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Abstract. — This paper is a contribution to the general program of embedding theories of
dynamical systems. Following our previous work on the Stochastic embedding theory devel-
oped with S. Darses, we define the fractional embedding of differential operators and ordinary
differential equations. We construct an operator combining in a symmetric way the left and
right (Riemann-Liouville) fractional derivatives. For Lagrangian systems, our method pro-
vide a fractional Euler-Lagrange equation. We prove, developing the corresponding fractional
calculus of variations, that such equation can be derived via a fractional least-action prin-
ciple. We then obtain naturally a fractional Noether theorem and a fractional Hamiltonian
formulation of fractional Lagrangian systems. All these constructions are coherents, i.e. that
the embedding procedure is compatible with the fractional calculus of variations. We then
extend our results to cover the Ostrogradski formalism. Using the fractional embedding and
following a previous work of F. Riewe, we obtain a fractional Ostrogradski formalism which
allows us to derive non-conservative dynamical systems via a fractional generalized least-
action principle. We also discuss the Whittaker equation and obtain a fractional Lagrangian
formulation. Last, we discuss the fractional embedding of continuous Lagrangian systems.
In particular, we obtain a fractional Lagrangian formulation of the classical fractional wave
equation introduced by Schneider and Wyss as well as the fractional diffusion equation.
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”Il y a de l’apparence qu’on tirera un jour

des consequences bien utiles de ces paradoxes(1),

car il n’y a gueres de paradoxes sans utilité.”(2)

Leibniz, Letter to L‘Hospital, September 30, 1695

Comme la construction du monde est la plus parfaite possible

et qu’elle est due à un Créateur infiniment sage,
il n’arrive rien dans le monde qui ne présente quelques propriété de maximum ou minimum.

Aussi ne peut-on douter qu’il soit possible de déterminer tous les effets de l’Univers

par leurs causes finales, à l’aide de la méthode des maxima et minima
avec tout autant de succès que par leurs causes efficientes.

Methodus inveniendi lineas curveas maximi minimive proprietate gaudentes
in Eulerii Opera omnia, Série I, 24,

Berlin-Basel-Boston-Stuttgart, Lipsiae-Birkhauser Verlag, 1911

INTRODUCTION

The aim of this paper is to introduce a general procedure called the fractional embedding

procedure, which roughly speaking allows us to associate a fractional analogue of a given

ordinary differential equation in a more or less canonical way. The fractional embedding

procedure is part of a global point of view on dynamical systems called embedding theories

of dynamical systems [15]. Before describing the general strategy underlying all embedding

theories and the particular fractional embedding procedure, we provide a set of problems

which lead us to our point of view:

- Turbulence: Fluid dynamics is modelled by partial differential equations. Solutions

of these equations must be sufficiently smooth. However, there exits turbulent behavior

which correspond to very irregular trajectories. If the underlying equation has a physical

meaning, then one must give a sense to this equation on irregular functions. This remark

is the starting point of Jean Leray’s work on fluid mechanics [29]. He introduces what

he calls quasi-derivation and the notion of weak-solutions for PDE. This first work has a

long history and descendence going trough the definition of Laurent Schwartz’s distribu-

tion and Sobolev spaces. We refer to [2] for an overview of Jean Leray’s work in this domain.

(1)Derivatives of non-integer order
(2)It will lead to a paradox, from which one day useful consequences will be drawn.
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- Deformation Quantization problems: The problem here is to go from classical mechan-

ics to quantum mechanics trough a deformation involving the Planck constant. Roughly

speaking, we have a one parameter h family of spaces and operators such that they

reduce to usual spaces and operators when h goes to zero. For example, we can look for

a deformation of the classical derivative using its algebraic characterization trough the

Leibniz rule. Another way is following L. Nottale [35] to assume that the space-time at

the atomic scale is a non-differentiable manifold. In that case, we obtain a one parameter

smooth deformation of space-time by smoothing at different scales. The main problem is

then to look for the deformation of the classical derivative during this process. We refer

to [16] for more details.

- Long term behavior of the Solar-system: The dynamics of the Solar system is usually

modelled by a n-body problem. However, the study of the long-term behavior must

include several perturbations terms, like tidal effects, perturbations due to the oblatness

of the sun, general relativity effects etc. We do not know the whole set of perturbations

which can be of importance for the long term dynamics. In particular, it is not clear that

the remaining perturbations can be modelled using ordinary differential equations. Most

of stability results uses in the Solar systems dynamics make this assumption implicitly

[30]. An idea is to try to look for the dynamics of the initial equation on more general

objects like stochastic processes, by extending the ordinary derivative. Then one can look

for the stochastic perturbation of the underlying stochastic equation which contains the

original one. As a consequence, we can provide a set of dynamical behaviors which have

a strong significance being stable under very general perturbation terms. This strategy is

developed in ([18] [20]) and applied in [21].

These problems although completely distinct have a common core: we need to extend

the classical derivative to a more general functional space. This extension being given, we

have a natural, but not always canonical, associated equation.

However, we are lead to two completely distinct theories depending on the nature of the

extension we make for the classical derivative.

For the Solar-system problem, we need to extend the classical derivative to stochastic

processes by imposing that the new operator reduces to the classical derivative on differen-

tiable deterministic processes. In that case, the initial equation is present in the extended
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one and we use the terminology of embedding theory. We describe the strategy with more

details in the next section.

For quantization problems, in particular first quantization of classical mechanics, we

have an extra parameter h (the Planck constant) and the extended operator denoted by

Dh reduces to the classical derivative when h = 0. The initial equation is not contain in

the extended one, but we have a continuous deformation of this equation depending on h.

We then use the terminology of deformation theory. We give more details on this type of

theories in the following.

1. Embedding theories

The general scheme underlying embedding theories of ordinary or partial differential

equations is the following:

– Fix a functional space F and a mapping ι : C0 → F .

– Extend the ordinary derivative on F by imposing a gluing rule.

– Extend differential operators.

– Extend ordinary or partial differential equations.

Let us denote by D the extended derivative on F . The gluing rule impose that the extended

derivative reduces to the ordinary derivative on ι(C1), i.e. that we have Dι(x) = ι(ẋ), for

all x ∈ C1, where ẋ = dx/dt. As a consequence, the original equation can be recovered

via the embedded equation by restricting the underlying functional space to ι(Ck), k

depending on the order of the original equation.

Most of the time, we have in mind applications to physics where Lagrangian systems

play a fundamental role. The importance of these systems is related to the fact that they

can be derived via a first principle, the least-action principle. Moreover, in some cases

of importance we can find a symmetric representation of these systems as Hamiltonian

systems. Hamiltonian systems are fundamental by many aspects. Of particular interest

is the fact that they can be quantized in order to obtain quantum analogues of classical

dynamical systems.
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An embedding procedure can always be applied to Lagrangian systems. We obtain to

embed objects which are the embed action functional and the embed Euler-Lagrange equa-

tion. At this point, an embedding procedure can be considered as a particular quantization

procedure related to the underlying functional space. However, we have a more elaborate

picture here. As we have an embed action functional, we can develop the associated cal-

culus of variations, that we call the embed calculus of variations in what follows. We then

obtain an embed least-action principle with an associated Euler-Lagrange equation. As a

consequence, we have two kinds of embed Euler-Lagrange equations and it is not clear that

the one obtain directly from the embedding of the classical Euler-Lagrange equation and

the one obtain via the embed least-action principle coincide. This problem is recurrent in

all embedding theories of Lagrangian systems and is called the coherence problem. This

problem is far from being trivial in most of the already existing embedding theories, like

the stochastic one ([18] [20]) or the quantum one [17].

2. Emergence of fractional derivatives

In this paper, we develop an embedding theory of ordinary differential equations and

Lagrangian systems using fractional derivatives. Precise definitions will be given in section

I. We only give an heuristic introduction for these operators and some basic problems

where they arise naturally.

A fractional derivative is an operator which gives a sense to a real power of the classical

differential operator d/dt, i.e. that we want to consider an expression like

(.1)
dα

dtα
, α ≥ 0.

The previous problem appears for the first time in a letter from Leibniz to L’Hôpital in

1695: ”Can the meaning of derivatives with integer order be generalized to derivatives

with non-integer orders ?”. Many mathematicians have contributed to this topic including

Leibniz, Liouville, Riemann , etc. We refer to [36] or [32] for a historical survey. A

number of definitions have emerged over the years including Riemann-Liouville fractional

derivative, Grunwald-Letnikov fractional derivative, Caputo fractional derivative, etc.

In this article we restrict our attention to the Riemann-Liouville fractional derivative,

although the embedding theory can be developed for an arbitrary given fractional calculus

with different technical difficulties.
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The main difficulties when dealing with fractional derivatives are related to the following

properties:

(i) fractional differential operators are not local operators

(ii) the adjoint of a fractional differential operator is not the negative of itself

Property (i) is widely use in applications and explain part of the interest for these

operators to model phenomenon with long memory (see for example [12]).

Other problems arise during computations. Developing the fractional calculus of vari-

ation and the associated results (the fractional Noether theorem) we have encountered

difficulties linked with the following facts:

(i) the classical Leibniz rule (fg)′ = f ′g + fg′ is more complicated (see [40])

(ii) there exists no simple formula for the fractional analogue of the chain rule in

classical differential calculus (see [40])

This last difficulty is of special importance in the derivation of the fractional Noether

theorem.

The fractional framework has been used in a wide variety of problems. We note in

particular applications in turbulence [10], chaotic dynamics [46] and quantization [34].

In this paper, we will frequently quote the work of F. Riewe ([38],[39]) which proposes

a fractional approach to nonconservative dynamical systems. The main property of these

systems is that they induce an arrow of time due to irreversible dissipative effects. The

relation between fractional derivatives, nonconservative systems and irreversibility have

been discussed for example in the book [31].

Irreversibility implies that we look for the past Pt and the future Ft of a given given

dynamical process x(s), s ∈ R at time t, i.e. on the information Pt = {x(s), a ≤ s ≤ t}
and Ft = {x(s), t ≤ s ≤ b} where a and b can be chosen and depends on the amount of

information we are keeping from the past and the future. This induce the fact that we

look for two quantities, not yet defined that we denote by d−x(t) and d+x(t) from the
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point of view of derivatives.

The past and future information can be weighted, i.e. that we look not for x(s)

but to w(s, t)x(s) where w(s, t) give the importance of the information at time s with

respect to time t. This can be achieved using a weight 1
|t−s|α+1 and regularizing the

corresponding function. We then are lead to two quantities dα
−x(t) and dα

+x(t), which

represent a weighted information on the past and future behavior of the dynamical process.

The previous idea is well formalized by the left and right (Riemann-Liouville) derivatives

[40]. We refer to part I for precise definitions.

3. Deformation theories and the fractional framework

The fractional framework follows the general strategy outline in the previous section.

However, a new ingredient comes into play which makes the fractional embedding different

from the existing stochastic or quantum embedding theories. We have used in this paper

the left and right Riemann-Liouville derivatives with different indices for the left and right

differentiation, i.e. we consider aD
α
t and tD

β
b . The extended operator depends naturally

on these two operators and is denoted Dα,β. However, this operator does not reduce to

the ordinary derivative on the set of differentiable functions. We recover the ordinary

derivative only when α = β = 1. As a consequence, we can associate to a given ordinary

differential equation a two parameters family of fractional differential equations. The

original equation being recovered for a special choice of these parameters, i.e. α = β = 1.

In that case, we propose to the use the terminology of fractional deformation and to keep

the terminology of fractional embedding for the procedure which associated a fractional

analogue of an ordinary differential equation.

Deformation theory can be formalized as follows:

A deformation theory is the data of:

– A finite set P = {(p1, . . . , pν), pi ∈ A} of parameters where A is a given interval of

R.

– A ν-parameter family of functional spaces F = {FP}P∈Aν .

– Operators DP defined on FP such that there exists P0 ∈ Aν satisfying C1 ⊂ FP0 and

DP0(x) = ẋ for x ∈ C1.
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The condition on A is only here to be sure that we have a continuous dependance of the

whole construction on the parameters.

The main difference between deformation and embedding lies in the fact that it is no

usually easy to obtain information on the initial equation from the deformed one. We must

use asymptotic methods, looking for the behavior of the deformed equation when p → p0.

This is not the case for a true embedding theory as the initial equation is already present

in the embedded one.

4. Plan of the paper

Our paper has the same architecture as our previous monograph [20] with Sébastien

Darses about the stochastic embedding of dynamical systems. As a consequence, the

comparison between the two embedding procedure will be easier.

In part I we recall the definitions of the left and right fractional derivatives. We also

define left and right fractional derivatives which have satisfy a semi-group property and

the adequate functional spaces on which they are defined following a previous work of

Erwin and Roop [23]. We also recall a product rule formula.

In part II we define the fractional embedding of differential operators and ordinary

differential equations.

In part III we study the fractional embedding of Lagrangian systems. We obtain a

fractional analogue of the Euler-Lagrange equations.

In part IV we develop a fractional calculus of variations associated to the fractional

embedding of classical functionals. generalizing a previous work of O.P Agrawal [1] We

prove two versions of the least action principle depending on the underlying authorized

space of variations. We prove in particular a coherence theorem, which roughly speaking

state that the fractional embedding of the Euler-Lagrange equation coincide with the

fractional Euler-Lagrange equation obtained via the fractional least-action principle.

Part V study the behavior of symmetries under the fractional embedding procedure.

In particular, we prove a fractional Noether theorem which generalizes a recent result of
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Frederico and Torres [24].

In part VI we derive the analogue of the Hamilton formalism for our fractional La-

grangian systems.

In part VII we extend results of parts III and IV to cover the Ostrogradski formalism

for Lagrangian systems. In this unified framework, we recover classical results of F. Riewe

([38] [39]). Precisely, we obtain a fractional Lagrangian derivation of Nonconservative

systems.

In part VIII we study the fractional embedding of continuous Lagrangian systems.

In particular, we prove that the classical fractional wave equation introduced by W.R.

Schneider and W. Wyss [41] under ad-hoc assumptions, is the fractional embedding of the

classical wave equation which respects the underlying continuous Lagrangian structure of

the equation. An analogous result is obtained for the fractional diffusion equation.

We then conclude with some open problems and perspectives.
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PART I

FRACTIONAL OPERATORS

In [1] Agrawal has studied Fractional variational problems using the Riemann-Liouville

derivatives. He notes that even if the initial functional problems only deals with the

left Riemann-Liouville derivative, the right Riemann-Liouville derivative appears naturally

during the computations. In this section, we construct an operator combining the left and

right Riemann-Liouville (RL) derivative. We remind some results concerning functional

spaces associated to the left and right RL derivative. In particular, we discuss the possibility

to obtain a law of exponents.

1. Fractional differential operators

1.1. Left and Right Riemann-Liouville derivatives. — We define the left and right

Riemann-Liouville derivatives following ([36] [40] [37] [32]).

Definition I.1 (Left Riemann-Liouville Fractional integral)

Let x be a function defined on (a, b), and α > 0. Then the left Riemann-Liouville

fractional integral of order α is defined to be

(I.1) aD
−α
t x(t) :=

1

Γ(α)

∫ t

a

(t− s)α−1x(s)ds.

Definition I.2 (Right Riemann-Liouville Fractional integral)

Let x be a function defined on (a, b), and α > 0. Then the right Riemann-Liouville

fractional integral of order α is defined to be

(I.2) tD
−α
b x(t) :=

1

Γ(α)

∫ b

t

(s− t)α−1x(s)ds.

Left and right (RL) integrals satisfy some important properties like the semi-group

property. We refer to [40] for more details.

Definition I.3 (Left and Right Riemann-Liouville fractional derivative)

Let α > 0, the left and right Riemann-Liouville derivative of order α, denoted by aD
α
t

and tD
α
b respectively, are defined by

(I.3) aD
α
t x(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1x(s)ds,
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and

(I.4) tD
α
b x(t) =

1

Γ(n− α)

(
− d

dt

)n ∫ b

t

(t− s)n−α−1x(s)ds,

where n is such that n− 1 ≤ α < n.

If α = m, m ∈ N∗, and x ∈ Cm(]a, b[) we have

(I.5) aD
m
t x =

dmx

dtm
, tD

m
b = −dmx

dtm
.

This last relation which ensures the gluing of the left and right Riemann-Liouville (RL)

derivative to the classical derivative will be of fundamental importance in what follows.

If x(t) ∈ C0 with left and right-derivatives at point t denoted by
d+x

dt
and

d−x

dt
respec-

tively then

(I.6) aD
m
t x =

d+x

dt
, tD

m
b =

d−x

dt
.

In what follows, we denote by α
aE, Eβ

b and α
aE

β
b the functional spaces defined by

(I.7) α
aE = {x ∈ C([a, b]), aD

α
t x exists}, Eβ

b = {x ∈ C([a, b]), tD
β
b x exists},

and

(I.8) α
aE

β
b = α

aE ∩ Eβ
b .

Remark I.1. — Of course the set α
aE

β
b is non-empty. Following ([40] Lemma 2.2 p.35)

we have AC([a, b]) ⊂ α
aE

β
b , where AC([a, b]) is the set of absolutely continuous functions

on the interval [a, b] (see [40] Definition 1.2).

The operators of ordinary differentiation of integer order satisfy a commutativity prop-

erty and the law of exponents (the semi-group property) i.e.

(I.9)
dn

dtn
◦ dm

dtm
=

dm

dtm
◦ dn

dtn
=

dn+m

dtn+m
.

These two properties in general fail to be satisfied by the left and right fractional RL

derivatives. We refer to ([32] §.IV.6) and ([26] p.233) for more details and examples. These

bad properties are responsible for several difficulties in the study of fractional differential

equations. We refer to [37] for more details.
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1.2. Left and right fractional derivatives. — In some cases, we need that our frac-

tional operators satisfy additional properties like the semi-group property. Following [23]

we introduce the left and right fractional derivatives as well as convenient functional spaces

on which we have the semi-group property.

Definition I.4 (Left fractional derivative). — Let x be a function defined on R, α >

0, n be the smallest integer greater than α (n− 1 ≤ α < n), and σ = n− α. Then the left

fractional derivative of order α is defined to be

(I.10) Dαx(t) := ∞Dα
t x(t) =

dn

dtn
∞D−α

t x(t) =
1

Γ(σ)

dn

dtn

∫ t

−∞
(t− s)σ−1x(s)ds.

Definition I.5 (Right fractional derivative). — Let x be a function defined on R,

α > 0, n be the smallest integer greater than α (n− 1 ≤ α < n), and σ = n−α. Then the

right fractional derivative of order α is defined to be

(I.11) Dα
∗x(t) := tD

∞
t x(t) = (−1)n dn

dtn
tD

−α
∞ x(t) =

(−1)n

Γ(σ)

dn

dtn

∫ ∞

t

(s− t)σ−1x(s)ds.

If Supp(x) ⊂ (a, b) we have Dαx = aD
α
t x and Dα

∗x = tD
α
b x.

In [23] several useful functional spaces are introduced. Let I ⊂ R be an open interval

(which may be unbounded). We denote by C∞
0 (I) the set of all functions x ∈ C∞(I) that

vanish outside a compact subset K of I.

Definition I.6 (Left fractional derivative space). — Let α > 0. Define the semi-

norm

(I.12) | x |Jα
L (R):=‖ Dαx ‖L2(R),

and norm

(I.13) ‖ x ‖Jα
L (R):=

(
‖ x ‖2

L2(R) + | x |2Jα
L (R)

)1/2

.

and let Jα
L(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jα
L (R).

Similarly, we can defined the right fractional derivative space.

Definition I.7 (Right fractional derivative space). — Let α > 0. Define the semi-

norm

(I.14) | x |Jα
R(R):=‖ Dα

∗x ‖L2(R),
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and norm

(I.15) ‖ x ‖Jα
R(R):=

(
‖ x ‖2

L2(R) + | x |2Jα
R(R)

)1/2

.

and let Jα
R(R) denote the closure of C∞

0 (R) with respect to ‖ · ‖Jα
R(R).

We now assume that I is a bounded open subinterval of R. We restrict the fractional

derivative spaces to I.

Definition I.8. — Define the spaces Jα
L,0(I), Jα

R,0(I) as the closure of C∞
0 (I) under their

respective norms.

These spaces have very interesting properties with respect to D and D∗. In particular,

we have the following semi-group property:

Lemma I.1. — For x ∈ Jβ
L,0(I), 0 < α < β we have

(I.16) Dβx = DαDβ−αx

and similarly for x ∈ Jβ
R,0(I),

(I.17) Dβ
∗x = Dα

∗Dβ−α
∗ x.

We refer to ([23] Lemma 2.9) for a proof.

The fractional derivative spaces Jα
L,0(I) and Jα

R,0(I) have been characterized when α > 0.

We denote by Hα
0 (I) the fractional Sobolev space.

Theorem I.1. — Let α > 0. Then the Jα
L,0(I), Jα

R,0(I) and Hα
0 (I) spaces are equal.

We refer to ([23] Theorem 2.13) for a proof. In fact, when α 6= n− 1/2, n ∈ N we have

a stronger result as the Jα
L,0(I), Jα

R,0(I) and Hα
0 (I) spaces have equivalent semi-norms and

norms.

2. The extension problem

As we want to deal with dynamical systems exhibiting the arrow of time, we need to

consider the operator aD
α
t and tD

β
b , in order to keep track of the past and future of the

dynamics. The fact that we consider α 6= β is only here for convenience. This can be used

to take into account a different quantity of information from the past and the future.

Let aD
α
t and tD

β
b be given. We look for an operator Dα,β of the form

(I.18) Dα,β = M(aD
α
t , tD

β
b ),
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where M : R2 → C is a mapping which does not depends on (α, β), satisfying the following

general principles:

– i) Gluing property: If x(t) ∈ C1 then when α = β = m, m ∈ N∗, Dm,mx(t) =
dmx

dtm
.

– ii) M is a R-linear mapping.

– iii) Reconstruction: The mapping M is invertible.

Condition i) is fundamental in the embedding framework. It follows that all or con-

structions can be seen as a continuous two-parameters deformation of the corresponding

classical one(3). This can be of importance dealing with the fractional quantization problem

in classical mechanics.

Condition ii) does not have a particular meaning. This is only the simplest dependence

of the operator D with respect to aD
α
t and tD

β
b .

Condition iii) is important. It means that the data of Dα,β on a given function x at point

t allows us to recover the left and right RL derivatives of x at t, so information about x in

a neighborhood of x(t).

Lemma I.2. — Operators satisfying conditions i), ii) and iii) are of the form

(I.19) Dα,β = [p aD
α
t + (p− 1) tD

β
b ] + iq [aD

α
t + tD

β
b ],

where p, q ∈ R and q 6= 0.

Proof. — By ii), we denote M(x, y) = px + qy + i(rx + sy), with p, q, r, s ∈ R. By i), we

must have with y = −x corresponding to the operator a choice of operators d/dt, −d/dt

(I.20) p− q = 1, r − s = 0.

We then already have an operator of the form (I.19). The reconstruction assumption only

impose that q 6= 0 in (I.19).

A more rigid form for these operators is obtained imposing a symmetry condition.

(3)Condition i) is not the usual condition underlying the stochastic or quantum embedding theories. In
general, we have an injective mapping ι from the set of differentiable functions C1 in a bigger functional
space E such that the operator D that we define on E reduces to the classical derivative on ι(C1) meaning
that for x ∈ C1, D(ι(x)) = ι(x′(t)) where x′(t) = dx/dt. As a consequence, we have a true embedding
in this case, meaning that the embed theory already contain the classical one via the mapping ι. Here,
the classical theory is not contained in the embedded theory but can be recovered by a continuous two-
parameters deformation.
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– iv) Let x ∈ C0 be a real valued function possessing left and right classical derivatives

at point t, denoted by
d+x

dt
and

d−x

dt
respectively. If

d+x

dt
= −d−x

dt
, then we impose

that

(I.21) D1,1x(t) = i
d+x

dt
.

Condition iv) must be seen as the non-differentiable pendant of condition i). Indeed,

condition i) can be rephrased as follows: if x ∈ C0 is such that d+x and d−x exist and

satisfy d+x = d−x then D1,1x = d+x. Condition iv) is then equivalent to the commutativity

of the following diagram, where R2 is seen as the R-vector space associate to C:

(I.22)

C τ−→ C
x− ix 7−→ x + ix
M ↓ ↓ M

C τ−→ C,
a 7−→ ia

where τ : C → C is defined by τ(z) = iz, z ∈ C and we have used the fact that M(x,−x) =

0 following condition i).

Lemma I.3. — The unique operator satisfying condition i), ii), iii) and iv) is given by

(I.23) Dα,β =
1

2
[aD

α
t − tD

β
b ] + i

1

2
[aD

α
t + tD

β
b ].

Proof. — By iv), we must have p + (p− 1) = 0 and 2q = 1, so that p = q = 1/2.

3. The fractional operator of order (α, β), α > 0, β > 0

Lemma I.3 leads us to the following definition of a fractional operator of order (α, β):

Definition I.9. — For all a, b ∈ R, a < b, the fractional operator of order (α, β), α > 0,

β > 0, denoted by Dα,β
µ , is defined by

(I.24) Dα,β
µ =

1

2

[
aD

α
t − tD

β
b

]
+ iµ

1

2

[
aD

α
t + tD

β
b

]
,

where µ ∈ C.

When α = β = 1, we obtain Dα,β
µ = d/dt.

The free parameter µ can be used to reduce the operator Dα,β
µ to some special cases of

importance. Let us denoted by x(t) a given real valued function.
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- For µ = −i, we have Dα,β
µ = aD

α
t then dealing with an operator using the future state

denoted by Ft(x) of the underlying function, i.e. Ft(x) = {x(s), s ∈ [a, t[}.

- For µ = i, we obtain Dα,β
µ = −tD

β
b then dealing with en operator using the past state

denoted by Pt(x) of the underlying function, i.e. Pt(x) = {x(s), s ∈]t, b]}.

As a consequence, our operator can be used to deal with problems using aD
α
t , tD

β
b , or

both operators in a unified way, only particularizing the value of µ at the end to recover

the desired framework.

When a = −∞ and b = ∞, we denote the associated operator Dα,β
µ by Dα,β

µ , i.e.

(I.25) Dα,β
µ =

1

2

[
Dα − Dβ

∗
]
+ iµ

1

2

[
Dα + Dβ

∗
]
,

where µ ∈ C.

4. Product rules

The classical product rule for Riemann-Liouville derivatives is for all α > 0

(I.26)

∫ b

a
aD

α
t f(t)g(t)dt =

∫ b

a

f(t)tD
α
b g(t)dt,

as long as f(a) = f(b) = 0 or g(a) = g(b) = 0.

This formula gives a strong connection between aD
α
t and tD

α
b via a generalized integra-

tion by part. This relation is responsible for the emergence of tD
α
b in problems of fractional

calculus of variations only dealing with aD
α
t . See section 3 for more details. This result

also justifies our approach to the construction of a fractional operator which put on the

same level the left and right RL derivatives.

As a consequence, we obtain the following formula for our fractional operator:

Lemma I.4. — For all f, g ∈ α
aE

β
b , we have

(I.27)

∫ b

a

Dα,β
µ f(t)g(t)dt = −

∫ b

a

f(t)Dβ,α
−µ g(t)dt,

provide that f(a) = f(b) = 0 or g(a) = g(b) = 0.
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Proof. — We have

(I.28)

∫ b

a

Dα,β
µ f(t)g(t)dt =

∫ b

a

f(f)
[
(tD

α
b − aD

β
t ) + iµ(tD

α
b + aD

β
t )
]
(g(t)) dt.

Exchanging the role of α and β in (tD
α
b − aD

β
t ) + iµ(tD

α
b + aD

β
t ), we obtain the operator

(tD
β
b − aD

α
t ) + iµ(tD

β
b + aD

α
t ) which can be written as

(I.29) −
[
(aD

α
t − tD

β
b )− iµ(tD

β
b + aD

α
t )
]

= −Dα,β
−µ .

This concludes the proof.

Here again, we see that it is convenient to keep the parameter µ free.
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PART II

FRACTIONAL EMBEDDING OF DIFFERENTIAL OPERATORS

1. Fractional embedding of differential operators

Let d ∈ N be a fixed integer and a, b ∈ R, a < b be given. We denote by C([a, b]) the

set of continuous functions x : [a, b] → Rd. Let n ∈ N, we denote by Cn([a, b]) the set of

functions in C([a, b]) which are differentiable up to order n.

Let f : R× Cd → C be a function, real valued on real arguments. We denote by F the

corresponding operator acting on functions x and defined by

(II.1) F :
C([a, b]) −→ C([a, b])
x 7−→ f(•, x(•)),

where f(•, x(•)) is the function defined by

(II.2) f(•, x(•)) :
[a, b] −→ C,
t 7−→ f(t, x(t)).

Let f = {fi}i=0,...,n be a finite family of functions, fi : R × Cd → C, and Fi, i = 1, . . . , n

the corresponding family of operators. We denote by Of the differential operator defined

by

(II.3) Og
f =

n∑
i=0

Fi ·
di

dti
Gi,

where · is the standard product of operators, i.e. if A and B are two operators, we denote

by A · B the operator defined by (A · B)(x) = A(x)B(x) and ◦ the usual composition,

i.e. (A ◦ B)(x) = A(B(x)), with the convention that

(
d

dt

)0

= Id, where Id denotes the

identity mapping on C.

Definition II.1 (Fractional embedding of operators). — Let f = {fi}i=0,...,n and

g = {gi}i=0,...,n be finite families of functions, fi : R × Cd → C and gi : R × Cd → C
respectively, and Fi, Gi, i = 1, . . . , n the corresponding families of operators, and Og

f the

associated differential operator.
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The (α, β)-fractional embedding of Og
f written as (II.3), denoted by α

aEmbβ
b (µ)(Og

f ) is

defined by

(II.4) α
aEmbβ

b (µ)(Og
f ) =

n∑
i=0

Fi ·
(
Dα,β

µ

)i ◦Gi.

Note that the embedding procedure acts on operators of a given form and not on

operators like abstract data, i.e. this is not a mapping on the set of operators.

We can solve this indeterminacy using a formal representation of an operator.

Let f = {fi}i=0,...,n and g = {gi}i=0,...,n be finite families of functions, fi : R × Cd → C
and gi : R × Cd → C respectively, and Fi, Gi, i = 1, . . . , n the corresponding families of

operators. We denote by ⊗Og
f the operator acting on E ⊗ Cn ⊗ E defined by

(II.5) ⊗Og
f =

n∑
i=0

Fi ⊗
di

dti
⊗Gi,

where ⊗ is the standard tensor product.

We denote by O⊗ the set of operators of the form (II.5) and O the set of differential

operators of the form (II.3). We define a mapping π from O⊗ to O by

(II.6) π(⊗Og
f ) = µ(

n∑
i=0

Fi ⊗ (Dα,β
µ )i ⊗Gi) =

n∑
i=0

Fi · (Dα,β
µ )i ◦Gi,

where µ is the projection µ : E ⊗ E ⊗ E → E , µ(x⊗ y ⊗ z) = x · (y ◦ z).

A differential operator being given, its fractional embedding depends on its writing as

an element of O⊗.

2. Fractional embedding of differential equations

Let k ∈ N be a fixed integer. Let f = {fi}i=0,...,n and g = {gi}i=0,...,n be finite families of

functions, fi : R×Ckd → C and gi : R×Ckd → C respectively, and Fi, Gi, i = 1, . . . , n the

corresponding families of operators. We denote by Og
f the operator acting on (Cn[a, b])k

defined by

(II.7) Og
f =

n∑
i=0

Fi ·
di

dti
◦Gi,
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The ordinary differential equation associated to Og
f is defined by

(II.8) Og
f (x,

dx

dt
, . . . ,

dkx

dtk
) = 0, x ∈ Cn+k([a, b]).

We then define the fractional embedding of equation (II.8) as follow:

Definition II.2. — The fractional embedding of equation (II.8) of order (α, β), α, β > 0

is defined by

(II.9) α
aEmbβ

b (µ) (Og
f ) (x,Dα,β

µ x, . . . ,
(
Dα,β

µ

)k
x) = 0, x ∈ α

aE
β
b (n + k).

Note that as long as the form of the operator is fixed the fractional embedding procedure

associates a unique fractional differential equation.

3. About time-reversible dynamics

The fractional embedding procedure associate a natural fractional counterpart to a given

ordinary differential equation. In some case, the underlying equation possesses specific

properties which have a physical meaning. One of this property is the time-reversible

character of the dynamics:

A dynamics on a space U is time-reversible if there exists an invertible map i of U such

that i2 = Id, i.e. i is an involution, and if we denote by φt the flow describing the dynamics

we have

(II.10) i ◦ φ−t = φt ◦ i,

meaning that if x(t) is a solution then i(x(−t)) is also a solution of the underlying equation.

Time-Reversibility is closely related to a specific property of the classical derivative under

time-reversal:

(II.11)
d

dt
(x(−t)) = −dx

dt
(−t),

We define a notion of reversibility directly on operators:

Definition II.3. — We denote by Rev the C- linear operator defined by Rev(aD
α
t ) =

tD
α
b , Rev(tD

α
b ) = aD

α
t .

The action of Rev on Dα,β
µ is non-trivial:

Lemma II.1. — We have Rev(Dα,β
µ ) = −Dβ,α

−µ .
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We then have the following analogue of reversibility in the fractional setting:

Definition II.4. — Let Og
f be a differential operator of the form (II.7) such that the

dynamics of the associated differential equation (II.8) is time-reversible, i.e.

(II.12) Rev(Og
f ) = −Og

f .

The fractional embedding α
aEmbβ

b (µ) is called reversible if

(II.13) Rev(α
aEmbβ

b (µ) (Og
f )) = −α

aEmbβ
b (µ) (Og

f ) .

The main consequence of lemma II.1 is that there exists a unique way to do a fractional

embedding conserving the reversibility symmetry.

Theorem II.1. — The reversibility symmetry is preserved by a fractional embedding if

and only if α = β and µ = 0.

Proof. — The reversibility symmetry is preserved if and only if we always have

Rev(Dα,β
µ ) = −Dα,β

µ . By lemma II.1 this is only possible when µ = 0 and α = β.

In what follows we denote by Revα the fractional embedding α
aEmbα

b (0).



FRACTIONAL EMBEDDING 23

PART III

FRACTIONAL EMBEDDING OF LAGRANGIAN SYSTEMS

In this section, we derive the fractional embedding of a particular class of ordinary differ-

ential equations called Euler-Lagrange equations which governs the dynamics of Lagrangian

systems.

1. Reminder about Lagrangian systems

Lagrangian systems play a central role in dynamical systems and physics, in particular

for classical mechanics. We refer to [3] for more details.

Definition III.1. — An admissible Lagrangian function L is a function L : R×Rd×Cd 7→
C such that L(t, x, v) is holomorphic with respect to v, differentiable with respect to x and

real when v ∈ R.

A Lagrangian function defines a functional on C1(a, b), denoted by

(III.1) La,b : C1(a, b) → R, x ∈ C1(a, b) 7−→
∫ b

a

L(s, x(s),
dx

dt
(s))ds, a, b ∈ R.

The classical calculus of variations analyzes the behavior of L under small perturbations

of the initial function x. The main ingredient is a notion of differentiable functional and

extremals.

Definition III.2 (Space of variations). — We denote by Var(a, b) the set of func-

tions in C1(a, b) such that h(a) = h(b) = 0.

A functional L is differentiable at point x ∈ C1(a, b) if and only if

(III.2) L(x + εh)− L(x) = εdL(x, h) + o(ε),

for ε > 0 and all h ∈ Var(a, b).

Using the notion of differentiability for functionals one is lead to consider extremum of

a given Lagrangian functional.

Definition III.3. — An extremal for the functional L is a function x ∈ C1(a, b) such

that dL(x, h) = 0 for all h ∈ Var(a, b).
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Extremals of the functional L can be characterized by an ordinary differential equation

of order 2, called the Euler-Lagrange equation.

Theorem III.1. — The extremals of L coincide with the solutions of the Euler-Lagrange

equation denoted by (EL) and defined by

(III.3)
d

dt

[
∂L

∂v

(
t, x(t),

dx

dt
(t)

)]
=

∂L

∂x

(
t, x(t),

dx

dt
(t)

)
.

This equation can be seen as the action of the differential operator

(III.4) O(EL) =
d

dt
◦ ∂L

∂v
− ∂L

∂x

on the couple (x(t),
dx

dt
(t)).

2. Fractional Euler-Lagrange equation

The fractional embedding procedure allows us to define a natural extension of the clas-

sical Euler-Lagrange equation in the fractional context. The main result of this section

is:

Theorem III.2. — Let L be an admissible Lagrangian function. The α
aEmbβ

b (µ)-

fractional Euler-Lagrange equation associated to L is given by

Dα,β
µ

[
∂L

∂v

(
t, x(t),Dα,β

µ x(t)
)]

=
∂L

∂x

(
t, x(t),Dα,β

µ x(t)
)
. (FELµ

α,β)

In what follows, we will simply speak about the fractional Euler-Lagrange equation

when there is no confusion on the underlying embedding procedure.

The proof is based on the following lemma:

Lemma III.1. — Let L be an admissible Lagrangian function. The fractional embedding

of the Euler-Lagrange differential operator O(EL) is given by

(III.5) α
aEmbβ

b (µ)(O(EL)) = Dα,β
µ ◦ ∂L

∂v
− ∂L

∂x
.

Proof. — The operator (III.4) is first considered as acting on (C1([a, b])2, i.e. for all

(x(t), y(t)) ∈ C1[a, b]× C1[a, b] we have

(III.6) O(EL)(x(t), y(t)) =
d

dt

(
∂L

∂v
(t, x(t), y(t))

)
− ∂L

∂x
(t, x(t), y(t)).
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This operator is of the form Og
f with

(III.7) f =

(
1,

∂L

∂x

)
,

and

(III.8) g =

(
−∂L

∂v
,1

)
,

where 1 : R × C2 → C is the constant function 1(t, x, y) = 1. As a consequence, O(EL) is

given by

(III.9) O(EL) = 1 · d

dt
◦ ∂L

∂v
− ∂L

∂x
· Id ◦ 1,

with the convention that

(
d

dt

)0

= Id. We then obtain equation (III.5) using definition

II.1.

We can now conclude the proof of theorem III.2 using definition II.2. The fractional

embedding of equation (III.3) is given by

(III.10) α
aEmbβ

b (µ)
(
O(EL)

) (
x,Dα,β

µ x
)

= 0,

which reduces to equation (FELµ
α,β) thanks to lemma III.1.

3. The coherence problem

The fractional embedding procedure allows us to define a natural fractional analogue of

the Euler-Lagrange equation. This result is satisfying because the procedure is fixed. How-

ever, Lagrangian systems possess very special features. In particular, the classical Euler-

Lagrange equation can be obtained using a variational principle, called the least-action

principle and denoted LAP. The least action principle asserts that the Euler-Lagrange

equation characterizes the extremals of a given functional associated to the Lagrangian.

We then are lead to the following problem:

– i) Develop a calculus of variation on fractional functionals.

– ii) State the corresponding fractional least-action principle, in particular explicit the

associated fractional Euler-Lagrange equation denoted by FELflap.

– iii) Compare the result with the embedded Euler-Lagrange equation (FELµ
α,β)
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An embedding procedure is called coherent when the two Euler-Lagrange equations are the

same, i.e. if

(III.11) FELflap = α
aEmbβ

b (µ)(EL),

assuming that FELflap is obtained from the embedding of the classical functional using

the same embedding procedure.

As we will see, an embedding procedure is not always coherent. Although we obtain in

general equations of the same form, we usually have some torsion between the embedding

of the functional and the Euler-Lagrange equation which cancel only in particular cases.

The fractional calculus of variations is developed in §.IV as well as the corresponding

fractional least-action principle. The coherence of fractional embedding procedures is dis-

cussed in §.4.



FRACTIONAL EMBEDDING 27

PART IV

FRACTIONAL CALCULUS OF VARIATIONS

This section is devoted to the fractional calculus of variations using our fractional op-

erator. The functional is obtained under the fractional embedding procedure. We refer to

the work of O.P. Agrawal [1] for related results.

1. Fractional functional

Let L be an admissible Lagrangian function on R×Rd×Cd, d ≥ 1, and L the associated

functional. Using the Fractional embedding procedure α
aEmbβ

b (µ), we define a natural

Fractional functional associated to L.

We denote by α
aE

β
b the set of functions x such that aD

α
t x and tD

β
b x are defined.

Definition IV.1. — The Fractional functional associated to L is defined by

(IV.1) Lα,β
a,b : α

aE
β
b → R, x ∈ α

aE
β
b 7−→

∫ b

a

L(s, x(s),Dα,β
µ x(s))ds, a, b ∈ R;

The extension property implies that Lα,β
a,b reduce to the classical functional La,b when

α = β = 1.

2. Space of variations and extremals

Let us denote by α
aE

β
b (0, 0) the set of curves h ∈ α

aE
β
b satisfying h(a) = h(b) = 0 and

aE
α
b := α

aEα
b . We denote by Varα(0, 0) the set defined to be

(IV.2) Varα(a, b) = {h ∈ aE
α
b , h(a) = h(b) = 0 and aD

α
t h = tD

α
b h }.

We denote by P the set α
aE

β
b (0, 0) or Varα(a, b).

Definition IV.2. — Let x be a given curve. A P-variation of x is a one-parameter ε ∈ R
family of curves of the form

(IV.3) yε = x + εh, h ∈ P.

A notion of differentiability can now be defined for fractional functionals. In the follow-

ing, we write La,b indifferently for Lα,β
a,b when P = α

aE
β
b (0, 0) and Lα,α

a,b when P = Varα(a, b).
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Definition IV.3. — Let L be an admissible Lagrangian function and La,b the associated

fractional functional. The functional La,b is called P-differentiable at x if

(IV.4) La,b(x + εh)− La,b(x) = εdLa,b(x, h) + o(ε),

for all h ∈ P, ε > 0, where dLa,b(x, h) is a linear functional of h.

The linear functional dLa,b(x, h) is called the P-differential of the fractional functional

La,b at point x.

An extremal for La,b is then defined by:

Definition IV.4. — A P-extremal for the functional La,b is a function x such that

dLa,b(x, h) = 0 for all h ∈ P.

The following lemma gives the explicit form of the differential of a fractional functional:

Theorem IV.1. — Let L be an admissible Lagrangian function and Lα,β
a,b the associated

fractional functional. The functional Lα,β
a,b is differentiable at any x ∈ α

aE
β
b (xa, xb) and for

all h ∈ α
aE

β
b (0, 0) the differential is given by

(IV.5) dLα,β
a,b (x, h) =

∫ b

a

[
−Dβ,α

−µ

[
∂L

∂v

(
t, x(t),Dα,β

µ x(t)
)]

+
∂L

∂x
(t, x(t),Dα,β

µ x(t))

]
h(t)dt.

Proof. — As the left and right RL derivatives are linear operators we have

(IV.6) Dα,β
µ (x + εh) = Dx + εDα,β

µ h.

As a consequence, we obtain

(IV.7) Lα,β
a,b (x + εh) =

∫ b

a

L(s, x(s) + εh(s),Dα,β
µ x(s) + εDα,β

µ h(s))ds

which implies, doing a Taylor expansion of L(s, x(s) + εh(s),Dα,β
µ x(s) + εDα,β

µ h(s)) in ε

around 0

(IV.8)

Lα,β
a,b (x + εh) = ε

∫ b

a

[
∂L

∂x
(s, x(s),Dα,β

µ x(s))h(s) +
∂L

∂v
(s, x(s),Dα,β

µ x(s))Dα,β
µ h(s)

]
ds

+Lα,β
a,b (x) + o(ε).

Using the product rule (I.27) we obtain

(IV.9)

∫ b

a

∂L

∂v
(s, x(s),Dα,β

µ x(s))Dα,β
µ h(s)ds = −

∫ b

a

Dβ,α
−µ

∂L

∂v
(s, x(s),Dα,β

µ x(s))h(s)ds.

Replacing this expression in (IV.8), we deduce formula (IV.5).
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3. The fractional Euler-Lagrange equation

We obtain the following analogue of the least-action principle in classical Lagrangian

mechanics:

Theorem IV.2 (Fractional least-action principle). — Let L[x] be a functional of the

form

(IV.10) L[x] =

∫ b

a

L(s, x(s),Dα,β
µ x(s))ds

defined on α
aE

β
b (xa, xb).

A necessary and sufficient condition for a given function x ∈ α
aE

β
b to be a α

aE
β
b -extremal

for L[x] with fixed end points x(a) = xa, x(b) = xb, is that it satisfies the fractional

Euler-Lagrange equation (FEL):

(IV.11) Dβ,α
−µ

[
∂L

∂v

(
t, x(t),Dα,β

µ x(t)
)]

=
∂L

∂x
(t, x(t),Dα,β

µ x(t)).

Note that this equation is different from the one obtained via the fractional embedding

procedure.

Proof. — Using the classical Du Bois Reymond lemma ([4],p.108) and theorem IV.1 we

obtain (IV.11).

The weak analogue using the space of variation Varα(a, b) is given by:

Theorem IV.3 (Weak fractional least-action principle). — Let L[x] be a func-

tional of the form

(IV.12) L[x] =

∫ b

a

L(s, x(s),Dα
µx(s))ds

defined on aE
α
b (xa, xb).

A necessary and sufficient condition for a given function x ∈ aE
α
b to be a Varα(a, b)-

extremal for L[x] with fixed end points x(a) = xa, x(b) = xb, is that it satisfies the fractional

Euler-Lagrange equation FELα,α
µ

We denote FELα
µ for FELα,α

µ in the following.

4. Coherence

The coherence problem can now be studied in details. We have the following theorem,

which is only a rewriting of theorem IV.2 and definition III.2:
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Theorem IV.4. — Let L be an admissible Lagrangian function, a, b ∈ R, a < b, α, β > 0,

then the following diagram commutes:

(IV.13)
L(t, x(t), dx/dt)

α
aEmbβ

b (µ)
−→ L(t, x(t),Dα,β

µ x)
LAP ↓ ↓ FLAP

EL
β
aEmbα

b (−µ)
−→ FEL−µ

β,α.

Theorem IV.4 is not a coherence result in the spirit of ([15],[16]) or [20]. Indeed, the

embedding procedure changes between the Euler-Lagrange equation and the functional.

There exist at least two ways to restore coherence of the embedding procedure.

The first one is to restrict the set of variations we are looking for in the least-action

principle. Using the set Varα(a, b) we obtain a coherent procedure via the weak least

action principle.

Theorem IV.5 (Weak coherence). — Let L be an admissible Lagrangian function,

a, b ∈ R, a < b, α > 0, then the following diagram commutes:

(IV.14)
L(t, x(t), dx/dt)

aEmbα

b−→ L(t, x(t),Dα
µx)

LAP ↓ ↓ WLAP

EL
aEmbα

b−→ FELα
µ,

where WLAP stands for the weak least-action principle and aEmbα
b := α

aEmbα
b .

The second way is to use a specific fractional operator with a particular symmetry

property. Using the reversible embedding and the operator dα which corresponds to the

operator Dα,α
0 , i.e.

(IV.15) dα :=
aD

α
t + tD

α
b

2
,

we obtain the following coherence result:

Theorem IV.6 (Reversible coherence). — Let L be an admissible Lagrangian func-

tion, a, b ∈ R, a < b, α > 0, then the following diagram commutes:

(IV.16)
L(t, x(t), dx/dt)

Revα

−→ L(t, x(t), dαx)
LAP ↓ ↓ FLAP

EL
Revα

−→ FELα.

where Revα is the α-reversible embedding and FELα denotes the equation FELα,α
0 .
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It is not clear for the moment to know what is the interest of the fractional reversible

embedding procedure for applications. At least it can be considered as a good candidate

to a fractional quantization procedure.
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PART V

SYMMETRIES AND THE FRACTIONAL NOETHER THEOREM

In classical mechanics Noether’s theorem gives a strong connection between group of

symmetries of the Lagrangian and conservation laws. We refer in particular to Arnold’s

presentation of Noether’s theorem for Lagrangian systems ([3] p.88). For a historical point

of view on different generalization of Noether’s theorem we refer to [28].

1. Invariance of fractional functionals

Group of symmetries are classical in mechanics. A natural way to deal with symmetries

is to look for one-parameter group of diffeomorphisms. We first define the action of a

diffeomorphism on a couple (x(t),Dα,β
µ x(t)).

Definition V.1. — Let φ : Rd → Rd be a diffeomorphism. The fractional linear tangent

map associated to φ, denoted by φ∗ is defined by

(V.1) φ∗(x,Dα,β
µ x) = (φ(x),Dα,β

µ φ(x)).

Definition V.2. — Let Φ = {φs}s∈R be a one-parameter family of diffeomorphisms. An

admissible Lagrangian L is said to be invariant under the action of Φ if

(V.2) L(x,Dα,β
µ x) = L(φs(x),Dα,β

µ (φs(x))), ∀s ∈ R,

or equivalently

(V.3) L(x,Dα,β
µ x) = L

(
(φs)∗(x,Dα,β

µ x)
)
.

The relation with infinitesimal transformations used in [24], is obtained using a Taylor

expansion of yt(s) = φs(x(t)) in a neighborhood of 0, leading to

(V.4) yt(s) = yt(0) + s.
dyt

ds
(0) + o(s).

As φ0 = Id is the identity map, we obtain denoting
dyt

ds
(0) = ξ(t, x) an infinitesimal

transformation given by

(V.5) x(t) 7→ x(t) + sξ(t, x(t)) + o(s).

A natural problem in the embedding framework is the following: assume that L is

invariant under a one-parameter group of diffeomorphisms. What can we said about the

fractional embedded Lagrangian ?
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2. The fractional Noether theorem

In this paragraph, we derive a fractional version of the Noether theorem. Similar results

have been obtained by G. Frederico and D. Torres [24] in a different setting.

Theorem V.1 (The fractional Noether theorem). — Let L be an admissible La-

grangian invariant under a one-parameter group of diffeomorphism Φ = {φs}s∈R. Then,

we have

(V.6) Dβ,α
−µ

(
∂L

∂v

)
dyt

ds
+

∂L

∂v
Dα,β

µ

(
dyt

ds

)
|s=0= 0,

where yt(s) = φs(x(t)), along all solutions of the fractional Euler-Lagrange equation.

Equation (V.6) is not the usual way to state the Noether theorem in classical mechanics.

This is mainly due to the fact that the fractional differential operator Dα,β
µ inherits from the

bad properties of the underlying left and right Riemann-Liouville derivatives concerning

the Leibniz rule.

Proof. — Let yt(s) = φs(x(t)), the Lα,β
a,b invariance is equivalent to

(V.7)
d

ds

[
L(t, yt(s),Dα,β

µ yt(s))
]

= 0.

The usual chain rule for the classical derivative implies

(V.8)
∂L

∂x
(t, yt(s),Dα,β

µ yt(s)) ·
dyt

ds
+

∂L

∂v
(t, yt(s),Dα,β

µ yt(s)) ·
d

ds

[
Dα,β

µ yt(s)
]

= 0.

As Dα,β
µ acts on the variable t and d/ds on the variable s, and

dyt(s)

ds
∈ α

aE
β
b , we deduce

that

(V.9)
d

ds

[
Dα,β

µ yt(s)
]

= Dα,β
µ

[
dyt

ds

]
.

As a consequence, we obtain

(V.10)
∂L

∂x
(t, yt(s),Dα,β

µ yt(s)) ·
dyt

ds
+

∂L

∂v
(t, yt(s),Dα,β

µ yt(s)) · Dα,β
µ

[
dyt

ds

]
= 0.

As x(t) is an extremal for L, we have

(V.11) Dβ,α
−µ

(
∂L

∂v

)
=

∂L

∂x
.

This concludes the proof.
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3. Toward fractional integrability and conservation laws

Of course, when α = β = 1, equation (V.6) reduces to

(V.12)
d

dt

(
∂L

∂v

)
dyt

ds
+

∂L

∂v

d

dt

(
dyt

ds

)
|s=0= 0,

which is equivalent to

(V.13)
d

dt

(
∂L

∂v

dyt

ds
(0)

)
= 0,

using the Leibniz rule.

In that case, the Noether theorem can then be stated in term of conservation laws (first

integrals), i.e. saying that the quantity

(V.14) C(t, x(t), ẋ(t)) =
∂L

∂v
(t, x(t), ẋ(t)) · dyt

ds
(0),

is constant along all the solutions of the Euler-Lagrange equation.

First integrals play a fundamental role in classical Lagrangian dynamics as they are

related to the classical problem of integrability (Liouville’s integrability), i.e. the fact

that a Lagrangian systems with sufficiently many first integrals can be integrated by

quadratures (see [3] Chapter 10).

It is not clear regarding to the fractional Noether’s theorem to define the analogue of

conservation laws and in particular the fractional analogue of integrability for Lagrangian

systems.
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PART VI

FRACTIONAL HAMILTONIAN SYSTEMS

The classical passage from the configuration space, i.e. space of positions to the phase

space, i.e. the space of position and velocities, is achieved using the Hamiltonian formalism.

In this section, we derive the fractional analogue of Hamiltonian systems.

1. Hamiltonian systems and Legendre property

Let L be a Lagrangian system. When the Lagrangian satisfies an analytic property,

that we called the Legendre property, we can find a remarkable symmetric formulation of

the Euler-Lagrange equation called Hamiltonian. The Legendre property can be stated as

follows:

Definition VI.1. — Let L be an admissible Lagrangian function. We say that L satisfies

the Legendre property if the mapping v 7→ ∂L

∂v
(x, v) is invertible for all x ∈ Rd.

As a consequence, there exists a map f : Rd × Cd → Cd such that for any p ∈ Cd

satisfying p =
∂L

∂v
(x, v) we have v = f(x, p). The map f is called the Legendre transform.

The Legendre transform connects the momentum

(VI.1) p(t) =
∂L

∂v
(x(t), ẋ(t)),

of a given solution x(t) of the Euler-Lagrange equation with its velocity ẋ(t).

Using the Legendre transform, we can define a new function called the Hamiltonian

associated to L.

Definition VI.2. — Let L be an admissible Lagrangian system satisfying the Legendre

property, and f the corresponding Legendre transform. The Hamiltonian function associ-

ated to L, denoted by H : Rd × Cd → C, is defined by

(VI.2) H(x, p) = pf(x, p)− L(x, f(x, p)).
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The Hamiltonian system associated to H is given as

(VI.3)

dx

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x
.

The dynamics of the Hamiltonian system is equivalent to the dynamics governed by the

Lagrangian.

2. The fractional momentum and Hamiltonian

The previous construction can be carried in the fractional context for our fractional

Euler-Lagrange equation.

Definition VI.3. — The fractional momentum of a given solution x(t) of the fractional

Euler-Lagrange equation is defined as

(VI.4) p(t) =
∂L

∂v
(x(t),Dα,β

µ x(t)).

We remark that the fractional momentum is obtain from the classical one by the frac-

tional embedding procedure. If L satisfies the Legendre property we obtain a fractional

analogue of the relation between momentum and velocities:

Lemma VI.1. — Let L be an admissible Lagrangian system satisfying the Legendre prop-

erty and f the associated Legendre transform. Let x(t) be a solution of the fractional

Euler-Lagrange equation, and p(t) its fractional momentum. We have

(VI.5) Dα,β
µ x(t) = f(x(t),p(t)).

The fractional Euler-Lagrange equation is then equivalent to the following system of

fractional differential equations:

(VI.6)
Dα,β

µ x(t) = f(x(t),p(t)),

Dβ,α
−µ p(t) =

∂L

∂x
(x(t), f(x(t),p(t))),

which is nothing else that

(VI.7)
Dα,β

µ x(t) =
∂H

∂p
f(x(t),p(t)),

Dβ,α
−µ p(t) = −∂H

∂x
(x(t),p(t)),

with H the Hamiltonian function (VI.2).

We then introduce the following definition of a fractional Hamiltonian system:
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Definition VI.4. — Let L be an admissible Lagrangian system satisfying the Legendre

property. The fractional Hamiltonian system associated to L is defined by equation (VI.7).

3. Fractional Hamilton least-action principle

Fractional Hamilton equations (VI.7) can also be obtained via a variational principle

called fractional Hamilton leat-action principle.

Theorem VI.1. — We denote by H : Rd × Cd → C a Hamiltonian function and F the

associated functional defined by

(VI.8) F (x(t),p(t)) =

∫ b

a

(
p(t)Dα,β

µ x(t)−H(x(t),p(t))
)
dt.

A couple (x(t),p(t)) such that x(a) = xa, p(a) = pa, x(b) = xb, p(b) = pb is an extremal

of (VI.8) if and only if it satisfies the fractional Hamiltonian equations (VI.7).

Proof. — We denote by L the function

(VI.9) L(x,p, v, w) = pv −H(x,p).

The functional F can be seen as a functional associated to the Lagrangian L. The fractional

Euler-Lagrange equation associated to this functional is

Dβ,α
−µ

(
∂L

∂v
(z(t))

)
=

∂L

∂x
(z(t)),(VI.10)

Dβ,α
−µ

(
∂L

∂w
(z(t))

)
=

∂L

∂p
(z(t)),(VI.11)

(VI.12)

where z(t) = (x(t),p(t),Dα,β
µ x(t),Dα,β

µ p(t)).

As
∂L

∂v
= p and

∂L

∂x
= −∂H

∂x
, the first equation gives

(VI.13) Dβ,α
−µ p(t) = −∂H

∂x
(x(t),p(t)).

Moreover, as
∂L

∂w
= 0 and

∂L

∂p
= v − ∂H

∂p
, the second equation gives

(VI.14) 0 = Dα,β
µ x(t)− ∂H

∂p
(x(t),p(t)).

This concludes the proof.
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As a consequence, the usual construction of Hamiltonian equations using the Legendre

transform and fractional momentum is coherent with the fractional Hamilton least-action

principle.
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PART VII

FRACTIONAL OSTROGRADSKI FORMALISM AND

NONCONSERVATIVE DYNAMICAL SYSTEMS

This part is devoted to the fractional embedding of functionals depending on higher

order derivatives, i.e. to a fractional analogue of the Ostrogradski formalism. We derive

the generalized fractional Euler-Lagrange equation. As an application, we prove that some

Nonconservative dynamical systems can be obtained via the fractional embedding of well

chosen higher order Lagrangian systems. In particular, we obtain a new approach to results

obtain previously by F. Riewe ([38] [39]).

1. Ostrogradski formalism and fractional embedding

We first introduce some convenient definitions and notations.

Definition VII.1. — Let n ∈ N∗ and d ∈ N∗, a Lagrangian function of order n denoted

by L is a function defined by

(VII.1)
R× Cd × Cd × · · · × Cd︸ ︷︷ ︸

n times

−→ C,

(t, x, v1, . . . , vn) 7−→ L(t, x, v1, . . . , vn),

for x ∈ Cd, vi ∈ Cd, i = 1, . . . , n.

A Lagrangian function of order n possesses a natural Lagrangian functional denoted by

L and defined by

(VII.2) L : x(t) 7−→
∫ b

a

L(t, x(t), x(1)(t), . . . , x(n)(t))dt,

where x(n)(t) denotes the n-th derivative of x with respect to t, i.e.

(VII.3) x(n) =
dnx

dtn
=

(
d

dt

)n

x,

where

(VII.4)

(
d

dt

)n

=
d

dt
◦ · · · ◦ d

dt︸ ︷︷ ︸
n times

,

with ◦ the usual composition of operators.
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The associated notion of extremals differs from definition III.3 only on the boundary

conditions, i.e. on the space of variations.

Definition VII.2 (Space of variations of order n). — Let n ∈ N∗, we denote by

Var(a, b)n the subset of functions h ∈ Cn(a, b) satisfying

(VII.5)
h(a) = h′(a) = · · · = h(n−1)(a) = 0,
h(b) = h′(b) = · · · = h(n−1)(b) = 0.

We deduce the following generalized notion of extremals.

Definition VII.3. — Let n ∈ N∗, L be a Lagrangian function of order n and L the

associated functional. The functional L is called differentiable at x ∈ Cn(a, b) if and only

if

(VII.6) L(x + εh)− L(x) = εdL(x, h) + o(ε),

for all h ∈ Var(a, b)n where dL(x, h) is a linear functional of h.

We then define extremals of the functional L as follows:

Definition VII.4. — An extremal for the functional L is a function x ∈ Cn(a, b) such

that dL(x, h) = 0 for all x ∈ Var(a, b)n.

Extremals of the functional L are characterized by a generalized Euler-Lagrange equation

given by

∂L

∂x
(t, x(t), x(1)(t), . . . , x(n)(t)) +

n∑
i=1

(−1)i

(
d

dt

)i [
∂L

∂vi

(t, x(t), x(1)(t), . . . , x(n)(t))

]
.

(GEL)

We refer to ([25] Chap.2 §.11 p.42) for a proof. We denote by OLAP the Ostrogradski

least-action principle, i.e. the derivation of (GEL) from L.

The generalized Euler-Lagrange equation can be written using a differential operator

denoted by OGEL and defined by

(VII.7) OGEL =
∂L

∂x
+

n∑
i=1

(−1)i

(
d

dt

)i

◦ ∂L

∂vi

.

The (GEL) is then equivalent to

(VII.8) OGEL.(t, x(t), x(1)(t), . . . , x(n)(t)) = 0.
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The fractional embedding procedure can be applied to obtain a fractional analogue of

this generalized Euler-Lagrange equation. As for the fractional Euler-Lagrange equation,

we need to impose some regularity properties on the Lagrangian.

Definition VII.5. — Let n ∈ N∗ and L(t, x, v1, . . . , vn) be a Lagrangian function of order

n. The Lagrangian L is admissible if L is differentiable with respect to x, holomorphic in

each variable vi, i = 1, . . . , n, and its restriction to R× Rd × (Rd)n is real.

We have:

Theorem VII.1. — Let n ∈ N∗ and L be an admissible Lagrangian function of order n.

The α
aEmbβ

b (µ)-fractional embedding of the generalized Euler-Lagrange equation associated

to L is given by

∂L

∂x
(t, x(t), xα(1)β(t), . . . , xα(n)β(t))+

n∑
i=1

(−1)i
(
Dα,β

µ

)i [∂L

∂vi

(t, x(t), xα(1)β(t), . . . , xα(n)β(t))

]
,

(FGEN)α,β
µ

where

(VII.9) xα(i)β =
(
Dα,β

µ

)i
x, i = 1, . . . , n.

The proof is based on the following lemma:

Lemma VII.1. — Let n ∈ N∗ and L be an admissible Lagrangian function of order n.

The α
aEmbβ

b (µ)-fractional embedding of the generalized Euler-Lagrange operator OGEL is

given by

(VII.10) α
aEmbβ

b (µ) (OGEL) =
n∑

i=1

(−1)i
(
Dα,β

µ

)i ◦ ∂L

∂vi

+
∂L

∂x
.

Proof. — The operator (VII.8) is of the form Og
f with:

- f = {fi}i=0,...,n where fi = (−1)i and (−1)i(t, x, v1, . . . , vn) = (−1)i for i = 0, . . . , n.

- g = {gi}i=0,...,n where g0 =
∂L

∂x
and gi =

∂L

∂vi

, i = 1, . . . , n.

We then have OGEL =
n∑

i=0

tF
i · di

dti
◦ tGi. Using the fractional embedding α

aEmbβ
b (µ) of

operators (II.4) we obtain (VII.10).

By definition II.2, the fractional embedding of equation (VII.8) is given by

(VII.11) α
aEmbβ

b (µ) (OGEL) · (x,Dα,β
µ x, . . . ,

(
Dα,β

µ

)n
) = 0,
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which reduces to (FGEL) thanks to lemma VII.1. This concludes the proof of theorem

VII.1.

As for the fractional Euler-Lagrange equation, we have an associated coherence problem

(see §.3). Next section deals with the corresponding fractional calculus of variations.

2. Fractional Ostrogradski formalism

We develop the notion of extremals and differentiability for functionals depending on

higher order, i.e. power of the fractional operator Dα,β
µ . We prove in particular a coherence

theorem.

2.1. Space of variations and extremals. — The fractional analogue of the space of

variations of order n is:

Definition VII.6 (Fractional space of variations of order n)

Let n ∈ N∗, we denote by α
aVarβ

b (n) the set of functions h ∈ α
aE

β
b such that

(VII.12) (Dα,β
µ )ih(a) = (Dα,β

µ )ih(b) = 0 for i = 0, . . . , n− 1.

2.2. The fractional generalized Euler-Lagrange equation. — The explicit form of

the differential of a fractional functional of order n ∈ N∗ is given by the following lemma:

Theorem VII.2. — Let n ∈ N∗ and L be an admissible Lagrangian function of order n

with L its associated functional. The functional L is differentiable at any x ∈ α
aE

β
b (n) and

for h ∈ α
aVarβ

b (n) the differential is given by

(VII.13) dL(x, h) =

∫ b

a

[
n∑

i=1

(−1)i
(
Dβ,α
−µ

)i
[

∂L

∂vi

(zn(t))

]
+

∂L

∂x
(zn(t))

]
dt,

where zn(t) =
(
t, x(t),Dα,β

µ x(t), . . . , (Dα,β
µ )nx(t)

)
.

Proof. — By linearity of Dα,β
µ we have Dα,β

µ (x + εh) = Dα,β
µ x + εDα,β

µ h. We deduce that

(VII.14) L(x + εh) =

∫ b

a

L(zn(s) + ε(0, h(s),Dα,β
µ h(s), . . . , (Dα,β

µ )nh(s)))ds.

Doing a Taylor expansion of L(zn(s) + ε(0, h(s),Dα,β
µ h(s), . . . , (Dα,β

µ )nh(s))) in ε around 0,

we obtain

(VII.15)

L(x + εh) =

∫ b

a

[
L(zn(s)) + ε

(
n∑

i=1

[
(Dα,β

µ )ih(s)
] ∂L

∂vi

(zn(s)) + h(s)
∂L

∂x
(zn(s))

)
+ o(ε)

]
ds.
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Using the product rule (I.27), we obtain by induction the formula

(VII.16)

∫ b

a

f(t)(Dα,β
µ )ih(t)dt =

∫ b

a

(−1)i
[
(Dβ,α

−µ )if(t)
]
h(t)dt, i ≥ 1.

Replacing in equation (VII.15) we obtain (VII.13).

We obtain the fractional analogue of the least-action principle in the fractional Ostro-

gradski formalism, which follows easily from theorem VII.2.

Theorem VII.3 (Fractional Ostrogradski least-action principle)

Let L be an admissible Lagrangian of order n ∈ N∗, and L its associated functional. A

necessary and sufficient condition for a given function x ∈ α
aE

β
b (n) to be an extremal for L

with fixed end points is that it satisfies the fractional generalized Euler-Lagrange equation

(FGEL)β,α
−µ .

We denote by FOLAP the previous derivation of (FGEL).

2.3. Coherence. — As for the fractional embedding of classical mechanics, the fractional

embedding of the Ostrogradski formalism is not always coherent. We have the usual torsion

on the exponents and the parameter µ.

Theorem VII.4. — Let L be an admissible Lagrangian of order n, a, b ∈ R, α, β > 0,

then the following diagram commutes

(VII.17)
L(t, z

d/dt
n (x(t)))

α
aEmbβ

b (µ)
−→ L(t, z

Dα,β
µ

n (x(t)))
OLAP ↓ ↓ FOLAP

GEL
β
aEmbα

b (−µ)
−→ FGELβ,α

−µ ,

where zO
n (x(t)) = (x(t), O(x(t)), . . . , On(x(t)), with O an operator which can be d/dt or

Dα,β
µ .

Here again, in order to obtain a coherent diagram, we must choose µ = 0 and α = β at

the end, i.e. on the diagram (VII.17).

3. Nonconservative dynamical systems

In this section, we provide a unified framework for F. Riewe’s approach to noncon-

servative dynamical systems ([38],[39]) using the fractional embedding procedure. For a

different approach to this problem we refer to the seminal paper of P.J. Morrison [33].
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3.1. Linear friction. — We consider the classical problem of linear friction

(VII.18) −dU

dx
+ γ

dx

dt
+ m

d2x

dt2
= 0,

where γ ∈ R, m > 0.

This system can not be modelled by an ordinary Lagrangian systems. This follows from

Bauer theorem [9], which states that it is impossible to use a variational principle to derive

a single linear dissipative equation of motion with constant coefficients.

We begin with the following immediate lemma.

Theorem VII.5. — Let L : R×C×C×C → C be the Lagrangian of order 2 defined by

(VII.19) L(t, x, v1, v2) = −U(x)− γ

2
v2

1 +
1

2
mv2

2,

where γ ∈ R, m > 0 and U a smooth function.

The Dα
µ-fractional embedding of the generalized Euler-Lagrange equation associated to L

is given by

(VII.20) −dU

dx
+ γ(Dα

µ)2x + m(Dα
µ)4x = 0.

Specializing to µ = −i, we obtain Dα
−i = Dα. The operator Dα satisfies a semi-group

property (see lemma I.1). As a consequence, we obtain DαDβ = Dα+β for α > 0, β > 0.

We deduce the following corollary:

Corollary VII.1. — The Dα-fractional embedding of the generalized Euler-Lagrange

equation associated to L is given by

(VII.21) −dU

dx
+ γD2αx + mD4αx = 0.

For α = 1/2 we obtain only fractional operators of integer order, which reduce to ordinary

derivatives on the set of smooth functions. As a consequence, we have proved:

Theorem VII.6. — The D1/2-fractional embedding of the generalized Euler-Lagrange

equation associated to L reduce to the equation

(VII.22) −dU

dx
+ γ

dx

dt
+ m

d2x

dt2
= 0,

on the set of smooth functions.

Using the weak-coherence lemma we deduce the stronger result:
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Theorem VII.7. — The solution of the non-conservative systems (VII.18) corresponds

to smooth weak-extremals of the D1/2-fractional functional associated to L.

This lemma is not valid for a general Lagrangian systems. However, in our particular

case, we have a very simple dependance of the Lagrangian with respect to velocities. This

is this property with the fact that the restriction on C2-functions kills the imaginary part,

which implies the result.

3.2. The Whittaker equation. — It is in general difficult to see directly if an equation

is Lagrangian or not. Following Bateman [5], E.T. Whittaker proposes as an answer to a

problem raised by R.C. Tolman ([43],§.10 §.11) that the equation

(VII.23)
ẍ− x = 0,
ÿ − ẋ = 0,

called the Whittaker equation in what follows, can not be derived by any Lagrangian

approach. It seems that up to the author knowledge the question is still open today.

Following a previous work of F. Riewe [39] we give a positive answer to R.C. Tolman’s

problem in the fractional framework.

We begin with the following immediate lemma.

Lemma VII.2. — Let L : R× C6 be a Lagrangian of order 2 on C2 defined by

(VII.24) L(t, x, y, v1, u1, v2, u2) = v2
2 + u2

2 − u1v1 + x2 + v2y.

The Dα
µ-embedding of the Euler-Lagrange equation associated to L is given by

(VII.25)
2x(t) + Dα

µ

(
Dα

µy
)
− (Dα

µ)2(2(Dα
µ)2x(t) + y(t)) = 0,

ẋ(t) + Dα
µ

(
Dα

µx
)
− (Dα

µ)2(2(Dα
µ)2y(t)) = 0.

Specializing when µ = −i, we obtain Dα
−i = Dα. The operator Dα satisfies a semi-group

property (see lemma I.1). As a consequence, we have DαDα = D2α for all α > 0 and

equation (VII.25) reduces to:

Theorem VII.8. — The Dα-embedding of the Euler-Lagrange equation associated to L is

given by

(VII.26)
2x(t) + D2αy − 2D4αx(t)− D2αy(t) = 0,
ẋ(t) + D2αx− 2D4αy(t) = 0.
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Choosing α = 1/2, we obtain fractional operators of integer order. On the set of suffi-

ciently smooth functions, these operators reduces to the ordinary derivatives. As a conse-

quence, we have proved:

Theorem VII.9. — The restriction of the D1/2-fractional embedding of the Euler-

Lagrange equation associated to L is given by the Whittaker equation.

Moreover, using the weak least action principle, we have the stronger result:

Theorem VII.10. — Solutions of the Whittaker equation correspond to smooth weak-

extremals of the D1/2-fractional functional associated to L.
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PART VIII

FRATIONAL EMBEDDING OF CONTINUOUS LAGRANGIAN

SYSTEMS

The wave equation is an example of a partial differential equation which can be derived

via a variational principle. In that case, the functional depends on several variables (at least

two). Such functional arise in mechanical problems involving systems with infinitely many

degrees of freedom like strings, membrane, etc. These systems are known as continuous

Lagrangian systems. We use the fractional embedding procedure to define the fractional

analogue of these equations. In particular, we obtain a fractional Lagrangian formulation

of the fractional wave equation introduced by Schneider and Wyss [41]. This suggest also a

canonical way to generalize to the fractional framework a given differential equation: if the

underlying equation possesses an additional structure like the Lagrangian case, one must

provide an extension which respect this structure. The fractional embedding procedure

is well adapted to deal with such an extension. We also derive a fractional Lagrangian

formulation for the fractional diffusion equation.

1. Continuous Lagrangian systems

Let d ∈ N. We consider a Lagrangian function L defined on R× Rd × R× C× Rd and

denoted by

(VIII.1) L(t, x1, . . . , xd, y, v, w1, . . . , wd).

In what follows, we use the terminology of Lagrangian density for a function L of the form

(VIII.1). We denote x for (x1, . . . , xd).

Let < be a fixed region of Rd and a < b, a, b ∈ R. We consider the functional

(VIII.2) La,b,<(u) =

∫ b

a

∫
<

L(t, x, u(t, x), ∂tu(t, x), ∂xu(t, x)) dx dt,

acting on a function u : R× Rd −→ R which is usually called a field, which is of class C1

in all its variables and where

(VIII.3) ∂xu(t, x) = (∂x1u(t, x), . . . , ∂xd
u(t, x)).

A variation for a field u(t, x) is defined as a function of the form

(VIII.4) uε(t, x) = u(t, x) + εh(t, x),
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with h satisfying the boundaries conditions

(VIII.5) h(a, x) = h(b, x) = 0 and h(t, ∂<) = 0,

where ∂< denotes the boundary of <.

Theorem VIII.1 (Euler-Lagrange equation for fields). — Extremals of the func-

tional (VIII.2) are solutions of the Euler-Lagrange equation for fields (ELF):

(VIII.6)
∂L

∂y
− ∂

∂t

(
∂L

∂v

)
−

d∑
i=1

∂

∂xi

[
∂L

∂wi

]
= 0.

We refer to ([25] Chapter 7) for more details.

As in the previous parts, we associate to (ELF) the differential operator

(VIII.7) O(ELF) =
∂L

∂y
− ∂

∂t
◦ ∂L

∂v
−

d∑
i=1

∂

∂xi

◦ ∂L

∂wi

,

acting on 2d + 2-uplet (t, x, u(t, x), ∂tu(t, x), ∂x1u(t, x), . . . , ∂xd
u(t, x)).

Using the fractional embedding procedure we obtain a fractional Euler-Lagrange equa-

tion for fields.

Theorem VIII.2. — Let L be an admissible Lagrangian density. The α
aEmbβ

b (µ)-

fractional embedding of the Euler-Lagrange equation for fields (ELF) associated to L is

given by

∂L

∂y
(zα,β(t, x))−Dα,β

µ

[
∂L

∂v
(zα,β(t, x)

]
−

d∑
i=1

∂

∂xi

[
∂L

∂wi

(zα,β(t, x))

]
(FELF )α,β

µ

where zα,β(t, x) = (t, x, u(t, x),Dα,β
µ u(t, x), ∂x1u(t, x), . . . , ∂xd

u(t, x)).

Proof. — The differential operator O(ELF) is considered as a time-differential operator, i.e.

that we consider the operator Og
f with

(VIII.8) f =

(
∂L

∂y
−

d∑
i=1

∂

∂xi

◦ ∂L

∂wi

,1

)
,

and

(VIII.9) g =

(
1,−∂L

∂v

)
.

Using definition II.2, we obtain (FEL). This concludes the proof.
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The previous theorem can be generalized in various ways. In particular, one can define

a generalized embedding procedure, assuming that not only time derivatives, but also

spatial derivatives ∂/∂xi, i = 1, . . . , d, are replaced by a fractional derivatives. In this case

however, we have some technical difficulties (see remark VIII.1). This will be discussed in

another work.

As for the previous cases, we develop the associated fractional calculus of variations.

2. Fractional continuous lagrangian systems

Using the fractional embedding procedure, we look for the following class of fractional

densities:

Definition VIII.1. — Let L be an admissible Lagrangien density. The fractional func-

tional associated to L is defined by

(VIII.10) Lα,β
a,b (u) =

∫ b

a

∫
<

L(t, x, u(t, x),Dα,β
µ u(t, x), ∂xu(t, x)) dx dt,

for fields u(t, x) ∈ α
aFβ

b (<), the set of fields smooth with respect to x and in α
aE

β
b with respect

to t.

We consider two spaces of variations for fields:

Definition VIII.2 (Spaces of variations for fields). — We denote by Varα,β,<(a, b)

the set of fields satisfying

(VIII.11)

Varα,β(a, b,<) = {h(t, x), ht ∈ C1, hx ∈ α
aE

β
b , h(a, x) = h(b, x) = 0, h(t, ∂<) = 0},

and by Varα
0 (a, b) the set of fields defined by

(VIII.12) Varα
0 (a, b,<) =

{
h(t, x), ht ∈ C1, hx ∈ α

aE
β
b , h(a, x) = h(b, x) = 0,

h(t, ∂<) = 0, aD
α
t h = tD

α
b h

}
.

As usual the condition aD
α
t h = tD

α
b h allows us to obtain a symmetric product rule which

is fundamental for the coherence problem.

Definition VIII.3. — Let u(t, x) be a given field. A P-variation of u is a one-parameter

ε ∈ R family of fields uε(t, x) defined by

(VIII.13) uε(t, x) = u(t, x) + εh(t, x), h ∈ P,

where P can be Varα,β(a, b) or Varα
0 (a, b).
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We denote by La,b the functional Lα,β
a,b when P = Varα,β(a, b,<) and Lα,α

a,b when P =

Varα(a, b,<).

Definition VIII.4. — Let L be an admissible Lagrangian density and La,b the associated

functional. The functional La,b is called P-differentiable at u, where u is a field, if

(VIII.14) La,b(u + εh)− La,b(u) = εdLa,b(u, h) + o(ε),

for all h ∈ P, where dLa,b(u, h) is a linear functional of h.

The differential of the fractional functional (VIII.10) is given by:

Theorem VIII.3. — Let L be an admissible Lagrangian density and Lα,β
a,b the associated

fractional functional. The functional Lα,β
a,b is differentiable at any fields uF and for all

h ∈ Varα,β(a, b,<) the differential is given by

(VIII.15)
∂L

∂y
(zα,β(t, x))−Dβ,α

−µ

[
∂L

∂v
(zα,β(t, x)

]
+

d∑
i=1

∂

∂xi

[
∂L

∂wi

(zα,β(t, x))

]
,

where zα,β(t, x) = (t, x, u(t, x),Dα,β
µ u(t, x), ∂x1u(t, x), . . . , ∂xd

u(t, x)).

Proof. — As the left and right (RL) derivatives are linear operators, we have

(VIII.16) Dα,β
µ (u + εh) = Dα,β

µ u + εDα,β
µ h.

As a consequence, we obtain

(VIII.17) Lα,β
a,b (u + εh) =

∫ b

a

∫
<

L(zu(t, x) + εzh(t, x)) dx dt,

where for a field f(t, x) we denote

(VIII.18) zf (t, x) = (t, x, f(t, x),Dα,β
µ f(t, x), ∂x1f(t, x), . . . , ∂xd

f(t, x)).

Doing a Taylor expansion of L(zu(t, x) + εzh(t, x)) in ε around 0, we obtain

(VIII.19)
L(zu(t, x) + εzh(t, x)) = L(zu(t, x))

+ε

[
∂L

∂y
(zu(t, x))żh(t) +Dα,β

µ h
∂L

∂v
(zu(t, x)) +

d∑
i=1

∂L

∂wi

(zu(t, x))∂xi
h

]
+o(ε).

Using the product rule (I.27) we obtain

(VIII.20)

∫ b

a

∫
<
Dα,β

µ h
∂L

∂v
(zu(t, x))dxdt = −

∫ b

a

∫
<

hDβ,α
−µ

[
∂L

∂v
(zu(t, x))

]
dxdt

as long as h(a, x) = h(b, x) = 0.
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Moreover, using the multidimensional Green theorem (see [44] p.223), we have

(VIII.21)

∫ b

a

∫
<

d∑
i=1

∂L

∂wi

(zu(t, x))∂xi
h dx dt =

∫ b

a

∫
<

d∑
i=1

∂

∂xi

[
∂L

∂wi

(zu(t, x))

]
h dx dt,

as long as h(t, ∂<) = 0. This concludes the proof.

Remark VIII.1. — In the global fractional framework, i.e. when we use fractional

derivatives also in the x variables, we see from formula (VIII.21) that we will need an

analogue of the multidimensional Green theorem in the fractional case.

We denote by Dα
µ the operator Dα,α

µ and Fα(<) the set α
aFα

b (<).

Theorem VIII.4 (Real variations). — Let L be an admissible Lagrangian density and

Lα,β
a,b the associated fractional functional. The functional Lα,β

a,b is differentiable at any fields

u ∈ Fα(<) and for all h ∈ Varα(a, b,<) the differential is given by

(VIII.22)
∂L

∂y
(zα(t, x))−Dα

µ

[
∂L

∂v
(zα(t, x)

]
−

d∑
i=1

∂

∂xi

[
∂L

∂wi

(zα(t, x))

]
,

where zα(t, x) = (t, x, u(t, x),Dα
µu(t, x), ∂x1u(t, x), . . . , ∂xd

u(t, x)).

The proof follows the same lines.

An immediate consequence of this lemma is:

Theorem VIII.5 (Fractional least-action principle for fields)

Let L be an admissible Lagrangian density and Lα,β
a,b the associated functional. A neces-

sary and sufficient condition for a field u to be a Varα,β(a, b,<)-extremal is that it satisfies

the fractional Euler-Lagrange equation for fields (FELF )β,α
−µ .

We denote by Lα
a,b the functional Lα,α

a,b . Using the set of real variations, we have:

Theorem VIII.6 (Weak Fractional least-action principle for fields)

Let L be an admissible Lagrangian density and Lα
a,b the associated functional. A necessary

and sufficient condition for a field u to be a Varα(a, b<)-extremal is that it satisfies the

fractional Euler-Lagrange equation for fields (FELF )α
µ.
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3. The fractional wave equation

In this section, we derive the fractional wave equation defined by Schneider and Wyss

[41] as the extremals of a fractional continuous Lagrangian systems.

The equation describing waves propagating on a stretched string of constant linear mass

density ρ under constant tension T is

(VIII.23) ρ
∂2u(t, x)

∂t2
= T

∂2u(t, x)

∂x2
,

where u(t, x) denotes the amplitude of the wave at position x along the string at time t.

The wave equation corresponds to the extremals of the generalized functional associated

to the Lagrangian systems

(VIII.24) L(t, x, y, v, w) =
ρ

2
v2 − T

2
w2.

In [41], the authors define the fractional analogue of the wave equation by changing the

classical derivative by a fractional one. Using our notations, the definition of the fractional

wave equation is:

Definition VIII.5. — The fractional wave equation of order α is the fractional differ-

ential equation

(VIII.25) −ρD2αu = T
∂2u

∂x2
.

A natural demand with respect to this generalization which is just a formal manipulation

on equations, is to keep a more structural property of the wave equation, namely the fact

that it derives from a least-action principle. Using our fractional embedding procedure, we

are able to explicit such a fractional Lagrangian framework for the fractional wave equation.

In the following we work with the fractional embedding associated to Dα
µ which corre-

sponds to Dα,β
µ when β = α and a = −∞, b = +∞.

Theorem VIII.7. — The Dα
µ-fractional embedding of the continuous Euler-Lagrange

equation associated to (VIII.24) is given by

(VIII.26) −ρDα
µ ◦Dα

µu = T∂2
x2u.

We can specialized by choosing µ = −i. In that case Dα
−i = Dα and satisfies a semi-group

property (see lemma I.1). As a consequence, we obtain:
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Corollary VIII.1. — The Dα-fractional embedding of the continuous Euler-Lagrange

equation associated to (VIII.24) is given by

(VIII.27) −ρD2αu = T∂2
x2u.

Moreover, using the weak coherence theorem, we have:

Theorem VIII.8. — Solutions of the fractional wave equation (VIII.27) of order α cor-

responds to weak-extremals of the Dα-fractional functional associated to L.

Up to the author knowledge, this is the first time that the fractional wave equation is

derived via a fractional variational principle. In particular, the previous derivation has

the advantage to keep the continuous Lagrangian structure underlying the classical wave

equation.

4. A remark on fractional/classical equations

The previous remark can be uses as a conceptual guideline to generalize classical equa-

tions of physics in the fractional framework. If the classical equation possesses an addi-

tional structure, for example Lagrangian, then we must extend this equation keeping this

additional structure, generalized in a natural way. The main remark is that equations by

themselves do not have a universal significance their form depending mostly on the coordi-

nates systems being used to derive them. On the contrary the underlying first principle like

the least-action principle carry an information which is of physical interest and not related

to the coordinates system which is used. At least this point of view explain the importance

of coherence theorems in all the existing embedding theories of dynamical systems.

5. The fractional diffusion equation

The fractional diffusion equation of order 0 < α < 1 is defined by

(VIII.28) Dαu(t, x) = a2∂2u(t, x)

∂x2
.

It is defined by Wyss [45]. For α = 1 we recover the classical diffusion equation.

The aim of this section is to derive a fractional Lagrangian formulation of the fractional

wave equation of order 0 < α ≤ 1, then including the classical diffusion equation. In the

contrary of the fractional wave equation, the diffusion equation is recovered thanks to a
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still fractional variational principle.

Let us consider the Lagrangian function L defined on R× R2 × C× C by

(VIII.29) L(t, x, y, v, w) =
1

2
v2 − a2

2
w2,

where ρ ∈ R, a ∈ R.

As for the fractional wave equation, we denote by Dα
µ the quantity Dα,β

µ when β = α,

a = −∞ and b = +∞, i.e. working with the fractional derivatives D anf D∗.

Theorem VIII.9. — The D
α/2
µ -fractional embedding of the continuous Euler-Lagrange

equation associated to (VIII.29) is given by

(VIII.30) Dα/2
µ ◦Dα/2

µ u = a2∂2u

∂x2
.

Choosing µ = −i, we obtain Dα
−i = Dα. As Dα satisfies a semi-group property, we finally

obtain:

Theorem VIII.10. — The Dα/2-fractional embedding of the continuous Euler-Lagrange

equation associated to (VIII.29) is given by

(VIII.31) Dαu = a2∂2u

∂x2
.

It must be noted that even for α = 1, the diffusion equation is recovered using a

fractional embedding procedure, namely the D1/2-fractional embedding procedure.

The main result of this section is that this fractional embedding of the diffusion equation

has an additional structure, a Lagrangian one.

Theorem VIII.11. — Solutions of the fractional wave equation (VIII.28) of order

0 < α ≤ 1 corresponds to weak-extremals of the Dα/2-fractional functional associated to

(VIII.29).

This result seems new, even for the case α = 1.
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CONCLUSION AND PERSPECTIVES

Part of this paper can be generalized in various ways.

i) We must extend the fractional embedding procedure in order to cover partial differ-

ential equations. In particular, the general fractional reaction-diffusion equation must be

studied in this setting.

ii) Of special interest is the Schrödinger equation. With F. Ben Adda ([7],[8]) we

have obtain this equation following an idea of L. Nottale [35] and results about the local

fractional calculus [6]. A problem is to try to do the same computations using left and

right RL fractional derivatives. The main difficulty is the absence of a chain rule for these

operators. In that case, one must obtain a one-parameter family of partial differential

equations, depending on the non-integer order α of differentiation. Following [16] the idea

is to prove that the Schrödinger equation can be recovered only for α = 1/2 which gives

strong constraints on the underlying nature of space-time in Nottale’s framework of the

Scale relativity.

iii) The previous idea can in fact be generalized to stochastic processes following our

previous work with S. Darses ([18] [20]). In that case, one want to consider fractional

Brownian processes via the stochastic embedding procedure. The stochastic derivative

defined in [20] must be generalized and the paper by S. Darses and I. Nourdin [22] can be

considered as a first step in this direction.

iv) We have use the left and right RL fractional derivatives, but the same scheme can

be used with another fractional calculus leading to a different fractional embedding theory.

This depends mostly on the type of applications one want to consider. Of particular interest

seems to be the Caputo fractional derivatives [40]. A forthcoming paper will be devoted

to this case.
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NOTATIONS

Operators

– aD
α
t : left Riemann-Liouville fractional derivative of order α

– tD
α
b : right Riemann-Liouville fractional derivative of order α

– Dα: left fractional derivative of order α

– Dα
∗ : right fractional derivative of order α

– Dα,β
µ : fractional operator of order (α, β) and parameter µ

– Dα,β
µ : fractional operator of order (α, β) and parameter µ associated to D and D∗

– dα: the reversible fractional derivative corresponding to Dα,β
µ for β = α, µ = 0.

Functional spaces

– α
aE: left fractional Riemann-Liouville derivative space

– Eα
b : right fractional Riemann-Liouville derivative space

– α
aEβ

b : functional space associated to the fractional operator Dα,β
µ

– AC([a, b]): absolutely continuous functions on [a, b]

– C∞
0 (I): functions of C∞(I) vanishing ouside a compact subset K of I.

– Jα
L(R): left fractional derivative space

– Jα
R(R): right fractional derivative space

– Jα
L,0(I), Jα

R,0(I): closure of C∞
0 (I) under their respective norms

– Hα
0 (I): fractional Sobolev space of order α

Operators and objects associated to the fractional embedding procedure

– α
aEmbβ

b (µ): the fractional embedding procedure associated to Dα,β
µ

– Revα: the reversible fractional embedding procedure, i.e. α
aEmbα

b (0)

– O(EL): the Euler-Lagrange operator

– EL: the Euler-Lagrange equation

– FELµ
α,β: the fractional Euler-Lagrange equation

– Varα: the real space of variations

– Lα,β
a,b : the fractional functional associated to L
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