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INSTANTONS BEYOND TOPOLOGICAL THEORY I

E. FRENKEL, A. LOSEV, AND N. NEKRASOV

Abstract. Many quantum field theories in one, two and four dimensions possess
remarkable limits in which the instantons are present, the anti-instantons are absent,
and the perturbative corrections are reduced to one-loop. We analyze the correspond-
ing models as full quantum field theories, beyond their topological sector. We show
that the correlation functions of all, not only topological (or BPS), observables may
be studied explicitly in these models, and the spectrum may be computed exactly.
An interesting feature is that the Hamiltonian is not always diagonalizable, but may
have Jordan blocks, which leads to the appearance of logarithms in the correlation
functions. We also find that in the models defined on Kähler manifolds the space of
states exhibits holomorphic factorization. We conclude that in dimensions two and
four our theories are logarithmic conformal field theories.

In Part I we describe the class of models under study and present our results in the
case of one-dimensional (quantum mechanical) models, which is quite representative
and at the same time simple enough to analyze explicitly. Part II will be devoted
to supersymmetric two-dimensional sigma models and four-dimensional Yang-Mills
theory. In Part III we will discuss non-supersymmetric models.
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1. Introduction

For a large class of models of quantum field theory there is a particular limit in
which the theory may be analyzed exactly in the presence of instanton effects. The
simplest are the (twisted) supersymmetric models, in which the path integral measure
is defined in a straightforward way. Classically, these models are described by first order
Lagrangians. The corresponding path integral localizes on certain finite-dimensional
moduli spaces of classical (instanton) configurations. Therefore in the path integral
description the correlation functions of the corresponding quantum system are given
by integrals over these moduli spaces. Such correlation functions have been studied
in the literature, but attention has been focused almost exclusively on the correlation
functions of the BPS observables, which represent cohomology of a supersymmetry
charge of the theory. These correlation functions comprise the BPS (or topological)
sector of the model and give rise to important invariants, such as the Gromov-Witten
and Donaldson invariants (in two and four dimensions, respectively). However, the
knowledge of the topological sector is not sufficient for understanding the full quantum
field theory.

In this paper we go beyond the topological field theory of these models and investigate
the correlation functions of more general – non-BPS, or “off-shell” – observables in the
presence of instantons, i.e., non-perturbatively. We show that in the special limit
of the coupling constant that we are considering (namely, τ → ∞, see below) the
quantum model may be analyzed and solved explicitly, both in the Lagrangian (or
path integral) formalism and the Hamiltonian formalism. We describe the space of
states of the quantum theory and show that a large class of observables (satisfying
certain analytic properties) may be realized as operators acting on this space. Their
correlation functions are then represented by the matrix elements of these operators.
These matrix elements agree with the path integral representation of the correlation
functions (given by integrals over the moduli spaces of instantons), and they also satisfy
the usual identities, such as factorization over the intermediate states.

We find some interesting and unexpected features in our models. One of them is the
fact that the Hamiltonian is non-diagonalizable on the space of states, but has Jordan
blocks. This leads to the appearance of logarithmic terms in the correlation functions.
Another feature is holomorphic factorization of the space of states in models defined on
Kähler manifolds. In particular, we find that two-dimensional supersymmetric sigma
models and four-dimensional super-Yang-Mills models are logarithmic conformal field
theories in our limit.

1.1. Description of the models. We begin by describing in more detail the class of
models that will be discussed in this paper. These models appear in one, two and four
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space-time dimensions and are described by the actions which are written below (note
that all of our actions are written in Euclidean signature).

• 1D: We start with the supersymmetric quantum mechanics on a compact Kähler
manifold X, with the Kähler metric λg, equipped with a holomorphic vector field ξ.
We will assume that ξ comes from a holomorphic C×-action on X with a non-empty
set of fixed points which are all isolated. We modify the standard action [36] by adding
the topological term −iϑ

∫
A, where A is the one-form obtained by contracting g with

the vector field ξ+ ξ (our assumptions imply that A = df , where f is a Morse function
on X). We allow ϑ to be complex.

We then set τ = ϑ + iλ, τ = ϑ − iλ (note that they are not necessarily complex
conjugate to each other because ϑ is complex). Consider the limit in which τ → −i∞,
but τ is kept finite (which means that λ→ +∞ and ϑ is adjusted accordingly, so that
it has a large imaginary part). In this limit the model is described by the following
first order action on a worldline I:

(1.1) S = −i
∫

I

(
pa

(
dXa

dt
− va

)
+ pa

(
dXa

dt
− va

)
+

−πa

(
dψa

dt
− ∂va

∂Xb
ψb

)
− πa

(
dψa

dt
− ∂va

∂Xb
ψb

))
dt− iτ

∫
A,

where the Xa’s are complex coordinates on X and ξ = va ∂
∂Xa .

The quantum model is described by the path integral
∫
e−S over all maps I →

X. This path integral represents the “delta-form” supported on the moduli space of
gradient trajectories, satisfying

(1.2)
dXa

dt
= va.

This is the instanton moduli space in this case.

• 2D: We start with the twisted (type A) N = (2, 2) supersymmetric sigma model
with the target compact Kähler manifold X with the Kähler metric λg and the B-field

B = BabdX
a ∧ dXb, which is a closed (complex) two-form on X.

We then set

τab = Bab +
i

2
λgab, τab = Bab −

i

2
λgab.

In the limit when τab → −i∞, but the τab are kept finite (which means that λ → ∞
and the Bab have a large imaginary part), this model is described by the following first
order action on a worldsheet Σ:

(1.3) −i
∫

Σ

(
pa∂zX

a + pa∂zXa − πa∂zψ
a − πa∂zψa

)
d2z +

∫

Σ
τabdX

a ∧ dXb.

Thus, this model is a particular modification of the “infinite radius limit”, achieved by
adding to the conventional second order action of the sigma model the topological term
(B-field) with a large imaginary part.

The path integral
∫
e−S over all maps Σ → X localizes on the moduli space of

holomorphic maps, satisfying
∂zX

a = 0.
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• 4D: We start with twisted N = 2 supersymmetric gauge theory on a four-manifold
M4 with compact gauge group G, coupling constant gYM and theta-angle ϑ, which we
allow to be complex.

We then set

τ =
ϑ

2π
+

4πi

g2
YM

, τ =
ϑ

2π
− 4πi

g2
YM

.

In the limit when τ → −i∞, but τ is kept finite (i.e., gYM → 0 and ϑ has a large
imaginary part), this model is described by the first order action

S = −i
∫

M4

(
trP+ ∧ FA + τ trFA ∧ FA + fermions

)
.

This model is a particular modification of the “weak coupling limit” achieved by adding
to the conventional second order the topological term − iϑ

2π

∫
M4 trF ∧F , where ϑ has a

large imaginary part.
The path integral

∫
e−S over all connections on M4 localizes on the moduli space of

anti-self dual connections satisfying the equations

F+
A = 0.

Thus, to obtain these models we start with the standard (second order) action and

add to it a topological term: −iϑ
∫
I df in 1D, the B-field

∫
ΣBabdX

a ∧ dXb in 2D, and

the ϑ-angle term − iϑ
2π

∫
M4 trF ∧ F in 4D. We then allow ϑ and Bab to be complex

and take the limit τ → ∞ as described above.1 In this limit the instanton contribu-
tions are present while the anti-instanton contributions vanish, and because of that the
correlation functions simplify dramatically.

The resulting models are described by the first order Lagrangians written above.2

The corresponding path integral represents the “delta-form” supported on the instanton
moduli space. This moduli space has components labeled by the appropriate “instanton
numbers”, which are finite-dimensional (after dividing by the appropriate gauge sym-
metry group). Therefore the correlation functions are expressed in terms of integrals
over these finite-dimensional components of the moduli space.

When we move away from the special point τ = ∞ (with fixed τ), both instantons
and anti-instantons start contributing to the correlation functions. The path integral
becomes a Mathai-Quillen representative of the Euler class of an appropriate vector
bundle over the instanton moduli space, which is “smeared” around the moduli space
of instantons (like Gaussian distribution), see, e.g., [9]. Therefore general correlation
functions are no longer represented by integrals over the finite-dimensional instanton
moduli spaces and become much more complicated.

There is however an important class of observables, called the BPS observables whose
correlation functions are independent of τ . They commute with the supersymmetry

1in 2D sigma models such limits, with large imaginary B-field, have been studied in the literature
since the early days of the theory of instantons, see, e.g., the papers [10] and references therein

2there are also similar models in three dimensions, but they fall into the class of non-supersymmetric
field theories, which generically become massive upon inclusion of the instantons; in this paper we
consider such models only briefly in Section 6.3
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charge Q of the theory and comprise the topological sector of the theory. The perturba-
tion away from the point τ = ∞ (that is back to a finite radius in 2D or to a non-zero
coupling constant in 4D) is given by a Q-exact operator, and therefore the correlation
functions of the BPS observables (which are Q-closed) remain unchanged when we move
away from the special point. This is the secret of success of the computation of the
correlation functions of the BPS observables achieved in recent years in the framework
of topological field theory: the computation is actually done in the theory at τ = ∞,
but because of the special properties of the BPS observables the answer remains the
same for other values of the coupling constant [40]. But for general observables the
correlation functions do change in a rather complicated way when we move away from
the special point.

Our goal in this paper is to go beyond the topological sector and consider more
general correlation functions of non-BPS observables. We are motivated, first of all, by
the desire to understand non-supersymmetric quantum field theories with instantons.
It is generally believed that realistic quantum field theories should be viewed as non-
supersymmetric phases of supersymmetric ones. This means that the observables of
the original theory may be realized as observables of a supersymmetric theory, but they
are certainly not going to be BPS observables. Therefore we need to develop methods
for computing correlation functions of such observables.

In particular (and this was another motivation), developing this theory in two di-
mensions may help in elucidating the pure spinor approach to superstring theory [4],
where “curved βγ-systems” play an important role [32].

The third motivation comes from the realization that the correspondence between the
full quantum field theory and its topological sector is analogous to the correspondence
between a differential graded algebra (DGA) and its cohomology. The cohomology
certainly contains a lot of useful information about the DGA, but far from all. For
example, there are higher (Massey) operations on the cohomologies, which can only be
detected if we use the full DGA structure. In particular, the cohomology of a manifold
does not determine its geometric type, but the differential graded algebra of differential
forms does (at least, its rational homotopy type).3 Likewise, we expect that the passage
from the topological sector to the full quantum field theory will reveal a lot of additional
information. In particular, while the correlation functions in the topological sector give
rise to invariants of the underlying manifold, such as the Gromov-Witten and Donaldson
invariants, the correlation functions of the full quantum field theory may allow us to
detect some finer information about its geometry.

Since our goal now is to understand the full quantum field theory, and not just its
topological sector, it is reasonable to try to describe the theory first at the special value
of the coupling constant τ = ∞ (and finite τ), where the correlation functions simplify
so dramatically due to the vanishing of the anti-instanton contributions. One can then

3In the words of [11], “to understand cohomology and maps on cohomology one need deal only with
closed forms, but to detect the finer homotopy theoretic information one also needs to use non-closed
forms. Differential geometric aspects of this philosophy have been given by Chern and Simons: “The
manner in which a closed form which is zero in cohomology actually becomes exact contains geometric
information”.”
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try to extend these results to a neighborhood of this special value by perturbation
theory.

Our approach should be contrasted with the standard perturbation theory approach
to quantum field theory, which consists of expanding around a Gaussian fixed point.
This approach has many virtues, but it cannot be universally applied. In particular,
there are issues with the zero radius of convergence, but more importantly, such pertur-
bation theory is unlikely to shed light on hard dynamical questions such as confinement.
One can speculate that the reason for this is that expansion around a Gaussian point
does not adequately represent the non-linearity of the spaces of fields and symmetries.

The expansion around the point τ = ∞ that we propose in this paper may be viewed
as an alternative to the Gaussian perturbation theory. Here the topology (and perhaps,
even the geometry) of the space of fields is captured by the appropriate moduli space
of instantons. Therefore this approach may be beneficial for understanding some of the
questions that have proved to be notoriously difficult in the conventional formalism.

We note that the consideration of the theory at τ = ∞ has already proved to be
very useful in the recent interpretation [17] of mirror symmetry for toric varieties via
an intermediate I-model and the recent proof [31] of the Seiberg-Witten solution of the
N = 2 supersymmetric gauge theories.

1.2. Some puzzles. Before summarizing our results we wish to motivate them by
pointing out some “puzzles” which naturally arise when one considers the models de-
scribed above. It is natural to start with the one-dimensional case of supersymmetric
quantum mechanics. It already contains most of the salient features of the models that
we are interested in, and yet is simple enough to allow us to analyze it explicitly.

Let us first look at the classical theory described by the action (1.1). We can include
it into a one-parameter family of theories depending on a coupling constant λ by adding
the term 1

2λ
−1gabpapb. For finite values of λ−1 we may substitute the corresponding

equations of motion and obtain the second order action

(1.4)

∫

I

(
1

2
λgab

dXa

dt

dXb

dt
+

1

2
λgab ∂f

∂Xa

∂f

∂Xb
− iϑ

df

dt
+ fermions

)
dt,

where ϑ = τ−iλ. Here f is a Morse function on X, whose gradient is equal to v = ξ+ξ,
so that we have

df = gabv
adXb + gabvadXb.

This function is also the hamiltonian of the U(1)-vector field i(ξ − ξ) with respect to
the Kähler structure. It is shown in [15] that f always exists under our assumption
that ξ comes from a holomorphic C×-action on X with a non-empty set of fixed points.

The term −iϑdf (which plays the role of the B-field of the two-dimensional sigma
model) is very important, as we will see below. Its role is to distinguish the instanton
contributions to the path integral from the anti-instanton contributions. This allows us
to keep the instantons and at the same time get rid of the anti-instantons in the limit
τ = ϑ− iλ→ −i∞ with τ = ϑ+ iλ being fixed.

The limit τ → −i∞ with finite τ is achieved by taking λ → +∞ and ϑ → −i∞ in
such a way that λ− |ϑ| is kept finite and fixed. For simplicity we will consider now the
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case when ϑ = −iλ (so that τ = 0). We will therefore view the limit τ → −i∞ as the
limit λ→ ∞.

At finite values of λ we have the theory with the action (1.4) such that the classical
Hamiltonian is bounded from below. The corresponding quantum Hamiltonian is con-
jugate to a second order differential operator equal to −1

2(λ−1∆ + λ|df |2 + Kf ) (the
Witten Laplacian [36]) acting on the Hilbert space which is the completion of the de
Rham complex Ω•(X) with respect to the L2 norm. This Hamiltonian has non-negative
spectrum (see Section 2.1 for more details).

Now consider the theory in the limit λ → ∞. Here the classical Hamiltonian corre-
sponding to the action (1.1) is not bounded from below, which seems to indicate trouble:
unbounded spectrum of the quantum Hamiltonian. In fact, the naive quantization of
the Hamiltonian is the first order operator Lv = Lξ + Lξ (where L denotes the Lie

derivative). Under our assumptions on the vector field ξ, the only smooth eigenstates
are the constant functions. It is not clear at all how Lv could possibly be realized as
the Hamiltonian of a quantum mechanical model.

This constitutes the first puzzle that we encounter when analyzing the model (1.1)
(and its higher dimensional analogues).

The second puzzle has to do with holomorphic factorization. The action (1.1) mani-
festly splits into the sum of holomorphic and anti-holomorphic terms (unlike the action
at λ−1 6= 0, because the term λ−1gabpapb is mixed). So naively one expects the same
kind of holomorphic factorization for the space of states and for the correlation func-
tions. However, the only globally defined holomorphic functions (for compact X) are
constants. There may also be some holomorphic differential forms, but only a finite-
dimensional space of those. So it seems that a holomorphic factorization is impossible
due to the absence of globally defined holomorphic differential forms.

This makes us wonder that perhaps the structure of the space of states of the theory
with the action (1.4) should change when λ → ∞ in such a way that the new space
of states is the tensor product of chiral and anti-chiral sectors, the Hamiltonian is
diagonalizable and has bounded spectrum.

In fact, we will show that this is “almost” true: the new space of states has the
following structure

H =
⊕

α∈A

Fα ⊗ Fα

(where A is the finite set of zeros of ξ, or equivalently, critical points of the Morse
function f), where Hα and Hα may be viewed as the chiral and anti-chiral blocks of
the model. They have transparent geometric interpretation as spaces of “delta-forms”
supported on the ascending manifolds of the Morse function. We also find that the
spectrum of the Hamiltonian is non-negative, but the Hamiltonian is not diagonalizable:
it splits into a sum of Jordan blocks (of finite sizes bounded by dimCX+1). These are
the phenomena typically associated with two-dimensional logarithmic conformal field
theory. It is quite curious that we observe these phenomena already at the level of
quantum mechanics!

1.3. Summary of the results. We now explain our results in more detail, starting
with the one-dimensional case. Let X be a compact Kähler manifold, equipped with
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a holomorphic vector field ξ which comes from a holomorphic C×-action φ on X with
isolated fixed points. Let us denote those points by xα, α ∈ A. We will assume that
the set A is non-empty (it is necessarily finite).

Our first result concerns the structure of the spaces of states of the quantum theory
with the action (1.1). Under our assumptions, there is a Bialynicki-Birula decomposi-
tion [5, 7]

X =
⊔

α∈A

Xα

of X into complex submanifolds Xα, defined as follows:

Xα = {x ∈ X| lim
t→0

φ(t) · x = xα}.

Under the above assumptions it is proved in [15] that there exists a Morse function f
on X, whose gradient is the vector field v = ξ+ξ. The points xα, α ∈ A, are the critical
points of f , and the submanifolds Xα may be described as the “ascending manifolds”
of f . Furthermore, each submanifold Xα is isomorphic to Cnα, where the index of the
critical point xα is 2(dimC X−nα) (see [5, 7]). In what follows we will assume that the
above decomposition of X is a stratification, that is the closure of each Xα is a union
of Xβ’s.

Now let Hα be the space of delta-forms supported on Xα. An example of such delta-
forms is the distribution (or current) on the space of differential forms on X which is
defined by the following formula:

(1.5) 〈∆α, η〉 =

∫

Xα

η|Xα , η ∈ Ω•(X).

All other delta-forms supported on Xα may be obtained by applying to ∆α differential
operators defined on a small neighborhood of Xα. The space Hα is graded by the
degree of the differential form.

We then have a holomorphic factorization

Hα = Fα ⊗ Fα,

where Fα (resp. Fα) is the space of holomorphic (resp., anti-holomorphic) delta-forms
supported on Xα. For example, if nα = dimX, so that Xα ≃ Cnα is an open subset of
X, then Hα is the space of differential forms on Cnα , and so it factorizes into the tensor
product of holomorphic and anti-holomorphic differential forms. On the other hand, if
nα = 0, so that Xα = xα is a point, then Hα is the space of distributions supported at
xα. It factorizes into the tensor product of the derivatives with respect to holomorphic
and anti-holomorphic vector fields. In the intermediate cases the space Fα is generated
from the delta-form ∆α supported on Xα under the action of holomorphic differential
forms along Xα and holomorphic vector fields in the transversal directions. Thus, Fα

is the space of global sections of a DX -module, where DX is the sheaf of holomorphic
differential operators on X.

Now we set

H =
⊕

α∈A

Hα =
⊕

α∈A

Fα ⊗ Fα.
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We claim that this space H is isomorphic to the space of states of the quantum me-
chanical model described by the action (1.1).

The reader may wonder how the space of states of the theory for finite λ described by
the action (1.4), which is essentially the space of differential forms on X, could possibly
turn into something like this. We explain this in detail below. Here we will only point
out that the procedure of taking the limit λ → ∞ is quite non-trivial. Before passing
to the limit we need to multiply the wave functions of the quantum Hamiltonian of
the theory (1.4) by eλf (this corresponds to adding the term −λdf to the action (1.4)).
Standard semi-classical analysis shows that after this multiplication the wave functions
with eigenvalues that remain finite in the limit λ → ∞ tend to the delta-forms which
give us a monomial basis in the spaces Hα for different α’s. In particular, the exact
supersymmetric vacua (in other words, the BPS states), which are known to be in
bijection with the critical points of f [36], become in the limit λ→ ∞ the delta-forms
∆α on Xα defined by formula (1.5).

Next, we consider the Hamiltonian. Naively we expect that it is equal to

Hnaive = Lξ + Lξ,

acting on the above space H. However, we claim that it is actually equal to

H = Hnaive + 4π
∑

α,β

aαβ δαβ ⊗ δαβ,

where the summation is over all α, β such that Xβ is a codimension 1 stratum in

the closure of Xα. Here δαβ is the Grothendieck-Cousin operator (GC) and δαβ is its
complex conjugate (the aαβ are some non-zero real numbers). The GC operator acting
from Fα to Fβ corresponds to taking the singular part of a holomorphic differential
form on Xα along this divisor (see, e.g., [25]).

In particular, we find that the Hamiltonian is not diagonalizable; rather, it has
Jordan blocks!

In order to test these predictions, we investigate the factorization of correlation
functions over intermediate states. Suppose for simplicity that X = CP1 and f is the
standard “height” function (see Section 3.5). In this case there is one non-trivial com-
ponent of the moduli space of gradient trajectories, which consists of the trajectories
going from the north pole to the south pole. It is isomorphic to C× ⊂ CP1, hence its
natural compactification is CP1. Typical observables of our theory are smooth differen-
tial forms. We know from the path integral description of the model that the correlation
function of observables ω̂1, . . . , ω̂n corresponding to differential forms ω1, . . . , ωn is equal
to

〈ω̂1(t1)ω̂2(t2) . . . ω̂n(tn)〉 =

∫

CP
1
ω1 ∧ φ(e−(t1−t2))∗(ω2) . . . ∧ φ(e−(tn−1−tn))∗(ωn),

where φ is the standard C×-action on CP1 and φ(q)∗ denotes the pull-back of a dif-
ferential form under the action of q ∈ C×. Consider the simplest case when ω1 is a
smooth two-form ω and ω2 is a smooth function F on CP1, which we will assume to be
non-constant. Then we have

〈ω̂(t1)F̂ (t2)〉 =

∫

CP
1
ω φ(e−t)∗(F ),
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where t = t1 − t2.
On the other hand, we expect this two-point function to factorize into the sum of

one-point functions over all possible intermediate states:

(1.6) 〈ω̂(t1)F̂ (t2)〉 = 〈ω̂e−tH F̂ 〉 =
∑

ν

〈0|ω̂e−tH |Ψν〉〈Ψ∗
ν |F̂ |0〉.

If the hamiltonian were diagonalizable, the right hand side would be the sum of mono-
mials qα, where q = e−t and α runs over the spectrum of the Hamiltonian (in our case
it consists of non-negative integers). However, consider the following simple example:
let

F =
1

1 + |z|2 , ω =
1

(1 + |z|2)2
d2z

π
.

We find that ∫

CP
1
ω φ(q)∗(F ) =

1

1 − q2
+

2q2

(1 − q2)2
log q.

The appearance of the logarithmic function indicates that the operator H is not diag-
onalizable, but has Jordan blocks of length two, in agreement with our prediction.

Thus, the logarithmic nature of our model is revealed by elementary calculation of
an integral over the simplest possible moduli space of instantons. But it is important
to stress that in order to see the logarithm function in a correlation function it is
necessary that at least one of the observables involved not be Q-closed. The action of
Q on the above observables ω̂i corresponds to the action of the de Rham differential on
the differential forms ωi. Thus, in the above calculation the two-form ω̂ is necessarily
Q-closed, and so it is a BPS observable. But F is not Q-closed due to our assumption

that F is not constant. Therefore F̂ is not a BPS observable. If both F and ω were
Q-closed, then the one-point functions appearing on the right hand side of formula
(1.6) would be non-zero only when the intermediate states are vacuum states. On
such states the Hamiltonian is diagonalizable, so we would not be able to observe the
logarithmic terms. The same argument applies to n-point correlation functions. Thus,
we can discover the structure of the space of states of the theory, and in particular,
the existence of the Jordan blocks of the Hamiltonian, only if we consider correlation
functions of non-BPS observables. It is impossible to see these structures within the
topological sector of our model. This is yet another reason why it is important to go
beyond the topological sector.

Part I of our article contains a detailed and motivated exposition of our results
describing the structure of our quantum mechanical models at the special point λ = ∞
(or, equivalently, τ = ∞). We hope that the models corresponding to finite values
of λ may be studied by λ−1-perturbation theory around the point λ = ∞. We will
present some sample calculations below which provide some evidence that this is indeed
possible.

In Part II we will apply our approach to two-dimensional N = (2, 2) supersymmetric
sigma models and four-dimensional N = 2 supersymmetric Yang-Mills theory. Part III
will be devoted to generalization to non-supersymmetric models.

We now discuss briefly what happens in dimensions two and four, thus giving a
preview of the Part II of this article.
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1.4. Two-dimensional sigma models. Let us consider first the supersymmetric
(type A twisted) two-dimensional sigma model [39, 40] in the τ → ∞ limit (these
limits have been previously discussed in [2, 27, 17]). The first step is to recast these
models in the framework of the quantum mechanical models that we have studied
above. For a fixed Riemann surface Σ the space of bosonic fields in the supersymmetric
sigma model with the target manifold X is Maps(Σ,X), the space of maps Σ → X.
If we choose Σ to be the cylinder I × S1, then we may interpret Maps(Σ,X) as the
space of maps from the interval I to the loop space LX = Maps(S1,X). Thus, we
may think of the two-dimensional sigma model on the cylinder with the target X as
the quantum mechanical model on the loop space LX. Hence it is natural to try to
write the Lagrangian of the sigma model in such a way that it looks exactly like the
Lagrangian of the quantum mechanical model on LX with a Morse function f .

It turns out that if X is a Kähler manifold, this is “almost” possible. However, there
are two caveats. First of all, the corresponding function f has non-isolated critical
points corresponding to the constant loops in LX, so it is in fact a Bott-Morse function.
We can deal with this problem by deforming this function so that it only has isolated
critical points, corresponding to the constant loops whose values are critical points of a
Morse function on X. The second, and more serious, issue is that our function f is not
single-valued on LX, but becomes single-valued only after pull-back to the universal

cover L̃X of LX. In other words, it is an example of a Morse-Novikov function, or, more
properly, Bott-Morse-Novikov function. Because of that, the instantons are identified

with gradient trajectories of the pull-back of f to L̃X.

The universal cover L̃X may be described as the space of equivalence classes of maps
γ̃ : D → X, where D is a two-dimensional unit disc, modulo the following equivalence
relation: we say that γ̃ ∼ γ̃′ if γ̃|∂D = γ̃′|∂D and γ̃ is homotopically equivalent to γ̃′ in
the space of all maps D → X which coincide with γ̃ and γ̃′ on the boundary circle ∂D.

We have the obvious map L̃X → LX, which realizes L̃X as a covering of LX. The
group of deck transformations is naturally identified with H2(X,Z). The corresponding
Morse function, which goes back to the work of A. Floer [14] is given by the formula

(1.7) f(γ̃) =

∫

D
γ̃∗(ωK),

where ωK is the Kähler form.
Suppose now that I = R with a coordinate t. In the limits t → ±∞ a gradient

trajectory tends to the critical points of f on L̃X, which are the preimages of constant
maps in LX. Therefore a gradient trajectory may be interpreted as a map of the
cylinder, compactified by two points at ±∞, to X, or equivalently, a map CP1 →
X. Moreover, the condition that it corresponds to a gradient trajectory of f simply
means that this map is holomorphic. Thus, we obtain that the instantons of the two-
dimensional sigma model are holomorphic maps CP1 → X, and more generally, Σ → X,
where Σ is an arbitrary compact Riemann surface.

In our infinite radius limit (which corresponds to τ → −i∞, as explained above)
we obtain the theory governed by first order action (1.3). Therefore the corresponding
path integral localizes on the moduli space of holomorphic maps Σ → X. Because we
are dealing with a Morse-Novikov function, this moduli space now has infinitely many
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connected components labeled by β ∈ H2(X,Z), all of which are finite-dimensional
(the component is non-empty only if the integral of the Kähler class ω of X over β is
non-negative). The simplest observables of this model are the evaluation observables
corresponding to differential forms on X. Their correlation functions are given by
integrals of their pull-backs to the moduli spaces of holomorphic maps (more precisely,
the Kontsevich moduli spaces of stable maps) under the evaluation maps.

Such correlation functions have been studied extensively in the literature in the
case of the BPS observables, corresponding to closed differential forms on X. They are
expressed in terms of the Gromov-Witten invariants of X. Our goal is to go beyond the
BPS (or topological) sector of the model and study correlation function of more general,
non-BPS, observables. These observables include evaluation observables corresponding
to differential forms on X that are not closed, as well as differential operators on X. The
correlation functions of the non-BPS observables reveal a lot more about the structure
of the theory. In particular, as we have seen previously in quantum mechanical models,
they essentially allow us to reconstruct the spaces of states of the theory in the limit
τ → −i∞.

In Part II we will describe in detail the structure of the spaces of states of the
supersymmetric two-dimensional sigma models in our infinite radius limit. First, we
will generalize our results obtained in Part I to the case of multivalued Morse functions.
(Actually, examples of such functions arise already for finite-dimensional real manifolds
with non-trivial fundamental groups.) We will show how to modify our results in this
case. Essentially, this amounts to considering the universal cover of our manifold,

which is L̃X in the case of two-dimensional sigma model. One also needs to impose an
equivariance condition on the states of the model corresponding to the action of the

(abelianized) fundamental group H1(X,Z) on L̃X. Because of this the corresponding
spaces of states acquire an additional parameter which is familiar from the construction
of “ϑ-vacua”.

Besides those changes, the structure of the space of states in the limit τ → ∞ is
similar to the one that we have observed above in our analysis of quantum mechanical
models. There are spaces of “in” and “out” states, and each of them is isomorphic
to the direct sum of certain spaces of “delta-forms” supported on the strata of the

decomposition of L̃X into the ascending and descending manifolds (however, this direct
sum decomposition is not canonical). Let us modify our function f given by formula
(1.7), as follows: f 7→ fH , where

fH(γ̃) =

∫

D
γ̃∗(ωK) −

∫

S1

γ∗(H)dσ,

where H is a Morse function on X. Then fH is a Morse function on L̃X , with isolated
critical points: constant maps with values at the critical points xα, α ∈ A, of H on X.

The corresponding ascending manifolds in L̃X are isomorphic to infinite-dimensional
vector spaces, which are roughly of half the dimension of the entire loop space. Let us

denote them by Xα,∞
2

+i, α ∈ A, i ∈ Z. Our space of states Ĥτ , which now depends on
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the choice of τ ∈ C, is realized as the subspace of those states Ψ in

Ĥ =
⊕

α∈A,i∈Z

Fα,∞
2

+i ⊗ Fα,∞
2

+i,

where Fα,∞
2

+i is the space of holomorphic “delta-forms” supported on Xα,∞
2

+i, and

Fα,∞
2

+i is its complex conjugate, which satisfy the condition T (Ψ) = eiτΨ. Here T is

the shift operator Hα,∞
2

+i → Hα,∞
2

+i+1. Thus, Ĥτ is (non-canonically) isomorphic to

the direct sum as above with fixed i.
The spaces of delta-forms may then be identified with the familiar Fock representa-

tions of the chiral and anti-chiral βγ, bc-systems. The Hamiltonian and the supersym-
metry charges may be identified with explicit operators acting on the spaces of states.
Thus, the spaces of states are essentially isomorphic to the direct sums of finitely many
tensor products of this form, like in a conformal field theory. In particular, there is a
large chiral algebra, which is nothing but the chiral de Rham complex of X. However,
we find that the Hamiltonian is not diagonalizable and computing matrix elements
of observables acting on the space of states, we see the appearance of the logarithm
function. Thus, we find that the two-dimensional supersymmetric model in our infinite
radius limit is a logarithmic conformal field theory.

We stress again that to see this structure it is crucial that we consider the correla-
tion functions of non-BPS observables. The hamiltonian is diagonalizable (in fact, is
identically equal to zero) on the BPS states. Therefore correlation functions of the BPS
observables which have been extensively studied in the literature (and which are closely
related to the Gromov-Witten invariants) do not contain logarithms. The hamilton-
ian is also diagonalizable on all purely chiral (and anti-chiral) states; thus, the chiral
algebra of the theory is free of logarithms. Logarithmic CFTs of this type have been
considered, e.g., in [33].

We remark that in the case when X is the flag manifold of a simple Lie group, the

above semi-infinite stratification of L̃X and the corresponding spaces of holomorphic
delta-forms have been considered in [13]. These spaces are representations of the affine
Kac-Moody algebra ĝ with level 0, which are closely related to the Wakimoto modules.
In the non-supersymmetric version the level 0 algebra ĝ gets replaced by the ĝ at the
critical level −h∨ (see [13, 16]). Therefore we expect that the corresponding models
are closely related to the geometric Langlands correspondence. This will be discussed
in Part III of this article.

1.5. Four-dimensional Yang-Mills theory. Finally, we discuss (twisted) N = 2
supersymmetric Yang-Mills theory with gauge group G on a four-dimensional manifold
M4 [38]. Suppose that M4 = R × M3, where M3 is a compact three-dimensional
manifold. Let t denote the coordinate along the R factor. Then the Yang-Mills theory
may be interpreted as quantum mechanics on the space A/G of gauge equivalence
classes of G-connections on M3, with the Morse-Novikov function being the Chern-
Simons functional [1, 38]. However, there is again a new element, compared to the
previously discussed theories, and that is the appearance of gauge symmetry. The
quotient A/G has complicated singularities because the gauge group G has non-trivial
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stabilizers in the space A. For this reason we should consider the gauged Morse theory
on the space A of connections itself.

This theory is defined as follows. Let X be a manifold equipped with an action of
a group G and a G-invariant Morse function f . Then the gradient vector field vµ∂xµ ,
where vµ = hµν∂xνf commutes with the action of G. Denote by V

µ
a∂xµ the vector

fields on X corresponding to basis elements Ja of the Lie algebra g = Lie(G). We
define a gauge theory generalization of the gradient trajectory: it is a pair (x(t) : R →
X,At(t)dt ∈ Ω1(R, g∗)), which is a solution of the equation

(1.8)
dxµ

dt
= vµ(x(t)) + Vµ

a(x(t))Aa
t (t).

The group of maps g(t) : R → G acts on the space of solutions by the formula

g : (x(t), At(t)dt) 7→
(
g(t) · x(t), g−1(t)∂tg(t) + g−1(t)At(t)g(t)

)
,

and the moduli space of gradient trajectories is, naively, the quotient of the space of
solutions of (1.8) by this action. However, because this action has non-trivial stabilizers
and the ensuing singularities of the quotient, it is better to work equivariantly with the
moduli space of solutions of the equations (1.8).

In Part II we will develop a suitable formalism of equivariant integration on the
moduli space of gradient trajectories of the gauged Morse theory. We then apply this
formalism to the case when X = A, the space of connections on a three-manifold M3

and f is the Chern-Simons functional (note that this formalism is also used in gauged
sigma models in two dimensions). In this case the corresponding equivariant integrals
give us the correlation functions of evaluation observables of the Yang-Mills theory in
our weak coupling limit τ → −i∞. In the case of the BPS observables these correlation
functions are the Donaldson invariants [38]. They comprise the topological (or BPS)
sector of the theory. We will obtain more general (off-shell) correlation functions by
considering more general, i.e., non-BPS, evaluation observables. We will present some
sample computations of these off-shell correlation functions which exhibit the same
effects as in one- and two-dimensional models considered above. In particular, we will
observe the appearance of the logarithm (and more generally, polylogarithm) function
in the correlation functions. This indicates that, just like the two-dimensional sigma
models, the four-dimensional supersymmetric Yang-Mills theory in the τ → ∞ limit is
a logarithmic conformal field theory.

1.6. Plan of the paper. The paper is organized as follows. In Section 2 we give
a pedagogical description of the Lagrangian formalism of our quantum mechanical
models. We then discuss the path integral in the limit when the metric of the manifold
and the Morse function are both multiplied by the same constant λ which tends to
infinity (this corresponds to the limit τ → ∞ with τ = 0). We show that in this
limit the path integral localizes on the moduli spaces of gradient trajectories of the
Morse function (the instantons of the quantum mechanical models). We introduce the
observables of the theory and discuss the analogy between their correlation functions
and the Gromov-Witten theory.

In Section 3 we start developing the Hamiltonian formalism for our models. We are
interested, in particular, with the structure of the space of states of the model in the
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limit λ → ∞. This limit is highly singular and the description of the spaces of states
requires special care. We discuss in detail the examples of the flat space C and of the
simplest “curved” manifold CP1. We show that the space of states decomposes into
the spaces of “in” and “out” states, each having a simple and geometrically meaningful
description in terms of the stratifications of our manifold by the ascending and descend-
ing manifolds of our Morse function. Furthermore, we show that the spaces of states
exhibit holomorphic factorization that is absent for finite values of λ. This leads to a
great simplification of the correlation functions in the limit λ→ ∞.

Next, in Section 4 we give a more precise description of the spaces of states. We show
that states are naturally interpreted as distributions (or currents) on our manifold X.
Because some of these distributions require regularization (reminiscent of the Epstein-
Glaser regularization [12] in quantum field theory), the action of the Hamiltonian on
them becomes non-diagonalizable. We explain this in detail in the case of the CP1

model. For a general Kähler manifold we compute the action of the Hamiltonian on
the spaces of “in” and “out” states, as well as the action of the supercharges, in terms
of the so-called Grothendieck-Cousin operators associated to the stratification of our
manifold by the ascending and descending manifolds. We also compute the cohomology
of the supercharges using the Grothendieck-Cousin (GC) complex.

In Section 5 we will realize the observables of the model as linear operators acting
on the spaces of states. We will then be able to obtain the correlation functions as
matrix elements of these operators and to test our predictions by comparing these
matrix elements with the integrals over the moduli spaces of gradient trajectories which
were obtained in the path integral approach of Section 2. We will see that analytic
properties of the observables play an important role in the limit λ → ∞. We will
also see that factorization of the correlation functions over intermediate states leads to
some non-trivial identities on analytic differential forms. In particular, the appearance
of logarithm in the correlation functions will be seen as the manifestation of the non-
diagonal nature of the Hamiltonian and as the ultimate validation of our description
of the space of states.

Finally, in Section 6 we discuss possible generalizations of our results. We consider
the question of how to relate the spaces of states of our models for finite and infinite
values of λ, first in the case when X = C and then for X = CP1. We then discuss the
computation of correlation functions in λ−1 perturbation theory. Next, we consider non-
supersymmetric analogues of our models. We discuss, in particular, the computation
of the cohomology of the anti-chiral supercharge ∂ in the “half-supersymmetric” mod-
els, which are one-dimensional analogues of the (0, 2) supersymmetric two-dimensional
sigma models. We make contact with the GC complexes of arbitrary (holomorphic)
vector bundles on Kähler manifolds and the results of [37, 44] on holomorphic Morse
theory. We also discuss briefly the generalization in which a Morse functions is replaced
by a Morse-Bott function having non-isolated critical points.
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2. Supersymmetric quantum mechanics

In this section we begin our investigation of the quantum mechanical models in the
limit τ → ∞. The natural context for these models is the physical realization of Morse
theory due to E. Witten [36], which we recall briefly at the beginning of the section.
We describe the Lagrangians of these models and the corresponding path integral. We
then discuss the path integral in the limit when the metric of the manifold and the
Morse function are both multiplied by the same constant λ which tends to infinity
(which corresponds to the limit τ → ∞ with τ = 0, discussed in the Introduction).
We show that in this limit the path integral localizes on the moduli spaces of gradient
trajectories of the Morse function. We introduce the observables of the theory and
discuss the analogy between their correlation functions and the Gromov-Witten theory.

2.1. Recollections on Morse theory. Morse theory associates to a compact smooth
Riemannian manifold X and a Morse function f (i.e., a function with isolated non-
degenerate critical points) a complex C•, whose cohomology coincides with the de
Rham cohomology H•(X). The ith term Ci of the complex is generated by the critical
points of f of index i (the index of a critical point is the number of negative squares
in the Hessian quadratic form at the critical point). The differential d : Ci → Ci+1 is
obtained by summing over the gradient trajectories connecting critical points.

E. Witten [36] has given the following interpretation of Morse theory. Consider the
supersymmetric quantum mechanics on a Riemannian manifold X (in other words,
quantum mechanics on ΠTX). The space of states is the Hilbert space Ω•(X), the
space of complex-valued L2 differential forms on X with the hermitean inner product

(2.1) 〈α|β〉 =

∫

X
(⋆α) ∧ β

where (. . .) denotes the complex conjugation, and ⋆ is the Hodge star operator.
The supersymmetry algebra is generated by the operators:

Q = dλ = e−λfdeλf = d+ λ df∧(2.2)

Q∗ = (dλ)∗ =
1

λ
eλfd∗e−λf =

1

λ
d∗ + ι∇f .(2.3)
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Here the operator d∗ is defined as the adjoint of d with respect to a fixed metric g on
X. But Q∗ is the adjoint of Q = dλ with respect to the metric λg, which explains the
overall factor λ−1.

Their anti-commutator H = 1
2{Q,Q∗} is the Hamiltonian4:

(2.4) H = Hλ =
1

2

(
−λ−1∆ + λ‖df‖2 +Kf

)

where Kf = (L∇f + L∗
∇f ). Recall that for a vector field ξ we denote by Lξ the Lie

derivative acting on differential forms.
The supersymmetry generators Q, Q∗ are nilpotent, Q2 = 0, (Q∗)2 = 0. For compact

X, the cohomology of the operator Q coincides with the cohomology of the operator
d, since they are related by the similarity transformation. Standard Hodge theory
argument shows that the span of the ground states of H (i.e., those annihilated by H)
is isomorphic to the cohomology of Q, and hence to H•(X).

Indeed, among the Q-closed differential forms α representing a given cohomology
class we choose a representative αhar which minimizes the norm ‖α‖2 with respect to
the inner product (2.1). This representative αhar is annihilated by Q∗, in addition to
Q. As a consequence, αhar is annihilated by H. Conversely, if α is annihilated by H,
then

(2.5) 0 = 〈α|H|α〉 = ‖Qα‖2 + ‖Q∗α‖2,

hence Qα = 0, Q∗α = 0.
The first step in Witten’s approach to Morse theory [36] is constructing the ap-

proximate ground states of H in the limit λ → ∞. According to the semi-classical
analysis, they are given by the differential forms localized near the critical points x,
such that dfx = 0. Near such a point the Hamiltonian (2.4) may be approximated by
that of supersymmetric harmonic oscillator. We will discuss this in more detail below.
Now we just mention that for each critical point of index i one finds a ground state of
the Hamiltonian, which is a differential form ωi of degree i approximately equal to a
Gaussian distribution around this critical point. The simplest of these are the 0-form
Cλe

−λf localized at the absolute minimum of f and the top form C ′
λe

λfdµ, localized
at the absolute maximum of f (here dµ is the volume form induced by the metric and
Cλ, C

′
λ are the constants making the norms of these forms equal to 1).

The eigenvalues of H on these approximate ground states ωi tend to zero very fast as
λ → ∞. Therefore for large λ their span “splits off” as a subcomplex of the de Rham
complex, equipped with the twisted differential Q = dλ. Since cohomology classes may
be represented by ground states, as we have seen above, we obtain that the cohomology
of this subcomplex is equal to the cohomology of the entire de Rham complex. This
homology is in turn isomorphic the cohomology of X. By construction, the dimension
of the ith group of this subcomplex is equal to the number of critical points of f of index
i, and using this fact we obtain estimates on the ranks of the cohomology groups of X,
i.e., the Betti numbers of X. This way Witten proved in [36] the Morse inequalities
relating the Betti numbers of X to the numbers of critical points of f of various indices
(see also [20, 21]).

4In our conventions the Laplacian ∆ = −{d, d∗} is negative definite
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Perturbatively, each ωi is annihilated by the supersymmetry charge Q. The next
step in Witten’s construction is the computation of the instanton corrections to Q on
ωi’s due to the tunneling transitions. Witten argued that this way one obtains the
Morse complex of f . (This is indeed the case if a certain “Morse-Smale transversality
condition” is satisfied.) Thus, one obtains an interpretation of Morse theory in terms
of supersymmetric quantum mechanics.

2.2. Important special case. A special case of this construction occurs when X is a
compact Kähler manifold, and the Morse function f is the hamiltonian corresponding
to a U(1)-action on X. Its complexification gives us a C×-action on X. In this case,
the gradient vector field v = ∇f may be split as the sum of a holomorphic vector field
ξ and its complex conjugate ξ. On the other hand, the vector field i(ξ − ξ) generates
the U(1) action.

In the main body of this paper we will focus exclusively on this case, because it is
the one-dimensional analogue of the two-dimensional supersymmetric sigma models and
the super-Yang-Mills theory that we are interested in. Some important simplifications
occur in this case. For example, all ground states in the limit λ = ∞ may be deformed
to ground states for finite λ. In other words, there are no instanton corrections to
the action of the supercharge Q (see Section 2.5 for more details). These are also the
models exhibiting holomorphic factorization in the limit λ = ∞, as we will see below.

2.3. Path integral and gradient trajectories. Let us discuss the Lagrangian ver-
sion of the theory. The space of states of our theory is the space of functions on the
supermanifold ΠTX. Introduce the corresponding coordinates xµ, ψµ and the momenta
pµ, πµ. The configuration space is the space of maps I → X, where I = Iti,tf is the
“worldline”, which could be a finite interval [ti, tf ], or half-line (−∞, tf ), [ti,+∞) or
the entire line (−∞,+∞). The standard action is given by the formula [36]

(2.6) S =

∫

I

(
1

2
λgµν

dxµ

dt

dxν

dt
+

1

2
λgµν ∂f

∂xµ

∂f

∂xν
+

iπµDtψ
µ − igµν D2f

DxνDxα
πµψ

α +
1

2
λ−1Rµν

αβπµπνψ
αψβ

)
dt.

Here D/Dxµ is the covariant derivative on X corresponding to the Levi-Civita connec-
tion, and Dt is its pull-back to I under the map x : I → X. It is easy to the see that the
hamiltonian corresponding to this action is the quasi-classical limit of the hamiltonian
(2.4).

The correlation functions of the theory are given by path integrals:

(2.7) 〈xf |e(tn−tf )HOne
(tn−1−tn)H . . . e(t1−t2)HO1e

(ti−t1)H |xi〉 =
∫

I→X;x(ti)=xi,x(tf )=xf

O1(t1) . . .On(tn)e−S .

Here O1, . . . ,On are observables which we will discuss in detail below. More precisely,
the right hand side gives the integral kernel for this correlation function with respect
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to xi and xf ∈ X. In other words, if Ψ,Ψ∗ are states in the Hilbert space of the theory
(which is the space of L2 differential forms on X), then

(2.8) 〈Ψ∗|e(tn−tf )HOne
(tn−1−tn)H . . . e(t1−t2)HO1e

(ti−t1)H |Ψ〉 =
∫

X2

Ψ∗(xf )Ψ(xi)

∫

I→X;x(ti)=xi,x(tf )=xf

O1(t1) . . .On(tn)e−S .

We will now discuss in detail how to pass to the limit λ → ∞ in such a way that
we keep the instanton contributions, but get rid of the anti-instantons. The procedure
will be similar in two and four dimensions.

We start with the trivial, but crucial observation (sometimes called the “Bogomolny
trick”) that the bosonic part of the action may be rewritten as follows:

(2.9)

∫

I

(
1

2
λ |ẋ∓∇f |2 ± λ

df

dt

)
dt,

where

(∇f)µ = gµν ∂f

∂xν
.

It is clear from this formula that the absolute minima of the action, with fixed boundary
conditions x(ti) = xi, x(tf ) = xf , will be achieved on the gradient trajectories of f
(appearing below with the + sign) or the gradient trajectories of −f (with the − sign):
ẋ = ±∇f , or equivalently,

dxµ

dt
= ±gµν ∂f

∂xν

(provided that gradient trajectories connecting xi and xf exist). These are the instan-
tons and anti-instantons of our model, respectively. The former realize maps for which
f(x(tf )) > f(x(ti)) and the latter realize maps for which f(x(tf )) < f(x(ti)). Both

contribute to the path integral with the same weight factor e−λ|f((x(tf ))−f(x(ti))|. As
λ → ∞ this factor goes to 0 exponentially fast, and this is the reason why instanton
and anti-instanton contributions are negligible compared to the contributions of small
fluctuations around the constant maps.

Now we wish to modify our Lagrangian in such a way that we retain the instantons
and make anti-instantons disappear altogether in the λ → ∞ limit. This is achieved
by adding the term

(2.10) −
∫

I
λdf = −

∫

I
λ
df

dt
dt = λ(f(xi) − f(xf ))

to the action (2.6). The resulting action reads

(2.11)

∫

I

(
λ |ẋ−∇f |2 + fermions

)
dt.

The effect is that now the instantons, i.e., the gradient trajectories ẋ = ∇f , become the
absolute minima of the action. The action on them is equal to 0, so all of them make
contributions to the path integral of the finite order (independent of λ). In contrast,
the action on anti-instantons is now 2λ|f(xf ) − f(xi)|. They do not correspond to
the absolute minima of the action any more. Accordingly, their contribution to the
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path integral is even more suppressed than before: now they occur in the path integral
with the weight factor e−2λ|f(xf )−f(xi)|. Therefore in the limit λ → ∞ instantons will
make finite contributions to the path integral (on par with the fluctuations around the
constant maps), but anti-instantons will not contribute to the path integral at all.5

No matter how large λ is though, both instantons and anti-instantons make contri-
butions to general correlation functions.6 Therefore if we want to eliminate completely
the anti-instanton contributions from the correlation functions, we really have to take
the limit λ→ ∞.

In order to achieve that, we first rewrite the action in terms of a first order Lagrangian
as follows:

(2.12) Sλ =

∫

I

(
−ipµ

(
dxµ

dt
+ gµν ∂f

∂xν

)
+

1

2
λ−1gµνpµpν

+iπµ

(
Dtψ

µ − gµν D2f

DxνDxα
ψα

)
+

1

2
λ−1Rµν

αβπµπνψ
αψβ

)
dt.

For finite values of λ, by eliminating the momenta variables using the equations of
motion, we obtain precisely the action (2.11). Therefore the two actions are equivalent
for finite values of λ. But now we can take the limit λ → ∞ in the new action. The
resulting action is

(2.13) S∞ = −i
∫

I

(
pµ

(
dxµ

dt
+ gµν ∂f

∂xν

)
− πµ

(
Dtψ

µ − gµν D2f

DxνDxα
ψα

))
dt.

Now the equations

(2.14)
dxµ

dt
= gµν ∂f

∂xν

are the equation of motion. Thus, the instantons (gradient trajectories of f), which
in the original theory corresponded to absolute minima of the action, but were not
the equations of motion, have now become ones. At the same time anti-instantons
(gradient trajectories of −f) have disappeared.

We note that in the sum of the terms

−
∫

I
gµν

(
pµ

∂f

∂xν
− πµg

µν D2f

DxνDxα
ψα

)
dt

in the above action we can replace dt by an arbitrary connection At on a principal
R-bundle on I. This observation will be very useful in the context of two-dimensional
sigma models.

We now describe how the coordinate invariance is realized in the above action. The
bosonic variables xµ and pµ transform as functions and one-forms on X, respectively.
The fermionic variables πµ, ψµ transform as sections of the cotangent and tangent

5note that by adding to the Lagrangian the term λdf instead, we would retain the anti-instantons
and get rid of the instantons

6with the exception of some λ-independent correlation functions of the topological sector of the
theory discussed below
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bundles to X, respectively. Note that we have

Dtψ
λ =

dψλ

dt
+ Γλ

µν

dxµ

dt
ψν ,

where Γ is the Levi-Civita connection on the tangent bundle TX. Therefore if we
redefine pµ as follows:

(2.15) p′µ = pµ + Γλ
µνψ

νπλ,

we absorb the connection operators into p′µ and obtain the following formula for the

action:7

(2.16) S∞ = −i
∫

I

(
p′µ

(
dxµ

dt
− gµν ∂f

∂xν

)
− πµ

(
dψµ

dt
− ∂

∂xα

(
gµν ∂f

∂xν

)
ψα

))
dt.

However, the new momenta p′µ no longer transform as one-forms.
Indeed, we have under the coordinate transformation xµ 7→ x̃ν :

ψµ 7→ ψ̃µ = ψν ∂x̃
ν

∂xµ , πµ 7→ π̃µ = πν
∂xν

∂x̃µ .

This transformation law forces p′µ to transform inhomogeneously:

(2.17) p′µ 7→ p̃′µ = p′ν
∂xν

∂x̃µ
+

∂2xα

∂x̃µ∂x̃ν

∂x̃ν

∂xβ
παψ

β .

The action (2.16) is invariant under the supersymmetry generated by the super-
charges Q and Q∗ defined by the formulas

Qxµ = ψµ, Qψµ = 0

Qπµ = p′µ, Qp′µ = 0,

Q∗xµ = 0, Q∗ψµ = gµν ∂f

∂xν
,

Q∗πµ = 0, Q∗p′µ = 0.

They correspond to the de Rham differential and the contraction operator ı∇f , respec-
tively.

In particular, we find that the Lagrangian is Q-exact:

L = −iQ · πµ

(
dxµ

dt
− gµν ∂f

∂xν

)
.

Recall that the deformation from λ = ∞ back to finite λ is achieved by adding the
terms

1

2
λ−1gµνpµpν +

1

2
λ−1Rµν

αβπµπνψ
αψβ

to Lagrangian (2.13). It is important to note that, just like the Lagrangian (2.13), this
expression is Q-exact and equal to

(2.18) Q · 1

2
λ−1gµνπµp

′
ν .

7more generally, we could use another connection in formula (2.15)
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2.4. Correlation functions as integrals over moduli spaces of instantons. We
now discuss the correlation functions in our model in the Lagrangian, i.e., path integral
formalism. It turns out that these correlation functions may be represented by integrals
over finite-dimensional moduli spaces of gradient trajectories.

The first question to ask is what are the observables of our theory. Typically, ob-
servables in quantum mechanics on a manifold Y are obtained by quantizing functions
on T ∗Y , which in our case is T ∗ (ΠTX). The simplest are the observables correspond-
ing to the functions on ΠTX, which are the same as differential forms on X. These
are quantized in a straightforward way in the coordinate polarization. In the original
quantum mechanical model, for finite λ, the operator, corresponding to a differential
n-form ω on X (which is the same thing as a function on ΠTX, which is a degree
n polynomial in the fermionic variables), is the operator of multiplication by ω. The
correlation functions of these observables are easiest to compute in the λ → ∞ limit
by using the path integral.

To see that, consider the following finite-dimensional model situation: a vector space
RM and functions fa, a = 1, . . . , N , defining a codimension N submanifold C ⊂ RM .
Then the delta-like differential form supported on this subvariety has the following
integral representation:

δC =

∫ ∏

a

dpadπae
ipafa+iπadfa .

This delta-form may be viewed as the limit, when λ→ ∞, of the regularized integral

δC,λ =

∫ ∏

a

dpadπae
ipafa+iπadfa−λ−1papa.

Comparing these formulas to (2.13) and (2.12), we see that the path integral
∫
DpDπe−S∞

looks like the delta-like form supported on the gradient trajectories, solutions of the
equations (2.14), while

∫
DpDπe−Sλ may be viewed as its regularized version. More

precisely, the integral
∫
DpDπe−Sλ should be viewed as the Mathai-Quillen represen-

tative of the Euler class of an appropriate vector bundle over the space of gradient
trajectories (see [3, 9, 26]).

In a similar way one shows that in the limit λ → ∞ the correlation functions in
our theory will be equal to integrals of differential forms over the moduli spaces of
gradient trajectories. Note that the integral over fluctuations around the instanton
solutions contributes only the one-loop determinants, which cancel each other out for
bosonic and fermionic degrees of freedom, up to a sign. Moreover, this sign disappears
in the case that we are most interested in: when X is a Kähler manifold and the Morse
function f satisfies the conditions listed in Section 3.6 below.

In particular, the kernel of the evolution operator in our theory is just the delta-form
supported on the submanifold of those pairs (xi, xf ) ∈ X ×X which are connected by
the gradient trajectories x(t) : Iti,tf →M such that x(ti) = xi and x(tf ) = xf .

From now on we will focus on the case of the infinite line I = R.



24 E. FRENKEL, A. LOSEV, AND N. NEKRASOV

The gradient trajectories R → X necessarily start and end at the critical points of f
(recall that we have assumed that they are isolated). The corresponding moduli space
is therefore a a union of connected components labeled by pairs of critical points of f ,
x− and x+, which play the role of the boundary conditions in the path integral. Let
Mx−,x+ be the moduli space of the gradient trajectories, that is solutions x(t) to (2.14),
which obey:

(2.19) x(t) −→ x±, t→ ±∞.

We have evaluation maps

(2.20) ev : Mx−,x+ × R −→ X, evt : Mx−,x+ −→ X

ev(m, t) = xm(t), evt(m) = xm(t)

The simplest observables of our theory correspond to differential forms on X. They
are called the evaluation observables. The correlation function of the evaluation ob-
servables ω̂i corresponding to differential forms ωi, i = 1, . . . , n, on X, in the sector
corresponding to the boundary conditions x± is given by the integral

(2.21) 〈x− ω̂1(t1) ω̂2(t2) . . . ωk(tk)〉x+ =

∫

Mx−,x+

ev∗t1 ω1 ∧ ev∗t2 ω2 ∧ . . . ∧ ev∗tk ωk

If the forms ωi have definite cohomological degrees, then, according to formula (2.21),
the above integral is non-vanishing only if the following selection rule8 is obeyed:

(2.22)

n∑

i=1

deg ωi = dimMx−,x+ = nx+ − nx−

where nx is the index of the critical point x.
Let us note that the correlation function (2.21) is invariant with respect to the time

shift t 7→ t + const. This invariance is verified by the expression (2.21) due to the
fact that the time shifts act on Mx−,x+. Indeed, if xm(t) is the gradient trajectory
corresponding to a point m ∈ Mx−,x+, then so is

xms(t) = xm(t+ s).

Thus, we obtain an action of the transformations gs : m 7→ ms, s ∈ R, on Mx−,x+.
Since the integral (2.21) is not changed by the changes of the integration variables,

the simultaneous time shift ti 7→ ti+s, which can be absorbed into the change of moduli
m 7→ ms, does not affect the correlation function.

Note that if we wish to distinguish contributions of different types of instantons,
running between different critical points, we may also add a finite term

(2.23) ∆Sτ = −iτ
∫ +∞

−∞
df

to the action (2.16). Then the above correlation function will get multiplied by the

factor eiτ(f(x+)−f(x−)).

8fermionic charge conservation
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A natural way to obtain the term (2.23) is as follows: introduce an additional pa-
rameter ϑ, the “ϑ angle”. Let us set

τ = ϑ+ iλ, τ = ϑ− iλ.

Let us add to the second order action (2.6), instead of (2.10), the term

−iϑ
∫

I
df = −λ

∫

I
df − iτ

∫

I
df.

Consider the limit when λ → +∞, ϑ → −i∞ so that τ = i(λ − |ϑ|) remains finite,
but τ → −i∞. In this limit we recover the first order Lagrangian (2.16) that we have
previously obtained in the λ→ ∞ limit, but with the term (2.23) added.

The additional coupling constant ϑ is the precursor of the B-field in two-dimensional
sigma models and the ϑ angle in four-dimensional Yang-Mills theory (this will be dis-
cussed in detail in Part II). The interpretation viewing the λ → ∞ limit as the limit
τ → ∞ has a direct generalization to quantum field theories in two and four dimen-
sions, which we consider in Part II. However, in the context of quantum mechanics,
this does not add much extra value. Indeed, since the instanton moduli space has
finitely many components (labeled by pairs of critical points x−, x+), separating the

contributions of different components with the weight factor eiτ(f(x−)−f(x+)) does not
make much of a difference (unlike the two-dimensional and four-dimensional models,
where the instanton moduli spaces have infinitely many components).

2.5. Topological sector. Let us suppose now that our forms ωi are closed, dωi = 0.
Since the supersymmetry charge Q of our model at λ = ∞ corresponds to the de
Rham differential, this means that the corresponding observables ω̂i are Q-closed. The
correlation functions (2.21) simplify considerably in this case.

This simplification is particularly drastic in the case when X is a Kähler manifold,
and so we will focus on this case from now on. There are two reasons for that. The first
reason is that in the calculations below we would like to use the fact that the integral
of an exact differential form over Mx−,x+ is equal to 0. But Mx−,x+ is not compact,
and so this statement is not true in general. Note that Mx−,x+ is the intersection of the
descending manifold Xx+ of x+ and the ascending manifold Xx− of x−. Recall that
Xx+ consists of the possible values at t = 0 of the gradient trajectories [0,+∞) → X
whose value at t = +∞ is the critical point x+. Likewise, Xx− consists of the possible
values at t = 0 of the gradient trajectories (−∞, 0] → X whose value at t = −∞ is x−.

Now suppose that X is a compact Kähler manifold and the Morse function f is the
hamiltonian of a vector field corresponding to a U(1)-action. Let us write this vector
field as i(ξ−ξ), where ξ is a holomorphic vector field on X. Then the gradient of f is the
vector field ξ+ξ. In this case the descending and ascending manifolds are isomorphic to
Cn. Let us assume in addition that that the manifolds Xx+ and Xx− form transversal

stratifications of X. Then Xx+ has a natural compactification X
x+ which is just the

closure of Xx+ inside X. Since the descending manifolds form a stratification of X, this

closure is the union of the descending manifolds Xx′
+ , where x′+ runs over a subset of

the critical points which are “above” x+. Likewise, Xx− has a compactification which
is the union of Xx′

−
with x′− running over the set of critical points that are “below” x−.
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But then the moduli space Mx−,x+ has a natural compactification obtained by ”gluing
in” the moduli spaces Mx′

−,x′
+
, where x′− and x′+ are critical points that lie “below”

x− and “above” x+, respectively.9 Hence the moduli space Mx−,x+ is also a complex
manifold and its complement in the compactification has real codimension 2. Therefore
the integral of an exact form over Mx−,x+ is equal to 0.

The second reason why an additional simplification occurs for Kähler manifolds is
that in this case all ground states of the quantum hamiltonian at the λ→ ∞ limit are
Q-closed, and hence they deform to true ground states for finite values of λ. Indeed,
the action of the supersymmetry charge Q on the ground states is given by the Morse
differential, as shown in [36]. Since the indices of the critical points are even if X is a
Kähler manifold, its action is equal to 0 in this case.

Let us now derive some properties of the Q-closed observables corresponding to closed
differential forms on a Kähler manifold X. First of all, they are independent of the
individual times ti, i = 1, . . . , n. Indeed, using the Cartan formula

(2.24) Lv = {d, ıv}
for the vector field v = ∇f , we find

d

dt
ev∗

t ωi = − ev∗
t Lvωi = −d (ev∗

t ιvωi) ,

hence the t-derivative of the integral (2.21) is equal to zero.
Another important property is that if all ωi’s are closed and at least one of them is

exact: ωj = dηj , then the corresponding correlation function vanishes. Indeed, we then
find that∫

Mx−,x+

ev∗t1 ω1∧ . . .∧ ev∗tk ωαk
=

∫

Mx−,x+

d
(
ev∗t1 ωα1 ∧ . . . ev∗tj ηj ∧ . . . ∧ ev∗

tk
ωk

)
= 0.

This is also clear from the point of view of the original path integral, because the
Lagrangian of our theory is Q-exact.

This has an important consequence: consider the theory at finite values of λ. As we
explained above, it can be viewed as a deformation of the theory at λ = ∞ obtained
by adding to the Lagrangian the expression (2.18). Since this expression is Q-exact,
the corresponding correlation function of Q-closed observables will be independent of
this deformation, and so the answer that we obtain in the theory at λ = ∞ will remain
valid at finite values of λ (at least in some neighborhood of λ−1 = 0).

Here it is important to note that the supersymmetry charge Q of the theory with
the action (2.11) is independent of λ and corresponds to the de Rham differential (in
particular, it is the same for finite λ as for λ = ∞). But the supersymmetry charge
of the “physical” theory with the action (2.6) differs from it by conjugation with e−λf .
However, this conjugation does not change the evaluation observables corresponding to
the differential forms, and therefore these observables are Q-closed in both theories.

Thus, we arrive at the following conclusion: there is a sector of the “physical” theory
which is independent of λ. It comprises the Q-closed observables, corresponding to
closed differential forms on X. The correlation functions of these observables (on the

9Note that the evaluation maps extend naturally to this compactification.
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infinite line and with the boundary conditions xi = x−, xf = x+) are given, for all values

of λ, by integrals over the finite-dimensional moduli spaces of instantons Mx−,x+.10 The
correlation functions of the Q-closed observables ω̂i do not depend on the closed forms
ωi themselves, but only on their cohomology classes. For this reason this sector of the
theory is called the “topological sector” and the corresponding theory is referred to as
“topological field theory”. Alternatively, the Q-closed observables are referred to as
the “BPS observables” and the topological sector is called the “BPS sector”.

2.6. Analogy with the Gromov-Witten theory. It is instructive to note the anal-
ogy between the topological sector of the Morse quantum mechanical model considered
above and the Gromov-Witten theory. This analogy will become more clear in Part
II of this article when we discuss the two-dimensional sigma models. This material is
discussed in more detail in [8].

Let X be a compact Kähler manifold and Σ a compact Riemann surface. The
analogues of the moduli spaces Mx−,x+ in Gromov-Witten theory are the moduli spaces
MΣ(X,β) of holomorphic maps Φ : Σ → X of a fixed degree β ∈ H2(X). For a point
p ∈ Σ we have evaluation maps evp : MΣ(X,β) → X. Now, given an n-tuple of points
p1, . . . , pn and a collection of differential forms ω1, . . . , ωn on X, we can consider the
integral

(2.25)

∫

MΣ(X,β)
ev∗

p1
(ω1) ∧ . . . ∧ ev∗

pn
(ωn).

We will assume for simplicity that (Σ, (pi)) does not admit any continuous automor-
phisms. This integral11 is analogous to the integrals (2.21). They are equal to correla-
tion functions of evaluation observables of the two-dimensional supersymmetric sigma
model with the target X in the infinite radius limit (we will consider this model in
more detail in Part II).

Let Mg,n(X,β) be the moduli space of data (Σ, (pi),Φ), where Σ is a genus g Riemann
surface. Then we have a projection πg,n : Mg,n(X,β) → Mg,n, and MΣ(X,β) is the fiber
of πg,n at (Σ, (pi)) ∈ Mg,n. We have natural evaluation maps evi : Mg,n(X,β) → X.
The general Gromov-Witten invariants are the integrals

(2.26)

∫

Mg,n(X,β)
ev∗

1(ω1) ∧ . . . ∧ ev∗
n(ωn).

These are the correlation functions of what is often referred to as the ”sigma model
coupled to gravity”, and the observables are the ”cohomological descendents” of the
evaluation observables.

Instead of integrating over Mg,n(X,β), we may take the push-forward

(2.27) πg,n∗(ev
∗
1(ω1) ∧ . . . ∧ ev∗n(ωn)),

10more precisely, because the Lagrangian (2.11) differs from the “physical” Lagrangian (2.6) (for
finite values of λ) by the term λdf , the correlation functions of the “physical” theory will be equal to

the correlation functions of the first order theory at λ = ∞ times e−λ(f(x+)−f(x
−

))

11the moduli space MΣ(X, β) is not compact, but for compact X this integral is well-defined for
smooth differential forms ωi on X under the above assumption on (Σ, (pi))



28 E. FRENKEL, A. LOSEV, AND N. NEKRASOV

which is a differential form on Mg,n. In particular, (2.25) occurs as a special case when
the degree of this differential form is equal to zero. Then its value at (Σ, (pi)) ∈ Mg,n

is given by (2.25). More general observables give rise to differential forms of positive
degree on Mg,n.

More precisely, we need to replace Mg,n(X,β) by the Kontsevich’s space of stable

maps Mg,n(X,β) and Mg,n by its Deligne-Mumford compactification Mg,n.
In the quantum mechanical model the analogues of the moduli spaces of holomorphic

maps are the moduli spaces Mx−,x+ of gradient trajectories, and the analogues of the
moduli spaces of stable maps are compactifications of Mx−,x+ discussed above. The
integrals (2.21) that we have considered so far are the analogues of the integrals (2.25).

The definition of the analogues of the more general integrals (2.26) is also straight-
forward. Let Mx−,x+,n be the moduli space of data (p1, . . . , pn, x), where p1, . . . , pn are
distinct points of the real line, considered as an affine line, i.e., without a fixed coordi-
nate, and x : R → X is a gradient trajectory. If we choose a coordinate t on R, then
we can replace (p1, . . . , pn) by the real numbers (t1, . . . , tn) and x by a parameterized
map x(t). Other coordinates are obtained by a shift t 7→ t + u. Therefore we may
equivalently consider the data (t1, . . . , tn, x(t)) modulo the diagonal action of the group
R of translations:

(t1, . . . , tn, x(t)) 7→ (t1 + u, . . . , tn + u, x(t+ u)).

Note that the group of translations plays here the same role that the group PGL2

of Möbius transformation of Σ = CP1 plays in the Gromov-Witten theory. We have a
natural map πn : Mx−,x+,n → Confn, where

Confn = (Rn\∆)/Rdiag ≃ Rn−1
>0 ,

is the configuration space of n points on the real line (here ∆ is the union of all
diagonals). It plays the role of Mg,n. There is also a natural relative compactification

Mx−,x+,n of Mx−,x+,n defined similarly to the moduli spaces of stable maps (see [8]).

We have the evaluation maps evi : Mx−,x+,n → X corresponding to evaluating the
map x : R → X at the point pi. Now it is clear that the analogues of the general
Gromov-Witten invariants (2.27) in Morse theory are obtained as the push-forwards

(2.28) πn∗(ev
∗
1(ω1) ∧ . . . ∧ ev∗n(ωn)).

These ”Morse theory invariants” are nothing but differential forms on the configuration
space Confn. The simplest examples are the zero-form components of these differential
forms whose values at fixed points p1, . . . , pn are just the integrals (2.21) introduced
above. These more general correlation functions may be interpreted as the correlation
functions of the ω̂i’s and their ”cohomological descendents”, which are constructed
following [40].

Note that the observable ω̂i is a 0-form on the ”worldline” R, i.e., a function. The

cohomological descendant of ω̂i is the 1-form ω̂
(1)
i on R defined by the formula

ω̂
(1)
i = ı̂vωidt,

where v is the gradient vector field ∇f . In particular, suppose that ωi is a closed
differential form on X. Since ω̂i is obtained from ωi by pulling back with respect to a
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gradient trajectory, we have dω̂i/dt = L̂vωi, where Lv is the Lie derivative with respect
to the gradient vector field v. Since the action of Q corresponds to the action of the de
Rham differential dX along X, we obtain, using the Cartan formula L∇f = {dX , ı∇f},
that

Q · ω̂(1)
i dt = dtω̂i,

where dt is the de Rham differential along the worldline. This is analogous to the
formula for the cohomological descent in the Gromov-Witten theory [40].

The general ”Morse theory invariants” (2.28) may be interpreted as correlation func-
tions of observables of this type alongside the ω̂i’s considered before.

More precisely, when we take the pull-back of a differential p-form ωi on X via
evi : Mx−,x+,n → X, we obtain an p-form on Mx−,x+,n, which decomposes locally into
the sum of two differential forms. One is a p-form along the fiber of the projection πn

and 0-form along the base: it corresponds to ω̂i, and the other is a (p− 1)-form along

the fiber and a 1-form along the base: this is ω̂
(1)
i . Thus, the correlation function of

m ”zero-observables” ω̂i and k ”one-observables” ω̂
(1)
j will pick up precisely the k-form

component of the general ”Morse theory invariant” on Confm+k defined by formula
(2.28).

From the physical perspective, defining these more general correlation functions cor-
responds to ”coupling our quantum mechanical model to gravity”. In the path integral
formalism it is described as follows. We write our action in the form

S =

∫
(−ip′ q̇ + iπψ̇ +Hdt),

where H is the classical hamiltonian whose quantization gives Lv, and Q∗ is its super-
partner whose quantization gives ıv. In order to enforce the invariance under the time
reparameterizations and at the same time preserve the Q-symmetry we add the einbein
field e and its superpartner χ = Q · e and consider the action

(2.29) Stop grav =

∫
(−ip′ q̇ + iπψ̇ + (eH − χQ∗)dt).

The path integrals corresponding to this action may be expressed in terms of the ”Morse
theory invariants” (2.28).

Note also that more generally we may consider arbitrary graphs instead of the real
line. We then need to assign to each edge of the graph a Morse function and impose the
condition that the sum of the functions corresponding to the edges coming out of each
vertex is zero. The corresponding integrals are related to the integrals considered by
Fukaya [18]. They may also be interpreted as the terms of the perturbative expansion
of a particular quantum field theory on X. For instance, if we only allow three-valent
graphs, this will be the perturbative expansion of the (generalized) Chern-Simons the-
ory on X around a particular background, and can be viewed as a topological open
string on T ∗X, as in [41, 34]. More precisely, if we allow N different Morse functions
f1, . . . , fN , then this will be the Chern-Simons theory with the Lagrangian

L = Tr(A ∧ dA+
2

3
A ∧A ∧A),
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where A is an N × N -valued differential form on X, and we make the perturbation
theory expansion around the one-form diag(df1, . . . , dfN ). This is however beyond the
scope of the present paper.

For more on the topological supersymmetric quantum mechanics, see [29, 28].

2.7. More general observables. As we discussed above, the observables in the BPS
sector correspond to closed differential forms on X. However, any differential form ω
on X gives rise to a legitimate observable in our theory, and the correlation functions
of such observables are still given by the same integrals over the moduli spaces Mx−,x+

(or Mx−,x+,n) as in the case of closed forms. The difference is, of course, that these
correlation functions are no longer independent of λ, so this answer is correct only at
λ = ∞.

Why should we bother considering non-BPS evaluation observables? We have already
partially answered this question in the Introduction. In particular, if we only consider
the BPS observables, we cannot gain any insights into the structure of the space of
states of our theory beyond the ground states. Indeed, their correlation functions only
depend on their Q-cohomology classes. One can modify any BPS observable by Q-exact
terms so as to make it commute with Q and Q∗. Such a representative transforms a
ground state into a ground state. But non-BPS observables transform ground states
into excited states, and, as we will see below, we can understand the structure of the
space of states by considering their correlation functions.

Besides, considering non-BPS observables allows us to bring into play some important
Q-exact observables, which are ”invisible” in the BPS sector.

A general local observable of the quantum mechanical model that we are considering
corresponds to the quantization of an arbitrary function O(x, p, ψ, π). Upon quantiza-
tion they become differential operators on Ω•(X):

O(x, p, ψ, π) 7→ Ô = O(x,−i ∂
∂x
, ψ,−i ∂

∂ψ
)

Examples are the differential forms themselves, which we have already considered above,
and the Lie derivatives Lv with respect to vector fields on X. If we write v = vµ∂/∂xµ,
then

Lv = i

(
vµp′µ +

∂vµ

∂xν
ψνπµ

)
.

These observables have a transparent path integral interpretation. Namely, inserting
this observable at the time t0 corresponds to infinitesimally deforming the gradient
trajectory at the time t0 along the vector field v. In particular, our hamiltonian is
included among these observables.

The observables Lv are Q-closed, but they are also Q-exact, as follows from the
Cartan formula Lv = {d, ıv} that we have already encountered above.

This means that if we insert the operator Lv into a correlation function of BPS
observables, then we will obtain zero. But the observables Lv, and other differential
operators, play a very important role in the full theory. Indeed, on a Kähler manifold we
often have a large Lie algebra of global holomorphic vector fields, and the corresponding
Lie derivatives will be chiral operators of our theory. The algebra of holomorphic
differential operators that they generate is the precursor of the chiral de Rham complex
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of [30]. If we wish to understand the role played by the chiral de Rham complex in
the two-dimensional sigma models, it is natural to consider its quantum mechanical
analogue: the algebra of holomorphic differential operators on X (more precisely, its
supersymmetric analogue: the algebra of holomorphic differential operators on ΠTX).
But in order to obtain non-trivial correlation functions involving these operators we
must consider non-BPS observables.

As we already indicated above, at λ = ∞ the correlation functions of non-BPS
evaluation observables are easy to obtain from the path integral point of view. Our
goal now is to give an interpretation of these correlation functions from the Hamiltonian
point of view. In other words, we wish to describe explicitly the space of states of the
theory at λ = ∞, represent the general observables as operators acting on this space
and represent their correlation functions as matrix elements of these operators. We will
take up this task in the next section.

3. Hamiltonian formalism

In the previous section we discussed the Lagrangian (or path integral) formulation of
the supersymmetric quantum mechanical model on a Kähler manifold X governed by
the first order action (2.13) in the limit λ = ∞. This formulation is convenient because
it gives a simple answer for the correlation functions of the observables corresponding
to differential forms on X: they are given by integrals over finite-dimensional moduli
spaces of gradient trajectories.

Now we would like to develop the Hamiltonian formalism for this model. This means
that we need to define the space of states of the model and realize our observables as
linear operators acting on this space of states. The correlation functions are then given
by matrix elements of these operators. Note that the Lagrangian description provides
us with an important testing device: these matrix elements should reproduce the finite-
dimensional integrals described above.

We will see in this section that the Hamiltonian structure of our model is rather
unusual: the quantum Hamiltonian is non-hermitean and even non-diagonalizable, and
the space of states decomposes into the spaces of “in” and “out” states. However, these
spaces have a simple and geometrically meaningful description in terms of the stratifi-
cations by the ascending and descending manifolds of our Morse function. Moreover,
the spaces of states exhibit holomorphic factorization that is absent for finite values
of λ. This leads to a great simplification of the correlation functions. In Section 5
we will establish the equivalence between the results obtained in the Hamiltonian and
the Lagrangian formalisms, discovering along the way some interesting identities on
integrals of analytic differential forms.

3.1. Supersymmetric quantum mechanics at λ = ∞. Our task is to describe the
Hamiltonian formalism of the theory with the first order action (2.13). Following the
most obvious route, we start with the classical hamiltonian found from this action:

Hclass = i

(
p′µg

µν ∂f

∂xν
+

∂

∂xα

(
gµν ∂f

∂xν

)
πµψ

α

)
.
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Its naive quantization is the operator

Hnaive = Lv,

which is the Lie derivative with respect to the gradient vector field v = ∇f .12

The corresponding supersymmetry charges are Q = d and Q∗ = 2ıv . They satisfy
the relation

Hnaive =
1

2
{Q,Q∗}

according to Cartan’s formula (2.24).
The standard Hodge theory, which is at work in the quantum mechanical model at

finite values of λ (see Section 2.1), deals with the operators like d and d∗, which depend
explicitly on the metric on the manifold X. Here we choose instead the operators d
and 2ιv, for some vector field v, which are metric independent. The problem with this
definition is that the Hamiltonian Lv is a first order differential operator, which naively
has an unbounded spectrum. Also, if we take the time evolution operator

e−tHnaive

for large t, it will tend to make the wave functions concentrated near the critical points
of the Morse function (where v = 0), thus posing some problems with completeness.
Besides, the choice of zero eigenstates of Hnaive seems quite ambiguous, for any differ-
ential form (or current) supported on a v-invariant submanifold in X naively leads to
such a state.

Finally, in the standard supersymmetric quantum mechanics the operators Q and Q∗

are adjoint to each other, and as the result, the Hamiltonian is self-adjoint. But this
property no longer holds in our case, and so we cannot expect that Lv is self-adjoint.

3.2. Way out: λ regularization. In order to make sense of all this, we recall how we
got the action (2.13) in the first place: we started with the second order action (2.6)
for finite values of λ, then we added the topological term

(3.1) −
∫

I
λdf = λ(f(xi) − f(xf )),

passed to the first order action (2.11), and finally took the limit λ→ ∞. This suggests
that in order to develop the correct Hamiltonian formalism of the theory we should
retrace these steps from the Hamiltonian point of view.

We recall from Section 2.1 that the hamiltonian of the theory with the action (2.6)
is given by formula

H =
1

2
{Q,Q∗},

where

Q = d+ λdf∧ , Q∗ =
1

λ
d∗ + ι∇f .

This hamiltonian is Witten’s Laplacian given by formula (2.4). The corresponding space
of states is just the space of L2 differential forms on X. This is a Hilbert (super)space
with respect to the hermitean inner product (2.1).

12the importance of considering such first order hamiltonians has been emphasized by G. ’t Hooft
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Here is is important to note that because we rescale by λ both the Morse function and
the metric on X (which leads to the overall factor λ−1 in the formula for Q∗), we obtain
Witten’s Laplacian multiplied by λ−1. This difference in normalization is important:
in the normalization of [36] the smallest non-zero eigenvalue of the Hamiltonian is of
the order of λ, and hence only the ground states survive in the limit λ → ∞ (recall
that we are under the assumption that X is Kähler, and so all ground states at λ = ∞
deform to true ground states at finite λ). In our normalization not only the ground
states, but also the states with the eigenvalues proportional to λ (in the normalization
of [36]), survive in this limit. These will be the excited states of our theory at λ = ∞,
as we will see below.

The next step is to add the term (3.1) to the action. What does this correspond to
from the Hamiltonian point of view? To see that, we recall the correspondence between
the correlation functions in the Lagrangian and Hamiltonian formalisms expressed in
formula (2.8). When we add the topological term (3.1) to the action, the right hand

side of this formula is multiplied by eλ(f(xf )−f(xi)). This means that the correlation
function in the new theory (with the term (3.1)) between the “in” state eλf(xi)Ψ(xi)

and the “out” state e−λf(xf )Ψ∗(xf ) is the same as the correlation function of the old
theory (without the term (3.1)) between the states Ψ(xi) and Ψ∗(xf ).

Thus, we obtain that from the Hamiltonian point of view the effect of the addition
of the term (3.1) to the action is the following:

• the “in” states get multiplied by eλf(x):

(3.2) Ψ 7→ Ψ̃ = eλfΨ;

• the “out” states get multiplied by e−λf(x):

(3.3) Ψ∗ 7→ Ψ̃∗ = e−λfΨ∗;

• the operators get conjugated:

O 7→ Õ = eλfOe−λf .

The last rule applies, in particular, to the operators Q, Q∗ and H. We find that the
new operators are13

Qλ = Q̃ = eλfQe−λf = d,(3.4)

Q∗
λ = Q̃∗ = eλfQ∗e−λf = 2ιv +

1

λ
d∗,(3.5)

H̃λ = eλfHe−λf =
1

2
{Qλ, Q

∗
λ} = Lv −

1

2λ
∆.(3.6)

Finally, we may take the limit λ → ∞ and we indeed recover the operators Q,Q∗

and Hnaive that we discussed above.

13Note the difference between this conjugation and the procedure by which we had defined the
operators Q and Q

∗ in formulas (2.2), (2.3): there we defined Q by conjugating d by e−λf , and then
defined Q∗ as the adjoint of Q, so that Q∗ was obtained by conjugating d∗ by eλf (and dividing by λ).
In particular, their anti-commutator {Q, Q∗} has a very different spectrum from {d, d∗}. Now we are
conjugating both Q and Q

∗ by eλf . The resulting operators are Q = d and Q∗ = 1
λ
e2λfd∗e−2λf . They

are not adjoint to each other any more. But the corresponding anti-commutator {Q, Q∗} has the same
spectrum as {Q, Q∗} for any finite value of λ.
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However, now we obtain a more clear picture of what is happening with the space of
states as we perform the above procedure. Namely, to obtain the “in” space of states
we need to choose a suitably normalized basis of eigenfunctions of the Hamiltonian H,
then multiply all of them by eλf and pass to the limit λ → ∞. Likewise, to obtain
the “out” space of states we need to multiply those basis eigenfunctions by e−λf and
then pass to the limit. The main question is of course what we mean by “taking the
limit”, in particular, in what ambient space the limiting elements “live”. As we will
argue in Section 4, the proper ambient space is not the space of functions on X (or,
more generally, differential forms), but the space of generalized functions, i.e., a suitable
space of linear functionals on the space of functions (or, more generally, currents, i.e.,
functionals on the space of differential forms). We will first explain how this works in
the flat space, namely, for X = C, and then discuss in detail the first example of a
“curved” space, namely, X = CP1.

Before proceeding with these examples, we wish to comment on the reason why the
spaces of “in” and “out” states turn out to be different in the limit λ → ∞. This is
easiest to explain from the Lagrangian point of view. The “in” and “out” states in a
general quantum mechanical model may be constructed by acting by local observables
on the vacuum and covacuum states, respectively. Namely, let Oi(ti), i = 1, . . . , n, be
observables with t1 < t2 < . . . < tn and (On(tn) . . .O1(t1)|0〉)(x) the corresponding
state, considered as a differential form on X. Then we have the following symbolic
representation of this state using the path integral:

(3.7) (On(tn) . . .O1(t1)|0〉)(x) =

∫

x(t):(−∞,0]→X;x(0)=x

O1(t1) . . .On(tn)e−S .

The boundary conditions at t = −∞ in the above integral are determined by the choice
of the ground state |0〉. Likewise, an “out” state of our model is constructed by the
formula

(3.8) (〈0|O′
1(s1) . . .O

′
m(sm))(x) =

∫

x(t):[0,+∞)→X;x(0)=x

O′
1(s1) . . .O

′
m(sm)e−S ,

where the boundary conditions at t = +∞ are determined by the choice of the covacuum
state 〈0|.

This construction allows us to define a natural pairing between the two spaces: if we
denote the state (3.7) by Ψ and the state (3.8) by Ψ∗, then by definition

(3.9) 〈Ψ∗,Ψ〉 =

∫

x(t):(−∞,+∞)→X

O1(t1) . . .On(tn)O′
1(s1) . . .O

′
m(sm)e−S ,

with appropriate boundary conditions understood.
In general, the spaces of “in” and “out” states are different. However, suppose that

the action of our theory is CPT invariant, that is invariant under the time reversal
t 7→ −t and complex conjugation (this corresponds to the Hamiltonian being a self-
adjoint operator). In this case we have a natural anti-linear map from the space of
“in” states to the space of “out” states: namely, by applying the time reversal and
complex conjugation we transform the integral (3.7) into an integral of the form (3.8),
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hence we transform an “in” state into an “out” state. This allows us to identify the two
spaces in the case when the action is invariant under the CPT symmetry. Combining
this identification and the pairing (3.9), we obtain a hermitean inner product on the
resulting (single) space of states.

However, our action is not invariant under the above CPT symmetry. The original
action (2.6) is CPT-invariant, but the topological term (3.1) that we have added to it
breaks this invariance.14 Therefore there is no natural identification between the spaces
of “in” and “out” states. For finite values of λ, the CPT invariance is only mildly
violated: when we apply the CPT transformation, we shift the action by 2λ

∫
df . This

means that there is still a map from the space of “in” states to the space of “out”
states, but it involves multiplication by e−2λf . More precisely, this map sends

Ψ 7→ e−2λf ⋆Ψ.

However, the operation of multiplication by e−2λf has no obvious limit λ → ∞, and
so at λ = ∞ the two spaces become non-isomorphic. This is reflected in the fact that
the action (2.13) is not CPT-invariant and the hamiltonian Hnaive is not self-adjoint.
Thus, we arrive at the following conclusion:

In the limit λ→ ∞ our model has two spaces of states: the space of ”in” states Hin,
and the space of ”out” states Hout. The transition amplitudes define a pairing:

Hout ⊗ Hin −→ C ,

but the two spaces are not canonically isomorphic.

3.3. The case of flat space C. Now we analyze the simplest example where we can
follow the fate of the states in the Hilbert space while taking the λ→ ∞ limit. This is
the case X = C,

f =
1

2
ω|z|2, g = dzdz,

where ω is a non-zero real number. Thus, gzz = 1
2 , g

zz = 2. The corresponding gradient
vector field is

(3.10) v = ∇f = ω(z∂z + z∂z).

The potential is

|df |2 = ω2|z|2,
and the Hamiltonian has the form

Hλ = − 2

λ
∂z∂z +

λ

2
ω2|z|2 +Kω,

where

Kω = ω(F + F − 1),

where F and F are the fermionic left and right charge operators. Thus, Kω is equal to
−ω on 0-forms, 0 on 1-forms, and ω on 2-forms. Hence our model is nothing but the
two-dimensional supersymmetric harmonic oscillator.

14Note that the invariance would have been preserved if λ were purely imaginary, but we need λ to
be real!
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We have the following orthonormal basis of eigenfunctions of Hλ: the 0-forms

(3.11) Ψn,n =
1√

π(λω)(n+n−1)n!n!
e

1
2
λ|ω|zz ∂n

z ∂
n
z (e−λ|ω|zz), n, n ≥ 0,

and the 1-forms and 2-forms obtained by multiplying Ψn,n with dz and dz. The corre-
sponding eigenvalues are

(3.12) En,n = |ω|(n+ n+ 1) +Kω.

Note that these eigenfunctions have an additional property that they are also eigen-
functions of the operators of U(1) rotation z 7→ zeiϕ.

Now we describe the space of eigenfunctions of the conjugated operator

(3.13) H̃λ = eλfHλe
−λf = ω(z∂z + z∂z) −

2

λ
∂z∂z + (Kω + ω)

and its adjoint. They will be basis elements of the “in” and “out” spaces of states.

The eigenfunctions of H̃λ are obtained by multiplying the functions Ψn,n (and the cor-

responding differential forms) with eλf = e
1
2
λωzz, and the eigenfunctions of its adjoint

are obtained by multiplying with e−λf = e−
1
2
λωzz.

At this point the sign of ω becomes crucial. Let us assume first that ω > 0. This
means that the point 0 is a “repulsive” critical point: the gradient trajectories flow
away from 0. In this case a basis of the “in” space is given by the functions

(3.14) Ψ̃in
n,n =

1

(λω)n+n
eλωzz ∂n

z ∂
n
z e

−λωzz , n, n ≥ 0,

and the differential forms obtained from them by multiplying with dz and dz. We recall
that the “out” state corresponding to an “in” state Ψ is e−2λf ⋆ Ψ. Therefore a basis
of the “out” space is given by the two-forms

(3.15) Ψ̃out
n,n =

λω

2π

1

n!n!
∂n

z ∂
n
z e

−λωzzdzdz, n, n ≥ 0,

and the differential forms obtained from them by contracting with the vector fields ∂z

and ∂z. The eigenvalues of H̃λ on these functions are given by the same formula (3.12)
(so they are independent of λ).

Here and below we use the notation

(3.16) dzdz = d2z = idz ∧ dz = 2dx ∧ dy, z = x+ iy.

The normalization in formulas (3.14) and (3.15) is chosen in such a way that these
expressions have well-defined limits as λ → ∞ (see below) and the pairing between

Ψ̃in
n,n and Ψ̃out

m,m is equal to δn,mδn,m. To obtain the “in” states satisfying this property,
we multiply the states Ψn,n by the function

An,n =
√
πn!n!(λω)−(n+n+1)/2e

1
2
λ|ω|zz,

and to obtain the “out” states we multiply Ψn,n by (An,n)−1. This suggests that the
transformation from the states of the theory at finite λ to the “in” states of the new
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theory, normalized as above, is achieved not merely by multiplying the states by eλf ,
but by applying the operator

Ψ 7→ Ψ̃in = λ−
1
2 eλf

(
λ−H/2|ω| · Ψ

)
.

Likewise, for “out” states we have

Ψ 7→ Ψ̃out = λ
1
2 e−λf

(
λH/2|ω| · Ψ

)
.

We now come to the key point of our analysis: finding the limits of the states (3.14)
and (3.15) as λ→ ∞. First, we find from formula (3.14) that in this limit we have

Ψ̃in
n,n → znzn,

so the wave functions become monomials! On the other have, we find that

Ψ̃out
n,n → 1

n!n!
∂n

z ∂
n
z δ

(2)(z, z)dzdz.

Thus, the “out” states become the derivatives of the delta-form supported at 0 ∈ C!
We conclude that the space of “in” states of our theory at λ = ∞ is the space of

polynomial differential forms on C:

(3.17) Hin = C[z, z] ⊗ Λ[dz, dz] ,

on which the Hamiltonian H = H̃∞ simply acts by dilatations:

e−tHΨ(z, z, dz, dz) = Ψ(qz, qz, qdz, qdz),

where q = e−ωt.

There is a unique ground state, Ψ̃in
vac = 1, and the spectrum of excited states is

degenerate, consisting of all positive integers.
The space of ”out” states is the space of ”delta-forms” supported at z = 0:

(3.18) Hout = Λ[dz, dz] ⊗ C[∂z, ∂z ] · δ(2)(z, z) ,
on which the evolution operator acts as:

e−tHΥ(dz, dz, ∂z, ∂z)δ
(2)(z, z) = q2Υ(q−1dz, q−1dz, q∂z , q∂z)δ

(2)(z, z).

We see that H acts on Hin as Lv, where v is the gradient vector field given by formula
(3.10), and on Hout as −Lv, yet the spectra of these two seemingly opposite operators
are identical. This is how the ”self-adjoint” nature of the Hamiltonian is realized in
the λ→ ∞ limit.

There is a natural pairing between the “in” and “out” spaces defined by the formula

〈Ψ̃out, Ψ̃in〉 =

∫
Ψ̃out ∧ Ψ̃in.

This pairing is well-defined because Ψ̃out is a distribution (more precisely, a current)

supported at 0 ∈ C and Ψ̃out is a differential form that is smooth in the neighborhood
of 0. This completes the analysis of the spaces of states in the case when ω > 0.

Now consider the case when ω < 0, which corresponds to an “attractive” critical
point 0 ∈ C. Then the roles of Hin and Hout are reversed. Thus, Hin is the space of
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delta-forms with support at 0 ∈ C and Hout is the space of polynomials functions on
C.

3.4. The kernel of the evolution operator in the limit λ→ ∞. It is instructive
to analyze how the kernel of the evolution operator at finite λ becomes the delta-form
supported on the gradient trajectories in the limit λ→ ∞.

Suppose we study supersymmetric quantum mechanics on an n-dimensional manifold
X, and the space of states is the space of L2 differential forms on X. Then the kernel
Kt of the evolution operator is an n-form on X ×X defined by the formula

〈Ψ∗|e−tH |Ψ〉 =

∫

X×X
Kt(x, y) ∧ Ψ(x) ∧ ⋆Ψ∗(y).

It is normalized so that K0 is the delta-form (of degree n) supported on the diagonal
in X ×X.

Suppose that we have a complete basis {Ψγ} of normalized eigenfunctions of the
Hamiltonian H, with the eigenvalues {Eγ}. Then we have the following formula for
Kt:

(3.19) Kt =
∑

γ

p∗i (Ψγ)p∗f (⋆Ψ∗(y))qEγ ,

where q = e−t and pi, pf are the projections X ×X → X on the first and the second
factors, respectively.

Let us compute the kernel of the evolution operator in the theory on X = C at finite
λ, before conjugation by eλf . We have the complete basis

Ψn,n,p,p = Ψn,n(dz)p(dz)p, n, n ≥ 0; p, p = 0, 1.

where Ψn,n is given by formula (3.11). Thus, the degree of this state considered as a
differential form on C is p+ p. These states are eigenstates of the hamiltonian Hλ with
the eigenvalues |ω|(n + n + p + p). In addition, they are eigenstates of the rotation
operator P , which is the Lie derivative with respect to the vector field |ω|(z∂z − z∂z).
The corresponding eigenvalues are |ω|(n − n+ p− p).

Instead of considering the kernel Kt of the evolution operator e−tH we will consider

the kernel Kt,t of the modified evolution operator e−
1
2
t(H+P )− 1

2
t(H−P ) (it reduces to Kt

if t = t). Denote q = e−|ω|t, q = e−|ω|t. Then we have an analogue of formula (3.19),
from which we find that

(3.20) Kt,t =
∑

n,n

Ψn,n,p,p(z, z) Ψn,n,p,p(w,w) qnqn d(qz − w) ∧ d(qz − w).

Denote this expression by Ut,td(qz−w)∧ d(qz−w). Using formula (3.11), we find that

Ut,t =
∑

n,n

1

n!n!π(λω)n+n−1
e

1
2
λ|ω|(zz+ww)

(
∂n

z ∂
n
z e

−λ|ω|zz
)
∂n

w∂
n
we

−λ|ω|ww

=
λω

π
e

1
2
λ|ω|(zz+ww)e

q
λ|ω|

∂z∂w+ q
λ|ω|

∂z∂w · e−λ|ω|(zz+ww).
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Substituting the formula

e−λ|ω|zz =

∫
dkdk

λ|ω|π e
− kk

λ|ω|
+i(kz+kz)

in the above expression, we obtain

Ut,t =
λ|ω|

π(1 − qq)
exp

(
1

2
λ|ω|(zz − ww) − λ|ω|

1 − qq
(z − qw)(z − qw)

)
.

Before we pass to the limit λ → ∞, we need to multiply Ut,t by eλ(f(z,z)−f(w,w)),

where f(z, z) = 1
2ωzz. Suppose that ω > 0 (for ω < 0 the calculation is similar). Then

we find that

Ut,t 7→ Ũt,t =
λ|ω|

π(1 − qq)
exp

(
− λ|ω|

1 − qq
(w − qz)(w − qz)

)
.

It is clear that when λ → ∞, this expression tends to the delta-function supported
on the shifted diagonal w = qz, w = qz:

δ(2)(w − qz, w − qz).

Therefore the kernel Kt,t of the (modified) evolution operator tends to

(3.21) Kt,t → δ(2)(w − qz, w − qz) d(qz − w) ∧ d(qz − w).

As expected, this is precisely the delta-form supported on the shifted diagonal w = qz,
which corresponds to the flow along the gradient trajectory z 7→ zq.

This completes our analysis of the spaces of states of the model defined on X = C.

3.5. The case of CP1: ground states. Now we consider the first non-trivial “curved”
manifold, namely, X = CP1. We will choose the Fubini-Study metric

(3.22) g =
dzdz

(1 + zz)2
,

and the Morse function

f =
1

4

zz − 1

zz + 1
.

The corresponding gradient vector field is the Euler vector field

v = z∂z + z∂z,

and so it has the form v = ξ+ ξ, where ξ = z∂z is the holomorphic vector field on CP1.
This vector field generates the standard C× action: z 7→ zq, q ∈ C×.

The hamiltonian (before conjugation by eλf ) is given by formula (2.4), which in this
case reads

(3.23) Hλ = − 2

λ
(1 + zz)2∂z∂z +

λ

2

zz

(1 + zz)2
− zz − 1

zz + 1
(F + F − 1).

Our Morse function has two critical points, z = 0 and z = ∞. Near z = 0 we have:

(3.24) f = −1

4
+

1

2
zz + . . . ,
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z = ∞

? ? ?? ?? ? ?

z = 0

Morse theory on CP1

while near z = ∞ we have

(3.25) f =
1

4
− 1

2
ww + . . . ,

where w = z−1 is a local coordinate near the point ∞.
Thus, z = 0 is a “repulsive” critical point, and z = ∞ is an “attractive” critical

point. This indicates that both scenarios discussed in the case of the flat space X = C

should somehow be realized in the CP1 model.
What is the structure of the spaces of states of our theory? We start with the “in”

space Hin. For finite values of λ the space of states is the space of L2 differential forms
on CP1. It is easy to find the ground states of Hλ. There are two of them, and they
are localized near the critical points. The one corresponding to z = 0 is the function

(3.26) 0Ψvac =

√
λ

π(eλ/2 − e−λ/2)
e−λf ,

and the one corresponding to z = ∞ is the two-form

(3.27) ∞Ψvac =

√
λ

π(eλ/2 − e−λ/2)
eλfωFS,

where

ωFS =
dzdz

(1 + zz)2

is the Fubini-Study Kähler form. To see that these are ground states, we check that
they are annihilated by both supersymmetry charges. In each case, we obtain that one
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of the supercharges obviously annihilates it by counting the degree of the differential
form, and it is a straightforward calculation to show that the other one does as well.
We have normalized these states in such a way that they have unit norm with respect
to our hermitean inner product (2.1).

Now we change the theory by adding the term (3.1) to the action. As explained in
Section 3.2, this amounts to multiplying the “in” states by the function eλf . In the
case of ground states, we obtain the following states of the new theory:

0Ψ̃
in
vac = 1,

∞Ψ̃in
vac =

λ

π(eλ/2 − e−λ/2)
e2λfωFS.

We have changed the normalization factors so as to ensure that the above expressions
have well-defined limits as λ→ ∞ (as distributions).

The limit of 0Ψ̃
in
vac is just the constant function 1. This is not surprising, because this

ground state corresponds to the point z = 0, which is a “repulsive” critical point. So by
analogy with the case of X = C we should expect that this ground state, appropriately

rescaled, becomes the constant function. On the other hand, ∞Ψ̃in
vac corresponds to the

“attractive” critical point z = ∞. Again, our analysis in the case of X = C suggests
that in this case we should expect the limit of this ground state to be the delta-form
supported at z = ∞ (or, equivalently, w = 0). This is exactly what happens: the above
formula, interpreted as a distribution on CP1, has a well-defined limit which is equal
to δ(2)(w,w)dwdw.

Likewise, we obtain the “out” ground states by multiplying the suitably normalized
ground states by e−λf . It is clear that mapping f 7→ −f we interchange the “in”
and “out” ground states. However, under this map the critical point z = 0 becomes
“attractive” while the critical point z = ∞ becomes “repulsive”. Therefore their roles
get interchanged, so that the “out” ground state corresponding to z = 0 is the delta-
form supported at 0, δ(2)(z, z)dzdz, while the “out” ground state corresponding to
z = ∞ is the function 1.

3.6. Ground states for other Kähler manifolds. The calculation of the previous
section has a natural generalization to other Kähler manifolds. Suppose that we have
a compact Kähler manifold X with a holomorphic vector field ξ, which comes from a
C×-action φ on X with isolated fixed points. Let us denote the fixed points of φ by
xα, α ∈ A. We will assume that the set A is non-empty. According to [15], there exists
a Morse function f whose gradient is the vector field v = ξ + ξ. The critical points of
f coincide with the fixed points of φ and the zeroes of ξ and v.15

Under these assumptions, we have the Bialynicki-Birula decompositions [5]

(3.28) X =
⊔

α∈A

Xα =
⊔

α∈A

Xα

15note also that f is the hamiltonian of the vector field i(ξ − ξ), corresponding to the subgroup
U(1) ⊂ C×, with respect to the Kähler structure on X
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of X into complex submanifolds Xα and Xα, defined as follows:

Xα = {x ∈ X| lim
t→−∞

φ(et) · x = xα},(3.29)

Xα = {x ∈ X| lim
t→+∞

φ(et) · x = xα}.(3.30)

The submanifolds Xα and Xα are the ascending and descending manifolds of our Morse
function f , respectively, introduced in Section 2.5. Each submanifold Xα is isomorphic
to Cnα , and Xα is isomorphic to Cn−nα , where the index of the critical point xα is
2(n − nα). In what follows we will assume, for simplicity, that the following Morse-
Smale condition holds: the strata Xα and Xβ intersect transversely for all α, β. Then,
according to [6], the two decompositions (3.28) of X are in fact stratifications, that is
the closure of each Xα is a union of Xβ’s (and similarly for Xα’s).

In the case when X = CP1 both stratifications consist of two “cells”: the ascending
manifolds are the one-dimensional cell C0 = CP1\∞ and the point ∞ ∈ CP1, and the
descending manifolds are the one-dimensional cell C∞ = CP1\0 and the point 0 ∈ CP1

(they satisfy the transversality condition). The above calculation shows that the ground
states of our theory may be viewed as the delta-forms supported on these cells. For
an open cell it is just the function 1, and for a one-point cell it is the delta two-form
supported at that point.

In general, for each stratum Xα or Xα of our decompositions we can construct a
similar delta-form, which we will denote by ∆α, or ∆α, respectively. For the sake
of definiteness, consider the case of ascending manifolds Xα. Then ∆α is the constant
function along Xα, extended as a delta-form (of degree equal to the codimension of Xα,
that is 2(n − nα)) in the transversal directions. More precisely, this is a distribution
(or current) on the space of differential forms on X which is defined by the following
formula:

(3.31) 〈∆α, η〉 =

∫

Xα

η|Xα , η ∈ Ω•(X)

(the integral converges because η is well-defined on X, which is assumed to be compact).
Under our assumptions, all critical points have even indices, and the semi-classical

analysis of [36] (see also [20, 21]) shows that ground states are also in one-to-one
correspondence with the critical points of the Morse function. As in the case of X =
CP1, it is easy to write down explicit formulas for the ground states corresponding to
the minimum and maximum of f , which are going to be a function and a top form,
respectively.16 For the other ground states one can write approximate semi-classical
formulas for large λ, which are essentially given by the Gaussian distributions around
the critical points of the form

(3.32) αΨvac ∼ exp

(
−λ

n∑

i=1

|µi||zi|2
)
d2znα+1 ∧ . . . ∧ d2zn,

16while these are legitimate states in the models under consideration, we note that in more general
models of quantum field theory (and even in quantum mechanics on a non-compact manifold) the
analogous wave functions do not belong to the physical spectrum, see [42]
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where the zi’s are normal holomorphic coordinates around xα with respect to which the
Hessian of f is the diagonal matrix with the eigenvalues µi, i = 1, . . . , n, each occurring
with multiplicity two (recall our convention (3.16) for the differentials). We order them
in such a way that the eigenvalues µi are positive for i = 1, . . . , nα and negative for
i = nα + 1, . . . , n.

On a general (real) manifold X, because of the instanton corrections, only some
linear combinations of these states give rise to true ground states for finite values of λ.
In particular, because of the instanton corrections the supercharge Q, acting on these
states, becomes the differential of the Morse complex [36].17 But in our case, since the
critical points have only even indices, each of the functions αΨvac corresponds to a true
ground state of the Hamiltonian Hλ for finite λ.

Now we perform the operation of multiplication by the function eλf . Near xα we
have

f ∼ f(xα) +

n∑

i=1

µi|zi|2 + . . .

Therefore after multiplication by eλf the ground states become (up to an overall factor)

(3.33) αΨin
vac 7→ αΨ̃in

vac ∼ exp

(
−2λ

n∑

i=nα+1

|µi||zi|2
)
d2znα+1 ∧ . . . ∧ d2zn.

In other words, the terms with positive eigenvalues µi get canceled, while the terms
with negative µi get doubled. The resulting form (after including an appropriate λ-
dependent normalization constant) tends to the delta-form ∆α.

For example, if X = CP1, then the “delta-form” on the open orbit C0 is just the
function 1, and the delta-form corresponding to ∞ is δ(2)(w,w)d2w.

Thus, we claim that the suitably normalized ground states become, after multiplica-
tion by eλf and taking the limit λ→ ∞, the delta-forms ∆α.

It is instructive to derive this result using the path integral approach. As already
noted above, we may construct states of the theory by using path integral over half-

line (−∞, 0], see formula (3.7). In particular, the vacuum state αΨ̃in
vac, viewed as a

differential form on X, may be represented symbolically by the path integral

αΨ̃in
vac(x) =

∫

x(t):(−∞,0]→X;x(0)=x

e−S ,

(where the action S includes the term (3.1)). The question is which boundary condition
to take at t = −∞. Recall that in the limit λ = ∞ that we are considering the path
integral localizes on the gradient trajectories. But the value of a gradient trajectory
x(t) : (−∞, 0] → X at t = −∞ is necessarily a critical point. It is clear therefore
that the boundary condition that we need to take in order to obtain the ground state

αΨ̃in
vac(x) in the limit λ = ∞ is x(−∞) = xα.

17note however that they become ground states at λ = ∞, even though they are not annihilated by
Q, reflecting the non-Hodge nature of the algebra of supercharges in this limit
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Thus, we find that αΨ̃in
vac(x) is given by the integral of e−S over the gradient tra-

jectories x(t) : (−∞, 0] → X connecting xα at t = −∞ and x at t = 0. But such
trajectories exist only if x belongs to the ascending manifold Xα, and if it does, then

there is exactly one such trajectory! So from this perspective it is clear that αΨ̃in
vac(x)

has to be supported on Xα. One needs to work a little harder and analyze the fermionic

contribution to the path integral to see that αΨ̃in
vac(x) is in fact the delta-form ∆α, but

since we have already obtained this result from the Hamiltonian perspective, we will
not do this here.

The same analysis applies to the “out” ground states. Here we need to consider the
path integral on the half-line from 0 to +∞, so the ground states are supported on
the submanifold of those x ∈ X which could be connected to the critical point xα by a
gradient trajectory x(t) : [0,+∞) → X such that x(0) = x and x(+∞) = xα. This is
precisely the descending manifold Xα. From the Hamiltonian point of view this is also
clear, because the “out” state corresponding to (3.32) is

αΨ̃out
vac = e−2λf ⋆ αΨ̃in

vac ∼ exp

(
−2λ

nα∑

i=1

|µi||zi|2
)
d2z1 ∧ . . . ∧ d2znα ,

which tends to the delta form ∆α supported on Xα.
To summarize, we have now determined the ground states of our quantum mechanical

model at λ = ∞, for any Kähler manifold equipped with a Morse function satisfying
the conditions listed above:

The “in” ground states are the delta-forms ∆α supported on the closures of the as-
cending manifolds Xα of the Morse function, and the “out” ground states are the delta-
forms ∆α supported on the closures of the descending manifolds Xα.

3.7. Back to CP1: excited states. What about the excited states of the theory? For
finite values of λ explicit formulas for those are unknown, but for large λ we can under-
stand the behavior of “low-lying” eigenfunctions of the hamiltonian Hλ qualitatively
using the standard semi-classical methods. Here “low-lying” means that the eigenvalue
remains a finite number as λ → ∞. In general, there will be other eigenfunctions as
well (for example, of order λ), but since we are interested in the limit λ→ ∞, we will
ignore them.

Let us consider the case of X = CP1 first. Semi-classical approximation tells us that
as far as the low-lying excited states are concerned, the situation is as follows: the
eigenfunctions are localized in the neighborhoods of the critical points, and the picture
around each critical point is qualitatively the same as in the case of the flat space
X = C discussed in the previous section. Thus, we have two sets of eigenfunctions,
corresponding to the points 0 and ∞, which will be indicated by a subscript. In both
cases we also have to take into account the degree of the state considered as a differential
form.

Consider first the states corresponding to the critical point z = 0 (we will mark them
with a left subscript 0). This is a “repulsive” critical point as can be seen from the
expansion (3.24) of f near z = 0. Therefore the structure of the low-lying eigenfunctions
localized near z = 0 will be the same as that of the eigenfunctions obtained in the case
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of X = C and a “repulsive” critical point. Let us start with the 0-forms. Recalling
the formulas obtained in Section 3.3, we find that those are labeled by two integers
n, n ≥ 0, and near zero are approximately equal to

0Ψn,n,0,0 = znzne−λf +O(λ−1), n, n ≥ 0.

The first of them, 0Ψ0,0,0,0 is in fact the ground state 0Ψvac given by formula (3.26).
However, we have now changed our normalization, so as to make the limits of these
functions, multiplied by eλf , well-defined. We also have excited states that are 1-forms
and 2-forms:

0Ψn,n,p,p = znzne−λf (dz)p(dz)p + . . . , n, n ≥ 0; p, p = 0, 1.

After we multiply these eigenfunctions by eλf , they become polynomial differential
forms on C0, which is the ascending manifold corresponding to the critical point z = 0.

Thus, we conclude that in the λ→ ∞ limit the space of “in” states contains a piece

Hin
C0

= C[z, z] ⊗ Λ[dz, dz],

as in the case of X = C and a “repulsive” critical point.
Next, we look at the excited states corresponding to the critical point z = ∞, or

w = 0, where w = z−1 (we will mark them with a left subscript ∞). This critical point
is “attractive”, according to formula (3.25). Following the example of X = C with an
“attractive” critical point, and recalling the expansion of f near ∞, we find that there
will be other eigenfunctions, which near w = 0 are equal to

∞Ψn,n,1,1 =
λ

π(eλ/2 − e−λ/2)
e−λf 1

n!n!
∂n

w∂
n
we

2λfdwdw +O(λ−1), n, n ≥ 0.

The first of them is the ground state (3.27). We have again changed our normalization
so as to obtain a well-defined limit as λ→ ∞.

Multiplying these forms by eλf and taking the limit λ→ ∞, we obtain the derivatives
of the delta-form

∞Ψ̃in
n,n,1,1 =

1

n!n!
∂n

w∂
n
wδ

(2)(w,w)dwdw, n, n ≥ 0.

In addition, there will be one-forms and zero-forms ∞Ψ̃in
n,n,p,p obtained by contracting

the above two-forms with the vector fields ∂w and ∂w. Thus, we obtain that this critical
point contributes the piece

Hin
∞ = C[∂w, ∂w]δ(2)(w,w) ⊗ Λ[dw, dw]

to the space of ”in” states of the theory at λ = ∞.
We conclude that the space of “in” states is isomorphic to the direct sum of two

subspaces attached naturally to the critical points:

Hin ≃ Hin
C0

⊕ Hin
∞.

Naively, the hamiltonian is Hnaive = Lv, which naturally acts on this direct sum. It has
as basis of eigenstates the obvious monomial basis of this space, and the eigenvalues
are non-negative integers.
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However, we will see below that Hin does not canonically decompose into a direct
sum, but is rather an extension

0 → Hin
∞ → Hin → Hin

C0
→ 0.

Moreover, as we will explain in Section 4, this space is realized as a canonical subspace
of the space of distributions on CP1. The hamiltonian is indeed Lv, but acting on
this space it is not diagonalizable. It is diagonalizable on the subspace Hin

∞, but has
generalized eigenvectors on Hin

C0
that are adjoint to eigenvectors in Hin

∞. We will give
below explicit formulas for the action of the hamiltonian.

The same analysis applies to the “out” states of our model. Now the roles of 0 and
∞ get interchanged, so the corresponding space of states is isomorphic to the direct
sum

Hout ≃ Hout
C∞

⊕ Hout
0 ,

where

Hout
0 = C[∂z, ∂z ]δ

(2)(z, z) ⊗ Λ[dz, dz],

Hout
C∞

= C[w,w] ⊗ Λ[dw, dw].

The naive hamiltonian is −Lv which is diagonalized on the monomial elements, with
the eigenvalues being non-negative integers.

But in fact we will see that Hout
0 is an extension

0 → Hout
0 → Hin → Hout

C∞
→ 0,

which is also realized in the space of distributions on CP1. The hamiltonian −Lv,
acting on this space, has off-diagonal terms that make it non-diagonalizable.

3.8. Generalization to other Kähler manifolds and holomorphic factoriza-

tion. The discussion of the previous section is generalized in a straightforward way
to the case of an arbitrary Kähler manifold satisfying the above conditions. Recall
that we have the stratifications of X by descending and ascending manifolds. For each
ascending manifold Xα we define the space Hin

α of all delta-forms supported on Xα. In
particular, it contains the ground state ∆α constructed in Section 3.6. Moreover, the
space Hin

α is generated from ∆α under the action of differential operators defined in the
neighborhood of Xα.

To describe the structure of Hin
α in more concrete terms, we recall that the stratum

Xα is isomorphic to Cnα , where the index of the corresponding critical point xα is
2(n−nα). Let us choose holomorphic coordinates zi, i = 1, . . . , n, in the neighborhood
of Xα ⊂ X in such a way that the coordinates z1, . . . , znα are holomorphic coordinates
along Xα and the holomorphic coordinates znα+1, . . . , zn are transversal to Xα (so that
Xα is described by the equations zi = 0, zi = 0, i = nα+1, . . . , n). Then Hin

α is spanned
by the monomials which may schematically be represented in the form

(3.34)
∏

1≤i,i,j,j≤nα

zizidzjdzj

∏

nα+1≤k,k,l,l≤n

∂zk
∂z

k
ı∂zl

ı∂z
l
· ∆α
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(here, as before, ıv denotes the operator of contraction of a differential form by a
vector field v). Thus, we see that Hin

α is indeed generated from ∆α under the action of
(super)differential operators.

In addition, the space Hin
α exhibits the following holomorphic factorization:

Hin
α ≃ Fin

α ⊗ F
in
α ,

where Fin
α (resp. F

in
α ) is the space of holomorphic (resp., anti-holomorphic) delta-forms

supported on Xα.
For example, if nα = dimX, so Xα ≃ Cnα is an open subset of X, then Hin

α is the
space of differential forms on Cnα . Therefore it factorizes into the tensor product of the

spaces Fin
α and F

in
α of holomorphic and anti-holomorphic differential forms, respectively.

On the other hand, if nα = 0, so Xα = xα is a point, then Hin
α is the space of

distributions supported at xα. It factorizes into the tensor product

Hin
α ≃

(
C[∂zi

] ⊗ Λ[ı∂zi
]
)

i=1,...,n
⊗
(

C[∂zi
] ⊗ Λ[ı∂zi

]
)

i=1,...,n
· ∆α

(note that the operators ı∂zi
anti-commute and hence generate an exterior algebra).

Therefore we may write

Hin
α ≃ Fin

α ⊗ F
in
α ,

where

Fin
α = C[∂zi

] ⊗ Λ[ı∂zi
]i=1,...,n, F

in
α = C[∂zi

] ⊗ Λ[ı∂zi
]i=1,...,n.

A proper interpretation of the space Fin
α for a general critical point xα is achieved in

the framework of the theory of holomorphic D-modules (see, e.g., [24]).
Let us return to the case when nα = dimX and Xα ≃ Cnα is an open subset of

X. Then Fin
α is the space of holomorphic differential forms on Cnα . In particular, its

subspace of F
in,0
α of degree zero forms consists of holomorphic functions on Xα. The

holomorphic differential operators on Xα naturally act on F
in,0
α . Since Xα is open and

dense in X, F
in,0
α is the space of global sections of a holomorphic DX -module, where DX

is the sheaf of holomorphic differential operators on X. Its generator is the function 1,
which is annihilated by ∂zi

, i = 1, . . . , n.
The entire space Fin

α may be viewed as the space of global sections of a DΠTX-module,
where DΠTX is the sheaf of holomorphic differential operators on the supermanifold
ΠTX. The constant function 1 is again a generator of this DX-module.18

Now consider the space Fin
α in the case when Xα = xα. Then the degree zero part

F
in,0
α of Fin

α may also be interpreted as the space of global sections of a DX-module,
called the DX -module of “holomorphic delta-functions with support at xα”, or of “local
cohomology of OX with support at xα”. It is defined as follows: its space of sections
on any open subset not containing the point xα is zero, and the space of sections on

an open subset U containing xα is the space F
in,0
α . To define the structure of DX -

module we need to show how to act on F
in,0
α by holomorphic differential operators on

U . Without loss of generality we may assume that U is a very small neighborhood

18Note that there is no natural structure of (left) DX -module on the subspace F
in,i
α of i-forms in

F
in
α , except for i = 0. However, the subspace of top forms has a natural structure of right DX-module.
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of xα with coordinates z1, . . . , zn. Thus, we need to show how to act on F
in,0
α by

functions zi and vector fields ∂zi
. This is done by realizing F

in,0
α as the module over the

algebra of polynomial differential operators in zi, ∂zi
, i = 1, . . . , n, generated by a vector

annihilated by zi, i = 1, . . . , n. Let us denote this generating vector by δhol
α . Informally,

we may view δhol
α as a “holomorphic delta-function”, because it satisfies zi · δhol

α = 0 for
all i = 1, . . . , n.

As for the entire space Fin
α , it may be viewed as a DΠTX -module. It is generated by

a vector, which we denote by ∆hol
α , which satisfies the relations

zi · ∆hol
α = 0, dzi · ∆hol

α = 0, i = 1, . . . , n.

It is instructive to think of ∆hol
α as the “holomorphic delta-form”. Note that δhol

α =
ı∂z1

. . . ı∂zn
∆hol

α (since ∆hol
α is a top form).

For a more general critical point xα with index 2(n− nα), the space Fin
α is a DΠTX -

module, generated from a “holomorphic delta-form” ∆hol
α supported on Xα. By defini-

tion, ∆hol
α is annihilated by zi, dzi, i = 1, . . . , nα, and by ∂zi

, ı∂zi
, i = nα + 1, . . . , n. The

space Fin
α is obtained from ∆hol

α under the action of holomorphic polynomials along Xα

(in the variables z1, . . . , znα) and holomorphic vector fields in the transversal directions
(that is ∂znα+1, . . . , ∂zn), as well as the exterior algebra in dz1, . . . , dznα , ı∂znα+1

, . . . , ı∂zn
.

In particular, the degree zero part of Fin
α is the space of global sections of a DX -

module. This DX -module is in fact the push-forward of the DXα-module OXα to
X under the embedding Xα →֒ X. It may also be realized as the local cohomol-
ogy Hn−nα

Xα
(OX) of the structure sheaf OX on X with support on Xα (for more on

this, see Section 4.8). The entire space Fin
α is identified with the local cohomology

Hn−nα

Xα
(ΩX,hol), where ΩX,hol is the sheaf of holomorphic differential forms on X. It is

naturally a DΠTX-module.
For example, if X = CP1, then there are two critical points: 0 and ∞. If xα = 0,

then the corresponding stratum Xα is C0 = CP1\∞. The corresponding algebra of
differential operators is generated by z and ∂z. The zero-form part of Hin

α is in this
case the D-module of functions on C0. Its space of global sections is C[z], and the
algebra of differential operators naturally acts on it.

If xα = ∞, then we have a coordinate at ∞ that we previously denoted by w. The
corresponding algebra of differential operators is generated by w and ∂w. The zero-form
part of Hin

α is the D
CP

1-module of holomorphic delta-functions with support at ∞. Its
space of sections over any open subset U ⊂ CP1 containing ∞ may be defined concretely
as C[w,w−1]/C[w]. In other words, it is the quotient of the space of functions defined
on C∞ = CP1\0 by the subspace of those functions which are regular at ∞ (thus, it is
spanned by the “polar parts” of these functions).19 It is generated, under the action
of ∂w, by the vector 1/w. Inside the quotient C[w,w−1]/C[w] this vector is annihilated
by w, and hence it may be thought of as a particular realization of the “holomorphic
delta-function” δhol

∞ at ∞.

19equivalently, we could have chosen any open subset U containing ∞ and taken the quotient
of holomorphic functions on U\∞ by holomorphic functions on U ; or we could take the quotient
C((w−1))/C[[w]] corresponding to the formal disc around ∞
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We have a similar description of the anti-holomorphic factor F
in
α .

Based on the semi-classical analysis similar to the one performed in the case of CP1,
we now describe the space of “in” states as follows:

The space of “in” states of the theory at λ = ∞ is isomorphic to the direct sum

(3.35) Hin ≃
⊕

α∈A

Hin
α =

⊕

α∈A

Fin
α ⊗ F

in
α .

Thus, we observe the appearance of “conformal blocks” (or “holomorphic blocks”)
in the space of states reminiscent of the structure of two-dimensional conformal field
theory. It is surprising that we observe this structure at the level of quantum mechan-
ics, i.e., one-dimensional quantum field theory. This structure is also reflected in the
correlation functions of the observables decomposing into the product of holomorphic
and anti-holomorphic parts: they decompose into the sum of products of holomorphic
and anti-holomorphic expressions. There are no non-constant smooth observables of
this type, but if we allow singularities of special kind, such observables can be easily
constructed. For example, in the case of X = CP1 one can consider observables of the
form (

M∑

i=1

αidz

z − ai

)


N∑

j=1

βjdz

z − bj


 ,

and explicit calculations show that their correlation functions indeed exhibit factoriza-
tion into “conformal blocks”.

Such holomorphic factorization certainly cannot be expected in the theory at the

finite values of the coupling constant λ, because the action contains the term λ−1gabpapb
mixing holomorphic and anti-holomorphic fields (and a similar mixed fermionic term).
But for λ = ∞ this term disappears and we find that both the Lagrangian and the
Hamiltonian of our theory are equal to sums of holomorphic and anti-holomorphic parts
(see formula (1.1)). Therefore naively one might expect that the space of states of the
theory is the tensor product of holomorphic and anti-holomorphic sectors. However,
what we find is a direct sum of such tensor products. This is a precursor of the Quillen
anomaly familiar from two-dimensional conformal field theory.

Naively, the supercharge Q is the de Rham differential d naturally acting on the
spaces Hin

α , and the hamiltonian is Hnaive = {Q, ıv} = Lv. The cohomology of Q
on each Hin

α is one-dimensional, occurring in degree 2i and represented by the delta-
form ∆α. These are therefore the BPS states of our theory, in agreement with the
expectation that the BPS states are identified with the cohomology of X. Indeed, the
ascending manifolds give us a decomposition of X into even-dimensional cells, which
therefore give a basis in the homology of X. The forms ∆α give the dual basis in the
cohomology.

More precisely, we will see below that, just like in the case of X = CP1, the spaces
Hin are not canonically isomorphic to the above direct sums of the spaces Hin

α . Rather,
there are canonical filtrations with the consecutive subquotients isomorphic to Hin

α .
Because of that, the hamiltonian is not diagonalizable; it is equal to Hnaive = Lv plus
off-diagonal terms mixing the spaces Hin

α with Hin
β corresponding to the strata Xβ of
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lower dimension which are in the closure of Xα. However, this mixing occurs only
within the subspaces of differential forms of a fixed degree and fixed eigenvalue with
respect to Lv. Because these subspaces are finite-dimensional, all Jordan blocks are
finite and their length is bounded by dimCX + 1.20

Likewise, we will see that the supercharge Q is equal to d plus correction terms
mixing Hin

α with Hin
β corresponding to the strata Xβ in the closure of Xα. However,

we will show in Section 4.9 that these correction terms do not change the cohomology
of Q.

The space of “out” states has a similar structure, but with respect to the stratification
of X by the descending manifolds Xα. For each stratum Xα we have the space Hout

α of
delta-forms supported on Xα. In particular, it contains the ground state ∆α constructed
in Section 3.6. Moreover, the space Hout

α is generated from ∆α under the action of
differential operators defined in the neighborhood of Xα. Similarly to the “in” spaces,
it exhibits holomorphic factorization

Hout
α = Fout

α ⊗ F
out
α ,

where Fout
α (resp. F

out
α ) is the space of holomorphic (resp., anti-holomorphic) delta-

forms supported on Xα. Finally, the space of “out” states is isomorphic to

Hout ≃
⊕

α∈A

Hout
α =

⊕

α∈A

Fout
α ⊗ F

out
α .

In reality, this direct sum decomposition is not canonical. Instead, there is a canonical
filtration with the spaces Hout

α appearing as consecutive quotients, and the hamiltonian
is −Lv plus non-diagonal terms, as for Hin. Nevertheless, there is a canonical pairing
between Hin and Hout

α , as expected on general grounds. We will discuss all this in the
next section.

4. The structure of the space of states

In the previous section we have determined, in the first approximation, the spaces
Hin and Hout of “in” and “out” states of our quantum mechanical model in the limit
λ = ∞. In this section we will give a more precise description of these spaces. We
will show that states are naturally interpreted as distributions (or currents) on our
manifold X. Because some of these distributions require regularization (reminiscent
of the Epstein-Glaser regularization [12] familiar in quantum field theory), the action
of the Hamiltonian on them becomes non-diagonalizable. We compute this action, as
well as the action of the supercharges, in terms of the so-called Grothendieck-Cousin
operators associated to the stratification of our manifold by the ascending and de-
scending manifolds. We also compute the cohomology of the supercharges using the
Grothendieck-Cousin complex [25].

In Section 5 we will realize the evaluation observables of our model as linear operators
acting on the spaces of states. We will then be able to obtain the correlation functions
as matrix elements of these operators and to test our predictions by comparing these

20we will see in Section 5.5 that the maximal length of the Jordan blocks may well be less than
dimC X + 1
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matrix elements with the integrals over the moduli of the gradient trajectories which
were obtained in the path integral approach, as explained in Section 2.4.

4.1. States as distributions. The answer we have given for the space of states Hin in
formula (3.35) requires some explanations. Consider for example the case of X = CP1.
We have claimed that

(4.1) Hin ≃ HC0 ⊕ H∞,

where HC0 is the space of differential forms on the one-dimensional cell C0 = CP1\∞
and H∞ is the space of delta-forms supported at ∞. These delta-forms are naturally
functionals, i.e., distributions (more precisely, currents) on the space of differential
forms on CP1. For example, the ground state δ(2)(w,w)dwdw is the functional whose
value on a function f on CP1 is equal to f(∞), and it is equal to zero on all differential
forms of positive degree.

Thus, the subspace HC0 appears to be realized in the space of differential forms, while
the subspace H∞ is realized in the space of distributions or currents, that is functionals
on the space of differential forms. This is puzzling because the two spaces appear to be
of different nature. The second puzzle is that elements of HC0 are well-defined only on
the subset C0 ⊂ CP1 and, with the exception of the constant functions, have poles at
∞. Therefore the integrals of the products of such elements with an observable of our
theory, which is a priori an arbitrary smooth differential form on X, is not well-defined.
But integrals of this type naturally appear as the one-point correlation functions of our
theory at finite values of λ.

For example, let ω̂ be the observable of our theory which corresponds to a smooth
two-form ω on CP1, and consider the one-point function represented by the matrix
element

〈∞Ψvac|e(t−tf )H ω̂e(ti−t)H |0Ψn,n,0,0〉 = qEn,n

∫

CP
1

∞Ψ
(0)
0,0 ω 0Ψ

(0)
n,n,0,0,

where q = eti−t and En,n is the eigenvalue of H on 0Ψn,n,0,0. We have argued that in
the limit λ→ ∞ the “out” state corresponding to ∞Ψvac becomes equal to 1, while the
“in” state corresponding to 0Ψn,n,0,0 becomes equal to znzn. Therefore to make sense
of the theory at λ = ∞ we should be able to compute integrals of the form

(4.2)

∫

CP
1
znzn ω,

for a general smooth two-form ω on CP1.
Unfortunately, these integrals generally diverge for n, n > 0. But this discussion leads

us to an important idea: it suggests that a proper definition of the state corresponding
to 0Ψn,n,0,0 in the limit λ→ ∞ assumes that we can evaluate the integrals of the form

(4.2). Therefore it is only natural to view these states not as functions on CP1, but
as distributions! This at least allows us to treat HC0 and H∞ on equal footing. It
now becomes clear that our space of states Hin with its decomposition (4.1) should
be considered as a subspace of the space of distributions (or currents) on the space of
smooth differential forms on CP1.
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Viewing states as distributions is most natural from the point of view of the path in-
tegral. Recall formula (3.7) describing states as path integrals. Now, given a differential
form ω on X, set

〈ω|On(tn) . . .O1(t1)|0〉 =

∫

X

ω ∧
∫

x(t):(−∞,0]→X;x(0)=x

O1(t1) . . .On(tn)e−S .

Thus, the state On(tn) . . .O1(t1)|0〉 is naturally interpreted as a linear functional on
differential forms, i.e., a distribution.

The delta-forms supported at ∞ are legitimate distributions. But what kind of
distribution can we associate to the function znzn which has a pole at ∞ ∈ CP1? This
question has a well-known answer in the theory of generalized functions, as we now
explain following [22], Sect. 3.2 and [19], Sect. B1.

First of all, let us recall that by definition a distribution on CP1 is a continuous linear
functional on the space of smooth functions on CP1, equipped with the topology induced
by the norm ‖f‖ = sup |f(x)|.21 In what follows we will use the term “distribution” in
more general sense, as a continuous linear functional on the space of differential forms
on CP1 (a more common term for such an object is “current”). We denote the space
of such distributions by D(CP1).

Next, we define the space S(C0) of Schwartz functions on C0 = CP1\∞ ⊂ CP1: its
elements are smooth functions f on C0 such that znzn∂m

z ∂
m
z f is bounded on C0 (and

hence well-defined at ∞) for all n, n,m,m ∈ Z≥0. Such a function therefore extends
to a smooth function on CP1; moreover, it necessarily decays as z, z → ∞. Define a
topology on the space S(C0) induced by the family of semi-norms

f 7→ |znzn∂m
z ∂

m
z f |.

A tempered distribution on C0 is by definition a continuous linear functional on S(C0).
We define in the same way the space SΩ(C0) of Schwartz differential forms on C0. We

will call continuous linear functionals on SΩ(C0) “tempered distributions on differential
forms on C0”.

Now observe that for all n, n ∈ Z≥0 the monomial znzn defines a continuous lin-
ear functional ϕn,n, hence a tempered distribution on differential forms on C0 by the
formula

(4.3) ϕn,n(ω) =

∫

C0

znzn ω, ω ∈ SΩ(C0).

The integral converges because of the condition imposed on elements of SΩ(C0) (note
that it is non-zero only if ω is a two-form).

Thus, we are now in the following situation: we have the subspace SΩ(C0) ⊂ Ω(CP1)
and a continuous linear functional ϕn,n on SΩ(C0) defined by formula (4.3). Can we

extend this functional to the larger space Ω(CP1)?
It turns out that we can, but there are many possible extensions and there is no

canonical choice among them, unless n = 0 or n = 0. The good news, however, is

21for a general manifold X, distributions are continuous linear functionals on the space of smooth
functions on X with compact support, but on a compact manifold X the “compact support” condition
is vacuous
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that any two possible extensions differ by a distribution supported at ∞. Therefore,
even though the span of all functionals ϕn,n, n, n ∈ Z≥0, is not canonically defined

as a subspace of D(CP1), the span of these functionals together with the functionals

∂m
w ∂

m
w δ

(2)(w,w) is well-defined.
We have an analogous statement for the i-form versions of these spaces, where i =

1, 2. Thus, we obtain that the sum HC0 + H∞ is a well-defined subspace of the space
of all distributions on CP1.

We now define the space Hin of ”in” states of the CP1 model in the λ = ∞ limit
as this subspace of D(CP1). This way we resolve the first puzzle pointed out at the
beginning of this section (the fact that HC0 and H∞ seem to be objects of different
nature). But we have not yet explained how to extend the linear functionals ϕn,n to

D(CP1) and make sense of the integrals (4.2) for arbitrary smooth differential forms
ω ∈ Ω(CP1). We will explain that in the next section.

4.2. Regularization of the integrals in the case of CP1. A particular extension of
the tempered distribution ϕn,n to a distribution on CP1 is constructed by introducing

a “cutoff”: for ω ∈ Ω(CP1), consider the integral

(4.4)

∫

|z|<ǫ−1

znzn ω.

which is well-defined for any positive real ǫ. One can show that as a function in ǫ it
may be uniquely represented in the form

(4.5) C0 +
∑

i>0

Ciǫ
−i + Clog log ǫ+ o(1),

where the Ci’s and Clog are some numbers (see [22], pp. 70-71). Therefore one defines,
following Hadamard, the partie finie of the above integral as the constant coefficient C0

obtained after discarding the terms with negative powers of ǫ and log ǫ in the integral
(4.4) and taking the limit ǫ→ 0. We denote it by

∫
\

|z|<ǫ−1

znzn ω = C0.

A similar regularization has also been used in quantum field theory, in particular, in
the works of Epstein and Glaser [12].

It is clear that if ω ∈ SΩ(C0), then
∫
\

|z|<ǫ−1

znzn ω =

∫

CP
1

znzn ω,

so we indeed obtain an extension of ϕn,n to a distribution on CP1. We will denote it
by ϕ̃n,n. Note that the distribution we obtain takes non-zero values only on two-forms

on CP1.
The problem with this definition is that it is not canonical. Indeed, we do not have

a canonical coordinate on CP1, because we are only given points 0 and ∞, so our
coordinate z is only defined up to multiplication by a non-zero scalar. If we rescale
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our coordinate z 7→ az, then the functional ϕ̃n,n will change as we will now integrate
over the region |z| < aǫ−1, and the integral will be different due to the presence of the
logarithmic term in (4.5). However, the resulting change will amount to a distribution
supported at ∞ ∈ CP1, so that the span of these distributions and the distributions
supported at ∞ is a canonically defined subspace of D(CP1).

Let us compute the values of the distributions ϕ̃n,n in some examples. Let

ω =
∑

α

ωα

zz +Rα
dzdz, Rα ∈ C\R≤0,

where the numbers ωα satisfy the condition
∑

α

ωα = 0,

which ensures that ω is well-defined at ∞. Writing z =
√
xeiθ, we find that

ϕ̃n,n(ω) =

∫
\

|z|<ǫ−1

znzn ω =
∑

α

∫ 2π

0
dθeiθ(n−n)

[∫ ǫ−2

0

ωαx
(n+n)/2

x+Rα
dx

]

ǫ0

= 2π(−1)n+1δn,n

∑

α

ωαR
n
α logRα.(4.6)

The distributions ϕ̃n,n,p,p corresponding to the basis elements znzn(dz)p(dz)p of HC0

are defined in the same way. These distributions take non-zero values on differential
forms of degree (1 − p, 1 − p). Again, they are not canonically defined, but their span
together with the span of (p, p)-forms in H∞ will be well-defined. This span is the
(p, p)-form part of our space of “in” states Hin.

4.3. Action of the hamiltonian. Having defined the space Hin as a particular sub-
space of the space of distributions on CP1, we can now find explicitly the action of
the Hamiltonian H = Lv, where v = z∂z + z∂z. Actually, we will compute separately
the action of Lξ and Lξ, where ξ = z∂z, ξ = z∂z. We will see that due to the non-

canonical nature of the decomposition (4.1) these operators act non-diagonally, with
Jordan blocks.

Consider first the action of Lξ and Lξ on the subspace H∞ ⊂ Hin (which is a

canonical subspace of Hin). This subspace has the following basis:

|n, n, p, p〉∞ :=
(−1)n+n

n!n!
∂n

w∂
n
wδ

(2)(w,w)(dw)p(dw)p.

By definition,

(4.7) |n, n, p, p〉∞(ωww(dw)r(dw)r) = (−i)pipδr,1−pδr,1−p∂
n
w∂

n
wωww|w=0.

We find that

Lξ · |n, n, p, p〉∞ = (n+ 1 − p)|n, n, p, p〉∞,
Lξ · |n, n, p, p〉∞ = (n+ 1 − p)|n, n, p, p〉∞.

Next, we consider the subspace HC0 . It has the following basis:

|n, n, p, p〉C0 := ϕ̃n,n,p,p,
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where ϕ̃n,n,p,p is the distribution defined at the end of the previous section:

ϕ̃n,n,p,p(ω) =

∫
\

|z|<ǫ−1

znzn(dz)p(dz)p ∧ ω.

These elements, and their span, are not canonically defined, but depend on a particular
“partie finie” regularization of the above integral defined above.

Let us compute Lξ · |n, n, 0, 0〉C0 . By definition, this is the distribution, whose value

on a two-form ω on CP1 is equal to

ϕ̃n,n(−Lξω) = −
∫
\

|z|<ǫ−1

znzn Lξω.

Writing Lξ as {d, ıξ} and using Stokes formula, we find that in addition to the differen-
tiation of zn, which results in multiplication by n, there is also a boundary term, which
is the ǫ0-coefficient in the expansion of the integral∫

|w|=ǫ

w−nw−n ıξω

in power series in ǫ±1 and log ǫ (the change of sign here is due to the change of orientation
of the circle |z| = ǫ−1 under the change of variables z 7→ w = z−1).

Writing ξ = −w∂w, ω = ωwwdwdw = iωwwdw ∧ dw and w = ǫeiθ, we find that this
boundary term is equal to

[∫ 2π

0
w1−nw1−nωwwdθ

]

ǫ0
=

{
− 2π

(n−1)!(n−1)!∂
n−1
w ∂n−1

w ωww

∣∣∣
w=0

, if n, n > 0,

0, if n = 0orn = 0.

Thus, we obtain the following formula

Lξ · |n, n, 0, 0〉C0 = n|n, n, 0, 0〉C0 − 2π|n − 1, n− 1, 0, 0〉∞.
Likewise, we obtain

Lξ · |n, n, p, p〉C0 = (n+ p)|n, n, p, p〉C0 − 2π|n+ 2p− 1, n + 2p− 1, p, p〉∞,(4.8)

Lξ · |n, n, p, p〉C0 = (n+ p)|n, n, p, p〉C0 − 2π|n+ 2p− 1, n + 2p− 1, p, p〉∞.(4.9)

Here we use the convention

|n, n, p, p〉∞ ≡ 0, if n < 0 or n < 0.

Thus, we find that the operators Lξ and Lξ, and hence the Hamiltonian Lv, have

Jordan blocks of length two. The generalized eigenspace of the operators Lξ and Lξ

corresponding to the eigenvalues n+ p ≥ 0 and n+ p ≥ 0 on the space of (p, p)-forms
in Hin is two-dimensional, spanned by the vectors |n, n, p, p〉C0 and |n + 2p − 1, n +
2p−1, p, p〉∞. The former is an eigenvector, and the second is a generalized eigenvector
which is adjoint to it.

In particular, the indeterminacy of the vector |n, n, p, p〉C0 with n+ 2p − 1 ≥ 0 and
n+ 2p− 1 ≥ 0 is contained in the two-dimensional subspace of Hin spanned by it and
|n+ 2p − 1, n + 2p− 1, p, p〉∞.
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This could actually be seen from the outset. As we have explained, the indeterminacy

comes from the fact that in the definition of the distribution φ̃n,n as the “partie finie”
of the integral (4.4) we use the “cutoff” |z| < ǫ−1, and so if we replace ǫ by ǫ̃ = a−1ǫ,
then the “partie finie” of the integral will get shifted by the term −Clog log a, where
Clogis defined in formula (4.5). But the term Clog is easy to evaluate explicitly. Indeed,
we may split the integral (4.4) into the sum of two: over |z| < 1 and 1 < |z| < ǫ−1.
The former converges and hence cannot contribute to Clog. On the other hand, writing
ω in the form ωwwdwdw, as before, we rewrite the latter as

∫

ǫ<|w|<1

w−nw−nωwwdwdw.

The log ǫ contribution to this integral is equal to

4π log ǫ
1

(n− 1)!(n − 1)!
∂n−1

w ∂n−1
w ωww

∣∣∣∣
w=0

.

Thus, by changing the “cutoff” in the definition of φ̃n,n, we replace φ̃n,n by its linear

combination with 1
(n−1)!(n−1)!∂

n−1
w ∂n−1

w δ(2)(w,w)dww, for n, n > 0.

Note however that the extra term is equal to 0 if n = 0 or n = 0, that is for purely
holomorphic or anti-holomorphic functions on C0. This shows that the distributions
ϕ̃n,0 and ϕ̃0,n corresponding to the states |n, 0, 0, 0〉C0 and |0, n, 0, 0〉C0 , respectively, are
actually well-defined. In fact, it is easy to see that they have canonical regularizations
which are eigenvectors of Lξ and Lξ. The vectors |n, 0, 0, 1〉C0 and |0, n, 1, 0〉C0 are also
eigenvectors.

One can analyze the indeterminacy of (p, p)-forms in a similar fashion, reproducing
the above result that it is confined to the two-dimensional subspaces of Hin spanned
by |n, n, p, p〉C0 and |n + 2p − 1, n + 2p − 1, p, p〉∞. We will denote this subspace by
Hin

n,n,p,p.

4.4. Action of the supercharges. Next, we analyze the action of the supercharges.
Recall that we have two of them: Q = d, the de Rham differential, and Q∗ = 2ıv, the
contraction with the vector field 2v = 2(z∂z+z∂z). As in the case of the Hamiltonian, we
split each of them into the sum of holomorphic and anti-holomorphic terms: Q = ∂+∂
and ıv = ıξ + ıξ. These operators naturally act on the space of distributions on CP1.

For instance, we have

〈∂ϕ, ω〉 = −〈ϕ, ∂ω〉,
and so on. As we will see, these operators preserve the subspace Hin. We wish to
compute the corresponding action of these operators on Hin.

The operators ıξ and ıξ are the easiest to compute. Their action is given by the

standard formulas on both Hin
∞ (considered as the space of delta-forms supported at

∞ ∈ CP1) and Hin
C0

(considered as the space of polynomial differential forms on C0).

The action of ∂ and ∂ on Hin
∞ is also the obvious one. However, due to boundary

terms similar to the ones arising in the above calculation of the Hamiltonian, the action
of ∂ and ∂ on the subspace Hin

C0
has correction terms which belong to Hin

∞.
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To see how this works, let us compute explicitly ∂ · |n, n, 0, 0〉C0 . It follows from the
definition that this is the distribution, whose value on a one-form ω = ωwdw on CP1 is
equal to

ϕ̃n,n(−∂ω) = −
∫
\

|z|<ǫ−1

znzn ∂ω

Using the Stokes formula, we find that this integral has two terms: one corresponds to
the obvious action of ∂ on znzn, sending it to nzn−1zndz, and the other is the boundary
term [∫

|w|=ǫ
w−nw−nωwdw

]

ǫ0

= − 2πi

n!(n− 1)!
∂n

w∂
n−1
w ωww

∣∣∣∣
w=0

.

Therefore we obtain that

∂|n, n, 0, 0〉C0 = n|n− 1, n, 1, 0〉C0 + 2π|n, n− 1, 1, 0〉∞
(see formula (4.7)).

Similarly, we find that

∂|n, n, 0, 0〉C0 = n|n, n− 1, 0, 1〉C0 + 2π|n − 1, n, 0, 1〉∞,
and obtain analogous formulas for differential forms of higher degrees. These formulas
may be summarized as follows.

Let us use holomorphic factorization and realize the spaces Hin
C0

and H∞ as the
tensor products

Hin
C0

= C[z] ⊗ Λ[dz] ⊗ C[z] ⊗ Λ[dz],

Hin
∞ =

(
C[w,w−1]/C[w]

)
⊗ Λ[dw] ⊗

(
C[w,w−1]/C[w]

)
⊗ Λ[dw].

In this realization our basis elements of Hin
∞ correspond to

|n, n, p, p〉∞ =
(−1)n+n

n!n!
∂n

w∂
n
wδ

(2)(dw)p(dw)p = w−n−1(dw)p ⊗w−n−1(dw)p.

This realization is convenient, because we can use the natural linear maps

δ : C[z] ⊗ Λ[dz] →
(
C[w,w−1]/C[w]

)
⊗ Λ[dw],

δ : C[z] ⊗ Λ[dz] →
(
C[w,w−1]/C[w]

)
⊗ Λ[dw],

obtained using the composition

C[z] → C[z, z−1] = C[w,w−1] → C[w,w−1]/C[w]

(we recall that w = z−1). As we will see in Section 4.8, these are the simplest examples
of the Grothendieck-Cousin operators.

Then the formulas for ∂ and ∂ are expressed in terms of these operators as follows:

∂(Ψ ⊗ Ψ) = ∂naive(Ψ ⊗ Ψ) + 2π δ

(
dw

w
∧ Ψ

)
⊗ δ(Ψ),

∂(Ψ ⊗ Ψ) = ∂naive(Ψ ⊗ Ψ) + 2π δ(Ψ) ⊗ δ

(
dw

w
∧ Ψ

)
.
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Using this formula and the Cartan formula Lv = {d, ıv}, we obtain the following
formula for the chiral and anti-chiral components of the Hamiltonian:

Lξ = Lξ,naive − 2π δ ⊗ δ,

Lξ = Lξ,naive − 2π δ ⊗ δ,

so that the Hamiltonian is given by the formula

H =
1

2
{Q,Q∗} = Hnaive − 4π δ ⊗ δ.

This agrees with formulas (4.8) and (4.9).

4.5. The space of states as a λ→ ∞ limit. The two-dimensional subspaces Hin
n,n,p,p

are thus the building blocks of the space of “in” states of our model at the point
λ = ∞. Using these spaces, we can now clarify the result of the semi-classical analysis

of the low-lying eigenvectors of the Hamiltonian H̃λ = Lv − 1
2λ∆. This Hamiltonian

commutes with the operator P = Lz∂z−z∂z
and we will consider their joint eigenstates.

For simplicity, we will restrict ourselves to the 0-forms.
According to the semi-classical analysis, for each n, n ≥ 0, there is a two-dimensional

space of eigenstates of H̃λ and P in the space of functions on CP1 with the eigenvalues
n+n+O(λ−1) and n− n, respectively. These eigenstates are obtained by multiplying
by eλf the eigenstates of the conjugated hermitean operator Hλ, given by formula
(3.23), with the same eigenvalues. Let Hλ

n,n be the corresponding two dimensional

space of functions on CP1. Now observe that each smooth function Ψ on CP1 defines
a distribution by the formula

Ψ(ω) =

∫

CP
1
Ψω, ω ∈ Ω2(CP1).

Therefore Hλ
n,n defines a two-dimensional subspace of the space D(CP1) of distributions

on differential forms on CP1, depending on λ.

We conjecture that the limit of the subspace Hλ
n,n ⊂ D(CP1) as λ→ ∞ is the subspace

Hin
n,n,0,0 introduced above.

We have a similar conjecture for the (p, p)-form subspaces Hin
n,n,p,p.

Thus, we conjecture that our subspace Hin ⊂ D(CP1) naturally appears as the

λ → ∞ limit of the span of the low-lying eigenstates of the hamiltonian H̃λ, viewed

as distributions. Note that the eigenstates of H̃λ are obtained by multiplying the
eigenstates of the hermitean operator Hλ by the function eλf (which are differential
forms on CP1 viewed as distributions).

It is natural to ask whether we can develop a perturbation theory for the eigenstates
at finite λ around the eigenstates |n, n, p, p〉C0 and |n+ 2p− 1, n+ 2p− 1, p, p〉∞ of the
theory at λ = ∞. This will be discussed in Section 6.1.
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4.6. Definition of the “out” space and the pairing. We now briefly describe the
space of “out” states in the same way. We have previously said that it is isomorphic to
the direct sum

Hout ≃ Hout
C∞

⊕ Hout
0 .

Now we realize Hout as a subspace of the space D(CP1) of distributions on CP1, fol-
lowing Sects. 4.1 and 4.2. The subspace Hout

0 is by definition the space of distributions
on the differential forms on CP1 supported at the point 0 ∈ CP1. It is spanned by the
eigenstates

0〈n, n, p, p| =
(−1)n+n

n!n!
∂n

z ∂
n
z δ

(2)(z, z)(dz)p(dz)p.

The subspace Hout
C∞

is not canonical, but we choose as its basis vectors

C∞〈n, n, p, p|
the distributions defined by the formula

C∞〈n, n, p, p|ω〉 =

∫
\

|w|<ǫ−1

wnwn(dw)p(dw)p ∧ ω.

The above integral needs to be regularized because the differential form has a pole at
w = ∞ (or z = 0). We use the “partie finie” regularization introduced in Section 4.2.
If we change the regularization, then the corresponding distribution will get shifted by
a distribution supported at 0.

Therefore the sum of the spaces Hout
C∞

and Hout
0 is a well-defined subspace of the

space D(CP1) of distributions on CP1, and this is by definition the space Hout of “out”
states of our model.

The Hamiltonian is −Lv = −Lξ − Lξ. The states 0〈n, n, p, p| are eigenvectors:

0〈n, n, p, p| · −Lξ = (n + 1 − p) 0〈n, n, p, p|,
0〈n, n, p, p| · −Lξ = (n + 1 − p) 0〈n, n, p, p|.

The states C∞〈n, n, p, p| are generalized eigenvectors (unless n = 0, p = 0 or n = 0, p =
0) which satisfy

C∞〈n, n, p, p| · −Lξ = (n + p) C∞〈n, n, p, p| + 2π 0〈n+ 2p− 1, n + 2p− 1, p, p|,
C∞〈n, n, p, p| · −Lξ = (n + p) C∞〈n, n, p, p| + 2π 0〈n+ 2p− 1, n + 2p− 1, p, p|.

In particular, we see that, just as in the case of “in” states, the “mixing” between
Hout

C∞
and Hout

0 is confined to the two-dimensional generalized eigenspaces of Lξ and
Lξ.

As in the case of “in” states, we conjecture that the subspace Hout ⊂ D(CP1)
naturally appears as the λ → ∞ limit of the span of the low-lying eigenstates of the
hermitean operator Hλ by the function e−λf (which are differential forms on CP1,
viewed as distributions).

On general grounds (see Section 3.2) we expect that there is a canonical pairing

Hin × Hout → C.
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Explicitly, it is defined as follows: let Ψ ∈ Hin and Φ ∈ Hout. Then

〈Φ,Ψ〉 =

∫

CP
1
Φ ∧ Ψ.

Some comments are necessary here, because a priori Ψ and Φ are distributions and so
it is not clear what the above integral means. However, Ψ and Φ are distributions of a
very special kind, and for those this integral is well-defined. Intuitively, this is because
Ψ may be viewed a distribution in a small neighborhood of ∞ and a function elsewhere,
while Φ is a distribution in a small neighborhood of 0 and a function elsewhere.

More precisely, we write Φ = Φ0 + Φ∞,Ψ = Ψ0 + Ψ∞, where Φ0 = c|z|≤1Φ, Φ∞ =
c|z|≥1Φ and c|z|≤1, c|z|≥1 are the characteristic functions of the discs |z| ≤ 1 and |z| ≥ 1.
We then split the above integral into the sum

∫

|z|≤1
Φ0 ∧ Ψ0 +

∫

|z|≥1
Φ∞ ∧ Ψ∞.

In the first summand Φ0 is a smooth function, whereas Ψ0 is a distribution. Therefore
their pairing is well-defined. The second summand is well-defined for the same reason,
with the roles of Φ and Ψ reversed.

This pairing is especially easy to describe when either Ψ ∈ Hin
∞ or Φ ∈ Hout

0 . First
of all, if both inclusions are satisfied, then they are distributions supported at two
different points on CP1: ∞ and 0, respectively. Therefore the pairing between them is
equal to 0.

If Φ ∈ Hout
0 , then

〈Φ,Ψ〉 =

∫
Φ ∧ pr(Ψ) = Φ(pr(Ψ)),

the evaluation of the distribution Φ on the projection pr(Ψ) of Ψ onto Hin
C0

≃ Ω(C0),

which is a differential form well-defined in the neighborhood of 0 ∈ CP1.
Likewise, if Ψ ∈ Hout

∞ , then

〈Φ,Ψ〉 =

∫
pr(Φ) ∧ Ψ = Ψ(pr(Φ)),

the evaluation of the distribution Ψ on the projection pr(Φ) of Φ onto Hin
C∞

≃ Ω(C∞),

which is a differential form well-defined in the neighborhood of ∞ ∈ CP1.
We find from this description that

(4.10) 0〈m,m, r, r|n, n, p, p〉C0 = C∞〈m,m, r, r|n, n, p, p〉∞
= (−i)pip(−1)prδn,mδn,mδp,1−rδp,1−r.

Finally, we compute the pairing between the states |n, n, p, p〉C0 and C∞〈m,m, r, r|.
According to the above definition, it is equal to the “partie finie” of the integral

(−1)pr

∫

ǫ1<|z|<ǫ−1
2

zn−m−2zn−m−2(dz)p+r(dz)p+r,

which is obtained by discarding all terms that contain (ǫ1)
−1, log ǫ1, (ǫ2)

−1, log ǫ2 and
setting ǫ1, ǫ2 = 0 in the remainder. It is easy to see that the result is always zero.



INSTANTONS BEYOND TOPOLOGICAL THEORY I 61

Note however that if we chose different regularization schemes for defining these
states (which would shift them by the “delta-like” states), then the pairing between
them would change.

Thus, we find that the bases

{|n, n, p, p〉C0 , |n, n, p, p〉∞} and { 0〈n, n, p, p|, C∞〈n, n, p, p|}
are dual to each other in Hin and Hout, up to a power of i (see formula (4.10)).

4.7. The general case. We now briefly discuss how to generalize the above results
to the case of a general Kähler manifold X and a holomorphic vector field ξ satisfying
the conditions of Section 3.6. Recall that we have two stratifications of X, defined
in formula (3.28). In the first approximation we defined the space of “in” states as
the direct sum given by formula (3.35). Each summand Hin

α consists of delta-forms
supported on the stratum Xα. However, this decomposition is not canonical. We now
apply the same reasonings as in the case of X = CP1 to define the space Hin of “in”
states as a canonical subspace of the space of distributions on differential forms on X.

This space has a canonical filtration Hin
≤i, i = 0, . . . ,dimCX, such that each consec-

utive quotient Hin
≤i/H

in
≤(i−1) is isomorphic to the direct sum

(4.11)
⊕

dimC Xα=i

Hin
α .

We construct Hin
≤i by induction on i. The space Hin

≤0 is by definition the space Hin
αmax

for
the critical point xαmax such that the corresponding stratum Xαmax consists of a single
point, xαmax , which happens when it is the absolute maximum of the Morse function.
Thus, Hin

≤0 is the space of distributions on X supported at this point.22

Now suppose that we have already constructed the subspace Hin
≤(i−1). Let Xα be

a stratum of complex dimension i. We construct a new space Hin
≤(i−1),α which is an

extension

(4.12) 0 → Hin
≤(i−1) → Hin

≤(i−1),α → Hin
α → 0

as follows.
Let Bα ⊂ Xα\Xα be the union of the strata Xβ of complex dimension (i − 1) that

belong to the closure Xα of Xα. We denote the set of β’s appearing in its decomposition
by Aα. We define SαΩ(X) as the space of smooth differential forms on X which
decay very fast along Bα. More precisely, we define it as the intersection of the spaces
SαβΩ(X), β ∈ Aα, which are constructed as follows.

Consider the union Xα
⊔
Xβ, where β ∈ Aα. It is isomorphic to a fibration over CP1,

with fibers being vector spaces isomorphic to Xβ . The stratum Xβ is embedded as the

fiber at ∞ ∈ CP1 and the stratum Xα as its complement, the preimage of C0 = CP1\∞.
There is a section CP1 → Xα

⊔
Xβ such that the image of ∞ ∈ CP1 is the critical point

xβ, the image of 0 ∈ CP1 is the critical point xα, and the image of C× ⊂ CP1 is the

22here, as above, we use the term “distribution” to mean functionals on the space of all smooth
differential forms, and not just smooth functions
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intersection of Xα with the descending manifold Xβ corresponding to xβ . Moreover,

the C×-action on X restricted to Xα
⊔
Xβ lifts the standard C×-action on CP1.

The function w on CP1 which has a zero of order one at ∞ and a pole of order one
at 0 pulls back to a function on Xα

⊔
Xβ which we denote by wαβ. Note that Xβ is

the zero set of wαβ and that ξ · wαβ = aαβwαβ , where aαβ is a negative real number.
Now the condition on ω ∈ Ω(X) to belong to SαβΩ(X) is that after we apply to ω any

sequence of Lie derivatives with respect to vector fields defined in a neighborhood of
Xα
⊔
Xβ , the restriction of the resulting form to Xα

⊔
Xβ will tend to zero as wαβ → 0

faster than any polynomial in wαβ.
Now we define SαΩ(X) as the intersection of the spaces SαβΩ(X), β ∈ Aα.
Any vector Ψ in the space Hin

α of delta-forms on Xα gives rise to a linear functional
on SαΩ(X) whose value on ω ∈ SαΩ(X) is given by the integral

〈Ψ, ω〉 =

∫

X
Ψ ∧ ω.

The integral converges because of the conditions we imposed on ω.
Now we wish to extend this functional to a distribution on all smooth differential

forms on X. Such an extension is constructed by introducing a “cutoff”, following the
example of CP1 discussed in Section 4.2. Namely, to define its value on ω ∈ Ω(X)
we take the integral of Ψ ∧ ω over X minus the union of subsets in Xα defined by
the inequalities |wαβ | < ǫ, for all β ∈ Aα. Then we take the “partie finie” of the
corresponding integral, i.e., discard all terms involving negative powers of ǫ and log ǫ
and set ǫ = 0 in the remainder.

The resulting functional is regularization dependent because it depends on the choice
of the functions wαβ. But the difference of two possible regularizations is a distribution

which belongs to the previously constructed space Hin
≤(i−1). Therefore we obtain an

extension Hin
≤(i−1),α as in (4.12).

Finally, we define Hin
≤i as the sum of the extensions (4.12) over all α ∈ A such that

dimCXα = i. This completes the inductive construction of the space of “in” states as
a well-defined canonical subspace of the space D(X) of all distributions (on differential
forms) on X.

Recall the hamiltonian H̃λ = Lv + 1
2λ∆ which is the regularized version of our

Hamiltonian Lv. Its “low-lying” eigenfunctions are by definition the eigenfunctions
whose eigenvalues are equal to C + O(λ−1), where C is a constant. We recall that
each of these eigenfunctions is equal to eλf times an eigenfunction of the hermitean
Hamiltonian Hλ given by formula (2.4).

We conjecture that the space Hin appears as the limit of the span of the low-lying

eigenfunctions of the Hamiltonian H̃λ (considered as distributions).

The space Hout of “out” states is defined in the same way, by using the opposite
stratification by the submanifolds Xα, α ∈ A.

Finally, we define a pairing
Hin × Hout → C

〈Φ,Ψ〉 7→
∫

X
Φ ∧ Ψ.
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To see that this integral makes sense, we argue in the same way as in the case of CP1

(see Section 4.6).

4.8. Action of the supercharges and the Hamiltonian. The supercharges of our
theory: Q = d, the de Rham differential, and Q∗ = 2ıv , and the Hamiltonian, H =
Lv = Lξ +Lξ, act naturally on the space Hin, and their adjoints act on Hout. However,

this action is rather complicated because elements of the space Hin are constructed
by a non-trivial regularization procedure. This procedure distorts the action of these
operators and as the result they acquire correction terms. We have analyzed this in the
case of X = CP1 in Section 4.3 and we have seen that as the result of these correction
terms the Hamiltonian is non-diagonalizable. The same happens for general X and ξ
satisfying the assumptions of Section 3.6. From now on we will assume in addition that
X is a projective algebraic variety.

We will now describe a model for the space of “in” states in which the action of the
supersymmetry charges and the Hamiltonian are given by very transparent formulas.
This generalizes the formulas in the case of X = CP1 presented in Section 4.4. The key
ingredients are the Grothendieck-Cousin (GC) boundary operators which act between
the spaces of delta-forms supported on the strata Xα and Xβ of our decomposition,
with Xβ being a codimension one stratum in the closure of Xα. We will write Xα ≻ Xβ

if this is the case. The construction of of these operators is explained in detail in [25],
Sect. 7.

The GC operators act between the spaces of local cohomology of a sheaf F on X
with support on locally closed submanifolds of X. Let us recall the definition of the
functor of local cohomology. Let Z be a closed submanifold of X. We will say that a
section s of a sheaf F on X is supported on Z if its restriction to X\Z is equal to 0.
Let ΓZ(X,F) be the space of sections of F supported on Z. Thus, we obtain a functor
F 7→ ΓZ(X,F). It is left exact, but not right exact. We will denote its higher derived
functors by H i

Z(F). More generally, let Y be a locally closed subset of X such that
Y = Z ′\Z, where Z ⊂ Z ′ are two closed subsets of X. Then we denote by H i

Y (F) the
higher derived functors of ΓZ(X\Z,F|X\Z ).

Using standard technique of homological algebra, we then obtain boundary maps

H i
Y (F) → H i+1

Z (F)

for any sheaf F on X and a pair of closed subsets Z ⊂ Z ′ of X and Y = Z ′\Z (see [25],
Sect. 7, for the precise definition). These are the GS operators that we will need.

Consider the special case when Y is an open subset of X and Z is a divisor. In this
case the GC operator may be described in very concrete terms. For simplicity suppose
that Z is a smooth divisor in a smooth (possibly non-compact) algebraic variety X
such that Z and Y = X\Z are affine algebraic varieties. Suppose that our sheaf F

is a holomorphic vector bundle E on X. Since Y is open and dense in X, we have
H i

Y (E) = H i(Y,E|Y ). From now on we will simply write E for E|Y . Since Y is assumed
to be affine, H i(Y,E) = 0 for i > 0 and H0(Y,E) is the space of (regular) holomorphic
sections of E on Y . On the other hand, consider H1

Z(E), the first local cohomology of
E with support on Z. To define it, choose another smooth divisor Z1 in X such that
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Z ∩ Z1 = ∅ and X\Z1 is affine. Then we have the following exact sequence

0 → H0(X\Z1,E) → H0(X\(Z ⊔ Z1),E) → H1
Z(E) → 0,

which allows us to define H1
Z(E) as the quotient

H1
Z(E) ≃ H0(X\(Z ⊔ Z1),E)/H0(X\Z1,E).

This definition is independent of the choice of Z1 satisfying the above conditions.
Now we define the GC operator corresponding to the pair (Y,Z),

H0(Y,E) → H1
Z(E),

as the composition

(4.13) H0(Y,E) → H0(X\(Z ⊔ Z1),E) → H1
Z(E).

Informally, it corresponds to taking the polar part along Z of meromorphic sections of
E defined on a small neighborhood of Z, which are allowed to have poles only along Z.

For example, if X = CP1, Z = ∞, Z1 = 0, so that Y = C0 = CP1\∞, and E = O is
the trivial line bundle, then

(4.14) H0(Y,E) = C[w−1], H1
Z(O) = C[w,w−1]/C[w],

where w is a function on CP1 which vanishes at ∞ to order one and has a pole of order
one at 0.23 The corresponding GC operator (4.13) is just the natural map

(4.15) C[w−1] → C[w,w−1]/C[w],

obtained by composing the maps

C[w−1] → C[w,w−1] and C[w,w−1] → C[w,w−1]/C[w].

Now let us return to our situation. So we have a projective algebraic variety X of
complex dimension n with a stratification by smooth locally closed strata Xα, α ∈ A,
isomorphic to Cnα . Let E be a holomorphic vector bundle. Then for each stratum Xα

of complex dimension i one defines the local cohomology groups Hn−i
Xα

(E) of E with
support on Xα. One can show that

Hn−i
Xα

(E) = 0, i 6= nα.

so the local cohomology is non-trivial only in dimension n−nα, which is the codimension
of Xα.

How to relate this discussion to our space of “in” states? Recall from Section 3.8
that we have holomorphic factorization

Hin
α = Fin

α ⊗ F
in
α ,

where Fin
α and F

in
α are the spaces of holomorphic and anti-holomorphic delta-forms

supported on Xα, respectively. The point is that Fin
α is precisely the local cohomology

Hn−nα

Xα
(E), for E = ΩX,hol, the sheaf of holomorphic differential forms on X (and

similarly for F
in
α ):

(4.16) Fin
α = Hn−nα

Xα
(ΩX,hol).

23note that we have already encountered this space in our discussion of “holomorphic delta-
functions” in Section 3.7
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Now for each pair of strata such that Xα ≻ Xβ (which means that Xβ is a codimen-
sion one stratum in the closure of Xα) there is a canonical GC operator

δαβ : Hn−nα

Xα
(E) → H

n−nβ

Xβ
(E).

Therefore we obtain canonical maps

δαβ : Fin
α → Fin

β

for all α, β ∈ A such that Xα ≻ Xβ .
Likewise, we have anti-holomorphic analogues of these maps:

δαβ : F
in
α → F

in
β

for Xα ≻ Xβ .
Now we use these maps to write formulas for Q,Q∗ and H. Actually, all of these

operators decompose into sums of holomorphic and anti-holomorphic parts:

Q = d = ∂ + ∂, Q∗ = 2ıv = 2(ıξ + ıξ),

H = Lv = Lξ + Lξ,

and we will write separate formulas for these parts.
Let us choose, as in Section 4.7, a function wαβ on Xα

⊔
Xβ such that Xβ is the

divisor of zeros of wαβ . Once we choose these coordinates, we obtain particular reg-
ularizations of our integrals, as explained in the previous section, and hence we may
identify Hin with the direct sum

⊕
α∈A Hin

α . This gives us a concrete realization of the
space of “in” states, which is more convenient for computations than its more abstract
definition as a subspace of the space of distributions on X. We now describe the ac-
tion of the supersymmetry charges and the Hamiltonian on the space of states in this
realization.

Let

Ψ = (Ψα ⊗ Ψα) ∈
⊕

α∈A

Fin
α ⊗ F

in
α ≃ Hin.

In the same way as in the case of CP1 (see Section 4.4) we obtain the following formulas
for the action of these operators on

∂Ψ = ∂naiveΨ + 2π
∑

β;Xα≻Xβ

δαβ

(
dwαβ

wαβ
∧ Ψα

)
⊗ δαβ(Ψα),(4.17)

∂Ψ = ∂naiveΨ + 2π
∑

β;Xα≻Xβ

δαβ(Ψα) ⊗ δαβ

(
dwαβ

wαβ
∧ Ψα

)
,(4.18)

Lξ = {Lξ, ıξ} = Lξ,naive + 2π
∑

β;Xα≻Xβ

aαβ δαβ ⊗ δαβ,(4.19)

Lξ = {Lξ, ıξ} = Lξ,naive + 2π
∑

β;Xα≻Xβ

aαβ δαβ ⊗ δαβ,(4.20)
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where the numbers aαβ are defined by the formula ξ ·wαβ = aαβwαβ , so that ıξ · dwαβ

wαβ
=

aαβ (see Section 5.5 below where we discuss explicitly the example of X = CP2).
Therefore we find that

H = {d, ıv} = Hnaive + 4π
∑

Xα≻Xβ

aαβ δαβ ⊗ δαβ .

The operators ıξ and ıξ have no correction terms.

The fact that ∂2 = 0 is the consequence of a non-trivial property of the GC operators:
suppose we have four strata Xα,Xβ′ ,Xβ′′ ,Xγ , such that Xα ≻ Xβ′ ≻ Xγ and Xα ≻
Xβ′′ ≻ Xγ . Then we have

(4.21) δβ′γ ◦ δαβ′ = δβ′′γ ◦ δαβ′′

(see [25]). The fact that ∂
2

= 0 is proved in the same way.
While the identification of Hin with the direct sum

⊕
α∈A Hin

α depends on the choice

of the coordinates wαβ , we see that the formulas for the operators ∂ and ∂ depend on
their logarithmic derivatives, and the formulas for the Hamiltonian and its holomorphic
and anti-holomorphic parts only depend on the eigenvalues of ξ on these coordinates.

Thus, we find that, as in the CP1 model, the hamiltonian is non-diagonalizable. It
has off-diagonal terms which are given by the GC operators.

Remark. We want to stress that the appearance of Jordan blocks in the Hamiltonian is
tied up with the assumptions we have made in Section 3.6 about the manifold X being
Kähler and the gradient vector field of the Morse function f coming from a C×-action.
If we allow more general Morse functions, then the spectrum of the Hamiltonian in
our model may (and generically will) be non-degenerate, and hence the Hamiltonian
will be diagonalizable. This is related to the well-known property of the “partie finie”
regularization: the functions x−α, where α is not a positive integer, have canonical
extensions to homogeneous distributions on the line, unlike the functions with α ∈ Z>0

which we discussed above (see [22, 19]).

4.9. Cohomology of the supercharges. A natural application of the above formula
for the supercharge Q is to use it to compute its cohomology on the space Hin of states
of our theory and check that it coincides with H•(X,C).

We compute this cohomology by using a spectral sequence. Consider the filtration
Hin

≤i introduced in Section 4.7. According to formulas (4.17) and (4.18), the supercharge
Q preserves this filtration. Therefore we may compute the cohomology ofQ by using the
spectral sequence associated to this filtration. The 0th term of this spectral sequence
is

(4.22)
⊕

i≥0

Hin
≤i/H

in
≤(i−1) =

⊕

α∈A

Hin
α

Let us compute the 0th differential. We find that the second terms in formulas (4.17)
and (4.18) map Hin

≤i to Hin
≤(i−1). Therefore the corresponding differential on

⊕
α∈A Hin

α

is just the de Rham differential.
It is easy to see from the description of Hin

α given in Section 3.8 that the cohomology
of the de Rham differential acting on Hin

α is one-dimensional, occurring in cohomological
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degree (n− nα, n−nα) and spanned by the delta-form ∆α. Therefore the first term of
our spectral sequence is spanned by the delta-forms ∆α, α ∈ A. We have

Hin
α ≃ Fin

α ⊗ F
in
α ,

where Fin
α and F

in
α are the spaces of holomorphic and anti-holomorphic delta-forms on

Xα, respectively (see Section 3.8). Using local cohomology, we may express them as
follows:

Fin
α = Hn−nα

Xα
(ΩX,hol), F

in
α = Hn−nα

Xα
(ΩX,anti-hol).

With respect to this tensor product decomposition, we have

∆α = ∆hol
α ⊗ ∆anti-hol

α ,

where ∆hol
α and ∆anti-hol

α are generating vectors of Fin
α and F

in
α , respectively, considered

as D-modules.
According to formulas (4.17)–(4.18), the differential d1 of the first term of our spectral

sequence is given by a linear combination of the CS operators:

d1(∆α) = 2π
∑

β;Xα≻Xβ

(
δαβ

(
dwαβ

wαβ
∧ ∆hol

α

)
⊗ δαβ

(
∆anti-hol

)

+ δαβ

(
∆hol

α

)
⊗ δαβ

(
dwαβ

wαβ
∧ ∆anti-hol

))
.

It follows from the definition that ∆hol
α and ∆anti-hol

α extend to all strata Xβ of codi-

mension 1 in the closure of Xα. Therefore δαβ(∆hol
α ) = 0 and δαβ(∆anti-hol

α ) = 0, and
so d1(∆α) = 0. Hence we conclude that d1, as well as all higher differentials of our
spectral sequence, are all equal to zero. Therefore the cohomology is spanned by the
delta-forms ∆α. These form the dual basis to the homology basis represented by the
even-dimensional cycles Xα.

Therefore we conclude that the cohomology of Q acting on Hin
α coincides with the

cohomology of the de Rham differential and is isomorphic to the cohomology of X,
H•(X,C), as expected.

Let us recall that our supercharge Q = d has a canonical decomposition Q = ∂ + ∂.
Therefore it is also interesting to compute the cohomology of the differentials ∂ and ∂
separately. The operators ∂ and ∂ are quantum mechanical analogues of the left and
right moving supercharges in two-dimensional sigma models. According to [23, 43] (see
also [17, 35]), the cohomology of the right moving supercharge is a chiral algebra which
is closely related to the chiral de Rham complex [30] of X. The cohomology of ∂ may
be thought of as a “baby version” of this chiral algebra. The explicit formulas of the
previous section give us an effective tool for computing this cohomology.

This tool is the Grothendieck-Cousin resolution (GC resolution for short). This is a
complex C•(E) =

⊕
i≥0 C

i(E), defined for a holomorphic vector bundle E on X, whose
cohomology coincides with the cohomology of E, considered as a coherent sheaf on X,
H•(X,E). The ith term Ci(E) of the complex is equal to

Ci(E) =
⊕

dim Xα=i

Hn−i
Xα

(E),
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where Hn−i
Xα

(E) is the local cohomology of E with support on Xα that was introduced
in Section 4.8.

The differential δi : Ci(E) → Ci+1(E) is given by the alternating sum of the GC
operators δαβ = δE

αβ : Hn−nα

Xα
(E) → Hn−nα+1

Xβ
(E) introduced in Section 4.8:

(4.23) δi =
∑

β;Xα≻Xβ

ǫαβδαβ ,

where ǫαβ = ±1 are signs chosen so as to ensure that δi+1 ◦ δi = 0. The existence of
such signs follows from the fact that the GC operators satisfy the identity (4.21) if we
have Xα ≻ Xβ′ ≻ Xγ and Xα ≻ Xβ′′ ≻ Xγ .

Under our assumptions on the stratification X =
⊔

α∈AXα the jth cohomology of

the complex C•(E) coincides with Hj(X,E), see [25].
Let us see how this works in the simplest example of X = CP1 and the stratification

CP1 = C0
⊔∞.

Consider first the case when E is the trivial line bundle on CP1. The corresponding
complex C•(O) looks as follows:

H0(C0,O) → H1
∞(O).

We have already determined these spaces in formula (4.14). The resulting complex is
(4.15), where the differential is obtained by composing the maps

C[w−1] → C[w,w−1] and C[w,w−1] → C[w,w−1]/C[w].

It is easy to see that the differential is surjective, and its kernel is one-dimensional
spanned by the constants in C[w−1]. This coincides with the cohomology of O on CP1.

More generally, suppose that E is the line bundle O(n), n ∈ Z. Then we can trivi-
alize this line bundle on C0 and C∞, and the transition function is wn. We still have
the identifications (4.14), but now the GC operator is the map (4.15) obtained by
composing the embedding C[w−1] → C[w,w−1], multiplication by wn, and the projec-
tion C[w,w−1] → C[w,w−1]/C[w]. As the result, the kernel and the cokernel of the
GC operator change: if n ≥ 0, then the kernel is (n + 1)-dimensional, spanned by
1, w−1, . . . , w−n, and the cokernel is zero. If n < −1, then the kernel is zero, and the
cokernel is spanned by w−1, . . . , wn+1. If n = −1, then both kernel and cokernel are
zero. Again, we find the agreement with the cohomology H i(CP1,O(n)).

Now we use the GC complex to compute the cohomology of the anti-chiral super-
charge ∂. We compute this cohomology using the spectral sequence associated to the
same filtration that we used in the above computation of the cohomology of Q. The
0th term of the spectral sequence is again (4.22) and the 0th differential is the operator
∂ acting on this space. Now recall that each of the summands in the direct sum (4.22)
factorizes into the tensor product

Hin
α = Fin

α ⊗ F
in
α .

The operator ∂ acts along the second factor F
in
α . It is easy to see that its cohomology

is one-dimensional, spanned by the generator ∆anti-hol
α of F

in
α , which is in cohomological
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dimension n − nα. Therefore we obtain that the first term of the spectral sequence is
concentrated in the 0th row, and the terms in this row are isomorphic to

Ei,0
1 ≃

⊕

α∈A;i=n−nα

Fin
α ⊗ ∆anti-hol

α .

According to formula (4.18), the action of the differential ∂1 of the first term of the
spectral sequence is given by the formula

∂1(Ψα ⊗ ∆anti-hol
α ) = 2π

∑

β;Xα≻Xβ

δαβ(Ψα) ⊗ δαβ

(
dwαβ

wαβ
∧ ∆anti-hol

α

)
.

However, it follows from the definitions that we can normalize the states ∆anti-hol
α in

such a way that

δαβ

(
dwαβ

wαβ
∧ ∆anti-hol

α

)
= ǫαβ∆anti-hol

β ,

where the sign ǫαβ = ±1 is due to the fact that we obtain ∆anti-hol
β by multiplying

∆anti-hol
α with dwαβ , and so for fixed β and varying α we obtain different signs in

general.
Let us now identify the (i, 0) group of the first term of the spectral sequence with

Ei,0
1 =

⊕

α∈A;i=n−nα

Fin
α

by Ψα ⊗ ∆anti-hol
α 7→ Ψα. Recall that according to formula (4.16) we have

Fin
α = Hn−nα

Xα
(ΩX,hol),

where ΩX,hol =
⊕

j≥0 Ωj
X,hol is the sheaf of holomorphic differential forms. Thus,

Ei,0
1 =

⊕

α∈A;i=n−nα

Hn−nα

Xα
(ΩX,hol)

is precisely the ith term of the GC complex associated with ΩX,hol. Moreover, we find

that the first differential ∂
i
1 : Ei,0

1 → Ei+1,0
1 of our spectral sequence is given by the

following formula: for Ψ = (Ψα) ∈ Ei,0
1 we have (up to the inessential factor of 2π)

∂1(Ψ) =
∑

β;Xα≻Xβ

ǫαβδαβ(Ψα).

This is precisely the differential (4.23) of the GC complex C•(ΩX,hol) associated with
the sheaf ΩX,hol. Since the GC complex computes the cohomology of this sheaf, we

find that the cohomology of ∂1 is equal to

H i(X,ΩX,hol).

Recall that the first term of our spectral sequence has only one row. Therefore the
spectral sequence collapses in the first term, and we find that this is in fact the answer
for the cohomology of ∂ on Hin.
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Since X is Kähler, we have

Hk(X,C) ≃
⊕

i,j≥0

Hj,i, Hj,i = H i(X,Ωj
X,hol).

Thus, the cohomology of the space Hin of ”in” states with respect to the anti-chiral su-
percharge ∂ is isomorphic to the cohomology of X, but with the cohomological grading
coming from the anti-holomorphic cohomological degrees of differential forms. How-
ever, the holomorphic cohomological degree is preserved by ∂, so we could consider it as
an extra grading on our complex. Thus, we find that the cohomology of the anti-chiral
supercharge ∂ coincides with the cohomology of the full supercharge Q. In Section 6.3
we will generalize this result to a class of non-supersymmetric models.

5. Action of observables on the space of states

In the previous section we described the space of states of our quantum mechanical
model in the limit λ = ∞. We have seen that there are actually two spaces: Hin

and Hout and that their structure is dramatically different from the usual structure in
hermitean quantum mechanics. The reason is that before we pass to the limit λ→ ∞ we
make a violent transformation of the states: the “in” states are multiplied by eλf , and
the “out” states are multiplied by e−λf . In contrast, the observables of our theory are
getting conjugated by the function eλf . There is a large class of observables, namely, all
evaluation observables introduced in Section 2.4 (corresponding to smooth differential
forms on X), which commute with eλf . Those remain intact in the limit λ→ ∞. This
immediately leads to the question: how do these observables act on the spaces of states,
Hin and Hout?

This is the question that we take up in this section, first in the case of CP1 and
then in the general case. We will see that analytic properties of the observables play
an important role in the limit λ → ∞. We will also see that factorization of the
correlation functions over intermediate states leads to some non-trivial identities on
analytic differential forms.

5.1. The case of CP1. The spaces of states in this case have been described in great
detail in the previous sections. The space Hin has a basis consisting of the states

(5.1) |n, n, p, p〉C0 and |n, n, p, p〉∞,
and the space Hout has a basis consisting of the states

(5.2) 0〈n, n, p, p| and C∞〈n, n, p, p|.
Recall that we have defined the vectors in Hin

C0
and Hout

C∞
by using particular regular-

izations of the integrals of the differential forms znzn(dz)p(dz)p and wnwn(dw)p(dw)p,
respectively, as explained in Section 4.2 (recall that z is a coordinate at 0 ∈ CP1, and
w = z−1 is a coordinate at ∞). We have seen in Section 4.6 that if we choose the
“cutoffs” appearing in these regularized integrals in a compatible way (|z| < ǫ−1 in the
first case, |w| < ǫ−1 in the second case), then we have

C∞〈n, n, p, p|n, n, p, p〉C0 = 0,
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and so the bases (5.1) and (5.2) are dual to each other (up to powers of i). We will use
this property in what follows. If one were to choose regularizations of “in” and “out”
states independently, then some of our formulas below would need to be modified to
account for that.

The action of the evaluation observable ω̂ corresponding to a smooth differential
form on CP1 on Hin and Hout may be found from the matrix coefficients

〈Ψout|ω̂|Ψin〉.
It follows from our construction that this matrix coefficient is equal to the integral

∫
Ψout ∧ ω ∧ Ψin,

understood in the same way as in Section 4.6.
This allows us to compute explicitly the action of the evaluation observables. For

example, consider the case when ω is a smooth (r, r)-differential form on CP1, and write

ω = ωzz(z, z)(dz)
r(dz)r = ωww(w,w)(dw)r(dw)r,

so that

ωww(w,w) = (−1)r+rωzz(w
−1, w−1)w−2rw−2r

(we recall our convention (3.16)).
Then we find from the above formula that

ω̂|n, n, p, p〉C0 = (−1)pr
∞∑

m,m=0

1

m!m!
∂m

z ∂
m
z (ωzzz

nzn)

∣∣∣∣
z=0

|m,m, p+ r, p + r〉C0

+(−1)p+p+pr
∞∑

m,m=0

∫
\

|w|<ǫ−1

ωww wm−n−2pwm−n−2pdwdw |m,m, p+ r, p + r〉∞

and

ω̂|n, n, p, p〉∞ = (−1)pr 1

n!n!

n∑

m=0

n∑

m=0

∂n
w∂

n
w(ωwww

mwm)

∣∣∣∣∣
w=0

|m,m, p + r, p+ r〉∞.

Here we use the convention that a state is equal to zero if at least one of its indices
takes a value that is not allowed.

Likewise, we find that

C∞〈n, n, p, p|ω̂ = (−1)pr
∞∑

m,m=0

1

m!m!
∂m

w ∂
m
w (ωwww

nwn)

∣∣∣∣
w=0

C∞〈m,m, p + r, p + r|

+(−1)p+p+pr
∞∑

m,m=0

∫
\

|z|<ǫ−1

ωzz z
m−n−2pzm−n−2pdzdz 0〈m,m, p + r, p+ r|

and

0〈n, n, p, p|ω̂ = (−1)pr 1

n!n!

n∑

m=0

n∑

m=0

∂n
z ∂

n
z (ωzzz

mzm)

∣∣∣∣∣
z=0

0〈m,m, p+ r, p + r|.
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The right hand sides of these formulas, as well as the other formulas that appear
below, are in general infinite linear combinations of our states. This means that they
are really vectors in the completions of the spaces Hin and Hout, which are the direct
products of the (finite-dimensional) generalized eigenspaces with respect to Lξ and
Lξ. However, these naive completions are too big, and we would like to define some

more reasonable subspaces whose elements possess some analytic properties. Here is

a possible definition of such a completion H̃in
C0

of Hin
C0

: take the space of all analytic
differential forms on C0 which grow not faster than a polynomial at ∞. It contains the
monomials znzndzpdzp that we have considered previously and the products of znzn

with analytic differential forms on CP1. The expansion of such a form at z = 0 gives
rise to a (possibly infinite) linear combination of our monomial states. The completion
of Hin is then defined as the sum of Hin

∞ and the subspace of the space of distributions

on CP1 spanned by all possible regularizations of elements of H̃in
C0

. This completion

of Hin contains, in particular, all finite linear combinations of the derivatives of the
δ-forms supported at ∞ as well as some of their infinite linear combinations.

The completion of Hout is defined in a similar way. However, we note that the
pairing between Hin and Hout does not extend to a pairing between their completions.
Instead, we have a weaker property. For example, for a two-form ω in the completion of
Hout and a zero-form f in the completion of Hin the pairing 〈ω, f〉 will in general be a
divergent infinite sum. But the pairing 〈ω, φ∗(q)(f)〉, where φ∗(q)(f)(z, z) = f(qz, qz)
should converge if 0 < |q| < δ for sufficiently small δ > 0 (which depends on ω and f).
We will observe a similar phenomenon in the next section when we discuss factorization
of the correlation functions.

5.2. Correlation functions and their factorization over intermediate states.

We now compare the above formulas for the matrix elements of evaluation observables
attached to differential forms on CP1 with the exact expression (2.21) for the correlation
functions of these observables.

We recall that in general correlation functions are labeled by pairs of critical points
x−, x+ corresponding to the choice of the “in” and “out” vacua. The corresponding path
integral is given by the integral over the moduli space Mx−,x+ of gradient trajectories
of the differential forms on X, pulled back to Mx−,x+ via the evaluation maps.

In our case X = CP1, there are two critical points: 0 and ∞, and there are three
moduli spaces. Two of them, M0,0 and M∞,∞, consist of a single point. They corre-

spond to constant maps (taking the value 0 and ∞ in CP1, respectively). The only
non-trivial moduli space is M0,∞ which corresponds to the only possible instanton
transition: gradient trajectories going from x− = 0 to x+ = ∞. This moduli space is
isomorphic to C×, which is naturally isomorphic to the subset CP1\{0,∞} under the
evaluation at t = 0 map ev0. Thus, it has a natural compactification isomorphic to
X = CP1.

Consider the two-point function of the evaluation observables ω̂ and F̂ , where ω is
a smooth two-form on CP1 and F is a smooth function on CP1. Let us insert ω̂ at the
time t1 ∈ R and ω̂ at the time t2 < t1. Then the corresponding correlation function is
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equal to

(5.3) ∞〈ω̂(t1)F̂ (t2)〉0 =

∫

CP
1
ω φ(e−t)∗(F ),

where (φ(e−t)∗(F ))(z, z) = F (qz, qz) with q = e−t ∈ R× and t = t1 − t2.
Actually, it would be convenient to break H = Lv into the sum H = Lξ + Lξ where

ξ = z∂z and ξ = z∂z and to allow t1, t2 and t = t1 − t2 to be complex:

(5.4) ∞〈ω̂(t1)F̂ (t2)〉0 =

∫

CP
1
ωφ(e−t)∗(F ),

where (φ(e−t)∗(F ))(z, z) = F (qz, qz) with q = e−t, q = e−t. If t is real, then we recover
formula (5.3).

The right hand side of formula (5.4) is the answer that we obtain from the Lagrangian,
or path integral, formulation of the model. On the other hand, we may compute
the same correlation function from our Hamiltonian formulation. In the hamiltonian
realization the vacuum “in” state corresponding to the critical point 0 is

|0〉C0 = |0, 0, 0, 0〉C0 ,

and the covacuum “out” state corresponding to the critical point ∞ is

C∞〈0| = C∞〈0, 0, 0, 0|.
Therefore the same correlation function should be equal to the matrix element

(5.5) ∞〈ω̂(t)F̂ (0)〉0 = C∞〈0|ω̂e−tLξ−tL
ξF̂ |0〉C0 .

We evaluate this matrix element using the formulas for the action of the observables
on the states obtained in the previous section for the action of Lξ and Lξ on the states

obtained in Section 4.3.
We have

F̂ |0〉C0 =

∞∑

m,m=0

1

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

|m,m, 0, 0〉C0

+

∞∑

m,m=0

∫
\

|w|<ǫ−1

F wmwmdw ∧ dw |m,m, 0, 0〉∞.

Next, we find using formulas (4.8) and (4.9) that

e−tLξ−tL
ξ F̂ |0〉C0 =

∞∑

m,m=0

qmqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

|m,m, 0, 0〉C0

− 2π log(qq)

∞∑

m,m=1

qmqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

|m− 1,m− 1, 0, 0〉∞

+
∞∑

m,m=0

qm+1qm+1

∫
\

|w|<ǫ−1

F wmwmdw ∧ dw |m,m, 0, 0〉∞.
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On the other hand, writing ω = ωwwdwdw = ωzzdzdz, we obtain that

C∞〈0|ω̂ =
∞∑

m,m=0

1

m!m!
∂m

w ∂
m
w ωww

∣∣∣∣
w=0

C∞〈m,m, 1, 1|

+
∞∑

m,m=0

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz 0〈m,m, 1, 1|.

Therefore the right hand side of (5.5) is equal to

C∞〈0|ω̂e−tLξ−tL
ξ F̂ |0〉C0 =

∞∑

m,m=0

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz · q

mqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

+ qq
∞∑

m,m=0

qmqm

m!m!
∂m

w ∂
m
w ωww

∣∣∣∣
w=0

·
∫
\

|w|<ǫ−1

F wmwmdwdw

− 2π log(qq)

∞∑

m,m=1

1

(m− 1)!(m − 1)!
∂m−1

w ∂m−1
w ωww

∣∣∣∣
w=0

· q
mqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

.

Combining this formulas with formula (5.4) obtained using the path integral,

C∞〈0|ω̂e−tLξ−tL
ξ F̂ |0〉C0 =

∫

CP
1
ωF (qz, qz),

we arrive at the following identity:
∫

CP
1
ωF (qz, qz) =

∞∑

m,m=0

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz · q

mqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

+ qq
∞∑

m,m=0

qmqm

m!m!
∂m

w ∂
m
w ωww

∣∣∣∣
w=0

·
∫
\

|w|<ǫ−1

F wmwmdwdw(5.6)

− 2π log(qq)

∞∑

m,m=1

1

(m− 1)!(m − 1)!
∂m−1

w ∂m−1
w ωww

∣∣∣∣
w=0

· q
mqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

.

Note that the identity (5.6) may also be rewritten in the following way:
∫

CP
1
ωF (qz, qz) =

∞∑

m,m=0

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz · q

mqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

+ qq
∞∑

m,m=0

qmqm

m!m!
∂m

w ∂
m
w ωww

∣∣∣∣
w=0

·
∫
\

|w|<q−1ǫ−1

F wmwmdwdw.(5.7)

The terms with log |q|2, which appeared in the third term of (5.6) are now hidden in the
definition of the “partie finie” regularization of the integral in the second term: instead
of the “cutoff” |w| < ǫ−1 as in (5.6) we are now using the “cutoff” |w| < q−1ǫ−1.
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These identities express the factorization of the two point correlation functions over
intermediate states. Indeed, assuming for simplicity that t is real, we rewrite it as
follows:

(5.8) 〈0|ω̂e−tH F̂ |0〉 =
∑

ν

〈0|ω̂|Ψν〉〈Ψ∗
ν |e−tH F̂ |0〉 =

=
∑

µ,ν

〈0|ω̂|Ψν〉〈Ψ∗
ν |e−tH |Ψµ〉〈Ψ∗

µF̂ |0〉,

where {Ψµ} and {Ψ∗
µ} are dual bases of the spaces of “in” and “out” states, respec-

tively. Identities of this type are taken for granted in conventional (i.e., CPT-invariant)
quantum mechanics, where the space of states is a Hilbert space, so that we may take
as {Ψµ} and {Ψ∗

µ} a complete orthonormal basis. However, our model is not CPT-
invariant, and so we do not have the structure of Hilbert space on the space of states.
Instead, we have two distinct spaces of “in” and “out” states and a pairing between
them. Because of that, identity (5.6) is more subtle, as we will see in the next section.
It requires that F and ω be analytic, and also the equality should be understood in the
sense that the right hand side is the q, q-power series expansion of the left hand side in
the domain 0 < |q| < δ for some δ which depends on F and ω. Before discussing these
subtleties, we point out some salient features of this identity.

The most important feature of the identity (5.6) is the appearance of the logarithms
of q and q in the right hand side. If the operators Lξ and Lξ and the Hamiltonian

were diagonalizable, then the right hand side would be a power series in q = e−tLξ and

q = e−tL
ξ . But identity (5.6) shows that there are also the terms involving log q and

log q. This means that the operators Lξ and Lξ, and the Hamiltonian H = Lξ + Lξ,

are not diagonalizable, but have Jordan blocks.
This leads us to the following conclusion: the logarithmic nature of our model,

which manifests itself in the fact that the Hamiltonian has Jordan block structure,
can be detected from, and is in fact dictated by the correlation functions of evaluation
observables. These correlation functions are given by a simple and explicit formula
(2.21). Applying this formula to various observables of our model, we find logarithmic
terms in q and q, which implies that the Hamiltonian is not diagonalizable.

However, it is important to stress that in order to observe these “logarithmic effects”
at least one of our observables should be a non-BPS observable, i.e., not be annihilated

by the supercharge Q. If both F̂ and ω̂ were BPS observables, i.e., Q-closed, then the
one-point functions appearing in the right hand side of formula (5.8) would be non-zero
only when the intermediate states Ψµ,Ψν are the BPS states (i.e., the vacuum states).
On such states the Hamiltonian is diagonalizable, so we would not be able to observe
the logarithmic terms. Since Q acts as the de Rham differential and ω is a two-form,

we find that ω̂ is Q-closed. However, F̂ is not Q-closed if F is non-constant (if it were
constant, then the logarithmic terms in (5.6) would indeed disappear).

Thus, we can discover the structure of the space of states of the theory, and in
particular, the existence of the Jordan blocks of the Hamiltonian, only if we consider
correlation functions of non-BPS observables. This is one more reason for considering
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correlation functions beyond the topological sector of the theory: one simply cannot
observe these important features of the model within the topological sector.

One can write similar identities for n-point correlation functions of evaluation ob-
servables with n > 2.

5.3. Analytic aspects of the identity. We now analyze identity (5.6) in more detail.
There are two important aspects that we notice right away. The first one is that it
does not hold for differential forms/functions that are not analytic at the points 0 and
∞. Indeed, suppose that all derivatives of F vanish at the point 0 (i.e., at z = 0), and
all derivatives of ωww vanish at the point ∞ (i.e., when w = 0). Then the right hand
side of (5.6) is equal to 0, but the left hand side may well be non-zero.

Thus, from now on we will assume that F and ω are analytic. For the function F
this means that for each point x ∈ CP1 there is a small neighborhood of x in which F is
equal to its Taylor series expansion in zx, zx (where zx is a holomorphic coordinate at
x). In other words, this means that the real and imaginary components of the function
F are real-analytic (this does not mean that F is holomorphic!). For the two-form ω
this means that the functions ωww and ωzz are analytic on C∞ and C0, respectively.

We conjecture that the identity (5.6) holds whenever F and ω are analytic on CP1,
in the sense that the right hand side is a q, q-series expansion of the left hand side,
which converges in the punctured disc 0 < |q| < δ for some δ > 0 depending on F and
ω.

We also expect that the left hand side is an analytic function in q, q on C×.
In what follows we present some evidence for this conjecture. We start by proving it

for a large class of analytic functions and differential forms which may be represented
as follows:

ω =
∑

α

̟α

zz +Rα
dzdz, F =

∑

β

fβ

zz +Qβ
,

where Rα, Qβ ∈ C\R≤0, and the condition

(5.9)
∑

α

̟α = 0

is satisfied to ensure that ω is well-defined at z = ∞.
Let us compute the left hand side of the identity (5.6). To this end we need to

compute the integral of the form
∫

CP
1

1

zz +Rα

1

|q|2zz +Qβ
dzdz.

By making a charge of variables z =
√
xeiθ, we rewrite this as

2π

∫ ∞

0

1

(x+Rα)(|q|2x+Qβ)
dx.

Next, we represent it as a contour integral of

−i log(−x) 1

(x+Rα)(|q|2x+Qβ)
dx,
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over the contour that goes along the real axis from +∞ to ǫ, then goes counter-clockwise
around 0 and then along the real axis from ǫ to ∞, in the limit when ǫ→ 0. The latter
is evaluated as the sum of residues of the integrand in the complex plane, and we obtain
the following answer:

(5.10)

∫

CP
1
ωF (qz, qz) = −2π

∑

α,β

̟αfβ
log(|q|2Rα/Qβ)

Qβ − |q|2Rα
.

Now we compute the right hand side. Using formula (4.6), we find that

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz = 2π(−1)m+1δm,m

∑

α

̟αR
m
α logRα.

Similarly, we obtain that

∫
\

|w|<ǫ−1

F wmwmdwdw = 2π(−1)m+1δm,m

∑

β

fβQ
−m−2
β logQβ.

On the other hand, we have

1

m!m!
∂m

w ∂
m
w ωww

∣∣∣∣
w=0

= (−1)m+1δm,m

∑

α

̟αR
m+1
α ,

1

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

= (−1)mδm,m

∑

β

fβQ
−m−1
β .

Substituting these expressions into the right hand side of formula (5.6) and using the
condition (5.9), we obtain the following series

−2π
∑

α,β

̟αfβ

∞∑

m=0

Q−m−1
β Rm

α |q|2m(logRα − logQβ + log |q|2).

But this is precisely the |q|-series expansion of (5.10), which converges to (5.10) for all
non-zero q inside the disc of radius min

α,β
{|Qβ|/|Rα|}. Note that this is true if and only

if the condition (5.9) holds which is needed to make ω well-defined at z = ∞. So it
appears that the identity (5.6) somehow “knows” about this condition.

Thus, we discover an interesting phenomenon: the factorization identity (5.6) should
be understood in the analytic continuation sense. Namely, the right hand side is the
expansion of the left hand side in powers of q, q (note, however, that it also includes
terms with log |q|2), which converges in the domain 0 < |q| < δ for some δ which
depends on the choice of F and ω. Moreover, we expect that the left hand side of (5.6)
is an analytic function in q for all q ∈ C×.
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In the same way as above we prove the identity (5.6) in the more general case of F
and ω of the form

ωn,n =
∑

α

̟α
znzn

zz +Rα
dzdz,(5.11)

fm,m =
∑

β

fβ
zmzm

zz +Qβ
,(5.12)

where the Rα’s and Qβ’s are in C\R≤0. The numbers ̟α and Rα (resp., fβ and Qβ)
should also satisfy some conditions which ensure that ω (resp., F ) is well-defined at
z = ∞. In the same way as above we obtain that the left hand side of (5.6) is given by
the formula

2πδn+m,n+mq
mqm(−1)n+m+1

∑

α,β

̟αfβ
Rn+m

α log (Rα) −
(
Qβ|q|−2

)n+m
log
(
Qβ|q|−2

)

Qβ − |q|2Rα
,

and the right hand side of (5.6) is equal to the q, q-series expansion of the left hand
side.

Thus, we have now checked the validity of the identity (5.6) for a large class of
functions and two-forms.

It is important to realize that we could reverse our calculation. Namely, after com-
puting the integral

∫
CP

1 ωF (qz, qz) we could expand it in a power series in q, q and
interpret the result as the formula for the factorization of the two-point correlation
function of ω and F over intermediate states, as in equation (5.8). This determines
completely the matrix elements of F between the vacuum |0〉C0 and generic “out” states,
and matrix elements of ω between the covacuum C∞〈0| and generic “in” states. Thus,
we could start with the two-point, and more generally, n-point correlation functions
of evaluation observables, which are given by explicit integrals over moduli spaces of
instantons, and use them to derive the matrix elements of these observables acting on
the space of states. In particular, this way we find that the Hamiltonian of our model is
non-diagonalizable. Moreover, we can estimate the maximal size of the Jordan blocks
(the maximal power of the logarithm of q plus 1). This points to an effective strategy
for determining matrix elements from the correlation functions, which can be applied
to more general models, such as two-dimensional sigma models and four-dimensional
Yang-Mills theory that we will discuss in Part II. Again, we stress that in order to
obtain non-trivial results we must consider non-BPS observables.

To conclude this section, we point out another case when the identity (5.6) obviously
holds. Namely, suppose that F is analytic, but ωz,z has compact support on the complex

plane C0 = CP1\∞, i.e., away from the point z = ∞ (thus, ω is not analytic, and so
this is not a special case of our conjecture). Then there exist positive numbers R and
r such that ωzz ≡ 0 for all z such that |z| > R, while F is equal to its Taylor series
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expansion in the disc |z| < r. In this case for all 0 < |q| < r/R we have
∫

CP
1
ωF (qz, qz) =

∫

|z|<R
F (qz, qz)ωzzdzdz

=
∞∑

m,m=0

qmqm

m!m!
∂m

z ∂
m
z F

∣∣∣∣
z=0

·
∫

CP
1
ωzzz

mzmdzdz.

Thus, the left hand side of (5.6) is equal to the q, q-series expansion of the first term in
the right hand side, while the second and the third terms vanish. Therefore the identity
(5.6) holds in this case.

In the same way we prove the identity with the roles of F and ω reversed, i.e.,
assuming that F has compact support away from z = 0 while ω is analytic at z = ∞.

Remark. It is interesting to investigate what will happen if we allow smooth but non-
analytic observables in the spectral decomposition of the correlation functions. For
example, consider the correlation functions of the evaluation observables whose support
does not contain the critical points of the Morse function.

Let us pass to the coordinates in which the gradient vector field looks like a transla-
tion in one of them, say,

v = ∂t.

For simplicity, suppose that the observables are independent of the remaining coordi-
nates. Then the correlation function reduces to a one-dimensional integral over the
t-line. For example, if we have two observables, giving rise to a one-form ω = ω(t)dt
and a function f(t) on the t-line, then the correlation function will look like this:

C(q) =

∫ +∞

−∞
ω(t)f(t+ log(qq))dt.

This integral converges because we have assumed that f and ω have compact support
on the complement to the set of critical points (which in the model example consists
of the points t = ±∞). Clearly, in this case the decomposition of C(q) as a sum of the
contributions of the eigenstates of the Hamiltonian looks as the integral

C(q) =

∫
dk

2π
eiklog(qq)Ĉf,ω(k),

with

Ĉf,ω(k) = f̂(−k)ω̂(k)

being the product of the Fourier transforms of f and ω. Formula (5.3) implies that the
spectrum of the Hamiltonian contains a continuous part, with the eigenvalues given by

Ek = ik,

i.e., purely imaginary!
Thus, we are facing a dilemma: either these compactly supported functions and

forms require a new, infinite-dimensional, sector in the space of states, or, by some
sort of resummation, they are already included in the space of states that we have
constructed.
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It is instructive to reconsider from this point of view the example of the harmonic
oscillator, i.e., the quantum mechanical model on C, with the quadratic Morse function.
We have analyzed in detail the λ → ∞ limit of the full set of the eigenstates of the
Hamiltonian in Section 3.3, and we did not see any need for the continuous imaginary
spectrum. How could it be that the functions with compact support not containing zero
are included in the space of states built from polynomials? Physically, the explanation
is the following. For λ = ∞ the evolution looks like a constant velocity motion in the
logarithmic coordinate t. However, once λ becomes finite, there is an admixture of

diffusion, caused by the term 1
2λ∆ in the Hamiltonian H̃λ. What is more important,

this diffusion takes place in the linear, as opposed to the logarithmic, coordinates.
Roughly speaking, the evolution during some time T spreads the initially localized

object as ∼
√

T
λ ≫ e−T , for large T . Thus, even if we start with a distribution with

compact support not containing zero, the critical point, the diffusion will spread it so
it will contain zero. Once this has happened, the resulting distribution can be well-
approximated by the Taylor series at zero, i.e., by the wave functions from our space
of states.

Another point worth mentioning is that the wave functions of the Hamiltonian Lv

corresponding to the imaginary eigenvalues are not smooth at the critical points. For
instance, in the case of the CP1 model, where v is the Euler vector field, these eigen-
functions have the form |z|ik. When we deform away from the point λ = ∞, we add the
term λ−1∆ to the Hamiltonian. If these eigenfunctions were present in the spectrum,
then we would be able to deform them to eigenfunctions of the deformed Hamiltonian.
But applying ∆ to |z|ik, we obtain a function which has poles at the critical points, and
this shows that it cannot be deformed to a smooth eigenfunction of the Hamiltonian in
perturbation theory in λ−1.

Let us mention, however, that in Part II of this article, when we discuss the quantum
mechanical models on non-simply connected manifolds, we shall see some version of
the ”imaginary” space of states. Its appearance (in a much more tame form, with
discrete spectrum) will be related to the existence of gradient trajectories which go
from ”nowhere to nowhere”, i.e., never terminate. But this is only possible for Morse-
Novikov, i.e. multivalued, functions.

5.4. Interpretation as an expansion of the delta-form on the q-shifted di-

agonal. The identity (5.6) expresses the factorization over intermediate states of the
two-point correlation function of evaluation observables, one of which is a function and
the other is a two-form. But we could consider instead the correlation functions of two
one-forms, or to switch F and ω (so that C× acts on the two-form rather than the
function). In each case we obtain a similar identity.

It is instructive to think of all of these identities as expressing the delta-form sup-
ported on the “q-shifted diagonal” in CP1 × CP1 in terms of distributions along the
first and the second factors. More precisely, consider the submanifold

Diagq = {(x, y) ∈ CP1 × CP1 | y = qx} ⊂ CP1 × CP1

Note that qx simply means the point obtained by acting on x ∈ CP1 with q ∈ C×. This
is the q-shifted diagonal. Now let ∆q be the delta-form (of degree two) supported on
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Diagq. Note that ∆q is precisely the kernel of the evolution operator in our quantum

mechanical model on CP1.
Observe that

(5.13)

∫

CP
1×CP

1

∆q ∧ (ω ⊗ F ) =

∫

CP
1

ωφ(q)∗(F ),

where (φ(q)∗(F ))(z, z) = F (qz, qz), is precisely the two-point function appearing in the
left hand side of the identity (5.6). Likewise, if we take two one-forms η1 and η2 on
CP1, then we have

(5.14)

∫

CP
1×CP

1

∆q ∧ (η1 ⊗ η2) =

∫

CP
1

η1 ∧ φ(q)∗(η2),

and similarly for a function and a two-form switched:

(5.15)

∫

CP
1×CP

1

∆q ∧ (F ⊗ ω) =

∫

CP
1

Fφ(q)∗(ω).

In these formulas, given differential forms ω1 and ω2 on CP1, we denote by ω1 ⊗ω2 the
corresponding differential form on CP1 × CP1.

The identities discussed above correspond to an expansion of different components
of the distribution ∆q. More precisely, ∆q is the sum of three components which are

differential forms of degrees (0, 2), (1, 1), and (2, 0) on CP1 × CP1. The expansion of
each of them gives rise to the three identities considered above.

For example, consider the (0, 2) part of ∆q which we will denote by ∆
(0,2)
q . This is the

part which contributes to the integral (5.13). Let zϕ̃n,n and wϕ̃n,n be the distributions

on CP1 defined by the formulas

zϕ̃
ǫ
m,m(ω) =

∫
\

|z|<ǫ−1

ωzz z
mzmdzdz, ω ∈ Ω2(CP1),

wϕ̃
ǫ
m,m(F ) =

∫
\

|w|<ǫ−1

F wmwmdwdw, F ∈ Ω0(CP1).

Given two distributions ϕ, φ on CP1, we will denote by ϕ⊗ φ the corresponding distri-
bution on CP1 × CP1.

Then the identity (5.6) may be rewritten as follows:

∆(0,2)
q =

∞∑

m,m=0

qmqm
zϕ̃

ǫ
m,m ⊗ 1

m!m!
(−∂z)

m(−∂z)
mδ(2)(z, z)dzdz

+ qq

∞∑

m,m=0

qmqm 1

m!m!
(−∂w)m(−∂w)mδ(2)(w,w) ⊗ wϕ̃

ǫ
m,m(5.16)

− 2π log(qq)

∞∑

m,m=1

qmqm ∂m−1
w ∂m−1

w

(m− 1)!(m − 1)!
δ(2)(w,w) ⊗ ∂m

z ∂
m
z

m!m!
δ(2)(z, z)dzdz.
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One needs to be careful in interpreting this identity. Since we expect the identity (5.6)
to be true only for analytic functions, it is natural to consider (5.16) as an identity in
the space of hyperfunctions on CP1×CP1.24 We recall that the space of hyperfunctions
is the dual space to the space of analytic functions, equipped with an appropriate
topology. We will use the term “hyperfunction” in the broader sense as an element of
the dual space to the space of analytic differential forms. The right hand side of (5.16)
should be understood as a q, q-expansion of the left hand side, as in the case of the
identity (5.6), which converges for 0 < |q| < δ for some real δ > 0. It is clear that
applying (5.6) to the differential form ω ⊗ F on CP1 × CP1 we obtain (5.6).

Likewise, there are similar identities on the components of degrees (1, 1) and (2, 0)
in ∆q. Those contribute to the integrals (5.14) and (5.15), respectively, and give rise
to the corresponding identities.

One may wonder whether there is a simplified analogue of the identity (5.16) in the
case of the target manifold X = C. There is indeed such an analogue, which is however
more restrictive due to the non-compactness of C. Nevertheless, it is instructive to look
at this identity.

The analogue of the q-shifted diagonal in this case is just the line y = xq in C × C,
and the corresponding delta-form is just

∆q = δ(2)(y − xq, y − qx)d(y − xq) ∧ d(y − qx),

which is the kernel of the evolution operator of our model that we discussed in Sec-
tion 3.4. It appears as the λ→ ∞ limit of the kernel Kt,t of the model at finite λ (see

formula (3.21)). Let us look at its (0, 2) component, which reads

δ(2)(y − xq, y − qx)dy ∧ dy.
The naive Taylor series expansion of this distribution looks as follows:

(5.17)
∞∑

m,m=0

qmqm xmxm ⊗ 1

m!m!
(−∂y)

m(−∂y)
mδ(2)(y, y)dy ∧ dy.

This formula may be interpreted in the following way. Let ω be a two-form on C

with compact support and F a function that is analytic at 0 ∈ C. Then for sufficiently
small q the series

∞∑

m,m=0

qmqm

∫
xmxmω · 1

m!m!
∂m

y ∂
m
y F

∣∣∣∣
y=0

,

obtained by applying (5.17) to ω ⊗ F , converges to the integral
∫

C×C

∆q ∧ (ω ⊗ F ) =

∫

C

ωφ(q)∗(F ).

The (1, 1) and (2, 0) parts of the decomposition of ∆q have a similar structure and
interpretation. The decomposition of ∆q obtained this way may be viewed as the
λ→ ∞ limit of the decomposition of the kernel of the evolution operator Kt,t in terms
of the orthonormal basis of eigenstates of the Hamiltonian, which is given in formula

24we thank P. Schapira and K. Vilonen for discussions of our identity in the context of hyperfunctions
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(3.20). However, because we do not have the structure of Hilbert space on our space
of states at λ = ∞, this decomposition becomes more subtle: it has to be understood
in the sense of analytic continuation and the observables are required to have some
analytic properties.

Thus, we see that an analogue of the identity (5.6) in the case of X = C may be
obtained simply by applying a Taylor series expansion to the delta-form supported on
the q-shifted diagonal. While it seems very easy to derive it, its validity is very limited
because C is not compact. Indeed, for the integral to converge we need to make an
additional assumption of compactness of support of at least one of the objects involved,
F and ω. On the other hand, in order to make sense of this identity we need them to
be analytic. Thus, we have a clash between two seemingly irreconcilable properties of
differential forms on C: analyticity and compactness of support. The best we can do is
to assume that F is analytic and ω has compact support. The resulting identity is not
very useful, but it is still instructive to consider it as a toy model for the corresponding
identity in the case of CP1.

In the case of X = CP1 the structure of the identity is more complicated, but it
is applicable to a larger class of differential forms. Now instead of one infinite sum
we have three infinite sums. The first two have the structure similar to that of the
sum appearing in the identity for C. They correspond to the two critical points of the
Morse function on CP1 (or equivalently, the fixed points of the C×-action): 0 and ∞.
The third term has to do with the non-diagonalizable nature of the Hamiltonian. It
would be interesting to understand its meaning from the analytic point of view. On the
positive side, all differential forms on CP1 have compact support, so the convergence of
the left hand side of (5.6) is not an issue. Hence it makes sense to impose the condition
of analyticity on both F and ω.

In order to understand the generalization of these identities to other Kähler mani-
folds, it is more convenient to work with the other version (5.7) of our identity. This
version also has an interpretation in terms of the decomposition of the delta-form on
the q-shifted diagonal:

∆(0,2)
q =

∞∑

m,m=0

qmqm
zϕ̃

ǫ
m,m ⊗ 1

m!m!
(−∂z)

m(−∂z)
mδ(2)(z, z)dzdz

+ qq

∞∑

m,m=0

qmqm 1

m!m!
(−∂w)m(−∂w)mδ(2)(w,w) ⊗ wϕ̃

qǫ
m,m.(5.18)

The terms with log |q|2 have now disappeared at the cost of changing the regularization
in the second term: we now use wϕ̃

qǫ
m,m instead of wϕ̃

ǫ
m,m. The resulting identity has

two terms, corresponding to the fixed points 0 and ∞ of the C×-action on CP1. There
are also similar identities for the (1, 1) and (2, 0) components of ∆q.

5.5. Generalization to other Kähler manifolds. We now briefly discuss how to
generalize the results of the previous section to more general Kähler manifolds, using
CP2 as the main example. Points of CP2 will be represented by triples (z1 : z2 : z3) of
non-zero complex numbers, up to an overall scalar multiple. Consider the C×-action
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on CP2 generated by the vector field v = ξ + ξ, where

ξ = z1∂z1 + γz2∂z2 ,

where γ is a rational number such that 0 < γ < 1. If γ does not satisfy these inequal-
ities, then the structure of the ascending manifolds described below will be different.
Rationality of γ is needed to ensure that ξ comes from a C×-action.

The vector field v is the gradient of the Morse function

f =
1

2

2|z1|2 + (1 + γ)|z2|2
|z1|2 + |z2|2 + |z3|2

.

Its critical points are (0 : 0 : 1) of index 0, (0 : 1 : 0) of index 2 and (1 : 0 : 0) of
index 4. The corresponding ascending manifolds Xα are X(0:0:1) = {(z1 : z2 : 1)} ≃ C2,
X(0:1:0) = {(w1 : 1 : 0)} ≃ C, and X(1:0:0), which is a point.

The coordinates z1, z2 are local coordinates at (0 : 0 : 1) representing points (z1 :
z2 : 1). Let us introduce local coordinates w1, w2 at (0 : 1 : 0) by representing nearby
points as (w1 : 1 : w2). Then we have

(5.19) w1 =
z1
z2
, w2 =

1

z2
.

We also choose local coordinates u1, u2 at (1 : 0 : 0) by representing nearby points as
(1 : u1 : u2), so that

u1 =
z2
z1
, u2 =

1

z1
.

The space Hin of “in” states is isomorphic to

Hin ≃ Hin
(0:0:1) ⊕ Hin

(0:1:0) ⊕ Hin
(1:0:0),

where

Hin
(0:0:1) = C[z1, z2, z1, z2] ⊗ Λ[dz1, dz2, dz1, dz2],

Hin
(0:1:0) = C[w1, ∂w2 , w1, ∂w2 ] ⊗ Λ[dw1, ı∂w2

, dw1, ı∂w2
] · δ(2)(w2, w2)d

2w2,

Hin
(1:0:0) = C[∂u1 , ∂u2 , ∂u1 , ∂u2] ⊗ Λ[ı∂u1

, ı∂u2
, ı∂u1

, ı∂u2
] · δ(4)(u1, u2, u1, u2)d

2u1 ∧ d2u2.

The ground states are

∆(0:0:1) = 1, ∆(0:1:0) = δ(2)(w2, w2)d
2w2,

∆(1:0:0) = δ(4)(u1, u2, u1, u2)d
2u1 ∧ d2u2.

Note that each space exhibits holomorphic factorization Hin
α = Fin

α ⊗ Fα.
We realize Hin as a subspace in the space of distributions on differential forms on CP2.

The subspace Hin
(1:0:0) is a canonical subspace, which consists of distributions supported

at the point (1 : 0 : 0). The subspaces Hin
(0:1:0) and Hin

(0:0:1) are not canonical. The

definition of elements of these subspaces depends on a particular choice of regularization
of divergent integrals, as in the case of CP1 which we have studied in great detail earlier.
Changing regularization would add to elements of Hin

(0:1:0) correction terms that lie in

Hin
(1:0:0), and to elements of Hin

(0:0:1) correction terms in Hin
(0:1:0) and Hin

(1:0:0). Because of
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that, we only have a canonical filtration with associated graded spaces being Hin
(1:0:0),

Hin
(0:1:0) and Hin

(0:0:1).

This is reflected in the non-diagonalizability of the operators Lξ and Lξ. According

to our general formulas (4.19) and (4.20), we have

Lξ = Lξ,naive + 2π(−γδ12 ⊗ δ12 + (γ − 1)δ23 ⊗ δ23),

Lξ = Lξ,naive + 2π(−γδ12 ⊗ δ12 + (γ − 1)δ23 ⊗ δ23).

where δ12 : Hin
(0:0:1) → Hin

(0:1:0) and δ23 : Hin
(0:1:0) → Hin

(1:0:0) are the GC operators, and

δ12 and δ23 are their complex conjugates. Note that (in the notation of Section 4.8) we
have w12 = w2, w23 = u1 and so a12 = −γ, a23 = γ − 1.

As an example, we describe the action of δ12 on the subspace C[z1, z2] of zero-forms
in Fin

(0:0:1). Given an element of C[z1, z2], we rewrite it as a polynomial in w1, w
±1
2 , using

the substitution (5.19). Then we project it onto the quotient C[w1, w
±1
2 ]/C[w1, w

−1
2 ],

which we identify with the space C[w1, ∂w2 ] by the formula

wn
1w

−m
2 7→ wn

1

1

(m− 1)!
(−∂w2)

m−1.

One defines the action of δ12 on differential forms of degree greater than 0 in the same
way. The operator δ23 is defined similarly.

What is the maximal length of the Jordan blocks of the operators Lξ, Lξ and the

Hamiltonian? In the case of CP1 the space Hin was an extension of two subspaces, Hin
C0

and Hin
∞, and the off-diagonal parts of these operators were acting from one of them

to the other. Therefore the Jordan blocks had maximal length 2. Now the space Hin

is an extension of three spaces and the off-diagonal parts of these operators act from
the first to the second and from the second to the third. Therefore a priori one could
expect Jordan blocks of length 3. It comes as a bit of a surprise when we learn that in
fact the maximal Jordan blocks have length 2.

There are two ways to see that. The first is to find the spectra of the diagonal parts of
Lξ and Lξ on each of the three subspaces of Hin. According to the above description of

Hin
(0:0:1), the eigenvalues of Lξ on it (which are the same as the eigenvalues of Lξ,naive)

have the form n1 + γn2, where n1, n2 ∈ Z≥0. We also find that the eigenvalues on
Hin

(0:1:0) have the form m1(1− γ) + (m2 + 1)γ, where m1, µ2 ∈ Z≥0, and the eigenvalues

on Hin
(1:0:0) have the form (l1 + 1)(1 − γ) + (l2 + 1), where l1, l2 ∈ Z≥0. We have similar

formulas for the eigenvalues of Lξ. By inspection of these formulas we find that for

irrational values of γ there is an overlap of the spectra between Hin
(0:0:1) and Hin

(0:1:0),

and between Hin
(0:1:0) and Hin

(1:0:0), but none between Hin
(0:0:1) and Hin

(1:0:0). Even though

we are only allowed to take rational values of γ, we expect the operators Lξ and Lξ

to depend continuously on γ. Hence we find that they cannot have off-diagonal terms
acting from Hin

(0:0:1) to Hin
(1:0:0), and so the maximal size of their Jordan blocks cannot

be greater than 2.
Another way to see that is to use the identity (4.21), which in our case reads

(5.20) δ23 ◦ δ12 = 0, δ23 ◦ δ12 = 0.
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Therefore

(δ12 ⊗ δ12) ◦ (δ23 ⊗ δ23) = 0.

It implies that the square of the off-diagonal parts of Lξ and Lξ (which are equal to

each other) is zero. This means that the Jordan blocks have length at most 2.
This should be contrasted to the case of the model defined on the manifold CP1×CP1,

with the vector field ξ = z1∂z1 + z2∂z2 . In that case we have four ascending manifolds:
one two-dimensional X1, two one-dimensional, X2 and X3, and one zero-dimensional,
X4. The off-diagonal part of Lξ now has four terms:

(5.21) δ12 ⊗ δ12 + δ13 ⊗ δ13 + δ24 ⊗ δ24 + δ34 ⊗ δ34.

The analogue of the identity (5.20) reads as follows:

δ24 ◦ δ12 = δ34 ◦ δ13, δ24 ◦ δ12 = δ34 ◦ δ13.
However, it does not mean that the square of the sum (5.21) is equal to zero. It would
be zero only if we would change one of the four signs to minus (this is a good example
of how the signs ǫαβ discussed in Section 4.8 are chosen).25 Thus, because we now have
two “channels” from the two-dimensional stratum to the zero-dimensional stratum (via
two intermediate one-dimensional strata) we find that the square of the off-diagonal
term of Lξ (and, likewise, Lξ) is non-zero. Therefore there are Jordan blocks of length

three in the case of CP1 × CP1.
For CP2 we can go from the two-dimensional stratum to the zero-dimensional stratum

in only one way, because there is only one one-dimensional stratum. Therefore the
identity (5.20) on the GC operators now implies that the squares of the off-diagonal
terms of the chiral and anti-chiral components of the Hamiltonian are equal to zero.
This analysis leads us to a non-trivial prediction: the two-point correlation functions
of evaluation observables of the CP2 model can only contain log q and log q, but not
(log q)2 or (log q)2. (Those can appear if and only if the Hamiltonian has Jordan blocks
of length three, as formula (5.8) makes clear.) This prediction turns out to be in perfect
agreement with experiment.

Indeed, consider the largest moduli space of gradient trajectories, corresponding to
the trajectories going from (0 : 0 : 1) to (1 : 0 : 0). This moduli space is naturally
identified with an open dense subset of CP2 and it is naturally compactified by CP2.
The correlation function of evaluation observables corresponding to an analytic function
F on CP2 (inserted at the time 0) and an analytic four-form ω on CP2 (inserted at the
time t, which we allow to be complex, as before) is then given by the integral

(5.22)

∫

CP2

ω φ(q)∗(F ),

where q = e−t. At first glance, it is easy to produce examples of ω and F for which
this integral contains (log q)2, for example,

(5.23) ω =
d2z1 ∧ d2z2

(z1z1 + z2z2 +R)3
, F =

1

(z1z1 +Q)(z2z2 + P )
,

25Note also that the squares of the supersymmetry charges ∂ and ∂ are equal to zero, but this is
because of the presence of the differentials dwαβ and dwαβ in formulas (4.17) and (4.18).



INSTANTONS BEYOND TOPOLOGICAL THEORY I 87

where P,Q,R are positive real numbers. However, the problem is that the function F
is not smooth at the point (0 : 1 : 0), because in terms of the local coordinates w1, w2

around this point it reads

F =
w2w2

(w1w1
w2w2

+Q)(1 + Pw2w2)
,

and so it is clear that its second derivative with respect to w1 and w1 is not continuous.
Likewise, F is not smooth at the point (1 : 0 : 0). To make it smooth, we would need to
pull it back to the blow-up of CP2 at the points (0 : 1 : 0) and (1 : 0 : 0). The resulting
manifold is a Del Pezzo surface, and the pull-back of F is a legitimate observable on
it. But the instanton picture is different on this Del Pezzo surface than on CP2, and so
it is not surprising that (log q)2 appears in the correlation functions on this Del Pezzo
surface, even though it does not appear on CP2.

The forms (5.23) are also legitimate observables in the CP1 × CP1 model, where the
appearance of (log q)2 in the correlation functions of this model is to be expected due
to the existence of Jordan blocks of length 3 in the action of the Hamiltonian.

But the forms (5.23) are not legitimate observables in the CP2 model, because F is
not smooth, let alone analytic. Therefore this calculation is not a valid counterexample
to our claim (based on the analysis of the off-diagonal terms in the Hamiltonian action)
that there are no terms with (log q)2. In fact, in all examples of correlation functions
given by the integrals (5.22), where ω and F are truly analytic on CP2, that we have
computed, we have observed the appearance of log q, but not of (log q)2. Thus, the
correlation functions really distinguish between CP2 and CP1 × CP1 (or Del Pezzo
surface) instantons, in agreement with our predictions.

Note that we expect the same phenomenon for the CPn model (with a generic C×

action) as well. Here we again have a single stratum in each dimension, so the same
argument as above again applies to show that the square of the off-diagonal part of the
Hamiltonian is equal to zero. This means that the maximal size of the Jordan blocks
of the Hamiltonian (and its chiral and anti-chiral components) is 2 (and not n, as one
might have thought). Therefore we expect the appearance of log q and log q in the
correlation functions, but not their higher powers.

The action of evaluation observables on the spaces of “in” and “out” states of the
CP2 model is obtained in the same way as in the CP1 model. It is not difficult to
write analogues of the identity (5.7), corresponding to factorization over intermediate
states in the CP2 model. In the most interesting case of instantons propagating from
(0 : 0 : 1) to (1 : 0 : 0), the left hand side of the identity is given by the integral (5.22).
The right hand side is the sum of three terms, each corresponding to one of the fixed
points of the C×-action. It is a q, q-series that should converge to the left hand side of
the identity inside a sufficiently small disc on the q plane.

For a general Kähler manifoldX, the compactification of the largest instanton moduli
space of gradient trajectories is X itself, and we have a similar identity in which the
right hand side has terms corresponding to the fixed points of the C×. This identity
may be interpreted as a decomposition of the delta-form on X ×X supported on the
q-shifted diagonal, as we explained in the case of CP1 in Section 5.4. There are also
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similar identities for other instanton moduli spaces. It would be very interesting to find
a general proof of these identities for all analytic evaluation observables.

We conclude our discussion of the observables with the following remark. So far we
have considered the evaluation observables of our theory which correspond to differen-
tial forms on X. As we pointed out in Section 2.7, there are other observables in the
theory which correspond to differential operators on X. In particular, those include
global holomorphic and anti-holomorphic differential operators. The algebras of such
operators should be viewed as the precursors of the chiral (and anti-chiral) de Rham
complex of the two-dimensional sigma model that we will discuss in Part II. Differential
operators on X naturally act on the spaces of states Hin and Hout of our theory (it
follows from the definition that these spaces are D-modules).

These operators are particularly important for computing the perturbation theory
expansion of the correlation functions of our theory away from the point λ = ∞. This
is because perturbation to finite values of λ is achieved by adding to the action the

term λ−1gabpapb, which corresponds, in the Hamiltonian formalism, to a differential
operator on X. Therefore in order to compute the correlation functions in the theory
defined for finite values of λ by perturbation theory in λ−1 we need to insert these
operators in the correlation functions of the theory at λ = ∞. We will discuss this in
Section 6.1.

6. Various generalizations

In this section we comment on possible generalizations of the results obtained above.
We begin by discussing the perturbation theory around the point λ = ∞. In the pre-
vious chapters we have exhibited the structure of the space of states of the theory in
the limit λ = ∞ and discussed various methods for computing the correlation func-
tions. It would be highly desirable to use these results to obtain information about the
theories defined at finite values of λ. In particular, we consider the question of how
the space of states of the model changes when we move away from the point λ = ∞,
first in the case when X = C and then for X = CP1. Because the Hamiltonian is
non-diagonalizable we cannot apply the standard tools of quantum mechanics and the
perturbation theory turns out to be a more challenging task. We then discuss the
computation of the correlation functions in λ−1 perturbation theory. We present some
evidence that the quantum mechanical models for finite values of λ may be studied by
using this perturbation theory.

Next, we consider some non-supersymmetric analogues of our models. We discuss
in particular the computation of the cohomology of the anti-chiral supercharge ∂ (in
those models in which it exists; they are one-dimensional analogues of the (0, 2) super-
symmetric two-dimensional sigma models). We make contact to the GC complexes of
arbitrary vector bundles on Kähler manifolds and results of Witten [37] and Wu [44]
on holomorphic Morse theory.

We also discuss briefly the generalization in which a Morse functions is replaced
by a Morse-Bott function having non-isolated critical points. More precisely, we will
consider the situation where the Morse function comes from a C×-action on our Kähler
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manifold X with non-isolated fixed points. We show how some of the features of the
models with Morse functions change in this more general situation.

Finally, we comment on the Morse-Novikov functions, which are multivalued ana-
logues of the Morse functions. They are particularly important for applications to
two-dimensional and four-dimensional models.

6.1. Perturbation theory around the point λ = ∞. We have described above the
structure of the spaces of “in” and “out” states in the limit λ → ∞ of our quantum
mechanical model. This structure is very different from the structure observed at finite
values of λ. It is natural to ask whether one can relate the two pictures by some kind of
perturbation theory. This question is important because we would like to understand
our models at finite values of λ using the results obtained at λ = ∞, where the theory
simplifies dramatically.

Note that here we have to deal with a somewhat unfamiliar situation, where the
problem does not have a Hilbert space formulation, so we cannot use the hermitian
inner product, as is customary in the quantum mechanics, at least in all of its textbook
examples.

We start with the case of the flat space C. We recall from Section 3.3 that in this
case the space of “in” states is the space of differential forms on C if ω > 0, and the
space of distributions supported at 0 ∈ C if ω < 0. In what follows we will restrict
ourselves to the subspace of 0-forms.

In the former case the perturbation theory is very simple and finite. Indeed, the

Hamiltonian H̃λ at finite λ is obtained from the Hamiltonian Lv, v = z∂z + z∂z at
λ = ∞ by adding the term − 2

λ∂z∂z. This extra term lowers the degree of a polynomial

by 1 in z and by 1 in z. Therefore, starting with a monomial znzn, which is an

eigenvector of Lv, we can obtain an eigenvector of H̃λ by adding monomials of lower
degrees. The resulting polynomial is closely related to the Hermite polynomials.

The perturbation theory in the second case is more subtle. In this case we are trying

to reproduce the eigenfunctions of H̃λ, which look like e−λ|ω|zz times a polynomial in
z, z, as linear combinations of the derivatives of the delta-function δ(2)(z, z). These
linear combinations are sums of infinitely many terms, which may be thought of as
asymptotic expansions of the eigenfunctions at λ−1 = 0. That there are infinitely
many terms in the expansion is easy to see from the fact that now the additional
term − 2

λ∂z∂z appearing in the Hamiltonian increases the number of derivatives of the
delta-function.

The exact formulas for the eigenstates look as follows (in the notation of Section 3.3):

Ψ̃in
n,n =

1

n!n!
∂n

z ∂
n
z (2λe−λzz) ∼

∞∑

k=0

1

n!n!k!
λ−k∂n+k

z ∂n+k
z δ(2)(z, z),

∼
∞∑

k=0

(n+ k)!(n + k)!

n!n!k!
λ−k|n+ k, n+ k〉,

where

|m,m〉 =
1

m!m!
∂m

z ∂
m
z δ

(2)(z, z)



90 E. FRENKEL, A. LOSEV, AND N. NEKRASOV

and the right hand side is understood as the asymptotic expansion of the left hand side
(viewed as a distribution on C) at λ = ∞. The Borel summation of this series gives
the left hand side.

We shall now sketch some aspects of the perturbation theory in λ−1 in the CP1

model. We start with the following simple remark. Suppose we want to solve the
following eigenvalue problem:

H Ψ = E Ψ, H = H0 +
1

λ
H1,

Ψ = Ψ[0] +

∞∑

k=1

1

λk
Ψ[k], E = E[0] +

∞∑

k=1

1

λk
E[k].

Then we have the following simple relations:

H0 Ψ[0] = E[0] Ψ[0]

(H1 − E[1]) Ψ[0] = −(H0 − E[0]) Ψ[1](6.1)

(−E[2]) Ψ[0] + (H1 − E[1])Ψ[1] = −(H0 − E[0]) Ψ[2],

. . .

In our case we have the additional subtlety of ”almost” degenerate perturbation theory.
Consider the Hamiltonian acting on functions, i.e. on zero-forms. To simplify our

notation, we will write |n, n〉∞ and |n, n〉C0 for |n, n, 0, 0〉∞ and |n, n, 0, 0〉C0 . We have

H0 = z∂z + z∂z = −(w∂w + w∂w),(6.2)

H1 = −2(1 + zz)2∂z∂z = −2(1 + ww)2∂w∂w.(6.3)

The subspace Hin
∞ of the space of states is preserved by H0 and H1:

H0|n, n〉∞ = (n+ n+ 2)|n, n〉∞,
H1|n, n〉∞ = −2 (n+ 1) (n+ 1) (|n− 1, n − 1〉∞ + 2|n, n, 〉∞ + |n+ 1, n + 1〉∞) .

The equations (6.1) can be solved explicitly:

Ψ[0] = |n, n〉∞ =
1

n!n!
∂n

w∂
n
wδ

(2) (w, w̄) ,

Ψ[1] = (n+ 1) (n+ 1) (|n+ 1, n + 1〉∞ − |n− 1, n− 1〉∞) ,

Ψ[2] =
1

2
(n+ 1) (n+ 1) [(n+ 2)(n + 2) (|n+ 2, n + 2〉∞ + 4|n + 1, n+ 1〉∞)

+nn (|n− 2, n− 2〉∞ + 4|n− 1, n − 1〉∞)]

and

E[0]
∞ = n+ n+ 2

E[1]
∞ = −4 (n+ 1) (n+ 1)

E[2]
∞ = 4 (n+ 1) (n+ 1) (n+ n+ 2)
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We conjecture that

E[k]
∞ = (E[0])k+1O (1) .

This would imply that the radius of convergence of the corresponding perturbative
expansion is approximately λ−1 < (E[0])−1, which means that we understand well the
eigenfunctions whose eigenvalues are less than λ. This agrees with the qualitative
picture suggested by the semi-classical analysis.

The determination of the perturbation series for the “in” states that belong to the
subspace Hin

C0
is more complicated because of the Jordan block structure of the Hamil-

tonian. Indeed, according to the calculations of Section 4.3, almost all of the states
|n, n〉C0 in Hin

C0
are generalized eigenvectors of the Hamiltonian:

(6.4) H0|n, n〉C0 = (n+ n)|n, n〉C0 − 2π|n− 1, n − 1〉∞,

as we have seen in the previous section (the exception is the states |n, 0〉C0 and |0, n〉C0).
We also find the following formula for the action of H1:

H1|n, n〉C0 = −2nn (|n− 1, n − 1〉C0 + 2|n, n〉C0 + |n+ 1, n+ 1〉C0)

+ 4π(n + n) (|n− 1, n − 1〉∞ + 2|n, n〉∞ + |n+ 1, n+ 1〉∞) .

The corresponding perturbation theory is unusual, because normally one considers
hermitean Hamiltonians which cannot have Jordan blocks. The first question is whether
the degeneracy of the eigenvalues is removed and the Jordan block structure is broken
in the λ−1 perturbation theory. At first glance, it appears that the degeneracy and the
Jordan block structure should remain, because we know that the difference between
the two eigenvalues for finite λ is of the order e−λ, which appears to be out of reach
of the perturbation theory. However, here we could in principle obtain the asymptotic
expansion of this difference. It would be very interesting to analyze this perturbative
expansion explicitly.

6.2. Perturbative expansion for correlation functions. It is important to un-
derstand to what extent the correlation functions of the quantum mechanical models
at finite values of λ may be reconstructed from the correlation functions at λ = ∞ by
perturbation theory. Here we consider the simplest non-trivial example, which suggests
that this may indeed be done successfully.

Let X = CP1 and consider the two-point functions of the form ∞〈ω̂(t1)F̂ (t2)〉0 as in
Section 5.2. According to formula (5.3), the value of this correlation function at λ = ∞
is equal to the integral

∫
CP

1 ω φ(e−t)∗(F ) and to the matrix element

C∞〈0|ω̂e−tH0 F̂ |0〉C0 .

For finite values of λ this correlation function is given by the formula

C∞〈0|ω̂e−t(H0+λ−1H1)F̂ |0〉C0 ,
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where H0 and H1 (acting on functions) are given by formulas (6.2) and (6.3). Now we
use the expansion formula

C∞〈0|ω̂e−t(H0+λ−1H1)F̂ |0〉C0 = C∞〈0|ω̂e−tH0 F̂ |0〉C0

− λ−1

∫ t

0
ds C∞〈0|ω̂e−sH0H1e

−(t−s)H0 F̂ |0〉C0 + . . .

Together with formulas for F̂ |0〉C0 and C∞〈0|ω̂ found in Section 5.2 and the formulas for
the action of H0 and H1 on Hin

C0
found in the previous section, this gives us an explicit

perturbative λ−1-expansion for the two-point correlation function ∞〈ω̂(t1)F̂ (t2)〉0.
The same analysis may be applied to n-point correlation functions of evaluation

observables. We find that each term of the corresponding λ−1-expansion is given by
a finite integral of a matrix element of these operators acting on the space of states
at λ = ∞. Thus, in principle all of the corresponding λ−1 perturbation series are
computable. It would be interesting to relate these perturbation series to the actual
correlation functions in the theories at finite values of λ computed by other methods.

6.3. Comments on the non-supersymmetric case. Up to now we have considered
the limit λ = ∞ of the supersymmetric model of quantum mechanics defined by the
action (2.16). There are also analogous non-supersymmetric models, and many of our
results may be applied to those models as well.

The simplest way to break supersymmetry is to consider fermions taking values in
vector bundles on X that are different from the tangent and cotangent bundles. Since
we have assumed X to be Kähler, we have chiral fermions: ψa, πa, taking values in
the holomorphic cotangent and tangent bundles on X, respectively, and anti-chiral
fermions, ψa, πa, taking values in the holomorphic cotangent and tangent bundles on
X, respectively. We may now stipulate that ψa, πa take values in vector bundles E and
E∗, respectively, whereas ψa, πa take values in vector bundles E and E

∗
, respectively.

The vector bundle E need not be complex conjugate to E, thus allowing the possibility of
“heterotic” quantum mechanical models, which are the precursors of the sigma models
appearing in heterotic string.

The bosonic part of the action remains the same as before:

−i
∫

I

(
pa

(
dXa

dt
− va

)
+ pa

(
dXa

dt
− va

)
+

)
dt,

where ξ = va∂Xa is a holomorphic vector field. We will again assume that ξ + ξ is the
gradient vector field of a Morse function f on X and that ξ comes from a holomorphic
C×-action on X.

To write down the fermionic part of the action, we need to assume in addition that
the C×-action on X may be lifted to E and E, i.e., that E and E are C×-equivariant
vector bundles on X. Then if we choose local trivialization of E by local sections φi

and a local trivialization of E by local sections φi, the generator of the one-dimensional
Lie algebra of C× will act by the formula

φi 7→M i
jφ

j , φi 7→M
i
jφ

j.
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For example, in the case when E and E are the holomorphic and anti-holomorphic
cotangent bundles of X, we have bases of sections dxa and dxa, and so Ma

b = ∂va

∂Xb ,

M
a
b = ∂va

∂Xb
. Now the fermionic part of the action is

i

∫

I

(
πi

(
Dψi

Dt
−M i

jψ
j

)
− πi

(
Dψi

Dt
−M

i
jψ

j

))
dt.

Here D/Dt andD/Dt are the covariant derivatives corresponding to chosen connections
on E and E, which may however be absorbed into the momenta pa and pa in the same
way as in the supersymmetric model (see Section 2.3).

The definition of the corresponding path integral for general vector bundles E and E

requires special care because the space of fields does not carry a canonical integration
measure as in the supersymmetric case. We will discuss this question in Part III of this
article. Here we will only point out that our results on the Hamiltonian description
of the supersymmetric model have obvious generalizations to the non-supersymmetric
case.

We again have spaces of “in” and “out” states, Hin and Hout. The space Hin is
isomorphic to the direct sum of spaces Hin

α labeled by the fixed points xα of the C×-
action, as in the supersymmetric case. Each Hin

α exhibits holomorphic factorization:

Hin
α = Fin

α ⊗ F
in
α , where

Fin
α = Hn−nα

Xα
(∧•E), F

in
α = Hn−nα

Xα
(∧•E)

(compare with formula (4.16)). The Hamiltonian is the vector field v = ξ + ξ. The
action of ξ and ξ is given by formulas similar to (4.19) and (4.20), in which the GC

operators are δE
αβ : Fin

α → Fin
β and δ

E

αβ : F
in
α → F

in
β for Xα ≻ Xβ .

The space of “out” states has a similar structure, with the ascending manifolds
Xα replaced by the descending manifolds Xα. In addition, we need to replace E by

Ωtop ⊗E∗ and E by Ω
top ⊗E

∗
, where Ωtop and Ω

top
are the line bundles of holomorphic

and anti-holomorphic top forms, respectively.

6.4. Cohomology of the supercharge in “half-supersymmetric” models. An
interesting special class of models arises if we let E be the anti-holomorphic cotangent
bundle on X, as in the supersymmetric model. Then we retain the anti-chiral super-
charge ∂. The corresponding “half-supersymmetric” models may therefore be viewed
as quantum mechanical analogues of the (0, 2) supersymmetric sigma models (just like
the fully supersymmetric model may be viewed as an analogue of the (2, 2) supersym-
metric sigma model). In such models it is interesting to compute the cohomology of the
supercharge ∂, which may be viewed as a “baby version” of the cohomology of the right
moving supercharge in the (0, 2) sigma models. This cohomology has been studied in
[43], where it was shown that it is closely related to the chiral differential operators.

In the “half-supersymmetric” quantum mechanical model the supercharge ∂ is given
by the same formula (4.18) as in the supersymmetric case, except that we need to

replace the GC operators δαβ and δαβ by δE

αβ and δ
E

αβ, respectively.
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The argument of Section 4.9 for the computation of the ∂-cohomology in the super-
symmetric case carries over verbatim to this case, and we find that the first term of the
corresponding spectral sequence is just the GC complex C•(∧•E) of the vector bundle
∧•E (see Section 4.9 for the definition of this complex). Actually, the grading on the
exterior algebra ∧•E is preserved by the differential, so the GC complex decomposes
into a direct sum of its subcomplexes C•(∧pE), p = 0, . . . ,dim E. This gives a second
grading on the cohomology of ∂. This cohomology is therefore equal to the direct sum
of the (Dolbeault) cohomologies of the sheaves of holomorphic sections of the vector
bundles ∧pE, p ≥ 0:

H i
∂

=
⊕

p≥0

H i(X,∧pE).

Thus, we find an effective way for computing the cohomology of the anti-chiral super-
charge in the “half-supersymmetric” quantum mechanical models. The result is that
this cohomology is nothing but the Dolbeault cohomology of the bundle ∧•E, where
the chiral fermions take values.

This result is closely related to the work of E. Witten on the holomorphic Morse
theory. In [37] Witten has shown how to adopt his approach to Morse theory from [36]
(discussed in Section 2.1), which allows one to compute the de Rham cohomology of X
in terms of an instanton complex associated to a Morse function, to the computation
of the cohomology of the sheaf of holomorphic sections of a C×-equivariant vector
bundle E on X (in other words, computing Dolbeault cohomology instead of de Rham
cohomology). It is assumed thatX is a Kähler manifold equipped with a Morse function
f whose gradient satisfies the conditions listed above. Witten has shown that this
cohomology may be obtained as the cohomology of a certain complex. The groups of
this complex are infinite-dimensional, but they are graded by the action of C× and
the corresponding graded components are finite-dimensional. Witten has computed in
[37] the characters of the groups of this complex. This enabled him to write down
“holomorphic Morse inequalities” giving estimates on the Dolbeault cohomology of E

in the same way as the usual Morse inequalities give us estimates on the de Rham
cohomology of X.

It was subsequently shown by S. Wu in [44] that the characters that Witten had
computed were precisely the characters of the groups of the GC complex C•(E) of E.
Therefore it was suggested in [44] that Witten’s holomorphic instanton complex should
be interpreted as the GC complex of E. This is in agreement with Witten’s result,
because we know that the cohomology of the GC complex is equal to the Dolbeault
cohomology of E. But the connection of this complex to quantum mechanics still
remained a mystery.

But now we have found a natural explanation of the connection between the GC
complex and quantum mechanics. Namely, we have shown that the GC complexes
naturally appear in the framework of the “half-supersymmetric” quantum mechanical
models in the limit λ = ∞. We have found that the Dolbeault cohomology of a
holomorphic C×-equivariant line bundle on a compact Kähler manifold coincides with
the cohomology of the supercharge ∂ on the space of “in” states of a particular model of
this type: with left fermions living in E and right fermions living in the anti-holomorphic
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cotangent bundle. Moreover, we have shown that the computation of the cohomology
of ∂ naturally gives us the GC complex of E (and even of ∧•E). This explains the
connection between “holomorphic Morse theory” and quantum mechanics.

We want to point out a particularly interesting class of “half-supersymmetric” models
of this type. They are associated to a flag variety G/B, where G is a complex simple
Lie group and B is its Borel subgroup. This flag variety has a natural Morse function:
the hamiltonian of the vector field corresponding to a generic element of a maximal
compact torus contained in B. Its critical points are parameterized by the Weyl group
W of G. The corresponding ascending manifolds are called the Schubert cells, which
we denote by Xw, w ∈ W . Its complex dimension is equal to the length of w, denoted
by ℓ(w). We can choose the Morse function in such a way that they are the B-orbits on
G/B. Note that if G = SL2, then G/B ≃ CP1, and the corresponding Morse function
is the one we have studied extensively in the earlier sections.

Suppose that E is a line bundle on G/B. Then it corresponds to an integral weight
µ of the group G. Let us suppose that µ is dominant, and so can be realized as the
highest weight of an irreducible finite-dimensional representation Vµ of G. We denote
the corresponding line bundle by Eµ. The GC complex of this line bundle is studied
in detail in [25] (see also [13, 44]), where it is shown that this complex coincides with
the dual of the so-called Bernstein-Gelfand-Gelfand (BGG) resolution of Vµ. The ith
group of the GC complex C•(Eµ) is equal to

Ci(Eµ) =
⊕

ℓ(w)=i

HdimG/B−ℓ(w)(G/B,Eµ).

The group G does not act on the GC complex C•(Eµ), but the Lie algebra g does.
Under this action

HdimG/B−ℓ(w)(G/B,Eµ) ≃M∗
w(µ+ρ)−ρ,

the contragredient Verma module over g of highest weight w(µ+ ρ)− ρ, where ρ is the
half-sum of positive roots of g. Thus, the ith group of the GC complex is

Ci(Eµ) =
⊕

ℓ(w)=i

M∗
w(µ+ρ)−ρ,

and its cohomology is equal to H•(G/B,Eµ). According to the Borel-Weil-Bott theo-
rem, H0(G/B,Eµ) ≃ Vµ and H i(G/B,Eµ) = 0, for i > 0. Therefore the GC complex
C•(Eµ) is a resolution of the irreducible representation Vµ. It is dual to the BGG
resolution, which is well-known in representation theory [25].26

According to the above discussion, this BGG resolution is naturally realized in the
context of a “half-supersymmetric” model on G/B in which left fermions take values
in the line bundle Eµ and its dual. The cohomology of the supercharge ∂ in this model
is therefore equal to

H•(G/B,∧•Eµ) = H0(G/B,O) ⊕H0(G/B,Eµ) ≃ C ⊕ Vµ.

26If µ is not dominant, then the cohomology is either zero or it occurs in a positive cohomological
dimension; in this case the g-modules appearing in the complex are the twisted Verma modules, see
[13]
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Thus, we realize irreducible representations of simple Lie groups as ∂-cohomologies of
“half-supersymmetric” models on the flag variety.

These results have interesting analogues in (0, 2) supersymmetric two-dimensional
sigma models, as we will see in Parts II and III of this article.

6.5. Comments on non-isolated critical points. Up to now we have considered
a Morse function f on a Kähler manifold X of dimension n and the corresponding
gradient vector field v = ∇f which, as we have assumed, decomposes into the sum
ξ + ξ of a holomorphic and anti-holomorphic vector fields generating a C×-action on
X. The critical points of f are the fixed points of this C×-action. The assumption that
f is a Morse function means that these points are isolated and non-degenerate. In this
section we discuss briefly what happens if we are in a situation when the fixed points
are not isolated and f is a Morse-Bott function.

Let Cα, α ∈ A, be the components of the fixed point set of the C×-action on X (under
our old assumptions, each Cα consisted of a single point). According to the results of
[5, 7], in this case X still has decompositions (3.28), with Xα and Xα defined in the
same way as before, by formulas (3.29) and (3.30). However, in this case each Xα is
a C×-equivariant holomorphic fibration over Cα, whose fibers are isomorphic to Cnα ,
where nα is the number of positive eigenvalues of the Hessian of f at the points of Cα.
Moreover, locally over Cα the bundle Xα is isomorphic to the subbundle of the normal
bundle to Cα ⊂ X spanned by the eigenspaces of the Hessian of the function f with
positive eigenvalues. Likewise, Xα is also a C×-equivariant holomorphic bundle over Cα

with fibers isomorphic to Cn−nα−dim Cα . Locally over Cα the bundle Xα is isomorphic
to the subbundle of the normal bundle to Cα ⊂ X spanned by the eigenspaces of the
Hessian of the function f with negative eigenvalues.

Consider, for example, the case of X = CP2 with the C× action (z1 : z2 : z3) 7→
(qz1 : z2 : z3), corresponding to the vector field v = z1∂z1 + z1∂z1 . Then the fixed point
set has two components: the point C1 = (1 : 0 : 0) and the one-dimensional component
C2 = {(0 : z2 : z3)} isomorphic to CP1. The corresponding strata X1 and X2 are the
point (1 : 0 : 0) and its complement, respectively. Note that X2 is a line bundle over
CP1 isomorphic to O(1), which is also isomorphic to the normal bundle of C2 ⊂ CP2.
The strata X1 and X2 are the plane {(1 : u1 : u2)} and C2 = CP1, respectively.

The description of the spaces of “in” and “out” states of this model is similar to
the one obtained previously in the Morse function case. Namely, Hin is isomorphic
to the direct sum of the spaces Hin

α , α ∈ A. Roughly speaking, each space Hin
α is the

space of L2 differential forms on Cα extended in two ways: by polynomial differential
forms in the bundle directions of Xα, and then by polynomials in the derivatives in the
transversal directions to Xα in X.

The ground states, on which the Hamiltonian Lv acts by zero, correspond to differ-
ential forms on Cα. Given such a form ωα, let ω̃α be its pull-back to Xα under the
projection Xα → Cα. Then ω̃α defines a “delta-like” distribution supported on Xα,
whose value on η ∈ Ω•(X) is equal to

∫

Xα

ω̃α ∧ η|Xα
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(compare with formula (3.31)). We will use the same notation ω̃α for these distributions.
While these are the ground states of the model at λ = ∞, only those of them which
correspond to harmonic differential forms ωα ∈ Ω•(Cα), α ∈ A, may be deformed to
ground states for finite values of λ.

Other elements of Hα are distributions obtained by applying to the distributions ω̃α

Lie derivatives in the transversal directions to Xα as well as multiplying them by dif-
ferential forms on Xα that are polynomial along the fibers of the projection Xα → Cα

(compare with formula (3.34)). The definition of these distributions requires a regu-
larization similar to the one we used in the case of isolated critical points. Because
of this regularization, we obtain non-trivial extensions between different spaces Hin

α ,
and the action of the Hamiltonian is not diagonalizable. However, the formula for the
Hamiltonian is more complicated than in the case of isolated fixed points. Another
difference with the case of isolated fixed points is that we observe holomorphic factor-
ization only in the fiber directions of the maps Xα → Cα, but not along the manifolds
Cα themselves.

6.6. Morse-Novikov functions. In the analysis we have performed so far we worked
with the single-valued Morse functions f . Morse theory has a generalization for non-
simply connected manifolds, namely, the Morse-Novikov theory, in which f is multival-
ued and only its differential is well-defined. However, according to the results of [15],
under the assumptions that we have made: that X is a compact Kähler manifold X
with a holomorphic vector field ξ such that its zeros are isolated and the set of zeros is
non-empty, we have H1(X,Z) = 0. Therefore all closed one-forms on X are exact. Let
β be the one-form obtained by contraction of the vector field v = ξ + ξ and the metric
on X. Then β = df , where the function f is a Morse function on X whose gradient
vector field is equal to v, and whose critical points are the zeros of v and of ξ. There-
fore there is no need to consider the case of multivalued, or Morse-Novikov, functions.27

However, for infinite-dimensional Kähler manifolds, such as the loop space LX, such
functions do arise, and in fact it is necessary to study them in order to understand
two-dimensional sigma models. We will study this in detail in Part II of this article.

27such functions exist if we allow X to be a real manifold, for example, a circle
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