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Abstract
We discuss properties of linear Dyson–Schwinger equations.

1 Introduction

In this short note we want to focus on some elementary properties of
linear Dyson–Schwinger equations. In particular we want to empha-
size their solutions by Mellin transforms. This is a simple étude in
non-perturbative quantum field theory which we present here as the
precursor to a much more substantial discussion of nonperturbative
quantum field theory which is upcoming.
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2 Solving a linear Dyson–Schwinger equa-

tion

The distinguishing feature of a linear Dyson–Schwinger equation is
that it evaluates a group-like element in the corresponding cocom-
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mutative and commutative (sub-) Hopf algebra which describes its
perturbation theory [7, 2].

2.1 A group-like element in H

Our starting point is the very simple Hopf algebra H with formal
generators ti, i ∈ N≥0, t0 = I, and coproduct

∆ti =
i∑

j=0

tj ⊗ ti−j , j ≥ 0. (1)

We have the shift operator

B+ : H → H, B+(ti) = ti+1 = Bi+1
+ (I), (2)

where we write Bj
+ for the j-fold iteration of the shift and consider

the formal series
X(α) = I+ αB+ (X(α)) . (3)

Hence,

X(α) = I+
∞∑

j=1

αkBj
+(I). (4)

The shift operator is a very simple Hochschild one-cocycle [2, 7]

∆B+ = B+ ⊗ I+ {id⊗B+}∆. (5)

We have

Proposition 1 ∆(X(α)) = X(α)⊗X(α).

Feynman rules φL typically need some input parameter L say, (a log-
arithm say of an external momentum) and provide for a chosen such
parameter a map

φL : H → C (6)

and we define them recursively: φL(I) = 1 and

φL(B+(h)) =
∫

d+(k, q)φx(h). (7)

In this highly symbolic notation k refers to variables to be integrated
out and q to parameters whose logarithm provides the parameter L
above. The measure d+(k, q) is defined as

φL(B+(I)) =
∫

d+(k, q). (8)

Note that the map φL implies the existence of a map

φ : Ga → Spec H, (9)

which assigns to an element L in the additive group an element φL in
Spec H.
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2.2 The linear Dyson–Schwinger equation

Next, the Green function G(α, q) is defined by its Dyson–Schwinger
equation

G(α, q) := φL (X(α)) = 1 + α

∫
d+(k, q)G(α, x), (10)

= 1 + α

∫
d+(k, q) + α2

∫∫
d+(k, q)d+(k′, k) + · · · ,

which iterates the kernel d+.
Typically, the measure d+ is logarithmically divergent and so the

above equation is just about ill-defined, and hence an object of inter-
est.

Indeed,
∫

d+ can often be regarded as an expression which can be
naturally studied from the viewpoint of log-polyhomogenous symbols,
an approach which we will not pursue any further at this moment.

A Dyson–Schwinger equation has a Birkhoff decomposition in the
sense used in previous work with Alain Connes [4, 5] which is evident
if we write the equation for the renormalized Green function

GR(α, q, µ) = Z(α, µ) +
∫

d+(k, q)GR(α, k, µ) (11)

where
Z(α, µ) = Sφ

R(X(α)), (12)

and the µ dependence is implicit in the choice of a renormalization
scheme R: here we subtract at q2 = µ2, so R is an evaluation map
and this choice fixes the boundary conditions in our Dyson–Schwinger
equation: GR(α, µ, µ) = 1.

Note that
∫

d+GR(α, x) gives the contribution of Bogoliubov’s R̄
operation on X(α).

2.3 An example

The reader not familiar with renormalization theory will be lost al-
ready, so let me try to illuminate these concepts in a very simple
example. We hence turn to massless Yukawa theory where we start
with the simple one-loop graph

φln q2(B+(I)) =
∫

d4k
1

k2(k + q)2
, (13)

to be regarded as an elementary example for
∫

d+(k, q), generated by
the convolution of two massless propagators, inverse of the Euclidean
Klein-Gordon operator each.
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We get the integral equation

G(α, q2) = 1 + α

∫
d4k

G(α, k2)
k2(k + q)2

. (14)

This is just about ill-defined as it stands but reason is restored the
moment we renormalize, say by a simple subtraction at q2 = µ2:

GR(α, q2, µ2) = 1 +
∫

d4k
GR(α, k2, µ2)
k2(k + q)2

−
∫

d4k
GR(α, k2, µ2)
k2(k + q)2

|q2=µ2 . (15)

We then have

Z(α, µ2) = 1−
∫

d4k
GR(α, k2, µ2)
k2(k + q)2

|q2=µ2 . (16)

2.4 The use of a Mellin transform

It is time to introduce the Mellin transform of the integral
∫

d+(k, q):

F (ρ) =
∫

[k2]−ρd+(k, 1), (17)

where the notation indicated that we evaluate the external scale at
unity (zero in the additive group). In our example, we have

F (ρ) =
∫

d4k
1

[k2]1+ρ(k + q)2
|q2=1 =

1
ρ(1− ρ)

. (18)

Before we use the Mellin transform to solve our equation to all orders
in α, let us make contact with perturbation theory. For if

GR(α, ln q2, ln µ2) = 1 +
∞∑

j=1

αjcj(ln q2, ln µ2), (19)

then

Theorem 2 Sφ
R ? φ(tj) = cj(ln q2, ln µ2).

The reader should work that out himself, using the above iterations of
kernels for the renormalized kernel dR

+(k, q, µ) = d+(k, q)− d+(k, µ).
A similar result holds in total generality for a renormalizable quan-

tum field theory and its Hopf algebra of graphs.
Actually, the sub Hopf algebra provided by the sum of all graphs at

a given loop order is the simplest one for which such a theorem holds
for the full Green function, a crucial fact in circumstances where the
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sum of all graphs of a given degree has features which are lacking in
single graphs, as is the case in gauge theories [8].

More interesting here is that we can solve for G(α, q2, µ2) = GR(α,L)
in one stroke.

Theorem 3 GR(α, q2, µ2) =
(

q2

µ2

)−γ1(α)
= e−Lγ1(α), where the series

γ1(α) is determined by the Mellin transform

1 = αF (γ1(α)). (20)

This is readily confirmed by plugging the above scaling Ansatz into
the linear Dyson–Schwinger equation, and indeed holds for any such
equation which is linear and fulfills some very mild assumptions on
the measure d+, routinely available in a renormalizable quantum field
theory.

Also, we remark that a non-linear Dyson–Schwinger equation, re-
duced to depend on one kinematical parameter L, has a solution which
can be written as

GR(α, L) = e−
P∞

k=1 γk(α)Lk
, (21)

where
γk(α) =

∑

j≥k

γk,jα
j . (22)

In our linear example we find

γ1(α) =
1
2

(
1−√1− 4α

)
, (23)

where the constraint γ1(0) = 0 fixes the root in the quadratic equation
for γ1.

There is a simple relation between the Taylor coefficients of the
Mellin transform

F (ρ) =
r

ρ
+

∞∑

j=0

fkρ
k (24)

(r, the residue of the graph B+(I), is an object of remarkable math-
ematical interest [1]) and the Taylor coefficients of the anomalous di-
mension

γ1(α) =
∞∑

j=1

αjγ1,j . (25)

We have, by Thm. 3, γ1,1 = r and for n > 1

Proposition 4

γ1,n =
n−1∑

j=0

fj

j+1∏

i=1

∑

n1+···+ni=n−1

γ1,ni .
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Our example is very special indeed: for F (ρ) = 1/[ρ(1 − ρ)], so that
1 = r = f0 = f1 = · · ·, we get Catalan numbers: γ1 = γ2 = 1, γ3 =
2, γ4 = 5, . . . and so on. The invariance ρ → 1 − ρ of the Mellin
transform is universal and reflects the conformal invariance of the
measure d+ at unit scale q2 = 1.

2.5 The log of a linear DSE is linear

Let us reflect for a moment on the structure of the above result. The
existence of a scaling solution can be most easily interfered from the
fact that our fix-point equation is group-like. Indeed, there is a hi-
erarchy in the expansion of the Green function in terms of ln q2/µ2

[3] described by operators σn := φ ◦ S ? Y n for which a solution of a
linear Dyson–Schwinger equation only sees the first term (the residue)
as follows.

If we set lnG(α, L) =
∑

γkL
k as before, then γk = 0 for k ≥ 2

in the linear case. Indeed, as X(α) is group-like and starts with I,
the formal logarithm lnX(α) is primitive and annihilated when acted
upon by σ1 ⊗ σ1, and hence there are no higher powers of L in ln GR

by the scattering type formula [5].

2.6 A remark on dimensional regularization

What happens if we were to use a different renormalization scheme?
In the above, we never introduced a regulator and found that this
infinite sum of graphs regulates itself, by the anomalous dimension
which the Green function develops.

If we were to use dimensional regularization instead, together with
minimal subtraction, we actually loose the simple scaling Ansatz and
our renormalized Dyson–Schwinger equation looks like

GR(α, q2, µ2, z) = 1 +
∫

dDk
GR(α, k2, µ2, z)

k2(k + q)2

−
〈∫

dDk
GR(α, k2, µ2, z)

k2(k + q)2
|q2=µ2

〉
, (26)

where the limit z → 0 exists but on the rhs can not be taken inside the
integrands. This can not be solved in terms of a scaling solution di-
rectly, but needs further information which is provided by the analysis
at the critical fiber z = 0.

Let us finish this short paper with a more upbeat observation con-
cerning dimensional regularization.
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Let us look in dimensional regularization at the measure dz
+. For

our example we have

∫
dz

+(k, q) =
∫

dDk
1

k2(k + q)2
=

(
q2

µ2
DR

)D−4
2 Γ(z)Γ2(1− z)

Γ(2− 2z)
, (27)

where D = 4− 2z.
How can we obtain the result for the renormalized Green func-

tion GR(α, L) if we use dimensional regularization instead of a Mellin
transform, but maintain the same renormalization condition? Con-
sider

GR(α,L) =
(

q2

µ2

)−γ1(α)

= 1 + α

∫ {
dz

+(k, q)− dz
+(k, µ)

}
. (28)

This has a solution
z = γ1(α) (29)

and
µ2

DR = µ2A(γ1), (30)

where

A(γ1) = − 1
γ1

ln
(

(1− γ1)
(1− 2γ1)

Γ(1− γ1)2Γ(1 + γ1)
Γ(1− 2γ1)

)
, (31)

where A(0) exists and this is universally true for any linear Dyson–
Schwinger equation, as the Mellin transform and the integral

∫
dz

+

have the same residue.
A rather interesting phenomenon appears: we note that upon set-

ting
z = γ1(α) (32)

an integration in the α-dependent dimension

D = D(α) = 4− 2γ1(α) (33)

of d+ reproduces the infinite sum of amplitudes given by the Dyson–
Schwinger equation in four dimensions. This possibility to obtain
the solution of a recursive problem in four dimension as a solution
to a non-recursive integral in non-integer dimensions clearly deserves
further thought, in particular in comparison with [6].

3 Some Remarks

Things one should remember is that linear Dyson–Schwinger equa-
tions can be solved by scaling Ansatz, that the shift operator which
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defines their underlying fix-point equation is a closed Hochschild one-
cocycle, that the fix-point equation has a group-like solution and that
the corresponding integral equation can be solved by a Mellin trans-
form. Amazingly, the non-linear case has very similar properties to
be exhibited in due course.
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