
THE GEOMETRY OF VARIATIONS
IN BATALIN–VILKOVISKY FORMALISM

ARTHEMY V. KISELEV

Abstract. We explain why no sources of divergence are built into the Batalin–
Vilkovisky (BV) Laplacian, whence there is no need to postulate any ad hoc con-
ventions such as “δ(0) = 0” and “log δ(0) = 0” within BV-approach to quantisation
of gauge systems. Remarkably, the geometry of iterated variations does not refer at
all to the construction of Dirac’s δ-function as a limit of smooth kernels. We illustrate
the reasoning by re-deriving –but not just ‘formally postulating’– the standard proper-
ties of BV-Laplacian and Schouten bracket and by verifying their basic inter-relations
(e.g., cohomology preservation by gauge symmetries of the quantum master-equation).

Introduction. This is a paper about geometry of variations. We formulate definitions
of the objects and structures which are cornerstones of Batalin–Vilkovisky formalism [5,
7, 20, 22, 55]. To confirm the intrinsic self-regularisation of BV-Laplacian, we explain
why there are no divergencies in it (such excessive elements are traditionally encoded by
using derivatives of Dirac’s δ-distribution). Namely, we specify the geometry in which
the following canonical inter-relations between the variational Schouten bracket [[ , ]]
and BV-Laplacian ∆ are rigorously proven for any BV-functionals F,G,H :

[[F,G ·H ]] = [[F,G]] ·H + (−)(|F |−1)·|G|G · [[F,H ]], (1a)

∆(F ·G) = ∆F ·G+ (−)|F |[[F,G]] + (−)|F |F ·∆G, (1b)

∆
(
[[F,G]]

)
= [[∆F,G]] + (−)|F |−1[[F,∆G]], (1c)

∆2 = 0 ⇐⇒ Jacobi
(
[[ , ]]
)
= 0. (1d)

There is an immense literature on this subject’s intrinsic difficulties and attempts of
regularisation of apparent divergencies in it (e.g., see [12, 13, 25, 50, 51] vs [21]). While
the BV-quantisation technique has advanced far from its sources [7, 8], it is still admitted
that it lacks sound mathematical consistency ([22, §15] or [3, §3]). The calculus in this
field is thus reduced to formal operation with expressions which are expected to render
the theory’s main objects and structures. Several ad hoc techniques for cancellation of
divergencies, allowing one to strike through calculations and obtain meaningful results,
are adopted by repetition; we briefly review the plurality of such tricks in what follows.

Our reasoning is independent from such conventional schemes for cancellation of
infinities or from other practised roundabouts for regularisation of terms which are
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believed to be infinite (e.g., by erasing ‘infinite constants’ [11]). In particular, we do
not pronounce the traditional password

δ(0) := 0 (2)

which lets one enter the existing paradigm and use its quantum alchemistry for oper-
ation with what remains from Dirac’s δ-distribution.1 Our message is this: we do not
propose to replace ‘bad slogans’ with ‘good slogans,’ which would mean that a choice
of conventions is still left to the one who attempts regularisation in the BV-setup. Such
deficiency would symptomise that the theory remains a formal procedure. We now
focus on the true sources of known difficulties. By analysing the geometry of varia-
tions of functionals at a very basic level, we prove the absence of apparently divergent
essences. The intrinsically regularised definitions of the BV-Laplacian ∆ and Schouten
bracket [[ , ]] are the main result of this paper.

The new understanding leaves intact but substantiates the bulk of results which have
been obtained by using various ad hoc techniques (that is, explicitly or tacitly referring
to the surreal equalities δ(0) = 0 and log δ(0) = 0); we refer to a detailed review [3] for
an account of early developments in BV-formalism. We do not aim at a reformulation
or reproduction of any old or recent achievements, accomplishing here a different task.

In fact, we invent nothing new. It is the coupling of dual vector spaces which ensures
the intrinsic self-regularisation of BV-Laplacian and validity of equalities (1), with (1c)
in particular. Therefore, it would be redundant to start developing any brand-new
formalism (c.f. [51]); on the other hand, we prove properties (1) and not just postulate
these assertions (c.f. [21]).

We employ standard notions, constructions, and techniques from the geometry of jet
spaces [28, 40, 45]. Because the geometry of BV-objects is essentially variational, it
would be methodologically incomplete to handle them as if the space-time, that is, the
base manifold in the bundles of physical fields, were just a point ([27, 48] or [39]). The
language of jet spaces is extensively used in the study of BV-models, see [3, 6, 21, 43]: the
bundles of jets of sections usually appear in such traditional contexts as calculation of
symmetries or conservation laws. In this paper we apply these geometric techniques at a
much more profound level and give rigorous definitions for BV-objects. Let us emphasize
that we do not aim at extending one’s ability to write more formulas according to a
regularly emended system of accepted algorithms; we explicate the genuine nature of
objects and their canonical matchings, not taking any formulas for quasi-definitions.

This paper is structured as follows. Containing a brief overview of traditional ap-
proaches to regularisation of the BV-formalism, this introduction concludes with a
parable; the line of our reasoning is reminiscent to that of Lettres persanes by Mon-
tesquieu.

In section 1 we describe the true geometry of variations; we first reveal the corre-
spondence between action functionals and infinitesimal shifts of classical trajectories or
physical fields. An understanding of nontrivial mechanism of such matching achieved
for one variation, the picture of many variations becomes clear. This approach resolves

1Another convention is log δ(0) = 0; we show that natural counterparts of the true geometry of
variations lead to this intuitive convention and simultaneously to (2) — none of the two being actually
required.
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the obstructions for regularisation of iterated variations in BV-formalism; we remark
that Dirac’s δ-function does not appear in section 2 at all.2

In section 2.1 we recall in proper detail the standard construction of Batalin–Vilkovisky
(BV) vector bundles with canonically conjugate pairs of ghost parity-even and odd vari-
ables. In this specific setup we analyse the construction of two distinct couplings of
the BV-fibres’ ghost parity-homogeneous vector subspaces with their respective duals.
In particular, in section 2.2 we focus on the rule of signs which determines the anti-
commutation of differential one-forms in the geometry at hand. Applying the geometric
concept of iterated variations in section 2.3, we represent the left- and right variations
of functionals in terms of left- or right-directed singular linear integral operators; this
framework ensures the intrinsic regularisation of iterated variations. We then formulate
in section 2.4 the definitions of BV-Laplacian ∆ and variational Schouten bracket [[ , ]]
(or antibracket). We show that these definitions are operational, amounting to natural,
well-defined reconfigurations of the geometry (but not to any hand-made algorithms for
cancellation of divergent terms; for those do not appear at all). Our main result, which
is contained in section 2.5, is an explicit proof – that is, starting from basic principles –
of relations (1). In other words, we neither postulate a validity of these properties
nor elaborate a cunning syllogism the aim of which would be to convince why such
assertions should hold provided that one knows when various (derivatives of) Dirac’s
δ-functions must be erased in the course of so arguable a reasoning.

For consistency, we first apply the above theory to a standard derivation of the quan-
tum master-equation from the Schwinger–Dyson condition that essentially eliminates a
dependence on the unphysical, ghost parity-odd dimensions (see section 3.1); we also
recall here the construction of quantum BV-differential. The point is that neither di-
vergencies nor ad hoc cancellations occur in the entire argument. On the same grounds
we address in section 3.2 the quantum BV-cohomology preservation by infinitesimal
gauge symmetries of the quantum master-equation. (We refer to [7, 8, 20, 22] and
also [1, 37, 51] in this context; several methodological comments, which highlight our
concept, are placed in section 3 along the lines of a well-known reasoning.)

The paper concludes with a statement that an intrinsic regularisation in the geometry
of iterated variations relies on the principle of locality (which manifests also through
causality). We argue that a logical complexity of geometric objects grows while they
accumulate the (iterated) variations ; a conversion of such composite-structure objects
into maps which take physical field configurations to numbers entails a decrease of the
complexity via a loss of information. Having motivated this claim in section 2, we prove
that the logic of analytic reasonings may not be interrupted ; for example, the right-
hand side of (1c) is not assembled from the would-be constituent blocks ∆F and ∆G for
which it is known in advance how they take field configurations to numbers whenever
the functionals F and G are given.

The paper explicitly answers the question what variations are — in particular, what
iterated variations are. Moreover, we tacitly describe a geometric mechanism which is

2We refer to [19] for the theory of distributions. Let us specify that singular linear integral operators
which emerge in the course of our reasoning will not be approached via parametric families of regular
linear integral functionals with piecewise continuous or smooth kernels (in which context the notation
“δ(0)” for Dirac’s function is used in the literature).
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responsible for the anti-commutation of differential one-forms ; such mechanism ensures
that the results of calculations match empiric data even if the exterior algebras of forms
are introduced by hand. The roots of this principle are none other that the ordering
of dual vector spaces which stem in the course of variations in models of nonlinear
phenomena (this picture is addressed in section 2.2).

We illustrate our approach with elementary starting section 1 in which we inspect the
matching of geometries –one for an action functional, the other for a field’s test shift–
in the course of derivation of Euler–Lagrange equation of motion in field theory. The
second example on pp. 36–38 clarifies the idea specifically in the BV-setup of (anti)fields
and (anti)ghosts. We thus provide a pattern for all types of calculations which involve
the Schouten bracket and BV-Laplacian in any model.

Historical context: an overview. There is a class of significant papers in which the
BV-formalism is developed under assumption that the space-time is a point. Indeed,
such hypothesis is equivalent to an agreement that the only admissible sections of
bundles over space-time are constant; this implies that even if their derivatives are
nominally present in some formulas, they are always equal to zero. The calculus of
variations then reduces to usual differential geometry on the bundles’ fibres. It must be
noted that publications containing the above assumption did contribute to the subject
and in many cases guided its further development (we recall the respective comment
in [51] and refer to [12, 22, 27, 39, 48, 53]). Moreover, the no-derivatives reduction
sometimes allows one to jump at conclusions which are correct; an integration by parts
over the base manifold Mn is restored –whenever possible– at the end of the day. Still
this oversimplification is potentially dangerous because variational calculus of integral
functionals conceptually exceeds any classical differential geometry on the fibres (see [33]
for discussion and [28, 34]). In the variational setup, the objects and their properties
become geometrically different from their analogues on usual manifolds even if the
terminology is kept unchanged. Here we recall for example that variational multivectors
do not split to wedge products of variational one-vectors and likewise, several Leibniz
rules are irreparably lost but this can not be noticed when all derivatives equal zero. In
fact, it is the abyss between classical geometry of manifolds and geometry of variations
for jet spaces of maps of manifolds which motivated our earlier study [34]. Yet the
misconception is still present in active research, e.g., see [4, 27, 39, 44].

The fact of incompleteness of such heuristic analogies from usual geometry of man-
ifolds is signalled in [51]. Paradoxically, it is simultaneously not true that a solution
of the regularisation problem for BV-Laplacian has no analogues in the case of ODE
dynamics on manifolds. From section 1 below it is readily seen that good old techniques
persist in the finite-dimensional ODE geometry at the level of standard linear algebra
of dual vector spaces.3

The article [51] is a considerable step towards a solution of the regularisation prob-
lem in BV-formalism. A weighted, critical overview of various inconsistencies, ad hoc

practices, and roundabouts is summed up there. The object of [51] was to formulate

3On the other hand, the variational setup highlights the fundamental concept of a physical field as a
system with degrees of freedom attached at every point of the space-time Mn; we focus on this aspect
in what follows.
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a self-contained analytic concept which would make the variational calculus of func-
tionals free from divergencies and infinities. Still it remained unclear from [51] what
the generality of underlying geometry is and why such self-consistent formalism should
actually exist at the level of objects, i.e., beyond a mere ability to write formulas.
In particular, it remained unnoticed that the main motivating example –namely, the
canonical BV-setup– itself is the only class of geometries in which the technique is
grounded.4 A correctness but incompleteness of the approach in [51] means the fol-
lowing in practice. Whenever a theorist refers to the formalism of loc. cit., Nature
immediately creates a new, principally inobservable essence –a metric field which is
denoted by E(x1, . . . , xn; Γ) in [51]– on top of the electromagnetic and weak gauge con-
nections, as well as the fields for strong force, gravity, or any other gauge fields Γ. It
is perhaps this methodological difficulty which hints us why the approach of [51] is
considered “formal” by many experts; that conceptual paper remains scarcely known
to a wider community.5

To demystify the notion of a “metric field E(x1, . . . , xn; Γ),” we describe in this
paper an elementary geometric mechanism for the long-expected but still intuitively
paradoxical analytic behaviour of variations. This mechanism implies that Nature is not
obliged to respond to the needs of a theorist and create such multi-entry distributions
upon request.

Another line of reasoning, which led to much progress in a revision of BV-structures
and regularisation of divergences, was pursued in [12, 13]. We recall that the language
of loc. cit. is functional analytic so that the theory’s objects are viewed as (Dirac’s)
distributions (and heat kernels are implemented). According to [12, §1.8], the BV-
Laplacian ∆ which is used in physical theories is ill-defined because for a given action S
over space-time Mn of positive dimension n the object ∆S involves a multiplication
of singular distributions (and thus –a quotation from [12] continues– ∆S has the same
kind of singularities as appear in one-loop Feynman diagrams). The regularisation

4The integration of closed algebra of gauge symmetries for the quantum master-equation to a group
of transformations of the master-action S~ remains a separate problem, which is also addressed in [51].
Suppose that the standard cohomological obstructions to such integration vanish (see section 3.2 be-
low), whence (i) all infinitesimal transformations of the functional S~ are exact, i.e., they are generated
by odd ghost-parity elements F , and also (ii) such transformations can be extended from the master-
action S~ to evolution of the observables O. We remark that, unlike it is claimed in [51], neither of the
two groups of functionals’ transformations is induced by any well-defined change of BV-coordinates; of
course, evolutionary vector fields are well-defined objects in that geometry and one could study them
regardless of these functionals’ transformations. We shall recall in section 3.2 the standard construction
of automorphisms for quantum BV-cohomology groups; it illustrates our concept because the notion of
quantum gauge symmetries explicitly refers to all basic properties of the BV-Laplacian and Schouten
bracket, see (1) on p. 1.

5An attempt to interpret the formalism of [51] in terms of the language of PDE geometry (particu-
larly, in the context of [41], see also [28, 40, 45]) was performed in [23] and published in abridged form
in [24]. The construction of Schouten bracket in [23] relies on the notion of variational cotangent bun-
dle [41] and on classical approach to the theory of variations. On one hand, this ensures the validity of
Jacobi identity for the bracket (see the second half of Eq. (1d) but not the first one). But on the other
hand, we have showed by a counterexample in [35, §3] that the old approach fails to relate by (1c) the
Schouten bracket to BV-Laplacian. In other words, the BV-Laplacian did not entirely generate the
variational Schouten bracket, making only Eq. (1b) but not (1c) possible in that geometry (c.f. [39]).
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technique proposed in [12, 13] stems from analysis of the distributions’ limit behaviour
as one approaches the “physical” structures by using regular ones.

The resolution to apparent difficulties is that there are several distinct geometric con-
structions which yield the same singular linear operators with support on the diagonal
(in what follows we study in detail on which space such operators are defined).

The following digression is available in the on-line version only. We now discuss a pe-
culiar, well-established domain, the very form of existence of which could be hardly
believed in. In that theory, there is a serious lack of rigorous definitions for the most
elementary objects; at the same time, there is a rapidly growing number of monumental
reviews. Whereas the theory’s difficulties are clearly inherited from a deficit of boring
rigour at the initial stage, such hardships are proclaimed the theory’s immanent compo-
nents. At expert level it is mandatory to have a firm knowledge of the built-in difficulties
and readily classify the descriptive objects which those apparent obstructions bring into
the mathematical apparatus. (There is no firm guarantee that the (un)necessary ob-
jects really exist beyond written formulas.) The way of handling inconveniences largely
amounts not to resolving them by a thorough study of their origins but to some ad hoc

methods for hiding their presence. Doing research is thus substituted by practising a
ritual.

However, the community of experts who mature in operation with formulas (a part of
which are believed to expressed something objectively existing) maintains a considerable
pluralism about a proper way to mask the symptoms of troubles:

• The radicals declare that undefined objects which seem to make trouble must
be set equal to zero.
• The revisionist approach prescribes a postfactum erasing of not the entire ob-
jects (which are still undefined) but of undesirable elements in those objects’
description.
• A diplomatic viewpoint is that there might be sources of trouble but their con-
tribution to final results is suppressed as soon as the objects’ desired properties
are postulated (regardless of the actual presence or absence of such sources and
one’s ability to substantiate those properties).

For an external observer, this state-of-the-art could seem atypical for a consistent the-
ory. Indeed, the reliability of its main pillar is a matter of irrational belief.

1. The geometry of variations

Let us first analyse the basic geometry of variations of functionals; by comprehending
the full setup of a one-time variation, we shall understand the geometry of many. Specif-
ically, in this section we reveal the interrelation of bundles in the course of integration
by parts; we also explain a rigorous construction of iterated variations.

The core of traditional difficulties in this domain is that a use of only fibre bundles
π of physical fields, which are subjected to test shifts, is insufficient. We argue that
the tangent bundles Tπ to the bundles π may not be discarded (see Fig. 1). For
identities (1) to hold one must substantiate why higher-order variational derivatives are
(graded-)permutable whenever one inspects the response of a given functional to shifts
of its argument along several directions. To resolve the difficulties, we properly enlarge
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Figure 1. The fibre bundle π of fields s and vector bundle Tπ of their variations δs.

the space of functionals and adjust a description of the geometry for the functionals’
variations: in fact, each variation brings its own copy of the base Mn into the picture.

1.1. We now fix some notations, in most cases matching that from [28] (for a more
detailed exposition of these matters, see for example [28, 40, 45]).

Let π : E → M be a smooth fibre bundle6 with m-dimensional fibres π−1(x) over
points x of a smooth real oriented manifoldM of dimension n; we assume that all map-
pings, including those which determine the smoothness class of manifolds, are infinitely
smooth.

We let xi denote local coordinates in a chart Uα ⊆Mn and uj be the fibre coordinates.
We denote by [u] a differential dependence of the fibre variables (specifically in the
BV-setup, a differential dependence [q] on physical fields and other ghost parity-even
variables, and we denote by [q†] that of ghost parity-odd BV-variables).

Remark 1.1. We suppose that the initially given bundle π of physical fields is not
graded. In what follows, starting with π, we shall construct new bundles whose fibres
are endowed with the Z2-valued ghost parity gh( · ). However, our reasoning remains
equally applicable to superbundles π(0|1) over supermanifolds M (n0|n1) ([10, 52]) and to
a noncommutative setup of cyclic-invariant words (see [29, 32] and references therein).

We take the infinite jet space π∞ : J∞(π)→ M associated with this bundle [15, 45];
a point from the jet space is then θ = (xi,u, ukxi, u

k
xixj , . . . ,uσ, . . . ) ∈ J∞(π), where

σ is a multi-index and we put u∅ ≡ u. If s ∈ Γ(π) is a section of π, or a field, we
denote by j∞(s) its infinite jet, which is a section j∞(s) ∈ Γ(π∞). Its value at x ∈ M

is j∞x (s) = (xi, sα(x), ∂s
α

∂xi
(x), . . . , ∂

|σ|sα

∂xσ
(x), . . . ) ∈ J∞(π).

We denote by F(π) the properly understood algebra of finite differential order smooth
functions on the infinite jet space J∞(π), see [28, 40] for details. The space of top-degree
horizontal forms on J∞(π) is denoted by Λ

n
(π); let us also assume that at every x ∈M

a volume element dvol(x) is specified so that its pull-back under π∗∞ is an n-th degree
form in Λ

n
(π), c. f. Remark 1.5 on p. 10.

The highest horizontal cohomology, i. e., the space of equivalence classes of n-forms
from Λ

n
(π) modulo the image of the horizontal exterior differential d on J∞(π), is

6Vector bundles are primary examples but we do not actually use the linear vector space structure
of their fibres so that π could be any smooth fibre bundle.
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denoted by H
n
(π); the equivalence class of ω ∈ Λ

n
(π) is denoted by

∫
ω ∈ H

n
(π).

We assume that sections s ∈ Γ(π) are such that integration of functionals Γ(π) → k

by parts is allowed and does not result in any boundary terms (for example, the base
manifold is closed, or the sections all have compact support, or decay sufficiently fast
towards infinity, or are periodic).

1.2. Euler–Lagrange equations. A derivation of Euler–Lagrange equations EEL for
a given action functional S =

∫
L(x, [u]) dvol(x) is a model example which illustrates

the correlation of two geometries:7 one for “trajectories” s ∈ Γ(π) and the other for
shifts δs. It is well known that the functional’s response to a test shift δs of its argument
s ∈ Γ(π) is described by the formula [2, §12]

d

dε

∣∣∣∣
ε=0

S(s+ ε ·
←−
δ s) =

∫

M

dvol(x) δs(x) ·

←−
δL(x, [u])

δu

∣∣∣∣∣
j∞x (s)

. (3)

We now claim that this one-step procedure is a correct consequence of definitions but
itself not a definition of the functional’s variation. The above formula conceals a longer,
nontrivial reasoning of which the right-hand side in (3) is an implication — provided
that the functional S will not be varied by using any other test shifts, i. e., if the
correspondence S 7→ EEL yields the object EEL of further study (c. f. [2, §13]). Indeed,
we notice that the left-hand side of (3) refers to three bundles (namely, the fibre bundle
π for a section s ∈ Γ(π) whose infinite jet is j∞(s) ∈ Γ(π∞), the bundle π∞ for the
integral functional S ∈ H

n
(π), and the tangent vector bundle Tπ such that δs ∈ Γ(Tπ)

at the graph of s in π, see Fig. 1. (In what follows, a reference to attachment points
s(x) ∈ π−1(x) will always be implicit in the notation for δs: for a given section s ∈ Γ(π),
the base manifold Mn is the domain of definition for a test shift δs(x, s(x)) = δs(x)
that takes values in Ts(x)π

−1(x).) Let us figure out how the domains of definition for
the sections s and δs merge to one copy of the manifold Mn over which an integration
is performed in the right-hand side of (3). Strictly speaking, from (3) it is unclear
whether the variational derivative,

←−
δL(x, [u])

δu
=
∑

|σ|≥0

(
−
~d

dx

)σ
~∂L(x, [u])

∂uσ
,

stems from one (which would be false) or both (true!) copies of the base M .
To have a clear vision of the variations’ geometry and by this avoid an appearance

of phantoms in description, we now vary the action functional S at s ∈ Γ(π) along
δs ∈ Γ(Tπ), commenting on each step we make. In fact, it suffices to figure out where
the objects and structures at hand belong to — in particular, we should explain the
nature of binary operation · in the right-hand side of conventional formula (3). The
key idea is to understand what we are actually doing but not what we have got used
to think we do in order to obtain an understandable result [2, §13]. The discovery

7An arrow over a variational derivative indicates the direction along which the shift δs is transported
left- or rightmost. While the objects are non-graded commutative, this indication is not important. It
becomes mandatory in the Z2-graded commutative setup (see section 2): likewise, the arrows are also
mandatory and fix the direction of rotation for non-commutative cyclic words [29, 32, 36]; note that
our formalism is extended verbatim to the variational calculus of such necklaces and their brackets.



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 9

is that this “multiplication of functions” is a shorthand notation for the canonically
defined coupling between vectors and covectors from (co)tangent spaces Vs(x) and V

†
s(x),

respectively, at the points s(x) of fibres π−1(x) in the bundle π.
To encode this linear-algebraic setup, let i, j run from 1 to m = dim(π−1(x)) =

rank(Tπ) and take a local basis ~ei(y) in the tangent spaces Vs(y) = Ts(y)(π
−1(y)) at

s(y) over base points y ∈M . Introduce the dual basis ~e †j(x) in V †s(x) attached at s(x)

over x ∈M . By construction, this means that the value
〈
~ei(y), ~e

†j(x)
〉

(4)

is equal to the Kronecker symbol δji if and only if x = y and the vector ~ei(y) ∈ Vp1 and
covector ~e †j(x) ∈ V †p2 are attached at the same point p1 = p2 of the fibre π−1(x) over
x = y ∈M .

The locality of this coupling is an absolute geometric postulate: the coupling is not
defined whenever x 6= y or the values p1 = s1(y) and p2 = s2(x) of two local sections
s1, s2 ∈ Γ(π) are not equal at x = y. Physically speaking, the coupling is then not
defined because there is no channel of information which would communicate the value
δsi(y) · ~ei(y) of excitation of the physical field s ∈ Γ(π) at a point y ∈ M to another
point x 6= y of the space-time M .

Remark 1.2. Let us remember that the definition of coupling between sections of
(co)tangent bundles — i. e., (co)tangent to either a given manifold or a given bun-
dle π which is the case here for Euler–Lagrange equations — forces the congruence
{x = y, s1(y) = s2(x)} of the (co)vectors’ attachment points. We notice further that
such congruence mechanism does not refer to any limiting procedure for smooth dis-
tributed kernels and regular linear operators on the space of (co)vector fields. Indeed,
vectors couple with their duals at a given point regardless of any phantom limiting pro-
cedure which would grasp the (co)vector’s values at any other points of the manifold.8

Remark 1.3. The coupling is a matching between test-shift vector fields which are
tangent to the fibres of π and, on the other hand, with the elements of Γ(T ∗π) which
are determined by the Lagrangian L. This binary operation yields the singular integral
operator

∫
M
dy 〈δsi(y)~ei(y)| with support on the diagonal. Independently, the same

operator can reappear as the limit in a parametric family of regular integral operators
with smooth, distributed kernels. This shows that the same object is constructed by
using several algorithms. Yet the analytic behaviour of the limit is determined not only
by the limit itself but also by an algorithm how it is attained. Consequently, the object’s
analytic properties in the course of derivations could be (and actually, indeed they are)
drastically different for different scenarios. This is the key point in a regularisation of
the formalism; to achieve this goal, we properly identify the objects which are de facto
handled.

Remark 1.4. Referring to a concept of locality of events, this definition of coupling
〈 , 〉 ensures a very interesting analytic behaviour of the value 〈~ei(y), ~e

†i(x)〉 of pairing
for dual objects ~ei(y) and ~e †i(x) at fixed i. Namely, this value is a constant scalar

8We recall that a similar, purely local geometric principle, not referring to the objects’ values at
non-coinciding points, works in the definition of Hirota’s bilinear derivative.
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field which equals unit 1 ∈ k at all points of the manifold M ; the scalar field’s partial
derivatives with respect to xj or yk, 1 ≤ j, k ≤ n, vanish identically. We shall use this
property in what follows (see Remark 1.7 on p. 12). We also note that the logarithm of
this coupling’s unit value vanishes as well: log〈~ei(y), ~e

†i(x)〉 = 0 whenever the coupling
is well defined and 1 ≤ i ≤ m.

Now let us return to the initial setup in context of Euler–Lagrange equation EEL and
one-step correspondence S 7→ EEL, see Fig. 1. We have that S =

∫
L(x, [u]) dvol(x)

is an integral functional; we let s ∈ Γ(π) be a background section (e. g., a sought-for
solution of the Euler–Lagrange stationary point equation δS|s = 0) and δs ∈ Γ(Tπ) be
a test shift of s. The linear term in a response of S : Γ(π)→ k to a shift of its argument
s along δs is (c.f.(14) on p. 22)

d

dε

∣∣∣∣
ε=0

S(s+ ε
←−
δ s) =

=
∑

i,j

∑

|σ|≥0

∫

M

dy

∫

M

dvol(x)

〈
(δsi)

(←−
∂

∂y

)σ

(y)~ei(y), ~e
†j(x)

−→
∂L(x, [u])

∂ujσ

∣∣∣∣∣
j∞x (s)

〉
. (5)

Remark 1.5. The rôles of two integral signs in (5) are different. Namely, the volume
form dvol(x) at x ∈ Mn comes from the integral functional S ∈ H

n
(π); should a

formal choice of the volume form be different, the Euler–Lagrange equations would also
change.9 At the same time, the other integral sign

∫
dy denotes the singular linear

operator Γ(T ∗π) → k with support on the diagonal [19]; in fact, this notation means
that a point y runs through the entire integration domain M .

1.3. The most interesting things start to happen when one integrates by parts over the
domain Mn of test shifts δs. (By default, we let the supports of local perturbations δs
be such that no boundary terms appear in the course of integration by parts over M .)

For the sake of transparency let us first consider a model situation when there is just
one derivative falling on δs at y; all higher-order cases are processed recursively. By

9There are natural classes of geometries in which the Lagrangian L(x, [u]) in the action S is a well-
defined top-degree differential form, e. g., if the unknowns u are differential one-forms (we recall the
Yang–Mills or Chern–Simons gauge theories in this context). Let us remember also that a construction
of L could refer to a choice of volume form dvol(x) on Mn. For instance, such is the case when the
Hodge structure ∗ is involved (the Yang–Mills Lagrangian yields an example: L ∼ Fµν∗F

µν in standard
notation for the stress tensor). To avoid excessive case-study, we use a uniform notation thus writing
dvol(x) explicitly.

We recall further that the integration measure dvol
(
x, s(x)

)
=
√
| det

(
gµν(x, s)

)
|dx is field-

dependent by virtue of Einstein’s general relativity equations which –in their right-hand sides – ab-
sorb the energy-momentum tensor of physical fields s ∈ Γ(π). The volume element will be denoted
by dvol(x) in order to emphasize that the space-time Mn is unique: Namely, field-dependent objects
interact at its points only if the local geometry of underlying space-time is the same near x ∈Mn for
all objects (see Theorem 3 and Remark 2.11 on p. 31 for a realisation of this principle for the smooth
manifold Mn endowed with metric tensor gµν).
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the definition of a (partial) derivative ∂/∂yi, we have that10

∫

M

dy

∫

M

dvol(x)

〈
(δs)

←−
∂

∂y
(y)~e(y), ~e †(x)

−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)

〉
=

= −

∫

M

dy

∫

M

dvol(x) δs(y)

−→
∂

∂y



〈~e(y), ~e

†(x)〉

−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)



 .

By using a definition of the partial derivative which falls on the comultiple of δs, we
obtain the difference11

def
= −

∫

M

dy

∫

M

dvol(x) δs(y) · lim
|∆y|→0

1

|∆y|

{
〈~e(y +∆y), ~e(x)〉

−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)

−

− 〈~e(y), ~e(x)〉

−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)

}
.

The locality postulate for coupling between (co)vectors ~e and ~e † forces the equality
y+∆y = x in the minuend, which yields the two different points at which the restriction
of Lagrangian L to the jet j∞(s) of section s ∈ Γ(π) is evaluated:

= −

∫

M

dy

∫

M

dvol(x) δs(y) · 〈~e(y), ~e †(x)〉·

· lim
|∆y|→0

1

|∆y|

{−→∂L(x, [u])
∂uσ

∣∣∣∣∣
j∞
x+∆y

(s)

−

−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)

}
.

(Here we use the fact that the scalar product 〈 , 〉, whenever defined, is the Kronecker
symbol.) We continue the equality,

def
= −

∫

M

dy

∫

M

dvol(x)

〈
δs(y)~e(y), ~e †(x)

−→
∂

∂x



−→
∂L(x, [u])

∂uσ

∣∣∣∣∣
j∞x (s)



〉
.

We finally recall that the total derivative d/dx is defined via an application of ∂/∂x to
restriction to infinite jets j∞(s) of sections s at base points x, see [28, 40, 45]. Therefore,
the above expression is equal to

def
=

∫

M

dy

∫

M

dvol(x)

〈
δs(y)~e(y), ~e †(x)

((
−
~d

dx

) −→
∂L(x, [u])

∂uσ

)∣∣∣∣∣
j∞x (s)

〉
.

10In the definition of derivative, the calculation of length |∆y| in denominators refers to the standard
Euclidean metric in the linear vector spaces which determine coordinate neighbourhoods near points
of the manifold M at hand.

11Here and in the equalities below we suppress the indexes i running through 1, . . . ,m at δsi(y)
and ~ei(y) or ~e †i(x), or at ui

σ in the derivative which acts on L; we thus avoid an agglomeration of
formulas.
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This shows that an integration by parts over the baseM in the geometry of test shift δs
reappears as integration by parts in the bundle where lives the background section s ∈
Γ(π).

Repeating the integration by parts |σ| ≥ 0 times in each term of the sum in (5), we
obtain the expression

∑

i,j

∑

|σ|≥0

∫

M

dy

∫

M

dvol(x)

〈
δsi(y)~ei(y), ~e

†j(x)

((
−
~d

dx

)σ −→
∂L(x, [u])

∂ujσ

)∣∣∣∣∣
j∞x (s)

〉
.

Let us recall once more that the coupling’s support is the diagonal in M ×M , at points
of which the value 〈~ei(y), ~e

†j(x)〉 is the Kronecker symbol δji . Consequently, we arrive at

=
∑

i,j

∑

|σ|≥0

∫

M

dvol(x) δsi(x) ·

((
−
~d

dx

)σ −→
∂L(x, [u])

∂uiσ

)∣∣∣∣∣
j∞x (s)

.

This is formula (3); it is familiar from any textbook on variational principles of classical
mechanics (e. g., see [2, §12–13]).

A standard reasoning shows that, whenever a response of the functional’s value S(s)
to a test shift of s along any direction δs vanishes, the Euler–Lagrange equation holds:

←−
δS

δu

∣∣∣∣∣
j∞(s)

= 0. (6)

Its left-hand side belongs to the space Γ(T ∗π) of sections of the cotangent bundle to π.

Remark 1.6. This conclusion tells us that traditional attempts of a brute-force labelling
of equations in a given system (6) by using the unknowns u is not geometric. Indeed,
the equations’ left-hand sides are sections of a vector bundle, thus forming linear k-
vector spaces so that addition is well defined for the equations within a system. On the
other hand, the fibres in the bundle π can be smooth manifolds (i. e., not necessarily
being vector spaces) so that one may not add points of those fibres; for such operation
is in general not defined at all. Even if π is a vector bundle, the fibres of which are
endowed with linear vector space structure, the two structures are not related.

Remark 1.7. The integration by parts transforms a derivative ∂/∂y along one copy
of the base M to the minus derivative −∂/∂x along the other copy. This produces
no visible effect on the mechanism which ensures a restriction onto the diagonal in
M ×M , i. e., there appears no would-be third term in the Leibniz rule for the product
which is defined only on the diagonal. A desperate prescription (2) was introduced in
the literature in order to mimick this paradoxical analytic behaviour of the coupling
between elements of dual bases.

1.4. Having outlined the matching of geometries in the course of one sequence of inte-
grations by parts for one fixed pair M ×M ∋ (y,x) of copies of the base manifold, we
emphasize that such integrations must be performed last, i. e., only when the objects
at hand are finally viewed as maps Γ(π)→ k.

Should one haste in absence of clear understanding of what is actually being done
and for which purpose, further calculation of higher-order variations could predictably
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but uncontrollably lead to meaningless, manifestly erroneous conclusions (e. g., compare
left- and right-hand sides in (7) below).

Namely, there exist integral functionals which determine equal maps Γ(π) → k but,
belonging to different spaces, behave differently in the course of variations, should one
attempt any. We say that such functionals are synonyms ; for instance, see Example 2.4
in the next section for a nontrivial synonym ∆G of the zero functional. Informally
speaking, the composite structure objects with repeated integrals over products M ×
M × . . .×M of the base retain a kind of memory of the way how they were obtained
from primary objects such as the action S. Let us illustrate these claims.

Example 1.1. Let δs1 ∈ Γ(Tπ) be a test shift at s ∈ Γ(π) for an integral functional S =∫
L(x, [u]) dvol(x) with density L of positive differential order. (That is, we suppose

that some positive-order derivatives are always present in densities of all representatives
of the cohomology class S ∈ H

n
(π); this assumption is not to any extent restrictive but

it allows us to not take into account d-exact terms whose orders may not be bounded.)
By using S, let us construct two new integral functionals. First, we set

F =
∑

i

∑

|σ|≥0

∫
dvol(x) δsi1(x) ·

(
−
~d

dx

)σ (−→
∂L(x, [u])

∂uiσ

)
∈ H

n
(π),

so that the mapping F : Γ(π)→ k is defined at s ∈ Γ(π) by restriction of the integrand
to the jet j∞(s) and then by actual integration over M .

Let the other functional G ∈ H
2n
(π, Tπ) be such that its value at the same section

s ∈ Γ(π) is

G(s) =
∑

i,j

∑

|σ|≥0

∫

M

dy

∫

M

dvol(x)

〈
(δsi1)

(←−
∂

∂y

)σ

(y)~e(y), ~e †j(x)

−→
∂L(x, [u])

∂ujσ

∣∣∣∣∣
j∞x (s)

〉
.

From the previous section it is clear that F and G are indistinguishable as mappings
to k for every s ∈ Γ(π). Yet their variations, i. e., the responses to an extra shift
δs2 ∈ Γ(Tπ), are different. Indeed, they are equal to, first,

(
d

dε2

∣∣∣∣
ε2=0

F

)
(s+ ε2

←−
δs2) =

∑

i1,i2

∑

|σ1|≥0
|σ2|≥0

∫

M

dvol(x) δsi22 (x)δs
i1
1 (x)·

·

{(
−

−→
d

dx

)σ2 −→
∂

∂ui2σ2

((
−

−→
d

dx

)σ1 −→
∂L(x, [u])

∂ui1σ1

)}∣∣∣∣∣
j∞x (s)

.

The above formula corresponds to a step-by-step calculation within a näıve approach
to the geometry of variations. However, the genuine value of second variation of the
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integral functional S along δs1 and then δs2 at a section s is
(

d

dε2

∣∣∣∣
ε2=0

G

)
(s+ ε2

←−
δs2) =

∑

i1,i2
j1,j2

∑

|σ1|≥0
|σ2|≥0

∫

M

dy2

∫

M

dy1

∫

M

dvol(x)

{
(δsi22 )

( ←−
∂

∂y2

)σ2

(y2) 〈~ei2(y2), ~e
†j2(x)〉 · (δsi11 )

( ←−
∂

∂y1

)σ1

(y1) 〈~ei1(y1), ~e
†j1(x)〉

}

·

−→
∂ 2L(x, [u])

∂uj2σ2∂u
j1
σ1

∣∣∣∣∣
j∞x (s)

.

The analytic distinction between the operators
(
−

−→
d

dx

)σ2

◦

−→
∂

∂ui2σ2
◦

(
−

−→
d

dx

)σ1

◦

−→
∂

∂ui1σ1︸ ︷︷ ︸
näıve approach

and

(
−

−→
d

dx

)σ1∪σ2

◦

−→
∂ 2

∂ui2σ2∂u
i1
σ1︸ ︷︷ ︸

geometric theory

(7)

reveals why in positive-order Lagrangian models it is forbidden to haste, which would
imply that the derivatives along distinct copies of M for variations δs1, . . . , δsk are
too early transformed to derivatives along the functional’s own base. Such a conceptual
error would repercuss with inexplicable, redundant terms in variations to-follow.

On the other hand, as soon as the product-bundle geometry of iterated variations
is properly realized — so that all restrictions to the diagonals are postponed as late
as possible, — the variations become (graded-)permutable.12 Namely, denote by |ui|,
1 ≤ i ≤ m, the overall Z2-valued parities of the fibre coordinates ui; the ghost parity
gh(ui) or individual Z- or Z2-valued gradings in the bundle π contribute additively to
|ui| and then a residue modulo 2 is taken. Suppose that δs1 = (δsi11 ) and δs2 = (δsi22 )
are test shifts and S =

∫
L(x, [u]) dvol(x) is an integral functional which maps a section

s ∈ Γ(π) to k. Then, after the integrations by parts in the product-bundle geometry
π × Tπ × Tπ which is described above, there remains

∑

i1,i2

∑

|σ1|≥0
|σ2|≥0

∫

M

dvol(x) δsi22 (x)δs
i1
1 (x)

((
−

−→
d

dx

)σ1∪σ2 −→
∂ 2L(x, [u])

∂ui2σ2∂u
i1
σ1

)∣∣∣∣∣
j∞x (s)

=
∑

i1,i2

∑

|σ1|≥0
|σ2|≥0

(−)|u
i1 |·|ui2 |

∫

M

dvol(x) δsi11 (x)δs
i2
2 (x)

((
−

−→
d

dx

)σ1∪σ2 −→
∂ 2L(x, [u])

∂ui1σ1∂u
i2
σ2

)∣∣∣∣∣
j∞x (s)

.

Likewise, higher-order iterated variations with k ≥ 2 test shifts δs1, . . . , δsk are (gra-
ded-)permutable with the same rule of signs for permutations of order in which the

(graded) partial derivatives
−→
∂ /∂ui1σ1 , . . . ,

−→
∂ /∂uikσk fall from the left on the density L of

12An idea that iterated variations must be taken at nominally different points x and y has been in
the air for a long time (let us refer to [38, §1] which contains due credits to E. Witten). A somewhat
less obvious fact is that those different points belong to different copies of the manifold M in the
product bundle π × Tπ × . . .× Tπ over M ×M × . . .×M .



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 15

the functional S. (A case of Z2-graded base manifold M (n0|n1) would bring more signs
which are also captured in a standard way.)

Let there be k ≥ 2 variations δs1, . . . , δsk ∈ Γ(Tπ). We finally have that

d

dεk

∣∣∣∣
εk=0

◦ . . . ◦
d

dε1

∣∣∣∣
ε1=0

S(s+ ε1
←−
δs1 + . . .+ εk

←−
δsk) =

=
∑

i1,...,ik
j1,...,jk

∑

|σ1|≥0
...

|σk|≥0

∫

M

dyk . . .

∫

M

dy1

∫

M

dvol(x) ·

{
(δsikk )

( ←−
∂

∂yk

)σk

(yk)
〈
~eik(yk), ~e

†jk(x)
〉
· . . . · (δsi11 )

( ←−
∂

∂y1

)σ1

(y1)
〈
~ei1(y1), ~e

†j1(x)
〉
}

·

−→
∂ kL(x, [u])

∂ujkσk . . . ∂u
j1
σ1

∣∣∣∣∣
j∞x (s)

. (8)

Whenever any k−1 variation(s) are fixed in the above formula, the co-multiple | 〉 of the
remaining, ℓth variation δsℓ = 〈δs

iℓ
ℓ (yk)~eiℓ(yℓ)| is an element of the cotangent vector

space T ∗s(x)π
−1(x) = V †x at the point s(x) in the fibre π−1(x) over a base point x ∈Mn.

Remark 1.8. The composite object in the left-hand side of equality (8) is an inte-
gral functional in the bundle π × Tπ × . . .× Tπ which properly contains the geom-
etry of k variations from Γ(Tπ). This construction lives not on a Whitney sum
π ×M Tπ ×M . . .×M Tπ over the base manifold M ; that would force an untimely re-
striction to the diagonal in the productM ×M × . . .×M of bases and hence reproduce
the old difficulties of the theory.

1.5. The integral functionals S ∈ H
n
(π), which we have been dealing with until now,

are building blocks in a wider class of mappings Γ(π) → k. By viewing elements of
Γ(π) as “points” and functionals from H

n
(π) as “elementary functions” (see [40] and

references therein), we consider pointwise-defined (formal sums of) products of such
maps, e. g., we let

(S1 · S2)(s)
def
= S1(s) · S2(s)

for any two already defined functionals S1 and S2; the binary operation · for their values
at s ∈ Γ(π) is the usual multiplication of k-numbers (k = R or C). By definition, we
put

N
n
(π, Tπ) =

+∞⊕

ℓ=1

ℓ⊗
k

i=1

+∞⊕

k=0

H
n(1+k)

(π × Tπ × . . .× Tπ︸ ︷︷ ︸
k variations

).

This space contains the linear subspace of local functionals,

M
n
(π) =

+∞⊕

ℓ=1

ℓ⊗
k

i=1

H
n
(π),

for instance, such as the standard weight factor exp( i
~
S~) in BV-models with quantum

BV-action S~ (see section 3.2 below, c. f. [9]). The larger space N
n
(π, Tπ) ) M

n
(π)
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harbours local functionals and their variations of arbitrarily high order. The (products
of) integral functionals in M

n
(π) ⊃ H

n
(π) could be viewed as primary objects. In

the course of variations, their descendants in N
n
(π, Tπ) absorb new test shifts and

retain the information about initial building blocks from H
n
(π). This memory governs

the analytic behaviour of descendants in operations such as calculation of the BV-
Laplacian or taking the Schouten bracket; we also refer to sections 1.4 above and 3.1
in what follows. The composite structure of the bundle π × Tπ × . . . × Tπ is crucial
whenever one wants to not only describe initial setup such as a given BV-model but
to perform rigorous calculations in it, handling higher-order variations of objects (e. g.,
third-order variations occur in (1c) on p. 1, see also Example 2.4 on p. 36 below, — and
the order is equal to four in property (1d) for the BV-Laplacian ∆ to be a differential).
The geometric approach to (graded-)permutable variations of functionals makes such
calculations well-defined and proofs free from any ad hoc regularisation recipes.

2. The geometry of Batalin–Vilkovisky formalism

The geometry of variations which we analysed in the previous section was not specific
to a bundle π of unknowns. In this section we first recall a construction of the BV-
superbundle whose fibres are endowed with Z2-valued ghost parity. By definition, the

BV-bundle π
(0|1)
BV = π∗∞(ζ

(0|1)
∞ ) is induced from the Whitney sum ζ(0|1) = ζ0 ×M ζ1 ×M

. . .×M ζλ×M Πζ̂0×M Πζ̂1×M . . .×M Πζ̂λ of some Z2-graded vector bundles over M (in
what follows we sum up the construction of ζ0, . . . , ζλ and their parity-reversed duals

Πζ̂0, . . . ,Πζ̂λ) by the infinite jet bundle π∞ : J∞(π) → M associated with the smooth
fibre bundle π of physical fields.13

2.1. The BV-zoo. Let a fibre bundle π of physical fields over the base manifold Mn

be given and denote by φ the fibre coordinates in it. Suppose that

S0 =

∫
L0(x, [φ]) dvol(x) ∈ H

n
(π)

is the action of a field model under study. By using the theory and techniques from

section 1 we know how one derives, via the stationary point condition
←−
δS
∣∣
s
= 0 at

s ∈ Γ(π) the Euler–Lagrange equations of motion EEL = {
←−
δS0/δφ = 0} whose left-hand

sides belong to the C∞(J∞(π))-module of sections P0 = Γ(π∗∞(ζ0)) for the cotangent

bundle ζ0 to π such that
←−
δS0/δφ|j∞(s) · dvol(·) ∈ Γ(T ∗π) ⊗C∞(M) Λ

n(M) for any field
configuration s ∈ Γ(π).

We recall from Remark 1.6 that by following a misfortunate but long-established
tradition it is the unknowns φ in π but not the global coordinates F in the fibre of
cotangent bundle T ∗π to π which are used to parametrise the equations within Euler–
Lagrange system EEL at points of the graph of a section φ ∈ Γ(π).

13A subtle point, which we reconsider in section 2.1 (see also Remark 1.6), is that the fibre bundle π

is often identified with the vector bundle component ζ0 in ζ(0|1). Nevertheless, it is the construction of
induced bundle π∗

∞(ζ0×M . . .) by using which the physical fields and their derivatives are remembered
by the Euler–Lagrange equations (referred to ζ0), Noether’s identities (in ζ1), and higher geberations
of syzygies from ζ2, . . . , ζλ (if any).
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If the model at hand is gauge-invariant, then it admits an off-shell differential de-
pendence Φ(x, [φ]; [F ]) ≡ 0 ∈ Γ((π∞ ×M ζ0,∞)

∗(ζ1)) between the left-hand sides F
of equations EEL. We recall further that the dependence of Noether’s identities Φ
on (the derivatives of) F is linear for Euler–Lagrange systems EEL; the generators

p(x, [φ]) ∈ P̂1 = Γ(π∗∞(ζ̂1)) of Noether’s gauge symmetries for S0 are sections of the

bundle ζ̂1 which is induced from the dual to ζ1 with respect to the top-degree horizontal
form-valued coupling 〈 , 〉. Indeed, if

0 ≡ 〈p,Φ(x, [φ]; [F ])〉

and Φ is linear in F or its finite-order derivatives,

Φ(x, [φ]; [F ]) = ℓ
(F )
Φ

(F ) ≡ 0,

then an integration by parts yields that

0 ∼=
〈
(ℓ

(F )
Φ

)†(p), δS0/δφ
〉
∼= ~∂

(φ)

(ℓ
(F )
Φ

)†(p)
(S0).

This shows that the evolutionary vector field ~∂
(φ)
A(p) with A = (ℓ

(F )
Φ

)† and p = p(x, [φ]) is

a Noether symmetry of the action S0. By reading the above equalities backwards, one
obtains the linear Noether relations Φ = A†(F ) between the Euler–Lagrange equations
of motion.

Likewise, there could in principle appear higher generations of linear identities
Ψ2(x, [φ], [F ]; [Φ]) ≡ 0, . . . , Ψλ(x, [φ], [F ], [Φ], . . . , [Ψλ−2]; [Ψλ−1]) ≡ 0 which hold for
all φ, sections F in ζ0, and so on up to the coordinates Ψλ−2. Each ith generation of
such identities arises with the respective vector bundle ζi with fibre dimension mi; the
total number of generations is bounded from above by a constant λ ∈ N ∪ {0} due to
Hilbert’s theorem on syzygies [16]: 0 ≤ i ≤ λ ≤ n, where n is the dimension of base
manifold Mn. For example, we have that λ = 1 for Yang–Mills theory, and λ = 2 for
gravity over a fourfold M4.

We denote by F (alas! at once identifying this global m-tuple in ζ0 for the equations

with the local field variables φ), and by γ†, c†, . . . , c†λ the global fibre coordinates in ζ1
for Noether’s identities, and so on up to ζλ, respectively (see Fig. 2).

c† ↔ c

γ† ↔ γ

φ ≈ F︸ ︷︷ ︸
q

↔ φ†︸︷︷︸
q†

π
(0|1)
BV



 Mn

s

x
?

s

HHHHHHHHHHj

s

?

� Wx,φ(x) = Vx ⊕̂ΠV †x : BV-zoo.

0

δs = (δs; δs†) ∈ Tx,φ(x),s(x)
(
ζ(0|1)

)−1
(x)φ(x)

ζ(0|1)

π
Iφ

s
(q, q†) = s(x) : section of ζ(0|1).

Figure 2. The fibre bundle π of physical fields φ, the bundle ζ(0|1) of
BV-variables (q, q†), and the vector bundle Tζ(0|1) of their variations δs =
(δs; δs†).
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In turn, each vector bundle ζ0, . . . , ζλ brings its 〈 , 〉i-dual ζ̂i into the picture. (Note

that the equations
←−
δS0

∣∣
s
= 0 upon s ∈ Γ(π) for S0 =

∫
L(x, [φ]) · dvol(x) and all equa-

tions’ linear-differential descendants retain the volume form dvol(x) from the model’s
action S0 at all points x ∈Mn.)

We now reverse the parity of linear vector space fibres in ζ̂0, . . . , ζ̂λ by introducing

the Z2-valued ghost parity gh(·) and considering the odd neighbours Πζ̂0, . . . , Πζ̂λ of
the dual vector bundles (see [34, 52] and also Appendix A in [33] for discussion). Let us
denote by φ†, γ, c, . . ., cλ the ghost parity-odd global coordinates along linear vector

space fibres in Πζ̂0, . . . , Πζ̂λ, respectively. These variables’ proper names are easily
recognized from the standard notation: φ replacing F are the fields and φ† are odd-
parity antifields, γ are the odd ghosts and γ† are the parity-even antighosts, whereas the
canonically conjugate variables c ↔ c†, . . . , cλ ↔ c†λ are higher ghost-antighost pairs
of opposite ghost parities (resp., odd and even). We denote by q the agglomeration of
ghost parity-even variables and by q† their respective canonically conjugate parity-odd
neighbours.14

Remark 2.1. Let us emphasize that by using the word “parity” we always refer to the
ghost parity gh( · ) of objects.15 In this paper we aim at understanding the geometry of
variations so that the graded arithmetic and algebra of derivations play auxiliary rôles.
However, as soon as the interaction of geometries is properly fixed, their extension
to a Z2-graded setup of superbundle π : E(m0+n0|m1+n1) → M (n0|n1) of physical fields
(possibly, over a base supermanifold M (n0|n1)) makes no conceptual difficulty ([10], see
also [22] and references therein). The theory then becomes bi-graded: it involves (i) the
Z2-grading | · | in the ring of field coordinates, which echoes in the Z2-grading of Euler–
Lagrange equations of motion, Noether identities, etc., (the model’s action functional
S0 has even grading by default), and (ii) the ghost parity gh(·), see [52].

The Z2-grading | · | and the ghost parity gh(·) are independent from each other. We
denote by q = q(0|1) the ghost parity-even BV-fibre variables, which are then grouped
in even- and odd-grading components. Likewise, the ghost parity-odd BV-variables
q† = (q†)(0|1) are arranged in exactly the same way. By construction, the values of
Z2-gradings for canonically conjugate variables (q, q†) coincide: we have that |q| = |q†|
and gh(q†) ≡ gh(q) + 1 mod 2.

Next, we take the Whitney sum

ζ(0|1)
def
= ζ0 ×M ζ1 ×M . . .×M ζλ ×M Πζ̂0 ×M Πζ̂1 ×M . . .×M Πζ̂λ

14Consider Feynman’s path integral
∫
Γ(ζ0)

[Dq]O([q], [q†]) of an observable O over the space of

ghost parity-even sections. The BV-Laplacian ∆ is the tool which ensures the integral’s effective
independence from the unphysical ghost parity-odd variables q†, see section 3.1.

15By construction, the ghost parities of canonically conjugate BV-variables are complementary
modulo 2, that is, to each even-parity variable q there corresponds its odd-parity dual neighbour
q†. Of course, there remains much freedom in a choice of the integer ghost numbers followed by
the group homomorphism (−)gh( · ) : Z → Z2. For example, let (q, q†) be a pair of conjugate BV-
variables; then one balances gh(q) = gh(q†) ± 1 or gh(q) = − gh(q†) ± 1, or by using any other
integers such that one is even and the other is odd. Obviously any shift by an even integer (e. g.,
gh(q) 7→ − gh(q) = gh(q)− 2 · gh(q)) does not alter any values in the parity group Z2; this is no more
than another way to describe the same theory.
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of the double set of dual bundles with opposite ghost parities of fibre coordinates. Fin-
ally, let us lift the Whitney sum of infinite jets of those bundles, putting it over the
bundle of physical fields by using a pull-back under π∞. We denote the resulting bundle
over the total space J∞(π)→M by

π
(0|1)
BV = π∗∞

(
ζ(0|1)∞

)
.

The fibre Wx = Vx ⊕̂ ΠV †x of ζ(0|1) admits the canonical decomposition in two dual
halves of opposite parities.16

Bearing in mind that the fields φ are artifically incorporated into the newly built fibre
by ζ0, we shall omit an ever-present reference to points (x, φ(x)) of jets of sections of

the initial bundle π when dealing with variations δs = (δs; δs†) for sections s of ζ(0|1)

at φ(x), see Fig. 2.

2.2. The signs convention in Nature. The construction of canonically conjugate
pairs of global coordinates (q, q†) in the fibres Wx = Vx ⊕̂ΠV †x refers to a choice of the
smooth field of dual bases in the two subspaces of even and odd ghost parity. Suppose
that ~ei(x) is a frame in Vx and ~e †i(x) is its dual in ΠV †x , where the index i runs from

1 to the total dimension of even- and odd-parity component in the fibre of ζ(0|1); we
denote by N = m+m1 + . . . +mλ each of the two dimensions so that the fibre of the
Whitney sum ζ(0|1) has superdimension (N |N).

Let us recall that it is the parity of coordinates q† but not of the vectors ~e †i in a basis
which is reversed by the operation Π. The odd-parity component in the vector bundle

ζ(0|1) is topologically indistinguishable from ζ̂0 ×M . . .×M ζ̂λ but the rules become new
for arithmetic in the algebra of coordinate functions on the total space. Therefore, we
let the notation ~e †i(x) be identical for the same bases in V †x and ΠV †x .

Remark 2.2. The presence of two dual vector spaces, Vx and (Π)V †x , standardly implies
that there are two couplings,

〈 , 〉 : Vx × (Π)V †x → k and 〈 , 〉 : (Π)V †x × Vx → k; (9)

we denote both operations in the same way because the order of arguments uniquely
determines the choice. Let us remember also that it is not the linear vector space fibres
of the superbundle ζ(0|1) over the bundle π of physical fields but it is the tangent spaces

T(x,φ(x),s(x))
(
Vx ⊕̂ΠV †x

)
∼= Vxmathbin⊕̂ΠV

†
x

to those fibres which harbour the variations δs = (δs; δs†) of sections s of the BV-
bundle.

A reason to study the geometry of variations in tangent spaces to the fibres is clear
from section 1. In fact, although we have substantiated in section 2.1 that Euler–
Lagrange equations and their descendants do form linear vector spaces, this structure
is incidental for the BV-formalism while Feynman path integration is not yet begun.
The guiding geometric principle is that linear vector spaces appear only in the course
of inspection of functionals’ responses to infinitesimal test shifts of their arguments.

16To highlight this duality between ghost parity-even vector space Vx and ghost parity-odd subspace
ΠV †

x
in Wx, we use the notation ⊕̂ for their direct sum; whenever a coordinate in Vx is rescaled by

const times, the respective conjugate variable in ΠV †
x

is transformed inverse-proportionally by const−1

times, see Remark 2.5 below.
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Couplings (9) are defined only if the linear vector spaces Vx ∋ δs(x) and ΠV †x ∋ δs
†(x)

are located over the same point x ∈ Mn of the base manifold, and over it they are

attached as the two components of tangent space Ts(x)
(
ζ(0|1)

)−1(
x, φ(x)

)
, at the same

point s(x) = s (x, φ(x)) of fibre in the superbundle ζ(0|1) over a point (x, φ(x)) of the
total space for the bundle π of physical fields (see Fig. 2).

A distinction between the vector space Vx and its parity-reversed dual nontrivially
determines the couplings’ values whenever they are defined. Namely, each of the two
finite-dimensional vector spaces is reflexive,

(
(Vx)

†
)† ∼= Vx and

(
(ΠV †x)

†
)† ∼= ΠV †x , (10)

but these isomorphisms are not always identity mappings. We have that
〈
~ei(x), ~e

†j(x)
〉
= δji yet

〈
~e †j(x), ~ei(x),

〉
= −δji , (11)

where δji is the Kronecker symbol whose value is the unit iff i = j and which is set
equal to zero otherwise.

Remark 2.3. We claim that this mechanism is responsible, in particular, for the skew-
symmetry of various Poisson brackets (e. g., of the parity-odd Schouten bracket). Let us
emphasize that this is a principle of order between geometric objects; the concept is not
restricted to the BV-setup which we study here. Actually, Eq. (11) is the fundamental
reason for differential 1-forms to anticommute17 (in the class of geometries for which
a coupling is defined between the linear vector spaces of co-multiples under the wedge
product ∧; for instance, such is the case of the Helmholtz criterion ψ = δS/δq ⇔
~ℓ
(q)
ψ =

(
~ℓ
(q)
ψ

)†
for images of the variational derivative [28, 45]). Physically speaking, the

binary count by “a vector space,” “not the former, hence its dual,” and “not the dual,
but the initial space’s image under central symmetry” builds on the notion of order and
realizes the law of the excluded middle.

2.3. Left- and right-variations via operators. Suppose that

S =

∫
L(x, [q], [q†]) dvol(x)

is an integral functional Γ(πBV)→ k. Let us focus on the correspondence between test

shifts δs = (δs; δs†) = δsi · ~ei + δs†i · ~e
†i of BV-fields s ∈ Γ(πBV) and, on the other

hand, left- or right-acting linear singular integral operators
←−
δs and

−→
δs which yield the

functional’s responses to shifts of its argument s. By definition, we put

−→
δs =

∫

M

dy
{
(δsi)

(←−
∂

∂y

)σ

(y) ·
〈
(~e †i)†(y), ~e †j(·)

〉 −→∂
∂qjσ

+

+ (δs†i )

(←−
∂

∂y

)σ

(y) ·
〈
(~ei)

†(y), ~ej(·)
〉 −→∂
∂q†j,σ

}
(12a)

17That is, this argument reveals why a mathematical axiom that differential forms do anticom-
mute in the course of calculations leads to verifiable and relevant theoretic predictions which match
experimental data.
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and

←−
δs =

∫

M

dy
{ ←−∂
∂qjσ

〈
~e †j(·), †(~e †i)(y)

〉
(−→
∂

∂y

)σ

(δsi)(y) +

+

←−
∂

∂q†j,σ

〈
~ej(·),

†(~ei)(y)
〉
(−→
∂

∂y

)σ

(δs†i)(y)
}
. (12b)

The above formulas for directed operators
−→
δs and

←−
δs contain new notation (~ei)

†, (~e †i)†

and †(~ei),
†(~e †i), also referring to an important sign convention which fully determines

those adjoint objects. Namely, let us agree that over every x ∈Mn the covectors

~e †i(x)

( −→
∂

∂qiσ
L(x, [q], [q†])

)∣∣∣∣∣
j∞x (s)

+ ~ei(x)

( −→
∂

∂q†i,σ
L(x, [q], [q†])

)∣∣∣∣∣
j∞x (s)

and
(
L(x, [q], [q†])

←−
∂

∂qiσ

)∣∣∣∣∣
j∞x (s)

~e †i(x) +

(
L(x, [q], [q†])

←−
∂

∂q†i,σ

)∣∣∣∣∣
j∞x (s)

~ei(x)

are expanded in the cotangent space T ∗s(x)Wx
∼= V †x ⊕̂(TV

†
x)
† with respect to the original

basis (+~e †i,+~ei); note the signs (any other convention here would nohow alter the
theory’s content but it would (in)appropriately modify the signs in (13) below). The
normalization of left- and right-adjoint objects (~ei)

†, (~e †i)† and †(~ei),
†(~e †i) is immediate

under assumption that the couplings’ equations yield (5) and then (3) after integration
by parts — no extra sign factors appear in those formulas. This requirement determines
the table

(~e †i)† = ~ei,

(~ei)
† = −~e †i,

†(~e †i) = −~ei,
†(~ei) = ~e †i,

(13)

so that the following defining relations hold:

〈
(~ei)

†, ~ei
〉
=
〈
~ei,
†(~ei)

〉
=
〈
(~e †i)†, ~e †i

〉
=
〈
~e †i, †(~e †i)

〉
= +1.

Let us notice that the left- and right-acting operation † provides the analogue of left
and right 〈 , 〉-dual in this ordered world; the first column in (13) determines a clockwise
rotation in the oriented plane spanned by ~ei ≺ ~e

†i, whereas taking the adjoints †(·) : ~ei 7→
~e †i and ~e †i 7→ −~ei induces the counterclockwise rotation in that plane.

Example 2.1. Identities (13) show up in the directed variations
←−
δS
∣∣∣
δs

s
=
−→
δs(S)(s) and

−→
δS
∣∣∣
δs

s
= (S)

←−
δs(s) of an integral functional S =

∫
L(x, [q], [q†]) · dvol(x). Namely, we
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have that

←−
δS
∣∣∣
(δs,δs†)

s
=

=

∫

M

dy

∫

M

dvol(x)

{
(δsi)

(←−
∂

∂y

)σ

(y)
〈
~ei(y), ~e

†j(x)
〉
( −→

∂

∂qjσ
L(x, [q], [q†])

)∣∣∣∣∣
j∞x (s)

+

+ (δs†i)

(←−
∂

∂y

)σ

(y)
〈
−~e †i(y), ~ej(x)

〉
( −→

∂

∂q†j,σ
L(x, [q], [q†])

)∣∣∣∣∣
j∞x (s)

}
(14a)

and

−→
δS
∣∣∣
(δs,δs†)

s
=

=

∫

M

dy

∫

M

dvol(x)

{(
L(x, [q], [q†])

←−
∂

∂qjσ

)∣∣∣∣∣
j∞x (s)

〈
~e †j(x),−~ei(y)

〉
(−→
∂

∂y

)σ

(δsi)(y) +

+

(
L(x, [q], [q†])

←−
∂

∂q†j,σ

)∣∣∣∣∣
j∞x (s)

〈
~ej(x), ~e

†i(y)
〉
(−→
∂

∂y

)σ

(δs†i)(y)

}
. (14b)

The operators
−→
δs and

←−
δs act via ghost-parity graded Leibniz’ rule on formal products

of integral functionals (and on their inages under other infinitesimal variation operators
as well), so that the two operators are defined on the entire space N

n
(πBV, TπBV), see

section 2.4.2 below.

Remark 2.4. A reversion
←−
δs ⇄

−→
δs of the direction along which such an operator acts

means that the initially given operator (for definition, let it be
←−
δs which acts to the

left) is destroyed and in its place the other, opposite-direction operator is created (here

it would be
−→
δs). Note that the variation δs ∈ Γ(Tπ) itself stays unchanged; it is the

two realizations of this object via
←−
δs and then via

−→
δs which differ. (This concept of

test shifts as primary geometric objects which contain information about the operators
will be essential in Definition 2 of the variational Schouten bracket.)

Remark 2.5. The postulate of duality between ~ei(x) and ~e
†i(x) correlates their trans-

formation laws under dilations: a rescaling ~ei 7→ const ·~ei with const ∈ k \ {0} deter-
mines the inverse-proportional mapping ~e †i 7→ const−1 ·~e †i of respective dual vectors.
(Likewise, the coordinates in Vx and ΠV †x are then rescaled by qi 7→ const−1 ·qi and

q†i 7→ const ·q†i . respectively.)

Consider a variation δs = (δs; δs†) ∈ Γ(Tζ(0|1)) of a BV-section s ∈ Γ(ζ(0|1)) over a

given field configuration φ ∈ Γ(π) in the BV-bundle π
(0|1)
BV . The infinitesimal variation

vectors δs = (δs; δs†) can be naturally split to ghost parity-homogeneous components:

δs = (δs; 0) + (0; δs†). (15)



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 23

Here we explicitly use the linear vector space structure in fibres of the tangent bundle
Tζ(0|1). Let us recall that the two homogeneous variations

δs(x) = δsi(x) · ~ei(x) and δs†(x) = δs†i(x) · ~e
†i(x)

in the right-hand side of (15) are the canonically dual to each other.
Moreover, by Remark 2.5 it is then possible to have δs and δs† normalized, for every

i running from 1 to the dimension N , by the equalities

δsi(x) · δs†i(x) ≡ +1 (16)

at every x ∈ Mn where the smooth fields of dual bases ~ei and ~e
†i are defined for the

section s. From now on, let us deal only with such normalized variations. This implies
that the coupling of these geometric objects are “invisible” but still the order in which
the co-multiples δs and δs† occur in (11) does determine the signs in various formulas
(e. g., in the definition of Schouten bracket, see p. 30 below).

2.4. Definitions of the BV-Laplacian and Schouten bracket. We now combine
the geometry of graded-permutable iterated variations, which we explored in section 1
and which absorbs a new copy of the underlying base manifold Mn for each new infin-
itesimal test shift δs(x) ∈ Ts(x)Wx of the functionals’ arguments at x ∈ Mn, with the
algebra of two couplings (9) between ghost parity-homogeneous halves of infinitesimal
variations in the BV-setup Ts(x)Wx

∼= Vx ⊕̂ΠV †x ; the absolute locality of such coupling
events is a fundamental principle.

To avoid an agglomeration of formulas and to match the notation with that in sec-
tion 1, we omit an explicit reference to field configuration {φ(x), x ∈ Mn}, indicating
only the base points x ∈ Mn. We also denote by πBV the composite-structure super-
bundle over Mn (see Fig. 2) so that the notation for the vector bundle of BV-sections’
infinitesimal variations is TπBV. However, let us remember that only the linear BV-
fibre variables (q, q†) but not the physical fields φ are subjected to variations at points

s(x) ∈
(
ζ(0|1)

)−1
(x, s(x)) over (x, φ(x)) ∈ π−1(x). A brute force labelling of Euler–

Lagrange equations by the respective unknowns is an act of will by the one who writes
formulas but it is not a prescription from the model’s geometry.

This section contains rigorous, self-regularizing definitions of the BV-Laplacian and
Schouten bracket for integral functionals from H

n
(πBV) ( M

n
(πBV) ( N

n
(πBV, TπBV).

We shall extend the definition to the space N
n
(πBV, TπBV) of products of integral

functionals, possibly with earlier-absorbed variations, in the subsequent sections of this
paper. We then establish the main properties of these structures and prove relations
between them. We note that the definitions which we give here are operational: each of
them is a surgery for the couplings and their reconfiguration algorithm. (The locality
postulate ensures the restrictions onto diagonals in the product M × . . . ×M so that
those recombinations make sense at every point of M .)

2.4.1. The BV-Laplacian ∆. Let us first introduce some shorthand notation. Let
F =

∫
f(x, [q], [q†]) · dvol(x) be an integral functional and δs = (δs; 0) + (0; δs†)

be a variation’s splitting in two ghost parity-homogeneous variations. From section 1
we know that each of the two is referred to its own copy of the base: let it be δs(y1)
and δs†(y2) so that formula (5) defines the response of F to an infinitesimal shift of its
argument along each of the two directions.
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Definition 1. Let δs ∈ Γ(TπBV) be a test shift normalized by (16) and then split to the
sum (δs; 0)+ (0; δs†) of ghost parity-homogeneous, 〈 , 〉-dual halves. The BV-Laplacian
is the linear operator ∆: H

n
(πBV) → N

n
(πBV, TπBV); for a ghost parity-homogeneous

integral functional F ∈ H
n
(π) and its argument s, the operator ∆ is an algorithm for

reconfiguration of couplings in the second variation

d

dε

∣∣∣∣
ε=0

d

dε†

∣∣∣∣
ε†=0

F (s+ ε ·
←−
δs+ ε† ·

←−
δs†) =

∑

i1,i2
j1,j2

∑

|σ1|≥0
|σ2|≥0

∫

M

dy1

∫

M

dy2

∫

M

dvol(x)





(δsi1)
( ←−

∂
∂y1

)σ1
(y1) 〈 ~ei1(y1), ~e

†j1(x)〉 ←֓

→֒ (δs†i2)
( ←−

∂
∂y2

)σ2
(y2)〈−~e

†i2(y2), ~ej2(x)〉



 ·
−→
∂2f(x, [q], [q†])

∂qj1∂q†j2

∣∣∣∣∣
j∞x (s)

.

This second variation’s integrand contains the couplings 〈 , 〉:

Ts(y1)Vy1
× T ∗s(x)(Π)Vx → k and Ts(y2)ΠV

†
y2
× T ∗s(x)(Π)V

†
x → k

which are defined only if the attachment points coincide for these (co)vectors; an op-
tional presence of the parity reversion operator indicates a possibility of having ghost
parity-odd functional F .

The second step in definition of ∆ acting on F is a surgery algorithm. At the moment
when the object ∆F under construction – or a larger object of which ∆F is an element,
see (1c) – is evaluated at a section s ∈ Γ(πBV), the integrations by parts carry the

derivatives away from the variations’ components:
←−
∂ /∂yi 7→

−→
∂ /∂yi as explained in

section 1.3. Lastly, the on-the-diagonal surgery of couplings and reattachment of their
arguments is performed as follows:

(∆F )
∣∣∣
δs

s
=
∑

i1,i2
j1,j2

∑

|σ1|≥0
|σ2|≥0

∫

M

dy1

∫

M

dy2

∫

M

dvol(x)·

·



δs

i1(y1)

(
−

−→
∂

∂y1

)σ1

· 〈~ei1(y1),−~e
†i2(y2)〉︸ ︷︷ ︸

−1

·δs†i2(y2)

(
−

−→
∂

∂y2

)σ2


 ·

·



〈~e

†j1(x), ~ej2(x)〉︸ ︷︷ ︸
−1

·
~∂2f(x, [q], [q†])

∂qj1∂q†j2

∣∣∣∣∣
j∞x (s)



 . (17)

Note that the left-to-right order in
〈
~ei1(y1), ~e

†j1(x)
〉
·
〈
−~e †i2(y2), ~ej2(x)

〉
is preserved

by the respective couplings’ arguments in 〈~ei1(y1),−~e
†i2(y2)〉 · 〈~e

†j1(x), ~ej2(x)〉.

Remark 2.6. Until the moment when the integrations by parts are performed in ∆F ,
the derivatives ∂/∂y1 and ∂/∂y2 refer to different copies of the manifoldMn in the base
Mn ×Mn ×Mn of the product bundle πBV × TπBV × TπBV. This implies that the two
variations of F in the definition of ∆ are graded-permutable between each other and
with all other variations falling on f(x, [q], [q†]) whenever ∆F is a constituent element
of a larger object (e. g., see (1c–1d) on p. 1).
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Remark 2.7. To keep track of multiple copies of the base Mn for functionals and vari-
ations (here x ∈ Mn, y1 ∈ M

n, y2 ∈ M
n) in the course of integration by parts (see

section 1.3), we indicate the respective variations’ bases by explicitly writing q(y1)
and q†(y2) in the denominators and we denote by ∂/∂y1 and ∂/∂y2 the derivatives
which now fall on the functional’s density f(x, [q], [q†]) — for instance, we do so in
Example 2.4 on p. 36 below. Namely, we put

←−
δf(x, [q], [q†])

δqα(y1)

∣∣∣∣∣
j∞x (s)

=
∑

|σ1|>0

(
−

~∂

∂y1

)σ1
(
~∂f(x, [q], [q†])

∂qασ1

)∣∣∣∣∣
j∞x (s)

= (18a)

=
∑

|σ1|≥0

((
−

~d

dy1

)σ1 ~∂f(x, [q], [q†]

∂qασ1

)∣∣∣∣∣
j∞x (s)

and
←−
δf(x, [q], [q†])

δq†β(y2)

∣∣∣∣∣
j∞x (s)

=
∑

|σ2|>0

(
−

~∂

∂y2

)σ2
(
~∂f(x, [q], [q†])

∂q†β,σ2

)∣∣∣∣∣
j∞x (s)

= (18b)

=
∑

|σ2|≥0

((
−

~d

dy2

)σ2 ~∂f(x, [q], [q†]

∂q†β,σ2

)∣∣∣∣∣
j∞x (s)

for the ghost parity-homogeneous components of variational derivative. At every point
(x, φ(x), s(x)) of the total space for the bundle πBV, and for a given functional F which
is assumed ghost parity-homogeneous, we have that
←−
δf(x, [q], [q†])

δqα(y1)

∣∣∣∣∣
j∞x (s)

∈ T ∗s(x)(Π)Vx and

←−
δf(x, [q], [q†])

δq†β(y2)

∣∣∣∣∣
j∞x (s)

∈ T ∗s(x)(Π)V
†
x .

Let us remember that an attribution of denominators to y1 or y2 is a matter of notation
in (18); whenever happening, everything happens at x ∈ Mn.

Lemma 1. The BV-Laplacian ∆ is independent of a choice of the variation δs normal-
ized by (16).

Indeed, whenever the integrations by parts are performed, products (16) of the dual
components are always the same at all points of the intersection of their domains of
definition.18

Corollary 2. In particular, we obtain the equality for immediate numeric value of ∆F
at s,

(∆F )(s) =
∑

i1,i2

∫

M

dvol(x)



δs

i1(y1) · δ
i1
i2
· δs†i2(y2) ·

←−
δ2f(x, [q], [q†])

δqi1(y1)δq
†
i2
(y2)

∣∣∣∣∣
j∞x (s)





∣∣∣∣∣∣y1 =x
y2 =x

∈ k.

18The assertion of Lemma 1 extends to the variational Schouten bracket, which is a derivative
structure with respect to the BV-Laplacian (see Definition 2 on p. 30). Moreover, the independence

of a specific choice of variations implies that their coefficients (δs1, δs
†
1) and (δs2, δs

†
2), which are built

into ∆ and [[ , ]], can be swapped, not altering an object that contains these test shifts δs1 and δs2 (see
the proof of Lemma 5 on p. 33).
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By taking one sum containing Kronecker’s δ-symbol, one arrives at a conventional
formula with a summation over the diagonal:

=

N∑

i=1

∑

|σ1|≥0
|σ2|≥0

∫

M

dvol(x)

((
−
~d

dx

)σ1∪σ2 ~∂2f(x, [q], [q†])

∂qiσ1∂q
†
i,σ2

)∣∣∣∣∣
j∞
x(s)

def
=

def
=

N∑

i=1

∫

M

dvol(x)

←−
δ2f(x, [q], [q†])

δqiδq†i
. (19)

We refer to footnote 12 on p. 14 in this context.

Remark 2.8. The conventional formula
←−
δ2f(x, [q], [q†])

δq(y1)δq
†(y2)

∣∣∣∣∣y1 =x
y2 =x

itself is not the definition of a density of the BV-Laplacian ∆F for an integral func-
tional F =

∫
f(x, [q], [q†]) · dvol(x). Not containing any built-in sources of divergence,

the geometric definition and its implication (19) yield identical results only when one
calculates the numeric value (∆F )(s) ∈ k — but not earlier: structurally different
objects (17) and (19) belong to non-isomorphic spaces (so that the former contains
more information then the latter), and their analytic behaviour is also different, see
Example 2.4 on p. 36.

The following two examples are quoted from [35]; they show that the structure ∆
defined above coincides – but only in the simplest situation– with the one which is in-
tuitively known from the literature. We refer to the main Example 2.4 on p. 36 which
illustrates the multiple-base geometry in a logically more complex situation of (1c).

Example 2.2. Take a compact, semisimple Lie groupG with Lie algebra g and consider
the corresponding Yang–Mills theory. Write Aai for the (coordinate expression of) the
gauge potential A – a lower index i because A is a one-form on the base manifold (i. e.,
a covector), and an upper index a because A is a vector in the Lie algebra g of the Lie
group G. Defining the field strength F by Faij = ∂iA

a
j − ∂jA

a
i + fabcA

b
iA

c
j where f

a
bc are

the structure constants of the Lie algebra g, the Yang–Mills action is19

SYM = 1
4

∫
FaijF

a,ij d4x,

and the full BV-action SBV is

SBV = SYM +

∫
Ai†a (

d
dxi
γa + fabcA

b
iγ
c) d4x− 1

2

∫
f cabγ

aγbγ†c d
4x.

Let us calculate the BV-Laplacian of this functional. By Corollary 2, the only terms
which survive in ∆(SBV) are those which contain both A and A†, or both γ and γ†.

19The action functional SYM is referred to Minkowski flat coordinates such that dvol(x) =√
| − 1|d4x in the weak gauge field limit.
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Therefore,

∆(SBV) =

∫ ( ←−
δ

δAdj

←−
δ

δAj†d
(fabcA

i†
a A

b
iγ
c)−

1

2

←−
δ

δγ†d

←−
δ

δγd
(f cabγ

aγbγ†c)

)
d4x

=

∫ ( ←−
δ

δAdj
(f dbcA

b
jγ

c)−
1

2

←−
δ

δγ†d
(f cdbγ

bγ†c − f
c
adγ

aγ†c)

)
d4x

=

∫ (
f ddcγ

c − 1
2

(
f ddbγ

b − f dadγ
a
))

d4x = 0.

Let us note also that, since the BV-action SBV is by construction such that the horizontal
cohomology class of [[SBV, SBV]] is zero, as one easily checks by using Definition 2 below,
the functional SBV satisfies quantum master-equation (40) tautologically: both sides
are, by independent calculations, equal to zero — should one inspect those values at
any section s of the BV-bundle.

Example 2.3. Consider the nonlinear Poisson sigma model introduced in [11]. Since
its fields are not all purely even, we have to generalize all of our reasoning so far to a
Z2-graded setup — which is, as noted in Remark 2.1, tedious but straightforward. A
verification that ∆(SCF)(s) = 0 for the BV-action SCF of this model and a section s of
the respective BV-bundle would, up to minor differences in conventions and notations,
proceed just as it does in that paper itself, in section 3.2 thereof — except that no
infinite constants or Dirac’s δ-function appear.

Remark 2.9. The BV-Laplacian ∆ is extended by using Leibniz’ rule from the space
H
n
(πBV) of building blocks in M

n
(πBV) to the space N

n
(πBV, TπBV), see Theorem 3 on

p. 31. The couplings’ (re)attachment algorithm then results in formula (1b) on p. 1,
which is taken as a definition of the variational Schouten bracket [[ , ]], see [39]. In turn,
that structure’s extention from H

n
(πBV)×H

n
(πBV) to N

n
(πBV, TπBV)×N

n
(πBV, TπBV)

is immediate (see Theorem 4 below).
The correspondence between ∆ and [[ , ]] is furthered to an equivalence between the

property ∆2 = 0 of BV-Laplacian to be a differential and, on the other hand, Jacobi’s
identity for the variational Schouten bracket. We emphasize that the latter can be veri-
fied within the old approach [41] to geometry of variations. (We refer to [32] for a proof;
its crucial idea is that with evolutionary vector fields it does not matter under “whose”
total derivatives, d/dx or d/dyi, such fields dive.) Nevertheless, the traditional para-
digm fails to reveal that the operator ∆ is a differential because of a necessity to have
the variations graded-permutable and for that, to distinguish between the functionals’
and variations’ domains of definition. Our geometric approach resolves that obstruction
and ensures the validity of identities (1c) and (1d) (see Theorems 6 and 8, respectively).

2.4.2. The variational Schouten bracket [[ , ]]. The parity-odd Laplacian ∆ is the parent
object20 which induces the variational Schouten bracket [[ , ]]. Namely, the bracket
appears in the course of that operator’s extension from the space H

n
(πBV ) ∋ F to the

20In particular, the definition of BV-Laplacian logically precedes the construction of Schouten
bracket in BV-formalism (although such parity-odd variational Poisson bracket is often introduced
through postulated formula (25) in the context of Hamiltonian dynamics and infinite-dimensional
completely integrable systems [14, 18, 26, 41, 42]). Indeed, the entire Schouten-bracket machinery of
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space N
n
(πBV, TπBV) ⊇M

n
(πBV) of local functionals F1 · . . . ·Fℓ (it is possible that Fi’s

already contain some normalized variations).

A distinction between left and right in the directed operators
←−
δs and

−→
δs, the ori-

entation ~ei ≺ ~e †i in the composite BV-fibres Wx
∼= Vx ⊕̂ ΠV †x equipped with two cou-

plings (9), and the ordering of variations δs1, . . . , δsk specify the logic of operational
Definition 2, which is given in this section.

Remark 2.10. For the sake of brevity, we extend the BV-Laplacian ∆ from the space
H
n
(πBV) of integral functionals F1, . . . , Fℓ to the space M

n
(πBV) of local functionals

such as F1 · . . . ·Fℓ, the factors of which do not explicitly contain any built-in variations.
To further this extension verbatim onto the full space N

n
(πBV, TπBV) ) M

n
(πBV), one

must remember that it is forbidden to break the order in which the directed variation
operators

−→
δsk and

←−
δsk appear in the (ordered collection of) objects at hand. (Such

concept is illustrated by the third term in (20) below.)
Likewise, we extend ∆ to products of just two factors; in the case of arbitrary number

ℓ ≥ 2 of building blocks F1, . . . , Fℓ one proceeds inductively by using the ghost parity-
graded Leibniz rule, then extending ∆ onto the vector spaceN

n
(πBV, TπBV) by linearity.

Let F =
∫
f(x1, [q], [q

†]) dvol(x1) and G =
∫
g(x2, [q], [q

†]) dvol(x2) be integral func-
tionals Γ(πBV) → k and let δs = (δs; δs†) be a normalized test shift of their product’s
argument s ∈ Γ(πBV). We now define the operator ∆ acting on the element F ·G at s
first along (0; δs†) and then along (δs; 0).

According to (14), the object to start with is

∫

M

dy1

∫

M

dy2

∑

i1,i2
j1,j2

∑

|σ1|≥0
|σ2|≥0

{
(δsi1)

( ←−
∂

∂y1

)σ1

(y1)
〈
~ei1(y1), ~e

†j1(·)
〉 −→∂
∂qj1σ1
◦

◦ (δs†i2)

( ←−
∂

∂y2

)σ2

(y2)
〈
−~e †i2(y2), ~ej2(·)

〉 −→
∂

∂q†j2,σ2

}

(∫
f(x1, [q], [q

†]) dvol(x1) ·

∫
g(x2, [q], [q

†]) dvol(x2

)
(s).

Their order preserved, the directed operators
−→
δs and

−→
δs† spread over the two factors F

andG by the binomial formula because of the Leibniz rule for graded derivations
−→
∂ /∂qj1σ1

and
−→
∂ /∂q†j2,σ2 . Note that whenever the ghost parity-odd object

−→
∂ /∂q†j2,σ2 overtakes the

density f of ghost parity gh(F ), there appears an overall sign factor (−)gh(F ). We thus
obtain

(
−→
δs ◦
−→
δs†)(F ) + (−)gh(F )−→δs(F )

−→
δs†(G) +

−→
δs
·
−→
δs†(F )·
−−−−→ G

+ (−1)gh(F )F · (
−→
δs ◦
−→
δs†)(G). (20)

(quantum) BV-cohomology groups and their automorphisms, which we consider in secction 3.2, stems
from quantum master-equation (40), see p. 43.
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The next step is to push right through F its single variations in the middle two terms
of the above expression. This yields the equality

= (
−→
δs ◦
−→
δs†)(F ) ·G+ (−)gh(F )

{
(F )
←−
δs ·
−→
δs†(G) +

−→
δs
·(F )
←−
δs†·

−−−−→ G

}

+ (−)gh(F )F · (
−→
δs ◦
−→
δs†)(G). (21)

We emphasize that the operators
←−
δs and

←−
δs† in the variations (F )

←−
δs =

−−→
δqF and

(F )
←−
δs† =

−−→
δq†F are temporarily redirected to the left so that the middle terms in (21)

are (−)gh(F ) times
−−→
δqF ·

←−−
δq†F +

←−
δq

−−−→
δ
q†
F ·

−−−→ G ; (22)

this is the input datum for a traditional definition of the variational Schouten bracket
(e. g., see [11] vs [39]). However, let us remember that the BV-fibres orientation q ≺ q†

expressed by (9) is built into the last term of (22) even if it is written as follows,

(F )
←−
δq ·
−→
δq†(G) + (F )

←−
δq† ·
−→
δq (G).

Should this be the notation for input, one then usually proclaims that “differential

1-forms anticommute” so that 〈δq† ∧ δq〉 = −〈δq ∧ δq†〉 = −1 in [[F,G]] = 〈
−→
δF ∧

←−
δG〉.

We now are almost in a position to (re)configure the couplings in the four terms
of (21). The first term will of course become ∆F ·G, and the last will provide (−)gh(F )F ·
∆G; one is here allowed to integrate by parts (as explained in section 1.3) in order to

shake the derivatives off δsi1 and δs†i2 prior to evaluation of couplings in the resulting
object’s numeric value at its argument s. Yet there remains one more logical step to

be done with (22): let us reverse back
←−
δs 7→

−→
δs and

←−
δs† 7→

−→
δs† so that on one hand,

the vertical differentials fall on F but on the other hand, the normalization of the basis
which stands near δsi(y1) and δs†i(y2) is the first not second column in (13). This
yields the following integrand of (−)gh(F )

∫
M
dy1

∫
M
dy2

∫
M
dvol(x1)

∫
M
dvol(x2), with

a summation over i1, i2, j1, j2, and |σ1| ≥ 0, |σ2| ≥ 0,

(
f(x1, [q], [q

†])

←−
∂

∂qj1σ1

)∣∣∣∣∣
j∞x1

(s)

〈~e †j1(x1),+~ei1(y1)〉
( −→

∂
∂y1

)σ1
(δsi1)(y1)· (23)

· (δs†i2)
( ←−

∂
∂y2

)σ2
(y2)〈−~e

†i2(y2), ~ej2(x2)〉

( −→
∂

∂q†j2,σ2
g(x2, [q], [q

†])

)∣∣∣∣∣
j∞x2

(s)

+

+

(
f(x1, [q], [q

†])

←−
∂

∂q†j1,σ1

)∣∣∣∣∣
j∞x1

(s)

·

{
(δsi1)

( ←−
∂
∂y1

)σ2
(y1)〈~ei1(y1)| |~e †j2(x2)〉

〈~ej1(x1)| | − ~e †i2(y2)〉
( −→

∂
∂y2

)σ1
(δs†i2)(y2)〉

}
·
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( −→
∂

∂qj2σ2
g(x2, [q], [q

†])

)∣∣∣∣∣
j∞x2

(s)

.

The integrations by parts are performed and couplings are reconfigured at the end of
the day in exactly same manner as it has been done in Definition 1; let us recall that we
now define the BV-Laplacian on a larger space. Namely, the variations couple with the
dual variations whereas the differentials of functionals’ densities attach to each other.

Definition 2. The variational Schouten bracket of two integral functionals

F =

∫
f(x1, [q], [q

†] · dvol(x1) and G =

∫
g(x2, [q], [q

†] · dvol(x2)

is the on-the-diagonal couplings surgery which, by using a normalized test shift δs =
(δs; 0)+ (0; δs†) ∈ Γ(TπBV), yields the functional from N

n
(πBV, TπBV) whose construc-

tion at a BV-section s ∈ Γ(πBV) is
21

∫

M

dy1

∫

M

dy2

∫

M

dvol(x1)

∫

M

dvol(x2)

[(
f(x1, [q], [q

†])

←−
∂

∂qj1σ1

)∣∣∣∣∣
j∞x1

(s)

{(
−
←−
∂
∂y1

)σ1
δsi1(y1)

−1︷ ︸︸ ︷
〈~ei1(y1),−~e

†i2(y2)〉 δs
†
i2
(y2)

(
−
−→
∂
∂y2

)σ2

〈~e †j1(x1)| , |~ej2(x2)〉︸ ︷︷ ︸
−1

} ( −→
∂

∂q†j2,σ2
g(x2, [q], [q

†])

)∣∣∣∣∣
j∞x2

(s)

+

(
f(x1, [q], [q

†])

←−
∂

∂q†j1,σ1

)∣∣∣∣∣
j∞x1

(s)

{
δsi1(y1)

(
−
−→
∂
∂y1

)σ2
−1︷ ︸︸ ︷

〈~ei1(y1), (−~e
†i2)(y2)〉 ·

(
−
←−
∂
∂y2

)σ1
δs†i2(y2)

〈~ej1(x1)| , |~e †j2(x2)〉︸ ︷︷ ︸
+1

}

( −→
∂

∂qj2σ2
g(x1, [q], [q

†])

)∣∣∣∣∣
j∞x2

(s)

]
.

Note that the inner couplings between variations provide a restriction to the diagonal
y1 = y2 and yield the singular integral operators which then act to the right via
multiplication by −1 only if y2 = x2 and y1 = x1, respectively. The outer coupling
then furnishes the main diagonal x1 = y1 = y2 = x2, restricting the objects further
to the same BV-fibre point in the total space of the BV-bundle. This reveals why over
each point of the base Mn the (derivatives of the) densities f and g are restricted to
the infinite jet of the same section s.

21Note that the directions of ∂/∂yi are reversed so that the minus signs appear. We emphasize that,
prior to the evaluation of reconfigured couplings, the (co)vectors at xj channel the partial derivatives
to f or g according to the couplings’ old arrangement.
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We conclude the reasoning and sum up the definitions and notations in the following
theorem.

Theorem 3. The BV-Laplacian ∆ is the linear operator

N
n
(πBV, TπBV)×N

n
(πBV, TπBV)→ N

n
(πBV, TπBV)

which acts on products of functionals F and G ∈ N
n
(πBV, TπBV) by the rule

∆(F ·G) = ∆(F ) ·G+ (−)gh(F )[[F,G]] + (−)gh(F )F ·∆G. (24)

The variational Schouten bracket [[ , ]] measures the deviation for the BV-Laplacian ∆
from being a derivation.

• After integration by parts, Definition 2 implies the renouned coordinate formula

[[F,G]] =

∫
dvol(x)

(−→
δ f(x, [q], [q†])

δq
·

←−
δ g(x, [q], [q†])

δq†
−

−

−→
δ f(x, [q], [q†])

δq†
·

←−
δ g(x, [q], [q†])

δq

)
. (25)

Remark 2.11. Let us recall from Remark 1.5 that the building blocks of local functionals
are encoded by equivalence classes of their densities, whereas the underlying integration
manifoldMn is endowed with the field-dependent volume element dvol(x, φ). The vari-
ational Schouten bracket transforms two given integral functionals F and G into [[F,G]].
For every configuration of physical fields φ ∈ Γ(π), the integration measure is the same
in F , G, and [[F,G]]. This is because the couplings are local over points

(
x, φ(x)

)
in

the total space of the bundle π of physical fields, see Remark 2.2 on p. 19 ; the equality
of local sections φ at which all (derivatives of) functionals’ densities are evaluated en-
sures the equality of metric tensor elements gµν in all functionals by virtue of Einstein’s
general relativity equations.

The operational definition of the antibracket [[ , ]] determines the way how this struc-
ture acts on the square N

n
(πBV, TπBV)×N

n
(πBV, TπBV) of entire space N

n
(πBV, TπBV)

containing formal products of functionals.

Theorem 4. Let F , G, and H ∈ N
n
(πBV, TπBV) be ghost parity-homogeneous func-

tionals. The variational Schouten bracket [[ , ]] : N
n
(πBV, TπBV) × N

n
(πBV, TπBV) →

N
n
(πBV, TπBV) has the following properties :

(i) The value of [[ , ]] at two arguments F and G ·H is

[[F,G ·H ]] = [[F,G]] ·H + (−)(gh(F )−1) gh(G)G · [[F,H ]]. (26)

This formula recursively extends to products of arbitrary finite number of factors

in the second argument.

(ii) The bracket [[ , ]] is shifted-graded skew-symmetric:

[[F,G]] = −(−)(gh(F )−1)·(gh(G)−1)[[G,F ]], (27)

which extends [[ , ]] to products of arbitrary finite number of factors taken as its

first argument in (26).
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(iii) The bracket [[ , ]] satisfies the shifted-graded Jacobi identity

(−)(gh(F )−1)(gh(H)−1)[[F, [[G,H ]]]] + (−)(gh(F )−1)(gh(G)−1)[[G, [[H,F ]]]] +

+ (−)(gh(G)−1)(gh(H)−1)[[H, [[F,G]]]] = 0, (28)

which stems from the graded Leibniz rule for evolutionary vector fields QF de-

fined by the rule QF (·) ∼= [[F, · ]] (here the equivalence up to integration by parts

is denoted by ∼= ).

Finally, the variational Schouten bracket extends by linearity to formal sums of elements

from N
n
(πBV, TπBV).

Proof. The bilinearity of [[ , ]] is obvious. It is also clear that the terms in [[F,G · H ]]

are grouped in two parts: those in which the ghost-parity graded derivations
−→
∂ /∂q†

act on G and those for H ; the former do not contribute with any extra sign factors
whereas the latter do — in a way which depends on the parity gh(G). This means
that [[F,G · H ]] = [[F,G]] · H + . . .; to grasp the sign in front of the term which has
been omitted, let us swap the graded multiples G and H . We have that G · H =
(−)gh(G) gh(H)H ·G, whence [[F,G ·H ]] = (−)gh(G) gh(H)[[F,H ]] ·G+ · · · . By recalling that
gh([[F,H ]]) = gh(F ) + gh(H)− 1, we conclude that

[[F,G ·H ]] = [[F,G]] ·H + (−)gh(G) gh(H)(−)(gh(F )+gh(H)−1)·gh(G)G · [[F,H ]],

which yields formula (26).
Proving (27) amounts to a count of signs whenever the bracket [[F,G]] of an ordered

pair of ghost parity-graded objects is virtually transformed into [[G,F ]]. By using the

rule of signs for odd-parity coordinates, q†α,σ · q
†
β,τ = −q

†
β,τ · q

†
α,σ, we first note that

−→
∂

∂q†j2,σ2
g
(
x2, [q], [q

†]
)
= (−)gh(G)−1

(
g
(
x2, [q], [q

†]
)) ←−

∂

∂q†j2,σ2
,

with a similar formula for the left- and right-acting graded derivative of f . By swapping
the (variational) derivatives of the densities f and g, we gain the signs (−)gh(F )·(gh(G)−1)

and (−)(gh(F )−1)·gh(G) for the respective terms in (23) on p. 29. Combined together,
the two steps accumulate equal factors (−)(gh(F )+1)·(gh(G)−1) = (−)(gh(F )−1)·(gh(G)+1) =
(−)(gh(F )−1)·(gh(G)−1). Thirdly, by comparing (−)(gh(F )−1)·(gh(G)−1) [[F,G]] – in which the
derivatives of f and g are interchanged and the derivations’ directions are reversed –
with [[G,F ]], we conclude that the reconfiguration of couplings in the second term in (23)
for the former expression yields minus the first term in [[G,F ]]. Likewise, the couplings
reattachment in the first term of such (23) produces minus the second term in [[G,F ]].
This is because the (co)vectors in the differentials of densities remain unswapped, now
going in the ‘wrong’ order.

We now refer to [32, Proposition 3] for a proof of property (iii) in a wider, non-
commutative setup of cyclic words (c. f. [29, 36, 46]). It is remarkable that the reasoning
persists within a näıve theory of variations, not referring to our main idea that each
test shift brings its own copy of the base Mn into the picture. A key point in the proof
is that the rule QF (·) ∼= [[F, · ]] naturally associates with functionals F the evolutionary
fields QF on the infinite jet superbundles at hand, and with evolutionary vector fields it
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does not matter under ‘whose” total derivatives such fields dive, obeying their defining

property [QF ,
−→
d /dx] = 0 (i. e., any integrations by parts, which transform the deriva-

tives
−→
∂ /∂yi falling on test shifts into total derivatives

−→
d /dx falling on the functionals’

densities, do not mar the outcome even if one attempts to perform such integrations
ahead of time). �

2.5. Main result : the proof of properties (1c–1d). We are ready to prove the
main interrelations between the BV-Laplacian ∆ and variational Schouten bracket [[ , ]].
Let us recall that either a validity of these properties was postulated (see [21]) or an ad

hoc regularization technique was formally employed in the literature in order to mask
the seemingly present divergencies (which are actually not there), c. f. [22, §15].

Let us fix the terms. In what follows we refer to building blocks from H
n
(πBV) and

their descendants – containing reconfigured variations – from H
n(1+k)

(πBV × TπBV ×
. . . × TπBV) as integral functionals. Such objects will be used for bases of inductive
proofs of Lemmas 5 and 7. We then extend the properties (1c) and ∆2 = 0 to the space

N
n
(πBV, TπBV) ⊇ M

n
(πBV) of local functionals, that is, of formal sums of products of

(varied descendants of) building blocks.

Lemma 5. Let F ∈ H
n(1+k)(

πBV×TπBV× . . .×TπBV

)
and G ∈ H

n(1+ℓ)(
πBV×TπBV×

. . .× TπBV

)
be two integral functionals; here k, ℓ > 0. Then

∆
(
[[F,G]]

)
= [[∆F,G]] + (−)gh(F )−1[[F,∆G]]. (29)

Proof. The key idea is that the structures ∆ and [[ , ]] yield equivalence classes of integral
functionals which, after an integration by parts at the end of the day, are independent

of a choice of the built-in test shifts normalized by (16). Consequently, the composite

structure ∆([[·, ·]]) does not change under swapping δsα1 ⇄ δsβ2 , δs
†
1,α ⇄ δs†2,β of the

respective variations δs1 and δs2 in ∆ and [[ , ]]. Hence the terms which are skew-
symmetric under such exchange necessarily vanish.

For the sake of clarity, let us assume that F =
∫
f(x1, [q], [q

†]) dvol(x1) and G =∫
g(x2, [q], [q

†]) dvol(x2) are just building blocks from the cohomology group H
n
(πBV);

this simplification is legitimate because new variations which come from ∆ and [[ , ]] do
not interfere with any other test shifts if those are already absorbed by the densities f
and g. Suppose that δs1 and δs2 are two normalized variations of a section s ∈ Γ(πBV).
By definition, we have that22

∆([[F,G]]) (s) =

∫

M

dz1

∫

M

dz2

∫

M

dy1

∫

M

dy2

∫

M

dvol(x1)

∫

M

dvol(x2) ·

{
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

〈
~eα(z1),−~e

†α(z2)
〉
(δs†1,α)

( ←−
∂
∂z2

)σ2
(z2)〈~e

†α(·), ~eα(·)〉

−→
∂

∂qασ1

−→
∂

∂q†α,σ2

22To keep track of their origin, we let the directed derivatives ∂/∂yi or ∂/∂zj remain falling on the
respective coefficients in δs1 and δs2; the integration by parts is performed in a standard way prior to
the reconfigurations which are shown in the formula.
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[
f(x1.[q], [q

†])

←−
∂

∂qβτ1
〈~e †β(x1)|

〈( −→
∂
∂y1

)τ1
(δsβ2 )(y1)~eβ(y1),

−~e †.β(y2) (δs
†
2,β)
( ←−

∂
∂y2

)τ2
(y2)

〉
|~eβ(x2)〉

−→
∂

∂q†β,τ2
g(x2, [q], [q

†]) +

+ f(x1, [q], [q
†])

←−
∂

∂q†β,τ2
〈~eβ(x1)|

〈
(δsβ2 )

( ←−
∂
∂y1

)τ1
(y1)~eβ(y1),

−~e †β(y2)
( −→

∂
∂y2

)τ2
(δs†2,β)(y2)

〉
|~e †β(x2)〉

−→
∂

∂qβτ1
g(x2, [q], [q

†])

] }∣∣∣∣∣ j∞(s)
xi=yj=zk

.

The partial derivatives
−→
∂ /∂qασ1 ◦

−→
∂ /∂q†α,σ2 are distributed between the arguments f and

g by the graded Leibniz rule. Whenever none of the two operators overtakes the density
of F , the reconfiguration yields [[∆F,G]](s). Likewise, if both derivatives indexed by α
overtake F and an old derivative that fell on g, then we obtain (−)gh(F )−1[[F,∆G]](s),
which is the second term in the right-hand side of (29). We claim that the remaining four
terms cancel out by virtue of independence of ∆ and [[ , ]] from a choice of normalized
variations. To prove this claim, we consecutively inspect the behaviour of those four
terms under a swap δs1 ⇄ δs2 of coefficients in the normalized test shifts.

The first and second terms sum up to the difference

〈
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2) (δs
†
1,α)

( ←−
∂
∂z2

)σ2
(z2)

〉
〈~e †α(x2), ~eα(x1)〉︸ ︷︷ ︸

−1

·

·

−→
∂

∂q†α,σ2
f(x1, [q], [q

†])

←−
∂

∂qβτ1

〈
~e †β(x1)

∣∣
〈( −→

∂
∂y1

)τ1
(δsβ2 )(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2)

(δs†2,β)
( ←−

∂
∂y2

)τ2
(y2)

〉
∣∣~eβ(x2)

〉
︸ ︷︷ ︸
−1

−→
∂

∂qασ1

−→
∂

∂q†β,τ2
g(x2, [q], [q

†]) +

+

〈
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2) (δs
†
1,α)

( ←−
∂
∂z2

)σ2
(z2)

〉
〈~e †α(x1), ~eα(x2)〉︸ ︷︷ ︸

−1

·

· (−)gh(F )−1

−→
∂

∂qασ1
f(x1, [q], [q

†])

←−
∂

∂q†β,τ2

〈
~eβ(x1)

∣∣
〈
(δsβ2 )

( ←−
∂
∂y1

)τ1
(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2)

( −→
∂
∂y2

)τ2
(δs†2,β)(y2)

〉
∣∣~e †β(x2)

〉
︸ ︷︷ ︸

+1

−→
∂

∂q†α,σ2

−→
∂

∂qβτ1
g(x2, [q], [q

†]). (30)

Recalling that

f(x1, [q], [q
†])

←−
∂

∂q†β,τ2
= (−)gh(F )−1

−→
∂

∂q†β,τ2
f(x1, [q], [q

†]),



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 35

let us swap the deriviations which fall on f from the left and right; this eliminates the
sign (−)gh(F )−1. We proceed likewise for g and then transport the variations δs1 and
δs2, exchanging their places (and their rôles with respect to ∆ and [[ , ]]). The second
term in formula (30) becomes〈

(δsβ2 )
( ←−

∂
∂y1

)τ1
(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2)
( −→

∂
∂y2

)τ2
(δs†2,β)(y2)

〉
〈
~eβ(x1), ~e

†β(x2)
〉

︸ ︷︷ ︸
+1

·

−→
∂

∂q†β,τ2
f(x1, [q], [q

†])

←−
∂

∂qασ1

〈
~e †α(x1)

∣∣
〈( −→

∂
∂z1

)σ1
(δsα1 )(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2)(δs
†
1,α)

( ←−
∂
∂z2

)
(z2)

〉

∣∣~eα(x2)
〉

︸ ︷︷ ︸
−1

−→
∂

∂qβτ1

−→
∂

∂q†α,σ2
g(x2, [q], [q

†]).

It is now readily seen that the first term in (30) and this equivalent expression of its
second term are opposite to each other. Indeed, relabel the summation indexes α ⇄ β,
σ ⇄ τ so that δsα1 ⇄ δsβ2 , δs

†
1,α ⇄ δs†2,β, and swap the copies of base manifold Mn by

y ⇄ z. Due to the second factors in the products (−1) · (−1) · (−1) · (−1) = +1 versus
(−1) · (+1) · (−1) · (−1) = −1, the two terms in (30) cancel out after the integration by
parts and evaluation of the couplings in view of (16).

Next, the integrand of ∆
(
[[F,G]]

)
(s) contains a restriction to the infinite jet j∞(s) of

the third term, which is

〈
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2) (δs
†
1,α)

( ←−
∂
∂z2

)σ2
(z2)

〉
〈
~e †α(x2), ~eα(x1)

〉
︸ ︷︷ ︸

−1

·

−→
∂

∂q†α,σ2

(
f(x1, [q], [q

†])

←−
∂

∂q†β,τ2

)

〈
~eβ(x1)

∣∣
〈
(δsβ2 )

( ←−
∂
∂y1

)τ1
(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2)
( −→

∂
∂y2

)τ2
(δs†2,β)(y2)

〉
∣∣~e †β(x2)

〉
︸ ︷︷ ︸

+1

−→
∂

∂qασ1

−→
∂

∂qβτ1
g(x2, [q], [q

†]).

Let the summation indexes be relabelled as above: α ⇄ β, σ ⇄ τ , and δsα1 ⇄ δsβ2 ,
δs†1,α ⇄ δs†2,β on top of y ⇄ z. The transformation of graded derivations falling from
the left and right on f is then

−→
∂

∂q†α,σ2

(
f

←−
∂

∂q†β,τ2

)
7−→

−→
∂

∂q†β,τ2

(
f

←−
∂

∂q†α,σ2

)
=

−→
∂

∂q†β,τ2

(
(−)gh(F )−1

−→
∂

∂q†α,σ2
f

)
=

= (−)gh(F )−2 · (−)gh(F )−1

( −→
∂

∂q†α,σ2
f

) ←−
∂

∂q†β,τ2
= −

−→
∂

∂q†α,σ2

(
f

←−
∂

∂q†β,τ2

)
.
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This minus sign shows that the third term as it was written initially, and the newly
produced one in which the variations δs1 and δs2 are interchanged have opposite signs.
At the same time, these integral functionals must be equal to each other due to indepen-
dence of ∆ and [[ , ]] of a choice of the test shifts. Therefore, each of those expressions
vanishes.

The fourth term is processed analogously; its integrand is

(−)gh(F )

〈
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2) (δs
†
1,α)

( ←−
∂
∂z2

)σ2
(z2)

〉
·
〈
~e †α(x1), ~eα(x2)

〉
︸ ︷︷ ︸

−1

·

−→
∂

∂qασ1
f(x1, [q], [q

†])

←−
∂

∂qβτ1

〈
~e †β(x1)

∣∣
〈( −→

∂
∂y1

)τ1
(δsβ2 )(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2) (δs
†
2,β)
( ←−

∂
∂y2

)τ2
(y2)

〉
∣∣~eβ(x2)

〉
︸ ︷︷ ︸
−1

−→
∂

∂q†α,σ2

−→
∂

∂q†β,τ2
g(x2, [q], [q

†]).

The very same procedure of two variations interchange and relabelling restores an almost
identical expression in which, however, the parity-odd derivations go in the inverse order
−→
∂ /∂q†β,τ2 ◦

−→
∂ /∂q†α,σ2 . Equal to minus itself, the fourth term vanishes. This concludes

the proof. �

The following example illustrates the assertion of Lemma 5 (but not a technique of
its proof which itself accompanies Lemma 1). We use the convention from Remark 2.7,
denoting by d/dyi or d/dzj the total derivatives which act on the functionals’ densi-
ties at points xk; this keeps track of those derivatives origin and lets us indicate the
couplings’ values as they appear after the integrations by parts, contributing only with
sign factors ±1. For the sake of brevity we do not write the (co)vectors ~ei and ~e

† i in
the formulas below, referring to the proofs in preceding sections. Likewise, we do not
indicate the base point congruences that occur due to the absolute locality of couplings.

An overall comment to Example 2.4 below is that, fully aware of the goal which is
to calculate ∆ ([[F,G]]) or, respectively, [[∆F,G]] and [[F,∆G]], we do not interrupt the
logic of our reasoning by attempting to view the intermediate objects [[F,G]] or ∆F and
∆G as mappings Γ(πBV) → k, c. f. Corollary 2 on p. 25. Such mappings would not be
elements of the structures which stand in the left- and right-hand sides of the identity
under examination. The slogan is that a step-by-step evaluation is illegal; derivations
of the end-product from input data must not be interrupted at half-way.

We also emphasize that the example below is a prototype reasoning which is equally
well applicable to any other arguments F and G in (29); a choice of the functionals
is here not specific to any model. The point is that equality (29) holds and does not
require any manual regularization.
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Example 2.4. Consider the integral functionals

F =

∫
q†qqx1x1 dx1 and G =

∫
q†x2x2 cos q dx2.

Let us show that equality (29) is satisfied for F and G, that is,

∆ ([[F,G]]) = [[∆F,G]] + [[F,∆G]], gh(F ) = 1, (31)

in the frames of product-bundle geometry of variations and operational definitions of
the BV-Laplacian ∆ and variational Schouten bracket [[ , ]].

We have

[[F,G]] =

∫∫∫∫
dx1dx2dy1dy2

〈(
q†qxx +

d2

dy21
(q†q)

︸ ︷︷ ︸
x1

)
· 〈δs2(y1), δs

†
2(y2)〉︸ ︷︷ ︸

+1

· d
2

dy22

(
cos q︸︷︷︸
x2

)〉

+

∫∫∫∫
dx1dx2dy1dy2

〈(
qqxx︸︷︷︸
x1

)
· 〈δs†2(y1), δs2(y2)〉︸ ︷︷ ︸

−1

·
(
−q†xx sin q︸ ︷︷ ︸

x2

)〉
.

Therefore, one side of the expected equality is

∆
(
[[F,G]]

)
=

∫
dz1

∫
dz2

∫
dx1

∫
dx2

∫
dy1

∫
dy2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

· 〈δs2(y1), δs
†
2(y2)〉︸ ︷︷ ︸

+1

·

·
〈

d2

dz21
(1)︸︷︷︸
x1

· d
2

dy22

(
cos q︸︷︷︸
x2

)
+ qxx︸︷︷︸

x1

· d
dy22

(
− sin q︸ ︷︷ ︸

x2

)
+ d2

dy21
(1)︸︷︷︸
x1

· d
2

dy22

(
cos q︸︷︷︸
x2

)
+ d2

dy21
(q)︸︷︷︸
x1

· d
2

dy22

(
− sin q︸ ︷︷ ︸

x2

)〉

+

∫
dz1

∫
dz2

∫
dx1

∫
dx2

∫
dy1

∫
dy2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

· 〈δs†2(y1), δs2(y2)〉︸ ︷︷ ︸
−1

·

·
〈
qxx︸︷︷︸
x1

· d
2

dz22

(
− sin q︸ ︷︷ ︸

x2

)
+ d2

dz21
(q)︸︷︷︸
x1

· d
2

dz22

(
− sin q︸ ︷︷ ︸

x2

)
+
(
qqxx︸︷︷︸
x1

)
· d2

dz22

(
− cos q︸ ︷︷ ︸

x2

)〉
.

The respective pairs of underlined terms cancel out and there remains only

=

∫
· · ·

∫
dz1 dz2 dx1 dx2 dy1 dy2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

·
〈(
qqxx︸︷︷︸
x1

)
· d2

dz22

(
− cos q︸ ︷︷ ︸

x2

)〉
·

〈δs†2(y1), δs2(y2)〉︸ ︷︷ ︸
−1

. (32)

On the other hand, we obtain that

∆F =

∫∫∫
dz1dz2dx1 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

·
〈
qxx︸︷︷︸
x1

+ d2

dz21
(q)︸︷︷︸
x1

〉
,
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which yields

[[∆F,G]] =

∫
dz1

∫
dz2

∫
dx1

∫
dx2

∫
dy1

∫
dy2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

·

〈(
d2

dy21
(1)︸︷︷︸
x1

+ d2

dz21
(1)︸︷︷︸
x1

)
· d2

dy22

(
cos q︸︷︷︸
x2

)〉
· 〈δs2(y1), δs

†
2(y2)〉︸ ︷︷ ︸

+1

= 0.

From the fact that the other BV-Laplacian,

∆G =

∫∫∫
dz1 dz2 dx2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

·
〈

d2

dz22

(
− sin q︸ ︷︷ ︸

x2

)〉
,

does not contain q† so that the first half of the Schouten bracket [[F,∆G]] drops out, we
deduce that

[[F,∆G]] =

∫
· · ·

∫
dz1 dz2 dx1 dx2 dy1 dy2 〈δs1(z1), δs

†
1(z2)〉︸ ︷︷ ︸

+1

·

〈(
qqxx︸︷︷︸
x1

)
· d2

dz22

(
− cos q︸ ︷︷ ︸

x2

)〉
· 〈δs†2(y1), δs2(y2)〉︸ ︷︷ ︸

−1

. (33)

Consequently, the two sides of (31), namely, ∆
(
[[F,G]]

)
expressed by (32) and [[∆F,G]]+

[[F,∆G]] accumulated in (33), match perfectly for the functionals F and G at hand.

Theorem 6. Let F , G ∈ N
n
(πBV, TπBV) be two functionals. The Batalin–Vilkovisky

Laplacian ∆ satisfies the relation

∆
(
[[F,G]]

)
= [[∆F,G]] + (−)gh(F )−1[[F,∆G]]. (29)

In other words, the operator ∆ is a graded derivation of the variational Schouten
bracket [[ , ]].

Proof. We prove this by induction over the number of building blocks in each argument
of the Schouten bracket in the left hand side of (29). If F and G both belong to

H
∗
(πBV×TπBV× . . .×TπBV), then Lemma 5 states the assertion, which is the base of

induction. To make an inductive step, without loss of generality let us assume that the
second argument of [[ , ]] in (29) is a product of two elements from N

n
(πBV, TπBV), each

of them containing less multiples from H
∗
(πBV × TπBV × . . . TπBV) than the product.

Denote such factors by G and H and recall that by Theorem 4,

[[F,G ·H]] = [[F,G]] ·H + (−)(gh(F )−1)·gh(G)G · [[F,H]].

Therefore, using Theorem 3 we have that

∆([[F,G ·H ]])

= ∆([[F,G]]) ·H + (−)gh(F )+gh(G)−1[[[[F,G]], H ]] + (−)gh(F )+gh(G)−1[[F,G]] ·∆H

+ (−)(gh(F )−1) gh(G)
(
∆G · [[F,H ]] + (−)gh(G)[[G, [[F,H ]]]] + (−)gh(G)G ·∆([[F,H ]])

)
.
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Using the inductive hypothesis in the first and last terms of the right-hand side in the
above formula, we continue the equality and obtain

= [[∆F,G]] ·H + (−)gh(F )−1[[F,∆G]] ·H + (−)gh(F )+gh(G)−1[[[[F,G]], H ]]

+ (−)gh(F ) gh(G)[[G, [[F,H ]]]] + (−)gh(F )+gh(G)−1[[F,G]] ·∆H

+ (−)(gh(F )−1) gh(G)∆G · [[F,H]] + (−)gh(F ) gh(G)G · [[∆F,H ]]

+ (−)gh(F ) gh(G)+gh(F )−1G · [[F,∆H ]]. (34)

On the other hand, let us expand the formula

[[∆F,G ·H ]] + (−)gh(F )−1[[F,∆(G ·H)]],

which is the right hand side of (29) in the inductive claim. We obtain

= [[∆F,G]] ·H + (−)(gh(∆F )−1) gh(G)G · [[∆F,H ]]

+ (−)gh(F )−1[[F, ∆G ·H + (−)gh(G)[[G,H ]] + (−)gh(G)G ·∆H ]]

= [[∆F,G]] ·H + (−)gh(F ) gh(G)G · [[∆F,H ]] + (−)gh(F )−1[[F,∆G]] ·H (35)

+ (−)gh(F )−1(−)(gh(F )−1)(gh(G)−1)∆G · [[F,H ]] + (−)gh(F )−1(−)gh(G)[[F, [[G,H ]]]]

+ (−)gh(F )−1(−)gh(G)[[F,G]] ·∆H + (−)gh(F )−1(−)gh(G)(−)(gh(F )−1) gh(G)G · [[F,∆H ]].

Comparing (35) with (34), which was derived from the inductive hypothesis, we see
that all terms match except for

(−)gh(F )+gh(G)−1[[[[F,G]], H ]] + (−)gh(F ) gh(G)[[G, [[F,H ]]]]

from (34) versus

(−)gh(F )+gh(G)−1[[F, [[G,H ]]]]

from (35). However, these three terms constitute Jacobi’s identity (28) for the varia-
tional Schouten bracket. Namely, we have that (c.f. [32])

[[F, [[G,H ]]]] = [[[[F,G]], H ]] + (−)(gh(F )−1)(gh(G)−1)[[G, [[F,H ]]]], (36)

so that by multiplying both sides of the identity by (−)gh(F )+gh(G)−1, we fully bal-
ance (34) and (35). This completes the inductive step and concludes the proof. �

Lemma 7. The linear operator

∆: H
n(1+k)(

πBV × TπBV × . . .× TπBV

)
−→ H

n(2+k)(
πBV × TπBV × . . .× TπBV

)

is a differential for every k > 0.

The proof of Lemma 7 is conceptually close to the second and third steps in the proof
of Lemma 5. Namely, two normalized variations are swapped in an integral functional
within the image of ∆2, which yields an indistinguishable result of opposite sign.

Proof. Let δs1 and δs2 be normalized test shifts of a section s ∈ Γ(πBV), and let H =∫
h(x, [q], [q†]) · dvol(x) be an integral functional. (It suffices to consider a simplified
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pictureH ∈ H
n
(πBV), not taking into account any built-in variations in the construction

of H .) By definition, we have that

∆(∆H)(s) =

∫

M

dz1

∫

M

dz2

∫

M

dy1

∫

M

dy2

∫

M

dvol(x)·

·

{〈
(δsα1 )

( ←−
∂
∂z1

)σ1
(z1)

−1︷ ︸︸ ︷
~eα(z1), (−~e

†α)(z2) (δs
†
1,α)

( ←−
∂
∂z2

)σ2
(z2)

〉
〈
~e †α(x), ~eα(x)

〉
︸ ︷︷ ︸

−1

〈
(δsβ2 )

( ←−
∂
∂y1

)τ1
(y1)

−1︷ ︸︸ ︷
~eβ(y1), (−~e

†β)(y2) (δs
†
2,β)
( ←−

∂
∂y2

)τ2
(y2)

〉
〈
~e †β(x), ~eβ(x)

〉
︸ ︷︷ ︸

−1

−→
∂

∂qασ1

−→
∂

∂q†α,σ2

−→
∂

∂qβτ1

−→
∂

∂q†β,τ2
h(x, [q], [q†])

}∣∣∣∣∣
j∞x (s)

.

By exchanging the integrand’s upper two lines and then relabelling α ⇄ β, σ ⇄ τ so
that δsα1 ⇄ δsβ2 and δs†1,α ⇄ δs†2,β, and by swapping the reference y ⇄ z to copies of
the base manifold Mn, we almost recover the initial expression (which should be the
case), yet the order in which the parity-odd partial derivatives follow is inverse,

−→
∂

∂q†α,σ2
◦

−→
∂

∂q†β,τ2
7−→

−→
∂

∂q†β,τ2
◦

−→
∂

∂q†α,σ2
= −

−→
∂

∂q†α,σ2
◦

−→
∂

∂q†β,τ2
.

Therefore the integrand of functional ∆2H vanishes, which proves the assertion. �

Theorem 8. The Batalin–Vilkovisky Laplacian∆ is a differential : for all H ∈ N
n
(πBV,

TπBV) we have

∆2(H) = 0.

Proof. We prove Theorem 8 by induction over the number of building blocks fromH
∗(
πBV×

TπBV × . . . × TπBV

)
in the argument H ∈ N

n
(πBV, TπBV) of ∆2. If H ∈ H

∗(
πBV ×

TπBV × . . . × TπBV

)
itself is an integral functional, then by Lemma 7 there remains

nothing to prove. Suppose now that H = F ·G for some F,G ∈ N
n
(πBV, TπBV). Then

Theorem 3 yields that

∆2(F ·G) = ∆
(
∆F ·G+ (−)gh(F )[[F,G]] + (−)gh(F )F ·∆G

)
.

Using Theorem 3 again and also Theorem 6, we continue the equality:

= ∆2F ·G+ (−)gh(∆F )[[∆F,G]] + (−)gh(∆F )∆F ·∆G

+ (−)gh(F )[[∆F,G]] + (−)gh(F )(−)gh(F )−1[[F,∆G]]

+ (−)gh(F )∆F ·∆G + (−)gh(F )(−)gh(F )[[F,∆G]] + (−)gh(F )(−)gh(F )F ·∆2G.

By the inductive hypothesis, the first and last terms in the above formula vanish; taking
into account that gh(∆F ) = gh(F )− 1 in Z2, the terms with ∆F ·∆G cancel against
each other, as do the terms containing [[∆F,G]] and [[F,∆G]]. The proof is complete. �
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3. The quantum master-equation

3.1. In this section we inspect the conditions upon functionals F ∈ N
n
(πBV, TπBV)

under which the Feynman path integrals
∫
Γ(ζ0)

[Ds]F ([s], [s†]) are (infinitesimally) in-

dependent of the unphysical, odd-parity anti-objects s† ∈ Γ(Πζ1). The derivation of
such a condition (see equation (39) below) relies on an extra assumption of the transla-
tion invariance of a measure in the path integral. It must be noted, however, that we do
not define Feynman’s integral here and do not introduce that measure which essentially
depends on the agreement about the classes of ‘admissible’ sections Γ(π) or Γ(ζ(0|1)).
Consequently, our reasoning is to some extent heuristic.

The basics of path integration, which we recall here for consistency, are standard:
they illustrate how the geometry of the BV-Laplacian works in practice. We draw the
experts’ attention only to the fact that in our notation Ψ is not the gauge fixing fermion
Ψ such that the odd-component’s section s† ∈ Γ(ζ1) is the restriction of δΨ/δq to the
jet of a section for ζ0 ; instead, we let Ψ determine the infinitesimal shift q̇† = δΨ/δq
of coordinates along the fibre’s parity-odd half. We also note that the preservation of
parity is not mandatory here and thus an even-parity Ψ ∈ H

n
(ζ0) →֒ H

n
(πBV) is a

legitimate choice.
Let F =

∫
f(x, q, q†) dvol(x) ∈ H

n
(πBV) be a functional; here and in what follows we

proceed over the building blocks of elements from N
n
(πBV, TπBV) by the graded Leibniz

rule. Let Ψ =
∫
ψ(y, q) dvol(y) ∈ H

n
(ζ0) →֒ H

n
(πBV) be an integral functional which,

by assumption, is constant along ghost parity-odd variables: Ψ(sα, s†β) = Ψ(sα, t†β) for

any sections {sα} ∈ Γ(ζ0) and {s†β}, {t
†
β} ∈ Γ(ζ1). We investigate under which condi-

tions the path integral
∫
Γ(ζ0)

[Dsα]F (sα, s†β) : Γ(ζ
1) → k is infinitesimally independent

of a choice of the anti-objects:

d

dε

∣∣∣∣
ε=0

∫

Γ(ζ0)

[Dsα]F
(
sα, s†β + ε

~δψ

δqβ

∣∣∣∣
sα

)
= 0 for all s† ∈ Γ(ζ1). (37)

Note that this formula makes sense because the bundles ζ0 and ζ1 are dual so that a
variational covector in the geometry of ζ0 acts as a shift vector in the geometry of ζ1.
The left-hand side of (37) equals

∫

Γ(ζ0)

[Dsα]

∫

M

dvol(x)

−→
δψ

δqα
(x, q)

∣∣
j∞x (sα)

·

←−
δf

δq†α
(x, q, q†)

∣∣
j∞x (sα,s†

β
)
, s† ∈ Γ(ζ1).

Take any auxiliary section δs = (δsα, δs†β) ∈ Γ
(
Tζ(0|1))

)
normalized by δsα(x)·δs†α(x) ≡

1 at every x ∈Mn for each α = 1, . . . , m+m1 + · · ·+mλ = N and blow up the scalar
integrand to a pointwise contraction of dual object taking their values in the fibres
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T(x,φ(x),s(x))Vx and T(x,φ(x),s†(x))ΠV
†
x of T (πBV) over φ(x): for s = (sα, s†β) we have

∫

M

dvol(x)

(−→
δψ

δqα
·

←−
δf

δq†α

)∣∣∣∣∣
j∞x (s)

=

∫

M

dvol(x1)

∫

M

dvol(x2)

∫

M

dy1

∫

M

dy2

(
ψ(x1, q)

←−
∂

∂qj1σ1

)∣∣∣∣∣
j∞x1

(s)

· 〈~e †j1(x1)|
〈( ←−

∂
∂y1

)σ1
δsi1(y1)~ei1(y1),−~e

†i2(y2) δs
†
i2
(y2)

( −→
∂
∂y2

)σ2〉
|~ej2(x2)〉

·

( −→
∂

∂q†j2,σ2
f(x2, q, q

†)

)∣∣∣∣∣
j∞x2

(s)

.

In fact, the integrand refers to a definition of the evolutionary vector field QΨ such
that QΨ(F ) ∼= [[Ψ, F ]] modulo integration by parts in the building blocks of F , c. f. [32].
Due to a special choice of the dependence of Ψ on s only, this is indeed the Schouten
bracket [[Ψ, F ]].

To rephrase the indifference of the path integral to a choice of Ψ in terms of an
equation upon the functional F alone, we perform integration by parts in Feynman’s
integral. For this we employ the translation invariance [Ds] = [D(s − µ · δs)] of the
functional measure.

Lemma 9. Let H =
∫
h(x, q, q†) dvol(x) ∈ H

n
(πBV) ⊂ N

n
(πBV, TπBV) be an integral

functional and δs ∈ Γ(Tζ0) →֒ Γ
(
Tζ(0|1)

)
be a shift. Then we have that

∫

Γ(ζ0)

[Dsα]

∫

M

dvol(x) δsα(x) ·

←−
δh

δqα

∣∣∣∣
j∞x (sα,s†

β
)

= 0,

where the section s† ∈ Γ(ζ1) is a parameter.

Proof. Indeed,

0 =
d

dµ

∣∣∣∣
µ=0

∫

Γ(ζ0)

[Dsα]H(sα, s†β),

because the integral contains no parameter µ ∈ k. We continue the equality:

=
d

dµ

∣∣∣∣
µ=0

∫

Γ(ζ0)

[D(sα − µ δsα)]H(sα, s†β)

=
d

dµ

∣∣∣∣
µ=0

∫

Γ(ζ0)

[Dsα]H(sα + µ δsα, s†β) =

∫

Γ(ζ0)

[Dsα]
d

dµ

∣∣∣∣
µ=0

H(sα + µ δsα, s†β),

which yields the helpful formula in the lemma’s assertion. �

Returning to the functionals Ψ and F and denoting G(s) := d
dℓ

∣∣
ℓ=0

F (s+ ℓ ·
←−
δs†), we

use the Leibniz rule for the derivative of H = Ψ ·G:

d

dµ

∣∣∣∣
µ=0

(Ψ ·G)(s+µ ·
←−
δs) =

d

dµ

∣∣∣∣
µ=0

(Ψ)(s+µ ·
←−
δs) ·G(s)+Ψ(s) ·

d

dµ

∣∣∣∣
µ=0

(G)(s+µ ·
←−
δs).
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Because the path integral over [Dsα] of the entire expression vanishes by Lemma 9
in which we were ready to proceed by the Leibniz rule over building blocks, we infer
that the path integrals of the two terms are opposite. The integral of the first term
equals the initial expression for the path integral containing F , i. e., the left-hand side
of equation (37). Consequently, if

∫

Γ(ζ0)

[Dsα] Ψ(sα) ·∆F (sα, s†β) = 0 (38)

for {s†β} ∈ Γ(ζ1) and for all Ψ ∈ H
n
(ζ0) →֒ H

n
(πBV), then the path integral over F is

infinitesimally independent of a section {s†β} ∈ Γ(ζ1).
The condition

∆F = 0 (39)

is sufficient for equation (38), and therefore equation (37), to hold. By specifying a
class Γ(πBV) of admissible sections of the BV-bundle for a concrete field model, and
endowing that space of sections with a suitable metric, one could reinstate a path
integral analogue of the main lemma in the calculus of variations and then argue that
the condition ∆F = 0 is also necessary.

Summarizing, whenever equation (39) holds, one can assign arbitrary admissible

values to the odd-parity coordinates; for example, one can let s†β(x) = δψ/δqβ
∣∣
j∞x (sα)

for a gauge-fixing integral Ψ =
∫
ψ(x, q) dvol(x) ∈ H

n
(ζ0). This choice is reminiscent

of the substitution principle, see [32] and [45].
Laplace’s equation (39) ensures the infinitesimal independence from non-physical

anti-objects for path integrals of functionals over physical fields – not only in the classical
BV-geometry of the bundle πBV, but also in the quantum setup, whenever all objects
are tensored with formal power series k[[~, ~−1]] in the Planck constant ~. It is accepted
that each quantum field s~ contributes to the expectation value of a functional O~ with
the factor exp(iS~(s~)/~), where S~ is the quantum BV-action of the model. Solutions
O~ of the equation ∆

(
O~ · exp(iS~/~)

)
= 0 are the observables. In particular, the

postulate that the unit 1 : s~ 7→ 1 ∈ k is averaged to unit by the Feynman integral
of 1 · exp(iS~(s~)/~) over the space of quantum fields s~ normalizes the integration
measure and constrains the quantum BV-action by the quantum master-equation (see,
e.g., [7, 8, 20, 22, 54]).

Proposition 10. Let S~ be the even quantum BV-action (i. e., let it have a density
that has an even number of ghost parity-odd coordinates in each of its terms). If the
identity

∆
(
exp
(
i
~
S~
))

= 0

holds, then S~ satisfies the quantum master-equation:

i~∆S~ = 1
2
[[S~, S~]]. (40)

Proposition 11. If an even functional O and the quantum BV-action S~ are such that
∆
(
O exp(iS~/~)

)
= 0 and ∆

(
exp(iS~/~)

)
= 0 hold, respectively, then O satisfies

Ω~(O) := −i~∆O + [[S~,O]] = 0. (41)
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We quote the standard proofs of Propositions 10 and 11 from [35] in Appendix A —
yet now we gain a deeper insight on a construction of the quantum BV-differential Ω~.

Remark 3.1. A practical way to fix the signs which arise in the BV-Laplacian and
Schouten bracket from the ghost parity and a grading in the case of a superbundle
π : E(m0+n0|m1+n1) → M (n0|n1) of superfields is by a re-derivation of the Laplace equa-
tion ∆(O exp( i

~
S~)) = 0 upon an observable O starting from the Schwinger–Dyson

condition,

~∂
(q†)
~δΨ/δq

(∫
[Dq]O([q], [q†]) exp

(
i
~
S~
(
[q], [q†]

)))
= 0, (42)

which postulates the Feynman path integral’s independence of the non-physical BV-
coordinates q† with odd ghost parity. Note that the measure in the path integral
involves only ghost parity-even objects (whatever be their Z2-grading).

Theorem 12. Let O ∈ N
n
(πBV, TπBV) be a functional and let the even functional

S~ ∈ H
n
(πBV) satisfy quantum master-equation (40). Then the operator Ω~, defined

in (41), squares to zero:

(Ω~)
2
(O) = 0.

Proof. We calculate, using Theorem 6,

(Ω~)
2
(O) = [[S~, [[S~,O]]− i~∆O]]− i~∆

(
[[S~,O]]− i~∆O

)

= [[S~, [[S~,O]]]]− i~ [[S~,∆O]]− i~ [[∆S~,O]] + i~ [[S~,∆O]] + (i~)2∆2O.

The last term vanishes identically by Theorem 8, while the second term cancels against
the fourth term. Using Jacobi’s identity (28) for the Schouten bracket on the first term,
we obtain:

(Ω~)
2
(O) = −i~ [[∆S~,O]] + 1

2
[[[[S~, S~]],O]] = [[−i~∆S~ + 1

2
[[S~, S~]],O]].

Now is the crucial moment in the entire proof. By the logic of our reasoning’s objec-
tive, the theorem’s claim is that the operator (Ω~)2 yields zero whenever acting on a
functional O. We accordingly transform the variational Schouten bracket of two terms
to the operator realization,

∼= ~Q
−i~∆S~+ 1

2
[[S~,S~]]

(O),

with the evolutionary derivation now acting on the argument. Let us emphasize that a
transition from the variational Schouten bracket –which increases the number of bases
M × . . . ×M by construction – to the evolutionary vector field chops a multiplication
of geometries by uniquely fixing the field’s generating section.23 But by our initial
assumption, this generating section is zero by virtue of (40). Therefore the image of O
under such map vanishes, which proves the assertion. �

23It might happen otherwise that a co-multiple of O under [[ , ]] looks like zero as a map of the
space Γ(πBV) yet the bracket with it could still be nonzero, see, e. g., ∆G on p. 38 in Example 2.4.
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3.2. Gauge automorphisms of quantum BV-cohomology groups. By using the
quantum BV-differential Ω~, let us construct a closed algebra of infinitesimal gauge
symmetries for the quantum master-equation (40).

Proposition 13. Let F ∈ Nn(πBV, TπBV) be an arbitrary odd-parity functional and
S~ the quantum master-action satisfying (40). Then the infinitesimal shift of the func-
tional S~,

Ṡ~ = Ω~(F ) ⇐⇒ S~ 7→ S~(ε) = S~ + ε · Ω~(F ) + o(ε), ε ∈ R, (43)

is a symmetry of (40) so that ∆
(
exp

(
i
~
S~(ε)

))
= o(ε) in Peano’s notation.

• The algebra of infinitesimal gauge symmetries (43) of the quantum master-equation
is closed, (

d

dε1
◦

d

dε2
−

d

dε2
◦

d

dε1

)∣∣∣∣
εi=0

(S~) = Ω~
(
[[F1, F2]]

)
, (44)

i.e., the commutator of two even-parity symmetries with respective generators F1 and F2

is the infinitesimal gauge symmetry whose generator is the odd Poisson bracket of F1

and F2.

Remark 3.2. The odd-parity generators Fi ∈ Nn(πBV, TπBV) never evolve in the course
of a transformation which is induced by any generator Fj on the quantum BV-action
functional S~.

Proof. Assuming a smooth dependence of S~(ε) on ε, we obtain that24

d

dε
∆
(
exp

(
i
~
S~(ε)

))
= i

~
Ṡ~ ·∆

(
exp

(
i
~
S~(ε)

))
+ Ω~(Ṡ~) · exp

(
i
~
S~(ε)

)
.

Because (Ω~)2 = 0 by Theorem 12, for Ṡ~ to be an infinitesimal symmetry of the
equation ∆

(
exp

(
i
~
S~
))

= 0 it is sufficient that S~ = Ω~(F ) for some odd-parity func-
tional F .

Second, let

d

dεi
(S~) = −i~∆Fi + [[S~, Fi]] for i = 1, 2, εi ∈ R,

and postulate that d
dεi

(Fj) ≡ 0 for all i and j. Then commutator (44) of even-parity

infinitesimal transformations (43) generated by the functionals F1 and F2 is

[[−i~∆F1 + [[S~, F1]], F2]]− [[−i~∆F2 + [[S~, F2]], F1]]

= −i~ ([[∆F1, F2]]− [[∆F2, F1]]) +
(
[[[[S~, F1]], F2]]− [[[[S~, F2]], F1]]

)
.

Because F1 has odd parity, we swap the factors in −[[∆F2, F1]] = [[F1,∆F2]]; likewise,
+[[F1, [[S

~, F2]]]] is the last term in the above expression. From our main Theorem 6 and
by Jacobi identity (28) we conclude that the commutator is equal to

−i~∆
(
[[F1, F2]]

)
+ [[S~, [[F1, F2]]]] = Ω~

(
[[F1, F2]]

)
,

that is, the Schouten bracket of F1 and F2 is the new gauge symmetry generator. �

24This proof is standard: it originates from the cohomological deformation theory for solutions of
the Maurer–Cartan equation (e. g., of (40)), see [37].
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Remark 3.3. (c.f. [51, §5]). The transformation exp
(
i
~
S~
)
7→ exp

(
i
~
S~(ε)

)
for a finite

ε ∈ R is determined by the operator exp(ε[∆, F ]), where [ , ] is the anticommutator of
two odd-parity objects. Indeed, by Theorem 3 we have that

∆
(
F · exp

(
i
~
S~
))

+ F ·∆
(
exp

(
i
~
S~
))

= ∆F · exp
(
i
~
S~
)
− [[F, exp

(
i
~
S~
)
]]− F ·∆

(
exp

(
i
~
S~
))

+ F ·∆
(
exp

(
i
~
S~
))

= i
~
(−i~∆F + [[S~, F ]]) · exp

(
i
~
S~
)
= i

~
Ṡ~ · exp

(
i
~
S~
)
=

d

dε

∣∣∣∣
ε=0

(
exp

(
i
~
S~
))
.

Note that the Schouten bracket acts on exp
(
i
~
S~
)
by the Leibniz rule (see Theorem 4)

and we then use the equality −[[F, i
~
S~]] = i

~
[[S~, F ]] which holds by Theorem 4 again.

Let us now regard the full quantum BV-action as the generating functional for ghost
parity-even observables O, see [54].

Lemma 14. There are no observables O, other than the identically zero functional,
which would be ghost parity-odd.

Proof. Indeed, Eq. (42) implies that the path integral

I =

∫

Γ(ζ0)

[Dq]O([q], [q†]) exp
(
i
~
S~([q], [q†])

)

over the space of ghost parity-even BV-section components is effectively independent
of the ghost parity-odd BV-variables q†. Notice further that the ghost parity gh(I) of
this constant function I([q†]) is equal to that of O; the quantum master-action S~ is
parity-even. Under a (speculative) assumption that an observable O could be ghost
parity-odd, we obtain an odd parity constant. Unless a possibility of their existence is
postulated by brute force, this odd-parity constant must be equal to zero, whence the
ghost parity-odd functional O ∈ Hn(πBV) ⊆ Nn(πBV, TπBV) itself is zero. �

In what follows we accept for transparency that there is no grading in the initial
geometry of physical fields, i.e., for sections of the bundle π : En+m → Mn. Let us
focus on the standard cohomological approach to quantum BV-models and to their
gauge symmetries (c.f. [37]).

Lemma 15. Suppose that an infinitesimal shift S~ 7→ S~+λ ·O+ o(λ) of the quantum
BV-action by using an even-parity functional O ∈ Hn(πBV) ⊆ Nn(πBV, TπBV) does not
destroy the quantum master-equation,

d

dλ

∣∣∣∣
λ=0

∆
(
exp

(
i
~
(S~ + λ · O)

))
= 0.

Then the observable O is Ω~-closed: −i~∆O + [[S~,O]] = 0.

Proof. The proof literally repeats that of Proposition 13. �

For a given odd-parity functional F ∈ Hn(πBV), we organize the infinitesimal shift (43)
of the master-functional S~ as follows:

Ṡ~ = −i~∆(F ) + [[S~, F ]],

Ȯ = [[O, F ]].
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Note that, unless one has that ∆F = 0 incidentally, the transformation of the integral
functional S~ is not induced by any infinitesimal transformation of the BV-variables,
that is, by an evolutionary vector field on the horizontal infinite jet space at hand. No
earlier than the transformation law S~ 7→ S~(ε) is postulated, it becomes an act of will
to think that the functional F is the generator of parity-preserving evolutionary vector

field
←−
QF =

−→
QF acting on the BV-variables so that Ȯ ∼=

−→
QF (O) for all observables O.

Furthermore, let us extend the deformation O 7→ O(ε) of even-parity cocycles O ∈
ker Ω~ to the space of odd-parity functionals ξ ∈ Hn(πBV) ⊆ Nn(πBV, TπBV) which
produce the coboundaries Ω~(ξ). Namely, we postulate that

ξ̇ = [[ξ, F ]]

for all such functionals ξ; here we denote by the dot over ξ its velocity in the course
of the transformation generated by a given F . Let us remember however that the
law for evolution of the odd-parity functionals ξ which produce the Ω~-coboundaries is
different from our earlier postulate (see Proposition 13) that the odd-parity generators
Fi of gauge symmetries do not evolve: dFi/dεj ≡ 0 or, in shorthand notation,

Ḟ ≡ 0. (45)

We claim that under these hypotheses, the structure of quantum BV-cohomology group
remains intact in the course of gauge symmetry transformations of the quantum master-
action, S~ 7→ S~(ε), even though the quantum BV-differential is modified, Ω~ 7→ Ω~(ε),
and the cocycles and coboundaries are also deformed.

Theorem 16. An infinitesimal shift of the quantum BV-cohomology classes induced by

(43), (45), and

Ȯ = [[O, F ]], O ∈ ker Ω~,

ξ̇ = [[ξ, F ]], ξ ∈ Hn(πBV) ⊆ Nn(πBV, TπBV), ξ odd,

yields an isomorphism of the Ω~-cohomology group: under such mapping, every Ω~-

closed, even-parity Ω~-cocycle O becomes Ω~(ε)-closed, whereas the transformation of an

even-parity coboundary Ω~(ξ) produces an Ω~(ε)-coboundary : (Ω~(ξ))(ε) = Ω~(ε)
(
ξ(ε)

)
.

Proof. Let O ∈ ker Ω~ be an even-parity observable and F an odd-parity generator of
gauge transformation. Consider the equation Ω~(ε)(O(ε)) = 0 which states that the
transformed functional O(ε) remains a coboundary. The term which is proportional to
ε in this equation’s left-hand side is equal to

d

dε

∣∣∣∣
ε=0

(
−i~∆O(ε) + [[S~(ε),O(ε)]]

)
= Ω~(Ȯ) + [[Ṡ~,O]] = Ω~([[O, F ]]) + [[Ω~(F ),O]];

recalling once again that Ω~ = −i~∆+ [[S~, · ]], we continue the equality

= −i~∆([[O, F ]]) + [[S~, [[O, F ]]]] + [[−i~∆F + [[S~, F ]],O]].

Now by Theorem 6 we obtain that, the observable O being parity-even,

= −i~ [[∆O, F ]] + i~ [[O,∆F ]] + [[S~, [[O, F ]]]]− i~ [[∆F,O]] + [[O, [[S~, F ]]]] =

= [[Ω~(O), F ]] ∼= −~Q
F (

Ω~(O)
)
= 0,
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because [[S~, [[O, F ]]]] = [[[[S~,O]], F ]] − [[O, [[S~, F ]]]] by Jacobi identity (28), because we
are inspecting the ε-linear term in the operator Ω~(ε) ◦

(
ε = 0 7−→ ε 6= 0

)
applied to O,

and O is an Ω~-cocycle. Therefore, the zero initial condition Ω~(O) = 0 evolves at zero
velocity to the Ω~(ε)-cocycle equation Ω~(ε)

(
O(ε)

)
= 0 upon O(ε).

Likewise, let Ω~(ξ) be a coboundary for some odd-parity functional ξ which evolves by

ξ̇ = [[ξ, F ]]. Then the even-parity observable Ω~(ξ) ∈ ker Ω~ evolves as fast as [[Ω~(ξ), F ]]
but simultaneously we have that the mapping Ω~ and its argument ξ change. We claim
that the two evolutions match so that (Ω~(ξ))(ε) is Ω~(ε)-exact. Indeed, we have that

d

dε

∣∣∣∣
ε=0

(
Ω~(ε)(ξ(ε))

)
= Ω~

(
[[ξ, F ]]

)
+ [[Ω~(F ), ξ]]

= −i~ [[∆ξ, F ]]− i~ [[ξ,∆F ]] + [[S~, [[ξ, F ]]]] + [[−i~∆F + [[S~, F ]], ξ]];

by cancelling out the underlined Schouten brackets and then using the Jacobi identity
we obtain

= [[−i~∆ξ, F ]] + [[[[S~, ξ]], F ]] + [[ξ, [[S~, F ]]]]− [[ξ, [[S~, F ]]]] = [[Ω~(ξ), F ]],

which proves our claim.
Summarizing, we see that gauge symmetries of the quantum master-equation induce

automorphisms of the Ω~-cohomology group. �

We conclude that it would be conceptually incorrect to say that the infinitesimal
gauge transformations of all functionals in a quantum BV-model are induced by a

canonical transformation, determined by the evolutionary vector field
−→
QF acting on

the BV-variables. Let us remember that the even-parity quantum master-action S~ ∈
Hn(πBV) and its descendants, the observables O evolve by

Ṡ~ = −i~∆F + [[S~, F ]] = Ω~(F ), F ∈ Hn(πBV) ⊆ Nn(πBV, TπBV), F odd,

and

Ȯ = [[O, F ]].

We note that the evolution of the generating functional S~
BV is not determined by

a vector field on the space of BV-variables. Likewise, we recall that the odd-parity
arguments ξ of Ω~ for the coboundaries Ω~(ξ) ∼ 0 do evolve,

ξ̇ = [[ξ, F ]],

whereas the generators F of gauge symmetries for (40) never change: symbolically,

Ḟ = 0

(see Eq. (45) above). In fact, one may think that each F determines a parity-preserving

evolutionary vector field
−→
QF on the space of BV-variables, but it is not the objects

−→
QF

but the full systems of four distinct evolution equations which encode the deformation
of respective functionals. Neither the functionals’ attribution to the space of building
blocks Hn(πBV) ∋ S~, O, F nor a functional’s parity, gh(S~) = gh(O) and gh(F ) =
gh(ξ), completely determines their individual transformation laws.



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 49

Remark 3.4. The supports of test shifts δs can be arbitrarily small25 and they can be
chosen in such a way that all boundary terms vanish in the course of integration by

parts within equivalence classes from the horizontal cohomology groups H
n(1+k)

(πBV ×
TπBV × . . .× TπBV). Let us note also that these integrations by parts (see section 1.3)
transport the derivatives from one copy of the base manifold Mn to another copy; this
reasoning stays local with respect to base points x and local volume elements dvol(x)
because the geometric mechanism of locality yields the diagonal in powers of the base
manifold. However, an integration by parts in functionals from H

n
(πBV) is a different

issue. In fact, it refers to the topology of Mn or to a choice of the class Γ(πBV) of
admissible sections (so that there appear no boundary terms as well). Let us recall
that the only place where such global, de Rham cohomology aspect is explicitly used is
the proof of Jacobi’s identity for the variational Schouten bracket (see [32]). In turn,
Theorems 8 and 12 relate these properties of the bracket [[ , ]] to cohomology generators
∆2 = 0 and (Ω~)2 = 0. (The converse is also true: Jacobi’s identity for [[ , ]] stems
from ∆2 = 0.) This motivates why the de Rham and quantum BV-cohomologies are
interrelated (c. f. [5]).

Conclusion

Mathematical models are designed for description of phenomena of Nature ; a construc-
tion of the models’ objects is not the same as their evaluation at given configurations
of the models, which would associate k-numbers to physical fields φ ∈ Γ(π) in terms
of such objects. Namely, consider an Euler–Lagrange model whose primary element
is the action functional S : Γ(π) → k. By definition, derivative objects are obtained
from S by using natural operations such as ~δ or [[ , ]] and ∆. The derivative objects’
geometric complexity is greater than that of S because they absorb the domains of
definition for test shifts δs1, . . . , δsk of field configurations. We emphasize that such
composite structure objects do not yet become maps Γ(π) → k which would suit well
for their evaluation at sections s ∈ Γ(π) yielding k-numbers. The intermediate objects
can rather be used as arguments of [[ , ]] or ∆ in a construction of larger, logically and
geometrically more complex objects ; we illustrate by Fig. 3 the expansion of analytic
structures and their shrinking in the course of integration by parts and multiplication
of normalized test shifts in reconfigured couplings. Indeed, the derivative objects be-
come multi-linear maps with respect to k-tuples of the variations δs1, . . ., δsk ∈ Γ(Tπ)
only when the integrations by parts carry all derivatives away from the test shifts,
channelling the derivations to densities of the object’s constituent blocks such as the
Lagrangian in the action functional. A surgery of couplings then contracts the values
of normalized test shifts by virtue of (16) at every point of the base manifold. This is
how maps Γ(π)→ k are obtained.

We conclude that a calculation of composite-structure object may not be interrupted
ahead of time. Otherwise speaking, every calculation stretches from its input data to the
end value at s ; independently existing values at s for the resulting object’s constituent
elements not always contribute to the sought-for value of the large structure (e. g.,

25We recall that the smoothness class of variations δs is determined by smoothness of the frame

fields ~ei(x), ~e †i(x) and coefficient functions δsi(x), δs†i (x).
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S : Γ(π)→ k; obsevables Oµ in S + λµOµ

Object ∈ H
n(1+k)

(π × Tπ × . . .× Tπ︸ ︷︷ ︸
k

)

Map: Γ(π)→ k?

?

←−
δ, [[ , ]], ∆

by parts,
surgery of 〈 , 〉

Figure 3. The action S as a generator of observables, building blocks of
derivative objects as horizontal cohomology classes in products of bundles
overM×M×. . .×M , and resulting mappings as the objects’ contractions
over Whitney’s sum of bundles.

consider (1c) on p. 1 and Example 2.4 on p. 36 and try to calculate consecutively
the objects ∆F , ∆G, and their Schouten brackets with G and F , respectively, for
that example’s functionals F and G). Summarizing, it is illegal to construct composite
objects step by step, redundantly inspecting the elements’ values at field configurations.
One must not deviate from a way towards the appointed end of logical reasoning.

In fact, it is us but not Nature who calculates (e. g., the left-hand sides of equations
of motion): Nature neither calculates nor evaluates ; for there is no built-in mechanism
for doing that.26 This implies that there is no ever-growing logical complexity in a
description of the Universe ; the flow of local, observer-dependent time does not require
any perpetual increase of the number k > 0 of factors in the product-bundle location of
objects over k + 1 copies of the space-time. Conversely, there always remains a unique
copy of the space-time for all local functionals.

The space-time geometry of information transfer is very restrictive: its pointwise
locality of events of couplings between dual objects is an absolute principle ; by weak-
ening this hypothesis one could create a source of difficulties through causality violation.
Consequently, a count of space-time points where the couplings with a given (co)vector
occur makes the formalism of singular linear integral operators truly adequate in math-
ematical models of physical phenomena.27

We finally remark that the product-base approach of bundles π×Tπ× . . .×Tπ over
M×M×. . .×M to the geometry of variations highlights the concept of physical field as
infinite-dimensional system with degrees of freedom which are attached at every point

26The probabilistic approach to evolution of Nature suggests that maxima of transition (and cor-
relation) functions concentrate near the zero loci of such deterministic equations’ left-hand sides. At
the same time, Noether symmetries of the action S are abundant in the models. Not referring to any
actual transformation of a system’s components, such symmetries reflect the model’s geometry. The
analytic machinery of self-regularizing structures yields the invariants – e. g., cohomology classes as in
section 3.2 – which constrain the probabilistic laws of evolution.

27We recall from Remark 1.5 on p. 10 that the volume elements dvol
(
x, φ(x)

)
=
√
| det(gµν)| dx are

present in the building blocks of composite-structure objects.Let us note further that an association of
the weight factors dvol(x) with point x ∈Mn is intrinsically related to the structure of space-time Mn

as topological manifold (c. f. [31]). It is readily seen that a discrete tiling of space-time converts the
integrations over a measure on it to weighted sums over the points which mark the quantum domains.
This links the concept with loop quantum gravity (see e. g. [17, 47, 49]).
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of space-time. The locality principle for (co)vector interaction is the mechanism which
distinguishes between space-time points with respect to its (non)Hausdorff topology.

Discussion. Let us finally address two logical aspects of the geometry of variations.

Linear vector space structures. Nature is essentially nonlinear ; for there is no mecha-
nism which would realize – under a uniform time bound – an arbitrarily large number
of replications of an object. This is tautological for those physical fields φ which take
values in spaces without any linear structure. Moreover, even if there is a brute force
labelling of Euler–Lagrange equations by using the fields φ, a linear vector space pattern
of the equations of motion is not utilized (the same is true for the equations’ descen-
dants such as the antifields φ† or (anti)ghosts). Indeed, it is only their the tangent

spaces whose linear structure is used, in particular, in order to split the variations in
ghost parity-homogeneous components. Objects are linearized only in the course of
variations under infinitesimal test shifts. For example, this determines the distinction
between finite offsets ∆x so that (x,x + ∆x) ∈ M ×M and infinitesimal test shifts
δx|x ∈ TxM which are mapped to the number field k by covectors dx|x ∈ T

∗
xM .

Annual reproduction rate for interspecimen breeding of cats and whales. An immediate
comment on the title of this paragraph is as follows. One could proclaim that the annual
reproduction rate for interspecimen breeding of –without loss of generality – cats and
whales is equal to zero for a given year. Alternatively, one should understand that such
events never happen (not that a given year brought no brood).

This grotesque illustration works equally well for the (co)tangent spaces to fibres

of the BV-zoo or, in broad terms, for a definition of Kronecker’s symbol δji by zero
whenever the indices i 6= j do not match so that the couplings in (11) do not eventuate.
We argue that, on top of the absolute pointwise locality for couplings (9), a superficial
definition of 〈 , 〉 by zero for mismatching elements ~ei and ~e

†j of dual bases is a mere act
of will ; in reality those evaluations do not occur. Consequently, the geometry dictates
that

log
〈
~ei(x),

†(~ej)(x)
〉
= log 1 = 0 and log

〈
~e †j(x), †(~e †i)(x)

〉
= log 1 = 0.

Combined with the geometric locality principle (4) realized by singular linear inte-
gral operators (12), this argument finally resolves the paradoxical, ad hoc conventions
δ(0) = 0 and log δ(0) = 0 for Dirac’s distribution.

Appendix A. Proof of Propositions 10 and 11

We need the following two lemmas.

Lemma 17. Let F ∈ H
n
(πBV) be an even integral functional, let G ∈ N

n
(πBV, TπBV)

be another functional, and let n ∈ N≥1. Then

[[G,F n]] = n[[G,F ]]F n−1.

Proof. We use induction on Theorem 4. Note that all signs vanish since F is even,
meaning that whenever F is multiplied with any other integral functional, the factors
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may be freely swapped without this resulting in minus signs. For n = 1 the statement
is trivial. Suppose the formula holds for some n ∈ N>1, then [[G,F n+1]] =

[[G,F · F n]] = [[G,F ]]·F n+F ·[[G,F n]] = [[G,F ]]·F n+nF ·[[G,F ]]F n−1 = (n+1)[[G,F ]]·F n,

so that the statement also holds for n + 1. �

Lemma 18. Let F ∈ H
n
(πBV) be an even integral functional, and let n ∈ N≥2. Then

∆(F n) = n(∆F ) · F n−1 + 1
2
n(n− 1)[[F, F ]] · F n−2.

Proof. We use induction and the previous lemma. For n = 2 the formula clearly holds
by Theorem 3. Suppose that it holds for some n ∈ N>2, then

∆(F n+1) = ∆(F · F n) = (∆F ) · F n + [[F, F n]] + F ·∆(F n)

= (∆F ) · F n + n[[F, F ]] · F n−1 + F · n(∆F )F n−1 + 1
2
n(n− 1)F · [[F, F ]]F n−2

= (n+ 1)(∆F ) · F n + 1
2
(n + 1)n [[F, F ]] · F n−1,

so that the statement also holds for n + 1. �

Proof of Proposition 10. For convenience, we denote F = i
~
S~. Then

0 = ∆(expF ) = ∆

(
∞∑

n=0

1

n!
F n

)
=

∞∑

n=0

1

n!
∆(F n)

=

∞∑

n=1

n

n!
(∆F ) · F n−1 +

∞∑

n=2

1

2n!
n(n− 1)[[F, F ]] · F n−2

= (∆F ) ·

∞∑

n=1

1

(n− 1)!
F n−1 +

1

2
[[F, F ]] ·

∞∑

n=2

1

(n− 2)!
F n−2

=
(
∆F + 1

2
[[F, F ]]

)
· expF =

(
i

~
∆S~ −

1

2~2
[[S~, S~]]

)
· exp

(
i
~
S~
)
,

from which the result follows. �

Proof of Proposition 11 (c.f. Proposition 13 on p. 45). Again, let us set F = i
~
S~. We

first calculate, using Lemma 17,

[[O, expF ]] =
∞∑

n=0

1

n!
[[O, F n]] =

∞∑

n=1

n

n!
[[O, F ]]F n−1 = [[O, F ]] expF.

Then

0 = ∆(O expF ) = (∆O) expF + [[O, expF ]] +O ·∆(expF )

=
(
∆O + [[O, F ]]

)
expF =

(
∆O + i

~
[[O, S~]]

)
exp

(
i
~
S~
)
,

from which the assertion follows. �
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187.

[37] Kontsevich M., Soibelman Y. (2009) Notes on A∞-algebras, A∞-categories and non-commutative
geometry. Homological mirror symmetry. New developments and perspectives, Lect. Notes in Phys.
757 (A. Kapustin, M. Kreuzer, and K.-G. Schlesinger, eds), Springer, Berlin, 153–219.

[38] Kontsevich M., Vishik S. (1994) Determinants of elliptic pseudo-differential operators, 155 p.,
arXiv:hep-th/9404046

[39] Kosmann-Schwarzbach Y. (2008) Poisson manifolds, Lie algebroids, modular classes: a survey,
SIGMA 4:5, 30 p. arXiv:0710.3098 [math.SG]



THE GEOMETRY OF VARIATIONS IN BV-FORMALISM 55

[40] Krasil’shchik I. S., Vinogradov A. M., eds. (1999) Symmetries and conservation laws for differential
equations of mathematical physics. (Bocharov A. V., Chetverikov V. N., Duzhin S. V. et al.) AMS,
Providence, RI.

[41] Kupershmidt B. A. (1980) Geometry of jet bundles and the structure of Lagrangian and Hamil-
tonian formalisms. Geometric methods in mathematical physics (Proc. NSF–CBMS Conf., Univ.
Lowell, Mass., 1979), Lecture Notes in Math. 775, Springer, Berlin, 162–218.

[42] Magri F. (1978) A simple model of the integrable equation, J. Math. Phys. 19:5, 1156–1162.
[43] McCloud P. (1994) Jet bundles in quantum field theory: the BRST-BV method, Class. Quant.

Grav. 11:3, 567–587.
[44] Merkulov S., Willwacher Th. (2010) Grothendieck–Teichmüller and Batalin–Vilkovisky, 6 p.,

arXiv:1012.2467 [math.QA]
[45] Olver P. J. (1993) Applications of Lie groups to differential equations, Grad. Texts in Math. 107

(2nd ed.), Springer–Verlag, NY.
[46] Olver P. J., Sokolov V. V. (1998) Integrable evolution equations on associative algebras, Comm.

Math. Phys. 193:2, 245–268.
[47] Rovelli C. (2004) Quantum gravity. Cambridge Monographs on Math. Phys., CUP, Cambridge.
[48] Schwarz A. (1993) Geometry of Batalin–Vilkovisky quantization, Commun. Math. Phys. 155:2,

249–260.
[49] Thiemann Th. (2007) Modern canonical quantum general relativity. Cambridge Monographs on

Math. Phys., CUP, Cambridge.
[50] Troost W., van Nieuwenhuizen P., van Proeyen (1990) Anomalies and the Batalin–Vilkovisky

Lagrangian formalism, Nucl. Phys. B333:3, 727–770.
[51] Voronov B. L., Tyutin I. V., Shakhverdiev Sh. S. (1999) On local variational differential operators

in field theory, Theor. Math. Phys. 120:2, 1026–1044. arXiv:hep-th/9904215
[52] Voronov T. (2002) Graded manifolds and Drinfeld doubles for Lie bialgebroids, in: Quantization,

Poisson brackets, and beyond (T. Voronov, ed.) Contemp. Math. 315, AMS, Providence, RI,
131–168. arXiv:math.DG/0105237

[53] Witten E. (1990) A note on the antibracket formalism, Modern Phys. Lett. A5:7, 487–494.
[54] Zinn-Justin J. (1993) Quantum field theory and critical phenomena, 2nd ed., Int. Ser. of Mono-

graphs on Phys. 85, Oxford Sci. Publ., The Clarendon Press – Oxford Univ. Press, NY.
[55] Zinn-Justin J. (1975) Renormalization of gauge theories. Trends in Elementary Particle Theory

(Lect. Notes in Phys. 37 H. Rollnick and K. Dietz eds), Springer, Berlin, 2–39.
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