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Abstract

We introduce and study higher genera generalizations of the Halphen
theory of continued fractions. The basic notion we start with is hyperel-
liptic Halphen (HH) element

vV X2g12 — \/Yagi2

T —y ’

depending on parameter y, where Xag42 is a polynomial of degree 2¢g + 2
and Yagq2 = Xog42(y). We study regular and irregular HH elements,
their continued fraction developments and some basic properties of such
developments such as: even and odd symmetry and periodicity. There is
a 2 < g + 1 dynamics which lies in the basis of the developed continued
fractions theory. We give two geometric realizations of this dynamics. The
first one deals with nets of polynomials and with polygons circumscribed
about a conic K. The dynamics is realized as a path of polygons of g + 1
sides inscribed in a curve B of degree 2g and circumscribed about the
conic K obtained by successive moves, so called — flips along edges. The
second geometric realization leads to a new interpretation of generalized
Jacobians of hyperelliptic curves.
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1 Introduction

Modern algebraic approximation theory with continued fraction theory was es-
tablished by Chebyshev (Tchebycheff according to the traditional French tran-
scription) and his Sankt Petersburg school in the second half of the XIX century.
Chebyshev’s motivation for this studies was his interest in practical problems:
in the mechanism theory as an important part of mechanical engineering of that
time and ballistics. Steam engines were fundamental tool in technological rev-
olution and their kernel part was the Watt’s complete parallelogram, a planar
mechanism to transform linear motion into circular, shown on Figure 1.

Figure 1: Watt’s complete parallelogram

Fundamental problem was to estimate error of the mechanism in execution
of that transformation.

Starting point of Chebyshev’s investigation ([14]) was work on the theory of
mechanisms of French military engineer, professor of mechanics and academician
Jean Victor Poncelet [12]. In his study of mistakes of mechanisms, Poncelet
came to the question of rational and linear approximation of the function

2+ 1.

In other words he studied approximation of the functions \/Xsz(z) of the form
of square root of polynomials of the second degree, and he gave two approaches
to the posed problems, one based on the analytical arguments and the second
one based on geometric consideration.

Although Poncelet was described by Chebyshev as “well-known scientist in
practical mechanics” (see [13]), nowadays J. V. Poncelet is known first of all as
one of the biggest geometers of the XIX century. The Poncelet Theorem (PT)



is considered as one of the nicest and deepest results in projective geometry:
Suppose that two ellipses are given in the plane, together with a closed polygonal
line inscribed in one of them and circumscribed about the other one. Then, PT
states that infinitely many such closed polygonal lines exist — every point of the
first ellipse is a vertex of such a polygon. Besides, all these polygons have the
same number of sides. (See Figure 2).

Figure 2: Poncelet theorem

In his Traité des propriétés projectives des figures [11], Poncelet proved even
a more general result and used only purely geometric, synthetic arguments.

The case when the two ellipses are confocal has clear mechanical interpreta-
tion as billiard system within outer ellipse as boundary and having inner ellipse
as the caustic of a given billiard trajectory, as shown on Figure 3. PT in this
case describes periodic billiard trajectories. For a modern account of PT see
[6, 7] and references therein.

Figure 3: Billiard system and confocal conics



However, nowadays it is almost forgotten that there is an amazing connection
between Poncelet Theorem and continued fractions and approximation theory

of the functions of the form
X4 (.’E),

where X, () denotes general polynomial of the fourth degree. This connection
of continued fractions and approximations of functions of the form of square
root of polynomials of fourth degree with the Poncelet configuration and PT
was indicated by Halphen [9]. (A Poncelet configuration, i.e. a polygonal line
inscribed in one and circumscribed about another conic is shown on Figure 4).

Figure 4: Poncelet configuration

Theory of continued fractions of square roots /X4(z) of polynomials of
degree up to four started with Abel and Jacobi. Faced to problems with very
complicated algebraic formulae in algorithm, Jacobi [10] turned to an approach
based on elliptic functions theory. Further development of that approach has
been done by Halphen [9]. Halphen studied, instead of the square root of a
polynomial, the following, more general, Halphen element

VX4 — VY,
x—y

where Yy = X4 (y) is the value of polynomial X at given point y.
In this paper we are going to study more general theory of continued fractions
of hyperelliptic Haplhen elements

\/X29+2 - \/Y2g+2
T —y ’

where Xg440 is a polynomial of degree 2g + 2 and Y440 = Xogio(y). It is
obviously related to the theory of functions of the hyperelliptic curve

2
I':z :X2g+2



of genus g. We are also going to refer to this theory as HH continued fractions.
We hope that this theory will find its way to concrete applications in modern
technology. As a possibility we can mention development of branched, multival-
ued algorithms to be used in future cryptography. However, this requires strong
interaction with experts of different fields.

Here, we give two geometric interpretations of the dynamics which lies in
the basis of the HH continued fraction developments.

In the Section 10 we give geometric realization of the 2 «+» g + 1 dynamics
which deals with nets of polynomials and with polygons circumscribed about
a conic K. It extends, not only in a flavor, the initial story of the Poncelet
polygons. The dynamics is realized as a path of polygons of g+ 1 sides inscribed
in a curve B of degree 2¢g and circumscribed about the conic K obtained by
successive moves of certain type — so called flips along edges.

The second geometric realization, done in Section 11 starts with the notion
of the generalized Cayley curve (see [6], [7]) and leads to a new interpretation
of generalized Jacobians of a hyperelliptic curves following and continuing the
program of [7].

2 Basic Algebraic Lemma

Given a polynomial X of degree 2g+ 2 in z. We suppose that X is not a square
of a polynomial. Assuming that the values of y and € are finite and fixed, we are
going to study H H elements in a neighborhood of €. Then, X can be considered
as a polynomial of degree 2g + 2 in s, where s = x — ¢ is chosen as a variable in
a neighborhood of €.

Lemma 1 (Basic Algebraic Lemma) Let X be a polynomial of degree 2g+2
inx andY = X(y) its value at a given fixed point y. Then, there exists a unique
triplet of polynomials A, B,C with deg A =g+ 1, deg B =degC = g in = such

that
VX -VY _ Bz —e)9t!
ey YT xa @

Proof. Put s =x — ¢ and t = y — ¢ and denote X = X'(s) = 3.795? p;s? and

g+1 g g
A=Y "Ais', B=)» Bis', C=) Cis'.
=0 =0 1=0

We are going to determine the coeflicients A;, B;, C; in the way that the equation

(1) is satisfied. Taking into account that v/ X is irrational, the last equation can
be separated into two equations:

A=Y —C(s—t) =

X —AVY — AC(s —t) — Bs9t (s — 1)

)

0
(2)
0.



Add the following consequence of (2):
X — A% = Bs9t(s —1). (3)
For s = 0, from (1) and (2), we get:

o - VY=V
O—f»
Ay = —Cot +VY = /po.

Then we calculate A;, i = 1,..., g, from equation (3). From the first of equations
(2), by putting s = t, we get
Alt) =VY.

From the first equation (2), for s = ¢, we see that degC = deg A — 1 and we
compute all the coefficients C; as functions of the coefficients of the polynomial
A. For example, Cy = Ag41.

The last step is to compute the polynomial B. Observe that the coeflicients
Ao, ... Ay of the polynomial A are obtained in a manner such that

sITX — A%

The leading coefficient A,q is such that X — A? = 0 for s = ¢. Thus, there is
a unique polynomial B, deg B = g such that

X — A% = Bs9t (s —t).

3 Hyperelliptic Halphen-type continued fractions

Let us start with the factorization of the polynomial B:

g9

B(s) =By [ [(s — 1)

i=1
and denote A(t}) = —/Y{. Then we have

A+VX

i
s—13

= PY(t s)+7ﬁ_ VY
ANy z—y

with certain polynomial P4 of degree g in s and with coefficients depending on
the coefficients of A and ¢}.
Denote



Then we have )
Qo = By H?:l,j;ﬁi(s —t])s9!
0= .
Pz(ﬁ’ S) + M

z—yi

Now, by applying the Lemma 1 we obtain the polynomials A(1%), B (19
of degree g + 1, g, g respectively, such that

VX — /Y] B (z—e)9t!
_— Y=
-y VX + AL
Denote

g
of = Pi(t,s), B =B, [[ (s—t])s,
J=1,j#i
and introduce Qgi) by the equation
i)
Qo= <z‘>ﬁ1 @
o + @

Observe that deg agi) =g and deg ﬁy) = 2g.
Now, one can go further, step by step: to factorize B9 to choose one of
its zeroes t} and to denote by B/ := B(1) /(s — t}). Further, we denote
Oégi)j) = PA1*'ig(tg7 8)7 ﬂ2i’j) = Bi’jsg+17
and calculate Qg’j ) from the equation
I
a(Qw) +ng)

Thus we have

VX-VY R
oy BeD
R

Following the same scheme, in the i-th step we introduce polynomials

A(i,jl,“.,ji) _ C(i,j17~~~,ji)(sit‘j1 ,,,,, ji) + /Yh ,,,,, Ji ( )
2 1 ’ 4

X — AGI150)2 B(i’jl""’j”)89+1(8 _ chn-,ji).

We see that in the case g > 1 the formulae of the (i + 1)-th step depend on the
choice of one of the roots of the polynomial B(® and of the choices from the



previous steps. To avoid abuse of notations we are going to omit many times

in future formulae the indexes j1, ..., j;, which indicate the choices done in the

first 7 steps, although we assume all the time that the choice has been done.
According to our notation we have

s — ti|B(i_1)
and 5
(i-1) _ _Mi 4
B = ori (s —t;)
or

B =B 1(s — tis1),
where 3; = 3;/s9"!. From the equations (4) we have
X = AU = Bi(s — t;1)s9 (s — 1),
X — AD% = By (s — tiga)s7 (s — 1)

together with
A(Z) (tl) =V Yviv
AN (1) = —\/Y;.

We introduce \; by the relation

AL = ok

Theorem 1 If )\; is fized, then t;, tﬁ_)y cee, tl(ﬂ_)l} are the roots of the following
polynomial equation of degree g+ 1 in s:
QX(A% S) =0.

The proof follows from the equations (5). In the same way, we get

Theorem 2 If t; is fized, then \; and \;_1 are the roots of the polynomial
equation of degree 2 in A:

Qx(Ni-1,t:) =0,  Qx(Xi,t;) =0.
One can easily calculate
Bé“ = P2g+2 — po)\?,
thus

g
Biv1 = (pagr2 — poy) [ [ (s — t])s7 .
=2

We also have
AD = /po (L+ qus+ -+ As?T)
CO = Vo (qu+ -+ Ni(s? + 87 i 4o+ 1))



and
o =/po (2q1 + -+ Nict + N) (7 + 89+ 1))

According to Theorem 2, the sum A;_; + A; from the last equation, can be
expressed through the coefficients of the polynomial Qx (A, t;) as a polynomial
of the second degree in A .

4 Basic examples: genus one case

The genus one case, or the elliptic case, has been studied by Halphen. Here we
reproduce some of his formulae (see [9] for more details). The elliptic curve is
given by a polynomial X of degree 4, in variable s in a neighborhood of e:

The development around the point € of its square root has the form
VX =ypo(L+qs+q@s®+g3s® +...),

with the following relations between ¢’s and p’s:

g = P
1— 5 >

2po
G2 = ! (4pop2 — p?)

8p3 1o
1 P

= — 2 _ L
q3 1 ( PoP3 — Pop1p2 + 1)
qa = (pa — 2q1g3p0 — @3po) -

2po

Here we have

™ = (14 @15 + 25°)° + 2¢35° + 2(q1q3 + q1)s”

From Basic Algebraic Lemma, applied to the case g = 1, we get the polynomials
A= Ay+ A1s+ Ass?, B = By + Bys,C = Cy + C1s which satisfy

A-VY - 0(5 —t) = 0;
X —AVY —AC(s—t) — (s —t) = 0; (6)
X — A2 = Bs*(s — t).

10



From the equations (6), one gets the formulae for the polynomials A, B, C:

VY — (14 q1t)y/Po

Ao = /Po, A1 =qi\/Do, Ax= 2 ,

Co = \/Vt\/l)»o7 Cy = Ay,

By = Q‘t/f) (ﬁ— Vpo(l +q1t+q2t2)) :

B = Qﬁp»o ((1 +@at)VY = po(l + 2q1t + (¢F + ¢2)t* + (q1g2 + 113)753)) :

If we denote
Pzgl)(t7 S) = Al + AQ(S + t):
then we have
3152

QO = )
Pfﬁl) (tl, S) + ﬁim

and, step by step

where

Finally, one gets

>
|
&
-
=
-
=
Vo)
[\v]

oy = P;(S(Z—l)(ti’ s)+C.
From equation (7) we get
X _ AG-D2 _ ms?(s —t;_1)(s — t;);
X —AD2 = ng?(s —t;)(s — tig1);
AD(t;) = /Y
A () = =Y
AP = VPoAis

with some constants m,n, and then we have:

iztlzg(\/\/g—(1+Q1ti)>,

From the last equations one obtains:

11



Proposition 1 If \; is fized, then t;, t;11 are roots of the polynomial Qx(\;, s)
quadratic in s:

Qx(Ni,8) == (pa — poA3)s® + (p3 — P1Ai)s + 2p0(g2 — Ai) = 0.

Corollary 1 The product of two consecutive t; and t;11 is:

titiy = 2po(Ai — g2)
P U SAU V)
o PoA? — P4
and their sum is equal to:
P1A;i — P3
titliyn=——73-
Ty — po?

Proposition 1 can be reformulated giving relation between two consecutive
/\i—l and /\1

Proposition 2 Ift; is fived, then X\;_1, \; are solutions of quadratic equation:
N2 (pot?) + A(piti + 2po) — (pat? + psti + 2poga) = 0.

For the normal form of the elliptic HH c. f. we consider the case where

a; =1+ us, Bl = ;s>
Then we have 1
ti = — Ai =qo — 2011,
7 o n u; ) 7 q2 141
The recurrent relations are given with
q2
U + Um1 = —q1 + 5—,
2’[}1‘
44
Vi + Uiti—1 = @2 + .
QUZ‘

The second set of recurrent equations is done by
Vi + Vig1 = g2 + Qg + U,

20,0541 = —q4 + q3U;.

5 Basic examples: genus two case

5.1 Notation

We start with a polynomial X of degree 6 in x and rewrite it as a polynomial
in s in a neighborhood of

12



and its square root developed around ¢ as
VX = o1+ g5 + @25 + g35” + qus” + g55° + g65° +qr8” + ... ).
Then, the relations between coeflicients p; and g; are
P1 = 2poqa,
P2 = po(242 + ¢7),
p3 = 2po(q3 + q1G2),
pa = po(2q4 + @5 + 2q143),
Ps = 2po(gs + 4293 + q144),
Pe = po(2¢6 + 2q105 + 2q2q4 + G5),

with relations between ¢; such as:
0 = g7 + 2q196 + 29205 + 2q39a-

Conversely, ¢;’s can be expressed through p’s:

¢ = D1
1= 5 >
2p0
q2 = <P2p0 )
p1p2po D
q3 = ( g + 1) )
8
4]72]?0 —pi
qa = { — 1 T6(8p3po Apipapo + p3) ¢
p
45 = — — 4293 — 4144,
2po

1
a6 = — (ps — 2q1g5Po — 2q2qap — 0 — G5p0).
2po

The initial polynomial X can be expressed through g¢;’s:

o (14 q15 + q25” + ¢35°)° + 245" + 2(qraa + ¢5)5° + 2(q105 + 204 + ¢6)5°
0

5.2 The case of Basic Algebraic Lemma

We are going to determine polynomials A, B, C of degrees deg A = 3, deg B =
degC = 2. Denote A = A(s) = Ag + Ays + Azs® + A3s3, B = B(s) =
By + B1s + Bys?, C = C(s) = Cp + C15 + Cas?. Then the equations (2) and
(3) become
A-VY - C(s —t) = 0;
X —AVY — AC(s —t) — (s —t) = 0; (8)
X - A2 = Bs*(s —t).

13



For s = 0, we obtain:

VY —
COZf\/piOa Ao = v/po.

Then we calculate A4;, i = 1,2 from the last equation of (8) by comparing
polynomials X and A term by term up to the second degree:

p1 1 dpopo — pi

N T2/ 4pe

Ay

thus
A= \/po(1+qis+ q2s® + M\15°).

From the relation A(t) = VY we get

1
Ay =

4 2
5| VY~ (Vo + PL_y | ZPoP2 Pz

2Vp0 sy

The coeflicients of C are C; = Ay and Cy = As. The coefficients of the polyno-
mial B are

B2 =P — A§7
Bl = Bgt + p5 — 2A2A3,
By = Bit + ps — (241 A3 + A3).

We factorize it
B = By(s — t(l))(s - t%),

and denote
A = —\/YL, At} = —\/Yi

Now, we have

A+VX A+\/Y10+\/)>(—\/Y10

s—t9  s—19 x — 1y
A(s)_A(th)JF\/)?ﬂ/YlO
o s —t9 z—19yY
VX = /Y0
:A1+A2(s+t(1))+A3(52+5t(1)+t(1)2)+x_7y(1]1.

Denote
PP (t,5) 1= Ay + Ag(s + ) + Az(s + st +12).

Then we have finally

B By(s —t1)s?

= —=
PO (19, 5) + Y2 v

Qo

14



Step by step we get

AD = ¥, = €D (s — 1),

, . (9)
X — A2 = BOg3 (s — 1),
where )
BUY(t) =0, t;:=t,
AD(t 1) = —/Yis1.
Now, we have _
B; = Bézfl)(s —ths®, (10)
oy = P (ti,5) + O,

We can represent the HH continued fraction in the following manner

X - VY )
Q:C+@+@++L)
xT—y lar o lo; + Qi
where
0, = YX=VYi o _ B
! T —Y; VX + A®
and
Q; = Bit1 .
ip1 + Qiv1

5.3 Relations between )\, and ¢;
From equation (9), we get:
X — AD2 = BITD (s 1) (s — t; 1) (s — ta);
X — AD2 = BY (s — 11 )sP(s — ;) (s — tig1);
AD (1) = /Y (11)
AU () = —/Y;
AY = /poi.

From (11), we have:

1 /VY; 9
izﬁ,<\/p—0—(1+91ti+Q2ti))y
1 Y;
M= = [ —Y2L (1 ti t2)),
1 tf( N 1+aq +Q2Z)>

and thus

N Yipr 850V Ys = VPo(tigr — ) [8 4 +tigate+ qutitia (i +6:) +qoti t ).

15



From equations (11) we also get

2
Aic1 + A = —Lfo,(l + qiti + 2t3),

! (12)
1 Y;
Aic1Ai = % (1+ qit; + qot3)* — ™

Finally, we have

Proposition 3 If \; is fized, then t;, t;+1, t%H are roots of the polynomial
Qx (X, s) of the degree 3 in s:
Qx (i, s) := (ps — poA})s® + (ps — 2poga)i)s” + (Pa — 2poqu Xi — G5po)s+
+ (p3s — 2poXi — 2poq1q2) = 0.
Corollary 2 The product of two consecutive t; and t;11 is

D3 — 2poA; — 2Poq1q2

tzl+1(p6 - po)\?)

titit1 =

Proposition 3 can be reformulated to give a relation between two consecutive
)\i,1 and )\z

Proposition 4 Ift; is fized, then \;_1, A\; are solutions of quadratic equation
aN + A+ =0,
with

a = —Pot?a
B = —2pogat; — 2poqit; — 2po,
v = pets + pst; + (pa — 43po)ti + 3 — 2P0q1Ge-

5.4 Normal form of genus 2 HH c. f. Recurrent relations

Using equations (12) and (10), we get formulae for o:

2 2
a; = \/po (_t + (292 + Xi—1ti)s — t?(l +qiti + q2t?)52> :
; ,

7

Given HH c. f. with «;, (§;, it can be transformed to the equivalent one with
o = cioy, Bi = ci—1¢ifi.

Here, we chose coefficients

16



and get
o =1+ wis + u;s?,

g 13
) (13)
t
where
_ 1+ ati + oot}
A
Ail
w; = —(qati + 2 lt?)v (14)
Aic1 n
Vi = — .
9 a3
We will refer to the form (13) as to normal form of the given HH c. f.
From the equations (13), we get
Ai1 = —20; + q3 (15)
and 5
(g2 —wi)t; + qiti +1=0,
Xi1 (16)

t? +q2ti + w; = 0.

2

From the equations (16), we have

P (ui — )wi+ (vi = %)

o q2(q2 — ;) —Q1(q73 — ;)

From Proposition 4 and equation (16), one obtains:

t;

A2 <—2> — A+ [geti + g5 (@iti + 1) + qzu; + qauit;] = 0,

having two zeroes A;_; and \;. From the last equation, we get

ui( A —q3) — g5

t; = :
—/\72 + g6 + q5q1 + qauy

By using the second of equations (16) and equating the right sides of the last
equation for \;_; and A, we get

Lemma 2 The following relation between u; and v;,v;y+1 holds:
1 2
—5(2Uivi+1+QS)(Q3 — 2v;)° 4 2u;(gs + g5q1 + qaui) (Vg1 — i)+
1
+ 5(2%‘% +¢5)(g3 — 2v;41)* = 0.

This Lemma implies the following

17



Corollary 3 If v; # v;y1 then
0 = q3u; — 4uvviss — 2¢5(vi + vit1) + 2g5q3 — 2ui(g6 + g5q1 + qats).-
From the equations (12), (15), (14) we get

Proposition 5 The recurrence equations connecting v; and v;y1 for fized u;

and t; are:
u;
Vi + Vg1 = . + s,
K3

4vviy1 = (—2g6 — 2q1q5 — 2qau;) + G35 — 2%-

(2

Rewrite polynomial Qx ();, s) in the form

Qx (i, 8) = Q38° + Qa5” + Q15 + Qo,

where )

Q3:q6+Q1(J5+Q4Q2+%3—

Q2 =5+ q1qa + q2(q3 — Ni),
Q1= qa+q(gz — \i),
Qo =q3 — \i.
Summing the relations Qx (A, t;) = 0 and Qx (i, tir1) = 0, we get

A
2 b

A2 i+t
(wituiy1)(gs—Ai) = (tittiv1) (1’ — 46 — q5q1 — Q4Q2) 905241 g4
2 titiv1

From the last equation, using the Viete formulae for polynomial Qx(s) and
equation (15), we get

Proposition 6

1 Q —20i11 + q3)?
Ui + Uiy = §Ui+1[ (QZ — t}H) ((Jr;?’) —dq6 — 4591 — qaq2 | —
Q2

QS 1
— X2 _ 4l —t: 1 — 2q5 — 2 .
q4 (Q3 z+1> Qo i+1 qs q1G4)

6 Periodicity and symmetry

6.1 Definition and the first properties
According to Theorem 2, in the case
th = tg

for some h, k, there are two possibilities:

(I) 1= Ai—1, Ah = Ak;
(ID) Mner=Aes An= Aot

18



The first possibility leads to periodicity:

thts = thts, )\h+s = )\kJrs

for any s and with appropriate choice of roots. If p = h — k and r = s (mod p)
then

ar=as,  fr=0s.
The second possibility leads to symmetry:
thts = th—s, Ahts = Ak—s—1
for any s. More precisely, we introduce
Definition 1

(i) If h 4+ k = 2n we say that HH c. f. is even symmetric with

Qn—i = On+i, Brn—i = Bnti-1-
for any i and with o, as the centre of symmetry.

(i) If h+k = 2n + 1 we say that HH c. f. is odd symmetric with

On—i = Onti—1, Bn—i = Bnti-
for any i and with (B, as the centre of symmetry.

Now we can formulate some initial properties connecting periodicity and
Symmetry.

Proposition 7

(A) If a HH c. f. is periodic with the period of 2r and even symmetric with o,
as the centre, then it is also even symmetric with respect cu4 .

(B) If a HH c. f. is periodic with the period of 2r and odd symmetric with
respect Bn, then it is also odd symmetric with respect Brir.

(C) If a HH c. {. is periodic with the period of 2r — 1 and even symmetric with
respect au,, then it is also odd symmetric with respect B+r. The converse
18 also true.

Proposition 8 If a HH c. f. is double symmetric, then it is periodic. Moreover:

(A) If a HH c. f. is even symmetric with respect a, and oy, n < m then the
period is 2(n —m).

(B) If a HH c. f. is odd symmetric with respect By, and By, n < m then the
period is 2(m — n).
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(C) If a HH c. f. is even symmetric with respect o, and By, then the period
is 2(n —m) 4+ 1 in the case m < n and the period is 2(m —n) — 1 when

m>n.

Observations:

(i) A HH c. f. can be at the same time even symmetric and odd symmetric.

(ii) If A\; = X\;_1 then the symmetry is even; if ¢; = ¢;11 then the symmetry is

odd.

6.2 Further results

Theorem 3 An HH c. f. is even-symmetric with the central parameter y if

X(y) =0.

The proof follows from the fact that even-symmetry is equivalent to the

condition A, = A,_1, which is equivalent to equality Y, = 0.

For odd-symmetry, let us start with the example of genus two case. From

relations: p
QX()\7S) = 07 %QX()VS) =0

we get the system:
3Q35° +2Q25 + Q1 =0

Q25> +2Q15 4 3Qo = 0.

From the last system we get

_ slgs + q1q4)s + g4
2¢25? +4q15+6

Vi41 =
or, equivalently

Ai

_ P58 + 2(ps — ¢3po)s + 3(ps — 2p0q1g2)

2poq2s? + 4pogas + 6po

(17)

By replacing any of the last two relations in the first equation of (17), we
get the equation of the sixth degree in s. On the other hand, from (17) we get:

s 9Q0Q3 — Q1Q2
2Q3 — 6Q1Qs

Now, by replacing the last formula in the first equation of (17) we get the

equation of the eight degree in A;.

20



7 General case

7.1 Invariant approach

Now we pass to the general case, with polynomial X of degree 2g + 2. Relation
Qx(\s)=0 (18)

defines a basic curve I'x. Denote its genus by GG and consider its projections p;
to the A—plane, and ps to the s—plane.

Denote by R, the ramification points of the second projection and call them
even-symmetric points of the basic curve.

The set Ry, of the ramification points of the first projection is the union
of sets of the odd-symmetric points and of the gluing points.

The gluing points represent situation where some of the roots of the poly-
nomial B coincide. For example in genus 2 case the gluing points correspond
to the condition t;11 =t} .

From Theorem 3, we get

deg R, = 2g + 2.
Applying the Riemann-Hurvitz formula, we have

2 —2G =4 — deg Rq;
2—-29g=2(g+1)—degRotr.

Thus
genus T'x) =G =g
and
deg Ro1r = 4g.
We get a birational morphism
f:T—=TIx

by the formulae
fi(z,8)— (£, N),

where
t=ux,

1 S
2= (= -00).
Qet) =14 qrt +--- + ggt9.

Function f satisfies the following commuting relation:
fom=myof,

where 7 and 7r, are natural involutions on hyperelliptic curves I' and I'x
respectively.
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7.2 Multi-valued divisor dynamics

The inverse image of a value z of the function A is a divisor of degree g + 1:
A H(2) = D(z), degD(z)=g+1.

Now, the HH-continued fractions development can be described as a multi-
valued discrete dynamics of divisors D = D(z]). Here, the lower index k
denotes the k—th step of the dynamics and the upper index j goes in the range
from 1 to (g + 1)k denoting branches of multivaluedness. More precisely, the
discrete divisor dynamics which governs HH-continued fraction development can
be described as follows.

Suppose the development has started with a point Py = P3. It leads to the
divisor

Do :=D(\(Py)) = P} + P¢+---+ P,

with A(P{) = A(P]). In the next step, we get g + 1 divisors of degree g+ 1:

Di:=D (A(Tp(Pg))) .
And we continue like this. In each step, the divisor:

Dj

from the previous step, gives g + 1 new divisors
DI D (A (PEY)) 1= gL

In the case of genus one, this dynamics can be traced out from the 2 — 2—
correspondence Qr(A,t) = 0. According to [9], for example, there exist con-
stants a, b, ¢, d, T such that for every i we have

N — ax(u; +T)+b
"ocx(wi+T)+d
where v is an uniformizing parameter on the elliptic curve. The involution is

the symmetry at the origin and since the function x is even, the two parameters
corresponding to the fixed value A; are u; and @; = —u; — 27". Thus

Uip1 = g + 27,
ax(u; +37)+b

Aip1 = .
T ca(ug + 3T + d

In the cases of higher genera the dynamics is much more complicated. Thus
we pass to the consideration of generalized Jacobians.
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7.3 Generalized Jacobians

A natural environment for consideration divisors of degree g + 1 on the curve I'
of genus g is generalized Jacobian Jac(T', {@Q1,Q2}) of T, obtained by gluing a
pair of points Q1,Q2 of T (see [8]).

This Jacobian can be introduced as a set of classes of relative equivalence
among the divisors on I' of certain degree. Two divisors of the same degree D1
and Dy are called equivalent relative to points (Q1,Q2, if there exists a mero-
morphic function f on I'm such that (f) = D1 — Do and f(Q1) = f(Q2).

The generalized Abel map is defined with

P

A(P) = (A(P). ju1(P). ja(P)),  1a(P) = exp /P 00,0001 = 1,2,

where A(P) is the standard Abel map. Here Qq,qo, denotes the normalized
differential of the third kind, with poles at the point ); and at arbitrary fixed
point Q.

Here we consider the case where ()1 = 400 and ()2 = —oo on the curve I'
of genus g. The divisors we are going to consider are those of degree g + 1 of
the form D; = D(z;) where usually z; = A\(P;). The divisors of degree g + 1 up
to the equivalence relative to the points @1 and @9 are uniquely determined by
their generalized Abel image on the generalized Jacobian.

Thus, in order to measure the distance between relative classes of D =
D(z1) = D(A(Py)) and of Dy = D(z3) = D(A(P,)) we introduce the following
index
limP*)+Oo iéﬁg_zl

Z2
A( 1

. P
limp_, _ m

I(Dl,Dg) = 1(21,22) = I(Pl,PQ) =

We are interested in the case P = 7r(P;) and we have
AMP)=A(Py)
I(Py) = I(Pr,mo(Py)) = lim — )

P——+oco A(T(P))=A(P1)
AT (P))=A(7(P1))

After some calculations we get

Lemma 3 The index of the point is given by the formula

2\/Pagr2(A(T(P1)) = A(P1))

e VP (M (P1)) — A(B) ~ APIAG(P)

8 Irregular terms

The parameters t that appear to be infinite or zero, we call irregular.
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8.1 t;, — infinite
Suppose ty = co. We start from the following relation:
X — A% = Bs9tL,

Then, HH continued fraction is based on the relation

Bs9t1!
VX = g2 =C+ ——.
P2g+2 VX + A

Proposition 9 Irregular HH c. f. with t;, = co is even symmetric if and only
if p2g+2 = 0.

8.2 t,=0
Let tg = 0. In that case the basic relation of HH continued fraction is

M_C:M.

T —¢ VX +A
Then we have also
A—\/po=0Cs,
X — A? = Bs9*2,
An HH continued fraction is developed through the following relations
Bs9t2
VE =4y B
VX + A
Bs912 X — VY,
VX -4y B VXV

Plgg) T =

Proposition 10 The condition t, = 0 is equivalent to vp41 = 0o. Such an
HH c. f. is odd symmetric with respect to Bp11.

8.3 ¢ — infinite
The starting relation in the case € = oo is

X — A% = B(z —y).
Changing the variables: z = 1/s, y = 1/t, we come to:

1
X' —A? = _23’59“(5 —t).

The HH c. f. takes the form

X - VY B, BY Bli—Y
L\/»:C_Fio‘_tr 0 |_|_...+07|7
T —y Ay A2 |A; +Q;

where deg B{" = g—1, B{" = BW /(z—19), deg C = g, deg A; = g. Appropriate
HH c. f. is obtained from the last one after the change of variables.

24



Lemma 4 The following identity holds:

g+1 — g9+t
ng\/;_\F (g—I—xg_ly—l--—i- gl-i—y)\ﬁ-i-y \F — \F

Proposition 11 The HH element (vVX —\Y)/(x —y) around x = oo has the
same coefficient as (VX' —VY')/(s —t) around s = 0.

9 Remainders, continuants and approximation

We consider an HH c. f. of an element f

f= C+|ﬁl|+ﬂ2|+

Together with the remainder of rank i Q;, where

Bli)s
Qi=—=——,
VX + AG)
we consider the continuants (G;) and (H;) and the convergents G;/H,; such that
|: gm zmii :| =TTy Tppy. (19)

Here
a; 1 | C 1
el 3] e[ 3]
By taking the determinant of (19) we get

GmHmfl - Gmlem = (_1)m715152 .. ﬂm
= §,,slotm

deg d,, = (g - 1)m
We also have the following relations:

(am, + Qm)Gm—l + Bme—2 _ Gm + Qme—l
(am"*'Qm)Hmfl +BmHm72 Hm 'i_CQTaI{mfl7

f=

and f
Qm - _Gmfl - Hmfl ’

Proposition 12 The degree of the continuants is deg G, = g(m+1), deg H,,, =
gm.
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Let us introduce

. H,,
G =G+ —=VY
s—t
A, =
s—t
Then we have R R
O = — G — Hp VX

Gmfl - I/—jmfl\/»Y

and also N R N
GmA"™ + G B9t = H, X

Hypy A™ 4 H, B9 = G, X
From the last equations we get
5m5(g+1)mA(m) = Pi(s)
Sy st plm) — Py(s),

with
X
Pi(s) i= HyHp 1=~ — (G H 1 = G 1 Hp)VY = GonGon (s — 1)
r—=yYy
X-Y
PQ(S) = an(S - t) + ZG’ITLH’UL\/? - H72n r—y .

Theorem 4

(A) The polynomial Gy Hyp—1— HyyGr—1 is of degree 2gm. The first (g+1)m
coefficients are zero.

(B) The polynomial Py is of degree 2mg+ g+ 1. Its first (g+ 1)m coefficients

are zero.

(C) The polynomial Py is of degree 2mg+ 29 + 1 and its (g + 1)(m + 1) first
coefficients are zero.

Lemma 5 The following relations hold

Hm—l(tm)
Gm - Hm\/)? = (_1)m+1Q0Q1Q2 e Qm
Theorem 5 If X(g) # 0 and € # y, then the element
& g vX-a, g YX=-VY
x—y

has a zero of order (g4 1)(m + 1) at s =0. If H(0) # 0 then the differences

VXY _Cn gz Cn

r—=y Hp, H,,

Cmorlbn) _ g g,,) = AV (t,,)

have developments starting with the order of s(9T1(m+1),
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Now, we consider v X and its development as HH c. f. In that case, starting
from

VX — /Do
x—e
we have

degGo=g+1, Ho=1, H;=a, G1=@1G0+5159+2

and
Gm = ame—l + ﬁme—Qa

Hm = amHmfl + ﬁmHm72-

From the last relation, we have
Theorem 6

(A) The degree of the continuants in this case is degG,, = g(m + 1) + 1,
deg H,,, = gm.

(B) If y = e then the development of the difference

vx-Gm

m

starts with the order s(9tD(m+1)+1,
Theorem 7

(A) The polynomial Gy Hy—1 — HpyGr—1 is of degree 2gm + 1 in s. The first
(g +1)m+1 coefficients are 0.

(B) The polynomial HyHyy—1 X — GGy is of degree 2mg + g+ 2. Its first
(g +1)m+ 1 coefficients are zero.

(C) The polynomial G2, — H2, X is of degree 2mg+2g+2 and its (g+1)(m +
1) + 1 coefficients are zero.

There are infinite ways to calculate v/ X in the neighborhood of ¢, depending
on choice of the parameter y. The best approximation one obtains for the choice

y=c.

To conclude the last observation we need to check the case y = co. In this case
we have:

Go=vpo(l+qs+---+qgs?), Ho=1 Gi=a1Go+ 1, Hy=oay,

and we denote R R
G = G + VagHps9, H,, = H,,.

Then we have
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Proposition 13
(A) The degree of continuants is deg G,,, = g(m + 1), deg H,,, = gm.

(B) If X(g) # 0 and suppose the parameters ty, ..., tymy1 are finite and differ-
ent from zero, then

Gm
VX - =
Hy,
has the development starting with order 2m 4+ 2 in s.

10 First geometric realization of the 2 <~ g+ 1
dynamics

Let us start with equation (18) which defines basic curve I'x. Consider poly-
nomial Qx (), s) as a quadratic pencil or a net of polynomials a, b, ¢ of degree
g+ 1lin s:
Qx (N, 8) = a(s)A2 + b(s)A + ¢(s).
Linear pencils of polynomials were considered, for example, in [4, 15, 5].
Following Darboux, let us start with a fixed conic K given by the equation

22 = 4229,

in the plane with standard coordinates (2o, 21, 22). This conic can be rationally
parameterized by (s2,2s,1). The tangent line to K through the point with the
parameter sq is given by the equation

tx(s0) : 2985 + 2180 + 29 = 0.

On the other hand, to a given point P in the plane, with coordinates P =
(20, 21, 22), we may join two solutions p, p; of the following equation, which is
quadratic in s:

208% + 2154 29 = 0.
Each solution corresponds to a tangent to conic K from point P. We will call
the pair (p, p1) the Darbouz coordinates of the point P. One finds immediately

2o Z1 .
_— = = = Z2.
ppP1 p+p1
Now, we interpret the net condition
a(s)A? +b(s)A +c(s) = 0 (20)

as a correspondence between values of A and sets of g 4+ 1 tangents to the conic
K: Denote by s1,..., 5411 the set of solutions of equation (20) for fixed A and
consider the tangents tx (s1),...,tx(Sg+1)-

Moreover, we associate to the polynomial X a plane curve Bx such that the
Darboux coordinates p, p; of a point of the curve Bx satisfy the equation (20)
with a fixed A.
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Definition 2 We will call the curve Bx the boundary curve associated with
the polynomial X and the conic K.

Collecting together the results of classics: Jacobi, Steiner, Liuoville, Hesse,
Cremona, Darboux, we may formulate the following statements.

Theorem 8
(a) The curve Bx is of degree 2q and in general it has g(g—1)/2 double points.

(b) For a fized value of A there correspond g + 1 solutions p1,. .., pg41 of the
equation (20) determining a g + 1-polygon inscribed in Bx and circum-
scribed about the conic K and satisfying the following system of differential
equations:

pidpy R P§,+1dpg+1
V2 (p1) — 4alpr)e(pr) VU (pg+1) — 4a(pg+1)c(pg+1)

where 1t =0,...,g— 1.

=0, (21)

(c) There exist 2g + 2 lines tangent to the conic K which are tangent to every
integral curve of the system of equations (21). Each of these tangents is
tangent to each integral curve in g points.

We give more detailed presentation of the cases of genus one and two.

Example 1 For g = 1, the system (21) consists of one equation. This is the
Euler equation. The integral curves of the Euler equation are conics, which are,
together with the conic K, inscribed in a quadrilateral.

For a given value s = py there are two solutions of the equation (20), denote
them by A1 and \o. Let p1, p be the solutions of equation (20) for A1, and p1,
p2 the solutions for \y. The pairs of lines (p, p1) and (p1, p2) form two angles
inscribed in a conic B and circumscribed about the conic K. The involution
which corresponds to the shift from A1 to Ao is realized as passage from the first
angle to the second one.

Example 2 For g = 2, the system (21) consists of two equations:

dps dp2 n
V2 (p1) — 4a(pr)c \/ b2(p2) — 4a(p2)c(p2)
dps _
R0 = dalog s
p1dp: p2dp2 .
V2 (p1) — 4a(pr)e \/ b2(p2) — 4a(p2)c(p2)
p3dps _0

\/52 p3) — 4a(pg+1)c(ps)
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giving the first generalization of the Euler equation. The integral curves are of
degree four with one double point. Together with the conic K, they are inscribed
i a hexagon.

Given one of the integral curves B and a tangent ty (p) to the conic K with
the Darboux coordinate p.

For the value s = p there are two solutions A1, Ao of equation (20). Let p1,
p2 be the solutions of (20) for A1 that are different than p, and similarly, let ps,
p4 be the solutions for \o. The triplets of lines (p, p1, p2) and (p, ps, ps) form
two triangles inscribed in the degree four curve B and circumscribed about the
conic K. The involution which corresponds to the shift from A1 to A is realized
this time as the passage from the first triangle to the second one.

The line ti (p) intersects the degree four curve B in four points Ty, To, T3, Ty,
T; € p;- The involution defined by

(ps A1) = (p, A2)

corresponds to the decomposition of the set {T1,Ts, T3, T4} on two subsets of the
same number of elements: {T1,To} and {T5,Ty}.

The last observation in the previous example gives an insight how to under-
stand 2 < g + 1 dynamics in general situation.

[Geometric realization of the dynamics 1] Given a boundary curve B
of degree 2g and a tangent to the conic K with the Darboux coordinate p. The
line ti (p) intersects the degree 2g curve B in 2g points Th, ... Tg, Ty, ..., Tog.
By condition T; € p;, 2g new tangents to the conic K are determined. The
inwvolution defined by:

(ps A1) = (p, A2)

corresponds to the decomposition of set {T1,... Ty, Tg41,...,Tag} to two subsets
of the same number of elements, say: {I1,...,Ty} and {Ty41,...,Tog}. This
means that p, together with p;, i =1,...,g, form the set of solutions of equation

(20) with A = A1, while p with p;, i =g+ 1,...,2g form the set of solutions of
(20) with X\ = As.

The (g+1)-tuples of lines (p, p1, ... pg) and (p, pg+1, - - -, p2g) form two (g+
1)—polygons inscribed in the degree 2g curve B and circumscribed about the conic
K. These two polygons have a pair of sides belonging to the same line — p.
The involution which corresponds to the shift from A1 to Ao is realized as the
passage from the first polygon to the second one. We can call this move the flip
along the edge.

The dynamics is a path of polygons of g + 1 sides inscribed in the curve B
of degree 2g and circumscribed about the conic K obtained by successive flips
along edges.
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11 The second geometric realization of the 2 <
g + 1 dynamics

In order to give another geometric realization of the 2 «» g + 1 dynamics which
is governed by the HH continued fractions, first we are going to realize given
hyperelliptic curve

I: 2’2 = X29+2

of genus g, as a generalized Cayley’s curve of Dragovi¢ and Radnovié (see [6],
[7]). By a birational isomorphism which maps one of the zeros of polynomial
Xog+2 to the infinity, one can realize the curve I' in the form:

y* = Pag41(2),

where the polynomial Pay11 is of odd degree equal to 2g + 1. Assuming that
zeros of polynomial Pa441 are real and different, one can order them as:

b1 <by <--- < bgg_1.

Now, decompose the set of zeros of the polynomial Pyg11 in one of the ways
that satisfies:

{b17--~,b2d—1} = {al,...,agH,al,...,ag},

where
o € {bgj_hbgj}, for 1 S] <g. (22)

Introduce the following family of confocal quadrics in the g+ 1-dimensional
Euclidean space E9t!:

o) o T er (23)
. e —_—— E s

A ayp — A Qg41 — A

where aq, ..., aq are different real constants chosen above.

By Chasles theorem, we know that a given line in E9t! is tangent to g
quadrics from given confocal family.

The g constants a, ..., ¢y, determine g quadrics from family (23). Since
the constants satisfy conditions (22), there exist lines in E9T! that are tangent
to g distinct non-degenerate quadrics Qa,, .., Qa, from the confocal family.

Let £ be a line not contained in any quadric of the given confocal family and
tangent to the given set of g quadrics Q,, ..., Qa,. The generalized Cayley
curve Cy is the variety of hyperplanes tangent to quadrics of the confocal family
at the points of /.

The Figure 5, represents three planes which correspond to one point of the
line £ in the 3-dimensional space.

The generalized Cayley curve is a hyperelliptic curve of genus g, for g > 2.
Its natural realization in P971* is of degree 2g + 1.
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Figure 5: Three points of the generalized Cayley
curve in dimension 3

There is a natural involution 74, on the generalized Cayley’s curve C, which
maps to each other the two hyperplanes tangent to the same quadric of the
confocal family. It is easy to see that the fixed points of this involution are
hyperplanes corresponding to the g quadrics that are touching ¢ and to g + 2
degenerate quadrics of the confocal family.

Now we come to the essential observation. The generalized Cayley’s curve Cy
is automatically equipped with a meromorphic function of degree g + 1, namely
with the projection

Pe - C@ — H’DI(E>

The projection p, maps to a point ¢ from ¢ the g + 1 hyperplanes from C; that
contain t.

Now, we can give the second geometric realization of the dynamics governed
by the hyperelliptic Halphen continued fractions.

[Geometric realization of the dynamics 2] For a suitably chosen line ¢,
choose a point t; € £ and a tangent hyperplane Ty 1 to a quadric Q1,1 atty. Find
the other intersection of quadric Q1,1 and line £, and denote it as ty. Let 1o
be the tangent hyperplane to Q11 at ta. Denote by Ts ; the tangent hyperplanes
to quadrics Qs ; at ta, j € {2,...,9+ 1}. Choose one of them, and denote the
chosen tangent hyperplane with T5 5. Find the other intersection of the quadric
Qoo with the line £ and denote it with t3. Denote the tangent hyperplane to the
quadric Qg o at the point t3 as T3 1. Denote all other tangent hyperplanes to
quadrics Qs ; at ts, by T3 ; where j € {2,...,9+1}. Choose one of the tangent
hyperplanes, say T3 3 and find the other intersection point of the quadric Qs 3
with the line £. Denote the intersection point as t4 and so on.

By using notation of functions, we may say that

70(Tin) = Tit11, pe(Tig1,1) = tiga.

Also we have
Pyt (t) = {Ti1, T2y Tigia }-
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Even the case ¢ = 1 gives a new geometric representation of the famous
Euler—Chasles correspondence. What we give here is one its asymmetric re-
alization. For g = 1, the projection py is two-to-one, and it induces another
involution

pe = Cp—Cy

which exchanges the elements of the inverse image of py:

pe(x) = pelpe()).

The dynamics of Halphen continued fractions is executed by a shift L done by
composition of the two involutions:

L= pgomy.

Even in this basic case, g = 1, the construction we made leads to new geometric
properties of lines in plane and dynamics of points of intersection with given
family of confocal conics. These properties are reflections of the Poncelet porism
for confocal conics and the Euler—Chasles correspondences. Thus, if a sequence
of the dynamics described above forms a cycle starting from a point of a line,
then the cycle of the same length will appear in this dynamics starting from any
other point of the line.

As a trivial example, one may consider a horizontal or a vertical line and a
standard confocal system of conics in a plane. The confocal system decomposes
a horizontal or vertical line on cycles of length 2.

Now, we are going back to a general case. We follow the line of [7] where the
set Ay of lines in g + 1 dimensional space tangent to the fixed set of g quadrics
of a given confocal family is equipped with a structure of Abelian variety. In
the same spirit, we may consider tautological line bundle LA, as a generalized
Abelian variety. Tautological bundle consists of pairs (line, point) with incidence
relation that point belongs to a line.

12 Conclusion: Polynomial growth and integra-
bility

Due to the well-known facts, the Padé approximants of hyperelliptic functions
are unique up to the scalar factors. The approximants discussed in the previous
section in the case of genus higher than 1 are neither unique nor of the Padé type.
At the first glance, it seems that, by the construction, they have an exponential
growth. However, a more careful analysis of their degrees compared to the
degrees of approximation done in the previous section indicates their polynomial
growth. After Veselov, one can consider a discrete multi-valued dynamics to be
integrable if it has polynomial growth instead of an exponential one. In that
sense, we can say that the multi-valued discrete dynamics associated with HH-
continued fractions is an integrable dynamics.
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In the case of genus one, it can be seen as multi-valued discrete dynamics
associated with the Euler-Chasles 2-2 correspondence, which has been studied
by Veselov (see [16]) and Veselov and Buchstaber (see [3]). It would be quite
interesting to consider higher genus dynamics from the point of view of n-valued
groups and their actions, following Buchstaber (see [2]).

Acknowledgements

The research was partially supported by the Serbian Ministry of Science and
Technology, Project Geometry and Topology of Manifolds and Integrable Dy-
namical Systems. The author would like to thank Professor Marcel Berger for
indicating the Halphen book [9] and Milena Radnovié for useful discussions. The
last part of the paper has been written during the visit to the IHES in Autumn
2008. The author uses the opportunity to thank the IHES for hospitality and
outstanding working conditions.

References

[1] N. Abel, Théorie des transcendantes elliptiques, OEuvres, t. I, p. 87.

[2] V. Buchstaber, n-valued groups: theory and applications, Moscow Mathe-
matical Journal, Vol. 6, No. 1, p. 57-84, (2006).

[3] V. Buchstaber, A. Veselov, Integrable correspondences and algebraic repre-
sentations of multivalued groups, Inter. math. Res. Notices (1996), No. 8,
p. 381-400

[4] G. Darboux, Principes de géométrie analytique, Gauthier-Villars, Paris
(1917) 519 p.

[6] V. Dragovié¢, Marden theorem and Poncelet-Darbouz curves, in preparation

[6] V. Dragovié¢, M. Radnovié, Geometry of integrable billiards and pencils of
quadrics, Journal Math. Pures Appl. 85 (2006), 758-790.
arXiv: math-ph/0512049

[7] V. Dragovié, M. Radnovié, Hyperelliptic Jacobians as Billiard Algebra of
Pencils of Quadrics: Beyond Poncelet Porisms, Adv. Math., 219 (2008)
1577-1607.
arXiv: math-ph/0710.3656

[8] J. Fay, Theta Functions on Riemann Surfaces, Spreinger-Verlag, Lecture
Notes in Mathematics 352, Berlin, Heidelberg, New York, 1973.

[9] G.-H. Halphen, Traité des fonctiones elliptiques et de leures applications;
deuxieme partie, Gauthier-Vilars et fils, Paris, 1888.

34



[10]

[11]

[12]

[13]

C. Jacobi, Note sur une mnouvelle application de I’Analyse des fonctions
elliptiques a I’Algebre, Werke, t. 1, p. 329

J. V. Poncelet, Traité des propriétés projectives des figures, Mett-Paris,
1822.

J. V. Poncelet, Sur la valeur approchée linaire et rationelle des radicaux de

la forme Va? + b2,V a2 — b2 ete. Crelle, 13, (1835), 277-292.

P. L. Tchebycheff, Report of the Extarordinary Professor of St Petersburg
University Tchebycheff about the Trip Abroad, (1852) [see: vol. 5, p. 246-255
of Complete Collected Works, AN SSSR, 5 volumes, Moscow-Leningrad,
1946-1951]

P. L. Tchebycheff, Théorie des méchanismes, connus sous le nom de par-
allélogrammes, Mémoires présentes a 1’Academie Impériale des Sciences de
St. Pétersbourg, VII, (1854), 539-568

G. Trautmann, Poncelet curves and theta characteristics Expositiones
Mathematicae, 6 (1988) 29-64

A. Veselov, Growth and integrability in the dynamics of mappings, Comm.
Math. Phys. 145 (1992), p. 181-193.

35



