(ZcriS<I>>,
in particular at . We claim that it is enough to prove that the points 2’ € U as above
accumulate in U at every point of V N U. Indeed, if U’ C U is an open neighbourhood
containing z, then U’ also contains a point v € V. By the accumulation statement at
v € VNU, the Zariski closure in U’ of the points x’ contains a small neighbourhood
around v, hence contains an irreducible component of U’ containing v. But since v is a
smooth point of U’ (over L) as v € UZ(T) by the last statement of Lemma 2.4, there
is only one such irreducible component, and since v € w(Zuis(z)) N U C Zyi (),
we see that this irreducible component must be Zi;(x). Thus the Zariski closure in
U’ of the points 2’ always contains Z,; y/(x). This easily implies the proposition since
Ztri,U’ (.Z') = Ztri,U(x> nu'.

Since UL}(T) is open in X\(T), it is enough to prove that the crystalline points 2’ in
U N UL(7) satisfying the conditions in the first paragraph of this proof accumulate at
any crystalline strictly dominant point z of U N UL} (7). The condition on their Frobenius
eigenvalues is then in fact automatic by Remark 2.11. Shrinking U further if necessary,
we can take U to be contained in some quasi-compact open neighbourhood of z in X (7),
and thus we may assume that for ¢ € {1,...,n} the functions y = (ry, (0y1,...,0yn)) —
dy,i(wk) are uniformly bounded on U. Hence by Lemma 3.12 we may assume that C' is
sufficiently large so that the points 2’ € U N UZL(F) with w(z) = d) algebraic satisfying
(3.20) are in fact also automatically crystalline noncritical. Changing notation, we see
that it is finally enough to prove that the points 2’ € UZ(T) satisfying (3.20) for C big

enough accumulate at any crystalline strictly dominant point = of ULL(T).

Let U be an open subset of z in X[

We now consider the rigid analytic spaces S,, SP(F) appearing in the proof of [14,
Th.2.6] (to which we refer the reader for more details; do not confuse here S,, with the
permutation group!). In loc. cit. there is a diagram of rigid spaces over T;":

5°(7)
)/ Xs

where 7 is a G” -torsor and g is a composition SP(7) — SPadm — Sadm 3 S where
the first and last maps are open embeddings and the middle one is a GL,-torsor.

Ui

tri

Let us choose a point # € 7='(z). As 77 is a G"-torsor, it is enough to prove that
the points in SY(7) satisfying (3.20) accumulate at . The same argument shows that it
is enough to prove that the points of S, satisfying (3.20) accumulate at g(Z). But the
morphism S,, — 7" is a composition of open embeddings and structure morphisms of

geometric vector bundles (compare the proof of [30, Th.2.4]). It follows that ¢(Z) has a
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basis of neighbourhoods (U;);e; in S, such that V; := w(U;) is a basis of neighbourhoods
of w(z) in W} and such that the rigid space U; is isomorphic to a product V; x B of rigid
spaces over L where B is some closed polydisc (compare [18, Cor.3.5] and [30, Lem.2.18]).
Write w(z) = dy, it is thus enough to prove that the algebraic weights 0 € W} satisfying
(3.20) accumulate at dy in W7, which is obvious. O

We are now back to the global setting of §3.2. Similarly to Definition 2.12, we say
that a union X of irreducible components of an open subset of Xi(7,) = I1,es, Xii(7)
satisfies the accumulation property at a point z € X if, for any positive real number
C > 0, X contains crystalline strictly dominant points ' = (x},),eg, with pairwise distinct
Frobenius eigenvalues, which are noncritical, such that w(x;) = o, with k; _; —k; ;. >

'U’Tl

CforvesS, ie{l,...,n—1}, 7 € Hom(F;, L) and that accumulate at = in X.

Proposition 3.14. Let X7 C Xz be an irreducible component and z € X5; *"(p,) be a

tri
X%p —aut

crystalline strictly dominant point. Then X

at x.

(p,) satisfies the accumulation property

Proof. Tt is enough to show that, for C' large enough, the points of X? x XX ~ a“t(pp) x U9

tri
such that their projection to X —*"(

P p,) is a point ' = (z7,)ses, of the same form as above

accumulate at any point of X7 x X ~*"(p,) x U¢ mapping to = in Xiy *"*(p,). Using
(3.12) this claim is contained in the proof of [14, Th.3.18] (which itself is a consequence

of [14, Prop.3.10]). O

Remark 3.15. It is obvious from the definition that if a union X of irreducible com-
ponents of X{i(p,) = Il,es, Xini(p;) satisfies the accumulation property at some point

x € X, then for each v € S, the image of X in X;;(p;) (which is a union of irreducible

tri
components of X5.(p,)) satisfies the accumulation property at the image of z in X (p;).

4. ON THE LOCAL GEOMETRY OF THE TRIANGULINE VARIETY

This section is entirely local and devoted to the proof of Theorem 2.13 above giving
an upper bound on some local tangent spaces. We use the notation of §2.

4.1. Tangent spaces. We start with easy preliminary lemmas on some tangent spaces.

If z = (r,6) € X{(7), we denote by Extg _(r,r) the usual k(z)-vector space of G-

extensions 0 - r — x —r — 0.

Lemma 4.1. Let x = (r,8) € X (T) be any point, then there is an exact sequence of

k(x)-vector spaces 0 — K(r) — Tro, — Extg (r,7) — 0 where K(r) is a k(x)-subvector
space of Tyo . of dimension dimy, Endk () (r)—dimy(,) Endg, (r) = n?—dimy,) Endg, (r).

Proof. 1t easﬂy follows from [37, Lem.2.3.3 & Prop.2.3.5] that there is a topological iso-
morphism O%‘E, >~ RY where the former is the completed local ring at r to the rigid

analytic variety X2 and the latter is the framed local deformation ring of r in equal char-
acteristic 0. In particular from (2.11) we have Tyo , = Homy,) (RD k(x )[5]/(52)) Then

the result follows by the same argument as in [37, §2.3.4], seeing an element of ExtéK (ryr)
as a deformation of r with values in k(z)[e]/(g?). O

Lemma 4.2. Let x = (r,0) € XD( ) be a point such that HQ(QK,T ®@7r') =0 (r' being

tri

the dual of ), then dimy() Extg (r,r) = dimy(y) Endg, (r) + n*[K : Q).
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Proof. This follows by the usual argument computing dimy,) H'(Gx, r®r’) from the Euler
characteristic formula of Galois cohomology using dimy,) H(Gk, r®r’) = dimy,) Endg, (r)
and dimy,,) H*(Gx,r @ r') = 0. O
Remark 4.3. Lemma 4.2 in particular holds if x is crystalline and the Frobenius eigen-

values (¢;)1<i<n (see Lemma 2.1) satisfy goigojl =+ q for 1 <i,7 < n. In particular it holds
if x is crystalline strictly dominant very regular (cf. Definition 2.10).

We now fix a point z = (r,0) € X;(F) which is crystalline strictly dominant very
regular and a union X of irreducible components of an open subset of X_.(F) such that
X satisfies the accumulation property at x (Definition 2.12). It obviously doesn’t change
the tangent space Tx, of X at x if we replace X by the union of its irreducible compo-
nents that contain x, hence we may (and do) assume that x belongs to each irreducible

component of X.

Lemma 4.4. There is an injection of k(z)-vector spaces Tx , — Txo,,..

Proof. The embedding X < X.(F) < XY x T induces an injection on tangent spaces
(with obvious notation):

TX,:B — TxQ,r D TT£L76'
We thus have to show that the composition with the projection Tyo, & T7rs — Txo,

remains injective. Let ¥ € T, which maps to 0 € Tyo,, and thus a fortiori to 0 in

ExtéK(r, r) via the surjection in Lemma 4.1. We have to show that the image of ¢ in
T7rs is also 0. We know that the image of v in Tyyn o) is zero since the Hodge-Tate
weights don’t vary (that is, the d, ;7 below are all zero, see the beginning of §4.2). To
conclude that the image in T7» 5 is also 0, we can for instance use Bergdall’s Theorem
4.7 below (which uses the accumulation property of X at x) together with an obvious
induction on . U

Lemma 4.5. Assume that the k(x)-vector space image of Tx . in ExtéK (r,r) has dimen-
ston smaller or equal than:

dhnk@)Exta{Oyr)——dx——(U(:(&Jn(né_])~—lgﬁuﬁ).

Then Theorem 2.13 is true.
Proof. From Lemma 4.4 and Lemma 4.1 we obtain a short exact sequence:
(4.1) 0 — K(r)NTxo — Tx. — Extg, (r,7).

Hence the assumption implies:

nin—1
dimk(x) TX,a: < dimk(x) K(T) + lg(wx) — dx + dimk(z) EXtéK (7”, 7“) — [K : @p]<2)
But from Lemma 4.1, Lemma 4.2 and Remark 4.3 we have:
nin—1
dimy K(r) + 1g(w,) — dy + dimy(y) Ext(le(r, r)— K : Qp](g) =
+1
gmg—@+#+mwgﬁqz)
which gives Theorem 2.13. U
n(n—=1)

We will see below that d, correspond to the “weight conditions” and [K : Q)]

lg(w,) correspond to the “splitting conditions”.
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4.2. Tangent spaces and local triangulations. We recall some of the results of [4]

that we use to prove a technical statement on the image of Ty, in ExtéK (r,7) (Corollary
48).

We keep the notation of §4.1, in particular x = (r,8) = (r,61,...,0,) € X4(T) is a
crystalline strictly dominant very regular point and X is a union of irreducible components
of an open subset of XI:(7), each component in X satisfying the accumulation property
at z. Taking a look at [4, §§5.1,6.1], it is easy to see from the properties of X:(T) and
from Definition 2.12 (together with the discussion that follows) that one can apply all
the results of [4, §7] at X and the point x (called the “center” and denoted by x, in loc.
cit.). We let w, = (wWyr)rksr € [Ir.xer, Sn be the Weyl group element associated to x
(§2.3).

Recall that Diig(r) is the étale (¢, 'x)-module over Ryy),x = k(x) ®q, R associated
to r. Note that ExtéK (r,r) = Ext%%FK)(Drig (1), Dyig(r)) where the right hand side denotes
the extension in the category of (¢, 'k )-module over Ry x (see [2, Prop.5.2.6] for K =
Q,, the proof for any K is analogous). We write w(z) = 0k for k = (k;;)1<i<nr k1 €
(Zm)Hom(K.L) | Let & € T, seeing the image of ¥ in Extg_(r,7) as a k(z)[e]/(¢?)-valued
representation of Gx, we can write its Sen weights as (k.; + £d;; 7)1<i<n.r k1 for some
dri € k(z). The tangent space Tyyr w(x) to W at w(z) is isomorphic to E(z)5:Qlm and
the k(z)-linear map of tangent spaces dw : Tx , — Ty, w(x) induced by the weight map
w|x sends U to the tuple (d;;7)i1<i<n.r k. The following theorem is a direct application
of [4, Th.7.1].

Theorem 4.6 ([4]). For any v € Tx, we have drj5 = d -1y for 1 < i < n and
T: K L.

Let ¥ € Tx,, we can see ¥ as a k(z)[e]/(¢?)-valued point of X, and the composition:

Spk(z)[e]/(e?) —5 X — XTi(r) — T7"

gives rise to continuous characters 0;5 : K* — (k(z)[e]/(e?))* for 1 < i < n. The
following theorem again follows from an examination of the proof of [4, Th.7.1].

Theorem 4.7 ([4]). For any v € Tx, and 1 < i < n we have an injection of (¢,I'k)-
modules over Ry 2),x = k(z)[e]/(e?) ®q, Rik:

R e (Oredas e+ 8ir) = Dig(Nugayepyes) = Ay, o) Dota(79)

where the left hand side is the rank one (¢, 'k )-module defined by the character 61 3025 - - - 6
(134, Cons.6.2.4] ) and where ry is the k(x)[e]/(e?)-valued representation of Gx associated
to U.

From [2, Prop.2.4.1] (which readily extends to K # Q,) or arguing as in §2.2, the
(¢, 'k )-module Dyiy(r) has a triangulation Fil, for @ € {1,--- n}, the graded pieces
being:

k _ k _
(4.2) Ri(z), Kk (z wy 1(1)unr(<p1)), oo Rie) i (z wj 1<n>unr(g0n))
where k-1 == (K, ,-1))r k1 (see (2.1) for 2ki). Note that we have:
(4.3) 5i(2) = 2 St (2 Ounr ().

31

1,0



For 1 <i < n we let Dyg(r)=" := Fil; C Dyie(r), and we set Dyg(r)=" := 0. We thus have
for 1 <3 <n:
i i— k -1,
81, Diig(r) := Drig(r)='/ Drig(r)=""" = Riw),x (’Z o “)unr((pi))-

For 7 : K < L we fix a Lubin-Tate element ¢, € Ry x as in [34, Not.6.2.7] (recall
that the ideal ¢, Ry k is uniquely determined). If k := (k;);. k1 € ZHom(K L), we let
t5 =11 ks tF7. We set for 1 < i < mn:

Silk,ws) =Y (k; — k1) € ZEg"Y

Wy
J=1

(where nonnegativity comes from k.; > k;;1 for every ¢,7) and we can thus define
trillkws) € R, . In particular we deduce from (4.3) (and the properties of the ¢,):

(4.4) Ri(z), k(01 -+ 6;) = rilkowe) /\;?‘k(:c),}( Drig(r)gi — /\%R(ZLKDrig(T).
We consider for 1 < i < n the cartesian square (which defines V;):

EXt%‘Per) (Dﬁg(r)7 Drig(r)) - EXt%so,FK) (tzi(k’wz)Drig(T)§i7 Drig@"))

J

v, Exct{,,p,e) (£700) Dygg (1)<, Dyge(r) <)

where the first horizontal map is the restriction map and where the injection on the right
easily follows from the very regularity assumption (Definition 2.10). Equivalently we
have:

(4.5)
Ve 2 e (Extly o (Dig(r), Dag(r)) — Extlypy (8500 D)%, Disg(r)/ Dag(1) <) )

where the map is defined by pushforward along Dyig(r) — Dyig(r)/Drig(r)=" and pullback
along tZitkws) Do (r)ST 5 Dy (r).

Corollary 4.8. The image of any ¥ € Tx, in Extg (r,r) = Ext(@ 1) (Drig(7), Drig(1))
isin Vi O ---NV,_1 (where the intersection is within Ext(%FK)(DHg( 1), Drig(7)) ).

Proof. Note that ViNnVon---NV, =ViNVan---NV,_1. Let ¥ € Tx ,, ry the associated
k(x)[e]/(e?)-deformation and see Dyig(r7) as an element of EX'C%@,FK)(Dng(T) D,ig(r)). We
have to prove that the image of Dig(rg) in BExt(, p ) (#%1%%) Dy (r)<*, Dysg(r) / Dyig (1)<
is zero for any 1 < i < n (see (4.5)). The proof is by induction on ¢ > 1. The case
i = 1 follows immediately from Theorem 4.7 and (4.4) (together with Definition 2.10).
We prove that the statement for ¢ — 1 implies the statement for 1.

So, assume 7 > 2 and that the image of D, (r7) in:

Bt {y o) (17710 Dusg (1) 5", Drig (1) / Disg (r) =)

is zero. Then by Corollary 4.17 the image of D, (1) in:

EXt%(p,FK) (tzi(k’wI)Drig (T)Si_la Diig (T)/Drig (T>Si)
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is also zero. From the exact sequence:

0 = Bxtl, p,o) (150 gr, Dy (1), Dusg(r)/ Disg (r) <) —
EXt%@,FK)(tZi(kww)Drig(T)Q Diig(r)/ Drig(r ) ) -
EXt%(p,FK) (tzi(sz)Drig(r)Sl_lv Drig(r)/Drig(r)Si)

(where the injectivity on the left follows from Definition 2.10), we see that the image of
Drig(rs) in Ext(, ) (tzi(k’wI)Drig(T)— Dig(1)/ Dyig(r )<Z) comes from a unique extension:

Disg(r9)V € Bxtl, p o) (870U gr, Dysy (1), D (1) Drsg(r)=").
We thus have to prove that Drig(rg) ) =0.

The twist by the rank one (¢, 'x)-module /\Rk( )KDrig(r)gi*1 is easily seen (by ele-
mentary linear algebra) to induce an isomorphism:

(4.6) Bxt{, ) (£%E“gr, Drig(r), Dyg(r)/ Drig(r) <) —>
Ext o) (£ A Drg(r) =", (Drig(r) Disg (1) =) A (N Drig(r)<171))
where we write A" Dy, (1) for /\kk(x),KDrig(T) and where (Dyig (1) / Dyig (1)) AN Dyig (1) =071)
stands for the quotient:
(Dasar) A (N7 Drsg(r) =)}/ (Dasg ()= A (N Dy (r)57)) =2
(Drig(r) A (N Drig(r)<'71) )/ A Dy (1)<

(here, Diig(r)A(A"™ Dyig(r)=") and Diig(r) =" A(A"" Dyig(r)=""") are seen inside A’ Dyig(r)).
Moreover the injective map A ! Dy (r)S71 — AT1Dy, (1)< still induces an injection
(using Definition 2.10):

Extly.r o) (£7%) A Drig(r)=', (Drig(r)/ Disg(r) =) A (N Dyig(r) <)) =
Bt (15054 A Dig(r)= (Do) D)) A (N Dyglr))).
Denote by:
(4.7) Diag(rs)? € Ext{,p) (70" A" Diag(r)<, (Dig (r)/ Dsg (r)=') A (N Disg (r) <))
the image of D,ig(r7)@ (using the isomorphism (4.6)). It is thus equivalent to prove that
Dyig(r5)® = 0. Note that:
(48) (Dug(r)/Dusg(r)=) A (N Digg(r) =) 2 (D) A (N7 D (r)=)) ] A Digg (1)

For 1 <i < n, we have a k(z)-linear map Extg, (r,r) = Extg, (A7 Agar) defined
by mapping a k(x)[e]/(?)-valued representation of Gx to its i-th exterior power over
k(x)[e]/(?). This induces an Ry, (2),k-linear map:

EXt{,, 1) (Drig (1), Drig(r)) — Ext{,,p ) (A Dusg (1), A Dysg (1)),
Let Dyg(A'rg) € Bxti, ) (ADiig(r), A'Dyig(r)) be the image of Dyg(ry). The pull-back
along A'Diig(r)S" < A'Diig(r) sends Dyig(A'r3) to an element in Ext, 1y (A" Diig(r)=, A" Dyig (7).
Elementary linear algebra (recall €2 = 0!) shows this element in fact belongs to:

Ext{, ) ( A Daig(r) =, Dasg(r) A (A Dygg(r) <))
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(which embeds into Ext(, ) (A’ Drig(r)<', A’ Dyig(r)) again by Definition 2.10). The push-
forward along:

Diig(r) A (N Drig(r)=') = (Duig(r) A (A Dyig(r)="))/ A" Drsg(r) ="

now gives by (4.8) an element in:

Extln ) ( A Ditg(r)=, (Disg(r)/ Desg(r)=") A (N7 Dy (1) <))

and further pull-back along t¥(w2) AT D, (7)S% < ADy, (1)< finally gives an element:

(4.9) Dig(A'rs) € Bxt{,p, oy (870" A Dy (1)<, (Diig (1) Dasa (r) <) AN Disg (r) <)),

Now, again manipulations of elementary linear algebra show we recover the element
Diig(r5)® of (4.7), that is, we have Diyy(A'rg) = Dyg(15) .

But we know from Theorem 4.7 (using (4.4) and Definition 2.10) that the image of
Diig(A'rg) (by pullback) in Ext, (tzi(k’“’x) N Dyig(r)=", /\iDrig(r)) actually sits in:

Bxt{y g (%) A Dig(r)=', A D))

(in fact even in the image of Ext% (tZilowa) AT D (r)SE #Rikws) AT D (r)SH). In

N ' oK)
particular its image D,ig(A'r5) in:

EXt%(p,FK)<tZi(k’ww) N Drig(r)gi’ (Drig(r) A (Ai_lDrig( ) ))/ N Diig(r )<Z)

must be zero. Since Dyig(Ary) = Diig(r5)@, we obtain Dy, (r5)@ = 0. O

4.3. Proof of the main local theorem. We compute various dimensions and finish
the proof of Theorem 2.13.

Seeing an element of Extg,_(r,r) as a k(x)[e]/(c?)-valued representation of G, we can
write its Sen weights as (k;; + €dr;i)1<i<nr: ke for some d,; € k(z). We let V be the
k(z)-subvector space of Extg_(r,r) (or of Ext%%FK)(Drig(r), D,ig(r))) of extensions such
that d,.; = dva;,IT(i) forl<i<nandrt: K — L.

Proposition 4.9. We have dimy ) V = dimy, ExtéK (r,r) — d,.

Proof. The Sen map ExtéK (ryr) = Extaa’FK)(Drig(r), Dyig(r)) — k(2)E@I" sending an
extension to (dr;)1<i<n,r k1 is easily checked to be surjective (by a dévissage argument
using Définition 2.10, we are reduced to the rank one case where it is obvious). The
k(x)-subvector space of k(z)E:@Im of tuples (dr;)1<i<n.r- K(_>L such that d,; = d

T, W, T(Z)
for 1 <i<nand7: K < L has dimension [K : Q,|n — d, (argue as in the beginning
of the proof of Lemma 2.7). The result follows. U

Recall that a (¢, 'k )-module D over Ry, k is called crystalline if D[1/ 1. gz t-]"¥
is free over Ky ®q, k(x) of the same rank as D. If D, D" are two crystalline (¢,'x)-
module over Ri(z),k, one can define the k(x)-subvector space of crystalline extensions
Ext...(D,D'") C Ext%%FK)(D,D’). Note that Extl. (-,-) respects surjectivities on the

CI'IS
rlght entry (resp. sends injectivities to surjectivities on the left entry) as there is no

Ext?,,, see [3, Cor.1.4.6].

cris?
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Lemma 4.10. For 1 <i{ </ <n we have:

dimy ey Ext{, p,o (1, Deg () /(£70)), ng< )/ Diig(r)=") =
S e fe+ 1, n}w ki) < wk(0)}.

T: K—L

Proof. 1t follows from Proposition 4.16 below (applied with (i,¢) = (i,7) and (i,¢) =
(1 —1,4)) together with the two exact sequences:
§i> SN

0 = Ext{, 1) (1, Drig(r)/(£%®")), Dysg(r)/ D (1)
EXt () (Dia(r) /(5 0), Dysg(r)/ Disg (1) <) —
Extly o) (Drig(r) <71/ (85 00)) Doy (1) / D (r) =),

0 — Extey, (griDrig( )s Drig(r)/ Dyig(r)= ) — Extey (DrfglaDrlg<T)/Drig(r)§i) —
Bty (Drig(r>gi_1= Drig(r)/DrigO")Si)

(injectivity on the left following again from Definition 2.10), that we have:

(4.10)  Ext{, ) (g6 Dug(r)/(£70)), Dysg(r) / Drig(r) =) =
Extds, (81, Drig(7), Drig(r)/ Drig(r)=").

By dévissage on Dyig(r)/Dyig(r)=¢ using that Ext_ ;. respects here short exact sequences
(by Definition 2.10 and the discussion above), we have:

dimyy )Extms<griDrig(r), Diig (1) Dyig (1)< ): > dimy Ext}:ris(griDrig(r),grilDrig(r)).
i1=0+1
The result follows from (4.20) below. 0

Proposition 4.11. We have:

. n(n—1
dimy(, (Vl NVen---nN Vn_1> = dimy () Extg, (r,r) — ([K : Qp](Q) — lg(wx)>.

Proof. To lighten notation in this proof, we write Dy, instead of Dy, (r) and drop the
subscript (¢, k). We first prove that, for 1 < i < n, we have an isomorphism of k(z)-
vector spaces:

(4.11) vin---nViy/Vin---NV; =
EXt (gl" Drlg7 Drlg/Dr1g> /Eth (griDrig/(tZi(k’wz ) I‘lg/Drlg)

where Vi N ---NV,_; := Ext! (Drig, Drig) if i = 1. We first define the map. We have the
following commutative diagram:

0 0 0
0 — Ext!(gr, Drg/(t%i0we)), Dysg /DY) — Bxt!(D5./(t%ikwe)), Dy /DSY) — Bxt! (D52~ /(t%i(kwa)), Dy /DET) — 0
0 — Ext! (gr; Drig, Drig /D5 - Ext! (D5}, Drig/D5) - Ext!(D5. ™" Drig /D3 -0

0 — Bxt!(t¥i0ova)gr, Dyjg, Drig/D5L) = Ext!(t¥i0we) DI Dyyy /D
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where the injections on top and left and the surjections on the two bottom lines all
follow from Definition 2.10, and where the surjection on the top right corner follows from

Corollary 4.18 below. Denote by F; the inverse image of Ext' (Dﬁg’;1 J(Fitewa)y D/ Dng)

in Ext (leé, D/ Drlg) then we have an isomorphism:

(4.12)  Ext' (gr,Duig, Drig/ D5y /Ext’ (g1, Dg/ (£70")), Dy /Drlg)
Ez/EXt ( rlg (tz i{kiwe) ) rlg/Drlg)

We consider the composition:

(4.13) Vin---NViy < Ext'(Dyg, Dig) — Ext' (D3] Dng/Dng)

rig»

Ext! (D3, Dug/D5) /Ext! (D52 /(t% %)), Dy DEL)

and note that the image of Vi N ---NV,_; falls in Ei/Extl( He (¢ dow)y ng/Drlg)
Corollary 4.17 below. If v € ViN---NV,_; is also in V;, then its image 1n Ext (D;;, Dng/Dmg)
maps to 0 in Ext (¢¥:(w=) DS D, /D5)), hence belongs to Ext' (D5,

rig» rig (tz il ) rlg/Drlg)
By (4.12), we thus have a canonical induced map:

(4.14) Vin---NViy/Vin---NV; —
Ext" (gr, Drig, Drig/ Dy ) /Exct" (g1, Daig/ (8%0)), Dyse/ D5 ).

Let us prove that (4.14) is surjective. One easily checks that Ext'(D,,/ D;; ' Dy C

ViN---NV;_; and that the natural map Extl(Drig/Dflé ! , Dyig) — Ext! (gr Dy, Dng/Dng>
is surjective (again by Definition 2.10). This implies that a fortiori (4.14) must also be
surjective. Let us prove that (4.14) is injective. If v € ViN--- NV, maps to zero,
then the image of v in Ext (D;;Dng/Dflgl) belongs to Extl(Drlg (tZillows)) mg/Dng)

by (4.12), i.e. maps to zero in Ext! (> wI)Dflgz,Dng/Drlg) i.e. v € V; by (4.5), hence
veVin---NV.

We now prove the statement of the proposition. From (4.11) and Lemma 4.10, we
obtain for 1 < i < n:

dimk(m) (%m"'m‘/i—l/‘/lm"'m‘/i) =
K:Qln—i)— > |[{Geli+1l,....n}w;l() <w;t(i)}| =

7: K—L
G e i+, n}upl() <wii()})
7: K—L

Summing up dimg)(ViN---N Vi /Vin---NV;) for i =1 to n — 1 thus yields:

dimg(e) Ext' (Dyig, Drig ) — dimy(ey (Vi N -+ N V,2) =

KZL){1<21<22<n w, H(ih) < wy }(iz)}.
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But [{1 < iy <iz <n, wyk(ih) < wyl(in)}| = "5 —lg(w, ;) (see e.g. [32, §0.3]), and
thus we get:

~1
dimyay(Vi N -+ NVooy) = dimyge Bxt (Duig, Disg) — > (W—lg(wx,f))

T: K—=L
. n(n—1
= dimy Ext! (Drig, Drig) — ([K : Qp](2> — lg(wz))
which finishes the proof. U
Proposition 4.12. We have:
: . n(n—1
dimga) (VN0 (Vi -+ N Vi) = dimyg) Bxctg, (r,r) — do — ([ : Qp](z) —lg(w,)).

Proof. Consider the following cartesian diagram which defines W;:

Ext%W’FK)(Drig(r), Drig(r)) — Ext%%FK)(Drig(r)Si, Drig(r)> ,

| J

Wi Ext(, ) (Drig ()=, Disg (1) <)

then W, C V;, hence Wi n---NnW,.: C VinNn---NV,_;. In fact, Wy N---NW,_1
is the k(x)-subvector space of Ext%%FK)(Drig(r), D, (7)) of extensions which respect the
triangulation (Dyig(1)%)1<i<n on Dyig(r). A dévissage argument (using Definition 2.10)
that we leave to the reader then shows that the composition:

Wwin---NW,_, < Ext% )(Drig(r), Drig(r)) — k(m)[K:QP}”

QOJ—‘K

(where the second map is the Sen map in the proof of Proposition 4.9) remains surjective.

A fortiori, Vi - NV — Ext%%FK)(Drig(r), Dyig(r)) — k(x)EQIn i5 also surjective.

By the same proof as that of Proposition 4.9 we get:
dimyie) (VN (Vi M-+ N Vo)) = dimgy (Vi V-0 Vi) = dy
and the result follows from Proposition 4.11. O

Corollary 4.13. The image of T'x . in Exté;K(r, r) has dimension < dimyy) ExtéK (ryr)—
do — ([K : Q)" — Ig(w,)).

Proof. 1t follows from Theorem 4.6 that the image of any v € Tx, in ExtéK (r,7) is in

V. It follows from Corollary 4.8 that the image of any v € Tx, in ExtéK(r, r) is also in
ViNn---NV,_1. One concludes with Proposition 4.12. O

By Lemma 4.5 this finishes the proof of Theorem 2.13.

Remark 4.14. The collection of (p, ['x)-submodules (t¥%w=) Dy (r)59), i, of Dyig(7)
plays an important role in the proof of Corollary 4.13. One can wonder if they “globalize”
in a neighbourhood of the point z in X7 Note that those for which ¥;(k,w,) = 0 do by
[4, Th.A].
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4.4. Calculation of some Ext groups. We prove several technical but crucial results
of Galois cohomology that were used above.

For a continuous character 6 : K* — L* and 7 : K < L, we define its (Sen) weight
wt,(0) € L in the direction 7 by taking the opposite of the weight defined in [4, §2.3].
For instance wt,(7(2)*) =k, (k. € Z).

Lemma 4.15. Let 7: K < L and k; € Zo.

(i) For j € {0,1} we have Ext{, (RL x5y Rrox (8)/(tF) ) # 0 if and only if wt,(0) €
{=(k: —1),...,0} and we have Ext (oK) (RL K,RL K( )/ (tF )) =0 for all §.

(ii) For j € {1 2} we have Extjer (RL x(0)/(tF ),RL,K) # 0 if and only if wt,(0) €
{=k;,...,—1} and we have EX’E((J%FK)(RL,K(&/@ﬁT),RL,K) =0 for all 9.

(iii) When either of these spaces is nonzero, it has dimension 1 over L.

Proof. The first part of (i) is in [4, Prop.2.7] (and initially in [20, Prop.2.18] for K = Q,)
and the second part in [40, Th.3.7(2)]. The second part of (ii) is obvious, let us prove
the first. We have an exact sequence:

(415) 0— RLK((S_I) — RL,K(T(Z)_kTé_l) — RL’K(T(Z>_kT(5_1)/<tf_T) — 0.

The cup product with (4.15) yields canonical morphisms of L-vector spaces:

Ext(, ro (Ros/(857), R sc(7(2) 5071 J(#5)) = Bxtl,p o (Ros/(t5), Rk (671))
Ext(, o) (Reac/(87), Re(r(2) 6 /(t8) = Bxt,po) (Resc/ (), Rex(67).

There is an obvious isomorphism of L-vector spaces:
EXt(()@,rK)<RL,K,RL,K(T(Z)_kaS_I)/(tﬁT)) = EXt((]Lp,FK)(RL,K/@iT)aRL,K(T(Z)_kT(S_l)/(t]-:T))

and an analysis of the cokernel of the multiplication by ¥~ map on a short exact sequence
0 = Rpr(r(z) ™o Y/(tF) = &€ - Rpx — 0 of (p,T'x)-module over Ry  yields a
canonical morphism of L-vector spaces:

Exctiy r) (Ree, Rec(1(z) 5671 /(#5)) = Bxtiy o (R /(87), Rese(r(2) 67 /(t)).

Thus we have canonical morphisms of L-vector spaces:

(A6t 1) (Rise, Rese (7(2) 57071 /(#57)) = Ext{, p o) (R /(#57), Rp i (571))
EXt{, o) (R Reac(7(2) 7671 /(57)) — Bxtl,po (Reac/(857), Rex(67)).

It is then a simple exercise of linear algebra to check that the morphisms in (4.16) fit
into a natural morphism of complexes of L-vector spaces from the long exact sequence of
Ext{%FK)(RL K, ) applied to the short exact sequence (4.15) to the long exact sequence
of Ext{%FK)(-,RLK(é_l)) applied to the short exact sequence 0 — tF" R, x — Rpx —
Rrx/(t") — 0 (note that there is a shift in this map of complexes). Since all the
morphisms are obviously isomorphisms except possibly the morphisms (4.16), we deduce
that the latter are also isomorphisms. Twisting by Ry k() on the right hand side of
(4.16) and using (i) applied to the left hand side, the first part of (ii) easily follows.

Finally (iii) follows from [4, Prop.2.7] and from the previous isomorphisms (4.16). O
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Recall that for i,¢ € {1,...,n} we have an exact sequence:
(4.17) 0 = Extl, p(Drig(r) /70" Dygy (1)<, Dysg(r) / Drig(r) =) —

EXt(p.r ) (Drig(r) <", Drig(r)/ Drig(r) =) —
Exctl, p (1%0%%) Dyyy ()<, Dygy (1) Dy (r)=")

where the injection on the left follows as usual from Definition 2.10.

Proposition 4.16. For 1 <i < €<n, we have an isomorphism of subspaces of
EXt%@,FK)(Drig(T)Qa Dysg(r )/Drlg() )

EXt(y ) ( Drig (1)< /170 Dy (1)<, Dy (1) / Dyig(r) =)
EXt s ( Drig (1)<, Diig () / Diig () =)

Proof. To lighten notation, we write D;;, instead of Drlg( ) and drop the subscript (¢, k).
By the exact sequence (4.17) and a dévissage on Dr—lg and D/ Drlg (recall from Definition
2.10 and the discussion preceding Lemma 4.10 that Ext.

here), it is enough to prove (i) that the composition:

Extly, (D52, Dig/ Dig ) € Ext' (D3, Dusg/D5y) — Ext' (£ D5} Dy / D)

rig» rig»

oris T€spects short exact sequences

is zero and (ii) that:
Eth (grg/ Drig/(tzz(k,w%))7 grg// Drig) EXtCI‘lS (gl"e/ Drjg7 gre// Drig)

(inside Ext'(gry Dyig, grpn Dyig)) for all £/, " such that ¢ < £ and ¢ > £+ 1.
We prove (i). The map clearly factors through:

Extly, (£%0") D5!, Dy / D51

cris rig’

let us prove that the latter vector space is zero. By dévissage again, it is enough to prove
that:
Extly, (%0 gry Dysg, g8 Drig) = 0

for ¢/, 0" such that ¢/ < ¢ and ¢” > £+ 1. It is enough to prove that, for all 7: K < L, we
have wt, (t2¢&ws)or, D) > wt, (gry Dyg) (using Definition 2.10 when these two weights
are equal). This is equivalent to:

¢
(418) Z(kTJ - kT,w;}T(j)) + kT,w;}(Z’) 2 kT,w;}T((”)

j=1
which indeed holds for ¢, ¢" as above because k;1 > ko > -+ > k.
We prove (ii) From (i) we have in particular an inclusion:
(4.19)  Bxtl (erp Dug, 81 Drig) € Exct' (gry Dusg/ (t%®")), grpu Dyig )
It is an easy (and well-known) exercise that we leave to the reader to check that:
(4.20) dimyy) Extlg, (gré,Drig, gré,,Drig) = ‘{7’ t K — Low, 1({") < w;i(ﬁ’)}‘
On the other hand, from (ii) and (iii) of Lemma 4.15, using (4.18) and Ry, x (8)/(tk~tke) =
Rrx(0)/(t5) x Ry x(8)/(the) if T # o, we deduce:
(4.21)  dimy,) Extl(gré,Drig/(tE‘(k’“’”)),grg,,Drig> = ‘{7 : K — Law (") < w;i(ﬁ’)}‘
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(4.19), (4.20) and (4.21) imply Ext’ . (gry Dyig, 81 Dyig) = Ext' (gry Dyig / (17%%2)), gr, Dyiy)
which finishes the proof. U

Corollary 4.17. Leti € {1,...,n}, £ € ExtaD’FK)(Drig(r), D.ig(7)) and assume that the
image of € (by pullback and pushforward) in:

Bt (£71090) Dy (1)1, Dy (r)/ D (1)<
is zero. Then the image of £ in:
Bty o) (8500 Dy ()57, Dy (1) / D (1))

1s also zero.

Proof. By Proposition 4.16 applied with (i,¢) = (i — 1,7 — 1), the image of & in
EXt%%FK)(Drig(mSZ_la Drig(r>/Drig(T)§z_l) sits in:

Exct (Desg(r) ", D)/ Dag (1)),

Hence its image in Ext%%FK)(Drig(r)Si_l, Dig(1)/ Dyig(r)=") sits in:

EXtiris (Drig (T)Sl;l? Drig(r>/Drig (T)Si) .

It follows from Proposition 4.16 again applied with (i,¢) = (i —1,7) that it maps
(0 7610 i1 EXt] g0 (P54 Dyg (1)1, Doy () D1}, g

Corollary 4.18. For 2 <1i <n we have a surjection:
Bxt{y,p (D ()= /170 Doy ()=, D (r)/ D () <7) —

EXt () ( Drig (1) 7 /£5:09) Dy () S172, Dy (1) / Disg (1))
where the map s the pullback along:

Drig( )<z l/tZ kwl)Drlg( )<i—1 N Drig( )<z/t2 kwL)Drlg( )

Proof. This follows from Proposition 4.16 (applied with (i, ¢) = (i,4) and (¢,¢) = (i—1,1))
and the fact that the map:

Ext !, (Drig(r) =%, Dig (1) / Drig(r) =) — Extly, (Drig(r) <", Dyig(r)/ Disg () )

is surjective. U

5. MODULARITY AND LOCAL GEOMETRY OF THE TRIANGULINE VARIETY

We prove that the main conjecture of [14] (see [14, Conj.3.22]), and thus the classical
modularity conjectures by [14, Prop.3.26], imply Conjecture 2.8 when 7 “globalizes” and

x is very regular.
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5.1. A closed embedding. Assuming the main conjecture of [14] and using Theorem

5.10 below we construct a certain closed embedding in the trianguline variety (Proposition
5.4).

We fix a continuous representation 7 : G — GL,(kz) as in §2.1 and keep the local
notation of §2 and §4. We also assume that there exist number fields F/F™, a unitary
group G/F™T, a tame level U?, a set of finite places S and an irreducible representation p
as in §3.1 such that all the assumptions in §3.1 and §3.2 are satisfied, and such that for
each place v € S, there is a place v of I dividing v satisfying F; = K and p; = 7. Note
that this implies in particular (2n,p) = 1 (as p > 2 and as (n,p) = 1 by the proof of
27, Th.9]). Assuming (2n,p) = 1, it follows from [19, Lem.2.2] and [19, §2.3] that such
(F/F*T,G,UP, S, p) always exist if n = 2 or if 7 is (absolutely) semi-simple (increasing L
if necessary).

We recall the statement of [14, Conj.3.22] (see §2.3 for XE.(7)).

Conjecture 5.1. The rigid subvariety Xy, **(p,) of XGi(p,) doesn’t depend on X7 and

is zsomm“phzc to Xtrl(ﬂp) = H’UGSP Xtrl(ﬂv)’

Remark 5.2. (i) By (3.12), Conjecture 5.1 is thus equivalent to X,(p) = Xz X Xm(pp)
.

(ii) The authors do not know if XtDn(pp) is really strictly smaller than X{\(,).

(iii) Finally, recall that Conjecture 5.1 is émplied by the classical modularity lifting con-

jectures for p (in all weights with trivial inertial type), see [14, Prop.3.26].

Let k := (k;)1<i<n where k; := (k). ksr, € ZHomKL) §5 such that k,; > ki1 for all i
and 7. For w = (w;)r. ks € W = [L+.xs1. Sn, denote by Wi C W[ the Zariski-closed
(reduced) subset of characters (ny,...,n,) defined by the equations:

(5.1) Whe (T ()757") = kg = kpiyy 1<i<n, 70 K< L.

For instance one always has:

(5.2) (7 W x, 2T xG) € Wi p

where x; € Wy are finite order characters. Note that Wfy ; = W[. We define an

automorphism Ju,x : T/ = T 0= (01, - . 0n) = Jwk(N) = Jwx(M1, -, 1,) by:

Jwx(My -y My) = (Zkl_k“"l(l)m, . ,zk"_kw—1<n>q7n)

which we extend to an automorphism 7,k : X5 x T* 5 X2 < T2, (r,n) = (7, 20x(n))-
We will be particularly interested in applying 7,k to points whose image in W} lies in

ok, L+
Example 5.3. Consider the case [K : Q,] = 2 (so Hom(K,L) = {r,7'}), n = 3 and
w = (wy,wy) with w, = $18981, W = S251 (81, 89 being the simple reflections in S3).

Then Wik 1, 1s the set of characters of the form:

0= (01,712, 13) = (T(Z)kT’37/(z)kT"2Xla T(2)F 21 (2)M" 9 xa, T(z)k”T'(z)kT'JX?))

where wt,(y1) = wt-(x3) and wt/(x1) = Wt~ (x2) = wt(x3). Note that there is no con-
dition on wt,(x2) (so one could as well rewrite the middle character as just 7/(z)""3y).
One has (when the 7;, or equivalently the y;, come from characters in 77):

Jux(m) = (7(2)f 17 (), 7(2) 27 (2) e, T(2)Fr (2) )
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Let U2

tri

Ui (7) Xwr Wi

w,

(1) = U (7)), then

iz is reduced (since smooth over Wy ;) and Zariski-open (but not

(7) N X2

2(7) (a union of connected components of UZ

tri

necessarily Zariski-dense) in (Xi(7) xyr Wity 1)? where (—)*¢ means the associated

reduced closed analytic subvariety. We denote by (751(?) Xwr Wi i 1, 1ts Zariski-closure,
so that we have a chain of Zariski-closed embeddings:

USL(F) sowp Wit 1 © (X(T) X Wi a 1)™ € XEh(F) sowm Wity 1, € Xm( )

tri
Proposition 5.4. Assume Conjecture 5.1, then for w € W the automorphz’sm Jwk
X2 x TP 5 X2 x T/ induces a closed embedding of reduced rigid analytic spaces over L:

Jwk Utl‘l( ) XWZ Wg,k,L — )?/t ( ) - XL:rll( )

Proof. Since UZ

tri

prove g1 (US (7) Xwe Wit ) X5

(7) Xwn Wy,

w,

11 1s Zariski-dense in Ug,(7) Xy Wiy

w

(7), i.e. that any point 2’ = (+/,4") in USL

tri

k.o it is enough to
tri (7) with
w(z') € Wi, 1, is such that g, (2') is still in X5i(7).
Recall that by assumption:
(3.12)

(5.3) X,(p) = X x Xi(p,) x U9 C X x (X5, x T, ) x U

Let ¢ € X,(p) be any point such that its image in XEH(pp) by (5.3) is (2')ves,. Write
again w for the element (w),es, € [lyes,(Ilper Sa) (that is, for each v we have the

same element w = (wr)r. koL € [Ty Sn), K for (k)ues, € [lues, ZHomEL) (ibid.), Juk
for the automorphism (i x)ves, of fnL = lves, ﬁ,’L = lves, T and (again) g, for
the automorphism id X (id X j,x) x id of Xz x (X5, x T,1) x U9. Then it is enough

to prove that J,1(y/) € X,(p) (via (5.3)). Writing v/ = (w',¢') € X,(p) C Xoo X TpL

where m’" C R.[1/p] is the maximal ideal corresponding to the projection of ¢’ in X, and
/

¢ = (1,(¢"))ves,, we have Homy, (€', Jp, (IT> =20 (] @y k(y'))) # 0 (see (3.10)) and we
have to prove (note that j,x 02,1 =1, 0 3, on T, 1 and that k(y') = k(Jux(¥))):

(5.4) Homy, (Jux(€)), Ji, (T[] @k k(y))) # 0.

From Theorem 5.10 below, it is enough to prove €’ 1 5, k(€’) in the sense of Definition
5.9 below. Since €,k (€') 7" is clearly an algebraic character of T}, by definition of 3, x, it
is enough to prove 1,(0") T, Jwk(2:,(0")) (see §5.2 for the notation) for one, or equivalently
all here, v € S,. From (5.1), we see that we can write:

5 = (0, ) and us(()) = (Fx, 2x)
where wt,(x;) = Wt (Xuw. Z) for 1 <i<mnand7: K = F; — L (compare Example
5.3). As we only care about the t, p-action, setting s,; = wt,;(x;) € L and using
usual additive notation, we can write zv(é’)]tw = (1(0")7)r s and gy x(2,(0)) |, , =
(Jux(20()) )7 Fyes . With:
1(0), = (kw;l(l) +Sr1 k1@t 82+ 1k + S +n—1)
]w,k(zv((sl>>7' = (kr,l + Sr.1, kT,Q + Sr,2 + 17 te k‘l‘,n + Srn +n— 1)

(see the beginning of §5.2). Since s,; = S =t (i) for all ¢, 7, we can rewrite:

rwr ' (n)

Zv((S/)T = (kT,w;l(l) + Srwrl(1)s k ~1(2) + Srwrl(2) +1,...,k “1(n) + 8wl (n) +n— 1)

T, Wy T,W
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hence we have 1,(0"); = w; - Jux(2,(0")), for the “dot action” - with respect to the upper
triangular matrices in GL,, p, X g, - L (see [32, §1.8]). Let us write the permutation w, on
{1,...,n} as a product of commuting cycles ¢; o - - - o ¢,, with pairwise disjoint support
supp(c;) € {1,...,n}. Let us denote by S,; C S, the subgroup of permutations which
fixes the elements in {1,...,n} not in supp(c;) and set S, ., = [I7% Spni € S,. Then,
arguing in each supp(c¢;), it is not difficult to see that one can write w, as a product:

Wr = SagSag_1 """ Sen

where the «; are (not necessarily simple) roots of the upper triangular matrices in
GL,.F, XF,- L, the associated reflections s,, are in S, ,,, and where s, 4154, - ** Say >
Sa; '+ Sa, for the Bruhat order in S, (1 < i < n —1). By an argument analogous mu-
tatis mutandis to the one in [32, §5.2], it then follows from the above assumptions (in

particular s.; = s_ Wil (i) for all ) that we have for 1 <i < n — 1 with obvious notation:

(Sapt1" " Say) - ]w,k(zv(él))T < (Sa; """ Sar) - ]w,k@v((sl))r

By definition this implies that w; - 7,k (2,("))- is strongly linked to Jux(2,(8"))- ([32,
§5.1]). As this holds for all 7, we have 2,(0") Tt, Juwx(2,(0")). O

Remark 5.5. It would be very interesting to find a purely local proof of the local state-
ment of Proposition 5.4 without assuming Conjecture 5.1.

5.2. Companion points on the patched eigenvariety. We prove that the existence of
certain points on the patched eigenvariety X, (p) implies the existence of others (Theorem
5.10). This result is crucially used in the proof of Proposition 5.4 above.

We use the notation of §3. We denote by g (resp. b, resp. t) the Q,-Lie algebra of G,
(resp. B,, resp. T,,). We also denote by n (resp. n) the Q,-Lie algebra of the inverse image
N, in B, (resp. Np in Ep) of the subgroup of upper (resp. lower) unipotent matrices of
[Tves, GLn(F3). We add an index L for the L-Lie algebras obtained by scalar extension
- ®q, L (e.g. gr, etc.) and we denote by U(-) the corresponding enveloping algebras.

For v € 5, we denote by t, the Q,-Lie algebra of the torus T, so that t = [[,eg, to.
Recall that t, is an Fy-vector space, and thus t,;, = t, ®g, L = [[,. posr to ®p, 7 L. We
can see any 1 = (1y)ves, = (Mo, Mon)ves, € prJ as an L-valued additive character
of t, and thus of t; by L-linearity, via the usual derivative action (3,1, -.,3vn)ves, —
Yves, ot M0 (€xp(t30,))i=o- Recall that the character 3u; € Fy — Sy (exp(t30))li=o
is nothing else than - . .7 7(30,:)Wts (1) € L.

In what follows we use notation and definitions from [43] concerning L-Banach repre-
sentations of p-adic Lie groups and their locally Q,-analytic vectors. If II is an admissible
continuous representation of G, on a L-Banach space we denote by I1*" C II its invariant
subspace of locally Q,-analytic vectors.

Lemma 5.6. Let II be an admissible continuous representation of G, on a L-Banach
space and assume that the continuous dual II' is a finite projective OL[K,][1/p]-module.
Let \, pu be L-valued characters of t, that we see as L-valued characters of by by sending
ny to 0. If U(gr) Que,) 1t — U(gL) Qu,) A is an injection of U(gr)-modules, then the
map:

Homy(q,) (U(QL) QU (o) A Han) — Homyq,) (U(QL) Qo) My Han)

induced by functoriality is surjective.
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Proof. We have as in [43, Prop.6.5] a K,-equivariant isomorphism:

(5.5) I = lim 1,

r<l

where each I, C II*" is a Banach space over L endowed with an admissible locally
Qp-analytic action of K,. In particular each II, is stable under U(gy) in II*". If f :
U(gr) ®ue,) A — 1I*™ is a U(gr)-equivariant morphism, the source, being of finite type
over U(gyr), factors through some II, by (5.5). Moreover the action of U(gy) on II,
extends to an action of the L-Banach algebra U,(g;) which is the topological closure of
U(gr) in the completed distribution algebra D, (K,, L) (see [43, §5]). Consequently f
extends to a U,(gr)-equivariant morphism:

fr o Unlor) ®ugy) (U(oL) Queey) A) = Ur(9L) @u, o) A — 11

where U, (by,) is the closure of U(by) in D, (K, L) and the first isomorphism follows from
A= U (br) Que,) A (as A is both finite dimensional with dense image). We deduce from
[41, Prop.3.4.8] (applied with w = 1) that the injection U(gr) ®u,) A = U(9L) @u,) i
extends to an injection of U,(gr)-modules U,(g1) ®u, (s,) A — U (91) @u, (b,) 1t- Moreover,
as U (91) ®u,6,) A and Un(gr) Qu,(s,,) 4 are U,(gr)-modules of finite type, they have a
unique topology of Banach module over U,.(g.) and every U,(gr)-linear map of one of
them into II, is automatically continuous (see [43, Prop.2.1]). We deduce from all this
isomorphisms:

Homi(q,) (U (81) Suen) A T™) = ling Homug,) (U(g2) uger) AT
= hg HOmUT(gL)fcont (Ur<gL) ®Ur(bL) )\’ HT)

where Homy, (g, )—cont Mmeans continuous homomorphisms of U, (g )-Banach modules, and
likewise with p instead of A\. By exactitude of li > We see that it is enough to prove
that II, is an injective object (with respect to injections which have closed image) in the
category of U, (gr)-Banach modules with continuous maps.

By assumption the dual II' is a projective module of finite type over OL[K,][1/p],
hence a direct summand of OL[K,][1/p]®® for some s > 0. From the proof of [43,
Prop.6.5] together with [43, Th.7.1(iii)], we also know that II, is the continuous dual of
the D, (K, L)-Banach module:

H; =D, (K,,L) Qo [K,][1/p] T,

We get that the D, (K, L)-module II is a direct summand of D,(K,, L)®*. Now it
easily follows from the results in [38, §1.4] that D, (K, L) is itself a free U, (g )-module
of finite rank. Dualizing, we finally obtain that there is a finite dimensional L-vector
space W such that the left U,(g;)-Banach module II, is a direct factor of the left U, (g )-
Banach module Homeon(U-(g) ®1 W, L) (which is seen as a left U,(gr)-module via
the automorphism on U,.(gr) extending the multiplication by —1 on g;). Since direct
summands and finite sums of injective modules are still injective, it is enough to prove
the injectivity of Homeont(U,(g1), L) in the category of U, (gr)-Banach modules with
continuous maps.

If V' is any U,(g.)-Banach module, it is not difficult to see that there is a canonical
isomorphism of Banach spaces over L:

(5.6) Homy, (g, —cont (V: Homeons (U (81), L))~ Homieon (V; L)
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so that the required injectivity property is a consequence of the Hahn-Banach Theorem
(see for example [42, Prop.9.2]). O

We go on with two technical lemmas which require more notation. Fix a compact open
uniform normal pro-p subgroup H, of K, such that H, = (N, N H,)(T, N H,)(N, N Hy).
For example H, can be chosen of the form [],c s, Hy where H, is the inverse image in K,
of matrices of GL,(Op,) congruent to 1 mod p™ for m big enough. Let Ny := N, N H,,
Ty := T, N Hp, Ny := N, N H, (which are still uniform pro-p-groups) and T,} := {t €
T, such that tNot~" € Ny} (which is a multiplicative monoid in 7},). We also fix z € T,f
such that zNyz=' C N} and we assume moreover z’alz C K, so that the elements
of 27'H,z normalize H, (as H, is normal in K,). Note that such a z always exists, for
instance take z such that zNoz~' C Ny, choose r such that H?" C 2K,z and replace

H, by ng: with this new choice we still have zNyz~t C N{.

For any uniform pro-p-group H we denote by C(H, L) the Banach space of continuous L-
valued functions on H and, if h > 1, by C (H, L) the Banach space of h-analytic L-valued
functions on H defined in [21, §0.3]. We have C(H,, L) = C(Ny, L)®C(T,0, L)®1C(No, L)
and likewise with C™™ (-, L).

Lemma 5.7. Let f € C(H,, L) such that for each left coset (:H,z~' N H,)n C H,, there
exists f,, € CW(H,, L) such that f(gn) = f,(27'gz) for g € zH,2"* N H,. Then we have:

fec" I (Ny, L)&CM(Ty0, L)@1C(Ny, L).

Proof. Representatives of the quotient (zH,z~' N H,)\H, can be chosen in Ny, whence
the above notation n (do not confuse with the n of GL,!). Restricting f to the left
coset (zH,z~' N H,)n for some n € Ny and translating on the right by n we can assume
that the support of f is contained in zH,2~' N H,. Then if g € zH,2~' N H,, we have
by assumption f(g) = F(z7'gz) for some F € C"W(H,, L). Consequently flem,=—1nm,
can be extended to an h-analytic function on zH,z"! and f can be extended (by 0) on
zH,z" "Ny = 2Noz"'T, N, as an element of:

CM(zNoz™t, )&, (T0, L)®LC( Ny, L).

We deduce that f is in the image of the restriction map (note that zNyz~! C Ny implies
NO - ZN()Z_l)Z

C™(2Noz™t, L)&,C"M (T, 0, L)®1C(Ny, L) — C™(No, L)&1.C"(T,0, L)&LC (N, L).

Now the stronger condition zNoz~" € Ng implies Ng C ZNg" 27! = (2Ngz7")P. But
by [21, Rem.IV.12] the restriction to (zNoz~")? (and a fortiori to No) of an h-analytic
function on zNyz~! is (h — 1)-analytic and we can conclude. U

If II is an admissible continuous representation of G, on a L-Banach space and if h > 1,

we denote by H(Iz the H,-invariant Banach subspace of II*" defined in [21, §0.3]. If V
is any (left) U(t;)-module over L and A : t;, — L is a character, we let V) be the L-
subvector space of V' on which t; acts via the multiplication by A. Recall that if V' is
any L[Gp]-module, the monoid T acts on VN0 via v — t-v := g, (t) X0 eng tngi-1 MotV
(v e VN, t e T, see §3.1 for dp,). This T, -action respects the subspace (II}")" of
(I1**)Mo (use that tNot ™' = Ny for t € T))).

We don’t claim any originality on the following lemma which is a variant of classical

results (see e.g. [23]), however we couldn’t find its exact statement in the literature.
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Lemma 5.8. Let I be an admissible continuous representation of G, on a L-Banach
space, A an L-valued character of tr, and h > 1. Then the action of z on (I1*")N° preserves

the subspace (Hglz)ivo = (H%}?)NO NIIE" and is a compact operator on this subspace.

Proof. Let ly,. .., be asystem of generators of the continous dual Il as a module over the
algebra O [H,][1/p]. Define a closed embedding of II into C(H,, L)®* via the map v
(g — 1i(gv))1<i<s- This embedding is H,-equivariant for the left action of H, on C(H,, L)
by right translation on functions. By [21, Prop.IV.5], we have Hgfj =TInCMW(H,, L)%,
If v e HELZD), n € Nyg and g € H, N zH,z~", we have [;(gnzv) = l;(2(z7g2)(z" 'n2)v).
Let v € Hg}g and n € Ny. As 27'Npz normalizes H, (by the choice of z) we have
w:= (z"'n2)v € H%j (see [21, Prop.IV.16]). As [;(z-) is a continuous linear form on II,
using [21, Thm.IV.6(i)] the function f,, : H, — L, g = f.(g) := li(zgw) is in CW(H,, L)
and [;(gnzv) = fo(271gz) for g € zH,z=' N H,. We deduce from Lemma 5.7 applied to
the functions f: H, = L, g — l;(gzv) for 1 <i < s that:

(5.7) 211 € (€D (No, L)B.CM (T, L)ELC(No, L))

Let v € (Hﬁ!}ﬁ)%, the space on the right hand side of (5.7) being stable under Ny (acting
by right translation on functions), it still contains z - v = 3=, Ny enge-1 020 Since 2 - v
is fixed under Ny, we deduce:

@

zov € (CUD(No, L)®CM (T, L)) © CM(H,, L)®.

In particular z - (Hgﬁg)ﬁo C (Igm)No 0 CcW(H,, L)% = (H%}?)E\VO which shows the first
statement. We also deduce:

— nNT S ®s ~ — nNT S s
2+ () € (€D (No, L)BLCM (0, L)), = C* D (No, L)@ (CM (T0, D)F).

But by [21, Prop. IV.13.(i)], we have C")(T}o, L) ~ D,(T,o, L) for r = p~*/?" where
D, (T,p,L) is as in [43, §4]. Let U,(tz) be the closure of U(ty) in D, (T}, L), then (as
in the proof of Lemma 5.6) D, (1,0, L) is a finite free U, (t;)-module ([38, §1.4]). Using
A5 Us(t) ®uy) A, it follows that (C(T,,0, L),)’, and hence C"(T, 0, L)§®, are finite
dimensional L-vector spaces. We denote the latter by W,.

We thus have z - (H%}?)f\v" C C"Y(Ny, L) @ Wy: the endomorphism induced by z on
(ng)i\[‘) factors through the subspace (Hg)f\v‘) N (C(h_l)(ﬁo, L)®y W,\). As the inclusion
of C""V(Ny, L) into C™(Ny, L) is compact and W) is finite dimensional over L, the
inclusion of (ng)f\vo N (C(h_l)(ﬁo, L)®r W) into (Hgfz)ivo is compact, which proves the
result. 4

If 6,,¢, € ﬁ’L, we write €, Ty, J, if, seeing 6,,¢€, as U(t, )-modules, we have ¢, 1 6,
in the sense of [32, §5.1] with respect to the roots of the upper triangular matrices in
(Resg,/0,GLy,F, ). Likewise if 6, € € fp,L, we write € Ty 4 if, seeing J, € as U(ty)-modules,
we have € 1 0 in the sense of [32, §5.1] with respect to the roots of the upper triangular
matrices in [[,eg, (Resr, /g, GLyr,)r. Thus writing 6 = (0, )ues,, € = (€v)ves,, We have
e T ¢ if and only if €, Ty, J, for all v € S,,.

Definition 5.9. Let d,¢ € fpyL, we write € 1§ if € T4 § and if 67' is an algebraic
character of Ty, i.e. €6=' = 6 for some X = (Ay)ves, € [lyes, (Z")HomUEL).
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We can now prove the main theorem of this section.

Theorem 5.10. Let m C R [1/p| be a mazimal ideal, d,€ € TRL such that € 0 and L’
a finite extension of L containing the residue fields k(§) = k(e) and k(m). Then we have:

Homy, (e, Jp, (5> 7" [m] @) L)) # 0 = Homg, (6, Jp, (115" [m] @y L')) # 0.

Proof. We assume first k(9) = k(¢) = L and L' = k(m), so that we can forget about
L'. Let II be a locally Q,-analytic representation of B, over L. The subspace II"
of vectors killed by ny is a smooth representation of the group Ny and we denote by
TN @ 1" — I C II™ the unique Ny-equivariant projection on its subspace IV, Tt
is preserved by the action of T}, inside II, hence also by the action of t; and one easily
checks that:

(5.8) TN, oL =romy, (r€tr)

(use tNot™! = N, for t € Tlg’). The subspace ITI}* := II, N II" C TI"t is still preserved
by T, and by (5.8) the projection my, sends IT}* onto TT3° := TINo NI C TI5F. We
have t - v = 7wy, (tv) for t € T.F, v € I} and in the rest of the proof we view TI3° as an
L[T,]-module via this monoid action.

The locally Q,-analytic character ¢ : 7, — L* determines a surjection of L-algebras
L|T,] — L and we denote its kernel by ms; (a maximal ideal of the L-algebra L[T},]). We
still write ms for its intersection with L[TF], which is then a maximal ideal of L[T]. Let
A :t;, — L be the derivative of §, arguing as in [23, Prop.3.2.12] we get for s > 1:

(5.9) Jp, (I1)[mg] = I [m3] == T3 [m],

(in particular Homg, (6, Jp, (I1)) = II[mg] = I13°[my]). Likewise we have Jp (II)[m?] =
1% [m?] = ITYe[m?] if o : ¢, — L is the derivative of €.

€

Let 3 C Sy[l/p] be an ideal such that dimp(S«[1/p]/T) < oo and define II; :=
II[J]. As the continuous dual II’_ is a finite projective Soo[K,][1/p]-module (prop-
erty (ii) in §3.2), the continuous dual II[J]" of the G,-representation Il [J], which
is isomorphic to II'_/J by the discussion at the end of [14, §3.1], is a finite projective
Soo[EK,][1/p] /IS [Kp][1/p] = OL[K,][1/p]-module (in particular it is an admissible con-
tinuous representation of G, over L). Moreover it is immediate to check that ITfe=2n[7]
is isomorphic to the subspace II§" of locally Q,-analytic vectors of II.

Taking the image of a vector in (the underlying L-vector space of) A or p gives natural
isomorphisms:

HomU(gL) (U(gL)®U(bL)/\, H%n) = (H%H)T;\L and HOHlU(gL) (U(gL)®U(bL),u, H%n) = (Hgn)ff.

As p is strongly linked to A by assumption, [32, Th.5.1] implies the existence of a unique
(up to L-homothety) U(gy)-equivariant injection:

(5.10) o t U(8L) ®uer) b= U(9L) @uor) A
which induces an L-linear map:
(5.11) b+ (57N — (TI5")F

We claim that (5.11) maps the subspace (I13")3° to the subspace (I1§) 2. Tt is enough
to prove:

* _ *
(5.12) Lpn O TNy = TN © Ly
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Let v be the image by (5.10) of a nonzero vector v in the underlying L-vector space of p.
Writing U(gr) ®ue,) A = U(ny) we see that v € U(n),—» (with obvious notation), that
b is killed by n;, in U(gz) ®u,) A and that the morphism ¢ , is given by the action (on
the left) by v. To get (5.12) it is enough to prove my, 0 v = v o 7wy, on (I18")}*, which
itself follows from nov = von for n € Ny (n acting via the underlying G,-action on
[13"), or equivalently Ad(n)(v) = v on (II3")}*. Writing n = exp(m) with m € nz (do
not confuse here with the maximal ideal m!), recall we have Ad(n)(v) = exp(ad(m))(v)
(using standard notation). Since v is killed by left multiplication by nz, in U(gr) ®us,) As
we have:
exp(ad(m))(v) € v + U(gr)(ng + ker(X))

where ker(X) = ker(U(gr) — U(gr) Que,) A, ¢ — £ ®wv). The action of Ad(n)(v) on
(I18")3F is thus the same as that of v.

We still write:
(5.13) o (TIEMR0 — (I3,
for the map induced by (5.11). Using v € U(n}),—» together with (5.12), it is easy to
check that %, yot = (de")(t)(tor?, ) for t € T,F (for the previous L[, ]-module structure).

Moreover, it follows from Lemma 5.6 that (5.11) is surjective, hence the top horizontal
map and the two vertical maps are surjective in the commutative diagram:

TN

(5 11)

(g S a1y

TN, im\]o
an (5-13) an
(TI5")3° — (I1g™),°

which implies that (5.13) is also surjective. Note also that both (5.11) and (5.13) trivially
commute with the action of R, (which factors through R /JR).

From [21, §0.3] we have II3" = limj_, ;o th]){ and thus:

n ~Y h n ~
(M5M3° = Tim (TI55,)3" and (I§")3° 2 Tim (T3, ).

By Lemma 5.8 there is z € 7.7 which acts compactly on (thl){p)i\fo and (thl){p)go We
deduce from this fact together with [44, Prop.9] and [44, Prop.12] that the map ¢}, ,
in (5.13) remains surjective at the level of generalized eigenspaces for the action of T;
(twisting this action by the character de~! on the right hand side). Consequently Lix
induces a surjective map:

U ()30 [mg] — U (1157 [m].

s>1 s>1
As both the source and target of this map are unions of finite dimensional L-vector spaces
(as follows from the admissibility of I15", [23, Th.4.3.2] and (5.9)) which are stable under
Ry and as v, \ is Ro-equivariant, the following map induced by ¢, , remains surjective:
(5.14) U (@530 [m5, m'] - {J (I15%) ) [mg, m'].

s,t>1 s,t>1
Since m! is an ideal of cofinite dimension in R.[1/p], the inverse image J of m’ in S, [1/p]
is a fortiori of cofinite dimension in S, [1/p| and we can apply (5.14) with such an J. But
we have for this J
(Wm)N0 [mg, m'] = (I5=) 3 [m3, m', 3] = (I 7*") 3" [m§, m’]
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and likewise with m,, so that (5.14) is a surjection:
U (0 g ] = ()20 o, ]

s,t>1 s,t>1
Looking at the eigenspaces on both sides, we obtain Homr, (8, Jp, (ITf="2"[m])) # 0 if
Homy, (€, Jp, (1T~ [m])) # 0.
Finally, when k() = k(e) is larger than L, we replace 11, by II'_ := Il @ L', Soo[1/D]
by Sao[l/p] @ L', m by w' := ker(R[1/p|®@L L' — k(m)®r L' — L') (the last surjection
coming from the inclusion k(m) C L') and the reader can check that all the arguments
of the previous proof go through mutatis mutandis. U

5.3. Tangent spaces on the trianguline variety. We prove that Conjecture 5.1 im-
plies Conjecture 2.8 (when 7 “globalizes” and x is very regular) and give one (conjectural)
application.

We keep the notation and assumptions of §5.1. We fix z = (r, ) € XZ(F) € X2 (7)

which is crystalline strictly dominant very regular. Recall from Lemma 2.1 that § =
(61...,8,) where 6; = zKiunr(yp;) with k; = (k;;)r. k1, € ZHom(KL) and ; € k(z)*. The
following result immediately follows from Proposition 3.14 and Theorem 2.13 applied to
X = XG(m).

Corollary 5.11. Assume Conjecture 5.1, then we have:
. +1
dimy () Tj‘('t[]_(?)’x <lg(w,) — d, + dim X\ (F) = lg(w,) — d, +n? + [K : Q)] ——=—7 (n )

The rest of this section is devoted to the proof of the converse inequality (still assuming
Conjecture 5.1).

As in the proof of Proposition 4.12, we consider for 1 < ¢ < n the cartesian diagram
which defines W; (with the notation of §4.2):

EXt{, 1) (Drig(r), Drig(r)) ——= Ext{, r,o) ( Duig(r) <, Drig(r))
w; EXt{,, ) ( Drig(r) =7, Daig(r)<").

We define Wi € Extl i (Duig(r), Drig(r)) as W; but replacing everywhere EXtao,rK) by
Note that Wes; € W; for 1 <7 <n.

its subspace Ext. ..

Proposition 5.12. For 1 < i < n, we have isomorphisms of k(x)-vector spaces:
(5.15) Win--NWiy/Win--nW; — Bxt, FK)(griDﬁg( ), Drig(r)/ Diig(r)= )
Wcris,l N---N Wcris,i—l/Wcris,l n---N Wcris,i _> EXtCHS (griDrig( ) rlg( )/Drlg( ) )

where WiN---NW;_q := Ext%%FK)(Drig(r), Dyig(r))  (resp. Werig1 N - N Wepig i1 =
EXtiris<Drig<7a)a Drig(r») ZfZ =1.

Proof. We write D, instead of Dy;e(r) and drop the subscript (¢, 'k ) in this proof. We
start with the first isomorphism, the proof of which is analogous to (though simpler than)
the proof of (4.11) in §4.3. We have the exact sequence (using Definition 2.10):
(5.16)
0 — Ext' (g1, Drig, Drig/ D) — Ext' (D5, Duig/ D55y) — Ext! (D55, Duig/ D55;) — 0.
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The composition:

Win .- N Wiy < Ext'(Dug, Drig) — Ext'(D5), Diig/ D5t

rig»

lands in Ext! (gr Dmg, Dng/Dng) by (5.16). If v € Wy N --- N W;_; is also in W;, then its

image in Ext! (Drlg, D/ Drlg) is 0. We thus deduce a canonical induced map:

(5.17) Win - N Wiy /Wi Ne- -0 Wi — Ext’ (gr, Dusg, Drig/ D55 )-

Let us prove that (5.17) is surjective. One easily checks that Ext'(Dy,/D5. ", Dig) C

rig

WiN---NW;_; and that the natural map Extl(Drig/Drfé ! , Dyig) — Ext! (gr; Drig, Dng/Dmg)
is surjective (again by Definition 2.10). This implies that a fortior: (5.17) must also be
surjective. Let us prove that (5.17) is injective. If w € WiN---NW;_; maps to zero, then

the image of w in Ext' (D5}, Dyig/D51) is also zero, i.e. w € W; hence w € WiN---NW,.
The proof for the second 1som0rphism is exactly the same replacing everywhere W; by

Weis,; and Ext by Ext! O

cris®

Corollary 5.13. We have:

. . n(n—1
dimy(,) (W1 N---N Wn,l) = dimy, Ext%@ ') (Drig(r), Drig(r)> —[K: Qp](Q)

dimy(,) (Wms,l N---N Wcris,n—1) = dimy(, Ext! ;. (Drig(r), Drig(r)) — lg(w,).

Proof. This follows from Proposition 5.12 together with (4.10) and Lemma 4.10 (both for
¢ = i) by the same argument as at the end of the proof of Proposition 4.11. O

Remark 5.14. Note that Wi N ---NW,_; N Extcns(Dﬁg(r),Drig(r)) = Weis1 N -+ N
Wcris,n—l'

Now consider 2’ := (r,0") = (r,d},...,d)) with 0] := zkwil('>unr(gpl) then 2’ € UEI( )
by (4.2). We also have w(z') € Wy_ ; by (5.2), thus 2" € UL(T) Xwe Wy w1, C Ug (7)
and 7,1 (7') = z. Recall from §4.2 and the smoothness of U (T) over WL that the weight

map w induces a k(z)-linear surjection on tangent spaces (note that k(z’) = k(x)):

(5.18) dw: Tga ) 0 = Txor

Proposition 5.15. We have an isomorphism of k(x)-subvector spaces of Tn 7).’
tri ?

yar = Twe w@ny = k(o Y@l G s (drs ) 1<icnr: KoL

T~ . =
(R xwn Wiy )redal

{UGTD

" ,suchthatdng:d —L (), 1<i<n, 7: K<—>L}.

In particular dimy,) T(XD el = dim XtDn< ) — da.

tri

( )XWnW

Proof. We write Hom instead of Homy (s _ajg in this proof. Let Ul wo xc(T) = Ui (T) X

wa,k, 1, we have:
(5:19) O08 s = O8,010 DOty O pst@)
and note that T( RGO Wi et = TUE”U Gy . Recall that, if A, B,C, D are com-

mutative k(z)-algebras with B ,C being A- algebras, we have:

(5.20) Hom(B ®4 C, D) — Hom(B, D) Xpom(4,p) Hom(C, D).
50



From (5.19) and (5.20) we deduce:

(5.21)
= ~ 2 o~
Tog, e = Hom(Ogg oy K@)EV/ () 2 Teo oy o Xty o T, e

But from (5.1) we have:

ngm,k,yw(x/) = {(dr,i)lgign,rz KoL € ng,w(m/) such that dﬂi = dT,w;},(i)? Vi, V ’7‘}

whence the first statement. The last statement comes from dimy() T0 (7, = dim X2(7) =
t )

dim X (7) (since ' is smooth on X(T) as 2’ € Ug(T)), the surjectivity of Tyo P
tri ’

tri
Tywn w(ary (since the morphism UDL(F) — W is smooth by [14, Th.2.6(iii)]) and the same
U

argument as in the proof of Proposition 4.9.

Recall from the discussion just before Conjecture 2.8 that we have a closed embedding

et XETT o XOU(F) with 2 € u(X5FT). We deduce an injection of k(x)-vector spaces:

T (%E’kicr),l‘ — TX"D

tk tri(F)’-T'

Likewise we deduce from Proposition 5.4 (assuming Conjecture 5.1) another injection of
k(x)-vector spaces:

T —~ — T~|:l — .
Jwg,k (UtDri(F)XWEWZ,k,L)@ X (),

Taking the sum in T of these two subspaces of TXDA(?) ,» We have an injection of

tri (F)"Z‘
k(x)-vector spaces:

5.22 T =
( ) Jwg,k (UEi(F)XngE,k,L)’

. + jlk(%%l,kfcr),x — T)"(’D

tri(?),x'

Proposition 5.16. Assume Conjecture 5.1, then we have:

dimk(z) (T

T sose ) =lg(wy) — dy + dim X (7).
(T ) e T TEn0) = Nele) — e+ dim X7
wi(T) = XP x 77 — XY induces a k(z)-linear morphism
T ,— Tyo,.. Since 2’ € Upi(T) C Ugi(7), it follows from [34, Th.Cor.6.3.10] (arguing

X (M)z tri tri -
e.g. as in the proof of [14, Lem.2.11]) that the triangulation (Drgigl)lggn “globalizes” in

a small neighbourhood of #’ in UZ(T), or equivalenty in UZ;(F). In particular, for any
U € TﬁtDri oy =T %0, (e Ve have a triangulation of Dy, (75) by free (¢, I'k)-submodules
over Ry (q))/(e2),x such that the associated parameter is (015, ...,d,5) (see §4.2 for the
notation). This has two consequences: (1) the proof of Lemma 4.4 goes through and the

above map To ) . — Tyo, is an injection of k(x)-vector spaces and (2) the image of
tri ) T

Proof. The composition X~

the composition Tgq o . < Tho, = Ext%@ 1) (Drig(7), Drig(r)) (see Lemma 4.1) lies in
tri ’ T’ ’

Wwin---Nw,_;C Ext%%FK)(Drig(r), Diig(7)). From Lemma 4.1 we thus obtain an exact
sequence:

0= K@) N gm0 = Trom

(7) since X,

oo Win-nW, .
But dimyy,) T&’P'(?)’m, = dim X"

o (7) is smooth at 2/, and from Lemma 4.1,

Lemma 4.2 and Corollary 5.13, we have:

dimye) K (r) + dimpgey (Wi NN Wiy) = n? + [K Q) ———
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which forces a short exact sequence 0 — K(r) — Txo Fa win---Nnw,_; —0. It
tri »

then follows from Proposition 5.15 that we have a short exact sequence of k(x)-vector
spaces:

(5.23) 0— K(r) — T %0 yxppmyn e win---NnW,. 1NV —=0
t11 L wg,k, )

where V' C E1Xt%<P’F ) (Drig(7), Drig(r)) is as in §4.3 (the intersection on the right hand side
being in Ext(%FK)(Drig('r’), Diyig(7))).

Arguing as in [37, §2.3.5] we also have a short exact sequence (see [36, (3.3.5)]):
(5.24) 0— K(r) — Tyo- o, Extms(Drig(r), Dig(r)) — 0.
Using T L (FOker) o = Tiox-«  (which easily follows from the fact that the Frobenius
eigenvalues (gpl, ey On) are pairwise distinct) and:

T oo ~ T ~ T X
= d —
(Xtri(r)XWZWZ,k,L)rC ! m(T’)XWnW x0T UtDri(T)XWZWZ,k,L’x/ Jwg k( m( )szwg,k,L)’x7

we deduce from (5.23) and (5.24) a short exact sequence of k(x)-vector spaces:

0— K(’I‘) — Tjwm ( trl(T)XWnW kL) .

Win-- AW, 1 NV NExt . (Deig(r), Dug(r)) — 0,

the intersection in the middle being in Tyo,. But we have:

ﬂT ( TDk cr)x_>

W - M Wn 1 N V N EXtcns(Drig(T)’ Drig<r)) :> Wcris,l N---N Wcris,nfl N V
:) Wcris,l n---N Wcris,n—l

where the first isomorphism is Remark 5.14 and the second follows
from Extl . (Dig(r), Drig(r)) € V (since the Hodge-Tate weights don’t vary at all in
Exty o (Duig(r), Drig(r))). From Corollary 5.13 we thus get:

ﬂT = Tk cr)x) =

(5.25) dimk(x) (T (~

Jwz k UFH( )XW"W kL) Z
dimy () K (1) + dimp) Extl (Drig(r), Drig(r)) —lg(wy).
We now compute using Proposition 5.15, (5.24) and (5.25):

dlmk(x) (,I;wgc’k (Ut‘:r]l(r)Xw"W k L) x

(dlmk(x) K (1) + dimy () Extl (Drig(r), Drig(r))) -
((dimga) K (r) + dimgga) Extlyy, (Drig(r), Drig(r)) — lg(ws)) =
dim X5(7) — d; + 1g(w,).

+T et cr)x) (dlme( ) — dx)—f—

O
Corollary 5.17. Conjecture 5.1 implies Conjecture 2.8 for 7 =py (v € S,), i.e.:
dimy () T’y %0 7 = lg(w,) — d, + dim X{(7).

In particular x is smooth on )N(tmrl( ) if and only if w, is a product of distinct simple
reflections.
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Proof. Tt follows from (5.22) and Proposition 5.16 that we have Ig(w,) —d, +dim X}(7) <
dimyz) T’ %07 The equality follows from Corollary 5.11 which gives the converse in-

~

equality. Note that we also deduce T]w%k ﬁEi(F)Xngﬁ,,k,L) i +T L (FDker) o — T 0,70
Finally, as we have already seen, the last statement follows from Lemma 2.7. O

We end up with an application of Corollary 5.17 (thus assuming Conjecture 5.1) to
the classical eigenvariety Y (UP, ) of §3.1. We keep the notation and assumptions of §3.1
and §3.2 and we consider a point z € Y (UP,p) which is crystalline strictly dominant
very regular. In a recent on-going work ([5]), Bergdall, inspired by the upper bound in
Theorem 2.13, proved an analogous upper bound for dimy) Ty (w»3)., and obtained in
particular that Y (UP,p) is smooth at  when the Weyl group element w, in (3.13) is
a product of distinct simple reflections and when some Selmer group (which is always
conjectured to be zero) vanishes. As a consequence of Corollary 5.17 we prove that this
should not remain so when w, is not a product of distinct simple reflections.

Corollary 5.18. Assume Conjecture 5.1 and assume that w, is not a product of distinct
simple reflections. Then the eigenvariety Y (UP, p) is singular at x.

Proof. For v € S, denote by z, the image of = in X (p;) via (3.3). Since Y (U?,p) —
X,(p), we have z, € X7 (p,). It follows from Corollary 5.17 that it is enough to prove
the following: if Y(U?,p) is smooth at x then X (p,) is smooth at z, for all v € S,

tri

or equivalently X2 (p ) = Tles, X2 (p,) is smooth at (7y)ves, Recall from §3.2 that we

tri
have:
(5.26) Y(UP,p) = X,(P) X (spt Soe)ris SP L

where the map Sy, — L is So = (Swo/a)[1/p] and where X,(p) = Xo — (Spf Suo)™ is
induced by the morphism S, — Re. Let woo(z) be the image of x in (Spf S, )"8, by an
argument similar to the one in the proof of Proposition 5.15 we deduce from (5.26):

Ty wrp). = {17 € Tx,(p),» mapping to 0 in Tisps s )ris w (2) Phk(wos (2)) k(:ic)} .
This obviously implies:
(5.27) dimy(e) Ty (v 7),0 = dime) Tx, )0 — Mk 2)) T(Spf S )rie w (2)
But dimy(u. (@) T(spt Seo)itwe(@) = 9 + [FT - Q]% + |S|n? (see beginning of §3.2)

and dimy,) Ty wr5),. = dim Y (UP,p) = n[F* : Q] since « is assumed to be smooth on
Y (U?,p), hence we deduce from (5.27):

dimy() Tx, )0 < g+ [FF: Q2% 41Sn? = dim X, ()

where the last equality follows from [14, Cor.3.11]. We thus have dimyg) Tx,z). =
dim X,,(p) which implies that x is smooth on X, (), and thus by (i) of Remark 5.2 that
(%)ves, is smooth on X5(7,). O

Remark 5.19. Singular crystalline strictly dominant points on eigenvarieties are already
known to exist by [1, §6]. However, the singular points of loc. cit. are different from the
points x of Corollary 5.18 since they have reducible associated global Galois representa-

tions.
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