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Abstract

We introduce and study higher genera generalizations of the Halphen
theory of continued fractions. The basic notion we start with is hyperel-
liptic Halphen (HH) element

p
X2g+2 −

p
Y2g+2

x− y
,

depending on parameter y, where X2g+2 is a polynomial of degree 2g + 2
and Y2g+2 = X2g+2(y). We study regular and irregular HH elements,
their continued fraction developments and some basic properties of such
developments such as: even and odd symmetry and periodicity. There is
a 2 ↔ g + 1 dynamics which lies in the basis of the developed continued
fractions theory. We give two geometric realizations of this dynamics. The
first one deals with nets of polynomials and with polygons circumscribed
about a conic K. The dynamics is realized as a path of polygons of g + 1
sides inscribed in a curve B of degree 2g and circumscribed about the
conic K obtained by successive moves, so called – flips along edges. The
second geometric realization leads to a new interpretation of generalized
Jacobians of hyperelliptic curves.
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1 Introduction

Modern algebraic approximation theory with continued fraction theory was es-
tablished by Chebyshev (Tchebycheff according to the traditional French tran-
scription) and his Sankt Petersburg school in the second half of the XIX century.
Chebyshev’s motivation for this studies was his interest in practical problems:
in the mechanism theory as an important part of mechanical engineering of that
time and ballistics. Steam engines were fundamental tool in technological rev-
olution and their kernel part was the Watt’s complete parallelogram, a planar
mechanism to transform linear motion into circular, shown on Figure 1.

Figure 1: Watt’s complete parallelogram

Fundamental problem was to estimate error of the mechanism in execution
of that transformation.

Starting point of Chebyshev’s investigation ([14]) was work on the theory of
mechanisms of French military engineer, professor of mechanics and academician
Jean Victor Poncelet [12]. In his study of mistakes of mechanisms, Poncelet
came to the question of rational and linear approximation of the function

√
x2 + 1.

In other words he studied approximation of the functions
√

X2(x) of the form
of square root of polynomials of the second degree, and he gave two approaches
to the posed problems, one based on the analytical arguments and the second
one based on geometric consideration.

Although Poncelet was described by Chebyshev as “well-known scientist in
practical mechanics” (see [13]), nowadays J. V. Poncelet is known first of all as
one of the biggest geometers of the XIX century. The Poncelet Theorem (PT)
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is considered as one of the nicest and deepest results in projective geometry:
Suppose that two ellipses are given in the plane, together with a closed polygonal
line inscribed in one of them and circumscribed about the other one. Then, PT
states that infinitely many such closed polygonal lines exist – every point of the
first ellipse is a vertex of such a polygon. Besides, all these polygons have the
same number of sides. (See Figure 2).

Figure 2: Poncelet theorem

In his Traité des propriétés projectives des figures [11], Poncelet proved even
a more general result and used only purely geometric, synthetic arguments.

The case when the two ellipses are confocal has clear mechanical interpreta-
tion as billiard system within outer ellipse as boundary and having inner ellipse
as the caustic of a given billiard trajectory, as shown on Figure 3. PT in this
case describes periodic billiard trajectories. For a modern account of PT see
[6, 7] and references therein.

Figure 3: Billiard system and confocal conics
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However, nowadays it is almost forgotten that there is an amazing connection
between Poncelet Theorem and continued fractions and approximation theory
of the functions of the form √

X4(x),

where X4(x) denotes general polynomial of the fourth degree. This connection
of continued fractions and approximations of functions of the form of square
root of polynomials of fourth degree with the Poncelet configuration and PT
was indicated by Halphen [9]. (A Poncelet configuration, i.e. a polygonal line
inscribed in one and circumscribed about another conic is shown on Figure 4).

Figure 4: Poncelet configuration

Theory of continued fractions of square roots
√

X4(x) of polynomials of
degree up to four started with Abel and Jacobi. Faced to problems with very
complicated algebraic formulae in algorithm, Jacobi [10] turned to an approach
based on elliptic functions theory. Further development of that approach has
been done by Halphen [9]. Halphen studied, instead of the square root of a
polynomial, the following, more general, Halphen element

√
X4 −

√
Y4

x− y
,

where Y4 = X4(y) is the value of polynomial X at given point y.
In this paper we are going to study more general theory of continued fractions

of hyperelliptic Haplhen elements
√

X2g+2 −
√

Y2g+2

x− y
,

where X2g+2 is a polynomial of degree 2g + 2 and Y2g+2 = X2g+2(y). It is
obviously related to the theory of functions of the hyperelliptic curve

Γ : z2 = X2g+2
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of genus g. We are also going to refer to this theory as HH continued fractions.
We hope that this theory will find its way to concrete applications in modern
technology. As a possibility we can mention development of branched, multival-
ued algorithms to be used in future cryptography. However, this requires strong
interaction with experts of different fields.

Here, we give two geometric interpretations of the dynamics which lies in
the basis of the HH continued fraction developments.

In the Section 10 we give geometric realization of the 2 ↔ g + 1 dynamics
which deals with nets of polynomials and with polygons circumscribed about
a conic K. It extends, not only in a flavor, the initial story of the Poncelet
polygons. The dynamics is realized as a path of polygons of g+1 sides inscribed
in a curve B of degree 2g and circumscribed about the conic K obtained by
successive moves of certain type – so called flips along edges.

The second geometric realization, done in Section 11 starts with the notion
of the generalized Cayley curve (see [6], [7]) and leads to a new interpretation
of generalized Jacobians of a hyperelliptic curves following and continuing the
program of [7].

2 Basic Algebraic Lemma

Given a polynomial X of degree 2g +2 in x. We suppose that X is not a square
of a polynomial. Assuming that the values of y and ε are finite and fixed, we are
going to study HH elements in a neighborhood of ε. Then, X can be considered
as a polynomial of degree 2g + 2 in s, where s = x− ε is chosen as a variable in
a neighborhood of ε.

Lemma 1 (Basic Algebraic Lemma) Let X be a polynomial of degree 2g+2
in x and Y = X(y) its value at a given fixed point y. Then, there exists a unique
triplet of polynomials A, B,C with deg A = g + 1, deg B = deg C = g in x such
that √

X −√Y

x− y
− C =

B(x− ε)g+1

√
X + A

. (1)

Proof. Put s = x− ε and t = y − ε and denote X = X ′(s) =
∑2g+2

i=0 pis
i and

A =
g+1∑

i=0

Ais
i, B =

g∑

i=0

Bis
i, C =

g∑

i=0

Cis
i.

We are going to determine the coefficients Ai, Bi, Ci in the way that the equation
(1) is satisfied. Taking into account that

√
X is irrational, the last equation can

be separated into two equations:

A−
√

Y − C(s− t) = 0;

X −A
√

Y −AC(s− t)−Bsg+1(s− t) = 0.
(2)
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Add the following consequence of (2):

X −A2 = Bsg+1(s− t). (3)

For s = 0, from (1) and (2), we get:

C0 =

√
Y −√p0

t
,

A0 = −C0t +
√

Y =
√

p0.

Then we calculate Ai, i = 1, . . . , g, from equation (3). From the first of equations
(2), by putting s = t, we get

A(t) =
√

Y .

From the first equation (2), for s = t, we see that deg C = deg A − 1 and we
compute all the coefficients Ci as functions of the coefficients of the polynomial
A. For example, Cg = Ag+1.

The last step is to compute the polynomial B. Observe that the coefficients
A0, . . . Ag of the polynomial A are obtained in a manner such that

sg+1|X −A2.

The leading coefficient Ag+1 is such that X − A2 = 0 for s = t. Thus, there is
a unique polynomial B, deg B = g such that

X −A2 = Bsg+1(s− t).

¤

3 Hyperelliptic Halphen-type continued fractions

Let us start with the factorization of the polynomial B:

B(s) = Bg

g∏

i=1

(s− ti1)

and denote A(ti1) = −
√

Y i
1 . Then we have

A +
√

X

s− ti1
= P g

A(ti1, s) +
√

X −
√

Y i
1

x− yi
1

,

with certain polynomial P g
A of degree g in s and with coefficients depending on

the coefficients of A and ti1.
Denote

Q0 =
√

X −√Y

x− y
− C.
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Then we have

Q0 =
Bg

∏g
j=1,j 6=i(s− tj1)s

g+1

P g
A(ti1, s) +

√
X−
√

Y i
1

x−yi
1

.

Now, by applying the Lemma 1 we obtain the polynomials A(1,i), B(1,i), C(1,i)

of degree g + 1, g, g respectively, such that
√

X −
√

Y i
1

x− yi
1

− C(1,i) =
B(1,i)(x− ε)g+1

√
X + A(1,i)

.

Denote

α
(i)
1 := P g

A(ti1, s), β
(i)
1 := Bg

g∏

j=1,j 6=i

(s− tj1)s
g+1,

and introduce Q
(i)
1 by the equation

Q0 =
β

(i)
1

α
(i)
1 + Q

(i)
1

.

Observe that deg α
(i)
1 = g and deg β

(i)
1 = 2g.

Now, one can go further, step by step: to factorize B(1,i), to choose one of
its zeroes tj2 and to denote by Bi,j := B(1,i)/(s− tj2). Further, we denote

α
(i,j)
2 := PA1,ig(tj2, s), β

(i,j)
2 := Bi,jsg+1,

and calculate Q
(i,j)
2 from the equation

Q
(i)
1 =

β
(i,j)
2

α
(i,j)
2 + Q

(i,j)
2

.

Thus we have √
X −√Y

x− y
= C +

β
(i)
1

αi
1 + β

(i,j)
2

α
(i,j)
2 +Q

(i,j)
2

.

Following the same scheme, in the i-th step we introduce polynomials

A(i,j1,...,ji), B(i,j1,...,ji), C(i,j1,...,ji)

of degrees g + 1, g, g respectively. They satisfy the equations

A(i,j1,...,ji) = C(i,j1,...,ji)(s− tj1,...,ji

i ) +
√

Y j1,...,ji

i ,

X −A(i,j1,...,ji)2 = B(i,j1,...,ji)sg+1(s− tj1,...,ji

i ).
(4)

We see that in the case g > 1 the formulae of the (i + 1)–th step depend on the
choice of one of the roots of the polynomial B(i) and of the choices from the
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previous steps. To avoid abuse of notations we are going to omit many times
in future formulae the indexes j1, . . . , ji, which indicate the choices done in the
first i steps, although we assume all the time that the choice has been done.

According to our notation we have

s− ti|B(i−1)

and
B(i−1) =

βi

sg+1
(s− ti)

or
B(i) = β̂i+1(s− ti+1),

where β̂i = βi/sg+1. From the equations (4) we have

X −A(i−1)2 = β̂i(s− ti−1)sg+1(s− ti),

X −A(i)2 = β̂i+1(s− ti+1)sg+1(s− ti)
(5)

together with
A(i)(ti) =

√
Yi,

A(i−1)(ti) = −
√

Yi.

We introduce λi by the relation

A
(i)
g+1 =

√
p0λi.

Theorem 1 If λi is fixed, then ti, t
(1)
i+1, . . . , t

(g)
i+1} are the roots of the following

polynomial equation of degree g + 1 in s:

QX(λi, s) = 0.

The proof follows from the equations (5). In the same way, we get

Theorem 2 If ti is fixed, then λi and λi−1 are the roots of the polynomial
equation of degree 2 in λ:

QX(λi−1, ti) = 0, QX(λi, ti) = 0.

One can easily calculate

B(i)
g = p2g+2 − p0λ

2
i ,

thus

βi+1 = (p2g+2 − p0λ
2
i )

g∏

j=2

(s− tji )s
g+1.

We also have

A(i) =
√

p0

(
1 + q1s + · · ·+ λis

g+1
)
,

C(i) =
√

p0

(
q1 + · · ·+ λi(sg + sg−1ti + · · ·+ tgi )

)
,
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and
αi =

√
p0

(
2q1 + · · ·+ (λi−1 + λi)(sg + sg−1ti + · · ·+ tgi )

)
.

According to Theorem 2, the sum λi−1 + λi from the last equation, can be
expressed through the coefficients of the polynomial QX(λ, ti) as a polynomial
of the second degree in λ .

4 Basic examples: genus one case

The genus one case, or the elliptic case, has been studied by Halphen. Here we
reproduce some of his formulae (see [9] for more details). The elliptic curve is
given by a polynomial X of degree 4, in variable s in a neighborhood of ε:

X = S(s) =
4∑

i=0

pis
i

The development around the point ε of its square root has the form
√

X =
√

p0

(
1 + q1s + q2s

2 + q3s
3 + . . .

)
,

with the following relations between q’s and p’s:

q1 =
p1

2p0
,

q2 =
1

8p2
0

(
4p0p2 − p2

1

)
,

q3 =
1

4p3
0

(
2p0p3 − p0p1p2 +

p3
1

4

)
,

q4 =
1

2p0

(
p4 − 2q1q3p0 − q2

2p0

)
.

Here we have

X

p0
= (1 + q1s + q2s

2)2 + 2q3s
3 + 2(q1q3 + q4)s4.

From Basic Algebraic Lemma, applied to the case g = 1, we get the polynomials
A = A0 + A1s + A2s

2, B = B0 + B1s, C = C0 + C1s which satisfy

A−
√

Y − C(s− t) = 0;

X −A
√

Y −AC(s− t)−Bs2(s− t) = 0;

X −A2 = Bs2(s− t).

(6)
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From the equations (6), one gets the formulae for the polynomials A,B, C:

A0 =
√

p0, A1 = q1
√

p0, A2 =

√
Y − (1 + q1t)

√
p0

t2
,

C0 =

√
Y −√p0

t
, C1 = A2,

B0 =
2
√

p0

t3

(√
Y −√p0(1 + q1t + q2t

2)
)

,

B1 =
2
√

p0

t4

(
(1 + q1t)

√
Y −√p0(1 + 2q1t + (q2

1 + q2)t2 + (q1q2 + q3)t3)
)

.

If we denote
P

(1)
A (t, s) := A1 + A2(s + t),

then we have

Q0 =
B1s

2

P
(1)
A (t1, s) +

√
X−√Y1
x−y1

,

and, step by step
A(i) =

√
Yi − C(i)(s− ti);

X −A(i)2 = B(i)s2(s− ti),
(7)

where
B(i−1)(ti) = 0,

A(i)(ti+1) = −
√

Yi+1.

Finally, one gets
βi = B

(i−1)
1 s2,

αi = P
(1)

A(i−1)(ti, s) + C(i).

From equation (7) we get

X −A(i−1)2 = ms2(s− ti−1)(s− ti);

X −A(i)2 = ns2(s− ti)(s− ti+1);

A(i)(ti) =
√

Yi;

A(i−1)(ti) = −
√

Yi;

A
(i)
2 =

√
p0λi,

with some constants m,n, and then we have:

λi =
1
t2i

(√
Yi√
p0
− (1 + q1ti)

)
,

λi−1 =
1
t2i

(
−
√

Yi√
p0
− (1 + q1ti)

)
,

From the last equations one obtains:
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Proposition 1 If λi is fixed, then ti, ti+1 are roots of the polynomial QX(λi, s)
quadratic in s:

QX(λi, s) := (p4 − p0λ
2
i )s

2 + (p3 − p1λi)s + 2p0(q2 − λi) = 0.

Corollary 1 The product of two consecutive ti and ti+1 is:

titi+1 =
2p0(λi − q2)
p0λ2

i − p4
,

and their sum is equal to:

ti + ti+1 =
p1λi − p3

p4 − p0λ2
i

.

Proposition 1 can be reformulated giving relation between two consecutive
λi−1 and λi:

Proposition 2 If ti is fixed, then λi−1, λi are solutions of quadratic equation:

λ2(p0t
2
i ) + λ(p1ti + 2p0)− (p4t

2
i + p3ti + 2p0q2) = 0.

For the normal form of the elliptic HH c. f. we consider the case where

α′i = 1 + uis, β′i = vis
2.

Then we have
ti = − 1

q1 + ui
, λi = q2 − 2vi+1.

The recurrent relations are given with

ui + ui−1 = −q1 +
q2

2vi
,

vi + uiui−1 = q2 +
q4

2vi
.

The second set of recurrent equations is done by

vi + vi+1 = q2 + q1ui + u2
i ,

2vivi+1 = −q4 + q3ui.

5 Basic examples: genus two case

5.1 Notation

We start with a polynomial X of degree 6 in x and rewrite it as a polynomial
in s in a neighborhood of ε

X = S(s) =
6∑

i=0

pis
i
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and its square root developed around ε as
√

X =
√

p0(1 + q1s + q2s
2 + q3s

3 + q4s
4 + q5s

5 + q6s
6 + q7s

7 + . . . ).

Then, the relations between coefficients pi and qj are

p1 = 2p0q1,

p2 = p0(2q2 + q2
1),

p3 = 2p0(q3 + q1q2),

p4 = p0(2q4 + q2
2 + 2q1q3),

p5 = 2p0(q5 + q2q3 + q1q4),

p6 = p0(2q6 + 2q1q5 + 2q2q4 + q2
3),

with relations between qi such as:

0 = q7 + 2q1q6 + 2q2q5 + 2q3q4.

Conversely, qi’s can be expressed through p’s:

q1 =
p1

2p0
,

q2 =
1

2p2
0

(
p2p0 − p2

1

4

)
,

q3 =
1

2p3
0

(
p3p

2
0 −

p1p2p0

2
+

p3
1

8

)
,

q4 =
1

2p4
0

{
p4p

3
0 −

4p2p0 − p2
1

8
− p1

16
(8p3p

2
0 − 4p1p2p0 + p3

1)
}

,

q5 =
p5

2p0
− q2q3 − q1q4,

q6 =
1

2p0
(p6 − 2q1q5p0 − 2q2q4p− 0− q2

3p0).

The initial polynomial X can be expressed through qi’s:

X

p0
= (1 + q1s + q2s

2 + q3s
3)2 + 2q4s

4 + 2(q1q4 + q5)s5 + 2(q1q5 + q2q4 + q6)s6.

5.2 The case of Basic Algebraic Lemma

We are going to determine polynomials A,B, C of degrees deg A = 3, deg B =
deg C = 2. Denote A = A(s) = A0 + A1s + A2s

2 + A3s
3, B = B(s) =

B0 + B1s + B2s
2, C = C(s) = C0 + C1s + C2s

2. Then the equations (2) and
(3) become

A−
√

Y − C(s− t) = 0;

X −A
√

Y −AC(s− t)−Bs3(s− t) = 0;

X −A2 = Bs3(s− t).

(8)
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For s = 0, we obtain:

C0 =

√
Y −√p0

t
, A0 =

√
p0.

Then we calculate Ai, i = 1, 2 from the last equation of (8) by comparing
polynomials X and A term by term up to the second degree:

A1 =
p1

2
√

p0
, A2 =

1
2
√

p0

4p2p0 − p2
1

4p0
,

thus
A =

√
p0(1 + q1s + q2s

2 + λ1s
3).

From the relation A(t) =
√

Y we get

A3 =
1
t3

[√
Y − (

√
p0 +

p1

2
√

p0
t +

4p0p2 − p2
1

8p
3/2
0

t2)

]
.

The coefficients of C are C1 = A2 and C2 = A3. The coefficients of the polyno-
mial B are

B2 = p6 −A2
3,

B1 = B2t + p5 − 2A2A3,

B0 = B1t + p4 − (2A1A3 + A2
2).

We factorize it
B = B2(s− t01)(s− t11),

and denote
A(t01) = −

√
Y 0

1 , A(t11) = −
√

Y 1
1 .

Now, we have

A +
√

X

s− t01
=

A +
√

Y 0
1

s− t01
+

√
X −

√
Y 0

1

x− y0
1

=
A(s)−A(t01)

s− t01
+

√
X −

√
Y 0

1

x− y0
1

= A1 + A2(s + t01) + A3(s2 + st01 + t021 ) +

√
X −

√
Y 0

1

x− y0
1

.

Denote
P

(2)
A (t, s) := A1 + A2(s + t) + A3(s2 + st + t2).

Then we have finally

Q0 =
B2(s− t11)s

3

P
(2)
A (t01, s) +

√
X−
√

Y 0
1

x−y0
1

.
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Step by step we get

A(i) =
√

Yi − C(i)(s− ti);

X −A(i)2 = B(i)s3(s− ti),
(9)

where
B(i−1)(ti) = 0, ti := t0i ,

A(i)(ti+1) = −
√

Yi+1.

Now, we have
βi = B

(i−1)
2 (s− t1i )s

3,

αi = P
(2)

A(i−1)(ti, s) + C(i).
(10)

We can represent the HH continued fraction in the following manner
√

X −√Y

x− y
= C +

β1|
|α1

+
β2|
|α2

+ · · ·+ βi|
|αi + Qi

,

where

Qi =
√

X −√Yi

x− yi
− C(i) =

B(i)s3

√
X + A(i)

and
Qi =

βi+1

αi+1 + Qi+1
.

5.3 Relations between λi and ti

From equation (9), we get:

X −A(i−1)2 = B
(i−1)
2 (s− t1i )s

3(s− ti−1)(s− ti);

X −A(i)2 = B
(i)
2 (s− t1i+1)s

3(s− ti)(s− ti+1);

A(i)(ti) =
√

Yi;

A(i−1)(ti) = −
√

Yi;

A
(i)
3 =

√
p0λi.

(11)

From (11), we have:

λi =
1
t3i

(√
Yi√
p0
− (1 + q1ti + q2t

2
i )

)
,

λi−1 =
1
t3i

(
−
√

Yi√
p0
− (1 + q1ti + q2t

2
i )

)
,

and thus

t3i
√

Yi+1 +t3i+1

√
Yi =

√
p0(ti+1−ti)[t21+1 +ti+1ti +q1titi+1(ti+1 +ti)+q2t

2
i t

2
i+1].
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From equations (11) we also get

λi−1 + λi = − 2
t3i

(1 + q1ti + q2t
2
i ),

λi−1λi = − 1
t6i

[
(1 + q1ti + q2t

2
i )

2 − Yi

p0

]
.

(12)

Finally, we have

Proposition 3 If λi is fixed, then ti, ti+1, t1i+1 are roots of the polynomial
QX(λi, s) of the degree 3 in s:

QX(λi, s) := (p6 − p0λ
2
i )s

3 + (p5 − 2p0q2λi)s2 + (p4 − 2p0q1λi − q2
2p0)s+

+ (p3 − 2p0λi − 2p0q1q2) = 0.

Corollary 2 The product of two consecutive ti and ti+1 is

titi+1 =
p3 − 2p0λi − 2p0q1q2

t1i+1(p6 − p0λ2
i )

.

Proposition 3 can be reformulated to give a relation between two consecutive
λi−1 and λi:

Proposition 4 If ti is fixed, then λi−1, λi are solutions of quadratic equation

αλ2 + βλ + γ = 0,

with

α = −p0t
3
i ,

β = −2p0q2t
2
i − 2p0q1ti − 2p0,

γ = p6t
3
i + p5t

2
i + (p4 − q2

2p0)ti + p3 − 2p0q1q2.

5.4 Normal form of genus 2 HH c. f. Recurrent relations

Using equations (12) and (10), we get formulae for αi:

αi =
√

p0

(
− 2

ti
+ (2q2 + λi−1ti)s− 2

t3i
(1 + q1ti + q2t

2
i )s

2

)
.

Given HH c. f. with αi, βi, it can be transformed to the equivalent one with

α′i = ciαi, β′i = ci−1ciβi.

Here, we chose coefficients

ci = − ti
2
√

p0

16



and get
α′i = 1 + wis + uis

2,

β′i = vi
s− t1i

t1i
s3,

(13)

where

ui =
1 + q1ti + q2t

2
i

t2i
,

wi = −(q2ti +
λi−1

2
t2i ),

vi = −λi−1

2
+ q3.

(14)

We will refer to the form (13) as to normal form of the given HH c. f.
From the equations (13), we get

λi−1 = −2vi + q3 (15)

and
(q2 − ui)t2i + q1ti + 1 = 0,

λi−1

2
t2i + q2ti + wi = 0.

(16)

From the equations (16), we have

ti =
(ui − q2)wi + (vi − q3

2 )
q2(q2 − ui)− q1( q3

2 − vi)
.

From Proposition 4 and equation (16), one obtains:

λ2

(
− ti

2

)
− uiλ + [q6ti + q5(q1ti + 1) + q3ui + q4uiti] = 0,

having two zeroes λi−1 and λi. From the last equation, we get

ti =
ui(λ− q3)− q5

−λ2

2 + q6 + q5q1 + q4ui

.

By using the second of equations (16) and equating the right sides of the last
equation for λi−1 and λ, we get

Lemma 2 The following relation between ui and vi, vi+1 holds:

−1
2
(2uivi+1+q5)(q3 − 2vi)2 + 2ui(q6 + q5q1 + q4ui)(vi+1 − vi)+

+
1
2
(2uivi + q5)(q3 − 2vi+1)2 = 0.

This Lemma implies the following

17



Corollary 3 If vi 6= vi+1 then

0 = q2
3ui − 4uivivi+1 − 2q5(vi + vi+1) + 2q5q3 − 2ui(q6 + q5q1 + q4ui).

From the equations (12), (15), (14) we get

Proposition 5 The recurrence equations connecting vi and vi+1 for fixed ui

and ti are:
vi + vi+1 =

ui

ti
+ q3,

4vivi+1 = (−2q6 − 2q1q5 − 2q4ui) + q2
3 − 2

q5

ti
.

Rewrite polynomial QX(λi, s) in the form

QX(λi, s) = Q3s
3 + Q2s

2 + Q1s + Q0,

where

Q3 = q6 + q1q5 + q4q2 +
q2
3

2
− λi

2
,

Q2 = q5 + q1q4 + q2(q3 − λi),
Q1 = q4 + q1(q3 − λi),
Q0 = q3 − λi.

Summing the relations QX(λi, ti) = 0 and QX(λi, ti+1) = 0, we get

(ui+ui+1)(q3−λi) = (ti+ti+1)
(

λ2
i

2
− q6 − q5q1 − q4q2

)
−q4

ti + ti+1

titi+1
−2q5−2q1q4.

From the last equation, using the Viète formulae for polynomial QX(s) and
equation (15), we get

Proposition 6

ui + ui+1 =
1
2
vi+1[

(
Q2

Q3
− t1i+1

)(
(−2vi+1 + q3)2

2
− q6 − q5q1 − q4q2

)
−

− q4

(
Q2

Q3
− t1i+1

)
Q3

Q0
t1i+1 − 2q5 − 2q1q4].

6 Periodicity and symmetry

6.1 Definition and the first properties

According to Theorem 2, in the case

th = tk

for some h, k, there are two possibilities:

(I) λh−1 = λk−1, λh = λk;
(II) λh−1 = λk, λh = λk−1.
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The first possibility leads to periodicity :

th+s = tk+s, λh+s = λk+s

for any s and with appropriate choice of roots. If p = h− k and r ≡ s (mod p)
then

αr = αs, βr = βs.

The second possibility leads to symmetry :

th+s = tk−s, λh+s = λk−s−1

for any s. More precisely, we introduce

Definition 1

(i) If h + k = 2n we say that HH c. f. is even symmetric with

αn−i = αn+i, βn−i = βn+i−1.

for any i and with αn as the centre of symmetry.

(ii) If h + k = 2n + 1 we say that HH c. f. is odd symmetric with

αn−i = αn+i−1, βn−i = βn+i.

for any i and with βn as the centre of symmetry.

Now we can formulate some initial properties connecting periodicity and
symmetry.

Proposition 7

(A) If a HH c. f. is periodic with the period of 2r and even symmetric with αn

as the centre, then it is also even symmetric with respect αn+r.

(B) If a HH c. f. is periodic with the period of 2r and odd symmetric with
respect βn, then it is also odd symmetric with respect βn+r.

(C) If a HH c. f. is periodic with the period of 2r−1 and even symmetric with
respect αn, then it is also odd symmetric with respect βn+r. The converse
is also true.

Proposition 8 If a HH c. f. is double symmetric, then it is periodic. Moreover:

(A) If a HH c. f. is even symmetric with respect αm and αn, n < m then the
period is 2(n−m).

(B) If a HH c. f. is odd symmetric with respect βm and βn, n < m then the
period is 2(m− n).

19



(C) If a HH c. f. is even symmetric with respect αn and βm, then the period
is 2(n −m) + 1 in the case m ≤ n and the period is 2(m − n) − 1 when
m > n.

Observations:

(i) A HH c. f. can be at the same time even symmetric and odd symmetric.

(ii) If λi = λi−1 then the symmetry is even; if ti = ti+1 then the symmetry is
odd.

6.2 Further results

Theorem 3 An HH c. f. is even-symmetric with the central parameter y if
X(y) = 0.

The proof follows from the fact that even-symmetry is equivalent to the
condition λp = λp−1, which is equivalent to equality Yp = 0.

For odd-symmetry, let us start with the example of genus two case. From
relations:

QX(λ, s) = 0,
d

ds
QX(λ, s) = 0

we get the system:
3Q3s

2 + 2Q2s + Q1 = 0

Q2s
2 + 2Q1s + 3Q0 = 0.

(17)

From the last system we get

vi+1 = −s[q5 + q1q4)s + q4]
2q2s2 + 4q1s + 6

or, equivalently

λi =
p5s

2 + 2(p4 − q2
2p0)s + 3(p3 − 2p0q1q2)

2p0q2s2 + 4p0q2s + 6p0
.

By replacing any of the last two relations in the first equation of (17), we
get the equation of the sixth degree in s. On the other hand, from (17) we get:

s =
9Q0Q3 −Q1Q2

2Q2
2 − 6Q1Q3

.

Now, by replacing the last formula in the first equation of (17) we get the
equation of the eight degree in λi.
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7 General case

7.1 Invariant approach

Now we pass to the general case, with polynomial X of degree 2g + 2. Relation

QX(λ, s) = 0 (18)

defines a basic curve ΓX . Denote its genus by G and consider its projections p1

to the λ–plane, and p2 to the s–plane.
Denote by Re the ramification points of the second projection and call them

even-symmetric points of the basic curve.
The set Ro+r of the ramification points of the first projection is the union

of sets of the odd-symmetric points and of the gluing points.
The gluing points represent situation where some of the roots of the poly-

nomial B(i) coincide. For example in genus 2 case the gluing points correspond
to the condition ti+1 = t′i+1.

From Theorem 3, we get

deg Re = 2g + 2.

Applying the Riemann-Hurvitz formula, we have

2− 2G = 4− deg Re;
2− 2g = 2(g + 1)− deg Ro+r.

Thus
genus (ΓX) = G = g

and
deg Ro+r = 4g.

We get a birational morphism

f : Γ → ΓX

by the formulae
f : (x, s) 7→ (t, λ),

where
t = x,

λ =
1

tg+1

(
s√
p0
−Qg(t)

)
,

Qg(t) = 1 + q1t + · · ·+ qgt
g.

Function f satisfies the following commuting relation:

f ◦ τΓ = τΓX ◦ f,

where τΓ and τΓX are natural involutions on hyperelliptic curves Γ and ΓX

respectively.
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7.2 Multi-valued divisor dynamics

The inverse image of a value z of the function λ is a divisor of degree g + 1:

λ−1(z) =: D(z), deg D(z) = g + 1.

Now, the HH-continued fractions development can be described as a multi-
valued discrete dynamics of divisors Dj

k = D(zj
k). Here, the lower index k

denotes the k–th step of the dynamics and the upper index j goes in the range
from 1 to (g + 1)k denoting branches of multivaluedness. More precisely, the
discrete divisor dynamics which governs HH-continued fraction development can
be described as follows.

Suppose the development has started with a point P0 = P 1
0 . It leads to the

divisor
D0 := D(λ(P0)) = P 1

0 + P 2
0 + · · ·+ P g+1

0 ,

with λ(P i
0) = λ(P j

0 ). In the next step, we get g + 1 divisors of degree g + 1:

Dj
1 := D

(
λ(τΓ(P j

0 ))
)

.

And we continue like this. In each step, the divisor:

Dj
k−1 = P

(j,1)
k−1 + · · ·+ P

(j,(g+1))
k−1

from the previous step, gives g + 1 new divisors

D
(j−1)(g+1)+l
k := D

(
λ(τΓ(P (j,l)

k−1 ))
)

, l = 1, . . . , g + 1.

In the case of genus one, this dynamics can be traced out from the 2 − 2–
correspondence QΓ(λ, t) = 0. According to [9], for example, there exist con-
stants a, b, c, d, T such that for every i we have

λi =
ax(ui + T ) + b

cx(ui + T ) + d
,

where u is an uniformizing parameter on the elliptic curve. The involution is
the symmetry at the origin and since the function x is even, the two parameters
corresponding to the fixed value λi are ui and ūi = −ui − 2T . Thus

ui+1 = ui + 2T,

λi+1 =
ax(ui + 3T ) + b

cx(ui + 3T ) + d
.

In the cases of higher genera the dynamics is much more complicated. Thus
we pass to the consideration of generalized Jacobians.
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7.3 Generalized Jacobians

A natural environment for consideration divisors of degree g + 1 on the curve Γ
of genus g is generalized Jacobian Jac(Γ, {Q1, Q2}) of Γ, obtained by gluing a
pair of points Q1, Q2 of Γ (see [8]).

This Jacobian can be introduced as a set of classes of relative equivalence
among the divisors on Γ of certain degree. Two divisors of the same degree D1

and D2 are called equivalent relative to points Q1, Q2, if there exists a mero-
morphic function f on Γm such that (f) = D1 −D2 and f(Q1) = f(Q2).

The generalized Abel map is defined with

Ã(P ) = (A(P ), µ1(P ), µ2(P )), µi(P ) = exp

∫ P

P0

ΩQiQ0 , i = 1, 2,

where A(P ) is the standard Abel map. Here ΩQiQ0 denotes the normalized
differential of the third kind, with poles at the point Qi and at arbitrary fixed
point Q0.

Here we consider the case where Q1 = +∞ and Q2 = −∞ on the curve Γ
of genus g. The divisors we are going to consider are those of degree g + 1 of
the form Di = D(zi) where usually zi = λ(Pi). The divisors of degree g + 1 up
to the equivalence relative to the points Q1 and Q2 are uniquely determined by
their generalized Abel image on the generalized Jacobian.

Thus, in order to measure the distance between relative classes of D1 =
D(z1) = D(λ(P1)) and of D2 = D(z2) = D(λ(P2)) we introduce the following
index

I(D1, D2) = I(z1, z2) = I(P1, P2) :=
limP→+∞

λ(P )−z1
λ(P )−z2

limP→−∞
λ(P )−z1
λ(P )−z2

.

We are interested in the case P2 = τΓ(P1) and we have

I(P1) := I(P1, τΓ(P1)) = lim
P→+∞

λ(P )−λ(P1)
λ(P )−λ(τ(P1))

λ(τ(P ))−λ(P1)
λ(τ(P ))−λ(τ(P1))

After some calculations we get

Lemma 3 The index of the point is given by the formula

I(P1) = 1 +
2√p2g+2

(
λ(τ(P1))− λ(P1)

)

p2g+2 −√p2g+2

(
λ(τ(P1))− λ(P1)

)− λ(P1)λ(τ(P1))
.

8 Irregular terms

The parameters t that appear to be infinite or zero, we call irregular.
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8.1 th – infinite

Suppose t0 = ∞. We start from the following relation:

X −A2 = Bsg+1.

Then, HH continued fraction is based on the relation

√
X −√p2g+2s

g+1 = C +
Bsg+1

√
X + A

.

Proposition 9 Irregular HH c. f. with th = ∞ is even symmetric if and only
if p2g+2 = 0.

8.2 th = 0

Let t0 = 0. In that case the basic relation of HH continued fraction is
√

X −√p0

x− ε
− C =

B(x− ε)g+1

√
X + A

.

Then we have also
A−√po = Cs,

X −A2 = Bsg+2.

An HH continued fraction is developed through the following relations

√
X = A +

Bsg+2

√
X + A

,

√
X = A +

Bsg+2

P
(g)
A

+
√

X −√Y1

x− y1

Proposition 10 The condition th = 0 is equivalent to vh+1 = ∞. Such an
HH c. f. is odd symmetric with respect to βh+1.

8.3 ε – infinite

The starting relation in the case ε = ∞ is

X −A2 = B(x− y).

Changing the variables: x = 1/s, y = 1/t, we come to:

X ′ −A′2 = −1
t
B′sg+1(s− t).

The HH c. f. takes the form
√

X −√Y

x− y
= C +

B0|
|A1

+
B

(1)
0 |
|A2

+ · · ·+ B
(i−1)
0 |

|Ai + Qi
,

where deg B
(i)
0 = g−1, B

(i)
0 = B(i)/(x−t0i ), deg C = g, deg Ai = g. Appropriate

HH c. f. is obtained from the last one after the change of variables.
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Lemma 4 The following identity holds:

yg+1

√
X −√Y

x− y
= (xg + xg−1y + · · ·+ xyg−1 + yg)

√
Y +

yg+1
√

X − xg+1
√

Y

x− y
.

Proposition 11 The HH element (
√

X −√Y )/(x− y) around x = ∞ has the
same coefficient as (

√
X ′ −√Y ′)/(s− t) around s = 0.

9 Remainders, continuants and approximation

We consider an HH c. f. of an element f

f = C +
β1|
|α1

+
β2|
|α2

+ . . . .

Together with the remainder of rank i Qi, where

Qi =
B(i)sg+1

√
X + A(i)

,

we consider the continuants (Gi) and (Hi) and the convergents Gi/Hi such that
[

Gm Gm−1

Hm Hm−1

]
= TCT1 · · ·Tm. (19)

Here

Ti =
[

αi 1
βi 0

]
, TC =

[
C 1
1 0

]
.

By taking the determinant of (19) we get

GmHm−1 −Gm−1Hm = (−1)m−1β1β2 . . . βm

= δms(g+1)m

deg δm = (g − 1)m.

We also have the following relations:

f =
(αm + Qm)Gm−1 + βmGm−2

(αm + Qm)Hm−1 + βmHm−2
=

Gm + QmGm−1

Hm + QmHm−1
,

and
Qm = − Gm −Hmf

Gm−1 −Hm−1
.

Proposition 12 The degree of the continuants is deg Gm = g(m+1), deg Hm =
gm.
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Let us introduce
Ĝm = Gm +

Hm

s− t

√
Y

Ĥm =
Hm

s− t
.

Then we have

Qm = − Ĝm − Ĥm

√
X

Ĝm−1 − Ĥm−1

√
X

and also
ĜmA(m) + Ĝm−1B

(m)sg+1 = ĤmX

ĤmA(m) + Ĥm−1B
(m)sg+1 = ĜmX.

From the last equations we get

δms(g+1)mA(m) = P1(s)

δms(g+1)(m+1)B(m) = P2(s),

with

P1(s) := HmHm−1
XY

x− y
− (GmHm−1 −Gm−1Hm)

√
Y −GmGm−1(s− t)

P2(s) := G2
m(s− t) + 2GmHm

√
Y −H2

m

X − Y

x− y
.

Theorem 4

(A) The polynomial GmHm−1−HmGm−1 is of degree 2gm. The first (g+1)m
coefficients are zero.

(B) The polynomial P1 is of degree 2mg + g + 1. Its first (g + 1)m coefficients
are zero.

(C) The polynomial P2 is of degree 2mg + 2g + 1 and its (g + 1)(m + 1) first
coefficients are zero.

Lemma 5 The following relations hold

Gm−1(tm)
Hm−1(tm)

= −A(m)(tm) = A(m−1)(tm)

Ĝm − Ĥm

√
X = (−1)m+1Q0Q1Q2 . . . Qm.

Theorem 5 If X(ε) 6= 0 and ε 6= y, then the element

Ĝm − Ĥm

√
X = Gm −Hm

√
X −√Y

x− y

has a zero of order (g + 1)(m + 1) at s = 0. If H(0) 6= 0 then the differences
√

X −√Y

x− y
− Gm

Hm
,

√
X − Ĝm

Ĥm

have developments starting with the order of s(g+1)(m+1).
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Now, we consider
√

X and its development as HH c. f. In that case, starting
from √

X −√p0

x− ε
,

we have

deg G0 = g + 1, H0 = 1, H1 = α1, G1 = α1G0 + β1s
g+2

and
Gm = αmGm−1 + βmGm−2,

Hm = αmHm−1 + βmHm−2.

From the last relation, we have

Theorem 6

(A) The degree of the continuants in this case is deg Gm = g(m + 1) + 1,
deg Hm = gm.

(B) If y = ε then the development of the difference

√
X − Ĝm

Ĥm

starts with the order s(g+1)(m+1)+1.

Theorem 7

(A) The polynomial GmHm−1−HmGm−1 is of degree 2gm + 1 in s. The first
(g + 1)m + 1 coefficients are 0.

(B) The polynomial HmHm−1X −GmGm−1 is of degree 2mg + g + 2. Its first
(g + 1)m + 1 coefficients are zero.

(C) The polynomial G2
m−H2

mX is of degree 2mg +2g +2 and its (g +1)(m+
1) + 1 coefficients are zero.

There are infinite ways to calculate
√

X in the neighborhood of ε, depending
on choice of the parameter y. The best approximation one obtains for the choice

y = ε.

To conclude the last observation we need to check the case y = ∞. In this case
we have:

G0 =
√

p0(1 + q1s + · · ·+ qgs
g), H0 = 1, G1 = α1G0 + β1, H1 = α1,

and we denote
Ĝm = Gm +

√
a0Hmsg+1, Ĥm = Hm.

Then we have
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Proposition 13

(A) The degree of continuants is deg Gm = g(m + 1), deg Hm = gm.

(B) If X(ε) 6= 0 and suppose the parameters t1, . . . , tm+1 are finite and differ-
ent from zero, then

√
X − Ĝm

Ĥm

has the development starting with order 2m + 2 in s.

10 First geometric realization of the 2 ↔ g + 1
dynamics

Let us start with equation (18) which defines basic curve ΓX . Consider poly-
nomial QX(λ, s) as a quadratic pencil or a net of polynomials a, b, c of degree
g + 1 in s:

QX(λ, s) = a(s)λ2 + b(s)λ + c(s).

Linear pencils of polynomials were considered, for example, in [4, 15, 5].
Following Darboux, let us start with a fixed conic K given by the equation

z2
1 = 4z0z2,

in the plane with standard coordinates (z0, z1, z2). This conic can be rationally
parameterized by (s2, 2s, 1). The tangent line to K through the point with the
parameter s0 is given by the equation

tK(s0) : z2s
2
0 + z1s0 + z0 = 0.

On the other hand, to a given point P in the plane, with coordinates P =
(ẑ0, ẑ1, ẑ2), we may join two solutions ρ, ρ1 of the following equation, which is
quadratic in s:

ẑ2s
2 + ẑ1s + ẑ0 = 0.

Each solution corresponds to a tangent to conic K from point P . We will call
the pair (ρ, ρ1) the Darboux coordinates of the point P . One finds immediately

ẑ0

ρρ1
= − ẑ1

ρ + ρ1
= ẑ2.

Now, we interpret the net condition

a(s)λ2 + b(s)λ + c(s) = 0 (20)

as a correspondence between values of λ and sets of g + 1 tangents to the conic
K: Denote by s1, . . . , sg+1 the set of solutions of equation (20) for fixed λ and
consider the tangents tK(s1), . . . , tK(sg+1).

Moreover, we associate to the polynomial X a plane curve BX such that the
Darboux coordinates ρ, ρ1 of a point of the curve BX satisfy the equation (20)
with a fixed λ.
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Definition 2 We will call the curve BX the boundary curve associated with
the polynomial X and the conic K.

Collecting together the results of classics: Jacobi, Steiner, Liuoville, Hesse,
Cremona, Darboux, we may formulate the following statements.

Theorem 8

(a) The curve BX is of degree 2q and in general it has g(g−1)/2 double points.

(b) For a fixed value of λ there correspond g + 1 solutions ρ1, . . . , ρg+1 of the
equation (20) determining a g + 1-polygon inscribed in BX and circum-
scribed about the conic K and satisfying the following system of differential
equations:

ρi
1dρ1√

b2(ρ1)− 4a(ρ1)c(ρ1)
+ · · ·+ ρi

g+1dρg+1√
b2(ρg+1)− 4a(ρg+1)c(ρg+1)

= 0, (21)

where i = 0, . . . , g − 1.

(c) There exist 2g +2 lines tangent to the conic K which are tangent to every
integral curve of the system of equations (21). Each of these tangents is
tangent to each integral curve in g points.

We give more detailed presentation of the cases of genus one and two.

Example 1 For g = 1, the system (21) consists of one equation. This is the
Euler equation. The integral curves of the Euler equation are conics, which are,
together with the conic K, inscribed in a quadrilateral.

For a given value s = ρ1 there are two solutions of the equation (20), denote
them by λ1 and λ2. Let ρ1, ρ be the solutions of equation (20) for λ1, and ρ1,
ρ2 the solutions for λ2. The pairs of lines (ρ, ρ1) and (ρ1, ρ2) form two angles
inscribed in a conic B and circumscribed about the conic K. The involution
which corresponds to the shift from λ1 to λ2 is realized as passage from the first
angle to the second one.

Example 2 For g = 2, the system (21) consists of two equations:

dρ1√
b2(ρ1)− 4a(ρ1)c(ρ1)

+
dρ2√

b2(ρ2)− 4a(ρ2)c(ρ2)
+

+
dρ3√

b2(ρ3)− 4a(ρg+1)c(ρ3)
= 0,

ρ1dρ1√
b2(ρ1)− 4a(ρ1)c(ρ1)

+
ρ2dρ2√

b2(ρ2)− 4a(ρ2)c(ρ2)
+

+
ρ3dρ3√

b2(ρ3)− 4a(ρg+1)c(ρ3)
= 0
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giving the first generalization of the Euler equation. The integral curves are of
degree four with one double point. Together with the conic K, they are inscribed
in a hexagon.

Given one of the integral curves B and a tangent tK(ρ) to the conic K with
the Darboux coordinate ρ.

For the value s = ρ there are two solutions λ1, λ2 of equation (20). Let ρ1,
ρ2 be the solutions of (20) for λ1 that are different than ρ, and similarly, let ρ3,
ρ4 be the solutions for λ2. The triplets of lines (ρ, ρ1, ρ2) and (ρ, ρ3, ρ4) form
two triangles inscribed in the degree four curve B and circumscribed about the
conic K. The involution which corresponds to the shift from λ1 to λ2 is realized
this time as the passage from the first triangle to the second one.

The line tK(ρ) intersects the degree four curve B in four points T1, T2, T3, T4,
Ti ∈ ρi. The involution defined by

(ρ, λ1) 7→ (ρ, λ2)

corresponds to the decomposition of the set {T1, T2, T3, T4} on two subsets of the
same number of elements: {T1, T2} and {T3, T4}.

The last observation in the previous example gives an insight how to under-
stand 2 ↔ g + 1 dynamics in general situation.

[Geometric realization of the dynamics 1] Given a boundary curve B
of degree 2g and a tangent to the conic K with the Darboux coordinate ρ. The
line tK(ρ) intersects the degree 2g curve B in 2g points T1, . . . Tg, Tg+1, . . . , T2g.
By condition Ti ∈ ρi, 2g new tangents to the conic K are determined. The
involution defined by:

(ρ, λ1) 7→ (ρ, λ2)

corresponds to the decomposition of set {T1, . . . Tg, Tg+1, . . . , T2g} to two subsets
of the same number of elements, say: {T1, . . . , Tg} and {Tg+1, . . . , T2g}. This
means that ρ, together with ρi, i = 1, . . . , g, form the set of solutions of equation
(20) with λ = λ1, while ρ with ρi, i = g + 1, . . . , 2g form the set of solutions of
(20) with λ = λ2.

The (g+1)–tuples of lines (ρ, ρ1, . . . ρg) and (ρ, ρg+1, . . . , ρ2g) form two (g+
1)–polygons inscribed in the degree 2g curve B and circumscribed about the conic
K. These two polygons have a pair of sides belonging to the same line — ρ.
The involution which corresponds to the shift from λ1 to λ2 is realized as the
passage from the first polygon to the second one. We can call this move the flip
along the edge.

The dynamics is a path of polygons of g + 1 sides inscribed in the curve B
of degree 2g and circumscribed about the conic K obtained by successive flips
along edges.
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11 The second geometric realization of the 2 ↔
g + 1 dynamics

In order to give another geometric realization of the 2 ↔ g + 1 dynamics which
is governed by the HH continued fractions, first we are going to realize given
hyperelliptic curve

Γ : z2 = X2g+2

of genus g, as a generalized Cayley’s curve of Dragović and Radnović (see [6],
[7]). By a birational isomorphism which maps one of the zeros of polynomial
X2g+2 to the infinity, one can realize the curve Γ in the form:

y2 = P2g+1(x),

where the polynomial P2g+1 is of odd degree equal to 2g + 1. Assuming that
zeros of polynomial P2g+1 are real and different, one can order them as:

b1 < b2 < · · · < b2d−1.

Now, decompose the set of zeros of the polynomial P2g+1 in one of the ways
that satisfies:

{b1, . . . , b2d−1} = {a1, . . . , ag+1, α1, . . . , αg},

where
αj ∈ {b2j−1, b2j}, for 1 ≤ j ≤ g. (22)

Introduce the following family of confocal quadrics in the g + 1–dimensional
Euclidean space Eg+1:

Qλ :
x2

1

a1 − λ
+ · · ·+ x2

g+1

ag+1 − λ
= 1 (λ ∈ R), (23)

where a1, . . . , ad are different real constants chosen above.
By Chasles theorem, we know that a given line in Eg+1 is tangent to g

quadrics from given confocal family.
The g constants α1, . . . , αg, determine g quadrics from family (23). Since

the constants satisfy conditions (22), there exist lines in Eg+1 that are tangent
to g distinct non-degenerate quadrics Qα1 , . . . , Qαg from the confocal family.

Let ` be a line not contained in any quadric of the given confocal family and
tangent to the given set of g quadrics Qα1 , . . . , Qαg . The generalized Cayley
curve C` is the variety of hyperplanes tangent to quadrics of the confocal family
at the points of `.

The Figure 5, represents three planes which correspond to one point of the
line ` in the 3-dimensional space.

The generalized Cayley curve is a hyperelliptic curve of genus g, for g ≥ 2.
Its natural realization in Pg+1 ∗ is of degree 2g + 1.

31



Figure 5: Three points of the generalized Cayley
curve in dimension 3

There is a natural involution τ` on the generalized Cayley’s curve C` which
maps to each other the two hyperplanes tangent to the same quadric of the
confocal family. It is easy to see that the fixed points of this involution are
hyperplanes corresponding to the g quadrics that are touching ` and to g + 2
degenerate quadrics of the confocal family.

Now we come to the essential observation. The generalized Cayley’s curve C`

is automatically equipped with a meromorphic function of degree g +1, namely
with the projection

p` : C` 7→ P1(`).

The projection p` maps to a point t from ` the g + 1 hyperplanes from C` that
contain t.

Now, we can give the second geometric realization of the dynamics governed
by the hyperelliptic Halphen continued fractions.

[Geometric realization of the dynamics 2] For a suitably chosen line `,
choose a point t1 ∈ ` and a tangent hyperplane T1,1 to a quadric Q1,1 at t1. Find
the other intersection of quadric Q1,1 and line `, and denote it as t2. Let T2,1

be the tangent hyperplane to Q1,1 at t2. Denote by T2,j the tangent hyperplanes
to quadrics Q2,j at t2, j ∈ {2, . . . , g + 1}. Choose one of them, and denote the
chosen tangent hyperplane with T2,2. Find the other intersection of the quadric
Q2,2 with the line ` and denote it with t3. Denote the tangent hyperplane to the
quadric Q2,2 at the point t3 as T3,1. Denote all other tangent hyperplanes to
quadrics Q3,j at t3, by T3,j where j ∈ {2, . . . , g + 1}. Choose one of the tangent
hyperplanes, say T3,3 and find the other intersection point of the quadric Q3,3

with the line `. Denote the intersection point as t4 and so on.

By using notation of functions, we may say that

τ`(Ti,1) = Ti+1,1, p`(Ti+1,1) = ti+1.

Also we have
p−1

` (ti) = {Ti,1, Ti,2, . . . , Ti,g+1}.
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Even the case g = 1 gives a new geometric representation of the famous
Euler–Chasles correspondence. What we give here is one its asymmetric re-
alization. For g = 1, the projection p` is two-to-one, and it induces another
involution

µ` : C` → C`

which exchanges the elements of the inverse image of p`:

p`(x) = p`(µ`(x)).

The dynamics of Halphen continued fractions is executed by a shift L done by
composition of the two involutions:

L = µ` ◦ τ`.

Even in this basic case, g = 1, the construction we made leads to new geometric
properties of lines in plane and dynamics of points of intersection with given
family of confocal conics. These properties are reflections of the Poncelet porism
for confocal conics and the Euler–Chasles correspondences. Thus, if a sequence
of the dynamics described above forms a cycle starting from a point of a line,
then the cycle of the same length will appear in this dynamics starting from any
other point of the line.

As a trivial example, one may consider a horizontal or a vertical line and a
standard confocal system of conics in a plane. The confocal system decomposes
a horizontal or vertical line on cycles of length 2.

Now, we are going back to a general case. We follow the line of [7] where the
set A` of lines in g + 1 dimensional space tangent to the fixed set of g quadrics
of a given confocal family is equipped with a structure of Abelian variety. In
the same spirit, we may consider tautological line bundle LA` as a generalized
Abelian variety. Tautological bundle consists of pairs (line, point) with incidence
relation that point belongs to a line.

12 Conclusion: Polynomial growth and integra-
bility

Due to the well-known facts, the Padé approximants of hyperelliptic functions
are unique up to the scalar factors. The approximants discussed in the previous
section in the case of genus higher than 1 are neither unique nor of the Padé type.
At the first glance, it seems that, by the construction, they have an exponential
growth. However, a more careful analysis of their degrees compared to the
degrees of approximation done in the previous section indicates their polynomial
growth. After Veselov, one can consider a discrete multi-valued dynamics to be
integrable if it has polynomial growth instead of an exponential one. In that
sense, we can say that the multi-valued discrete dynamics associated with HH-
continued fractions is an integrable dynamics.
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In the case of genus one, it can be seen as multi-valued discrete dynamics
associated with the Euler-Chasles 2–2 correspondence, which has been studied
by Veselov (see [16]) and Veselov and Buchstaber (see [3]). It would be quite
interesting to consider higher genus dynamics from the point of view of n-valued
groups and their actions, following Buchstaber (see [2]).
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last part of the paper has been written during the visit to the IHES in Autumn
2008. The author uses the opportunity to thank the IHES for hospitality and
outstanding working conditions.

References

[1] N. Abel,Théorie des transcendantes elliptiques, OEuvres, t. I, p. 87.

[2] V. Buchstaber, n-valued groups: theory and applications, Moscow Mathe-
matical Journal, Vol. 6, No. 1, p. 57-84, (2006).

[3] V. Buchstaber, A. Veselov, Integrable correspondences and algebraic repre-
sentations of multivalued groups, Inter. math. Res. Notices (1996), No. 8,
p. 381-400
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