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ABSTRACT. We give an account of the current state of the approch to quan-
tum field theory via Hopf algebras and Hochschild cohomology. We emphasize
the versatility and mathematical foundation of this algebraic structure, and
collect algebraic structures here in one place which are either scattered over
the literature, or only implicit in previous writings. In particular we point out
mathematical structures which can be helpful to farther develop our mathe-
matical understanding of quantum fields.

1. Free QFT, interacting QFT

Classical geometry does not rule the day when it comes to quantum fields.
Much to the contrary, the often beautiful classical geometry of fields, gauge fields in
particular, must emerge as a classical limit of quantum field theory. Hence we speak
about QFT without taking recourse to classical fields. We ignore the geometry of
the classical spacetime manifold over which we want to construct QFT, and just
memorize that it has a four-dimensional tangential and cotangential space locally,
isomorphic to flat Minkowski space. It is over such local fibres that one formulates
QFT.

Our first concern is to understand the elementary amplitudes which we use to
describe the observable physics which results from quantum field theory.

They come in two garden varieties: amplitudes for propagation, and ampli-
tudes for scattering. The former are provided by free quantum field theory: free
propagators, in momentum space, are obtained as the inverse of the free covariant
wave equations. Hence, for Minkowski space, its Wigner’s representation theory
of the Lorentz and Poincaré groups which rules the day, providing us with free
propagators for massless and massive bosons and fermions.

The latter, amplitudes for scattering, are again provided by representation
theory of the Poincaré group, augmented by the requirement for locality.

Let us look at a simple example to see how this comes about. Assume we take
from free quantum fields the covariances for a free propagating electron, positron
and photon. Assume we want to couple those in a local interaction. Representation
theory tells us that this interaction will have to transform as a Lorentz vector v,
coupling the spin-one photon to a spin-1/2 electron and positron. Also, knowing the
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scaling weights of free photons, electrons and positrons as determined from the ac-
companying free field monomials, such a vertex must have zero scaling weight itself,
as the scaling weights of those monomials add up to the dimension of spacetime.
Indeed,

(1) Wy =4 = [J]=[v]=3/2,
) JF =1 = ()=,
(3) [V Aup] = 4 = [v,] = 0.

So what would be the Feynman rule, in momentum space say, for such an
amplitude? If the electron has momentum p;, the positron momentum po, and the

photon momentum g = —p; — ps, the vertex can be a linear combination of twelve
invariants

q
(4) vpzcwu—i-chLQg-i----

But if we have to have a local theory, any graph for a quantum correction for
the unknown vertex built from that unknown vertex and the known propagators
will be, by a simple powercounting exercise, -we know the scaling weight of our
unknown vertex at least-, logaritmic divergent.

If we are to absorb this logarithmic divergence by a local counterterm, this
gives us information on the desired Feynman rule. Let us work it out. To keep the
example simple, let us assume we suspect that the vertex is of the form
(5) Up = Uu(‘]) =C1Y + C2qu2-

Let us consider the one-loop 1PI graph -the lowest order quantum correction- to
find the sought after Feynman rule.

With three vertices in the graph we have 22 = 8 integrals to do which appear
in the limit

1
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Ao A A—Foo T A 7AUO‘ kvl‘ kvﬁ af q

= fler,c2)vp-

In a local theory, the coefficient of In A from the integral must be proportional to
the desired vertex. Hence, dividing and taking the limit, we confirm that the term
~ @4 vanishes like 1/In A in all eight terms. We hence conclude ¢ = 0, and this
gives a good idea how locality is needed for quantum field theory to stabilize at
dintinguished Feynman rules in a self-similar manner. Similarly, if we had done the
example with the full 123 terms of the full vertex, as it must be for a renormalizable
theory.

We also conclude that the price for Feynman rules determined by locality is
that we indeed pick up local short-distance singularities. That leaves us the freedom
to set a scale, which is no big surprise: looking only at quantum fields for a typical
fibre -the cotangential space-, we hence miss the only parameter around to set a
scale: the curvature of the underlying manifold. The extension of such local notions
to the whole manifold awaits understanding of quantum gravity. This might well
start from understanding how gravity with its peculiar powercounting behaves as
a Hopf algebra [15].
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Let us now proceed to see what comes with those edges and vertices as pre-
scribed above - graphs, obviously.

2. 1PI graphs, Hopf algebras

Having hence elementary scattering and propagation amplitudes available, we
can set up a quantum theory: we define incoming and outgoing asymptotic states,
and sum over all unobserved intermediate states. This is standard material for
a physicist, and we leave it to the reader to acquaint himself with the necessary
details on the LSZ formalism and other such aspects [34, 7, 6, 14].

While many textbooks on contemporary physics proceed using the path integral
to define Green functions for amplitudes, for connected amplitudes and for 1PI
amplitudes, we emphasize that these Green functions can be given mathematical
precise meaning through the study of the Hopf algebra structure underlying the
graphs constructed from the representation theory mentioned above.!

So having Feynman rules for edges and vertices the above gives us Feynman
rules for n-PI graphs, graphs which do not disconnect upon removal of any n internal
edges. Amplitudes for connected graphs are obtained from 1-PI Green functions by
connecting them via free covariances, and disconnected graphs finally by exponen-
tiation. Its for 1-PI graphs that the underlying algebraic structure of field theory
becomes fully visible.

The basic such algebraic structure then at our disposal are:

i) the Hopf- and Lie algebras coming with such graphs,[29, 9, 10, 11]

ii) the correponding Hochschild cohomology and the sub-Hopf algebras generated
by the grading,[17, 13]

iii) the co-ideals corresponding to symmetries in the Lagrangian,[22, 32]

iv) the coradical filtration and Dynkin operators governing the renormalization
group and leading log expansion,[8, 20, 31]

v) the semi-direct product structure between superficially convergent and divergent
graphs, [10]

vi) and finally the core Hopf algebra [5, 16], suggesting co-ideals leading to recur-
sions a la BCFW, showing that loops and legs speak to each other in many ways:
it is indeed the hope of the author that the rather disparate structures we observe
in experience with multi-loop vs multi-leg expansions combine finally in a common
mathematical framework [18].

We omitted in this list Rota—Baxter algebras [12], which are useful for MS
schemes but less so in renormalization schemes based on on-shell or momentum
space subtractions. The reader can find detailed study of Rota—Baxter algebras in
the above-cited work of Ebrahimi-Fard and Manchon, while the use of momentum
space subtractions was exhibited recently beyond perturbation theory in [21]. We
also omit the algebraic structure of field theory in coordinate space, see [2, 4, 3]
for a clarification how to connect it with the approach described here.

In this contribution, we will mainly review combinatorial and algebraic aspects
developed in recent years. We include a few results only implicit in published work

1 This might implicitly define the path integral, which has to be seen in future work. Too
often in the authors opinion, the path integral is in the context of quantum field theory only
a reparametrization of our lack of understanding, giving undue prominence to the classical
Lagrangian.



4 DIRK KREIMER

so far. A summary of analytic and algebro-goemetric achievements has to be given
elsewhere.

Let us now illustrate these algebraic structures. For that we strengthen our
muscle on quantum electrodynamics (QED) graphs for the vertex, fermion- and
photon-selfenergy, up to two loops each. Here they are:

(6) g =

R e e )

8) A=

(9) c;Z”" = % £y Q’L,
) o =

O
(D

2.1. The Hopf algebra. We define a family of Hopf algebras H. Each Hopf
algebra H € H is generated by generators given by 1-PI graphs and its algebra
structure is given as the free commutative Q-algebra over those generators, with
the empty graph furnishing the unit I.

—~
—_
—_

~
o

no
I

Q

int

For a graph I', we let Tl be the set of its vertices, I';; the set of its internal

edges, and F[eﬂt be the set of its external edges. Each edge is assigned an arbitrary

orientation (all physics is independent of that choice), so that we can speak of a

source s(e) and target t(e) for an edge e. For each internal edge e € Fi[rll]t, s(e) e T

and t(e) € ', We do not require that s(e) # t(e). For each e € I‘le]t, t(e) € T
but s(e) ¢ 0.

To each internal edge e we assign a weight w(e), to each vertex v we assign
similarly a weight w(v). We wite ), . w for the sum over all these edge and vertex
weights. Then, we define

(12) wan(T) = =207+ > w.
wel

Also, a grading |T'| is provided by the number of independent cycles in a graph T,
-its lowest Betti number-, and we hence write

(13) H=H o (@2, H).
QI ’
Aug(H)

So H is reduced to scalars off the augmentation ideal Aug(H). We let (I') be the
linear span of generators.

We distinguish these Hopf algebras H = Hs,, by an even integer 0 < 2n, n € N.
They are all based on the same set of generators, hence have an identical algebra
structure. There are slight differences in their coalgebra structure though, as we
give them a coproduct depending on 2n:

(14) Agy(T) :=T@I+I®T + > y®T /.

v=IT; 7 CT,wan (7:) <0
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The sum is over all disjoint unions of 1-PI subgraphs ~; such that for each ~;,
wan (7:) < 0. In the limit n — oo, we hence obtain the core Hopf algebra H oy with
coproduct

(15) Acore(r):F®H+H®F+ Z ’Y®F/’y.
v=I1; v:CT

We also use the reduced coproducts

(16) AL (T) = > Y@ T/y.

'Y:Hi 'YiCFvW2n('Yi)SO
This gives us a tower of quotient Hopf algebras [5]
(17) HyCHy CHy C---CHyp-++ C Heoro-

In the following, we often omit the subscript o, as it is either clear which integer
we speak about, or the statement holds for arbitrary 2n in an obvious manner.

Note that Hj is the trivial Hopf algebra in which every graph is primitive.
It is the free commutative and cocommutative bialgebra of polynomials in all its
generators € (I'). Fittingly, its use in zero-dimensional field theory is an excellent
tool to count graphs [1].

For any other such Hs,, € H, n < oo, we find that the Hopf algebra decomposes
into a semi-direct product

(18) Hy, = H™ x HaY

2n>

where H5S" is generated by graphs I' such that w, (I') < 0 and HZP is the abelian
factor generated by graphs such that ws, (I') > 0. See [10].

Let us explain the above tower a bit more. The core Hopf algebra allows to
shrink any 1-PI subgraph ~; to a point, and hence is built on graphs with internal
vertices of arbitrary valence, coupling an arbitrary numbers of edges and all types of
edges for which we had free covariances. Again, locality and representation theory
provide for such vertices Feynman rules as before, which are in general a sum over
all local operators which are in accordance with the quantum numbers of those
covariances. We can distinguish those operators by labeled vertices, which does
not hinder us to set up the Hopf algebra as before. For the core Hopf algebra, all
primitives which we find in the linear span (I') have degree one,

(19) AL (T)#0= T >1

core

Note that for any chosen finite 2n, the results can be very different. A renor-
malizable theory is distinguished by the fact that for some finite ng,

(20) Wane () = wap, (I), VI, T’ with res(T") = res(I”).

Here, res(I") is the map which assigns to a graph I the vertex obtained by shrinking
all internal edges to zero length. What remains is the external edges connected to
the same point. If the number of external edghes was greater than two, this gives
us a vertex. If it was two, we identify those two connected edges to a single edge.

If such a ng exists, we call 2ngy the critical dimension of the theory. Particle
physics so far is concerned with theories critical at ng = 2, ie. in four dimensions
of spacetime.

In such a case, all graphs with the same type of external edges evaluate to the
same result under evaluation by wap,. wap, (I') then takes values € {—rg, - -, 400},



6 DIRK KREIMER

where —rg is the value achieved for vacuum graphs, and we obtain arbitrary positive
values on considering graphs with a sufficient number of external edges.

For n > nyg, for any configuration of external edges we find, at sufficiently high
degree |I'|, graphs such that way, (I') < 0. The theory becomes non-renormalizable.

If n < ng, only a finite number of graphs fulfils ws, (I') < 0 and the theory is
super-renormalizable.

In any case, for a Hopf algebra Hs,, continuing our appeal to self-similarity,
we consider graphs made out of vertices such that wa, (I') < 0. This defines a Hopf
algebra H3>". Graphs made out of such vertices but with sufficiently many external
edges such that way, (I') > 0 then provide a semi-direct product Ha, = H3" x HED.
This Hopf algebra is a quotient of the core Hopf algebra, eliminating any graph
with undesired vertices.

So already at this elementary level, there is a nice interplay between the before-
mentioned representation theory of the Lorentz and Poincaré groups and such tow-
ers of Hopf algebras, as it is this representation theory which determines the co-
variances and their possible local vertices, and hence the quotient algebras we get.

Let us now continue to list the other structural maps of those Hopf algebras.
An antipode:

(21) ) = -1 -3 S() & T/
yCT
A counit e: H — Q and unit £: Q — H C H:
(22) e(ql) = ¢,e(X) = 0,X € Aug(H), E(q) = qL.

Finally, an example:

N R R i P S I T

As a final remark, note that there are many more quotient Hopf algebras, by re-
stricting generators to planar, or parquet, or whatever graphs. Also, we will find
all the Hopf algebras needed for an operator product expansion as quotient Hopf
algebras, using that for monomials (in operator-valued fields and their derivatives)
D1 (), Pa(y), the expansion of vacuum expectation values (vev’s) of products of
two monomials at different spacetime points x,y into localized field monomials

(z —

(23) @ @) = Y foo )0,
@]

proceeds on a set of graphs having as local vertices the tree-level vev’s of the
operators O, again in accordance with Wigner’s representation theory. Note that all
such vertices appear naturally in the core Hopf algebra (as we have quotients I'/7v),
and hence the core Hopf algebra is the endpoint in this tower of Hopf algebras which
allows to formulate a full field algebra in the sense of operator product expansions.

2.2. The Lie algebra L such that U(L)* = H. As a graded commutative
Hopf algebra ([24]), any H € H can be regarded as the dual U*(L) of the universal
enveloping algebra U (L) of a Lie algebra L. The tower H of quotient Hopf algebras
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Hs,, corresponds to a tower L of sub-Lie algebras Ly,. We write for each L € L,
ok
(24) UL)=Ql& L&y, LY,

where L% indicates the symmetrized k-fold tensor product of L as usual for an
universal enveloping algebra, obtained by dividing the tensor algebra L®" by the
ideal [1 ® log — o ® 11 — [ll, lg] =0.

We manifest the duality by a pairing between generators of L and generators
of H,

(25) (27, 1) = b1,

the Kronecker pairing. It extends to U(L) thanks to the coproduct.
There is an underlying pre-Lie algebra structure:

(26) [ZF17ZF2] =Zr, ® Zr, — Z1, @ 2,
with
(27) [ZF1 ) ZF2] = ZF2*F1—F1*F2 .
Here, I'; x I'; sums over all ways of gluing I'; into I';, which can be written as
(28) Ty «Tj = n(I, ;D).
r

For any I' € H, we have
(29) ([ZFNZrz]aF) = (ZF1 ® Zr, — Zr, ® ZFUA(F))a

for consistency.
With such section coefficients n(T';,I';,I") we then have

(30) AT)=> n(h,g,I)T.
h.g

The (necessarily finite, as A respects the grading) sum is over all graphs h including
the empty graph and all monomials in graphs g.

Note that we can regard a graph I' obtained by inserting I'; into I'; as an
extension
(31) 0—-TI;—-I—=TI;—0.

A proper mathematics discussion of this idea has been given recently by Kobi
Kremnizer and Matt Szczesny [23].

2.3. Hochschild cohomology. The Hochschild cohomology is encaptured by
non-trivial one-cocycles B : H — Aug(H). The one cocycle condition (see [17])
means

(32) bBY =0 ABY(X) = BY(X) @I+ (id ® B])A(X).
We define Vv € (T'), such that A’(y) = 0, linear maps

o= bij(p,X,T) 11
(33) BL(X) -Fezm X[y maxt(D) (%)

Here, the sum is over the linear span (I') of generators of H. Furthermore,
i) maxf(I") is the number of maximal forests of I defined as the integer

(34) maxt() = S (2, I)(Z,1"),
p,v€("), A’ (p)=0
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ii) |X|v is the number of distinct graphs obtained by permuting external edges of
a graph,

iii) bij(y, X, T') is the number of bijections between the external edges of X and
half-edges of v such that I' results,

iv) and finally (v|X) is the number of insertion places for X in ~.

Finally, for any » which can appear as a residue res(I'), we define

. 1
35 By = —B
res(y)=r,|v|=k
which sums over all Bl with a specified external leg structure and loop number,
weighted by the rank Aut(y) of their automorphism group.

We want to understand these notions. We will do so by going through an
example (see [22] for a more thorough exploration):

e GRS

We will investigate

(37) B/ (e oy =

and

(38) B;@M(m{ngw@):

Let us start with (37). We have

(39) | 2 |, =

As fermion lines are oriented and hence all external edges distinguished, we can
not permute external edges and obtain a different graph contributing to the same
amplitude. Now let us count the bijections.

(40) bij (+On, <% &M% X) =

e DB}

Indeed, to glue the argument X of B} (X) into -y, we identify the factors X = [T, ;.
The multiset res(y;) identifies a number of edges and vertices. From the internal
edges and vertices of v we choose a corresponding set m which contains the same
type and number of internal edges and vertices.

We then consider the external edges of elements «; of X and count bijections
between this set and the similar set defined from m. Summing over all choices of
m and counting all bijections at a given m such that I' is obtained gives bij by
definition. In the example, there is just a unique such bijection for each of the four
different graphs X.

(41) (-O- 5 & ) =

This counts the number of insertion places. ()~ has two internal vertices and
two internal edges, hence four possible choices of an insertion place.

Next, the maximal forests: we count the number of different subsets v of 1PI
subgraphs such that '/ is a primitive element, A’(T'/v) = 0.
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(42) maxf (X) = maxf ( W@M > =2,

for any of the four graphs X as above. For each of the four graphs there are two
such possibilities. We indicate them in a way which makes the underlying tree
structure ([29, 9]) obvious:

L JINREE S

This is one major asset of systematically building graphs from images of Hochschild
closed one-cocycles: it resolves for us overlapping divergences into rooted trees.
Let us now collect:

(14) BT (e o) =

@ =5(4D-+ =D+ -+ ~P-)

The reader will notice that this fails to satisfy the desired cocycle property. To
understand the reason for this failure and the solution to this problem, we turn to

(38). We have
1

(46) | -4

as before.

:1’
\4

1

)

(47) bij (O, ], X)
(48) bij (-0, 4, X) = 1,

where X can still be any of the four graphs defined above.
Next,

(49) (-0 1) =2=(-O-14).

There are now two insertion places for the vertex graph to be inserted into the
one-loop photon self-energy graph.

The maximal forests remain unchanged as we are generating the same graphs
X in the two examples. Hence

(50) Bf@”(m@er@):
o 3(D- B+ D+ )

Again, this fails to satisfy the cocycle property. But let us now consider

(52) B (1 e w2+ )

@ =(Dr s DD+ D)
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We see that with these weights we do fulfill the cocycle condition. For this, it
is actually sufficient that the ratio of the weights is two-to-one. Taking those
weights to be four and two gives the result with the proper weights needed in the
perturbative expansion of the photon propagator. It was a major result of [22]
that these weights always work out in field theory such that we do have the desired
perturbative expansion and cocycle properties. So while the maps B] are one -
cocycles for Hopf algebras generated by dedicated subsets of graphs, one finds that
the maps Bik are proper cocycles for a Hopf algebra generated by sums of graphs
with given external leg structure and loop number.
So working out

(54) B () =1 (D

and

(55) Bp(&):%@@,

we indeed confirm
(56) ABJFMOM (X):BJFMOM (X)®H+(id®3+@)A(X),

for

(57) X:4¥&+2(@+w§).

We will understand soon how the weights 4 and 2 in (53) come about.
As a final exercise the reader might finally wish to confirm

69 B 5 v2 ) = (e D
AB e va o) = B e 12 e )l
+ <id®B+@)A(2%z +2 7).
To put it shortly:
£ B 05 ) =

where we indicated the residue res( ~(_~ ) of the one-loop primitive graph =(
by its corresponding monomial iF 2 in the Lagrangian of QED, and there is indeed
only one primitive at first loop order,

1F%1 (O
(60) it g

2.4. Sub-Hopf algebras. In the example above, we looked at the sum of all
1-PI graphs contributing to a choosen amplitude r at a given loop order k£ . This
gives us Hopf algebra elements ¢; € H* as particular linear combinations of degree-
homogenous elements. Such Hopf algebra elements generate a sub-Hopf algebra.
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For example in QED we have

k—1
b . b N . LF?
(61) A'(™) = Y[ )+ D w2k = e + (k= e ]
j=1
®ci}f;-p + terms non — linear on the lhs
k—1
) N . 7 . 1F?
(62) A(ef”) = Do [@U =™+ @k =) = e + (k= j)e] |
j=1

®c}§f i+ terms non — linear on the lhs

k—1 _ _ 12
63) Ne;™) = D[k e 20k - ) = e+ (k= e) ]

172
®c,jfj + terms non — linear on the lhs.

We omit to give explicit expressions for the terms non-linear on the lhs of the co-
product. They are not really needed, as we will soon see when we study the Dynkin
operator. Similar to these sub-Hopf algebras, one can determine the corresponding
quotient Lie algebras.

2.5. Co-ideals. Often, sub-Hopf algebras like above only emerge when divide
by suitable co-ideals. An immediate application is a derivation of Ward—Takahashi
and Slavnov—Taylor identities in this context [22, 32]. Lifting the idea of capturing
relations between Green functions to the core Hopf algebra leads to the celebrated
BCFW recursion relations [18]. All this needs much further work. The upshot
is that dividing by a suitable co-ideal I, Feynman rules ® : H — C can be well-
formulated as maps

(64) ®:H/I —C.

Let us consider as an example (following van Suijlekom [33]) the ideal and
co-ideal I in QED given by

(65) i o= el A L Y =0, Yk > 0.
So, for example,
(66) = g+ S

For I to be a co-ideal we need

(67) A c(HeI) & (I H).
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Let us look at A(iz) for an example:

| A A Or B A

+ O @ (5 + ™)

5 S e (25 4+ )
+ (S Ty ).
ceHR®I

For a thorough discussion of the role of co-ideals and their interplay with Hochschild
cohomology in renormalization and core Hopf algebras, see [18] and references there.

2.6. Co-radical filtration and the Dynkin operator. For our graded com-
mutative Hopf algebras H there is a co-radical filtration. We consider iterations
[A)* . H — Aug(H)®*+D of the map A’ : H — Aug(H) ® Aug(H), and filter
Hopf algebra elements by the smallest integer k such that they lie in the kernel of
such a map. We can write the Hopf algebra as a direct sum over the corresponding
graded spaces HU!,

(68) H = a5 HY.

Elements ¢I are in H% primitive elements are in H[!, and so on.
A Hochschild one-cocycle is now a map

(69) Bl : gUI _ gli+1]
Note that for example in H?,
(70) BI(IBL(I) = BY o BL(I) + B o BY(I),

with the difference between the lhs and the rhs being an element in A,

In [5] this was used to reduce the study of renormalization theory to the study
of flags of subdivergent sectors. This is closely connected to the Dynkin operator
(8, 20, 31]

(71) D:H—- ), D:=SxY=m(S®Y)A.

Here, Y(T") = |T'|T" for all homogenous elements, extended by linearity.
Indeed, the above difference can be calculated as

(72) D(BY o B{(I) 4+ BY o B{(I)) = Bf o BY{(I) + BY o B{ (I) — B{(I) B (I).

In physics, this leads to the next-to-leading log expansion, see [8], upon recognising
that the Feynman rules send elements in H to polynomials in suitable variables
L =1Ing?/p? say such that elements in H¥ are mapped to the terms ~ LF.

There is an interesting remark to be made concerning the fact that the Dynkin
operator vanishes on products. This allows for all things concerning renormalization
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(including for example the derivation of the renormalization group [11]) to rely on
a linearized coproduct

(73) Alip = (Pin ®id)A: H — H® H,

with P, : H — (T') the projector into the linear span of generators.
Obviously, this is not a coassociative map.

(74) (Alin & id)AIin 7é (1d ® Alin)Alin-

To control this loss of associativity is a fascinating task on which we hope to report
in the future.

2.7. Unitarity of the S-matrix. A fact which will need much more attention
in the future from the viewpoint of mixed Hodge structures is the fact that Feynman
amplitudes are boundary values of analytic functions. We hence have dispersion
relations available, and can relate, in the spirit of the Cutkosky rules, branchcut
ambiguities to cuts on diagrams.

In particular, following guidance of the core Hopf algebra whose primitives are
the one-loop cycles in the graph, the structure of the following matrix should reveal
the desired relation between Feynman amplitudes and (variations of) mixed Hodge
structures.

Actually, let us study a simple example where the renormalization Hopf algebra
suffices (as the extra co-graphs in the core Hopf algebra would all be tadpoles [16]):

iy
(75) S =Be (£,

Then, the two-particle cuts on I' := iﬁi are given by the two-particle cuts on
the primtives appearing in the one-cocycles:

(76) B+$(&)=%&+gﬁ.

The whole imaginary part can be obtained from this plus the three-particle cut
This can be combined into a nice matrix M' which indeed suggests to study

the connection to mixed Hodge structures more deeply.

I 0 0
£

(77) M = & iii 0 1.
I A s

In each column we cut one loop at a time, such that suitable linear combinations
of columns will express the branchcut ambiguities of the first column.

We hope that such matrices come in handy in an attempt to deepen the con-
nection between Hodge theory and quantum fields, which started with the study
of limiting mixed Hodge structures and renormalization in a recent collaboration
between Spencer Bloch and the author [5]. While there it was the nilpotent or-
bit theorem which was at work in the back, we hope that the reader gets an idea
from the above how we hope to farther the connection to Hodge structures. This
hopefully succeeds in giving a precise mathematical backbone to renormalizability
and unitarity simultanously, a feast notoriously missing in all attempts at quantum
field theory (and gauge theories in particular) at present.
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2.8. Fix-point equations. Let us finish this paper by listing the final fix-
point equations (we give them for QED, and refer the reader to [22, 32, 18] for
the general case) which generate the whole Feynman graph expansion of QED. We
discriminate between the two formfactors of the massive fermion, mi for its mass
and ¢ for its wave function renormalization. Let

(75) Raen = {000, miy, 4, 7).

Then

(79) X"(a) =1 3" aF B (X7 (@)@ (a),
k=1

where we take the plus sign for r» = ¥4+ and the minus sign else, if » corresponds
to an edge. We let

XAy
O e
Upon evaluation by renormalized Feynman rules it delivers the invariant charge of
QED. The resulting maps B:k are Hochschild closed

(80)

(81) bB2" = 0.
Dividing by the (co-)ideal I simplifies Q;
1
82 = .

See for example [21] for a far-reaching application of these techniques in QED.

Let us finally mention that upon adding suitable exact terms, Bik — B:jk +
Lg;k with Lg;k = b¢"*, b being the Hochschild differential b = 0, ¢"* : H — C,
we can capture the change of parameters in the Feynman rules by suitable such
coboundaries [30].
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