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by

misha gavrilovich

Abstract. — We formulate two conjectures about étale cohomology and fundamental
groups motivated by categoricity conjectures in model theory.

One conjecture says that there is a unique Z-form of the étale cohomology of
complex algebraic varieties, up to Aut(C)-action on the source category; put differ-
ently, each comparison isomorphism between Betti and étale cohomology comes from
a choice of a topology on C.

Another conjecture says that each functor to groupoids from the category of com-
plex algebraic varieties which is similar to the topological fundamental groupoid func-
tor FiOp , in fact factors through ni(’p , up to a field automorphism of the complex
numbers acting on the category of complex algebraic varieties.

We also try to present some evidence towards these conjectures, and indicate their
relation to Grothendieck standard conjectures and conjectures about the motivic
Galois group.

Contents

|L.1. How to interpret the question.| ...................... .. ... ... 3
[Structure of the paper] .. ....oovriiiie e 4

|1.2. Pseudo-exponentiation, Schanuel conjecture and categoricity theorerhs

| in model theory,| ............... ... 4
[[21. Kummer theory] .. ...oovniiniiii i 5

1.2.2. Hodge conjecture] ..............cooiiiiiiiiiiiiiini .. 5

1.2.3. [-adic Galois representations and motivic Galois group Autg(Hsing” )|
............................................................ 5

[1.2.4. Schanuel conjecture: questions| .......................... 6

|1.2.5. Schanuel conjecture and pseudoexponentiation: answers| .. 6
[T.276. Pseudoexponentiation: automorphisms groups| .......... 7

|1.2.7. Remarks about the proof.| ....... ... ... ... oL 8

Some ideas were formed and formulated with help of Martin Bays. mishap@sdf.org.
http://mishap.sdf.org/hcats.pdf| .


http://mishap.sdf.org/hcats.pdf

2 MISHA GAVRILOVICH

|1.2.8. Generalisations and Speculations.| ........................ 9

|I1.3. A glossary of terminology in model theory,| .................... 9
|2._Uniqueness property of comparison isomorphism of singular and étale |
[ cohomology of a complex algebraic variety] . ............ooooueeeivnn... 10
[2.1. Statement of the conjectures| ........... ... .. il 10

12.2. An example: an Abelian variety.| ............. ... ... ... 11

12.3. Standard Conjectures and motivic Galois group| .............. 12

12.4. Speculations and remarks| .......... ... 14

12.0. Model theoretic conjectures| ........... ... ... iL. 14
|3._Uniqueness properties of the topological fundamental groupoid functor |
[ of a complex algebraic variety] - . ......ovvoeireeieiieieee e 15
13.1. Statement of the conjectures| ........... ... ... i 15

13.2. Conjectures within reach| ............ ... ... ... ... ... ... 17

13.3. Partial positive results| ........ ... i 18

13.4. Mathematical meaning of the conjectures. Elements of proof of |

| the conjectures| ....... ... 20
13.4.1. Galois action on roots of unity and Kummer theory| .. . . 20

13.4.2. Elliptic curves and Abelian varieties. Kummer theory and |

| Serre’s open image theorem for elliptic curves.| .......... 21
[3.4.3. Arbitrary variety. Etale topology and an analogue of Lefshetz |

| theorem for the fundamental group| ...................... 21
[References] . . . .oooov e 22

1. Introduction

We consider the following question as it would be understood by a model theorist

Question. — Is there a purely algebraic definition of the notion of singular (Betti)
cohomology or of the topological fundamental groupoid of a complex algebraic variety?

In this note we formulate precise conjectures proposing that comparison isomor-
phism of étale cohomology/fundamental groupoid admits such a purely algebraic def-
inition (characterisation). These conjectures are direct analogues of categoricity the-
orems and conjectures in model theory, particularly those on pseudoexponentiaton
[Zilber].

We then show that some special cases of these conjectures seem related to Grothendieck
standard conjectures and conjectures about motivic Galois group, particularly the
image of [-adic Galois representations. These special cases are formulated in Propo-
sition [2.3] and Statement [2.4], and Statements [3.6 also see

Note that an algebraic geometer might interpret the question differently from a
logician and in that interpretation, the answer is well-known to be negative.

The goal of this note is to explain the yoga of categoricity in model theory, by
presenting precise conjectures, describing their model theoretic motivation and pre-
senting evidence which we hope might convince the reader these conjectures are not
entirely implausible; there are no results.
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The reader may want to start by reading precise conjectures in (on étale co-
homology) and (on étale fundamental groupoid) and the partial positive results

(Proposition and Statements 3.10)), and only after that read the introduc-
tion in detail.

1.1. How to interpret the question.— Let us now explain the difference between
how an algebraic geometer and a model theorist might interpret the question.

Let Hiop be a functor defined on the category Var of algebraic varieties (say,
separated schemes of finite type) over the field C of complex numbers; we identify
this category with a subcategory of the category of topological spaces. We shall be
interested in the case when Hyp, is either the functor Hging : Var — Ab of singular
cohomology or the fundamental groupoid functor Wioz) :Var — Groupoids.

An algebraic geometer might reason as follows. A purely algebraic definition applies
both to Hyop and Hiopoo where 0 : C — C is a field automorphism. Hence, to answer
the question in the negative, it is enough to find a field automorphism ¢ : C — C such
that Hyop and Hiop o o differ. And indeed, [Serre, Exemple] constructs an example
of a projective algebraic variety X and a field automorphism o such that X (C) and
X?(C) have non-isomorphic fundamental groups.

A model theorist might reason as follows. A purely algebraic definition applies both
to Hiop and Hiop 00 where 0 : C — C is a field automorphism. Hence, we should try
to find purely algebraic description (possibly involving extra structure) of Hiop which
fits precisely functors of form Hiop, 0 0,0 € Aut(C) with the extra structure. We say
that such a purely algebraic description determines Hiop (with the extra structure)
uniquely up to an automorphism of C.

For Hiop = Hging the singular (Betti) cohomology theory, a model theorist might
continue thinking as follows. The singular (Betti) cohomology theory admits a com-
parison isomorphism to a cohomology theory defined purely algebraically, say Il-adic
étale cohomology theory. This is an algebraic description in itself. However, note that
it considers the [-adic étale cohomology theory and the comparison isomorphism as
part of structure. Thus an appropriate conjecture (see §2)) gives a purely algebraic de-
scription of the family of comparison isomorphisms coming from a choice of topology
on C

Haing (X (C)top, Z) ® Zy —~> Hot(X(C),Z;), o € Aut(C)

For H;op = % a model theorist might continue thinking as follows. The profinite
completion of the topological fundamental groupoid functor is the étale fundamen-
tal groupoid defined algebraically. This is an algebraic property of the topological
fundamental groupoid on which we can base our purely algebraic description if we in-
clude the étale fundamental groupoid as part of structure. Essentially, this describes
subgroupoids of the étale fundamental groupoids. Category theory suggests to con-
sider a related universality property (see §3)): up to Aut(C) action on the category
of complex algebraic varieties, there is a universal functor among those whose profi-
nite completion embeds into the étale fundamental groupoid, and it is the topological
fundamental groupoid. Some technicalities may be necessary to ignore non-residually
finite fundamental groups.
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Structure of the paper. — In the introduction we explain our motivation in two es-
sentially independent ways. §1.1 explains how a model theorist would interpret the
question above; §1.2 views these conjectures as continuation of work in model theory
on the complex field with pseudoexponentiation [Zilber, Bays-Zilber, Bays-Kirby], see
also [Manin-Zilber, Ch. X.6.11-6.19] and its main goal is to make the reader aware of
the possibilities offered by methods of model theory.

In §2| we begin by formulating two conjectures on étale cohomology. Conjecture (2.1
says there is a unique there is a unique Z-form of the étale cohomology of complex
algebraic varieties, up to Aut(C)-action on the source category; put differently, each
comparison isomorphism between Betti and étale cohomology comes from a choice of
a topology on C. Conjecture states a similar property for the Weil cohomology
theory restricted to a category generated by a single pure motive. In §2.2| Propo-
sition [2.3] and Statement give examples of similar properties which hold for a
subcategory generated by a single abelian variety.

§2.2 contains a concise exposition of several conjectures on motivic Galois group
which appear related to our conjectures; it follows [Serre,§1,§3]. §2.3 contains some
speculations about model theoretic point of view on these conjectures.

states analogous conjectures for the etale fundamental group. In we define
the notion of a m;-like functor and state two conjectures saying there is a universal
my-like functor up to a field automorphism. In §3.2] we state two conjectures which
we hope to be within reach of current methods. In §3.3 we list several partial positive
results which are implicit in model theoretic literature. We end by §3.4 which mentions
mathematical facts which go into the proofs of these results.

1.2. Pseudo-exponentiation, Schanuel conjecture and categoricity theo-
rems in model theory.— Complex topology allows to construct a number of ob-
jects with good algebraic properties e.g. a group homomorphism exp : Ct — C*,
singular (Betti) cohomology theory and the topological fundamental groupoid of va-
rieties of complex algebraic varieties.

A number of theorems and conjectures says that such an object constructed topo-
logically or analytically is “free” or “generic”, for lack of better term, in the sense
that it satisfies algebraic relations only, or mostly, for “obvious” reasons of algebraic
nature.

Sometimes such a conjecture is made precise by saying that a certain automorphism
group is as large as possible subject to some “obvious obstructions or relations” im-
posed by functoriality and/or homotopy theory. Such an automorphism group may
involve values of functions or spaces defined analytically or topologically.

A natural question to ask is whether these conjectures are “consistent” in the sense
that there do exist such “free” objects with the conjectured properties, not necessarily
of analytic or topological origin.

Methods of model theory allow to build such objects by an elaborate transfinite
induction. In what follows we shall sketch results of [Zilber, Bays-Kirby] which does
this for the complex exponential function and Schanuel conjecture.

Let us now explain what we mean by showing how to view Kummer theory, Hodge
conjecture, conjectural theory of the motivic Galois group, and Schanuel conjecture
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in this way, i.e. as saying certain objects satisfies algebraic relations only, or mostly,
for “obvious” reasons of algebraic nature.

1.2.1. Kummer theory.— An “obvious way” to make e®tIN eonIN N> satisfy a
polynomial relation is is to pick a, ..., au, such that they satisfy a Q-linear relation over
271, which is preserved by exp, or such that that et/M | gom[M satisfy a polynomial
relation for some other M.

Kummer theory tells you these are the only reasons for polynomial relations be-
tween these numbers. This is stated precisely in terms of automorphisms groups as
follows:

For any Q-linearly independent numbers aq, ..., o, € C there is N > 0 such that for
any m > 0 it holds

Gal(Q(emn ,....em~ ™) [Q(e ™, ..., e ¥ ,e*™Q)) n (Z/mZ)"
1.2.2. Hodge conjecture. — Consider the Hodge theory of a non-singular complex
projective manifold X (C). By Chow theory we know that X is in fact a complex
algebraic variety and an easy argument using harmonic forms shows that an algebraic
subvariety Z(C) defines an element of H(X,Q)n H®P?)(X,C) where H®P)(X,C) is
a certain linear subspace of H??(X,C) defined analytically.

A topological cycle in X(C) defines an element of H(X,Q) which may lie in
H®P)(X C). An “obvious reason” for this is that it comes from an algebraic subva-
riety, or a QQ-linear combination of such. Hodge conjecture tells you that this is the
only reason it could happen.

1.2.3. l-adic Galois representations and motivic Galois group Aut®(Hsmga). — Re-
marks below are quite vague but we hope some readers might find them helpful. In
we sketch several definitions and conjectures in the conjectural theory of motivic
Galois group following [Serre].

We would like to think that these conjectures say that the singular (Betti) coho-
mology theory of complex algebraic varieties is “free” in the sense that it satisfies
algebraic relations only, or mostly, for “obvious” reasons of algebraic nature. The
theory of the motivic Galois group assumes that there are many automorphisms of
the singular cohomology theory of complex algebraic varieties, and they form a pro-
algebraic, in fact pro-reductive ([Serre, Conjecture 2.17], group. Conjectures on l-adic
Galois representations, e.g. [Serre, Conjecture 3.27,9.17] describe the image of Galois
action as being dense or open in a certain algebraic group defined by cohomology
classes which Galois action has to preserve (or is conjectured to preserve).

Let us very briefly sketch some details.

The conjectural theory of the motivic Galois group [Serre], also cf. assumes
that the following is a well-defined algebraic group:

Gg = AUt®(HsingU :(F) — Q-Vect)

Here 0 : k — C is an embedding of a number field & into the field of complex numbers,
FE is a pure motive in the conjectural category Moty of pure motives defined over
k, and (E) is the least Tannakian subcategory of Mot containing F, and Hiing,,
is the fibre functor on (FE) corresponding to the singular cohomology of complex
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algebraic varieties and embedding o : k — C. This is well-defined if we assume certain
conjectures, e.g. Standard Conjectures and Hodge conjecture [Serre, Grothendieck,
Kleiman].

[Serre, Conjecture 3.17] says that G is the subgroup of GL(Hging, (£)) preserving
the tensors corresponding to morphisms 1 — E®" ® EV®* r s > 0. Think of these
tensors as “obvious relations” which have to be preserved.

[Serre, Conjecture 3.2? and Conjecture 9.17] describe the image of l-adic Galois
representations in Gg(Q;).

Both say it is dense or open in the group of l-adic points of a certain algebraic
subgroup of GLy; we think of this subgroup as capturing “obvious obstructions or
relations” imposed by functoriality of Hging.

1.2.4. Schanuel conjecture: questions. — Schanuel conjecture says that for Q-linearly
independent x1, ..., x, € C, the transcendence degree of 1, ..., z,,e"",...;e"" is at least
n:

x Ty .
tr.deg.q(@1, ..., Tn, e, ..., ") 2 lin.deg.q(x1, ..., Tn) (SC)
The bound becomes sharp if we use surjectivity of e* to pick zo = €™, ..., Tj41 =
e¥i,...,xy =€t and e e Q:
T e®1 T e”1 T
tr.deg.q(z1,e™,e° ..., xn, €™ e, e") <n
Here “an algebraic relation” is a polynomial relation between x4, ..., z,,€"*, ..., e"";

an obvious way to make these numbers satisfy such a relation is to pick x; such that
either z; = a1z + ... + a;_1xi—1 or €% = ajxy + ... + Qj_1Tj—1 O x; = ¥1T1F+Ai-1Ti1
where aq,...,a; € Q are rational.

Is Schanuel conjecture “consistent” in the sense that there is a pseudo-exponentiation,
i.e. a group homomorphism ex : C* — C* satisfying conjectural properties of com-
plex exponentiation, in particular Schanuel conjecture? Does there exist such a
“free” pseudo-exponentiation ex : Ct — C*, e.g. such that a system of exponential-
polynomial equations has a zero if and only if it does not contradict Schanuel conjec-
ture? Can we build such an algebraic “free” object without recourse to topology?

Does every such “free” object come from a choice of topology on C, i.e. is the
complex exponential exp : Ct* — C* up to an automorphism of C?

Note that the last question is the only one which mentions topology. It turns out
this difference is crucial: model theory says nothing about this question while giving
fairly satisfactory positive answers to the previous ones.

1.2.5. Schanuel conjecture and pseudoexponentiation: answers. — The following the-
orem of [Zilber] provides a positive answer for exp : C* — C*. For a discussion of
the theorem and surrounding model theory see [Manin-Zilber, 6.16]; for a proof,
detailed statements and generalisations to other analytic functions see [Bays-Kirby,
Thm. 1.2,Thm. 1.6; Thm. 9.1; also Thm. 8.2; Thm. 9.3] and references therein.

Theorem 1.1 (Zilber). — Let K be an uncountable algebraically closed field of
characteristic 0.

Up to Aut(K), there is a unique surjective group homomorphism ex : K* — K*
such that:
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(SK) (Standard Kernel) Kerex is the infinite cyclic group generated by a transcen-
dental element
(SC) (Schanuel Property) ex: K™ — K* satisfies Schanuel conjecture
(SEAC) (Strong exponential-algebraic closedness) any system of n independent exponential-
polynomial equations in n variables that does not directly contradict Schanuel
congecture has a reqular zero, but not more than countably many

Call this unique group homomorphism ex : K* — K* a pseudoexponentiation
defined on the field K.

In somewhat more detail, this can also be expressed as follows.

Let K and K’ be two uncountable algebraically closed fields of characteristic 0,
and let ex: K* — K™ and ex’ : K'* — K”"* be group homomorphisms satisfying the
properties above.

Then if there is a bijection o : K — K’, then there is a bijection ¢ : K — K’
preserving +, -, and ex, i.e. such that for each x,y € K it holds

o(z+y)=o(@)+o(y), olzy)=0o(@)o(y), o(ex(x))=ex'(o(x))

Conjecture 1.2 (Zilber). — If card K = card C, then (K, +,-,ex) is isomorphic to
(C, +,-, exp).

Our conjectures are direct analogues of the Theorem and Conjecture above stated
in the language of functors. Instead of the complex exponentiation we consider the
comparison isomorphisms between topological and étale cohomology, resp. fundamen-
tal groupoid functor. We hope that model theoretic methods used by [Zilber] may be
of use in proving these conjectures.

1.2.6. Pseudoexponentiation: automorphisms groups. — It is known that certain au-
tomorphisms groups associated with pseudoexp are largest possible in the following
sense.

We need some preliminary definitions. We say that tuples a and b in K have the
same quantifier-free type, write qftp(a) = qftp(d), iff they satisfy the same exponential-
polynomial equations, and, moreover, the same exponential-polynomial equations
with coefficients with a, resp. b, have a solution; see [Bays-Kirby, §6, Def. 6.7] for
details. Note that for a finite tuple ¢ in K, there is a minimal Q-linear vector subpace
A 5 a such that A <5 K and this A determines qftp(a) (see below for the definition
of 35).

We quote from [Bays-Kirby, Def. 6.1, Proposition 6.5].

Fact 1.3. — Let K be a field with pseudoexponentiation as defined above.

QM4. (Uniqueness of the generic type) Suppose that C,C" ¢ M are countable closed
subsets, enumerated such that qftp(C) = qftp(C"). Ifae M~C and a’ e M~ C’
then qftp(C,a) = qftp(C’,a’) (with respect to the same enumerations for C' and
c).

QM5. (Ro-homogeneity over closed sets and the empty set) Let C,C’ ¢ K be countable
closed subsets or empty, enumerated such that qftp(C) = qftp(C’), and let b, b’
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be finite tuples from K such that qftp(C,b) = qftp(C’,b"), and let a € cl(C,b).
Then there is o' € K such that qftp(C,b,a) = qftp(C’,b’,a’).

QMb5a. (Ro-homogeneity over the empty set) If a and b are finite tuples from K and
qftp(a) = qftp(b) then there is a field automorphism 0 : K — K preserving
ex: Kt — K* such that 6(a) = b.

Note that it is an open problem to construct a non-trivial automorphism of (C, +, -, exp).

1.2.7. Remarks about the proof.— We adapt [Manin-Zilber, 6.11-6.16]; see also [Bays-

Kirby] for a detailed exposition in a more general case using different terminology.

Pseudoexponentiation is constructed by an elaborate transfinite induction. We start

with an algebraically closed field Kp.se ¢ K and a partial group homomorphism

ex: K - K}, .. and try to extend the field and the group homomorphism such

that it is related to the field in as free a way as possible.

Informally the freeness condition is described as follows:

(Hr) the number of independent explicit basic dependencies added to a subset X U
ex(X) of K by the new structure is at most the dimension of X uex(X) in the
old structure.

This is made precise in the following way.

The new structure is the group homomorphism ex : K — K*; explicit basic
dependencies in X Uex(X) added by the new structures are defined as as equations
ex(z) = y where z,y € X. For example, for X = {x} where ex(ex(x)) = =, we do not
regard ex(ex(z)) = x as a explicit basic dependency in X uex(X) = {z,ex(z)}.

The number of independent basic explicit dependencies is the Q-linear dimension
lin.dim.g(z1, ..., xn); the dimension of X in the old structure is its transcendence
degree which is equal to tr.deg.(z1, ..., zp,ex(x1), ...,ex(zy)).

With this interpretation, (Hr) becomes Schanuel conjecture (SC).

Define Hrushouvski predimension §(X) := tr.deg.(X uex(X)) - lin.dim.g(X). Say
a partial group homomorphism ex : K* —-—» K* satisfies Hrushovski inequality with
respect to Hrushovski predimension § iff for any finite X c K it holds §(X) > 0. An
extension (K, exg) c (L,exy) of fields equipped with partial group homomorphisms
is strong, write K <5 L, iff all dependencies between elements of K occurring in L can
be detected already in K, i.e. for every finite X c K,

min{d(Y):Y finite, X cY c K } =min{d(Y) : Y finite, X cY c L}

We then build a countable algebraically closed field (Kx,,exk,, ) by taking larger
and larger strong extensions Kpase <s K1 < Ko <5 ... of finite degree. If we do this
with enough care, we obtain a countable algebraically closed field Ky, = UK, and a
group homomorphism exg, : K — K3 defined everywhere which satisfies (SC)
and other conditions of Theorem [1.1} For details see [Bays-Kirby, §5] where it is
described in terms of taking Fraisse limit along a category of strong extensions.

Building an uncountable model requires deep model theory; see [Bays-Kirby, §6]
and [BH?2K?14]. Let us say a couple of words about this. In the inductive construction
above, being countable is essential: if we start with an uncountable field, we can no
longer hope to obtain an algebraically closed field after taking union of countably
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many extensions of finite degree. Very roughly, it turns out that we can construct
composites of countable linearly disjoint algebraically closed fields this way, and this
helps to build an uncountable field with pseudoexponentiation and prove it is unique
in its cardinality, up to automorphism.

1.2.8. Generalisations and Speculations.— [Bays-Kirby] generalises the considera-
tions above in a number of ways. In particular, they construct pseudo-exponential
maps of simple abelian varieties, including pseudo-gp-functions for elliptic curve. [Propo-
sition 10.1, §10, ibid.] relates the Schanuel property of these to the André-Grothendieck
conjecture on the periods of 1-motives. They suspect that for abelian varieties the
predimension inequality §(X) > 0 also follows from the André-Grothendieck periods
conjecture, but there are more complications because the Mumford-Tate group plays
a role and so have not been able to verify it. [§9.2, ibid.] says it is possible to construct
a pseudoexponentiation incorporating a counterexample to Schanuel conjecture, by
suitably modifying the Hrushovski predimention and thus the inductive assumption
(Hr). [§9.7, also Thm. 1.7, ibid.] considers differential equations.
We intentionally leave the following speculation vague.

Speculation 1.4. — Can one build a pseudo-singular, or pseudo-de Rham cohomol-
ogy theory, or a pseudo-topological fundamental group functor of complex algebraic
varieties, or an algebra of pseudo-periods which satisfies a number of conjectures such
as the Standard Corjectures, the conjectural theory of the motivic Galois group, the
conjectures on the image of l-adic Galois representaitons, André-Grothendieck periods
conjecture, Mumford-Tate conjecture, etc.?

1.3. A glossary of terminology in model theory.— We give a very quick
overview of basic terminology used in model theory. See [Tent-Ziegler; Manin-Zilber|
for an introduction into model theory.

In logic, a property is called categorical iff any two structures (models) satisfying
the property are necessarily isomorphic. A structure or a model is usually under-
stood as a set X equipped with names for certain distinguished subsets of its finite
Cartesian powers X", n > 0, called predicates, and also equipped with names for cer-
tain distinguished functions between its finite Cartesian powers. Names of predicates
and functions form a language. First order formulas in language L is a particular
class of formulas which provide names for subsets obtained from the L-distinguished
subsets by taking finitely many times intersection, union, completion, and projection
onto some of the coordinates; a formula ¢(x1, .., z,) defines the subset p(M™) of M™
consisting of tuples satisfying the formula. A theory in language L is a collection
of formulas in language L. A model of a theory T in language L is a structure in
language L such that for each p € T o(M™) = M™ where n is the arity of .

The first order theory of a structure consists of all possible names (formulas) for
the subsets M™,n > 0, i.e. formulas ¢ such that p(M"™) = M™.

A categoricity theorem in model theory usually says that any two models of a
first order theory of the same uncountable cardinality are necessarily isomorphic,
i.e. if there is a bijection between (usually assumed uncountable) models M; and
M of the theory, then there is a bijection which preserves the distinguished subsets
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and functions. A theory is uncountably categorical iff it has a unique model, up to
isomorphism, of each uncountable cardinality.

The type tp(a1,...,an) = {@(x1,..,Tn) : p(ai,...,an) holds in M} of a tuple (a1, ..,a,) €
M™ is the collection of all formulas satisfied by the tuple (a1, ..,a,). A type in a theory
is the type of a tuple in a model of the theory. The type tp(ai, ..., an) = { p(x1, .., Tn):
w(ay,...,an) holds in M} of a tuple (ay,..,an) € M™ with parameters in subset A c M
is the collection of all formulas with parameters in A satisfied by the tuple (a1, .., a,).
A type in a theory is the type of a tuple in a model of the theory. Informally, the
type of a tuple is a syntactic notion playing the role of an orbit of Aut®(M) on M™,
e.g. in a situation when we do not yet know whether non-trivial automorphisms of M
exist, for example because M has not been completely constructed yet.

In an uncountably categorical first order theory with finitely many predicates and
functions the number of types is at most countable, and the number of types with
parameters in a subset A has cardinality at most card A + Ry = max(card 4, R¢).

2. Uniqueness property of comparison isomorphism of singular and étale
cohomology of a complex algebraic variety

2.1. Statement of the conjectures. — A Z-form of a functor H; : V — Z;-Mod
is a pair (H,7) consisting of a functor H : V — Z-Mod and an isomorphism

H®QZ1;HZ

of functors.

An example of a Z-form we are interested in is given by the comparison isomor-
phism between étale cohomology and Betti cohomology, see [SGA 4, XVI, 4.1], also
[Katz,p.23] for the definitions and exact statements.

Let H; : Schemes — Z-Mod be the functor of l-adic étale cohomology, and let
Hging : Top — Z-Mod be the functor of singular cohomology. For X a separated
C-scheme of finite type there is a canonical comparison isomorphism

Hsing(X((C),Z)) Ly =~ Het(X,Zl).

This defines a Z-form of the functor of l-adic étale cohomology Hc(—,Z;) restricted
to the category of separated C-schemes of finite type.

Let K be an algebraically closed field, let Vg be a category of varieties over K. A
field automorphism o : K — K acts X — X7 on the category Vg by automorphisms.
Moreover, for each variety X defined over K, a field automorphism o defines an
isomorphism ox : X — X7 of schemes (over Z or Z/pZ), and hence

Her(X, Z4) = Het (X7, ).
This defines an action of Aut(K) on the Z-forms of H;:
(H,7) — (Hoo,Too,")

o0t
H(X7) 2% Ho(X, 7).
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We conjecture that, up to action of Aut(C) defined above, the comparison iso-
morphism between singular and [-adic cohomology of is the only Z-form of the [-adic
cohomology theory Hei(—,7Z;):

Conjecture 2.1 (Z(Hging, H1)). — Up to Aut(C) action, there is a unique Z-form
of the l-adic cohomology theory functor Hei(—,Z;) restricted to the category of sepa-
rated C-schemes of finite type which respects the cycle map and Kunneth decomposi-
tion.

In other words, every comparison isomorphism of a Z- and the l-adic cohomology
theory of separated C-schemes of finite type is, up to a field automorphism of C, the
standard comparison isomorphism

Hying(X(C),Z) ® Zi = Het (X, Zy)

The conjecture is intended to be too optimistic; it is probably more reasonable to
conjecture uniqueness of Z-form of the torsion-free part of the [-adic cohomology.

Assume Grothendieck Standard Conjectures and that, in particular the l-adic co-
homology theory factors via the category Mot of pure motives over a field k. Then,
a Weil cohomology theory (cf. [Kleiman]) corresponds to a tensor fibre functor from
the category of pure motives, and we may ask how many Z-forms does have the fibre
functor corresponding to the [-adic cohomology theory. Moreover, we may formulate
a “local” version of the conjecture restricting the functor to a subcategory generated
by a single motive.

Conjecture 2.2 (Z(Het,(E),)). — Let k be a number field. Assume Grothendieck
Standard Conjectures and that, in particular, l-adic cohomology factors via the cate-
gory of pure numerical motives Moty over k.

Let E be a motive and let (E) be the subcategory of Moty generated by E, i.e. the
least Tannakian subcategory of Mot containing E. Up to Aut(k/k)-action, the func-
tor He(-® Q,7) : {E),, — Z;-Mod has at most finitely many Z-forms.

Moreover, if E has finitely many Z-forms [Serre,10.22], then the functor He:(— ®
Q,2): (E), — Z-Mod has at most finitely many Z-forms.

2.2. An example: an Abelian variety.— Let us give an example of a particular
case of the conjecture which is easy to prove.

Proposition 2.83. — Let A be an Abelian variety defined over a number field k.
Assume that the Mumford-Tate group of A is the maximal possible, i.e. the symplectic
group MT(A) = GSpag where dim A = g, and that the image of Galois action on the
torsion has finite index in the group GSpag(Z;) of Z;-points of the symplectic group.

Then there are at most finitely many Z-form of the l-adic cohomology theory
H. (- ® k,Z;) restricted to the category (A),, up to Aut(k/k).

Proof (sketch). The Weil pairing corresponds to the divisor corresponding to an
ample line bundle over A, and by compatibility with the cycle class map of a Z-form
and H; = He (- ® k,Z;) the non-degenerate Weil pairing

w: (H}(A))® — HY(4) = Z,
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restricts to a pairing
w: (H'(A))? — H(A) ~ Z,

which is easily seen to be non-degenerate.

Now let H; be a Q-form for i =1, 2.

Let (z,..2,y},...,y7) be a symplectic basis for H}(A). Then each is also a
symplectic basis for H},(A), and so some o € GSp(H,(A),w) maps Hi (A) to Hi(A).
The assumption on the Mumford-Tate group precisely means that such a o extends
to o € Aut(Hi|(ay), and it follows from the fact that the cohomology of an Abelian
variety is generated by H' that o(H;) = Ho.

Finally, use the assumption on the Galois representation to see that there are at
most finitely many Z-forms. O

It might be true that a reader familiar with the theory of the motivic Galois group
may find that a straightforward generalisation of the argument above leads to the
following.

Statement 2.4 (a generalisation of the example). — Let A be a motive of a
smooth projective variety defined over a number field k. Assume the Mumford-Tate
group G = Aut®(Hei (- ® k,Zy)|(4)) has the following property:

if Vi and Vy are abelian subgroups of H. (A ® k,Z;) which are both dense and
of the same rank and such that

GL(V;) nG(Z;) is dense in G(Z;) for i=1,2,
then there is a g € G(Z;) such that gVy = Vs (setwise).

Then the conjectures [2.17,5.1%,3.22,9.1%] of [Serre] imply that there are at most
finitely many Z-forms of Hey(~ ® k, Zy)|(a)-

Conjectures [2.17,3.1?7,3.27,9.17] have analogues the cohomology theories with co-
efficients in the ring of finite adeles A7, cf. [Serre, 11.4?(ii), 11.57], cf. also [Serre,
10.27, 10.67].

2.3. Standard Conjectures and motivic Galois group. — Now we try to give a
self-contained exposition of several conjectures on motivic Galois group which aapear
related to our conjectures. Our exposition follows [Serre,§1,§3]

Let k be a field of characteristic 0 which embeds into the field C of complex num-
bers; pick an embedding ¢ : kK — C.

Assume Standard Conjectures and Hodge conjecture [Grothendieck, Kleiman]. Let
Moty denote the category of pure motives over k defined with the help of numerical
equivalence of algebraic cycles (or the homological equivalence, which should be the
same by Standard Conjectures). Mot is a semi-simple category.

Let E € ObMot be a motive; let (F) denote the least Tannakian subcategory of
Moty containing E.

A choice of embedding o : k — C defines an exact fibre functor Mot — Q-Vect
corresponding to the Betti realisation

Hging,, : Moty, — Q-Vect, E w Hgng(E5(C),Q).
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The scheme of automorphisms MGaly, = Aut®(Hging, : Mot — Q-Vect) of the
functor preserving the tensor product is called the motivic Galois group of k. It is a
linear proalgebraic group defined over Q. Its category of Q-linear representations is
equivalent to Mot. The group depends on the choice of o.

The motitivic Galois group of a motive E is Aut®(Hging,, : (E) — Q-Vect).

We now list several conjectures from [Serre].

Conjecture (2.1?7). — The group Aut®(Hging, : Mot — Q-Vect) is proreductive,
i.e. a limit of liner reductive Q-groups.

Let 1 denote the trivial morphism of rank 1, i.e. the cohomology of the point
Speck.

Conjecture (3.17). — The group Aut®(Hging, : (E) — Q-Vect) is the subgroup of
GL(Hging, (E)) preserving the tensors corresponding to morphisms 1 — E®" @ EV®*,
r,s20.

It is also conjectured that this group is reductive. Via the comparison isomorphism
of étale and singular cohomology,

Hsing(E((C)aQ) ® Ql = Het(E ® @7Ql)v

the Q-points of Aut®(Hging, : (E) — Q-Vect)(Q;) act on the étale cohomology
He(E ® Q,Q;). On the other hand, the Galois group Gal(Q/k) acts on Q and
therefore on ' ® Q. By functoriality, the Galois group acts by automorphisms of the

functor of étale cohomology. Hence, this gives rise to l-adic representation associated
to &

pi, s Gal(Q/k) — Aut®(Hying, : (E) — Q-Vect)(Q;).
Conjecture (3.27). — Let k be a number field. The image of the l-adic represen-

tation associated with E is dense in the group Aut®(Hgpng, 1 (E) — Q-Vect)(Q;) in
the Zariski topology.

Conjecture (9.17). — Let k be a number field. The image
Im(pr, : Gal(Q/k) — Aut®(Hging, : (E) — Q-Vect)(Q;))
is open in Aut®(Hgmng, : (E) — Q-Vect)(Qy).

Congjecture (9.37). — Let k be a number field. Hei(E® Q,Q,) is semi-simple as a
Gal(Q/k)-module.

We suggest that the conjectures [2.17,3.17,3.27,9.17,10.27,10.37.10.47,10.77,10.87]
may be interpreted as saying there are only finitely many Z-forms of the étale co-
homology He;(-,7Z;) : (E) ®, Q — Q-Vect, up to Galois action. There are similar
conjectures for finite adeles instead of Qy, cf. [Serre, 11.47(ii), 11.57], also [Serre, 10.27?,
10.67].
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2.4. Speculations and remarks. — Standard conjectures claim there are alge-
braic cycles corresponding to various cohomological constructions. Model-theoretically
it should mean that something is definable in ACF and it is natural to expect that
such properties be useful in a proof of categoricity, i.e. in the characterisation of the
Q-forms of étale cohomology theory.

We wish to specifically point out the conjectures and properties involving smooth
hyperplane sections, namely weak and strong Lefschetz theorems and Lefschetz Stan-
dard Conjecture, cf. [Kleiman,p.11,p.14]. Weak Lefschetz theorem describes part of
the cohomology ring of a smooth hyperplane section of a variety. Perhaps such a
description can be useful in showing that a Q-form extends uniquely to Mot/K from
the subcategory Mot/Q. An analogue of the weak Lefschetz theorem for the fun-
damental group was used in a similar way in [GavrDPhil, Lemma V.II.3.2.1], see
for some details. Namely, as is well-known, the fundamental group of a smooth
hyperplane section of a smooth projective variety is essentially determined by the
fundamental group of the variety. [GavrDPhil, I11.2.2] extends this to a somewhat
technical weaker statement about arbitrary generic hyperplane sections. An arbitrary
variety can be represented as a generic hyperplane section of a variety defined over Q
and this implies that, in some sense, the fundamental groupoid functor on the subcat-
egory of varieties defined over Q “defines” its extension to varieties defined over larger
fields. The word “defines” is used in a meaning similar to model theoretic meaning
of one first-order language definable in another.

Question 1. — Find a characterisation of the following families of functors:
Hing(X(K;),Q) : Var/| K — Q- Vect,
Hsing(X(KT), (C) : Var/K — Q-Hodge

where T varies though isomorphisms of K to C, or, almost equivalently, though locally
compact locally connected topologies on K.

Note that Zilber [Zilber] unconditionally constructs a pseudo-exponential map
ex : Ct* — C* which satisfies the Schanuel conjecture. Of course, this map is not
continuous (not even measurable). Hence we ask:

Question 2. — Construct a pseudo-singular cohomology theory which satisfies an
analogue of the Schanuel conjecture and some other conjectures.

2.5. Model theoretic conjectures. — Define model theoretic structures corre-
sponding to the cohomology theories.

Conjecture 2.5. — The field is purely embedded into the structures corresponding
to functors
(1) Hsing: Var/Q — Q-Vect
(i) Hsing(—, Q) : Var/C — Q-Vect
(iii) Hging(—,C): Var/C — Q-Hodge
Moreover, the structure (ii) is an elementary extension of (i) and the cohomology ring
Hing(V, Q) is definable for every variety over C.
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Several of the Standard Conjectures [Kleiman, §4,p.11/9] claim that certain coho-
mological cycles (construction) correspond to algebraic cycles. This feels related to
many of the conjectures above, in particular to the purity conjectures.

Problem 1. — 1. Define a model-theoretic structure and language corresponding
to the notion of a Weil cohomology theory, and formulate a categoricity con-
jecture hopefully related to the Standard Conjectures ([Grothendieck, Kleiman])
and conjectures on the motivic Galois Group and related Galois representations
[Serre].

2. Do the same in the language of functors, namely:

2.1. Consider the family of cohomology theories on Var|K coming from a
choice of isomorphism K ~ C.

2.2. Define a notion of isomorphism of these/such cohomology theories, and
what it means to a "purely algebraic” property of such a theory.

3.3. Find a characterisation of that family up to that notion of isomorphism
by such properties. Or rather, show existance of such a characterisation
is equivalent to a number of well-known conjectures such as the Standard
Conjectures etc.

3. Uniqueness properties of the topological fundamental groupoid
functor of a complex algebraic variety

3.1. Statement of the conjectures. — Let V be a category of varieties over a
field K, let m be a functor to groupoids such that Obw(X) = X (K) is the functor of
K-points. For o € Aut(K), define o(7) by

Obo(r) =0bn(X) =X(K), o(Mor(x,y))=Mor(c(x),c(y)),

source(y) = o(source(7)), target(y) = o(target(v)),

For K = C, an example of such a functor is the topological fundamental groupoid
functor 7i?(X(C)) of the topological space of complex points of an algebraic va-
riety, and {o (") : ¢ € Aut(C)} is the family of all the topological fundamental
groupoid functors associated with different choices of a locally compact locally con-
nected topology on C. (Such a topology determines a field automorphism, uniquely
up to conjugation).

Aut(K) acts by automorphisms of the source category, hence all these (possibly
non-equivalent!) functors have the same properties in the language of functors, in
particular

(0) Ob 7(X) = X(K) is the functor of K-points of an algebraic variety X

(1) preserve finite limits, i.e. 7(X xY) = 7(X) x7(Y)

(2) w(X) is connected if X is geometrically connected (i.e. the set of points X (K)
equipped with Zariski topology is a connected topological space)

(3) for X L x étale, the map 7(X) o, m(X) of groupoids has the path lifting
property of topological covering maps, namely
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for x = f(&),% € X (K), for every path v € m(X) starting at z, there is a
unique path 7 € 7(X) such that source(y) = & and (7 (f))(%) = 7.
(4) whenever Y is connected, f : X —Yis proper and separable morphism with
geometrically connected fibres satisfying assumptions of Corollary 1.4 [SGA1,
X] there is a short exact sequence

7T1(an .Z‘,l') - ﬂ-l(waa ‘T) - 7T1(Y, f(.fE), f(x))
where X, is the geometric fibre over a geometric point x of X.

Definition 3.1. — A my-like functor over a field K is a functor from a category of
varieties to the category of groupoids satisfying (0-4) above. A m-like functor is a
m1-like functor over some field.

Note that by (0) a 7r;-functor over a field K comes equipped with a forgetful natural
transformation to the functor of K-points.

Congjecture 3.2 (Z(7i°P)). — Each m-like functor on the category of smooth quasi-
projective complex varieties factors through the topological fundamental groupoid func-
tor, up to a field automorphism.

In detail: Let Varc be the category of smooth quasi-projective varieties over the
field of complex numbers C. For each mi-like functor m : Varc — Groupoids there
18 a field automorphism o : C — C and a natural transformation € : inp = o(m)
such that the induced natural transformation Ob ﬂiOp == Obo(w) on the functor of
C-points is identity.

Conjecture 3.3 (Z(m1,K)). — Let K be an algebraically closed field. Let Vary be
the category of smooth quasi-projective varieties over K.

There is a functor m : Varxg — Groupoids such that for each m-like functor
w : Varg — Groupoids there is a field automorphism o : K — K and a nat-
ural transformation € : m == o(w) such that the induced natural transformation
Obm; = Obo(7) on the functor of K-points is identity.

There conjectures are direct analogoes of categoricity conjectures in model theory,
hence we shall refer to these conjectures as categoricity conjectures for the fundamental
groupoid functor.

Remark 1. — As stated, these conjectures are likely too optimistic. To get more
plausible and manageable conjectures, replace Varg by a smaller category and add
additional conditions on the 1-like functors. The conclusion can also be weakened to
claim there is a finite family of functors, rather than a single functor, through which
m1-like functors factor up to field automorphism.

It may also be necessary to put extra structure on the fundamental groupoids.

Remark 2. — In model theory, it is more convenient to work with universal covering
spaces rather than fundamental groupoids. Accordingly, model theoretic results are
stated in the language of universal covering spaces, sometimes with extra structure.

The conjectures above are motivated by questions and theorems about categoricity
of certain structures.
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Remark 3. — It is temptin to think that the right generalisation of the conjec-
tures above should make use of the short exact sequence of étale fundamental groups
(see [SGA1, XII1.4.3;X11.4.4])

1 — 789 (X xgpeckSpeck®P, ) — n89(X, £) — w1 (Spec k, Speck®*P) = Gal(k*°P /k) — 1
where X is a scheme over a field k, kP is a separable closure of k, and « : Spec k*P —
X Xgpeck Speck™P is a geometric point of X xgpecr Speck®P, and Z : Spec k5P —
X Xgpeck Opeck®® — X is the corresponding geometric point of X.
In fact such a sequence could be associated with a morphism X — S admitting a
section and satisfying certain assumptions [SGA 1, XIIL.4].
These short exact sequences comes from pullback squares
I
S
3.2. Conjectures within reach. — In this section we give two conjectures which
we hope to be within reach. Their proof requires a combination of methods of model
theory and algebraic geometry. In the next subsection we list several partial positive
results towards conjectures above which are implicit in model theoretic literature.
We find the following conjecture plausible and hope its statement clarifies the arith-
metic nature of our conjectures. It is perhaps the simplest conjecture not amendable
to model theoretic analysis because it uses bundles, a notion from geometry rather
than model theory.
For a variety X, let (X) ;. denote the category whose objects are the finite Cartesian

powers of X, and morphisms are morphisms of algebraic varieties defined over K; we
let XY to be a variety consisting of a single K-rational point.

X Xgpeck Speck®P —— Spec kP X, ——

T ]

X —— > Speck —

Conjecture 3.4 (Z(m1,L%)). — Let K be an algebraically closed field of zero char-
acteristic, A an Abelian variety defined over a number field k. Let L be an ample
line bundle over A and L’ be the corresponding G,,-bundle. Further assume that the
Mumford-Tate group of A is the maximal possible, i.e. the general symplectic group,

MT(A) = GSpZ

and that the image of Galois action on the torsion has finite index in the group of
Z-pomts of the symplectic group.

Then there is a finite family of mi-like functors 11y such that each m -like functor

on the full subcategory (L% ), consisting of the Cartesian powers of the Gy,-bundle
%, factors via an element of II;.

These functors in II; correspond to different embeddings of the field of definition

of A into the field of complex numbers.

SV Something like this is attempted in a recent unfinished draft http://people.maths.ox.ac.uk/
zilber/KwExtend.pdf by Boris Zilber.
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The following conjecture is probably within reach, at least if we replace the funda-
mental groupoid functor by its residually finite part.

Model theoretic methods of [BH2K?14] are likely enough to show that it is enough
to prove this conjecture for countable algebraically closed subfields. Methods of
[GavrDPhil,IT1.5.4.7], cf. Statement below, likely reduce the remaining part of
the conjecture to certain properties of complex analytic topology and normalisation
of varieties, see for details.

Conjecture 3.5 (Z(m1,Q c C)). — Let Varc be the category of smooth quasi-projective
varieties over C, and let Varg be its category consisting of varieties and morphisms
defined over Q.

Assume that 7 : Vare — Groupoids is a mwi-like functor which coincides with
the topological fundamental groupoid 7ri0p for varieties and morphisms defined over

Q, i.e. for each variety V in Varg and each morphism V ER W in Varg it holds
w(V) =" (V) and 7(f) = m ().

Then there exist a field automorphism o € Aut(C/Q) such that 7 oo and 7' are
equivalent.

There are a number of theorems and conjectures which can be seen as saying that,
up to finite index, Galois action is described by geometric, algebraic or topological
structures; our conjectures can also be seen in this way.

3.3. Partial positive results. — The conjectures in §3.1| are closely related to
categoricity theorems in model theory, and this led to several partial positive results
about uniqueness of m;-like functor restricted to certain subcategories: the full sub-
categories (K*) of algebraic tori in arbitrary characteristic; the full subcategory of
(E) of finite Cartesian powers of an elliptic curve over a number field; a weaker result
about the full subcategory (A) of finite Cartesian powers of an Abelian variety over a
number field; a still weaker result about the full subcategory (V) of finite Cartesian
powers of a smooth projective variety whose fundamental group is subgroup separable.

Note that the first three categories are linear in the sense that the the groups
Aut(K*), Autpnag-mod(E(K)), and Autgng A-moaA(K) act on the set of mi-like
functors on the respective categories (K*), (E), and (A), via their action on these
categories.

Let us now list several statements translated from categoricity theorems available
in model theory literature. We give references but do not explain the translation.

A reader familiar with algebraic geometry may find that there is a better way to
formulate these results. In the case of a countable field K, their proofs do not require
elaborate techniques of model theory, and such a reader may find it easier to reprove
these results in a familiar language while only drawing inspiration from the proofs in
the literature.

Statement 3.6 (BaysZilber,Th.2.1). — Let K = K be an algebraically closed field
of char K = 0, and (K*) denote the full subcategory of algebraic tori (K*)", n > 0.
Then there is a w1 -like functor m over K such that for any w1 -like functor @ over K
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there is a field automorphism o : K — K and a natural transformation 1 = o(n")

such that the induced natural transformation Ob ﬂ(’p = Obr’ is identity.

Statement 3.7 (BaysDPhil, Th.4.4.1; GavrK, Prop.2)

Let K = K be an algebraically closed field of char K = 0, and let (E), be the full
subcategory of Cartesian powers of an elliptic curve E defined over a number field k
which has a k-rational point 0 € E(k). Then there are finitely many m -like functors

7l ..., ®" such that for each m -like functor m over K such that

— 7(E,0,0) ~ Z?

there is 1 <i < n, a field automorphism o : K — K and a natural transformation
7 == o(m) such that the induced natural transformation Obm; = Obw is identity.

Statement 3.8 (BaysZilber,Th.2.2). — Let K = K be an algebraically closed field
of char K = p > 0, and let (K*) denote the full subcategory of algebraic tori (K*)",
n > 0. Then there is a m -like functor ™ : (K*) — Groupoids over K such that
for a m1-like functor ' : (K*) — Groupoids over K there is a field automorphism
o: K — K and a natural transformation 1 = o(x’) such that the induced natural
transformation Obw = Ob 7’ is identity, whenever

- ’/T,(K*a ]-7 1) N Z[l/p]

— the restrictions mg, and )

IF to I_Fp-mtional points coincide:
P

— —_ ’7
T, = TR,

Statement 3.9 (BaysDPhil, Th.4.4.1). — Let K = K be an algebraically closed
field of char K =0, and let (A) . denote the full subcategory of Cartesian powers of an
Abelian variety A defined over a number field k which has a k-rational point 0 € A(k).
Then there exists a m -like functor m over K such that

_ 71-(14)()7()) — Z2dimA
with the following property. For any m1-like functor @' over K such that

— it has the same fundamental group functor as m, i.e.
7(A,0,0) =7'(A,0,0)

— it has the same torsion as w, i.e. for any p: A — A étale, any 7 € m(A,0,0) =
7' (A,0,0), and any v, € w(A), and any v € 7 (A) such that w(p)(yx) =
7' (p)(yxr) =7, it holds that

source(y, ) = source(y,s) implies  target(vy,) = target(y,)

there exist a field automorphism o : K — K and a natural transformation m =—
o(n’) such that the induced natural transformation Ob 7 = Obx' is identity.

Recall a group G is called subgroup separable iff for each finitely generated subgroup
H < G and element h ¢ H there is a morphism f: G — G into a finite group Gy
such that h ¢ f(H).
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Statement 3.10 (GavrDPhil,I11.5.4.7). — Let K be an algebraically closed of
char K = 0, card K = Ry, and let (V) denote the full subcategory of Cartesian pow-
ers of a smooth projective variety V defined over a number field k. Assume that V'
has a k-rational point 0 € V(k) and that the universal covering space of V(C) is
holomorphically complex, for some embedding K — C, and its fundamental groups
m1(V(C),0,0)™ are subgroup separable for each n > 0.

Then there is a m -like functor 7 : (V'Y — Groupoids over K such that for a m -like
functor " : (V) — Groupoids over K there is a field automorphism o : K — K and
a natural transformation 1 == o(n') such that the induced natural transformation
Ob !’ = Ob is identity, whenever

— 7'(V,0,0) » 7.’ (V(C),0,0)

— the restrictions mg and 7r|'Q to Q-rational points coincide:

ﬂ-l@ = ’/Tll(@

Methods of [BH?K?14] are likely enough to show that Statement in fact holds
for algebraically closed fields of char 0 and arbitrary cardinality.

We wish to mention the work of [HarrisDPhil, DawHarris], and particularly [Eterovic]

on Shimura curves, which does not quite fit in our framework. To interpret their re-
sults, one needs to consider ﬂiOp as a functor to groupoids with extra structure.

Question 3.11. — Conjectures on independence of Galois representations of non-
isogenious curves suggest us to consider the analogue of Conjectures in for the
full subcategory (Eq x...x E,),; generated by a finite product of elliptic curves
FEq,...,E, over a number field. Do these analogues indeed hold?

Question 3.12. — Consider a m-like functor 7 on the category of complex smooth
projective varieties, say defined over a number field, such that its fundamental groups
m(X,z,x), where X is a variety and z is a geometric point of X, are Abelian. Does
it necessarily factor via 7r§°p up to a field automorphisms?

3.4. Mathematical meaning of the conjectures. Elements of proof of the
conjectures. — Here we try to explain the arithmetic and geometric meaning of
the conjectures. In a sense, the conjectures say that Gal(Q/Q) and Aut(K/Q) are
large enough. We try to show below in what sense, by showing possible obstruc-
tions/difficulties in proof.

8.4.1. Galois action on roots of unity and Kummer theory. — Consider the infinite
sequence exp(2mi/n) of roots of unity. This sequence can be obtained topologically:
take the loop 7 generating w(C*,1,1) ~ Z, the étale morphism 2" : C* — C* and
lift v uniquely to a path 4, starting at 1 € C*. Then exp(27/n) is the end-point of
~n. This construction shows that a m-like functor on the category (K*) determines a
distinguished sequence &,,,n > 0 of roots of unity. Hence, our conjectures imply that
the Galois group acts transitively on the set of sequences of roots of unity associated
with 7;-like functors.

Consider a m;-like functor on the category (K*). As noted above, group auto-
morphisms Aut(K*) of K* act on the set of these functors. Hence, Statement
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implies that multiplicative group automorphisms Aut(K*) and field automorphisms
Aut(K [/Q) have the same orbits on the sequences &, (&mn)™ = &n,m,n > 0 of roots
of unity.

Kummer theory arises in a similar way if we consider endpoints of liftings of paths
joining 1 and arbitrary elements a, ..., a,.

8.4.2. Elliptic curves and Abelian varieties. Kummer theory and Serre’s open image
theorem for elliptic curves.— Kummer theory for elliptic curves and Abelian varieties
arises in the same way if we consider 7;-like functors on the category (A) generated
by an Abelian variety.

Similarly, our conjectures about m;-like functors on (A), imply that the action of
Aut pras-mod (A(K)) and Gal(Q/k) on the torsion points do not differ much. This
is true for elliptic curves but fails for Abelian varieties of dim A > 1, hence the extra
assumption in (4) on the family of 7-like functors.

8.4.8. Arbitrary variety. FEtale topology and an analogue of Lefshetz theorem for the
fundamental group. — To prove Statement we need several facts about étale
topology. Most of these facts are well-known for smooth varieties; what we use is
that they hold “up to finite index” for arbitrary (not necessarily smooth or normal)
subvarieties of a smooth projective variety.

Consider the inverse limit Linff((C) of finite étale covers V(C) — V(C) of a
complex algebraic variety V. The universal analytic covering map U — V(C) gives
rise to covering maps U — V(C) and hence a map U — Llnf/((C) Zariski topology
on the étale covers makes LLH‘}((C) into a topological space. Hence there are two
topologies on U — the complex analytic topology and the “more algebraic” topology
on U induced from the map U — LiLnV((C). Call the latter étale topology on U.

Definition 3.13. — The étale topology on the universal covering space of the topo-
logical space of complex points of an algebraic variety is defined as the topology in-
duced from the map to the inverse limit of the spaces of complex points of finite etale
covers of the variety equipped with Zariski topology. The étale topology on a covering
space of the topological space of complex points of an algebraic variety is defined
similarly.

To prove Statement we use that these two topologies are similar and nicely
related. In particular,

Lemma 3.14. — Assume V satisfies the assumptions of Statement [3.10

— Closed irreducible sets in étale topology are closed irreducible in complex analytic
topology (by definition).

— For a set closed in étale topology, its irreducible components in complex analytic
topology are also closed in étale topology [GavrDPhil,III.1.4.1(4,5)].

— The image of an étale closed irreducible subset of U x...xU under a coordinate
projection is étale closed [GavrDPhil, I11.2.2.1].
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Note that this is easy to see that connected components of a set closed in étale
topology are also closed in étale topology, and hence that the properties above holds
for smooth or normal closed subsets.

Let f: W — V be a morphism of varieties, and let f, : Uy — Uy be the map of
the universal covering spaces of W(C) and V(C). We may assume that V is smooth
projective but it is essential that W is arbitrary. In applications, W is an arbitrary
closed subvariety of a Cartesian power of a fixed variety V.

Lemma 3.15. — Under assumptions above, if f : W — V is proper, then the image
f(Uw) is closed in Uy in étale topology

In fact, this is a reformulation of the following geometric fact [GavrDPhil, V.3.3.6,
V.3.4.1):

— If f:W(C) — V(C) is a morphism of smooth normal algebraic varieties, g a
generic point of V(C) and W, = f~!(g) then

7-‘-1(V[/_(]a/w7u}) - ﬂ-l(mwaw) - Wl(‘/mgmg)

is exact up to finite index
— Moreover, if f(W(C)) is dense in V(C), then m (W, w,w) — 71(V,g,g) is
surjective.
In fact we use a generalisation of this, namely that it holds up to finite index for
arbitrary varieties if one considers the image of the fundamental group in the ambient
smooth projective variety.
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