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Abstract. A comodule algebra P over a Hopf algebra H with bijective antipode
is called principal if the coaction of H is Galois and P is H-equivariantly projec-
tive (faithfully flat) over the coaction-invariant subalgebra P coH . We prove that
principality is a piecewise property: given N comodule-algebra surjections P → Pi

whose kernels intersect to zero, P is principal if and only if all Pi’s are principal.
Furthermore, assuming the principality of P , we show that the lattice these kernels
generate is distributive if and only if so is the lattice obtained by intersection with
P coH . Finally, assuming the above distributivity property, we obtain a flabby sheaf
of principal comodule algebras over a certain space that is universal for all such N -
families of surjections P → Pi and such that the comodule algebra of global sections
is P .

1. Introduction

Comodule algebras provide a natural noncommutative-geometry generalisation
of spaces equipped with group actions. Less evidently, principal extensions [BH04]
appear to be a proper analogue of principal bundles in this context. (See Section 2 for
precise definitions.) Principal comodule algebras can be considered as functors from
the category of finite-dimensional corepresentations of the Hopf algebra (replacing
the structure group) to the category of finitely generated projective modules over the
coaction-invariant subalgebra (playing the role of the base space). Thus we have a
noncommutative version of assigning to a group representation an associated vector
bundle. (See [BHMS, Theorem 3.3] for a precise statement in the setting of topological
vector bundles.)

The aim of this article is to establish a viable concept of locality of comodule
algebras, and to analyse its relationship with principality. The notion of locality we
use herein results from decomposing algebras into “pieces”, meaning expressing them
as multiple fibre products (called multirestricted direct sums in [P-GK99, p. 264]).
If X is a compact Hausdorff space and X1, . . . , XN form a finite closed covering,
then C(X) can be expressed as such a multiple fibre product of its quotient C∗-
algebras C(Xi). This leads to a C∗-algebraic notion of a “covering of a quantum
space” given by a finite family of algebra surjections πi : P → Pi with

⋂
i ker πi = 0.

(See [BK96, CM00], cf. [D-M97].)

Recall that not all properties of group actions are local in nature: there is a natural
example of a locally proper action of R on R2 that is not proper. (See [P-RS61, p.298],
cf. [BHMS, Example 1.14] for more details.) On the other hand, a group action is
free if and only if it is locally free. Therefore, since for compact groups all actions
are proper, the principal (i.e., free and proper) actions of compact groups are local in
nature. Our main result is a noncommutative analogue of this statement:
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Theorem 3.3. A comodule algebra P which is “covered by pieces” Pi is principal if
and only if so are the pieces.

In particular, a smash product of an H-module algebra B with the Hopf algebra
H (with bijective antipode) is principal (see Section 2.3), so that gluing together
smash products is a way of constructing principal comodule algebras. This is a major
application of our result, and is presented in the example section. Another application
of Theorem 3.3 was found very recently in algebraic topology. Notably, it allows one
to prove a compact-group version of the well-known equivalence of discrete-group
principal bundles and Galois covering maps [BH].

More precisely, first one extends the notion of the algebra of regular functions
(spanned by the matrix coefficients of the irreducible unitary corepresentations) from
compact quantum groups to unital C∗-algebras on which they act [BHMS, (3.1.4)].
Such a subalgebra of regular functions is called the Peter-Weyl comodule algebra. It is
a comodule algebra over the Hopf algebra or regular functions on a compact quantum
group. In general, it is not a C∗-algebra, although its coaction-invariant (the base
space) subalgebra is always a C∗-algebra. Now, one can show that the Peter-Weyl
comodule algebra of functions on a compact Hausdorff space with an action of a
compact group is principal if and only if the action is free [BH]. In other words,
the Galois condition of Hopf-Galois theory holds if and only if we have a compact
principal bundle.

Concerning coverings of a quantum space in the earlier described sense, it was
pointed out in [CM00, p.369] that they feature a certain incompleteness problem
when going beyond the C∗-setting. This is related to the fact that the lattice of
ideals generated by the ker πi’s is in general not distributive. (This problem does not
arise for C∗-algebras.) Hence we analyse a stronger notion of covering that includes
the assumption of distributivity as part of the definition (see Definition 3.7). This
allows us to consider well-behaved coverings beyond the C∗-setting, which is useful
for Peter-Weyl comodule algebras. Furthermore, if all covering comodule algebras are
smash products, we arrive at a concept of piecewise trivial comodule algebras. They
appear to be a good noncommutative replacement of locally trivial compact principal
bundles.

The data of a covering by N pieces can be equivalently encoded into a flabby
sheaf of algebras over PN−1(Z/2). This is the 2-element field (N − 1)-projective space
whose topology subbasis is its usual covering by N affine spaces. It is a finite space
encoding the “combinatorics” of an N -covering, and is non-Hausdorff unless N = 1.
The family of all non-empty open subsets of PN−1(Z/2) turns out to be a lattice
isomorphic to the free distributive lattice on N generators.1 Combining this with
the Chinese Remainder Theorem for distributive lattices of ideals in an arbitrary ring
proves that distributive lattices generated by N ideals are equivalent to flabby sheaves
over PN−1(Z/2) (cf. Lattice of Ideals in [R-GC97]).

1Note that it is extremely difficult to determine the number of elements FD(N) of this finite
lattice. The asymptotic behaviour of FD was analysed in [Y-K54], but the problem of what is a
general formula for FD(N), originally posed by R. Dedekind [D-R97, p.147], remains open since
1897. As of 1999, the biggest known value of FD was for N = 8.
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For example, consider a compact Hausdorff space X with a covering by N closed
subsets X1, . . . , XN . Then we have the soft sheaf of continuous functions with N
distinguished C∗-algebras C(X1), . . . , C(XN). However, the soft sheaf of complex-
valued continuous functions on X is not a sheaf of C∗-algebras. Therefore, there
seems to be no evident way to use soft sheaves in the noncommutative setting. To
overcome this difficulty, we declare the closed sets open and consider X with the
new topology generated by these open sets. This leads us to flabby sheaves over
PN−1(Z/2).

Thus we obtain a covering version of the commutative Gelfand-Neumark Theo-
rem: there is an equivalence between the category of compact Hausdorff spaces with
ordered closed coverings by N subsets and the opposite category of flabby sheaves of
unital commutative C∗-algebras over PN−1(Z/2). In the noncommutative setting, this
sheaf-theoretic reformulation of coverings allows us to view a piecewise trivial comod-
ule algebra as a geometrically desired refinement of what is called an “A-quantum
principal bundle” in [P-MJ94]. (For instance, our framework allows us to conclude
that the comodule algebra of global sections is principal.)

Summarising, much as the gluings of topological spaces, the pullbacks of C∗-
algebras are fundamental for constructing new algebras and applying Mayer–Vietoris
arguments. We are motivated by the study of pullbacks of C∗-algebras equipped with
a quantum group action. These pullbacks can be exemplified by a join construction
of compact quantum groups. Insisting on the freeness of these actions leads to Galois-
type extensions of C∗-algebras by Hopf algebras. This allows us to use at the same
time both algebraic techniques of Hopf-Galois theory and analytic tools coming with
C∗-algebras. Generalising pullbacks from two to finitely many morphisms brings up
distributive lattices as a fundamental language. As a by-product of our considerations,
we obtain an equivalence between the distributive lattices generated by N ideals
intersecting to zero and flabby sheaves of algebras over a projective space PN−1(Z/2).

2. Background

Throughout, we work over a field k. All considered algebras, coalgebras etc., are
over k. An unadorned⊗ denotes the tensor product of k-vector spaces. For coproducts
and coactions we adopt the Heyneman-Sweedler notation with the summation sign
suppressed: ∆(h) = h(1) ⊗ h(2) ∈ H ⊗H, ∆P (p) = p(0) ⊗ p(1) ∈ P ⊗H.

2.1. Fibre products. We recall here elementary facts concerning pullback diagrams
that will be used in what follows. To focus attention, we consider the category of
vector spaces. Since all our algebras and comodules are over a field, this suffices for
our applications.

Let π1 : V1 → V12 and π2 : V2 → V12 be linear maps of vector spaces. The pullback
(fibre product) V1×π1,π2V2 of π1 and π2 is defined by a universal property, and turns out
to be isomorphic to ker (π1 − π2 : V1 × V2 → V12) = {(p, q) ∈ V1 × V2 |π1(p) = π2(q)}.
As a consequence of this description, we obtain:

(1) (V1 × V2
π1,π2

)⊗2 = ker((π1 − π2)⊗ id) ∩ ker(id⊗(π1 − π2)).
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Next, let us consider the following commutative diagram of linear maps
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and show:

Lemma 2.1. Assume that the φi’s and πi’s in the diagram (2) are surjective. Then
η is surjective if and only if ker (πi◦φi) = ker φ1 + ker φ2.

Proof. Assume first that η is surjective, and v ∈ ker (πi◦φi). Then both (φ1(v), 0) and
(0, φ2(v)) belong to V1×π1,π2 V2, and there exist v1 and v2 such that η(v1) = (φ1(v), 0)
and η(v2) = (0, φ2(v)). Clearly, v − (v1 + v2) ∈ ker η. Therefore, as v1 ∈ ker φ2,
v2 ∈ ker φ1, and

(3) ker η = ker φ1 ∩ ker φ2 ,

we conclude that v ∈ ker φ1 + ker φ2.

Conversely, assume that ker (πi◦φi) = ker φ1 + ker φ2. Let (φ1(v1), φ2(v2)) be any
element of the fibre product. Then v1− v2 ∈ ker φ1 + ker φ2, so that v1− v2 = k1 + k2

for some k1 ∈ ker φ1 and k2 ∈ ker φ2. Hence, for v := v1 − k1 = v2 + k2, we have
(φ1(v1), φ2(v2)) = (φ1(v), φ2(v)) = η(v). �

To end with, let us remark that an appropriate version of this lemma becomes
a theorem characterising the exact Maltsev categories among the regular categories
[CKP93].

2.2. Distributive lattices. To reformulate coverings in terms of flabby sheaves, we
will need a method yielding a presentation of the elements of finitely generated dis-
tributive lattices. To this end, we consider first the lattice of upper sets. We call a
non-empty set α of non-empty subsets of {1, . . . , N} an upper set (or a dual order
ideal) if

(4) a ∈ α and a ⊆ b =⇒ b ∈ α.

We denote by ΥN ⊆ 22{1,...,N}
the set of all upper sets in the set 2{1,...,N} of all sub-

sets of {1, . . . , N}. The set union and intersection make ΥN a distributive lattice.
Furthermore, the upper sets are nonempty open sets of 2{1,...,N} in the Alexandrov
topology. One can prove that ΥN is generated as a distributive lattice by the sets

(5) Si := {a ⊆ 2{1,...,N} | i ∈ a}, i ∈ {1, . . . , N}.

We want to show that ΥN is isomorphic to the free distributive lattice generated
by N elements (see [B-G67, par. III.4 ]). This means verifying that ΥN enjoys the
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universal property defining the free distributive lattice with N -generators. For any
lattice (Λ,∨,∧) generated by λ1, . . . , λN we can define a map

(6) R(λi)i : ΥN 3 α 7−→
∨

{i1,...,ik}∈α

(λi1 ∧ . . . ∧ λik) ∈ Λ .

It is is a homomorphism of lattices if, for all α1, α2 ∈ ΥN ,

(7) R(λi)i(α1∩α2) = R(λi)i(α1)∧R(λi)i(α2) , R(λi)i(α1∪α2) = R(λi)i(α1)∨R(λi)i(α2) .

The second equality of (7) always holds. To prove the first one, we need to assume
that the lattice Λ is distributive. First, observe that for all α1, α2 ∈ ΥN :

(8) α1 ∩ α2 = {a1 ∪ a2 | a1 ∈ α1, a2 ∈ α2}.
Indeed, since a1 ⊆ a1 ∪ a2 and a2 ⊆ a1 ∪ a2, the left hand side contains the right hand
side. The other inclusion follows from α1 ∩ α2 ⊆ α1, α1 ∩ α2 ⊆ α2 and a = a ∪ a.
Now, by the distributivity of Λ, formula (8) implies the first equation of (7).

Next, let P be an algebra, and let (Ii)i∈{1,...,N} be an ordered family of ideals of P
intersecting to zero and generating a distributive lattice ΞN with + and ∩ as meet and
join operations, respectively. The pairs (P, (Ii)i∈{1,...,N}) form a category IN of distribu-
tive lattices of ideals. A morphism between (P, (Ii)i∈{1,...,N}) and (Q, (Ji)i∈{1,...,N}) is,
by definition, an algebra map f : P → Q such that f(Ii) ⊆ Ji, for all i ∈ {1, . . . , N}.
On the other hand, we consider the category FN of flabby sheaves of algebras over
the space SN := 2{1,...,N} \ {∅} with the Alexandrov topology (open sets are upper
sets). Since every sheaf is a functor, we define as morphisms between sheaves natural
transformations of functors.

Proposition 2.2. Let IN be the category of distributive lattices of ideals generated by
N elements, and FN be the category of flabby sheaves of algebras over SN . Then the
following assignments

IN 3 (P, (Ii)i∈{1,...,N})
F7−→

{
P : U 7→ P/R(Ii)i(U)

}
U
∈ FN ,(9)

FN 3 P G7−→
(
P(SN), (ker(P(SN) → P(Si)))i

)
∈ IN ,(10)

are functors establishing an equivalence of categories.

Proof. Assume that we are given an object (P, (Ii)i∈{1,...,N}) ∈ IN . We want to

show that (9) assigns to it a flabby sheaf. For brevity, we put R(Ii)i = R. Let U , U ′

be open subsets of SN such that U ⊆ U ′. It follows from (7) that R(U ′) ⊆ R(U).
Therefore, one can define the restriction maps

(11) πU ′,U : P(U ′) −→ P(U), p + R(U ′) 7−→ p + R(U),

so that P is a presheaf. Next, let U be an open subset of SN and let {Uk}k be
an open covering of U (i.e.

⋃
k Uk = U). Consider elements pk ∈ P(Uk) such that

πUk,Uk∩Ul
(pk) = πUl,Uk∩Ul

(pl), for all k, l. By the distributivity of the lattice ΞN and
the generalised Chinese Remainder Theorem (e.g., see [SS58], Theorem 18 on p. 280),
there exists an element pU ∈ P(U) such that πU,Uk

(pU) = pk, ∀ k. To prove the
uniqueness of pU =: p + R(U), suppose that πU,Uk

(pU) := p + R(Uk) = 0, ∀ k. This
means that p ∈

⋂
k R(Uk). On the other hand, it follows from (7) that R(U ∪ U ′) =

R(U)∩R(U ′), for any open subsets U , U ′ of SN . Consequently, p ∈ R(
⋃

k Uk) = R(U),
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that is pU = 0. This establishes the desired uniqueness. Hence P is a flabby sheaf,
and the assignment F is well defined.

Now suppose that we are given a flabby sheaf P of algebras over SN . Let πV,U :
P(V ) → P(U) denote the restriction map for any open U ,V , U ⊆ V . For brevity, we
write πU instead of πV,U , if V = SN . By the flabbiness of P , the morphisms πSi

(see

(5)) are surjective. The property
⋂N

i=1 ker πSi
= {0} follows from the sheaf condition.

Furthermore, as lattices of sets are always distributive, to prove the distributivity of
the lattice ΞN it is enough to show that the assignment U 7→ ker πU defines a surjective
morphism from ΥN onto ΞN transforming the union and intersection of open subsets
to the intersection and sum of ideals, respectively. To show this, let U ′, U ′′ be open
subsets of SN . Since P is a sheaf, we know that P(U ′ ∪ U ′′) is the fibre product of
P(U ′) and P(U ′′). Hence (3) implies that

(12) ker πU ′∪U ′′ = ker πU ′ ∩ ker πU ′′ ,

as needed. Similarly, since the sheaf P is flabby, Lemma 2.1 implies that

(13) ker πU ′∩U ′′ = ker πU ′ + ker πU ′′ .

Thus we have shown that (10) assigns to flabby sheaves objects of IN , so that the
assignment G is well defined.

The functoriality of G is immediate. Indeed, let Φ : P → Q be a natural transfor-
mation of flabby sheaves of algebras over SN . Denote by η the restriction morphisms
of Q. Then, since ηSi

◦ΦSN
= ΦSi

◦πSi
, we have ΦSN

(ker πSi
) ⊆ ker ηSi

. To prove that
F is a functor, consider an algebra homomorphism f : P → Q such that f(Ii) ⊆ Ji

for all i. (It is a morphism in IN .) For any open subset U , we obtain an analogous
inclusion f(R(Ii)i(U)) ⊆ R(Ji)i(U). Hence we have algebra homomorphisms

(14) P/R(Ii)i(U) −→ Q/R(Ji)i(U), p + R(Ii)i(U) 7−→ f(p) + R(Ji)i(U),

defining the desired morphism of sheaves.

It is clear that G ◦ F is a functor naturally isomorphic to the identity functor on
the category IN because R(Ii)i(Sj) = Ij for any index j. On the other hand, consider
an object P in the category FN of flabby sheaves. Combining (12) and (13) with
the fact that R(Ii)i is a morphism of lattices, we can conclude that there is always a
natural isomorphism P(U) ∼= P(SN)/R(Ii)i(U). Hence F ◦ G is naturally isomorphic
to the identity functor on FN . 2

2.3. Principal comodule algebras. Let (H, ∆, ε, S) be a Hopf algebra with bijec-
tive antipode. A right H-comodule algebra P is a unital associative algebra equipped
with an H-coaction ∆P : P → P ⊗ H that is an algebra map. For a comodule
algebra P , we call

(15) P coH := {p ∈ P |∆P (p) = p⊗ 1}

the subalgebra of coaction-invariant elements in P . The assumed existence of the
inverse of the antipode allows us to define a left coaction P ∆ : P → H ⊗ P by the
formula p 7→ S−1(p(1)) ⊗ p(0). This makes P a left H-comodule, and a left Hop-
comodule algebra.
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Definition 2.3. Let P be a right comodule algebra over a Hopf algebra H with bijective
antipode, and let B := P coH be the coaction-invariant subalgebra. The comodule
algebra P is called principal if the following conditions are satisfied:

(1) the coaction of H is Galois, that is, the map
can : P ⊗

B
P −→ P ⊗H, p⊗ q 7−→ pq(0) ⊗ q(1) ,

(called the canonical map) is bijective,

(2) the comodule algebra P is right H-equivariantly projective as a left B-module,
i.e., there exists a right H-colinear and left B-linear splitting of the multipli-
cation map B ⊗ P → P .

This splitting can always be chosen to be unital [BH04, BHMS+]. Also, in this
setting, one can show that the H-equivariant projectivity of P over B is equivalent
to the faithful flatness of P as a B-module [SS05, SS]. If P is a principal comodule
algebra, then the extension of algebras B⊆P is a special case of principal extensions
defined in [BH04].

A cleft Hopf-Galois extension (e.g., a smash product B#H of an H-module alge-
bra B by H) is always principal. Indeed, by [BM89, p.42], cleft Hopf-Galois extensions
always enjoy the normal basis property, and the latter can be viewed as equivariant
freeness, a special case of equivariant projectivity. For more details and an introduc-
tion to Hopf-Galois theory, see, e.g., [M-S93, S-HJ94].

2.4. Strong connections. The inverse of the canonical map defines a monomor-
phism H → P ⊗B P , h 7→ can−1(1⊗ h), called the translation map. It turns out that
lifts of this map to P ⊗ P that are both right and left H-colinear yield an equivalent
approach to principality [BH04]:

Definition 2.4. Let H be a Hopf algebra with bijective antipode, and c̃an : P ⊗ P →
P ⊗H be the lift of can to P ⊗ P . Then a strong connection (cf. [H-PM96, DGH01])
on a right H-comodule algebra P is a unital linear map ` : H → P ⊗ P satisfying

(idP ⊗∆P ) ◦ ` = (`⊗ idH) ◦∆, (P ∆⊗ idP ) ◦ ` = (idH ⊗ `) ◦∆ , c̃an ◦ ` = 1⊗ id .

The last property of the strong connection (splitting of c̃an) gives rise to the
commutative diagram

(16) H
` //

1⊗id
��

P ⊗ Pfcan
xxppppppppppp

canonical surjection
��

P ⊗H P ⊗B P .can
oo

Using the Heyneman–Sweedler-type notation h 7→ `(h)〈1〉 ⊗ `(h)〈2〉 (summation sup-
pressed), we can write the bicolinearity and splitting property of a strong connection
as follows:

`(h)〈1〉 ⊗ `(h)〈2〉(0) ⊗ `(h)〈2〉(1) = `(h(1))
〈1〉 ⊗ `(h(1))

〈2〉 ⊗ h(2) ,(17)

`(h)〈1〉(0) ⊗ `(h)〈1〉(1) ⊗ `(h)〈2〉 = `(h(2))
〈1〉 ⊗ S(h(1))⊗ `(h(2))

〈2〉 ,(18)

`(h)〈1〉`(h)〈2〉(0) ⊗ `(h)〈2〉(1) = 1⊗ h .(19)
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Applying id⊗ε to the last equation yields a very useful formula:

(20) `(h)〈1〉`(h)〈2〉 = ε(h).

One can prove that an H-comodule algebra P is principal if and only if it admits
a strong connection [BH04, BHMS+, BB05]. Given a strong connection `, one can
show that the formula

(21) P ⊗H −→ P ⊗
B

P, p⊗ h 7−→ p`(h)〈1〉 ⊗
B

`(h)〈2〉,

defines the inverse of the canonical map can, so that the coaction of H is Galois. Next,
one can also show that

(22) s : P 3 p 7−→ p(0)`(p(1))
〈1〉 ⊗ `(p(1))

〈2〉 ∈ B ⊗ P

is a splitting whose existence proves the equivariant projectivity. Much as above, one
argues that the formula

(23) s′ : P 3 p 7−→ `(S−1(p(1)))
〈1〉 ⊗ `(S−1(p(1)))

〈2〉p(0) ∈ P ⊗B

provides a left H-colinear and right B-linear splitting of the multiplication map
P ⊗B → P .

2.5. Actions of compact quantum groups. Let H̄ be the C∗-algebra of a compact
quantum group in the sense of Woronowicz [W-SL87, W-SL98] and H its dense Hopf
∗-subalgebra spanned by the matrix coefficients of the irreducible unitary corepresen-
tations. Let P̄ be a unital C∗-algebra and let δ : P̄ → P̄ ⊗min H̄ be a C∗-algebraic
right coaction of H̄ on P̄ . (See [BS93, Definition 0.2] for a general definition and
[B-FP95, Definition 1] for the special case of compact quantum groups.) Then the
subalgebra P ⊆ P̄ of elements for which the coaction lands in P̄ ⊗H (algebraic tensor
product),

(24) P := {p ∈ P̄ | δ(p) ∈ P̄ ⊗H},
is an H-comodule algebra. It follows from the results of [B-FP95] and [P-P95] that
P is dense in P̄ . We call P the Peter-Weyl comodule algebra associated to the C∗-
algebraic coaction δ. It is straightforward to verify that the operation P̄ 7→ P is a
functor commuting with taking fibre products. Note also that P̄ coH̄ = P coH .

3. Piecewise principality

To show the piecewise nature of principality, we begin by proving lemmas con-
cerning quotients and fibre products of principal comodule algebras.

Lemma 3.1. Let π : P → Q be a surjection of right H-comodule algebras (bijective
antipode assumed). If P is principal, then:

(1) The induced map π|P coH : P coH → QcoH is surjective.
(2) There exists a unital H-colinear splitting of π.

Proof. It follows from the colinearity of π that π(P coH) ⊆ QcoH . To prove the
converse inclusion, we take advantage of the left P coH-linear retraction of the inclusion
P coH ⊆ P that was used to prove [BH04, Theorem 2.5(3)]:

(25) σ : P −→ P coH , σ(p) := p(0)`(p(1))
〈1〉ϕ(`(p(1))

〈2〉) .
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Here ` is a strong connection on P and ϕ is any unital linear functional on P . If
π(p) ∈ QcoH , then σ(p) is a desired element of P coH that is mapped by π to π(p).
Indeed, since π(p(0))⊗ p(1) = π(p)⊗ 1, using the unitality of `, π and ϕ, we compute

(26) π(σ(p)) = π(p(0))π(`(p(1))
〈1〉)ϕ(`(p(1))

〈2〉) = π(p).

To prove the second assertion, let us choose any k-linear unital splitting of π|P coH

and denote it by αcoH . One can readily verify that the formula

(27) α(q) := αcoH(q(0)π(`(q(1))
〈1〉))`(q(1))

〈2〉

defines a unital colinear splitting of π. (Note also that αcoH = α|QcoH .) 2

Lemma 3.2. Let P be a fibre product in the category of right H-comodule algebras:

P

||xxx
xx

x

""FF
FF

FF

P1

π1
2

""EE
EE

E P2

π2
1

||yy
yy

y

P12 .

Then, if P1 and P2 are principal and π1
2 and π2

1 are surjective, P is a principal comodule
algebra.

Proof. Given strong connections `1 and `2 on P1 and P2, respectively, we want to
construct a strong connection on P . A first approximation for such a strong connection
is as follows:

(28) λ : H −→ P ⊗ P, λ(h) := (`1(h)〈1〉, f1
2 (`1(h)〈1〉))⊗ (`1(h)〈2〉, f1

2 (`1(h)〈2〉)).

Here f 1
2 := σ2 ◦ π1

2, and σ2 is a unital colinear splitting of π2
1, which exists by

Lemma 3.1(2). (Note that our Heyneman-Sweedler-type summation convention for
strong connections x〈1〉 ⊗ x〈2〉 =

∑
i xi ⊗ yi is extended to the direct products by the

formula (x〈1〉, x〈1〉) ⊗ (x〈2〉, x〈2〉) :=
∑

i(xi, xi) ⊗ (yi, yi).) The map λ is unital and
bicolinear, but it does not split the lifted canonical map:

(1, 1)⊗ h− c̃an(λ(h)) = (0, 1)⊗ h− (0, f1
2 (`1(h(1))

〈1〉)f 1
2 (`1(h(1))

〈2〉))⊗ h(2) ∈ P2 ⊗H .

Now, let c̃an2 be the lifted canonical map on P2 ⊗ P2. Applying the splitting of c̃an2

given by `2 (cf. (21)) to the right hand side of the above equation, gives a correction
term for λ:

T (h) := `2(h)− f 1
2 (`1(h(1))

〈1〉)f 1
2 (`1(h(1))

〈2〉)`2(h(2))
〈1〉 ⊗ `2(h(2))

〈2〉(29)

=
(
ε(h(1))− f 1

2 (`1(h(1))
〈1〉)f 1

2 (`1(h(1))
〈2〉)

)
`2(h(2))

〈1〉 ⊗ `2(h(2))
〈2〉.

This defines a bicolinear map into P2 ⊗ P2 which annihilates 1. Considering λ as a
map into (P1 ⊕ P2)

⊗2, we can add these two maps. The map λ + T is still unital and
bicolinear and splits the lifted canonical map on (P1 ⊕ P2)

⊗2. Remembering (1) and
(20), it is clear from the formula for T that to make it take values in P ⊗ P we only
need to add the term

(30) T ′(h) :=
(
ε(h(1))− f 1

2 (`1(h(1))
〈1〉)f 1

2 (`1(h(1))
〈2〉)

)
`2(h(2))

〈1〉 ⊗ f 2
1 (`2(h(2))

〈2〉).
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Much as above, here f 2
1 := σ1 ◦ π2

1 and σ1 is a unital colinear splitting of π1
2, which

exists by Lemma 3.1(2). The formula (30) defines a bicolinear map into P2⊗P1 which
annihilates 1. Since the lifted canonical map on (P1 ⊕ P2)

⊗2 vanishes on P2 ⊗ P1, the
sum λ + T + T ′ splits the lifted canonical map, takes values in P ⊗ P and is unital
and bicolinear. Thus it is, as desired, a strong connection on P . 2

Let us now consider a family πi : P → Pi, i ∈ {1, . . . , N}, of surjections of right

H-comodule algebras with
⋂N

i=1 ker πi = 0. Denote Ji := ker πi. By Lemma 2.1
and formula (3), for any k = 1, . . . , N − 1 there is a fibre-product diagram of right
H-comodule algebras

(31) P/(J1 ∩ . . . ∩ Jk+1)

ttiiiiiiiiiii

**UUUUUUUUUUUU

P/(J1 ∩ . . . ∩ Jk)

π1
2 **UUUUUUUUUUUU P/Jk+1

π2
1ttiiiiiiiiiiii

P/((J1 ∩ . . . ∩ Jk) + Jk+1) .

Assume that all the Pi
∼= P/Ji are principal. Then Lemma 3.2 implies by an obvious

induction that P/(J1∩. . .∩Jk) is principal for all k = 1, . . . , N . In particular (k = N),
P is principal. On the other hand, if P is principal then all the Pi’s are principal: If
` : H → P ⊗ P is a strong connection on P , then

(32) (πi ⊗ πi) ◦ ` : H −→ Pi ⊗ Pi

is a strong connection on Pi. Thus we have proved the following:

Theorem 3.3. Let πi : P → Pi, i ∈ {1, . . . , N}, be surjections of right H-comodule

algebras such that
⋂N

i=1 ker πi = 0. Then P is principal if and only if all the Pi’s are
principal.

Remark 3.4. In [HW], Lemma 3.2 has been generalised to one-surjective pullbacks,
i.e., to pullbacks with only one of the defining morphisms π2

1 and π1
2 assumed to

be surjective. Furthermore, it seems straightforward to replace principal comodule
algebras by principal extensions in the sense of [BH04]. ♦

Our next step is a statement about a relation between the ideals of a principal
comodule algebra P that are also subcomodules, and ideals in the subalgebra B
of coaction-invariant elements. Both sets are obviously lattices with respect to the
operations + and ∩.

Proposition 3.5. Let P be a principal right H-comodule algebra and B := P coH the
coaction-invariant subalgebra. Denote by ΞB the lattice of all ideals in B and by ΞP

the lattice of all ideals in P that are simultaneously subcomodules. Then the map

L : ΞP −→ ΞB, L(J) := J ∩B

is a monomorphism of lattices.

Proof. The only non-trivial step in proving that L is a homomorphism of lattices
is establishing the inclusion (B∩J)+(B∩J ′) ⊇ B∩ (J +J ′). To this end, we proceed



PIECEWISE PRINCIPAL COMODULE ALGEBRAS 11

along the lines of the proof of Lemma 3.1(1). Since J is a comodule and an ideal,
from the formula (22) we obtain:

(33) p ∈ J =⇒ s(p) = p(0)`(p(1))
〈1〉 ⊗ `(p(1))

〈2〉 ∈ (J ∩B)⊗ P.

Now, let p ∈ J , q ∈ J ′, p + q ∈ B. Then (33) implies that

(34) (p + q)⊗ 1 = s(p) + s(q) ∈ (B ∩ J)⊗ P + (B ∩ J ′)⊗ P.

Applying any unital linear functional P → k to the second tensor component implies
that p + q ∈ (B ∩ J) + (B ∩ J ′). Finally, since s is a splitting of the multiplication
map, it follows from (33) that J = (J ∩ B)P . This, in turn, proves the injectivity
of L. 2

Note that, much as the formula (22) implies (33), the formula (23) implies

(35) p ∈ J =⇒ s′(p) = `(S−1(p(1)))
〈1〉 ⊗ `(S−1(p(1)))

〈2〉p(0) ∈ P ⊗ (J ∩B).

Therefore, since s′ is a splitting of the right multiplication map, J = P (J ∩ B).
Combining this with the above discussed left-sided version proves that J is a two-
sided ideal:

(36) P (J ∩B) = J = (J ∩B)P.

Remark 3.6. The homomorphism L is not surjective in general. A counterexample
is given by a smash product (trivial principal comodule algebra) of the Laurent poly-
nomials B = k[u, u−1] with the Hopf algebra H = k[v, v−1] of Laurent polynomials
(∆(v) = v ⊗ v). The action is defined by v . u = qu, q ∈ k \{0, 1}. Viewing u and
v as generators of P , it is clear that vu = quv. It is straightforward to verify that,
if I is the two-sided ideal in B generated by u − 1, then the right ideal IP is not a
two-sided ideal of P . Hence the map L cannot be surjective by (36). ♦

In [CM00], families πi : P → Pi of algebra homomorphisms as in Theorem 3.3
were called coverings. However, it was explained therein (see Proposition 2) that such
coverings are well-behaved when the kernels ker πi generate a distributive lattice of
ideals. Therefore, we adopt in the present paper the following terminology:

Definition 3.7. A finite family {πi : P → Pi}i∈{1,...,N} of surjective algebra homomor-
phisms is called a weak covering if ∩i=1,...,N ker πi = {0}. Denote by ΞN the lattice of
ideals generated by Ii := ker πi, i = 1, . . . , N , with ∩ and + as the join and meet opera-
tions, respectively. A weak covering is called a covering if the lattice ΞN is distributive.
Finally, an ordered family (πi : P → Pi)i∈{1,...,N} is called an ordered covering if the
set {πi : P → Pi}i∈{1,...,N} is a covering.

The above definition can obviously be extended to the case when the πi’s are al-
gebra and H-comodule morphisms. Then the ker πi’s are ideals and H-subcomodules.
Note also that the reason for distinguishing between coverings and ordered coverings
comes from the categorical considerations of the following section. To compare cov-
erings with appropriate sheaves of algebras, it is more convenient to use the category
of ordered coverings.

The next claim is concerned with the distributivity condition from Definition 3.7
for coverings of principal comodule algebras. It follows from Proposition 3.5 and
Lemma 3.1(1).
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Corollary 3.8. Let {πi : P → Pi}i∈{1,...,N} be a family of surjective homomorphisms
of right H-comodule algebras. Assume that P is principal. Then {πi : P → Pi}i is a
covering of P if and only if {πi|P coH : P coH → P coH

i }i is a covering of P coH .

The above corollary is particularly helpful when P coH is a C∗-algebra because lattices
of closed ideals in a C∗-algebra are always distributive (due to the property I∩J = IJ).

We are now ready to propose a noncommutative-geometric replacement for the
concept of local triviality of principal bundles. Recall that the subsets that admit
a natural translation into the language of C∗-algebras are the closed (not the open)
subsets of a compact Hausdorff space. Therefore, we use finite closed rather than
open coverings to trivialise bundles. As is explained in [BHMS, Example 1.24], there
is a difference between these two approaches. We reserve the term “locally trivial”
for bundles trivializable over an open cover, and call bundles trivializable over a finite
closed cover “piecewise trivial”. It is the latter (slightly more general) property that
we generalise to the noncommutative setting.

Definition 3.9. An H-comodule algebra P is called piecewise principal (respectively,
trivial) if there exists a weak covering {πi : P → Pi}i∈{1,...,N} by H-colinear maps such
that:

(1) The restrictions πi|P coH : P coH → P coH
i form a covering.

(2) The Pi’s are principal (respectively, the Pi’s are smash products, i.e., for all i,
Pi
∼= P coH

i #iH as H-comodule algebras).

While not every compact principal bundle is piecewise (or locally) trivial ([BHMS,
Example 1.22]), every piecewise principal compact G-space (i.e., covered by finitely
many compact principal G-bundles) is clearly a compact principal G-bundle. The
second statement becomes non-trivial when we replace compact G-spaces by comodule
algebras. However, it is an immediate consequence of Theorem 3.3 and Corollary 3.8:

Corollary 3.10. Let H be a Hopf algebra with bijective antipode and P be an H-
comodule algebra that is piecewise principal with respect to {πi : P → Pi}i. Then P
is principal and {πi : P → Pi}i is a covering of P .

Finally, let us consider the relationship between piecewise triviality and a similar
concept referred to as “local triviality” in [P-MJ94]. Therein, sheaves P of comodule
algebras were viewed as quantum analogues of principal bundles. They were called
locally trivial provided that the space X on which P is defined admits an open covering
{Ui}i such that all P(Ui)’s are smash products. If we assume such a sheaf to be flabby
(that is, for all open subsets of V, U , V ⊆ U , the restriction maps πU,V : P(U) → P(V )
are surjective), then we can use Theorem 3.3 to deduce the principality of all P(U)’s:

Corollary 3.11. Let H be a Hopf algebra with bijective antipode and P be a flabby
sheaf of H-comodule algebras over a topological space X. If {Ui}i is a finite open
covering such that all P(Ui)’s are principal, then P(U) is principal for any open
subset U ⊆ X.
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4. Coverings and flabby sheaves

In this section, we focus entirely on a flabby-sheaf interpretation of distributive
lattices of ideals defining coverings of algebras (see Definition 3.7). We will explain
that for a flabby sheaf in Corollary 3.11, the underlying topological space plays only
a secondary role and can be replaced by a certain space that is universal for all N -
element coverings. This space is the 2-element field (N − 1)-projective space

(37) PN−1(Z/2) := {0, 1}N \{(0, . . . , 0)}
whose topology subbasis is its affine covering, i.e., whose topology is generated by the
subsets

(38) Ai := {(z1, . . . , zN) ∈ PN−1(Z/2) | zi 6= 0}.

Consider now an arbitrary space X with a finite covering {U1, . . . , UN}. Define
on X the topology generated by the Ui’s (considered as open sets) and pass to the
quotient by the equivalence relation

(39) x ∼ y ⇐⇒ (∀i : x ∈ Ui ⇐⇒ y ∈ Ui).

Obviously, X/∼ depends on the specific features of the covering {Ui}i. However, for
a fixed N , it can always be embedded into PN−1(Z/2):

Proposition 4.1. Let X = U1∪. . .∪UN be any set equipped with the topology generated
by the Ui’s. Let p : X → X/∼ be the quotient map defined by the equivalence relation
(39). Then

ξ : X/∼ −→ PN−1(Z/2), p(x) 7−→ (z1, . . . , zN), zi = 1 ⇔ x ∈ Ui , ∀ i,

is an embedding of topological spaces.

Proof. It is immediate that ξ is well defined and injective. Next, since
p−1(ξ−1(Ai)) = Ui is open for all i, each ξ−1(Ai) is open in the quotient topology
on X/∼. Now the continuity of ξ follows from the fact that the Ai’s form a subbasis
of the topology of PN−1(Z/2).

The key step is to show that images of open sets in X/∼ are open in ξ(X/∼).
First note that by the definition of the relation (39),

(40) p−1(p(Ui1 ∩ . . . ∩ Uin)) = Ui1 ∩ . . . ∩ Uin .

Therefore, as preimages and images preserve unions and any open set in X is the union
of intersections of Ui’s, p is an open map. On the other hand, by the surjectivity of p,
we have p(p−1(V )) = V for any subset V ⊆ X/∼. Hence it follows that a set in X/∼
is open if and only if it is an image under p of an open set in X. Finally, by the
definition of ξ,

(41) ξ(p(Ui1 ∩ . . . ∩ Uin)) = Ai1 ∩ . . . ∩ Ain ∩ Im(ξ),

and the claim follows from the distributivity of ∩ with respect to ∪. 2

Note that the map ξ is a homeomorphism precisely when the Ui’s are in a generic
position, that is, when all intersections Ui1 ∩ . . .∩Uik ∩ (X \Uj1)∩ . . .∩ (X \Ujl

) such
that {i1, . . . , ik} ∩ {j1, . . . , jl} = ∅ are non-empty.
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Thus we have shown that if we consider X and the Ui’s as in Corollary 3.11, then
the composition ξ ◦ p : X → PN−1(Z/2) is continuous. Hence we can produce flabby
sheaves over PN−1(Z/2) by taking the direct images of flabby sheaves over X. They
will have the same sections globally and on the covering sets. In this sense, they carry
an essential part of the data encoded in the original sheaf.

Example 4.2. We want to show that a closed-set version of the affine covering of
PN−1(C) yields ξ which is a homeomorphism. Denote by [x1 : . . . : xN ] the class of
(x1, . . . , xN) ∈ CN in PN−1(C). Then the affine subsets

(42) Vi =
{

[x1 : . . . : xN ] ∈ PN−1(C) | xi 6= 0
}

, i = 1, . . . , N ,

form a covering of PN−1(C). Next, define the following refinement of this covering:

(43) Xi =
{

[x1 : . . . : xN ] ∈ PN−1(C) | |xi| = max{|x1|, . . . , |xN |}
}

, i = 1, . . . , N.

It is clear that, under the homeomorphisms

(44) Ψi : Vi −→ CN−1, [x1 : . . . : xN ] 7−→
(

x1

xi

, . . . ,
xi−1

xi

,
xi+1

xi

, . . . ,
xN

xi

)
,

defining the manifold structure of PN−1(C), the sets Xi become closed (N − 1)-cubes:

(45) Ψi(Xi) =
{

(y1, . . . , yN−1) ∈ CN−1 | |yj| ≤ 1, ∀j

}
.

Thus the Xi’s form a closed covering of PN−1(C). Finally, to show that the embedding
ξ induced by this covering is surjective, consider an arbitrary element (z1, . . . , zN) ∈
PN−1(Z/2) that is a non-zero sequence of zeros and ones. Then

(46) (ξ ◦ p)([z1 : . . . : zN ]) = (z1, . . . , zN),

as needed. ♦

Our next aim is to demonstrate that flabby sheaves of algebras over PN−1(Z/2) are
just a reformulation of the notion of an ordered covering introduced in Definition 3.7.
It turns out that the distributivity condition discussed in the previous section is the key
property needed to reconcile the results from [BK96, CM02] with those from [P-MJ94].

To this end, let us call an ordered covering by N surjections an ordered N -
covering, and let us define a morphism between ordered N -coverings (πi : P → Pi)i

and (ηi : Q → Qi)i as a family of algebra homomorphisms f : P → Q and fi : Pi → Qi,
i ∈ {1, . . . , N}, such that ηi ◦ f = fi ◦ πi for any index i. This category is obviously
equivalent to the category IN of distributive lattices of ideals (see Proposition 2.2).

On the other hand, to transform a category of sheaves over the topological space
SN (i.e., over 2{1,...,N} \ {∅} with the Alexandrov topology) to an equivalent category
of sheaves over PN−1(Z/2), all we need is a homeomorphism between these spaces.
This is provided by the obvious bijection

(47) χ : PN−1(Z/2) 3 (zi)i∈{1,...,N} 7−→ {j ∈ {1, . . . , N} | zj = 1} ∈ SN

mapping the subbasis of topology of PN−1(Z/2) to the subbasis of topology of SN ,
i.e., χ(Ai) = Si, i ∈ {1, . . . , N} (see (38) and (5)).

Hence Proposition 2.2 enjoys the following corollary:
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Corollary 4.3. Let CN be the category of ordered N-coverings of algebras, and PN

be the category of flabby sheaves of algebras over PN−1(Z/2). Then the following
assignments

CN 3 (πi : P → Pi)i 7−→
{
S : Y 7→ P/(R(Ii)i ◦ χ)(Y )

}
Y
∈ PN ,(48)

PN 3 S 7−→
(
S(PN−1(Z/2)) → S(Ai)

)
i
∈ CN ,(49)

are functors establishing an equivalence of categories.

Furthermore, since both lattices ΓN and ΥN are the lattices of non-empty open
subsets of PN−1(Z/2) and SN , respectively, the homeomorphism χ induces an isomor-
phism of lattices (cf. [B-G67, Theorem 9, p.34]):

Corollary 4.4. For any N , the homomorphism of lattices R(Ai)i : ΥN → ΓN defined
by (6) is bijective. Its inverse is given by the formula (R(Aj)j )−1(Y ) = χ(Y ).

In Corollary 4.3, one would like to replace the category of ordered N -coverings by
the category of all finite coverings, which is more natural from the classical topology
point of view. For this purpose, one needs to consider appropriate isomorphism classes
of flabby sheaves over the infinite projective space P∞(Z/2) := lim−→PN(Z/2). This is

currently under way in [PZ].

Let us end this section by showing how Corollary 4.3 works in the classical set-
ting. Since the intersection of closed ideals in a C∗-algebra equals their product, the
lattices of closed ideals in C∗-algebras are always distributive. On the other hand,
the category of compact Hausdorff spaces is equivalent to the opposite category of
unital commutative C∗-algebras (see [GN43, Lemma 1] for the original statement).
Therefore, remembering that the epimorphisms of commutative unital C∗-algebras
can be equivalently presented as the pullbacks of embeddings of compact Hausdorff
spaces, we immediately obtain:

Corollary 4.5. The category of compact Hausdorff spaces X with fixed ordered closed
covering (Ci ⊆ X)i∈{1,...,N} is equivalent to the opposite category of flabby sheaves of
commutative unital C∗-algebras over PN−1(Z/2).

Here, the zero algebra is allowed as a unital C∗-algebra. It is “the algebra of all
continuous complex-valued functions on the empty set”. This is needed if the closed
sets are not in generic position. The set of unital morphisms from the zero C∗-algebra
to any other one is understood to be empty.

5. Examples

To end with, we recall from [DHH, HMS06a, BHMS05, HMS06b] the construc-
tions of examples of the fibre products of principal comodule algebras. They indicate
possible areas of applications of Section 3.



16 PIOTR M. HAJAC, ULRICH KRÄHMER, RAINER MATTHES, AND BARTOSZ ZIELIŃSKI

5.1. A noncommutative join construction. If G is a compact group, then the
join G ∗ G becomes a G-principal fibre bundle over the unreduced suspension ΣG of
G, see e.g. [B-GE93], Proposition VII.8.8 or [BHMS]. For example, one can obtain in
this way the Hopf fibrations S7 → S4 and S3 → S2 using G = SU(2) and G = U(1),
respectively. Recall that G ∗ G is constructed from [0, 1] × G × G by shrinking to a
point one factor G at 0 and the other one at 1. Alternatively, at one of the endpoints
of the unit interval, one can shrink G × G to the diagonal. The latter picture is
generalised in [DHH] to the noncommutative setting.

Our first aim is to describe a noncommutative analogue of this construction that
nicely fits into our general concepts and is under detailed investigation in [DHH]. To
this end, let H be the Hopf algebra underlying a compact quantum group H̄ (see
[W-SL87, W-SL98] or Chapter 11 of [KS97] for details). We define

P1 := {f ∈ C([0, 1], H̄)⊗H | f(0) ∈ ∆(H)},
P2 := {f ∈ C([0, 1], H̄)⊗H | f(1) ∈ C⊗H}.(50)

They will play the roles of two trivial pieces of a principal comodule algebra. Here we
identify elements of C([0, 1], H̄)⊗H with functions [0, 1] → H̄ ⊗H. The Pi’s become
H-comodule algebras by applying the coproduct of H to H, ∆Pi

= idC([0,1],H̄) ⊗ ∆,
and the subalgebras of H-invariants can be identified with

B1 := {f ∈ C([0, 1], H̄) | f(0) ∈ C},
B2 := {f ∈ C([0, 1], H̄) | f(1) ∈ C}.(51)

Furthermore, P1 ' B1#H, P2 ' B2 ⊗H, where H acts on B1 via the adjoint action,
(a . f)(t) = a(1)f(t)S(a(2)), a ∈ H, f ∈ B1, t ∈ [0, 1], see [DHH]. Now one can define
P as a gluing of the two pieces along P12 := H̄ ⊗H, that is, as the pull-back

(52) P := {(p, q) ∈ P1 ⊕ P2 |π1
2(p) = π2

1(q)}
of the Pi’s along the evaluation maps

(53) π1
2 : P1 −→ P12, f 7−→ f(1), π2

1 : P2 −→ P12, f 7−→ f(0).

From Theorem 3.3, we can conclude now that P is principal. In particular, tak-
ing H̄ to be the C∗-algebra of SUq(2), we can conclude the principality of Pflaum’s
noncommutative instanton bundle [P-MJ94].

5.2. The Heegaard-type quantum 3-sphere. Based on the idea of a Heegaard
splitting of S3 into two solid tori, a noncommutative deformation of S3 was proposed
in [CM02, HMS06a, BHMS05]. On the level of C∗-algebras, it can be presented as a
fibre product C(S3

pqθ) of two C∗-algebraic crossed products T oθ Z and T o−θ Z of
the Toeplitz algebra T by Z.
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We denote the isometry generating T in T oθ Z by z+, and the isometry gener-
ating T in T o−θ Z by z−. The Z-actions are implemented by unitaries u+ and u−,
respectively, in the following way:

(54) 1Z .θ z+ := u+z+u−1
+ := e2πiθz+ , 1Z .−θ z− := u−z−u−1

− := e−2πiθz− .

The fibre product is taken over C(S1) oθ Z with the action 1Z .θ Z+ := U+z+U−1
+ :=

e2πiθZ+. Here Z+ is the generator of C(S1) and U+ is the unitary implementing the
Z-action. The surjections defining the fibre product are:

π1
2 : T oθ Z −→ C(S1) oθ Z, z+ 7−→ Z+, u+ 7−→ U+,

π2
1 : T o−θ Z −→ C(S1) oθ Z, z− 7−→ U+, u− 7−→ Z+ .(55)

There is a natural U(1)-action on C(S3
pqθ) corresponding classically to the action

in the Hopf fibration, see [HMS06a]. Its restriction to the two crossed products is
not the canonical action of U(1) viewed as the Pontryagin dual of Z. However, to
obtain the canonical actions one can identify C(S3

pqθ) with a fibre product of the same
crossed products, but formed with respect to the surjections

π̂1
2 : T oθ Z −→ C(S1) oθ Z, z+ 7−→ Z+, u+ 7−→ U+,

π̂2
1 : T o−θ Z −→ C(S1) oθ Z, z− 7−→ Z−1

+ , u− 7−→ Z+U+.(56)

The identification is given by

(57) T oθ Z

π1
2

��3
33

33
33

33
3

φ1

((
T o−θ Z

π2
1

��		
		

		
		

		

φ2

((
T oθ Z

π̂1
2

��3
33

33
33

33
3

T o−θ Z

π̂2
1

��		
		

		
		

		

C(S1) oθ Z
φ12 // C(S1) oθ Z .

Here isomorphisms φ are given on respective generators by

(58) z 7−→ zu, u 7−→ u.

The C∗-subalgebra of U(1)-invariants is the C∗-algebra of the mirror quantum 2-
sphere from [HMS06b]. As mentioned in the introduction, we can pass from C(S3

pqθ) to
the associated principal extension, and this procedure always commutes with taking
fibre products. (This is unlike the C∗-completion procedure that needs an additional
assumption to commute with taking fibre products [HMSSZ, Matsumoto Gluing The-
orem].) In this way, we obtain a subalgebra P ⊆ C(S3

pqθ) which is a piecewise trivial
CZ-comodule algebra, so that it fits the setting of this paper. The invariant subalgebra
P coH is again the C∗-algebra of the mirror quantum 2-sphere.

There is another natural Hopf-like U(1)-action on C(S3
pqθ) described in [HMS06b]

(see also [BHMS+]). Again, its restriction to the two crossed products making up
the fibre product C(S3

pqθ) is not the canonical action of U(1). To transform this fibre
product into an isomorphic one but carrying the canonical U(1)-action on the crossed
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products, we take the fibre product defined by the morphisms:

π̌1
2 : T o−θ Z −→ C(S1) o−θ Z, z− 7−→ Z−, u− 7−→ U−,

π̌2
1 : T o−θ Z −→ C(S1) o−θ Z, z− 7−→ Z−, u− 7−→ Z−U−.(59)

Here Z− and U− are the generators of C(S1) o−θ Z corresponding to C(S1) and Z,
respectively. The identifying maps are now given by

T oθ Z

π1
2

��2
22

22
22

22
2

φ̃1

))
T o−θ Z

π2
1

��		
		

		
		

		
	

φ̃2

))
T o−θ Z

π̌1
2

��5
55

55
55

55
55

T o−θ Z

π̌2
1

��		
		

		
		

		
	

C(S1) oθ Z
φ̃12 // C(S1) o−θ Z ,

φ̃1 : z+ 7−→ z−u−, u+ 7−→ u−1
− ,

φ̃2 : z− 7−→ u−1
− z−, u− 7−→ u−,

φ̃12 : Z+ 7−→ Z−U−, U+ 7−→ U−1
− .(60)

The subalgebra of U(1)-invariants is now the C∗-algebra of a generic Podleś quan-
tum 2-sphere [P-P87]. Note that it is not possible to obtain in this way the polynomial
algebra of a generic Podleś sphere — replacing T = P coH

i by the polynomial algebra
of a quantum disc that is generated by x satisfying x∗x − qxx∗ = 1 − q would yield
a non-isomorphic algebra [CM00]. This is related to the fact that already in the
commutative setting the algebra of polynomial functions on a sphere has no cover-
ing corresponding to two hemispheres because there are no nontrivial polynomials
vanishing on a hemisphere.
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extensions of noncommutative algebras, in preparation, see www.impan.gov.pl/~pmh for
a draft version
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