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ABSTRACT: We demonstrate how duality invariance of the low energy expansion of the four-
graviton amplitude in type II string theory determines the precise coefficients of multiloop
logarithmic ultraviolet divergences of maximal supergravity in various dimensions. This is
illustrated by the explicit moduli-dependence of terms of the form 9% R*, with k < 3, in
the effective action. Furthermore, we show that in the supergravity limit the perturbative
contributions are swamped by an accumulation of non-perturbative effects of zero-action
instantons.
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1. Introduction

It is well known that string theory provides an ultraviolet completion of supergravity — there
are no ultraviolet divergences in perturbative string theory. Since perturbative quantum
supergravity arises as the low energy limit of superstring theory it is of interest to see how
the field theory ultraviolet divergences appear in the appropriate limit.

This paper will describe how these field theory divergences are encoded in logarith-
mic terms that arise in coefficients of the low energy expansion of the type II superstring
four-graviton amplitude compactified to D dimensions on a d = (10 — D)-torus, 7¢. These
scattering amplitudes have a dependence on the moduli that is highly constrained by du-
alities [1], which relate their perturbative and non-perturbative properties. For example,
the low energy expansion of the four-graviton amplitude generates terms in the effective
action of the form 0% R* , where R* is a specific contraction of four curvature tensors. The
coefficients of such terms are functions of the moduli that are invariant under discrete sym-
metries associated with the groups Eqy1(441)(Z) (which are discrete versions of real split



forms of the corresponding Lie groups of rank d 4 1)!, and contain the complete perturba-
tive and non-perturbative information about the amplitude. In contrast to string theory,
classical maximal supergravity is invariant under the continuous version of these groups,
which implies that the Feynman rules are independent of the moduli. As a consequence,
perturbative supergravity amplitudes do not depend on the moduli. However, this ignores
the presence of infinite towers of non-perturbative charged BPS black hole states, which
probably invalidates the use of the perturbative approximation, whether or not there are
ultraviolet divergences, as we will argue later.

In a recent paper [2], which will be summarised in section 2, we determined the non-
perturbative expressions for the coefficients of a number of terms in the low energy ex-
pansion of the four-graviton amplitude of maximally supersymmetric string theory com-
pactified from 10 dimensions to D = (10 — d) dimensions on a d-torus. The most detailed
analysis was for the analytic part of the amplitude with d < 3, although certain features
of the nonanalytic terms and the 3 < d < 7 cases were also determined. The simplest in-
teractions considered in some detail in [2] (extending earlier work in [3-15], see also recent
discussions in [16,17]) were R* and 9% R*, for which the coefficients are special combi-
nations of Eisenstein series of the kind considered in [18]. The coefficient of the 9° R4
interaction coefficient is a more general automorphic function [8,9]. A thorough analysis of
these coefficients demonstrated that they reduce to the correct expressions in three different
limits: (i) String perturbation theory; (ii) Decompactification from D to D + 1 dimensions
when a radius of 7¢ becomes large; (iii) The semi-classical eleven-dimensional supergravity
limit, in which the M-theory torus, 79!, becomes large and loop calculations in eleven-
dimensional supergravity are valid. It was also argued that in certain ‘critical’ dimensions,
Dy, the leading logarithmic ultra-violet divergences of L-loop maximal supergravity are
reproduced?. As remarked in [2], particular examples of such behaviour arise for the R*
interaction with (D; = 8, L = 1), the 3* R* interaction with (Dy = 7, L = 2) and the
9% R* interaction with (D3 = 6, L = 3). The structure of the coefficients determined in [2]
will be reviewed in section 2.

In the following section we will present a detailed argument that the logarithmic factors
that arise in the automorphic coefficients of the string theory higher derivative interactions
indeed determine the values of logarithmic ultraviolet divergences in loop amplitudes of
maximal supergravity. To be precise, we will see in section 3 that the logarithmic terms
in the coefficients of 9** R* interactions with k = 0in D = 8, k = 2in D = 7, and
k =31in D = 6 are equal to the logarithmic terms that arise in maximal supergravity after
subtracting the ultraviolet divergences. The 9% R?* coefficient function was not determined
in [2] and so, for completeness, it will be obtained in appendix A.

In addition, there are ‘non-leading’ logarithmic terms that arise in dimensions D > Dy,
which are identified with further logarithmic ultraviolet divergences in maximal supergrav-

GL(1), Eys)(R) = SL(3,R) x SL(2,R),

'For d < 5 Ey1)(R) = SL(2,R), By (R) = SL(2,R) x
d < 7 Egq1(a+1) is the real split form of the

E4(4) (]R) == SL(5,R), E5(5)(R) = SO(5,5,]R) and for 5 S
exceptional Lie group Fg41.
2The critical dimension at L loops is the lowest (possibly non-integer) dimension in which the theory

has ultraviolet divergences.



ity. For example, there is a single pole, 1/¢, and a double-pole, 1/€2, in dimensionally
regularised two-loop maximal supergravity in D = 8 dimensions that contributes to 9%R*
(whereas the D3 = 6 single pole contributes to 9°R*). Another new feature arises in the
field theory since the one-loop R* divergence requires a counterterm. This contributes to a
one-loop ‘triangle’ diagram in which one vertex is the counterterm, which results in another
1/€? contribution [6], which we will also evaluate in section 3. The sum of these contribu-
tions gives rise to log and log? terms that are reproduced by the string theory coefficient
of this interaction. In order to compare the field theory and string theory expressions
it is important to use consistent normalisation conventions, which are briefly outlined in
appendix B.

In section 4 a connection will be made with the issue of whether quantum supergravity
might be a consistent theory that can be obtained as a decoupling limit of closed-string
string theory, much as N' = 4 super Yang—Mills in four dimensions can be obtained as a
decoupling limit of open string theory. It was pointed out in [19] that this is probably far
from the case even if the individual terms of the perturbative expansion are finite. The
problem is due to the presence of infinite towers of non-perturbative states, which corre-
spond in toroidally compactified string theory to massive Kaluza—Klein modes, winding
modes, Kaluza—Klein monopoles and wrapped p-branes of various kinds. It was shown
in [19] that the supergravity limit is one in which towers of states becomes massless and
the restriction of the spectrum to the massless perturbative states — the basic assumption
in supergravity — is not a sensible approximation to the theory. In an analogous fashion
the simple examples in this paper involve a condensation of zero-action instantons, as will
be demonstrated in section 4, based on the explicit expressions for the coefficients of the
R*Y and 0* R? interactions.

Although the complete structure of the automorphic coefficient functions has not been
determined beyond order °R?, a certain amount is known about higher order terms based
on analysis of one and two loop amplitudes in eleven-dimensional supergravity compactified
to D = 9 nine dimensions on 72 in [9]. This will be used as the basis of a speculative discus-
sion in section 5 suggesting that the 98R* interaction is not protected by supersymmetry
against perturbative corrections at genus five and higher, which would have significant
implications for the onset of ultraviolet divergences in perturbative maximal supergravity.

The paper will end with a short discussion of these results in section 6.

2. Summary of duality invariant coefficients in the low energy expansion
In [2] we were concerned with properties of the low-momentum expansion of the four-
graviton amplitude. It is useful to separate the D-dimensional amplitude into the sum of
analytic and non-analytic terms,

Ap(s,t,u) = A‘g‘alytic(s, tyu) + AF" (s, tu) , (2.1)

where the analytic part has a low energy expansion in powers of the Mandelstam variables



(s = —(k1 + k)%, t = —(k1 + ka)?, u = — (k1 + k3)?) of the form

Ac}z)nalytic _ Z Z 5((;))(¢K\G) oL oI RY . (2.2)
p=0q=-1

This is the general symmetric polynomial in the Mandelstam invariants, which enter in the

dimensionless combinations )
n

op = (s"+t"+u") % , (2.3)
where ¢p is the Planck length in D dimensions. The coefficient functions, 5((53)(¢K\G),
are functions of the symmetric space moduli, ¢\, which are the scalar fields, of the
coset space K\G appropriate to compactification on a d = (10 — D)-torus (where G is
Eatr1d+1) (R) and K is its maximal compact subgroup). They are required to be automor-
phic functions that are invariant under the D-dimensional duality group, Ed+1(d+1)(Z),
The expansion is one in which k; - k; r? <« 1and k;- k; f% < 1, where r is any radius of the
toroidal dimensions, £p is the D-dimensional Planck length, and k; and k; are any of the
external momenta. The nonanalytic term, A7"*", contains singularities due to thresholds
in which internal lines of the perturbative contributions to the amplitude are on-shell. The
separation of the amplitude into the two pieces in (2.1) is well defined at low orders in the
low-energy expansion, where there are few perturbative contributions to the amplitude.

It is convenient to express the analytic part of the amplitude in terms of a local one-
particle irreducible effective action,

oca — D
Sl = N 5P [ dPa/-GD gD 9P R (2.4)

p=0,g2—1

where k = 2p + 3¢ and GP) is the determinant of the space-time metric in the Einstein

frame.

2.1 Constraints on the coefficients

It is clear that maximal supersymmetry imposes strong constraints on the structure of
the coefficient functions. In particular, it was shown in [7] that type IIB supersymmetry
requires the coefficient of the R* interaction in ten dimensions to satisfy a Laplace eigen-
value equation (with a particular eigenvalue), for which the unique solution compatible with
string perturbation theory is a nonholomorphic Eisenstein series, 5(%%)) Q) =E s (Q), where
Q) is the complex modulus of the IIB theory. So far there has been no progress in general-
ising this supersymmetry argument to higher order interactions (see, however, [20,21]) or
higher-rank groups, but the following indirect arguments (given in [2]) lead to appropriate
generalised Laplace eigenvalue equations satisfied by the coefficient functions in the com-
pactified theory. It was argued in [2] that in the decompactification limit r19_p/fpy1 — 00
the Laplace operator, A(P) on K \G becomes

D—-2 D? —-3D —58
AD) _, AD+L) ) (TlofDarlo_D)Z 2(D——1)

2(D—1) 710-D0r0_p 5 (2.5)



D) of the interaction coeflicients & (D)
P,q) (p,9)

and the eigenvalues )\E satisfy the equation

\(D) (D+1) _ 2p+3(g+1)

2
(ra) ~ “wa) T (D—1)(D - 2) (D7 =3D =52+ 4p +6q) - (2.6)

Using the ten dimensional values )\E(l]% = 3/4, )\8?3) = 15/4 and )‘E(I)?f) = 12 determined
in [3,6-8,20], we deduce that the coefficients of the terms discussed in [2] satisfy the

following set of Laplace eigenvalue equations with source terms,

3(11 — D)(D — 8

(a0 - PP £ = oo &
5(12 — D)(D — 7

(a@ - M2ZDAD D) £0) — a0c@)6p-0. (28)
6(14 — D)(D — 6 2

<A(D> _ o = _)(2 )> Eon = — (Eny) +120¢(3) dps.0. (2.9)

where the coefficient of the dp_g in equation (2.9), which was not determined in [2], is
derived in appendix A. Although most of the discussion in [2] focused on explicit solutions
of these equations with 7 < D < 10, the iterative argument linking dimensions D and D+1
shows that they hold more generally for all dimensions D > 3.

The structure of equations (2.7) and (2.8) generalizes the Laplace equation satisfied
by the R* interaction in D = 10 dimensions [3]. A notable feature of these eigenvalue
equations is the presence of the Kronecker delta sources which are non-zero in the dimen-
sions in which the eigenvalues vanish. These are the critical dimensions, Dy, which are
the lowest dimensions in which L-loop maximal supergravity has ultraviolet divergences.
Equation (2.9), satisfied by the coefficient of the 9° R* interaction, has a source term that
is quadratic in the coefficient of the R* interaction, which can also be interpreted to be a
consequence of maximal supersymmetry [8]. In addition the Kronecker delta contributes
in D3 = 6 dimensions, which is again the dimension in which the eigenvalue vanishes and
is also the lowest dimension in which L = 3 supergravity has an ultraviolet divergence.
Interactions of higher order will not be discussed here in any detail. However, some of
their properties in D = 9 dimensions were determined in [9], which indicated that the co-
efficients are sums of automorphic functions that satisfy equations that are generalisations
of (2.9).

O—O0—=~0 O

1 4 o d+1
Figure 1: The Dynkin diagrams of the U-duality groups Eqii(44+1) (0 <d <7)

The solutions of (2.7)—(2.9) are highly constrained by imposing boundary conditions
that require them to reproduce known features of string/M theory in various limits. These
limits are:



(i) The limit in which one radius, rq, of the string theory torus, 7%, becomes large, rq >
fp41 so that the amplitude effectively decompactifies from D = 10 —d to D + 1

3 Since the external momenta, k; (i = 1,2,3,4), are fixed, this is a

dimensions.
limit in which &; - k; T?l > 1, which lies outside the range of validity of the original
expansion. In order for the low energy expansion to be valid in D + 1 dimensions it is
necessary that k; - k; (%, 41 < 1. Although this interchange of limits might generally
be expected to pose problems, it does not at low orders in the derivative expansion
that are considered here becat%se only a finite number of powers of 74 occur. To be

© 8) has two distinct powers of r4 in its expansion, so

(ignoring coefficients) the expansion has the form

Td  o(D+1) ra \*"
oy + . (2.10)

precise, the R* coefficient, £

Cpi1 pi1

The term that grows linearly with 74 gives the finite contribution to the R* interaction
in the large r4/¢py1 limit. The second term is the n = 1 term of an infinite series
of the schematic form T‘S_D (sr?)" R, which resums in a manner that converts the
first nonanalytic threshold of the D-dimensional amplitude to that of the (D + 1)-
dimensional amplitude. For simplicity, we have suppressed a logr;/¢p+1 factor that

multiplies the second term when D =7 and D = 8.

The 0* R?* coefficient, 5((1D 8),

AP AS (I Y (I ) (2.11)
lpyr B0 Cpt1 lpt1 ©,0) '

has three power-behaved terms in its expansion,

Again the term linear in r4 gives the finite contribution to the interaction in the large-
rq limit, while the second term contributes the n = 2 term of the series rng (sr3)n R
that resums to give the first nonanalytic threshold. The last term contributes the first
term of a second infinite series that resums to give the second (D + 1)-dimensional
nonanalytic threshold. We have suppressed a log(r5/¢s) factor multiplying the second

term when D = 5.

The 9% R* coefficient, 5((0D 1)), has four terms in its expansion

Td_ ¢(D+1) ra \"77 ra \*7" o) ra \*" oy
. 2.12
{pi1 fon " F <€D+1> " <€D+1> fo0* <€D+1> £010) (212)

The term linear in ry again gives the finite contribution to the interaction in the
large-ry limit, the second term contributes the n = 3 term of the series that resums
to give the first nonanalytic threshold and the third term contributes a second term to
the series that sums to the second threshold. The last term contributes the first term
to a new infinite series that resums to give the third (D + 1)-dimensional nonanalytic
threshold. Again, we have ignored logarithmic factors that arise for D = 4 and
D =38.

3This limit is equivalent to 74 3> ¢s with the D + 1-dimensional string coupling yp+1 held fixed.



(ii) The limit of string perturbation theory. This is the limit in which the D-dimensional
string coupling becomes small, so that yp = g2 (?/ V@D « 1, where V@ = riry. .. 1y
is the volume of 7% and g, is the string coupling. In this limit each coefficient
possesses a finite set of terms that are power behaved in yp. In string frame a term

I+ corresponds to a term of genus-h in closed string perturbation theory.

of order yp,
In addition there is an infinite set of exponentially suppressed instanton contributions.
A great deal is known about the low-energy expansion of the four-graviton amplitude
directly from string perturbation theory at genus-one and genus-two, and a certain

amount at genus-three.

(iii) The limit in which the M-theory torus becomes large, V411) > E‘ﬁrl. In this limit,
rq > f11, with k; - k:jffl < 1 the semi-classical (Feynman diagram) approximation to
eleven-dimensional supergravity is expected to be a good approximation. A variety
of calculations in compactified eleven-dimensional supergravity at one loop and two
loops provide much information about this limit [5,6,9,10,22].

In each of these three cases a specific parameter becomes large and there is a finite
number of terms that are power-behaved in this parameter, together with an infinite series
of exponentially suppressed terms. The sum of power behaved terms contributes the zero
Fourier mode, or ‘constant’ term with respect to the angular parameters that enter in the
off-diagonal entries of the matrix N (the unipotent radical) of the standard Levi decompo-
sition of a maximal parabolic subgroup of G, P = M N, where M is the Levi factor for the
corresponding subgroup of G. Such constant terms are are obtained by deleting specific
nodes of the Fqyq(g41) groups. Numbering the Fj,(441) nodes as indicated in figure 1, in
limit (i) node d + 1 is deleted, in limit (ii) node 1 is deleted, and in limit (iii) node 2 is
deleted. The exponentially suppressed terms in each case have the interpretation of BPS
instanton contributions due to D-instantons and a variety of wrapped euclidean p-branes.
Although these contributions have not been analysed in detail they should correspond to
1/2-BPS states in the R* case, 1/4-BPS states in the 9*R* case, and 1/8-BPS states in
the 9°R* case (see for example [16] for a recent viewpoint of such contributions in the 1/2-
and 1/4-BPS cases). A novel feature appears in the 9°R* case, where D-instanton/anti
D-instanton pairs with zero net instanton number arise, giving exponentially suppressed
contributions to the constant terms.

The coefficient functions discussed in [2] are in precise agreement with all the boundary
data in these three limits and also satisfy the Laplace equations in (2.7)-(2.9). In the case
of the R* and 9*R* interactions the solutions are combinations of Eisenstein series for
the rank-(d + 1) duality groups. In the case of the 9°R* interaction the solution is a
less familiar automorphic function. Although we have not proved that these solutions are
unique, given the number of conditions that need to be satisfied it seems unlikely that
there are ambiguities (although we cannot rule out the possibility of cusp forms). We will
briefly review the kinds of series that enter into the solutions (more details are given in
appendix B of [2]).



2.2 Definition and properties of Eisenstein series.

The ‘minimal parabolic’ Eisenstein series for a group G is defined with respect to a complex
vector A in the weight space of the Lie algebra g as [18]

ES(g)= >, XA (2.13)
+EG@Q\B(Q)

where p is half the sum of the positive roots, (-,-) is the inner product on the root sys-
tem of G, H(g) is a vector in the Cartan subalgebra, and B is a Borel subgroup of G.
These Eisenstein series are eigenfunctions of the invariant differential operators of K\G.

In particular, they are eigenfunctions of the Laplacian,*

A ES(9) = (A p+ N ES(9). (2.14)

Whereas the SL(2) Eisenstein series depends on a single complex parameter s, for higher-
rank groups there are r = rank(G) such parameters, s (k = 1,...,r), that are related
to the entries in A. The minimal parabolic Eisenstein series has a poles for various values
of X\ [18], but the special cases of interest to us are ones that are obtained by taking the
multiple residue on the poles at s; = 0 for all k£ # «a, so only s = s, is non-zero, where «
is a particular node of the Dynkin diagram of G. In other words we set

Ad—at1 — Ad—a — 1 = 2s,
)\d,kJrl—)\d,k—l:O, alllgk:;éagd—l. (2.15)

This defines the mazimal parabolic Eisenstein series for a particular parabolic subgroup of
G associated with the Dynkin label [0%~! 107~%], which will be denoted by® Efgl)_l L0r—a);s°
These Eisenstein series can be expressed as sums over integer lattices. In the simplest

cases these sums can be analysed directly. For example, the SL(n) series E[%i(_nl)l on—a-1];s

is given by
SL(n) / 1
E o qniaiiy. = — — (2.16)
[0e=110 ;s {mggzd (d[zl...za] Girir - - - Gioju d[ﬁ...]a})s
where g;; (i,j = 1,...,n) is the SL(n) metric, d -l is the antisymmetrized product of

o integer vectors, dlit-iel = 771[1“771%2 e mé?] and the sum excludes the values at which the

denominator vanishes.

However, for other duality groups these lattice sums are more subtle. This is illustrated
by the case of the SO(d, d) series® Eﬁ%&%il]);s,
the expression for one-loop perturbative amplitude for string theory compactified on 7¢ [2])

which has the representation (motivated by

SO(dd) _ m d*r _
B0 = @ 2T, et ) V) D

“Invariance under K implies that the eigenvalue of the Laplacian is the same as the value of the second-
order Casimir of G.

®The conventional SL(2) Eisenstein series will be denoted by Es = Eﬁff)

5The d = 5 case is of relevance as the D = 6 U-duality group SO(5,5), which also arises as the duality
symmetry of perturbative string theory in D = 5 with a different interpretation of the moduli.



where I'(q ) (7) is the standard lattice factor for compactification of the one-loop string
amplitude on 7%, V(a) is the volume of T ¢ and the integral is over the fundamental domain
of SL(2,7Z). The corresponding representations of the other SO(d, d) series, as well as the
FEg(6), Er(7y and Egg) series have not been determined (as far as we know). However, it
is possible to analyse all the series from their definition (2.13). This procedure has been
carried out and will be reported in detail elsewhere.

The arguments of [2] (and earlier work reviewed therein) lead to the R* coefficients
that enter the Einstein-frame action (2.4)7,

D=10 &4y = E;(Q) d=0,
D=9 Eony = E;(Q) VT AC2) vT d=1,
D=8 Eiony = limeo <Eﬁ§fg+ + 2E1_26(U)> Eﬁﬁ](?’) +oB(U)  d=
3<D<8 oy = Eﬁ‘éﬂéﬁél) 2<d<T.
(2.18)

Each Eisenstein series in these equations is a function of the moduli that parametrize the
coset space K\G of the U-duality group G = Eg1(441) by its maximal compact subgroup
K. In the following we will omit the arguments of the Eisenstein series unless this is likely
to lead to confusion. The quantity 17 is defined in terms of the radius of the circular
dimension in the type IIB theory, rg, by v1 = (rg/f10)?. The individual series in the third
line have poles at ¢ = 0 but these poles cancel in their sum. The symbol E indicates a
series that is regularised by subtracting a pole in e. In [2] it has been explicitly verified
that these coefficients satisfy all the required boundary conditions, as well as the Laplace
eigenvalue equations (2.7) for D > 6 (and is extended to D < 5 in a forthcoming paper in
collaboration with Stephen Miller [23]).

The coefficients of the *R* interactions in dimensions 7 < D < 10 are given by

D=10 &7 = }Es(Q) d=0
D=9 5((?)0) %1/1 7 E% () _|_ 2<(2) 1% E%(Q) + 4C(21)5C(3) V;%Q d—
p-s ey - E - Ew
D=7 & >O) — lim, o ( Eﬁﬁéo])g ot E[é(;ﬁio]) > - %Eﬁgég})g %1:3[0050; d=3
(2.19)

The poles in the last line again cancel, yielding a finite expression. These expressions
satisfy all the boundary conditions in the three degeneration limits described earlier, as
well as the Laplace eigenvalue equations (2.8). The extension of these expression for D < 6
will be presented in reference [23].

The solutions of the inhomogeneous equations for the coefficients, 5((5 1)), of the J%R*
interaction are more complicated and given in [2] for D > 7. Some details of the D = 6

case are presented in appendix A since it is of particular interest to this paper.

"10B indicates the ten-dimensional type IIB theory.



3. Logarithmic terms and ultraviolet divergences in supergravity

One of the intriguing features of the expressions for the coefficients in [2] is the manner in
which potential divergences cancel. The Eisenstein series that enter into the coefficients,
5((5 3), 5((5 8) and 5((5 1)), have singularities at specific values of the parameter s. This reflects
the pole at s = 1 in the Riemann zeta function, ((s). However, the precise combinations
of Eisenstein series that enter are ones for which the pole residues cancel. This is a mani-
festation of the consistency of string perturbation theory. Although the poles cancel, there
are residual terms that are logarithms of a modulus, which are important elements in the
structure of the amplitude. We will here focus on logarithms of the coupling constant,
logyp. These enter in cases where the low energy supergravity limit has a logarithmic
ultraviolet divergence, manifested as a pole in dimensional regularisation.

These logarithmic terms are the origin of the Kronecker delta terms on the right-
hand side of (2.7)—(2.9). Roughly speaking this follows from the fact that part of the

Laplace operator acting on 5(53) contains y28§ logy = —1. The simplest example of this

phenomenon is seen in the R* coefficient, 5(((?)0
being in the 9*R* coefficient, 5((17 )0) in D = 7 dimensions (2.19). The third example is the

9% R* coefficient in D = 6 dimensions, which is presented in appendix A.

) in D = 8 dimensions in (2.18), the next

3.1 Logarithmic thresholds in the Einstein frame

Closed string perturbation theory is an expansion in the D-dimensional coupling constant,
in which the genus-h term is proportional to yg_l when evaluated in the string frame. The
four-graviton amplitude contains terms that are non-analytic in the Mandelstam invariants
due to massless thresholds that are determined by unitarity. Up to the order in the low
energy expansion that we are considering in this paper these are the same thresholds as
those of maximal supergravity where they arise at L loops in dimensions Dy, = 4+6/L [22].
In the string amplitude these are schematically of the form,

0Py 0 s)™ hi(2) R log(—62 s fr(z)),  ni=0,ng=2,n3=3, (3.1

where fr, and hy are complicated functions of the dimensionless variable © = —t/s = 1+
u/s, the details of which do not concern us (see [22] for a discussion of these contributions).
The power of /5 in the overall factor is fixed by the power of the Mandelstam invariants and
the dimension Dy,. Importantly, apart from the explicit power of the string coupling, yp, ,
there is no dependence on the moduli in the overall factor multiplying these nonanalytic
terms, although fr,(z) does depend on the moduli other than yp, . Transforming from the
string frame to the Einstein frame is equivalent to replacing ¢ by £p using 6372 = Ef ~2up.
This implies that the Mandelstam invariants are rescaled so that

_2
2s=y, 2%, or log(—£2 5) = log(—{% s) — logyp - (3.2)

D -2
The contribution to the amplitude in (3.1) is therefore equal to the Einstein frame expres-
sion

(5,7 (6, 9)" hi () R* (log<—f%Lst<x>> - log ym) (3:3)

Dp —2

~10 -



So we see that when the Mandelstam invariants are expressed in Einstein frame units the
non-analytic logs term in the amplitude leads to a term proportional to logyp in the
analytic part. In this discussion there is an ambiguity in the scale of the logarithms, but
this does not affect the overall coefficient and is independent of the moduli, so for our
purposes it can be ignored. In other words, the coefficient of the logyp term in Einstein
frame is —2/(Dy, — 2) times the coefficient of the log(—¢%s) term.

On the other hand, in supergravity the factor of log s arises as an infrared threshold
singularity accompanied by a logarithmic ultraviolet divergence. If this is regulated by an
ultraviolet momentum cutoff A, it results in a term of the form log(—s/A2), where the
log A can be subtracted by addition of a local counterterm. In dimensional regularisation
the ultraviolet divergence appears an € pole in the amplitude evaluated in D = Dy, + 2¢
dimensions. The logarithm appears after subtracting the pole and using lim, o ((—5/p)%—
1)/e ~log(—s/u), where p is an arbitrary scale, Needless to say, since the coefficient of the
log is determined by unitarity it is not sensitive to the regularisation scheme adopted.

The conclusion is that the logarithmic terms in the automorphic functions, determine
the coefficients of the log s factors in A7y"*", and hence the logarithmic terms that represent
the ultraviolet divergences in supergravity. The following examples illustrate this feature
of the amplitudes in the three cases, D1 = 8, Dy = 7 and D3 = 6. The conventions used
to compare the amplitudes in string theory and supergravity are exhibited in appendix B.

e The R? interaction in D = 8 dimensions

It was shown in [2,11] that the coefficient £ ((g )0) in (2.18) has the perturbative expansion

1 1
Elgty = 22 4 28,(7) + By(0) + Flog g+ Ofe T E ) (3
In this case there is no overall power of {g in (2.4) so this expression is also the coefficient
in the string frame and the power-behaved terms are identified with tree-level (h = 0) and
genus-one (h = 1) contributions, together with the logys term. The latter is a signal of
a genus-one log(—s¢2) term in the string frame, where there can be no logys, as argued
above.

This expression can be compared with the expression that arises in dimensionally
regularised one-loop maximal supergravity in D = 8 + 2¢, where the € pole is associated
with an ultraviolet divergence. The field theory amplitude given in [24] is

64
stu fg

e+ Al ocrt (B han k). (35)

where we have included the tree-level term proportional to R*/stu in order to display the
relative normalisations (we refer to appendix B for details) and

LGk - k) = Li(s,t) + L(t,8) + I (s,u) + I (u, ) + L (tu) + Li(u,t),  (3.6)
with

Ii(s,t) = lim(I<(s, t) + 97 (3.7)

e—0
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and

or [ 1 03t ! t(1 —x) o2r (1 t(1 —x) log(1 — )
I(s,t) = — | — +1 - /d——/d (@)
i(s:1) 3 <2€+0g< ,u)) 0 jUs;z:—t(l—;z:)—i_iS 0 o s —t(1—x) +0(e)
(3.8)
(1 is an arbitrary constant). It is easy to see that this expression contains a logarithmic

term. Summing over the terms in (3.6) and rescaling the metric to the string frame using
the identity E% = yé/g 2 gives

R A 2T
L(Ck; - ky) = L(63ki - ky) + 3 log ys . (3.9)

(3)
(0,0)
of the threshold logarithm, which is given in supergravity by the dimensionally regularised

Therefore, the 37rlog ys contribution in the coefficient &£ in (3.4) implies the presence
expression I 1(€§ki~k:j). So the coefficient of the logarithmic ultraviolet divergence associated
with the field theory pole in (3.8) is precisely the coefficient of the logys required by U-
duality.

e The 9*R* interaction in D = 7 dimensions
The coefficient of this interaction is £3 5((17 )0) which is defined by (2.19) and was shown

in [2] to have the small-y; the expansion

£ _C(5) 3 ESL(4)

2 ASL(4) SL(4)
1.0 = 7 T 7y B + 3 Eloors + Elgoy) +

2
[100];2 oo1;2) T 75 log y7

5 (3.10)

+ O(e*(wvs)_ 2 67(y7z5/ri)_% )

)

where v3 = (r17273)/¢2. The various powers of y7 in this expression correspond to tree-level
(h = 0), genus-one (h = 1) and genus-two (h = 2) terms. This is seen by transforming
to the string frame where the terms are of order y. I+ ysing the fact that 2 = 0y
The logarithmic term here implies the existence of a genus-two threshold term of the form
472 /3 y7 log(—sf?) in string frame using (3.2) again.

We can compare the coefficient of the logy7 term in (3.10) with the ultraviolet diver-
gence of two-loop maximal supergravity in D = 7 dimensions, which was evaluated using
dimensional regularisation in [25] and gave (once again including the tree-level term in
order to compare normalisations),

00 z 64
A+ A o Ry (g + BBk ) (311

where .fg(@ k; - k;) is the two-loop contribution, which is given by a sum of terms
(ki - k) = (25)2(IF (s,1) + I (s, u) + INP (s,) + I P (s,u)) + perms(s, t,u) . (3.12)

Here P and NP denote contributions from planar and nonplanar double-box Feynman
integrals, which are defined via dimensional regularisation in D = 7 + 2¢ dimensions using
equation (4.3) of [25]

2

12( s2 4+ 1% +u?)), (3.13)

64
Ir(s,t) = lim (75 + 2—7

e—0
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where

14—-3D
V)Ay? 4, (3.14)
1

1 7
X ¢(s,8) = 4% (4m)P-5 (7 — D) (—(25)P~7 /O dTus(1 —

i
where X = P or NP and ... indicates terms that do not contribute to the logarithm and
Ax is given by [25]
Ap = (1 +va+v3)(va+vs +v6) +v7(1 —17),
Ayp = (V1 + V2)(V3 + V4) + (Vl + vy + s+ 1/4)(1/5 + v + V7) . (3.15)

Expanding (3.14) one gets (see appendix C of [25])

- 2 2 2t 2
Iy = 3 71T—2 (s log(—LS) + t?log(——=) + u? log(—ﬂ)) +-- (3.16)
[t [t [t
Using the relation (2 = /2 y$/5
P S 82
IQ(EWICZ' . I{ZJ) = IQ(ES,ICZ . I{ZJ) + —15 log y7 o2 . (317)

(7)
(1,0
threshold term in the Einstein frame which is absent in the string frame provided the

So we see that the logy; term in the coefficient & ) in (3.10) represents a two-loop

string amplitude possesses a logarithmic threshold with precisely the same coefficient as in
L = 2 supergravity.
In other words, as with the R?* interaction, we can identify the precise coefficient of

the logarithm associated with an € pole in dimensional regularisation of two-loop maximal

supergravity in D = 7 4 2¢ dimensions with the coefficient of the logarithm in the duality-
(7)
(1,0)°

e The 9°R* interaction in D = 6 dimensions

6

In this case the coefficient, 5((0)1)

SO(5,5) that satisfies the inhomogeneous equation (2.9), which has vanishing eigenvalue

invariant coefficient, &

is an automorphic function for the U-duality group

but non-zero Kronecker delta term when D = 6. The solution of this equation is less
straightforward than the earlier cases. Since this case was hardly discussed in [2] (whereas
the 9%R* coefficients for D > 6 were obtained in [2,8,15]), a discussion is included in the
appendix, from which we see that the coefficient 5((?’)1) has the perturbative expansion

20(3)2 | 1 ,2¢(3) L so@aa4) | 8C(4) sowua), 1 so@a)
5(6) — + . ( ) ) ) + _ F )
(0,1) 3 2 [1000];1 [1000];4 2
) é’»(z; v 3 69 Yo (3.18)
~S0(4,4) | £SO(4,4)
+ 105 (E[OOOI};Z’» + E[OOIO};3) + 15¢(3) log y + n.p. .

where n.p. stands for various non perturbative contributions evaluated in appendix A where
the function FQS O i also discussed. In this case the powers of the string coupling, ys,

correspond to tree-level, genus-one, genus-two and genus-three. The three-loop contri-

bution involves the regularized SO(4,4) series ESOUD 4ng EFOUD

[0001]:3 0010]:3 ° In particular, the
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logarithmic term is a sign of a genus-three logarithm associated with a term in the string
frame of the schematic form y2¢(3) log(—¢2s).

Once again this can be compared with dimensionally regularised supergravity, which
has a three-loop contribution to the 9°R* amplitude in D = 6 dimensions of the form
(again adding in the tree-level amplitude to compare normalisations)

- —loo, 1 64 7
Alree 4 AT o R4yl <m + I3 (L5 ki - k’j)> : (3.19)

The function I3 is a sum of many contributions [26,27] that is given by using equation (5.12)
of [26], which gives

- 15¢(3
e—0 €
The expression for I3 can be deduced from equation (5.14) of [27] (using the D = 7 two-loop
result in equation (5.19) to establish normalisations). Transforming from Einstein frame
/ 2)

to the string frame (and using the relation ¢2 = ¢2 yé gives

I3(03 ki - kj) = Is(02 ki - k) + 15¢(3) log yg 073 (3.21)
Therefore, the coefficient of the log ys term in 5(((?)1) in (3.18) determines the coefficient
of the logarithmic terms associated with the e pole.

e The 9°R* interaction in D = 8 dimensions

The examples discussed so far are ones in the critical dimensions, D = 4 + 6/L,
for L = 1,2,3. There are, however, other ultraviolet logarithms that arise in dimen-
sions D > Dy for any value of L. The simplest of these appears to arise in the one-
loop in ten dimensions, where there is a threshold that is schematically of the form
503, log(—s3,) R* + perm(s,t,u). However, under the rescaling (3, = ¢2 y%4 the shift
is (s +t +u) logyip = 0, so the logarithmic term vanishes.

The simplest nontrivial example is the two-loop amplitude in D = 8 dimensions, which
has both log and log? divergences associated with a singe and double pole multiplying 9% R*
in dimensional regularisation in D = 8+ 2¢ dimensions. The presence of these supergravity
divergences is again encoded in the duality invariant 9% R* coefficient function, 5((3)1), which
satisfies (2.9) with D = 8. In this case the source term on the right-hand side of (2.9) is
the square of the R* coefficient, 5((3)0), which itself has a one-loop logys, as exhibited in
(3.4). The solution of this equation has the perturbative expansion given in equation (5.20)
in [2], which has the logarithmic terms,

7.(.2

® T
2 N +9( 27

T t

s + E?g:))) log ys — == log® yg) + n.p., (3.22)
where Efg’g) is the perturbative part of the R* interaction which has the expansion given
in (3.4). The term in (3.22) involving the tree-level part of EI(’g%t)
effect that was discussed in [28]. It contains the factorisation of the string loop into the

is a stringy threshold
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product of a tree-level R* factor and a massless pole factor. The one-loop contribution
to EI(JSTJ) gives both log ys and log? yg contributions that add to the explicit log y3 term in
(3.22).

In this case comparison with two-loop field theory in D = 8 dimensions requires us
to take into account the presence of two kinds of diagrams: (i) The two-loop diagrams
evaluated in [25]. (ii) A contribution involving the R* counterterm that cancels the one-
loop divergence - it is necessary to include the diagram in which this counterterm, is inserted
as a vertex in a one-loop diagram.

In the first of these contributions, (i), the double € pole of the dimensionally regu-
lated two-loop amplitude of maximal supergravity in (3.14) leads to a log® s term given in
equation (4.4) of [25]

2 2

£(4) : € 6, T i 3, .3 3
Iy =lim(IS + 03 (—s + —— t
2 = Ml + 5 (357 + 5gg )8+ + ) (329
6 2 3 sﬂ% 3 tf% 3 uf% '
+ 0 — (s log(——2) + ¢’ log(——2) + u’ log(——2)).
24e 1 1 2

The log? ys term should correspond to the double-pole in € in the two-loop supergravity
amplitude in D = 8 [25].

However, in eight dimensions the complete amplitude also includes contribution (ii)
due to the one-loop R* counterterm, which has an € pole, inserted into a one-loop diagram.
This results in a triangle diagram, which makes an additional contribution to I that was
not considered in [25], but makes an essential contribution to the complete 9°R* ultraviolet
divergence in eight dimensions. Its overall normalisation is difficult to determine, so we will
fix it by unitarity, which, as explained above, guarantees that it matches the string theory
result. Although this is not a completely independent check of the normalisation (unlike
the previous cases), it shows the precise origin of the different structures that contribute
to give the string theory result. With this proviso, the counterterm contribution is

R (s IS(s) + 2 IE(t) + u? IS(u)) , (3.24)

where

ole) dP¢ R D e
O e (e e e (Z2) sin(r(3 - 2))

(3.25)

in which one vertex is the R* counterterm and in which the loop integral generates a second
power of 1/e. As a result this contribution has the form

0 2t 0
760 _ i (I(ii)6—£6 51% 8% 4+ 1% + u? 4 51% s*log(—=7) + t*log(— =) + v 10%(‘%))
2 T N2 8 32 €2 8 32 €
(3.26)

which gives another contribution to the double pole.
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The total contribution obtained by adding (i) and (ii) is given by
£2

o 2 2 te
IQ(Z) + Ién) = /3 7T—(53 logQ(—ﬁ) + tlog?(——3) +u? logZ(—&))
192 Jz Jz Iz
2 502 02 ul? (3:27)
— 18 — (s®log(—=2) + t3log(——=2 3log(——2)).

5 g (57 log( . ) + 7 log( . )+ u” log( . )
which transforms as (using (2 = ¢2 yé/ 3)

~ ~ 71'2

I5(Gk; - k) = L(Ck; - k) — > log?yg o3 + -+, (3.28)
where --- denotes terms with a single power of logys. So we see that there is agreement
between the coefficient of the log? 43 term in the automorphic coefficient 5((5)1) and the
supergravity calculation. As is evident from (3.22), the string theory coefficient automat-

pert
(0,0)
one-loop term that has to be subtracted in the field theory calculation in [25].

ically includes the term with the single logarithm, E log ys, which corresponds to the

4. The supergravity limit and instanton corrections

We turn now to consider the particular low energy limit of string theory that should relate
to perturbative quantum supergravity in D dimensions, which is an expansion in powers of
ki - kj 03, < 1, where the D-dimensional Planck length is fixed while £; — 0, so the string
excitation masses become large. Since

(p 2 =yptl?, (4.1)

it follows that the limit of interest is one in which the D-dimensional string coupling
becomes large,
92 gd

lim yp = ——— — 0. (4.2)

£5—0 ISRERE P
In addition, in order to arrive at the the field theory limit in which there is a single massless
supermultiplet, the masses of all other massive states must become large and decouple.
This requires, in particular, r; — 0 so that non-zero Kaluza—Klein masses are large, and

¢%/r; — 0 for the winding masses to become large.

4.1 The perturbative terms

In the yp — oo limit the perturbative term with the highest power of yp dominates the
others. For D > Dy =4+ 6/L this is a positive power of yp so the leading term diverges,
signifying a power-behaved divergence in supergravity. The simplest example of this is in
D = 10 string theory, where the genus-one term corresponds, in this limit, to a term of
the form ¢;2R* = yi(/)4€1702 RA. This diverges in the large-y¢ limit, signifying the quadratic
divergence of the one-loop term in supergravity.

When D = Dy, the dominant perturbative term in the yp — oo limit is the logyp,
term, which gives the supergravity logarithm for each of the three interactions described
in equations (3.4), (3.10), (3.18).
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For D < Dy, the perturbative terms vanish in the field theory limit since they involve
inverse powers of yp that arise in the translation from string frame to Einstein frame.
This is clearly seen from the specific examples of the R* interaction in D = 7 and D = 6
dimensions, as follows.

e The R* interaction in D = 7 dimensions has perturbative terms that are given by [2],

oyt (24(3) 2 ESO(3’3)> , (4.3)

(7)
€ Y7 [100];3

(0,0)

pert

/5 /5

where the factor of y, /% comes from the relation by = U y; in converting from string
units to Planck units in seven dimensions.
e The R* interaction in D = 6 dimensions has the perturbative terms [2],

-1 (2(¢(3) 50(4,4)

(©)
£0,0)

pert

/2

-1 . . . . . .
where the factor y; '~ again arises from the conversion from string frame to Einstein frame

(using £ = U yé/4).

In both these examples the perturbative terms vanish in the yp — oo limit, which
is a statement of the well-known fact that there is no local R* interaction in maximal
supergravity for D < 8. In these dimensions the leading contribution beyond the tree-level
term is a non-local interaction roughly of the form s RA (although its precise details
are more complicated [24]). A similar argument shows that the perturbative parts of the
0* R coefficients, 5((5 8), vanish in the yp — oo limit for D < 7. The same is true for

(D)
o)
expansion has not been demonstrated.

when D < 6. Whether analogous statements apply to higher orders in the derivative

However, there are important non-perturbative effects in the string amplitude that
swamp the perturbative contribution [19] as will be demonstrated next.

4.2 Supergravity limit including the instanton terms

Nonperturbative effects are, of course, suppressed in string perturbation theory, in which
yp is small and other moduli are fixed. However, the yp — oo limit produces an infinite
series of instanton terms with actions that become small in the limit under consideration.
For example, consider the exponential terms in the expansion of 5((37)0) in (3.4), which
correspond to a series of D-instanton terms (with action (ygT5)~'/2) and of wrapped D-
string instanton terms (with action (ys/T5)~/2). Although these are both suppressed when
yg is small, at least one of these series is unsuppressed for large ys. This is an instanton
manifestation of the effect described in [19], where it was shown that in dimensions D > 3
there are necessarily towers of non-perturbative particle states that become massless in the

supergravity limit. This will now be demonstrated in our explicit examples.

e The R? interaction in D = 8

In this case we will reexamine the exact expression for 5((53)0) = Eﬁﬁ]g)
SL(3) :
(10];s

+ 2B (U)

in (2.18) in the limit yg — oo. Consider first the expansion of E in the limit yg — oo,
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which is defined by [2,11]

0ol

SL(3) _ Y

Ei)s = > . e (45)
(m1,m2,m3)#(0,0,0) <ys (ml + maQy + m3(Bgrr + QlTl)) + %)

The limit yg — oo can be studied by separating the leading piece, which is the term with

mq = 0 in (4.5), and then perform Poisson resummations. This expansion is analogous to

the one in (B.52) in [2], but with the substitution (v2,Q) — (ys,T"). For s # 3/2 this gives

SLB3) _ 3 I'(s—1) 32
E[IO];S = y83 ES(T) + 2w W <(28 — 2)?/8 3
278 3=s 1-s mo — maT s—1
—— 8 T, 2 _ 4.6
HECLCHP Pty o
1,m2
mg3#0
[n2
x Ks_1 | 2m|ms] % +m2Ty yéﬂ ¢2imm3(m1 Brr+maBns)
2
Regularising the pole at s = 3/2 gives
. 1 4
Blord = 8 By(T) - = logys + O ViTE emVin/Te), (4.7)
2

The exponential terms in this expression are suppressed for fixed 75 — the Poisson resum-
mation has resummed the effect of light wrapped branes and non-perturbative objects. The
net result is that the effect of including these non-perturbative effects has swamped the
perturbative term and the leading piece is the term proportional to yé/ 2 (and the coefficient
of the subleading logarithmic term appears with a different coefficient from the one in the

perturbative expansion discussed earlier).

e The 9*R* interaction in D =7

(7)
(1,0)
are now interested in the limit, y; — oo. This gives (see (B.78) and (B.93) in [2] with the

The perturbative part of the £ given in last line of (2.19) was derived in [2]. We

replacement 4 = ;)

2
SL()  fosr)  2ml(s—2) 92—
E[looo};s - 3/75E[1001;s + W C(2s —4) Yz

4s 1 1
Ep O(e_(y7”3)2 7 e~ (yrls/ri)? )

9

SL(4) WF(S - 1) %ESL(ZL) + O(ef(ng)% ’ ef(yﬂs/ri)%) ]

SL() = 1-
E = y7 ((2s = DEjqy s + I(s) Y [010];5—3

[0010];s

(4.8)

As before we have resummed all the instanton effects so that the exponential terms in this
expression are suppressed in the large-y; limit. In particular, the series of relevance to the

SL(5) and ESL(S) in the limit ¢ — 0.

4 4 . . . . . .
0* R* interaction arise in the combination E[looo};g+e 10010];3 —c
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The poles in the individual series cancel and the combination has the expansion,

e _ 1 =s1(5) 3 ~SL(5)

(1,0) = 9 [1000];2 + FE[OMOL%

—
.'.l;
Ne)

S~—

_ o7 Apsiw) 1o dosiwy 2 ssiy  Am yres)? o (yrle/ri)?
_%72 [001];3 §y72E[100];g ﬁE[ow];z_?lOgy?-l-O(e TS e T ).

The leading behaviour is dominated by the term that behaves as y;’/ 2 (and, once more, the
coefficient of the logarithmic term is different from the one in the perturbative expansion).

These expressions illustrate that the perturbative supergravity logarithms are domi-
nated by the “non-perturbative” instanton contributions. Furthermore, the result of sum-
ming these contributions leads to expressions that diverge badly in the yp — oo limit.
This is a sign that the low energy expansion in powers of k; - k; €2D is invalid. As pointed
out in [19], string dualities relate this limit to a limit which may be described by trans-

Planckian scattering in a decompactified dual of the original string theory.

5. Comments on higher-order interactions and higher-loop supergravity.

The structure of the terms in the low energy expansion of string theory that we have
discussed is presumably highly constrained by a combination of duality and maximal su-
persymmetry, even though this has not been explicitly used in determining the coefficients.
It would obviously be of interest to discover the detailed structure of such terms and to
what extent they are protected by maximal supersymmetry. Although this has not been
understood in detail, there is some information about higher-order terms (i.e., terms of
order 3® R* and higher) in D = 9 dimensions.

This comes from evaluating the amplitude in the limit of large volume, V(441), of
the M-theory torus (limit (iii) described in the section 2) where the Feynman diagram

approximation to eleven-dimensional supergravity compactified on 791, should be a valid
(9)

(2,0)°
loop Feynman diagrams compactified on 72 is given in equation (4.25) of [9]. This is a sum

approximation. The contributions to the 98R* coefficient, & from one-loop and two-
of automorphic functions satisfying inhomogeneous Laplace equations with source terms
that are quadratic in the lower order coefficients, generalising the equation that determines
the 3%R* coefficient (2.9). Although the expression is incomplete since it undoubtedly
gets contributions from higher-loop Feynman diagrams, it is striking that its perturbative
expansion terminates at genus five, rather than genus four.

The occurrence of a five-loop contribution to 98R* is novel since it breaks the pattern
set by 9?*R* interactions with k = 2,3, for which there are no contributions with genus
larger than k for any value of D. Similar statements also apply to the other higher order
terms considered in [9], namely, the 91R* coefficient (equation (4.31) of [9]) which contains
terms up to genus seven, and the 9'2R* coefficient (equations (4.32) and (4.33) of [9]),
which includes terms up to genus nine. This pattern shows that the claim [29], that
supersymmetry protects 9?*R? interactions with 1 < k < 5 from renormalisation in D = 10
dimensions, must be modified in lower dimensions. Furthermore, there are indications
based on technical issues in the pure spinor formalism [30] that even in ten dimensions
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the non-renormalisation property only holds up to k = 3. If that were the case the 93R4
interaction would be unprotected and would be expected to have contributions to all orders
in perturbation theory.

Following the earlier considerations of this paper, a genus-five term in the complete

(D)
5(2,0
supergravity in critical dimension 24/5. This contrasts with the value that follows if the

) coefficient would imply a five-loop logarithmic ultraviolet divergence in maximal

five-loop amplitude first contributes at order 9'%R*, in which case the critical dimension
would satisfy Dy, = 4+ 6/L with L = 5, or D5 = 26/5. Furthermore, if 9®R* is indeed
not protected by supersymmetry, so its complete coefficient contains terms to all orders in
perturbation theory, the critical dimension at L loops would be Dy, = 2+14/L. This would
lead to a seven-loop logarithmic ultraviolet divergence in maximal supergravity in D = 4
This is in line with the suggested presence of a seven-loop counterterm [31]. This conflicts
with an earlier argument by the present authors, based on [29], that the first divergence
would not occur until at least nine loops [32].

6. Summary and discussion of higher-order contributions

This paper has demonstrated several main features of the structure of the duality invariant
(D)

(p,9)’
expansion of the four-graviton amplitude in type II string theory compactified to D = 10—d

coefficients, & of terms up to the order °R* (or 2p + 3¢ < 3) in the low-energy
dimensions on a d-torus, 7¢. The explicit expressions for these coefficients were derived
and their properties analysed in [2] (where earlier work is reviewed).

e The perturbation expansions of these coefficients in certain critical dimensions —
D; = 8 for R*, Dy = 7 for 0* R%, D3 = 6 for 9° R* — contains logarithms of the string
coupling log yp, . Their presence is required by the duality invariance of the analytic part of
the amplitude and arises from the presence of poles in Eisenstein series, although the poles
themselves cancel, leaving a finite amplitude. Such non-analytic behaviour in the coupling
constant cannot be present in perturbative string theory so it must disappear when the
amplitude is transformed from the Einstein frame to the string frame using the relation

= (P=2yp. In order for this

of the D-dimensional Planck scale to the string scale, 53_2
to happen there must be specific terms that are logarithmic in the Mandelstam invariants
~ log(—s £%/11) (where y is an arbitrary constant), which correspond to threshold terms in
the amplitude. These are precisely the threshold log(—s 63)’5 that arise in supergravity field
theory as ultraviolet divergences, or poles in dimensional regularisation. In other words,
we have obtained the coefficients of the ultraviolet divergences of maximal supergravity at
L=1loopin D=8 L=2loopsin D =7and L =3 loopsin D =6 as a consequence of
U-duality rather than calculating the supergravity loop diagrams explicitly.

e The coefficient functions also contain more subtle effects associated with logarithmic
divergences in supergravity amplitudes in dimensions D > Djy. For example, we saw
that the normalisation of the double-pole, 1/€2, in three-loop supergravity in D = 8 + 2¢
dimensions is in correspondence with the coefficient of log? ys in the perturbative expansion
of the automorphic coefficient of the 9°R* interaction, 5((37)1), which satisfies (2.9) with
D = 8. In this case the source term on the right-hand side of (2.9) is the square of
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the R* coefficient, & )

(0,0)’
are plenty of further examples of logarithmic divergences in field theory in dimensions
D > Dy, =4+ 6/L, but they are all associated with interactions 9*/R?* with L > 3.

e The supergravity limit of string theory, {3 — 0 with ¢p fixed requires yp — oo.

which itself has a one-loop logys, as exhibited in (3.4). There

In this limit the highest-genus perturbative term (the highest power of yp) dominates the
lower-genus contributions. However, an accumulation of an infinite number of unsuppressed
instanton contributions dominates the amplitude. These are terms that are exponentially
small in the string perturbation theory limit. The precise consequences of summing over
such zero-action instanton contributions were deduced by explicitly expanding the coef-
ficient functions in the yp — oo limit. In the cases considered here, where the torus
dimension d < 4, the instantons correspond (in type IIB language) to wrapped (p, ¢)-string
world-sheets and D-instantons in D = 8, as well as wrapped D3-brane world-sheets in the
D = 6 case. One lesson to draw from this is that, as discussed in [19], supergravity cannot
be decoupled from string theory?®.

As was emphasised in section 5, understanding the systematics of higher derivative
terms is intimately related to understanding the order at which ultraviolet divergences of
four-dimensional N = 8 supergravity first arise and the stringy origin of such divergences.
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A. The 0°R* interaction in D = 6 dimensions.

Since the coefficient 5((3)1) was not discussed in [2] its properties will be discussed in this
appendix. As explained in section 3, this coefficient satisfies the Poisson equation (2.9)

6)c6) _ (15055 \?2
A 5(0,1)_ (E[mooo];g) T (A1)

where c is a numerical constant to be determined. We have used the fact that the coeflicient
4. c(6) _ nSO(55)

of R is €y = Ei10000);3/2°
We begin by discussing the perturbative expansion, which is associated with the

which was discussed in detail in [2].

parabolic subgroup P,,, with Levi component GL(1) x SO(4,4). In expanding the source
term in (A.1) in powers of ys we need the expansion (see (3.54) of [2]),

[10000]; 3

50 -3 —3 @S0
/P Ep o), = 2C(3)ys * + 26 * Blyogoi (A.2)
ay

8For alternative ideas on this subject see [33].
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where the notation indicates an integration over the instanton phases associated with the
unipotent radical, N, associated with the maximal parabolic subgroup F,,, as defined
in [2], thereby projecting onto the zero Fourier mode. The solution of (A.1) can be found

in perturbation theory, by expanding the automorphic function 5(((?)1)

Y6,

as a power series in

£

2
— SO(4,4 SO(5,5
R I S i (A.3)

pert. k=0

where F; kS OUY are perturbative genus k£ = 0,1, 2 contributions and
ASOGD) OGS — ¢ (A4)
We now use the decomposition of the Laplace operator (also discussed in [2]),
ASOGA) — ASOUA) 12y, )? + 8(yeys) - (A.5)
Substituting (A.2), (A.3) and (A.5) into (A.1), we find the following equations

6F, Y = 46(3)”

SO(4,4) SO 4,4
(ASO(4,4) _ 8)F ( = —8C(3)E [1000] 1) : (A.6)
SO(4, SO4,4) S0(4,4)\2
(A 4 - 6)F5 _4(E[1000};1)

SO(4.4)

which determine the coefficients of F} In particular, it follows immediately that the

tree-level and one-loop coefficients are

2
FOSO(4,4) ~2¢(3)

3 )
so@,4) _ 2€(3) s0(1,4)
I = 3 Epoooj1 - (A7)
(50(4,4)

The genus-two function Fi, , satisfying the last equation in (A.7), is more complicated

but its properties can be analysed following the same procedure as in [8], although we will

not need its properties here.

FSO(5,5)

We now turn to , which, as we will see later, generates a logarithm that is

related to the 1/e pole in D = 6 three-loop supergravity. The most general solution of
(A.4) is a particular solution plus a solution of the homogeneous equation, where the

homogeneous solution is a linear combination of SO(5,5) Eisenstein series. These satisfy
50(5,5)

Laplace equations with eigenvalues given by (2.14). The two series of relevance are E[00010];s7

S0(5, . .
E[ooégl?;)y which satisfy
S0(5,5)pS0(5,5) _ D S0(5,5)
A )E[00001] — 5% s(s —4) E00001);s »
50(5,5)S0(5,5) _ D 50(5,5)
A )E[oomo] — 5% s(s —4) E90010)3s - (A-8)

S0(5,5) 1SO(5,5) 50(5,5)
[00100];5° E[omoo} and E[loooo}
they do not have perturbative expansions that contain powers of yg that are consistent

The other possible series, E need not be considered because
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with string perturbation theory. In order for (A.8) to have zero eigenvalues as required
by (A.4), we set s = 4 (the choice s = 0 gives equivalent solutions). Each series has a
pole in € at s = s+ €, which needs to be subtracted, leaving an automorphic function that
satisfies the Poisson equation with a constant source. The Eisenstein series with the pole
subtracted will be denoted by a hat in the conventional manner. We are thus led to the
ansatz

50(5,5)

S0(5,5) S0(5,5)
Fy 00001;4-+¢ T B )

[00010];4—e€

B ~SO(5,5) | £2SO(5,5)
— ¢ (E[00001];4 + E[00010];4) ’

= aplim (E
0 (A.9)

where ag is a numerical constant discussed below.

We are now interested in the constant term of F595:5) on the parabolic subgroup P,
corresponding to string perturbation theory. Expanding for small yg gives an expansion of
the form

/ ES0GS5) _ 2 ((2s —4)I(s —2)

$(s—4) ,SO(4,4) —£.50(4,4)
[00010);s — 7 ¢(25)I(s) Y6 E[OOlO];sfl + Y 2E[OOlO];s J (A.10)

1
and the functional relation

SO(5,5) 5 [(s— %)F(S - 2)5(23 —T7)((2s = 5) SO(5,5)

Eloo0101s = T T(s — )T (s)C(25)C(25 — 2) [00001];:4—s

(A.11)

and we are interested in s — 4. The first term is a genus three term which will contribute to
the log yg piece, whereas the second term is a genus one contribution that will not concern

us in this discussion.
The triality symmetry of SO(4,4) implies that the series Eﬁ%g}’f), Eﬁ)gl(g}’j) and Eﬁ)%f}’j)

all have eigenvalues equal to 2s(s — 3). Therefore, for s = 3 these Eisenstein series solve
a Laplace equation with zero eigenvalue. In this case, the Eisenstein series have poles, as
can be seen, for example, from the expansion in (C.7) of [2] ,

SO(44) 1,5 o sp@) , 15 T L SL
=V E[001};3 t53 (3)(? + E[1oo}

E[lOOO];3+e (4) 2

2

™
7)2 - log Vig)) + O(e) +np.  (A.12)
SL(4)

[100]:2-+¢ given in equation (B.12) of [2]. The

where we have also used the € expansion of E
k[%gl(gf%:s) el E[s(;géf]’é) e also have poles at ¢ — 0 with the same residue.

£50(5,5)

series E

It is now straightforward to obtain the regularised series = ao(Eﬁjgo(gﬁil +

~SO(5,5) 50(5,5) 50(5,5) S0(5,5
Egoorops) from Eggarivy 4+ By and hence, from F5OG5) defined by (A.9). Con-
centrating on the log yg piece this gives

S0(5, 525
FPo6H) 5o 0((3) logys + -+ (A.13)

Finally, the value of ag can be determined by the decompactification limit r3 — oo, where
we must recover the D = 7 genus-three automorphic functions. One must have (see (5.41)
in [2])

SL(4)

F??O(M)) — 27“??: (E[loo};B

SL(4)
+Egos) - (A.14)
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In this limit

S0(4,4) 50(4,4) L(4) SL(4)
E[0010} + E[ooou 3 73 (E[loo} + E[001};3) +o (A.15)
which requires ag = 672 /35. Thus
FPOGS) _15¢(3) log yg + - - (A.16)
This means, in particular, that
c=8x 15((3) (A.17)

B. Normalisations

This appendix gives a brief definition of the conventions used for the normalisations of the
amplitudes.

The normalisations of the supergravity field theory amplitude calculations at from tree
level to three loops are given by [25-27]

i () (g (2 10 () 00 () ) o

By convention, the Newton constant in dimension D < 10, , kp, is related to the Planck
length, ¢p, by 2“(D) (2m)P- 3€D 2,

For the purpose of comparing the field theory and string theory normalisations it is
useful to recall the expansion of the tree-level amplitude string in ten dimensions,

Astmng — _LR4 ( )F( %) (
tree vio T(1+° )r(1 4 & t)r(l + ?;“)
1 64 o 2€(3)% .
= —%R‘l <8t 0 +2¢(3) +¢(5) 62 + C;) ag+---> : (B.2)

where 6, = (s + " + u™) £2" /4™,
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