
ar
X

iv
:0

70
5.

45
45

v1
  [

m
at

h.
G

T
] 

 3
1 

M
ay

 2
00

7

THE DIFFEOMORPHISM GROUP OF A K3 SURFACE AND

NIELSEN REALIZATION

JEFFREY GIANSIRACUSA

Abstract. We use moduli spaces of various geometric structures on a mani-
fold M to probe the cohomology of the diffeomorphism group and mapping class
group of M . The general principle is that existence of a moduli problem for
which the Teichmüller space resembles a point implies that the homomorphism
from the diffeomorphism group (or the mapping class group) to an appropriate
discrete group resembles a retraction after applying the classifying space func-
tor. Our main application of this idea is for K

4 a K3 surface; here the maps
BDiff(K) → BAut(H2(K; Z)) and Bπ0Diff(K) → BAut(H2(K; Z)) are injec-
tive on real cohomology in degrees ∗ ≤ 9. The work of Borel and Matsushima
determines the real cohomology of BAut(H2(K; Z)) in these degrees. Using the
above injections, the Borel classes provide cohomological obstructions to a gen-
eralized Nielsen realization problem which asks when subgroups of the mapping
class group can be lifted to the diffeomorphism group. We conclude that the
homomorphism Diff(M) → π0Diff(M) does not admit a section if M contains a
K3 surface as a connected summand.

1. Introduction

Let M be a smooth closed oriented manifold. We write Diff(M) for the group of
orientation preserving C∞ diffeomorphisms of M . It is a topological group with
the C∞ Fréchet topology. There is an associated mapping class group Γ(M), which
is the group of path components of Diff(M).

The main idea of this paper is to probe the algebraic topology of BDiff(M) and
BΓ(M) using various moduli spaces coming from differential and complex geom-
etry. The key is to find a moduli problem for which the associated Teichmüller
space is contractible. This occurs for instance in the following three examples:

• Flat pointed Riemannian manifolds of arbitrary dimension. This is essen-
tially trivial.

• Finite volume hyperbolic manifolds of dimension greater than or equal to
3, for which the situation is trivial as a consequence of Mostow Rigidity.

• Surfaces, for which this approach was worked out completely by Earle and
Eells [EE69].
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A novel example is provided by Einstein metrics on a K3 surface K4. Relatively
little is known about the diffeomorphism group and our method provides interesting
new information. Here the Teichmüller space is not contractible. However, period
theory shows us that the Teichmüller space is obtained from a contractible space
in a straightforward way, and this turns out to be good enough for the purposes of
detecting cohomology on BDiff(K).

For a given manifold M it is an interesting (and generally difficult) problem to
understand the cohomology of BDiff(M) and BΓ(M). One motivation is the fol-
lowing: the set of elements in the cohomology of BDiff(M) is precisely the set of
universal characteristic classes for smooth fibre bundles with fibre M . A bundle
E → B is classified by a map B → BDiff(M), and the characteristic classes of π
are obtained by pulling classes back from BDiff(M) via the classifying map.

For a few types of manifolds M the cohomology of BDiff(M) is well understood.
There are Hatcher’s theorems that Diff(S3) ≃ O(4) [Hat81] and Diff(S1 × S2) ≃
O(2) × O(3) × ΩO(3) [Hat83] (for the full unoriented diffeomorphism group). For
a surface Fg of genus g the integral cohomology of BDiff(Fg) is computable in the
Harer-Ivanov stable range ∗ ≤ (g − 1)/2 by the Madsen-Weiss Theorem [MW02].
For M an aspherical manifold the rational homotopy groups of BDiff(M) have
been computed in Igusa’s concordance stable range ∗ < (dim M)/6 − 7 by Farrell
and Hsiang [FH78]. Finally there is the work of Weiss-Williams [WW01, WW88,
WW89, WW06] which gives more general information in the concordance stable
range. While this is certainly not an exhaustive list, it at least illustrates that for
most manifolds M the cohomology of BDiff(M) remains largely unknown outside
the concordance stable range.

1.1. Our strategy. A naive way to produce cohomology classes on BDiff(M) is
to construct a map into a space X with computable cohomology and then define
classes on BDiff(M) by pulling back known classes on X. This leaves us with the
problem of detecting whether or not the classes pulled back from X are actually
nontrivial on BDiff(M). A naive way to detect classes is to choose a space Y with
known cohomology, construct a map of Y into BDiff(M), and then try to compute
the pullbacks on Y .

One can obtain interesting maps BDiff(M) → X by applying the classifying space
functor to a homomorphism Diff(M) → G for some group G. A natural choice for
G is the group Aut(AM) of automorphisms of some algebraic object AM associated
to M such as the fundamental group of M or the cohomology ring of M . A diffeo-
morphism of M induces an automorphism of AM and so there is a homomorphism
Ψ : Diff(M) → Aut(AM). One then hopes to be able to compute the cohomology
of the group Aut(AM).

To construct a map Y → BDiff(M) it suffices to look for a fibre bundle over Y with
fibre M . One promising class of spaces which naturally come equipped with fibre
bundles are moduli spaces M?(M) of various types ? of geometric structures on
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M . For example, one can take the moduli space MCplx(M) of complex structures
on M . Here one should be careful to work with a fine moduli space, meaning that
it carries a universal bundle. If one chooses a favorable type ? of structure then it
might turn out that the cohomology of the moduli space M?(M) is computable to
some degree.

The key is to find a moduli problem for which the Teichmüller space resembles a
point. In fact, contractibility of the Teichmüller space implies that the moduli
space has the homotopy type of BImΨ, and moreover the composition

M?(M) → BDiff(M) → BImΨ

is a homotopy equivalence. From here one can compute a piece of the cohomology
of BDiff(M).

1.2. K3 manifolds. A highly nontrivial example of this method is provided by the
moduli theory of Einstein metrics on a K3 surface. Recall that all K3 surfaces have
the same diffeomorphism type; we shall call a 4-manifold K in this diffeomorphism
type a K3 manifold. See section 5.1 for the basic facts about K3 manifolds.

Let QK denote the cup-form on H2(K, Z). Sending a diffeomorphism to the induced
automorphism of cohomology induces a homomorphism Ψ from Diff(K) to the
group Aut(QK) of automorphisms of H2(K; Z) which preserve the cup pairing.
This factors through the mapping class group Γ(K) since Aut(QK) is discrete.
The image of Ψ is an index 2 subgroup Aut′ ⊂ Aut(QK) ([Don90], [Mat86]).

For this moduli problem the Teichmüller space is not contractible, but it is related
closely enough to a contractible space that the reasoning above still provides infor-
mation. Period theory identifies the homotopy type of the Teichmüller space and
moduli space of Einstein metrics in terms of the arithmetic group Aut′. The Te-
ichmüller space is homeomorphic to two copies of a Euclidean space of dimension 57
minus a countable family of transversely intersecting codimension 3 Euclidean sub-
manifolds; the (fine) moduli space is the (homotopy) quotient of this by a natural
proper action of Aut′.

Let Mf
E(K) denote the fine moduli space of unit volume Einstein metrics on K

(this is defined in section 2 in terms of a homotopy quotient).

Theorem 1.1. The composition

Mf
E(K) → BDiff(K) → BΓ(K) → BAut′

is injective on real cohomology in degrees ∗ ≤ 9. Hence the homomorphisms

H∗(BAut′; R) → H∗(BDiff(K); R),

H∗(BAut′; R) → H∗(BΓ(K); R)

are injective in degrees ∗ ≤ 9.
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Remark 1.2. Note that for any simply connected closed oriented topological 4-
manifold, Freedman and Quinn [Fre82], [Qui86] have shown that there is an iso-
morphism π0Homeo(M) ∼= Aut(QM). However, in the smooth category Ruberman
[Rub98], [Rub99] has constructed examples of smooth diffeomorphisms which are
continuously isotopic but not smoothly isotopic.

The proof of Theorem 1.1 rests on a careful examination of the group cohomology
of Aut′ and certain other related arithmetic groups. Also, from this theorem we
see that the group cohomology of Aut′ can serve as an interesting source of char-
acteristic classes for smooth fibre bundles with fibre a K3 manifold. Thus one is
lead to try to compute the cohomology of groups such as this. The well-known
techniques of Borel and Matsushima do the job by producing a nontrivial family of
real cohomology classes, which we shall refer to as the Borel-Matsushima classes.
There is an inclusion Aut(QK) →֒ O3,19 and this Lie group retracts onto the maxi-
mal compact subgroup O3×O19. Taking classifying spaces and projecting onto the
first factor gives a map BAut(QK) → BO3. On real cohomology we then have:

Theorem 1.3. The ring homomorphism

H∗(BO3; R) ∼= R[p1] → H∗(BAut(QK); R)

is an isomorphism in degrees ∗ ≤ 9, and in this range there is an isomorphism

H∗(BAut(QK); R) ∼= H∗(BAut′; R).

Thus R[p1] injects into H∗(BDiff(K); R) and H∗(BΓ(K); R) in degrees ∗ ≤ 9.

See section 4 for a more general statement regarding arbitrary cup forms.

1.3. Nielsen realization and obstructions. Let Mn be a smooth oriented closed
manifold. The (generalized) Nielsen realization problem asks when a subgroup
of the mapping class group of M can be realized as (a.k.a lifted or rectified
to) a subgroup of the diffeomorphism group of M . In the context of surfaces
this problem has a long history—it originates with Nielsen [Nie43] who phrased
it in in terms of isometries of hyperbolic surfaces. Kerckhoff [Ker83] showed
that all finite subgroups of the mapping class group of a surface can be rec-
tified, but Morita showed that the Miller-Morita-Mumford characteristic classes
κi ∈ H∗(BDiff(Fg); Q) ∼= H∗(BΓ(Fg); Q) provide cohomological obstructions to
rectifying infinite subgroups.

For M an arbitrary even dimensional closed oriented manifold the classes on
BDiff(M) obtained by pulling the Borel-Matsushima classes back from BAut(QM)
have a more geometric origin. They are related through index theory to the in-
tegration along the fibres of the components of the Atiyah-Hirzebruch L̃-class of
the vertical tangent bundle. Morita observed [Mor87, Theorem 8.1] that the Bott
Vanishing Theorem [Bot70] implies that these classes vanish on BDiff(M)δ (the
diffeomorphism group given the discrete topology). Hence the Borel-Matsushima
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classes provide obstructions to lifting infinite subgroups of mapping class groups
in higher dimensions also.

Morita’s argument, together with Theorems 1.1 and 1.3, implies:

Theorem 1.4. If M contains a K3 manifold as a connected summand then the
projection

Diff(M) → π0Diff(M) = Γ(M)

does not admit a section as a group homomorphism.

Note that if one is instead interested in realizing (infinite subgroups of) the group
of automorphisms of the cup form then a corresponding result is much more easily
obtained.

Theorem 1.5. Let M be a 4k-dimensional smooth closed oriented manifold such
that the natural map Ψ : Diff(M) → Aut(QM) is surjective and

⌊rank(M)/2⌋ − 2, rank(M) − |signature(M)| ≥ 4k + 4.

Then Ψ does not admit a section which is a group homomorphism.

Variants of this can easily be stated when M is 4k + 2 dimensional and/or when
Ψ is not quite surjective.

Organization of the paper:

In section 2 we describe our point of view on Teichmüller spaces and moduli spaces.
This leads to the very simple Meta-Theorem 2.1 which serves as a template for
Theorem 1.1.

In section 3 we discuss the examples of flat metrics, finite volume hyperbolic metrics
in dimensions greater than 2, and complex structures on surfaces of genus greater
than 1.

Section 4 reviews the techniques of Borel and Matsushima which we use to under-
stand the cohomology of the groups Aut(QM) and hence to prove Theorem 4.6 (of
which Theorem 1.3 is a special case).

Section 5 recalls the elements of period theory for Einstein metrics on a K3 mani-
fold. We then apply period theory together with a computation in group cohomol-
ogy and the results of section 4 to prove Theorem 1.1.

Section 6 explores the geometry of the Borel-Matsushima classes and their role as
obstructions in generalized Nielsen realization problems. Here we give the proof of
Theorem 1.5.

Finally, in section 7 we collect some ideas about the extent to which the Borel-
Matsushima classes are algebraically independent when pulled back to the coho-
mology of BDiff(M).

Acknowledgments. This work was inspired by Morita’s beautiful paper [Mor87].
The idea of using K3 moduli spaces grew out of a conversation with Aravind
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Asok and Brent Doran, and much of my mathematical perspective is derived from
them. Comments from Eduard Looijenga, Andrew Dancer, and Ulrike Tillmann
helped considerably as this manuscript developed, and I thank Peter Kronheimer
for pointing out an error in an earlier version. I gratefully acknowledge the support
of an NSF graduate fellowship and the hospitality of the IHES.

2. Teichmüller space and moduli space

We adopt the following homotopical view of moduli theory. Fix an algebraic object
AM associated to M such that a diffeomorphism of M induces an automorphism
of AM . Then there is homomorphism

Ψ : Diff(M) → Aut(AM);

let Diff0(M) denote the kernel of Ψ and let Aut′ ⊂ Aut(AM) denote the image
of Ψ. Note that if Aut(AM) is discrete then Ψ automatically factors through the
mapping class group,

Diff(M) Aut(AM)

Γ(M)
$$JJ

JJ
JJ

J

//
Ψ

::ttttttt

Fix a class ? of geometric structure on M and let S?(M) denote the space of all
such structures on M .

The Teichmüller space T?(M) of ? structures on M is the quotient of S?(M) by the
group Diff0(M). The moduli space M?(M) of ? structures on M is the quotient of
S?(M) by Diff(M), which is the same as the quotient of the Teichmüller space by
the action of Aut′. A marking is a fixed identification of AM , so Diff0(M) is the
group of diffeomorphisms which preserve the marking. Thus the Teichmüller space
is often thought of as the moduli space of marked structures.

A good moduli space should have a universal bundle over it. If it does then it is
called a fine moduli space; if it does not then it is called a coarse moduli space.

The universal M bundle over M?(M) (T?(M)) should be the Diff(M) (Diff0(M)
resp.) quotient of the product bundle

S?(M) × M → S?(M),

where Diff(M) acts diagonally on the total space. If the action is not free and
proper then the ordinary quotient may no longer be a bundle, in which case the
ordinary quotient yields a coarse Teichmüller/moduli space. The standard solution
in topology is to replace the ordinary quotient by the homotopy quotient (a.k.a.
Borel construction)

X//G := X ×G EG

where EG is a universal free G-space.
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Definition 2.1. The coarse/fine Teichmüller spaces of ? structures on M are

T c
? (M) := S?(M)/Diff0(M) T f

? (M) := S?(M)//Diff0(M)

Similarly, the coarse/fine moduli spaces are

Mc
?(M) := S?(M)/Diff(M) Mf

? (M) := S?(M)//Diff(M)

∼= T c
? (M)/Aut′ ∼= T f

? (M)//Aut′.

Definition 2.2. The universal bundle UT over the fine Teichmüller space is

(S?(M) × M)//Diff0(M) = UT

S?(M)//Diff0(M) = T f
? (M);

��

the universal bundle UM over the fine moduli space is obtained by replacing
Diff0(M) with Diff(M).

Remark 2.3. In using the homotopy quotient one loses sight of any geometry on
the fine moduli space. This will not matter for our purposes since we are concerned
only with the homotopy type. To work with the geometry of the fine moduli space
one should instead use a stack quotient.

Example 2.4. Take M to be a surface of genus g > 1, take ? to be the class Cplx of
complex structures, and take AM to be π1(M). On a surface two diffeomorphisms
are isotopic if and only they induce the same outer automorphism of π1M , so
Diff0(M) is the identity component of the diffeomorphism group. The action of
Diff0(M) is free, and in fact the fine Teichmüller space is homotopy equivalent to
the coarse space, which is the familiar 6g − 6 dimensional space homeomorphic to
a ball. The action of Diff(M) is not free. Our coarse moduli space is the familiar
coarse moduli space of genus g curves, and our fine moduli space has the homotopy
type of BΓ(M). See section 3.3 for more detail.

In practice one usually sets up a moduli problem so that Diff0(M) acts freely on
S?(M). If the action is also proper and admits local sections then the projection

S?(M) → T c
? (M) is a principal Diff0(M)-bundle and hence the map T f

? (M) →
T c

? (M) is a homotopy equivalence. In this case we will drop the distinction between
the coarse and fine Teichmüller spaces from the notation.

For the four moduli problems that we shall consider in this paper the action of
Diff0(M) is indeed free and proper with local sections. The key point is the fol-
lowing theorem of Ebin and Palais (restated in the form we shall use).

Theorem 2.5 (The Ebin-Palais Slice Theorem). Let Riem(M) denote the space of
all Riemannian metrics on M and let S ⊂ Riem(M) be a closed subset for which
Diff0(M) acts freely. Then the action of Diff0(M) on S is proper and admits local
sections and hence the projection

S → S/Diff0(M)
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is a principal Diff0(M)-bundle.

(Theorem 7.1 of [Ebi70] asserts the existence of local sections. Properness of the
action follows from pages 29-30 of [Ebi70], as explained in Lemma 8.14 of [FT84].)

2.1. The universal property of universal bundles. Our use of the terminology
defined the above is justified by the following proposition. Two bundles E0, E1 → X
are concordant if they are isomorphic to the restrictions to X × {0} and X × {1}
of a bundle over X × I.

Proposition 2.6. For any CW-space X there is a canonical bijection between (i)

the set of homotopy classes of maps [X,Mf
? (M)] and (ii) the set of concordance

classes of M-bundles over X equipped with fibrewise ?-structures. Similarly, the
fine Teichmüller space classifies concordance classes of M-bundles over X with
fibrewise ?-structures whose associated principal Aut(AM) bundle is trivial.

Proof. Let D be either Diff(M) or Diff0(M). A map f : X → ED ×D S?(M)
produces a principal D-bundle P → X together with a section σf of the associated
bundle P ×D S?(M). This amounts to an M-bundle over X equipped a fibrewise ?-
structure. Conversely, such a bundle determines up to homotopy a map X → BD
together with a lift to ED ×D S?(M). It is not hard to check that this relation
becomes an isomorphism at the level of homotopy classes and concordance classes.

�

2.2. The Meta-Theorem. The universal bundle over the fine moduli space has
an associated principal Aut′-bundle:

(S?(M) × Aut′)//Diff(M) = (T f
? (M) × Aut′)//Aut′

Mf
? (M).

��

This bundle is classified by a map

(1) Mf
? (M) → BAut′.

A model for the classifying map (1) is the map,

Mf
? (M) = T f

? (M)//Aut′ → ∗//Aut′ = BAut′,

induced by collapsing the Teichmüller space to a point.

Lemma 2.7. If T f
? (M) → ∗ is a (weak) homotopy equivalence then the classifying

map (1) is a (weak) homotopy equivalence. If the Teichmüller space is homology
equivalent to a point then (1) is a homology equivalence.
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Proof. The first statement follows from the five-lemma applied to the homotopy
long exact sequences of the fibrations

T f
? (M) → T f

? (M)//Aut′ → BAut′

and
∗ → ∗//Aut′ → BAut′.

For the second statement, observe that the induced map of Serre spectral sequences
is an isomorphism on the E2 page. This is true because H∗(T

f
? (M)) → H∗(∗) is

an isomorphism of Aut′-modules. �

Another model for the classifying map of the associated Aut′ principal bundle is
the composition

Mf
? (M) → BDiff(M) → BΓ(M) → BAut′

given by first classifying the universal bundle. Hence,

Meta-Theorem 2.1. If T f
? (M) → ∗ is a (weak) homotopy equivalence then

BDiff(M) → BAut′ and BΓ(M) → BAut′

are (weakly equivalent to) retractions. If T f
? (M) → ∗ is a homology equivalence

then H∗(BAut′) → H∗(BDiff(M)) and H∗(BAut′) → H∗(BΓ(M)) are split-
injective ring homomorphisms.

3. Flat manifolds, hyperbolic manifolds, and Riemann surfaces

In this section we discuss three examples of moduli problems which result in con-
tractible Teichmüller spaces. The examples of flat manifolds and hyperbolic man-
ifolds are essentially trivial. The example of Riemann surfaces was worked out
completely by Earle, Eells and Schatz [EE69], [ES70].

3.1. Flat manifolds. Let M be a closed manifold admitting a Riemannian metric
with vanishing sectional curvature, i.e. a flat manifold. The moduli problem we
consider is the moduli of (pointed) flat metrics on M .

Let SFlat(M) be the space of all unit volume flat Riemannian metrics on M . This
is a closed subspace Riem(M). We take the algebraic object AM to be π1M (which
is a Bieberbach group).

Fix a basepoint ∗ on M and let Diff(M, ∗) denote the group of diffeomorphisms
which preserve the basepoint. Such a diffeomorphism induces an automorphism
of the fundamental group. The assignment φ 7→ φ∗ ∈ Aut(π1M) determines a
homomorphism Ψ : Diff(M, ∗) → Aut(π1M) which factors through π0Diff(M, ∗)
since the target is discrete.

The subgroup Diff0(M, ∗) = ker Ψ consists of those diffeomorphisms which induce
the identity on π1M . The group of based affine diffeomorphisms of M is isomorphic
to Aut(π1M), so Ψ is surjective.
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Lemma 3.1. Diff0(M, ∗) acts freely on SFlat(M).

Proof. If an element ϕ ∈ Diff0(M, ∗) preserves a flat metric g then it lifts to an
affine transformation of the universal cover. Since ϕ is the identity on π1, the lift
of ϕ is the identity on a lattice and so ϕ is the identity. �

Consequently the Ebin-Palais Theorem 2.5 applies and the coarse and fine Te-
ichmüller spaces are equivalent.

Lemma 3.2. The Teichmüller space TFlat(M) is contractible.

Proof. (See [Bes87, p. 345].) By the Bieberbach theorems M is covered by a torus
T ; let F denote the group of deck transformations.

First we determine the Teichmüller space of T . Choose a basepoint ∗ ∈ T lifting
the basepoint of M . A flat metric on T determines a group structure and the metric
is left-invariant with respect to this group structure. Any two compact abelian Lie
groups of the same dimension are isomorphic and there is precisely one isomorphism
within each isotopy class of basepoint-preserving diffeomorphisms between them.
Hence after fixing a group structure on T TFlat(M) identifies with the space of
left-invariant metrics on T . This is homeomorphic to the space of symmetric n×n
matrices of determinant 1, and by the Cholesky matrix decomposition A = L · eD ·
LT one sees that this is convex open subset of a real vector space of dimension
n(n + 1)/2 − 1.

Now, flat metrics on M are in bijection with F -invariant flat metrics on T , and
the subgroup of Diff0(T, ∗) consisting of those diffeomorphisms which fix the F -
invariant metrics set-wise is isomorphic to Diff0(M, ∗). We now conclude that
TFlat(M) is homeomorphic to the the image of SFlat(T )F inside SFlat(T )/Diff0(T, ∗) =
TFlat(T ). Thus the Teichmüller space for M is a convex open subset of a vector
space and is therefore contractible. �

Meta-Theorem 2.1 applies here, but it provides no new information in light of the
fact that Aut(π1M) embeds in Diff(M, ∗) as the group of based isometries of M
with respect to any fixed flat metric.

3.2. Hyperbolic metrics in dimensions 3 and larger. Let (Mn) (n ≥ 3) be
a manifold which admits a complete finite volume Riemannian metric of constant
sectional curvature −1. Let SHyp(M) denote the space of all such hyperbolic
metrics on M . The object AM is again the fundamental group of M , so the
subgroup Diff0(M) ⊂ Diff(M) consists of those diffeomorphisms which induce
the identity outer automorphism of π1M . Note that hyperbolic groups have no
nontrivial inner automorphisms, so Out(π1M) ∼= Aut(π1M).

By the Mostow Rigidity Theorem, Diff(M) → Out(π1M) is surjective and the
action of Diff0(M) on SHyp(M) is free and transitive. By the Ebin-Palais Theorem
2.5 a choice of a point in SHyp(M) determines a homeomorphism Diff0(M) ∼=
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SHyp(M). Thus the coarse Teichmüller space is a point, and the fine Teichmüller
space is contractible.

Again Meta-Theorem 2.1 says nothing interesting here because Out(π1M) embeds
into Diff(M) as the isometry group of any fixed metric.

3.3. Surfaces. In the case of complex structures on surfaces our viewpoint on
moduli theory was completely worked out by Earle, Eells, and Schatz [EE69],
[ES70].

Let Fg be a surface of genus g > 1. For the algebraic object AF we take the
fundamental group π1F . A diffeomorphism induces an automorphism of the fun-
damental group which is well-defined up to inner automorphisms, so there is a
homomorphism

Ψ : Diff(F ) → Out(π1F ).

Since we are tacitly only considering orientation preserving diffeomorphisms, the
image of φ is contained in the subgroup Out+(π1F ) of outer automorphisms which
act by identity on H2(π1F ). A classical theorem of Dehn-Nielsen-Baer ([Nie27],
[Bae28]) asserts that Out+(π1F ) is isomorphic to the mapping class group Γ(F ) =
π0Diff(F ). Hence the group Diff0(F ), defined as the kernel of Ψ, consists of diffeo-
morphisms which are isotopic to the identity.

Let SCplx(F ) denote the set of complex structures on F . Earle and Eells identified
the associated (coarse) Teichmüller space

T c
Cplx(F ) := SCplx(F )/Diff0(F )

with the classical Teichmüller space of surface theory, which is a ball of dimension
6g − 6 (a priori the definitions are different). The action of Diff0(F ) on SCplx(F )
is free. Earle and Eells proved, a fortiori, that the quotient map SCplx(F ) →
T c
Cplx(F ) is a principal Diff0(F )-bundle, so the coarse and fine Teichmüller spaces

are homotopy equivalent. (Alternatively one could replace complex structures with
hyperbolic metrics and appeal again to the Ebin-Palais Theorem.)

In this setting Meta-Theorem 2.1 says that the map

(2) BDiff(F ) → BΓ(F )

is a retraction. Of course this is only half of the theorem of Earle and Eells [EE69]
that Diff0(F ) is contractible, so (2) is actually a homotopy equivalence. The other
half of their theorem comes from the observation that SCplx(F ) is contractible;
the homotopy long exact sequence for the Diff0(F )-principal bundle SCplx(F ) →
T c
Cplx(F ) then gives their entire theorem at once.

4. The real cohomology of arithmetic groups

In this section we review techniques used to study the real cohomology of arithmetic
groups such as automorphism groups of unimodular lattices. The technique is due
to Matsushima [Mat62] and Borel [Bor74] [Bor81].
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4.1. The Borel-Matsushima homomorphism. First we review the general con-
struction, due to Borel and Matsushima, of a homomorphism from the cohomology
of a compact symmetric space to the cohomology of a related arithmetic group.

Suppose G is a connected semisimple linear Lie group and A ⊂ G an arithmetic
subgroup for which we would like to understand the cohomology with real coeffi-
cients. We have in mind G = G(R) for an algebraic group G and A = G(Z) is the
integer points in G.

The group G admits a maximal compact subgroup K; let X = G/K be the associ-
ated symmetric space of non-compact type. The discrete group A acts on X from
the left with finite isotropy subgroups and X is contractible, so H∗(A\X; R) ∼=
H∗(BA; R). Let Gu be a maximal compact subgroup of the complexification GC

which contains K. The quotient Xu = Gu/K is a compact symmetric space known
as the compact dual of X. Matsushima [Mat62] defined a ring homomorphism

(3) j∗ : H∗(Xu; R) → H∗(A\X; R) ∼= H∗(BA; R)

and studied the extent to which this map is injective and/or surjective when A is
a cocompact subgroup. Borel [Bor74] later extended these results to the case of
general arithmetic subgroups. We refer to (3) as the Borel-Matsushima homomor-
phism.

The construction of the homomorphism (3) proceeds as follows. The cohomology
of A\X can be computed using de Rham cohomology. If A is torsion free then the
de Rham complex Ω∗(A\X) is easily seen to be isomorphic as a dga to the ring
Ω(X)A of A-invariant forms on X, and when A is not torsion free it is true (by a
standard argument) that Ω∗(X)A still computes the cohomology of A\X.

An easy way to produce A-invariant forms on X is take G-invariant forms on X.
The inclusion

(4) Ω∗(X)G →֒ Ω∗(X)A

induces a map on cohomology. A G-invariant form on X is entirely determined by
its value on the tangent space at a single point since G acts transitively, and hence
the complex Ω∗(X)G is entirely a Lie algebra theoretic object. Let g, gu, k denote
the Lie algebras of G, Gu, K respectively. Then there are Cartan decompositions

g ∼= k ⊕ p

gu
∼= k ⊕ ip,

and hence there are canonical isomorphisms

(5) Ω∗(X)G ∼=
(∧

p∗
)K

∼= Ω∗(Xu)
Gu .

Since Xu is a compact manifold and Ω∗(Xu)
Gu consists of harmonic forms, Hodge

theory implies that

(6) Ω∗(Xu)
Gu ∼= H∗(Xu; R).
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Combining (4), (5), and (6), one obtains the homomorphism (3).

Borel proved that this homomorphism is injective and surjective in ranges of degrees
depending only on the root system of G. In particular, for the Bn and Dn root
systems we have:

Theorem 4.1 ([Bor81, Theorem 4.4]). For A an arithmetic subgroup of a group
G with root system of type Dn (Bn), the homomorphism (3) is bijective in degrees
∗ < n − 1 (resp. ∗ < n) and injective for ∗ = n − 1 (resp. ∗ = n).

Remark 4.2. In particular, SO+
p,q has root system of type D(p+q)/2 if p+q is even, and

B⌊(p+q)/2⌋ if p+q is odd. Therefore the bijective range for SO+
p,q is ∗ ≤ ⌊(p+q)/2⌋−2.

4.2. A reinterpretation of Borel-Matsushima. The Borel-Matsushima homo-
morphism (3) is closely related to another map which can be described more di-
rectly. Precomposition of (3) with the classifying map cu : Xu → BK for the
principal K-bundle Gu → Gu/K = Xu gives a homomorphism

H∗(BK; R) → H∗(BA; R).

On the other hand, one has

A →֒ G ≃ K

which also induces a map from the cohomology of BK to the cohomology of BA.

Lemma 4.3. These two homomorphisms coincide.

We’ll need the following result for the proof of this lemma. The principal K-bundle
Gu → Gu/K = Xu is classified by a map cu : Xu → BK. Suppose A is torsion
free, so A\G → A\G/K = A\X is a principal K bundle classified by a map
c : A\X → BK. In this situation we have:

Lemma 4.4 ([Bor77], Proposition 7.2). Then the diagram

H∗(BK; R) H∗(Xu; R)

H∗(A\X; R)
��

c∗

//
c∗u

wwoooooooooo

j∗

commutes.

Proof of Lemma 4.3. By a well-known result of Selberg, the arithmetic group A

admits a finite index subgroup Ã which is torsion free. Since

H∗(BA; R) ∼= H∗(BÃ; R)A/ eA ⊂ H∗(BÃ; R),

and the Borel-Matsushima homomorphism (3) is natural with respect to inclusions,
it suffices to verify the claim for torsion free arithmetic groups. So we now assume
that A is torsion free.
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In this case the quotient A\G → A\G/K is a principal K-bundle. The classifying
map A\G/K → BK of this bundle fits into the commutative diagram

BA (A\G) ×G EG (A\G) ×K EG A\G/K

BG BK
))RRRRRRRRRRRRRRRR

oo
≃

��

oo
≃

��

//
≃R

uullllllllllllll

oo
≃

in which the left diagonal arrow is induced by the inclusion A →֒ G, and the right-
most horizontal arrow is a real cohomology isomorphism. Hence BA →֒ BG ≃ BK
agrees with with A\G/K → BK on real cohomology. The statement now follows
from Lemma 4.4. �

4.3. The automorphism groups of intersection forms. Let M be a 4k di-
mensional oriented manifold. Consider the unimodular form

QM : H2k(M ; Z)/torsion ⊗ H2k(M ; Z)/torsion → H4k(M ; Z) ∼= Z

given by the cup product pairing. Let p = b+
2k, q = b−2k be the dimensions of

the maximal positive and negative definite subspaces of H2k(M ; R), and assume
that these numbers are both strictly positive. We now study the cohomology
H∗(BAut(QM ); R) using the Borel-Matsushima homomorphism.

The group Aut(QM) can be regarded as the integer points of a linear algebraic group
with real points Op,q = Op,q(R) (defined over Q). This group has four components
indexed by the spinor norm and the determinant (each of which can take the values
±1). Let Aut′ ⊂ Aut(QM) be the subgroup where (determinant) · (spinor norm) =
+1, and Aut′′ ⊂ Aut′ the subgroup where the spinor norm and determinant are
both +1. It is slightly more convenient to work with Aut′′ because it sits inside
the connected component SO+

p,q of Op,q.

Proposition 4.5. The extensions

Aut′ Aut(QM) Z/2�

�

// // //
det · spin

Aut′′ Aut′ Z/2�

�

// // //
det

are both split.

Proof. By hypothesis QM is indefinite so the Hasse-Minkowski classification implies
that QM contains either a hyperbolic plane H or the form (1)⊕(−1) as a summand.
On the hyperbolic plane there are reflections R± through the vectors (1,±1). These
have determinant −1 and spinor norm ±1. Hence the homomorphisms f± : −1 7→
R± ⊕ idH⊥ are sections of Aut(QM ) ։ Z/2 and Aut′ ։ Z/2 respectively. One can
easily construct similar splittings for the case of (1) ⊕ (−1). �
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Now consider the connected linear algebraic group G = SO+
p,q with maximal com-

pact subgroup K = SOp × SOq and arithmetic subgroup Aut′′. The complexifica-
tion of SO+

p,q is GC = SOp+q(C) which contains Gu = SOp+q as a maximal compact
subgroup. Hence

Xu = SOp+q/SOp × SOq.

By Remark 4.2 the bijective range for the Borel-Matsushima homomorphism (3)
is ⌊(p + q)/2⌋ − 2.

The natural map Xu → BK = BSOp ×BSOq is 2q + 1-connected after projection
onto the first factor and 2p + 1-connected after projection onto the second.

Theorem 4.6. The composition

H∗(BSOp; R) → H∗(BK; R) → H∗(Xu; R) → H∗(BAut′′; R)

is an isomorphism in degrees ∗ ≤ min(2q, ⌊(p + q)/2⌋ − 2).

Finally, note that the action of Aut′/Aut′′ ∼= Z/2 on the Borel-Matsushima classes
on BAut′′ is trivial. Similarly, the action of Aut(QM)/Aut′ ∼= Z/2 on the Borel-
Matsushima classes of BAut′ is trivial. Thus the inclusions

Aut′′ →֒ Aut′ →֒ Aut(QM)

induce isomorphisms on the subalgebras of the cohomology spanned by the Borel-
Matsushima classes.

Theorem 1.3 now follows as a special case of Theorem 4.6.

5. Einstein metrics on a K3 manifold

In this section we recall some necessary background material on Einstein metrics
on a K3 manifold, their moduli, and the associated period map. This material
comes from [Bes87]. The proof of Theorem 1.1 uses the Global Torelli Theorem
(described below) to relate the homotopy type of the moduli space of Einstein
metric to an arithmetic group.

5.1. Basic facts about K3 manifolds. Recall that a K3 surface is a simply
connected compact complex surface such that the canonical bundle (i.e. the top
exterior power of the holomorphic cotangent bundle) is trivial. When considered
with their complex structure there are many non-isomorphic K3 surfaces, but as
smooth 4-manifolds they are all diffeomorphic [Kod64]. We shall call a smooth
manifold of this diffeomorphism type a K3 manifold when it does not come with
a chosen complex structure.

Let K be a K3 manifold. The middle integral cohomology of K is free abelian of
rank 22. The cup product gives a non-degenerate symmetric bilinear pairing on
the middle cohomology

QK : H2(M ; Z) ⊗ H2(M ; Z) → Z.
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The form QK is isomorphic to H⊕H ⊕H ⊕−E8⊕−E8, where H is the hyperbolic
plane (i.e. the unique rank 2 even indefinite form), and E8 is the unique even
positive definite rank 8 form (it is given by the Cartan matrix for the E8 Dynkin
diagram). The form QK has signature (3, 19).

5.2. Teichmüller space and Moduli space for Einstein metrics. Let K4 be
a K3 manifold. An Einstein metric g on K is a Riemannian metric satisfying the
Einstein condition

Ric(g) =
λ

4
· g

where λ is the scalar curvature constant of g. According to [Hit74], every Einstein
metric on a K3 manifold has vanishing scalar curvature constant λ, so Einstein
metrics are precisely the same as Ricci flat metrics in this setting.

We take ? to be the class E of unit volume Einstein metrics. The set SE(K) of
all unit volume Einstein metrics on K is topologized with the C∞ topology as a
subspace of the sections of T ∗K ⊗ T ∗K.

For AK we take the lattice represented by the middle cohomology equipped with
the cup product pairing: (H2(K; Z), QK). We write Aut(QK) for the group of
automorphisms of this free abelian group which preserve the cup pairing. Thus
Diff0(K) is the group of diffeomorphisms acting trivially on cohomology. It is
known ([Mat86] or [Bes87, p. 367]) that the image of Ψ : Diff(K) → Aut(QK) is
an index 2 subgroup Aut′ ⊂ Aut(QK) consisting of those automorphisms for which

(determinant) · (spinor norm) = +1,

(cf. Remark 1.2).

As in section 2 there is a coarse/fine Teichmüller space and a coarse/fine moduli
space of Einstein metrics on K.

5.3. The period map for smooth Einstein metrics. We now review the period
map which identifies the coarse Teichmüller space with an open dense subset of a
homogeneous space.

We continue to let K be a K3 manifold. An Einstein metric g determines a
subspace H +(g) ⊂ H2(K; R) of harmonic self-dual real 2-forms on K. Since the
cup product on H2(K; R) has signature (3, 19) the Hodge Theorem implies that
this space has dimension 3 and is positive definite.

There is a bijection between unit-norm self-dual harmonic 2-forms ω and complex
structures J compatible with g. In one direction the bijection is given by

J 7→ ωJ = g(−, J−).

Every Einstein metric on K is hyperkähler with respect to some triple of complex
structures (I, J, K) (see [Bes87, Theorem 6.40]). Therefore H +(g) has a well-
defined orientation determined by bases of the form (ωI , ωJ , ωIJ).
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The assignment
g 7→ H

+(g)

defines a continuous map

p : SE(K) → Gr+
3 (R3,19)

from the space of Einstein metrics to the Grassmanian Gr+
3 (R3,19) of positive ori-

ented 3-planes in H2(K; R) ∼= R3,19. Written as a homogeneous space,

Gr+
3 (R3,19) ∼= O(3, 19)/SO(3)× O(19)

and one sees that this space has two connected components, each of which is
contractible.

The mapping p is Diff(K)-equivariant, where the action on the source is by g 7→ φ∗g
and the action on the target is induced by the natural action of Diff(K) on the
cohomology of M . The map p is constant on the orbits of Diff0(K) and so descends
to a map

(7) PE : T c
E(K) → Gr+

3 (R3,19).

This map is called the period map for Einstein structures, and the image of a given
metric is called its period.

The set of roots is
∆ = {δ ∈ H2(K; Z) | δ2 = −2}.

It is not difficult to see that the image of the Einstein period map is contained
within the set

W = {τ ∈ Gr+
3 (R3,19) | τ⊥ ∩ ∆ = ∅}.

The argument is as follows. Let g be an Einstein metric; a 2-plane η ⊂ H +(g)
determines a Kähler structure (g, J, ωJ). If a root δ is orthogonal to η then δ is
contained in H1,1(J). The Lefschetz Theorem on (1, 1) cohomology implies that
any integral class in H1,1(J) is the first Chern class of some divisor C, and by the
Riemann-Roch formula, since δ2 = −2, either C of −C is effective. Finally, ωJ is
a unit-norm Kähler class so ωJ · δ = Area(C) 6= 0. Hence δ is not orthogonal to
H +(g).

Theorem 5.1 (The Global Torelli Theorem for Einstein metrics [Bes87, p. 366]).
The Einstein period map

PE : T c
E(K) → Gr+

3 (R3,19)

g 7→ H
+(g)

is a homeomorphism onto the open dense subspace W consisting of 3-planes not
orthogonal to any root.

Thus the coarse Teichmüller space T c
E(K) is a homogeneous space with certain

codimension 3 holes. We now show that the fine Teichmüller space has the same
homotopy type.
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Lemma 5.2. The action of Diff0(K) on SE(K) is free.

Proof. Suppose ϕ ∈ Diff0(K) fixes a metric g ∈ SE(K), which is to say that ϕ is an
isometry of g. The metric g is hyperkählerian, so let S2

g
∼= S(H+(g)) be the 2-sphere

of complex structures. The isometry ϕ induces an orthogonal transformation of
S2

g . Such a transformation must have a fixed point J ∈ S2
g (use the Lefschetz Fixed

Point Formula). Therefore ϕ is a holomorphic automorphism of the complex K3
surface (K, J). Since ϕ is the identity on homology, it follows from the Burns-
Rapoport Uniqueness theorem [BR75, Proposition 1] that ϕ is the identity. �

Since SE(K) is a closed subset of Riem(K), the Ebin-Palais Theorem 2.5 applies:

Lemma 5.3. The quotient map SE(K) → SE(K)/Diff0(K) = T c
E(K) is a principal

Diff0(K)-bundle, and hence the homotopy-to-geometric quotient map T f
E (K) →

T c
E(K) is a homotopy equivalence.

In light of this we will drop the distinction between coarse and fine Teichmüller
spaces from the notation.

5.4. Proof of Theorem 1.1. For the moduli problem of Einstein metrics on a K3
surface the Teichmüller space is not contractible and so Meta-Theorem 2.1 does
not quite apply immediately. However, the argument is easily modified to show
that the composition

(8) Mf
E(K) → BDiff(K) → BAut′

is induced by collapsing the Teichmüller space to a point. The Teichmüller space
has precisely two connected components since it is the complement of a codimension
3 subset in Gr+

3 (R3,19), and this Grassmanian clearly has two components. Let T0

denote one of these components, and let Aut′′ ⊂ Aut′ denote the index 2 subgroup
which acts trivially on π0 (see Proposition 4.5 above), so Mf

E(K) = T0//Aut′′. The
composition (8) thus factors up to homotopy as

Mf
E(K) → BAut′′ → BAut′,

where the first arrow is induced by collapsing T0 to a point, and the second arrow
is induced by the inclusion.

Theorem 1.1 will follow once we prove:

Theorem 5.4. The map Mf
E = T0//Aut′′ → BAut′′ induced by collapsing T0 to a

point is injective on real cohomology in degrees ∗ ≤ 9.

To establish this theorem we will need to study the (co)homology of T0 as an Aut′′-
module. Recall that the set of roots ∆ is the set of all vectors in the K3 lattice of
length −2. Let ∆n denote the set of unordered n-tuples of distinct elements of ∆.
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Lemma 5.5. Given an element x ∈ ∆n, the stabilizer Stab(x) ⊂ Aut′′ is an
extension of a finite group by an arithmetic subgroup of SO+

3−n1,19−n2
, where (n1, n2)

is the signature of the sublattice generated by the roots in x and n1 + n2 = n.

Proof. The element x consists of n distinct roots {δ1, . . . , δn}. The group Stab(x)
permutes the δi so there is a homomorphism Stab(x) → Σn; let Gx be the image
of this homomorphism. Thus there is a group extension

(9) Ax :=

n⋂

i=1

Stab(δi) →֒ Stab(x) ։ Gx.

It remains to show that the kernel Ax of (9) is an arithmetic subgroup of SO+
3−n1,19−n2

.
Let Px denote the sublattice of LK3 generated by the δi. We may express Ax as the
subgroup of Aut′′ consisting of those automorphisms which restrict to the identity
on Px. Let Aut′′(P⊥

x ) denote the group of all automorphisms of P⊥
x having spinor

norm and determinant both equal to 1. An element of Ax determines an element
of Aut′′(P⊥

x ), and since (Px ⊕ P⊥
x ) ⊗ Q ∼= LK3 ⊗ Q there is in fact an inclusion

Ax →֒ Aut′′(P⊥
x ).

The group Aut′′(P⊥
x ) is an arithmetic subgroup of SO+

3−n1,19−n2
, where (n1, n2) is

the signature of Px. Therefore we need only verify that Ax is of finite index in
Aut′′(P⊥

x ). The lattice Px⊕P⊥
x is of finite index in LK3, so for some integer k there

are finite index inclusions

Px ⊕ P⊥
x ⊂ LK3 ⊂

1

k
(Px ⊕ P⊥

x ).

Let Bx denote the group of automorphisms of 1
k
(Px ⊕ P⊥

x ) which restrict to the
identity on Px and have spinor norm and determinant 1, and let Bx(LK3) denote
the subgroup of Bx which sends the lattice LK3 onto itself. Since LK3 is of finite
index in 1

k
(Px ⊕ P⊥

x ) it follows that Bx(LK3) is of finite index in Bx.

Observe that Bx
∼= Aut′′(P⊥

x ); this is because the automorphism group of 1
k
P⊥

x

is precisely the automorphism of P⊥
x . Furthermore, Bx(LK3) is isomorphic to Ax;

this is because the homomorphism Bx(LK3) → Ax given by restriction to LK3 is
surjective (it admits a section) and there is a commutative diagram

Bx(LK3) Bx

Ax

�

�

//

����
�
�
�
�
�
�
�
�

/

�

??�����������

which shows that the left vertical arrow must also be injective. Thus Ax is a finite
index subgroup of the arithmetic group Aut′′(P⊥

x ) ⊂ SO+
3−n1,19−n2

, and hence Ax

is an arithmetic subgroup itself. �
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Given an orbit σ ∈ ∆n/Aut′′, we write Stab(σ) ⊂ Aut′′ for the stabilizer of any
point in the orbit. Note that while ∆1/Aut′′ is finite, ∆n/Aut′′ is in general count-
ably infinite.

Lemma 5.6. The integral homology of T0 is concentrated in even degrees. Fur-
thermore, for n ≤ 14,

H2n(T0; Z) ∼= Z[∆n] ∼=
⊕

σ∈∆n/Aut′′

Z[Aut′′] ⊗Stab(σ) Z

The action of Aut′′ on H2n(T0; Z) is determined by the action of Aut′′ on ∆n.

Proof. A root δ determines a codimension 3 totally geodesic submanifold Aδ ⊂
Gr+

3 (R3,19). Note that Gr+
3 (R3,19) is diffeomorphic to a Euclidean space R57. The

submanifolds {Aδ}δ∈∆ intersect each other pairwise transversally and any finite
intersection Aδ1 ∪ · · · ∪ Aδk

is diffeomorphic to R57−3k.

Goresky and MacPherson [GM88, Theorem B, p. 239] compute the homology of
the complement of an arrangement of finitely many affine subspaces Ai in RN using
stratified Morse theory. The Morse function they use is f(x) = dist(x, p)2 for a
generic point p. If the codimension of each Ai is 2 and they all intersect pairwise
transversally then the result of their computation is that the odd homology of the
complement vanishes and the homology in degree 2n (for n ≤ N/4) is free abelian
with generators corresponding to the unordered n-tuples of distinct subspaces.

Pick a generic point p in Gr+
3 (R3,19) and let Br(p) denote the ball of radius r

centered at p. Note that only finitely many of the submanifolds Aδ intersect the
ball since its closure is compact. The Goresky-MacPherson computation carries
over essentially verbatim if the ambient RN is replaced by Br(p) ⊂ Gr+

3 (R3,19) and
the affine subspaces are replaced by the totally geodesic submanifolds Aδ ∩ Br(p).
Taking the colimit as the radius goes to infinity produces the desired result. �

Applying the Universal Coefficient Theorem gives,

Lemma 5.7. The cohomology H∗(T0; R) = 0 vanishes in odd degrees, and for
n ≤ 14,

H2n(T0; R) ∼=
∏

σ∈∆n/Aut′′

CoIndAut′′

Stab(σ)(R),

where R is the trivial Stab(σ)-representation.

Here, for H ⊂ G, CoIndG
H(M) is the G-module coinduced up from an H-module

M .

Proof of Theorem 5.4. Consider the real cohomology Serre spectral sequence for
the fibration

T0 →֒ T0//Aut′′ → BAut′′.
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The E2 page has Ep,2q+1
2 = 0, and for q ≤ 14

Ep,2q
2 = Hp(BAut′′; H2q(T0; R))

∼=
∏

σ∈∆q/Aut′′

Hp(BStab(σ); R),

where second line follows from Lemma 5.7 together with Shapiro’s Lemma. By
Lemma 5.5 the group Stab(σ) is an extension of a finite group by an arithmetic
subgroup of SO+

3−q1,19−q2
for some partition q1 + q2 = q. Since the real cohomology

of an arithmetic subgroup of SO+
3−q1,19−q2

vanishes for in odd degrees satisfying
∗ ≤ ⌊(22 − q)/2⌋ − 2 (by Theorem 4.6), it follows from taking invariants that the
real cohomology of BStab(σ) also vanishes in odd degrees in this range.

In the region of total degree ∗ ≤ 9 on the E2 page all nonzero terms occur in even
bidegree, so in this region there can be no nontrivial differentials. Hence the spec-
tral sequence degenerates in this region and it now follows that H∗(BAut′′; R) →
H∗(Mf

E; R) is injective for degrees ∗ ≤ 9. �

Remark 5.8. The above spectral sequence actually shows that there are many more
classes than just those coming from BAut′′. It would be interesting to investigate
whether or not any of these classes can be pulled back from BDiff(K).

6. Characteristic classes and the Nielsen realization problem

In this section we compare the characteristic classes of M-bundles which come
from the automorphism group of QM to those classes which come from integrating
characteristic classes of the vertical tangent bundle over the fibres. A consequence
of the Atiyah-Singer Index Theorem is that these two recipes are equivalent over the
rationals. Thus the classes detected for a K3 manifold by Theorems 1.1 and 1.3 can
be given a geometrical interpretation in terms of the vertical tangent bundle. From
here we show, following Morita [Mor87], that these classes provide obstructions to
solving the generalized Nielsen realization problem on a K3 manifold.

For M a smooth manifold, the methods for constructing classes in H∗BDiff(M)
(or even on H∗BHomeo(M)) generally fall into two categories:

(i) One can construct a map from BDiff(M) to some better-understood space
and pull classes back from there.

(ii) One can describe a geometric recipe for producing classes.

Thus far in this paper we have focused on method (i). The standard example of
method (ii) is the usual construction of the Miller-Morita-Mumford classes. There
is the following recipe. Given an orientable fibre bundle

M → E
π
→ B

with fibre M a closed manifold there is the vertical tangent bundle T νE → E (if
the structure group is Homeo(M) then this is a microbundle rather than a vector
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bundle). Apply a characteristic class P (e.g. a polynomial in the Pontrjagin classes)
to T νE and then integrate over the fibres to obtain a class π∗P (T νE) ∈ H∗(B).
This method has been explored for instance in [KJ02].

For oriented smooth (or C1) surface bundles the vertical tangent bundle is rank
2, so the only interesting vector bundle characteristic classes one can apply are
the powers of the Euler class. When the fibre is a 4-manifold the vertical tangent
bundle is rank 4 and so one has a little bit more choice: there is the first Pontrjagin
class p1 and the Euler class e (with e2 = p2), as well as all polynomials formed from
these.

It will be more convenient to work with a different generating set for the Pontrjagin

ring, namely the components L̃i of the L̃-class (the Atiyah-Singer modification

of Hirzebruch’s L-class.) The L̃-class is the rational formal power series in the
Pontrjagin classes given by the formal power series expansion of

∏

i

xi

tanh(xi/2)
,

where as usual the xi are the Chern roots and the jth Pontrjagin class pj is inter-

preted as the jth elementary symmetric function in the x2
i . Thus L̃i is a homoge-

neous polynomial of degree 4i with rational coefficients in p1, . . . , pi.

Definition 6.1. For M a 4k-dimensional manifold, define characteristic classes

ℓi := π∗L̃i+k(T
νE) ∈ H4i(BDiff(M), Q),

where π∗ is the integration along the fibres map for the tautological M-bundle
E → BDiff(M).

We regard these classes as analogues of the Miller-Morita-Mumford characteristic
classes κi of surface bundles. Note that they could just as easily be defined on
BHomeo(M) by using the Pontrjagin classes of the vertical tangent microbundle.

Let c̃h denote the pullback of the Chern character ch ∈ H∗(BOp; R) by the com-
position

(10)

BDiff(M) BAut(QM) BOp,q ≃ BOp × BOq

BOp

// //

��

proj

(Here p, q are b+
2k, b−2k respectively.)

Proposition 6.2. The relation ℓ = 2c̃h holds in H∗(BDiff(M); R).

Proof. This is a consequence of the Atiyah-Singer families index theorem. Consider
a fibre bundle M → E → B, and let η denote the associated vector bundle formed
by replacing M with H2k(M, R). A choice of a fibrewise Riemannian metric on E



THE DIFFEOMORPHISM GROUP OF A K3 SURFACE AND NIELSEN REALIZATION 23

induces a Hodge star operator ∗ : H2k(M ; R) → H2k(M ; R) which satisfies ∗2 = 1.
Hence this bundle splits as a sum of positive and negative eigenspaces η = η+⊕η−.
The Atiyah-Singer index theorem for families applied to the signature operator
gives the equation

ch(η+ − η−) = π∗L̃(T νE).

The real vector bundle η has structure group Aut(QM), where QM is the symmetric
bilinear cup product pairing on H2k(M ; Z). This automorphism group is discrete
and hence η is flat, so by the Chern-Weil curvature construction all Pontrjagin
classes of η vanish. Therefore

0 = ch(η)

= ch(η+) + ch(η−)

and so

(11) ℓ(E) = π∗L̃(T νE) = ch(η+ − η−) = 2ch(η+).

Finally, observe that the characteristic classes of the bundle η+ coincide with the
classes pulled back from BOp along the composition of (10). �

The following is an argument essentially due to Morita [Mor87]. Let Diff(M)δ

denote the diffeomorphism group endowed with the discrete topology and consider
the natural map ǫ : BDiff(M)δ → BDiff(M).

Theorem 6.3. For dim M = 4k and i > k the relation

ǫ∗ℓi = 0

holds in H∗(BDiff(M)δ; R).

Proof. The space BDiff(M)δ is the classifying space for smooth M bundles which
are flat, which is to say bundles equipped with a foliation transverse to the fibres
and of codimension equal to the dimension of M (the leaves of the foliation are
parallel to the base). Let M → E → B be a fibre bundle with structure group
Diff(M)δ and let F denote the corresponding foliation. Then the normal bundle
to F can be canonically identified with the vertical tangent bundle. Now Bott’s
Vanishing Theorem [Bot70] states that the rational Pontrjagin ring of T νE vanishes

in degrees greater than 8k. In particular, L̃i+k(T
νE) = 0 for 4(i + k) > 8k, and

therefore ℓi(E) = 0 for i > k. Finally, since this holds for any flat M-bundle
where the base and total space are manifolds, it holds in the universal case on
BDiff(M)δ. �

Let ch2i denote the 2ith component of the Chern character, regarded as an element
of H4i(BAut(QM ); R) via the homomorphism of Lemma 4.3 (or as an element of
H4i(BΓ(M); R) by pullback).
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Corollary 6.4. For M a 4k-dimensional manifold, the classes chi ∈ H4i(BΓ(M); R)
(resp. H4i(BAut(QM); R)) for i > k are obstructions to the existence of a section
of the group homomorphism Diff(M) → Γ(M) (resp. Diff(M) → Aut(QM)).

Proof. Existence of such a section means that the identity on Γ(M) (resp. Aut(QM))
factors through Diff(M). Since Γ(M) (resp. Aut(QM)) is discrete the identity ac-
tually factors through Diff(M)δ, as below.

Diff(M)δ Diff(M)δ Aut(QM )

Diff(M)

id

Γ(M)

Diff(M)

id

By Proposition 6.2 the ℓ classes on BDiff(M) are pulled back from components
of the Chern character on BΓ(M) or BAut(QM), and by Theorem 6.3 they are
zero when pulled back to BDiff(M)δ. Hence if they are nonzero on BΓ(M) (resp.
BAut(QM)) then no section can exist. �

In particular, Theorem 1.5 now follows, as does the special case of Theorem 1.4
when M is a K3 manifold; the slightly more general connected sum case is discussed
below in section 7.2.

Remark 6.5. Corollary 6.4 still holds if Diff(M) is replaced by the C1 diffeomor-
phism group. Hilsum [Hil89] provides a version of the Index Theorem which is
valid even in the Lipschitz setting, and the proof of Bott’s Vanishing Theorem
works verbatim in the C1 setting (although it is unknown if Bott’s theorem holds
in the Lipschitz category). However, As Morita points out, the above method
provides no information about lifting mapping class groups to homeomorphisms
in light of the fact [McD80] that BHomeo(M)δ → BHomeo(M) is a homology
isomorphism.

7. Algebraic independence of the ℓi classes

In addition to the question of when the ℓi classes are nontrivial, one can ask when
they are algebraically independent. If M is a K3 manifold then we have seen (The-
orems 1.1, 1.3, and Proposition 6.2) that ℓ1, ℓ2 are nonzero in H∗(BDiff(M); R).
However, they are not algebraically independent; they satisfy

ℓ2
1 = ℓ2.

In this section we give two situations in which the ℓi classes become algebraically
independent. The first is when M is a product of two surfaces of large genus, in
which case algebraic independence follows easily from the algebraic independence
of the Miller-Morita-Mumford classes on large-genus surfaces. The second situa-
tion is an iterated self-connected sum M# · · ·#M of a 4k-dimensional manifold
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M ; nontriviality of the ℓi classes on M in a range of degrees implies algebraic
independence on the connected sum in a range of degrees.

7.1. A product of two surfaces. Consider M = Fg1
× Fg2

a product of two
surfaces.

Proposition 7.1. The ring homomorphism R[ℓ1, ℓ2, . . .] → H∗(BDiff(M); R) is
injective in degrees ∗ ≤ (min(g1, g2) − 1)/2.

Proof. Let πi : Ei → BDiff(Fgi
) be the universal Fgi

-bundle and consider the ℓj

classes of the product bundle

E = E1 × E2
π1×π2−→ BDiff(Fg1

) × BDiff(Fg2
),

which has fibre Fg1
×Fg2

. The vertical tangent bundle can be written as an external
product T νE ∼= T νE1 × T νE2. Hence

ℓ(E) = (π1 × π2)∗L̃(T νE) =(π1 × π2)∗(L̃(T νE1) × L̃(T νE2))

=(π1)∗L̃(T νE1) × (π2)∗L̃(T νE2).

Since T νEi is a rank 2 vector bundle,

L̃j(T
νEi) = (constant) · (e(T νEi))

2j

and so
(πi)∗L̃j(T

νEi) = (constant) · κ2i−1.

It is well known that the κi classes are algebraically independent in H∗(BDiff(Fg); R)
up to degree (g − 1)/2. Hence the classes ℓi(E) are nontrivial and algebraically
independent up to the desired degree. �

7.2. Iterated connected sums. Let M1, . . .Mn be 4k-manifolds each having a
(4k − 1)-sphere as boundary, and let Diff(Mi, ∂Mi) denote the group of diffeomor-
phisms which fix a collar neighborhood of the boundary pointwise. Now let M be
the result of gluing the Mi onto the boundary components of a 4k-sphere with the
interiors of n discs deleted. This is essentially a connected sum, so we abuse no-
tation by writing M = M1# · · ·#Mn. Extending diffeomorphisms by the identity
on the sphere induces a map

µ : BDiff(M1, ∂M1) × · · · × BDiff(Mn, ∂Mn) → BDiff(M).

Lemma 7.2. µ∗ℓi(M) =
∑n

j=1 1× · · · × ℓi(Mj)× · · · × 1, where in the jth term of

the summation ℓi occurs in the jth position.

Proof. This follows immediately from the commutative square

BDiff(M1, ∂M1) × · · · × BDiff(Mn, ∂Mn) BDiff(M)

BAut(QM1
) × · · · × BAut(QMn

) BAut(QM1
⊕ · · · ⊕ QMn

)
��

//
µ

��

//
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together with Proposition 6.2. �

For a given manifold M with boundary a sphere, if one can show nontriviality of
the ℓ classes on BDiff(M, ∂M) (or BΓ(M, ∂M)) then taking connected sums turns
nontriviality into algebraic independence.

Theorem 7.3. Suppose ∂M ∼= S4k−1 and suppose that the classes ℓ1, . . . , ℓn are all
nonzero in H∗(BDiff(M, ∂M)). Then the monomials {ℓm1

1 · · · ℓmn
n |

∑
mi ≤ N} are

all linearly independent in H∗(BDiff(#NM)). In particular, on #NM the classes
ℓ1, . . . , ℓn satisfy no polynomial relations of degree ≤ 4kN . This holds also for
mapping class groups.

Proof. Define the length of an element

a1 × · · · × aN ∈ H∗(BDiff(M, ∂M) × · · · × BDiff(M, ∂M))

to be the number of components ai which are not equal to 1. A maximal length
term in µ∗(ℓm1

1 · · · ℓmn
n ) will have mi components which are of degree 4ki, for each

i between 1 and n. Hence if µ∗(ℓm1

1 · · · ℓmn
n ) is proportional to µ∗(ℓ

m′

1

1 · · · ℓ
m′

n
n ) then

it must be the case that (m1, . . . , mn) = (m′
1, . . . , m

′
n). �

Thus far we have only shown the ℓi classes to be nontrivial for products of surfaces
and for the K3 manifold; in neither of these cases is there a boundary sphere to
which one can apply Theorem 7.3. We must therefore add a boundary sphere.
The case N = 1 above corresponds to gluing a disc in to the boundary sphere.
One can pull the ℓi class back along the map BDiff(M, ∂M) → BDiff(M), but it
seems difficult to say whether or not these pullbacks will be nonzero even if they
are nonzero on BDiff(M). There is a homotopy fibre sequence

V (TM) → BDiff(M, ∂M) → BDiff(M),

where V (TM) is the frame bundle of the tangent bundle, and one might hope
to understand the Serre spectral sequence well enough to conclude that the ℓi

classes are indeed nontrivial on BDiff(M, ∂M) if M is a K3 manifold. This seems
somewhat difficult.

However, the kernel of Γ(M, ∂M) → Γ(M) is either trivial or Z/2 (it is generated
by the Dehn twist around the boundary sphere). Thus

H∗(BΓ(M, ∂M); Z[1/2]) ∼= H∗(BΓ(M); Z[1/2]).

The general connected sum case of Theorem 1.4 follows from this isomorphism and
Lemma 7.2.
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pp. 21–55.

[Bot70] R. Bott, On a topological obstruction to integrability, Global Analysis (Proc. Sympos.
Pure Math., Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970,
pp. 127–131.

[BR75] D. Burns, Jr. and M. Rapoport, On the Torelli problem for kählerian K-3 surfaces,
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