
SUPER HYPERBOLIC LAW OF COSINES: SAME
FORMULA WITH DIFFERENT CONTENT

ROBERT PENNER

Abstract. We derive the Laws of Cosines and Sines in the su-
per hyperbolic plane using Minkowski supergeometry and find the
identical formulae to the classical case, but remarkably involving
different expressions for cosines and sines of angles which include
substantial fermionic corrections. In further analogy to the clas-
sical case, we apply these results to show that two parallel su-
pergeodesics which are not ultraparallel admit a unique common
orthogonal supergeodesic, and we briefly describe aspects of ele-
mentary supernumber theory, leading to a prospective analogue of
the Gauss product of quadratic forms.

Introduction

It is a pleasure and and an honor to participate in this volume cele-
brating Norbert A’Campo on the occasion of his 80th birthday. We
have been friends for roughly one quarter of his life, approximately one
third of mine, enthusiastically introduced to one another by our com-
mon lifelong friend Athanase Papadopoulos. Athanase was certain we
would be sympatico, and he was correct.

There are many ways to do mathematics, from abstracting ponder-
ously huge machinery to computing explicit examples and everything
in between. I have learned that the A’Campo way is something quite
special: To appreciate a field of flowers, one can ascertain the deeper
beauty and structure of a single bloom, its profound reality, and cul-
tivate a preternatural intimacy with it. Nothing fancy, nothing grand,
but rather a humble and natural communion that nevertheless brings
with it the deepest comprehension of the entire meadow as reflected in
one lone blossom.
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In a more mathematical rendition, Athanase paraphrases the great
Lobachevsky as follows:

In order to understand a geometry, both locally and globally, it is
enough to understand its triangles.

This informs the basic purview of my birthday present here to Norbert,
to answer the question:

What are the Laws of Cosines and Sines for triangles in hyperbolic
superspace?

In order to explain, let K˚ “ K˚r0s bK˚r1s be the Z/2-graded algebra
over the field K “ R or C with one central generator 1 P K Ď K˚r0s of
degree zero and countably infinitely many anti-commuting generators
in K˚r1s of degree one. a# is called the body of the supernumber a P K˚,
and a is said to be even or odd, respectively, if it lies in K˚r0s or K˚r1s.

One can define Riemannian supermanifolds and super Riemann sur-
faces in the natural way modeled on affine spaces constructed from
K˚, as in [2] and see also [10] in general, and as in [1, 9, 12] for Rie-
mann surfaces in particular. This is discussed in the next section in
detail sufficient to our purposes here. While no particular mathemat-
ical justification for such formalism is necessary, for one can study a
flower simply for its own reward especially according to the A’Campo
way, it is worth pointing out that supermanifolds are part and parcel of
the Standard Model of high energy physics, roughly with odd variables
corresponding to the fermions comprising matter, and even variables
to the bosons formalizing interactions between them.

A fundamental example from physics is the super upper half plane [1]

U˚ “ tpz, θq P C1|1 : Im z “
1

2
pz ´ z̄q ą 0u,

where the overline denotes complex conjugation, with its supermetric
ds “ pIm z ` 1

2
θθ̄q´1|dz ` θdθ| invariant under the action

z ÞÑ
az ` b

cz ` d
` θ

γz ` δ

pcz ` dq2

θ ÞÑ
γz ` d

cz ` d
`
θp1` 1

2
δγq

cz ` d

of the so-called modular supergroup SPLp2,Rq, where a, b, c, d are even
satisfying ad´ bc “ 1, and γ, δ are odd. In particular, elements of the
modular supergroup have three even and two odd degrees of freedom.
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The body of SPLp2,Rq ýU˚ is evidently the classical action of the
Möbius group on the standard upper half plane model for the hyper-
bolic plane, with its absolute the compactified real axis, but this is
not the model for the action of orientation-preserving isometries of the
super hyperbolic plane that we shall adopt here. Rather, we shall work
with the orthosymplectic group OSpp1|2q « SPLp2,Rq [4], recalled in
§2, acting on super Minkowski space R2,1|2, and in particular on its
upper sheet IH of the unit hyperboloid of two sheets, as explained in
§1, which gives our equivariantly isometric model OSpp1|2q ýIH for
SPLp2,Rq ýU˚.

The body of OSpp1|2q ýR2,1|1 is the usual action SO`p2, 1q ýR2,1 on
Minkowski 3-space, with its quadratic form z2´x2´y2 in the standard
coordinates, under the component SO`p2, 1q of the identity in SOp2, 1q.
Classically, the upper sheet of the hyperboloid of two sheets inherits a
Riemannian metric from the ambient quadratic form, giving a model
for the hyperbolic plane. Moreover, the unit hyperboloid of one sheet
parametrizes the oriented hyperbolic geodesics, and the open positive
light-cone of isotropic vectors at positive height parametrizes the space
of all horocycles; cf. [8]. There are analogously defined respective conics
H and L` in Minkowski superspace.

There are numerous reasons for working in the super Minkowski model.
First of all, hyperbolic supergeometry is the same but different from the
usual hyperbolic geometry, and some of these differences are more read-
ily manifest in the Minkowski model. As is well-known [5] and clear
in either model, orientation-preserving isometries do not act transi-
tively on triples of ideal points, and orbits of such triples have a single
odd modulus, which is the genesis of the odd coordinates on super Te-
ichmüller space [9], whose analysis is based on the Minkowski model
and follows the general approach of decorated Teichmüller theory [8].

A less well-known difference, again from [9], is that OSpp1|2q does not
act transitively on the super positive light-cone; there is again one
odd modulus, and the OSpp1|2q-orbit corresponding to the vanishing
of this modulus is the so-called special light-cone L0 Ď L` of [9]. It is
the action OSpp1|2q ýL0 whose body captures the usual action of the
modular supergroup on the hyperbolic absolute in the sense that there
is an equivariant map from the former to the latter, as for the bodies
in the classical case.

One of the most stark differences is that not every supergeodesic ray
in U˚ is asymptotic to a point in the superabsolute! In fact, super-
geodesic rays in IH are always asymptotic to a ray in L`, but in U˚ are
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only asymptotic to a point in the superabsolute if the corresponding
supergeodesic ray in IH is asymptotic to a ray in the super positive
light-cone L` that happens to lie in the special light-cone L0. It is still
true, however, that two distinct points in the superabsolute determine
a unique so-called special supergeodesic which is asymptotic to them,
but supergeodesics are generically not special. The assertions of this
paragraph can be derived from results in [9] together with those of this
paper, but these matters, together with the further fact that special
supergeodesics are precisely those that are dual to points in the super
hyperboloid H of one sheet, will be taken up elsewhere.

Having thus sketched some of the ways in which classical intuition can
be misleading in hyperbolic supergeometry, we turn finally to the scope
of this paper. The first basic question that has motivated this work
is what relations hold between the angles and pairwise distances for a
triple of non-collinar points in IH. Of course, the preliminary issues of
what are the natures of collinearity, studied in §4, angles and distances
in hyperbolic superspace must be addressed first. The answer in §5, in
a sense disappointing, is that the exact same formulae for the classical
hyperbolic Laws of Cosines and Sines hold in hyperbolic superspace.

However, the possible disappointment fades upon realizing that the
cosine and sine of an angle in hyperbolic superspace are wildly differ-
ent from their classical counterparts, as proved in §6, with substantial
odd contributions, called fermionic corrections as motivated by physics.
Thus, the same formulae relate wildly different quantities, and this is
quite remarkable.

These formulae are our main takeaways, but we also employ these
results in §6 to include another super analogue of a classical result:
two parallel supergeodesics which are not ultraparallel, in the sense
that they do not share asymptotes in L`, admit a unique common
orthogonal supergeodesic. Moreover along the way in §3, we briefly
consider elementary supernumber theory and in particular an abelian
group structure analogous to the Gauss groups of quadratic forms.

The reader may correctly gather that the results of this paper are
just a beginning, one flower in the field of supergeometry, hyperbolic
and otherwise. It is finally worth mentioning that much of this paper
applies to supergeodesics and supertriangles in hyperbolic superspace
of arbitrary dimension.
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1. Super Minkowski space and its conics

Let K˚ “ K˚r0sbK˚r1s be the Z/2-graded module over the field K “ R
or C with one central generator 1 P K Ď K˚r0s of degree zero and
countably infinitely many anti-commuting generators e1, e2, . . . P K˚r1s
of degree one, so that an arbitrary a P K˚ can be written uniquely as

a “ a# `
ÿ

i

aiei `
ÿ

iăj

aijeiej ``
ÿ

iăjăk

aijkeiejek ¨ ¨ ¨ ,

where a#, ai, aij, aijk . . . P K. a# is called the body of the supernum-
ber a P K˚. One allows only finitely many anti-commuting factors in
any product and only finitely many summands in any supernumber,
a constraint we shall call regularity. (The reason for taking infinitely
many anti-commuting variables is that in the full theory one wants the
graded version dpfgq “ pdfqg´fpdgq of the usual Leibnitz rule to hold,
and this would be confounded by taking f to be the finite product of
all the anti-communting variables and g to be any of them.)

Regularity implies that a´a# is always nilpotent, i.e., for each a P K˚,
there is some n P Zě0 with pa ´ a#q

n “ 0. It follows that if a# ‰ 0,
then we may write

1

a
“

1

a# ` pa´ a#q
“

1

a#

1

1`
a´a#
a#

“
1

a#

„

1´
a´ a#
a#

`

ˆ

a´ a#
a#

˙2

´ ¨ ¨ ¨ ˘

ˆ

a´ a#
a#

˙n´1

,

and hence a P K˚ is invertible if and only if a# ‰ 0. It similarly
follows from regularity that the zero divisors in K˚ are given by the
ideal generated by K˚r1s.
One analogously extends real-analytic functions on K to K˚ with Taylor
series under appropriate restrictions on the body. For instance for later
application, we have the elementary

Lemma 1.1. Suppose that λ3 “ 0. If a has nonzero body, then

1

a` λ
“

1

a
´
λ

a
´
λ2

a2
,

and if a has positive body, then

?
a` λ “

?
a

ˆ

1`
1

2

λ

a
´

1

8

λ2

a2

˙

.

If a P K˚r0s, then it is said to be an even supernumber or boson, while
if a P K˚r1s, then it is said to be an odd supernumber or fermion. An
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order relation ď on K induces one on a, b P K˚, where a ď b if and only
if a# ď b#.

Affine K superspace is defined to be

Kn|m
“ tpx1, x2, . . . , xn | θ1, θ2, . . . , θmq P Kn`m

˚ : xi P K˚r0s, θj P K˚r1su.

One can define n|m supermanifolds with charts based on affine super-
space Kn|m in the usual way, and a (Riemannian) supermetric on an
n|m supermanifold is defined to be a positive definite boson-valued
quadratic form on each tangent space Kn|m as usual.

A tuple of points xi P Kn|m is said to be linearly independent (in the
super sense) if there is no relation 0 “

ř

i aixi where all the ai P K˚
have non-zero body. In particular for n “ 2, x1 and x2 are said to be
parallel if there is some a P K˚ with non-zero body so that x1 “ ax2.

The principal example for us here is (real) super Minkowski 2,1|2 space

R2,1|2
“ tpx1, x2, y | φ, ψq P R5

˚ : x1, x2, y P Rr0s and φ, ψ P Rr1su,

which supports the boson-valued symmetric bilinear pairing

xpx1, x2, y | φ, ψq, px
1
1, x

1
2, y

1
| φ1, ψ1qy “

1

2
px1x

1
2`x

1
1x2q´yy

1
`φψ1`φ1ψ

with associated quadratic form x1x2 ´ y
2 ` 2φψ.

The body of R2,1|2 with this inner product is evidently the classical
Minkowski space R2,1 with its (negative) definite restriction to

IH1 “ tx “ px1, x2, yq P R2,1 : xx,xy “ 1 and x1 ` x2 ą 0u

providing a model of the hyperbolic plane, and we analogously define
the super hyperbolic plane to be

IH “ tx “ px1, x2, y | φ, ψq P R2,1|2 : xx,xy “ 1 and x1 ` x2 ą 0u Ě IH1

with its metric likewise induced from the inner product.

Continuing by analogy, let

H1 “ th P R2,1 : xh,hy “ ´1u

denote the hyperboloid of one sheet and

H “ th P R2,1|2 : xh,hy “ ´1u Ě H1

its super analogue. Let L denote the collection of isotropic vectors in
R2,1 with

L` “ tu “ pu1, u2, vq P L : u1 ` u2 ą 0u
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the (open) positive light cone (whose points are affine duals to horocy-
cles in IH1, as in [8]), and let L denote the collection of isotropic vectors
in R2,1|2 with

L` “ tu “ pu1, u2, v | ξ, ηq P L : u1 ` u2 ą 0u.

Though we shall not require it here, the special light-cone discussed in
the Introduction is defined by

L0 “ tu “ pu1, u2, v | φ, ψq P L` : x1ψ “ yφu.

note the equivalence of the conditions x1ψ “ yφ and x2φ “ yψ on L.

2. The orthosymplectic group OSp(1|2)

Here we provide basic information concerning the orthosymplectic group,
which is the simplest Lie supergroup, whose body is the classical spe-
cial linear group SLp2,Rq. We refer the interested reader to [4, 5] for
further details about general Lie superalgebras and supergroups and to
[9] for details about OSp(1|2)«SPL(2,R).

Given a Lie algebra g, consider the Lie superalgebra gpSq “ S b g for
some Grassmann algebra S with its decomposition S “ Sr0s ‘ Sr1s
into even and odd elements. It follows that gpSq is both a right and
left S-module, i.e., s b T “ p´1q|s||T |p1 b T qps b 1q if s P S and T P
g are homogeneous elements of respective degrees |s| and |T |. This
provides a representation of the corresponding Lie superalgebra gpSq
in the space S b Rm|n from a given representation of g in Rm|n, and
then a representation of the corresponding Lie supergroup GpSq by
exponentiating pure even elements from gpSq in S b Rm|n.

In particular to be entirely explicit about the signs when writing a super
matrix representing the action of SLp2,RqpSq or sl2pSq as elements of
S b EndpRm|nq on S ˆ Rm|n, the product of two supermatrices from
OSp(1|2) is given by1

ˆ

a1 b1 α1
c1 d1 β1
γ1 δ1 f1

˙ˆ

a2 b2 α2
c2 d2 β2
γ2 δ2 f2

˙

“

ˆ

a1a2`b1c2´α1γ2 a1b2`b1d2´α1δ2 a1α2`b1β2`α1f2
c1a2`d1c2´β1γ2 c1b2`d1d2´β1δ2 c1α2`d1β2`β1f2
γ1a2`δ1c2`δ1γ2 γ1b2`δ1d2`f1δ2 ´γ1α2´δ1β2`f1f2

˙

.

1The usual (super)matrix multiplication (without the minus signs above) is re-
covered upon replacing the odd entries in the third row by their negatives. This
difference in sign arises from the fact that one typically considers the action of
group elements on Sr0s

m
ˆ Sr1s

n
, which can be identified with the space of even

elements in S b Rm|n, and the extra minus sign comes from that isomorphism.
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The superdeterminant or Berezinian of g “
´

a b α
c d β
γ δ f

¯

P OSpp1|2q is given

by

sdet g “ f´1 det

„ˆ

a b
c d

˙

` f´1
ˆ

αγ αδ
βγ βδ

˙

provided f is invertible. The analogue of the classical determinant, the
Berezinian [4, 5, 10] is characterized by being a multiplicative homo-
morphism satisfying sdet exp g = exppa` d´ fq, i.e., the exponential
of the supertrace of g, but unlike the classical determinant, it is only
defined for invertible supermatrices.

The supergroup OSpp1|2q can be faithfully realized as p2|1q ˆ p2|1q
supermatrices g with sdet equal to unity obeying the relation

gstJg “ J,

where

J “

¨

˝

0 1 0
´1 0 0
0 0 ´1

˛

‚

and where the supertranspose gst of g is given by

g “

¨

˝

a b α
c d β
γ δ f

˛

‚ implies gst “

¨

˝

a c γ
b d δ
´α ´β f

˛

‚.

This provides a simple formula

g´1 “ J´1gstJ “

¨

˝

d ´b δ
´c a ´γ
´β α f

˛

‚

for inversion in OSpp1|2q as well as leading to the system

α “ bγ ´ aδ, β “ dγ ´ cδ, f “ 1` αβ,

γ “ aβ ´ cα, δ “ bβ ´ dα, f´1 “ ad´ bc

of constraints on the entries of g, which, together with the demand that
sdet g “ 1, completely characterize elements of OSp(1|2).

There is a canonical inclusion SLp2,Rq ă OSpp1|2q, which extends to

SLp2,R˚r0sq ă OSpp1|2q, given by p a bc d q ÞÑ p
a b 0
c d 0
0 0 1

q. It is worth empha-

sizing that it is not the Möbius group, but rather the full special linear
group that appears here, so that a suitable representation of a Fuchsian
group into OSpp1|2q provides, upon taking the body, a representation
in SLp2,Rq, or equivalently a spin structure on the underlying Riemann
surface, cf. [6, 9].
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It is not difficult to prove the following useful

Lemma 2.1. Any element of OSp(1|2) can be written uniquely in the
form
¨

˝

a b 0
c d 0
0 0 1

˛

‚

˜

1´αβ
2

0 α

0 1´αβ
2

β

β ´α 1`αβ

¸

“

˜

1´αβ
2

0 aα`bβ

0 1´αβ
2
cα`dβ

β ´α 1`αβ

¸

¨

˝

a b 0
c d 0
0 0 1

˛

‚,

for appropriate fermions α, β and bosons a, b, c, d with ad´ bc “ 1.

As a point of notation for later utility, for any two fermions α, β, let

upα, βq “

˜

1´αβ
2

0 α

0 1´αβ
2

β

β ´α 1`αβ

¸

P OSpp1|2q.

3. Hyperbolic supergeometry and supernumber theory

Minowski three space R2,1 « R3, as the space of binary quadratic forms
or binary symmetric bilinear forms, is naturally coordinatized by

A “

ˆ

z ` x y
y z ´ x

˙

“

ˆ

x1 y
y x2

˙

P R2|1,

where the quadratic form is pu, vq ÞÑ p u v qAp uv q “ x1u
2 ` 2yuv` x2v

2,
and g P SO`p1, 2q acts via isometry on A P R2,1 as change of basis via
the adjoint

g : A ÞÑ gtAg.

This action of SO`p1, 2q « PSLp2,Rq as the group of isometries of the
hyperbolic plane IH1 is a fundamental link between hyperbolic geometry
and elementary number theory.

Likewise, R2,1|2 « R3|2, as a space of quadratic superforms, is naturally
coordinatized by

A “

¨

˝

x1 y φ
y x2 ψ
´φ ´ψ 0

˛

‚P R2,1|2,

where pu, v, θq ÞÑ p u,v,´θ qA
´

u
v
θ

¯

“ x1u
2 ` 2yuv ` x2v

2 takes the same

values as before but with u, v arbitrary bosons, and g P OSpp1|2q acts
on A as change of basis again via the adjoint

g : A ÞÑ gstAg.
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One checks using Lemma 2.1 that this action is again isometric and
hence restricts to an action on IH itself. In fact according to Theorem
1.2 of [9], the mapping

z “
i´ y ´ iφψ

x2
and θ “

ψ

x2
p1` iyq ´ iφ

establishes an equivariant isometry IH Ñ U˚ which conjugates the ac-
tion OSpp1|2q ýIH to the action SPL(2,R) ýU˚, just as in the classical
case [8].

The body of this action of OSpp1|2q on IH is the classical action of
orientation-preserving isometries on the hyperbolic plane, and this ex-
tension is our analogous action of this Lie supergroup on the super
hyperbolic plane. This is the main point of this section, the rest of
which can be skipped for the sequel.

Before turning attention to hyperbolic supergeometry, let us take a
moment to ponder elementary supernumber theory. Consider the ring
Z˚, defined as in the first sentence of Section 1 for the ring K “ Z
rather than for a field. Take the usual definition of divisibility, which
is complicated by the plethora of divisors of unity and zero in Z˚,
in order to define the least common multiple and greatest common
divisor. These must constitute subsets rather than elements of Z˚,
since the ordering on Z˚ induced from Z is not even a partial ordering,
let alone a linear ordering. Two supernumbers are relatively prime if
their only common divisors are divisors of unity.

As above, g P SLp2,Zq acts by change of basis on
´

a b{2
b{2 c

¯

, whose

corresponding quadratic form ax2 ` bxy ` cy2 is called primitive pro-
vided a, b, c are pairwise relatively prime. This action evidently leaves
invariant the discriminant D “ b2 ´ 4ac and turns out also to preserve
primitivity. Gauss defined an abelian product on the finite collection
GpDq of SLp2,Zq-orbits of primitive forms of discriminant D, which is
essentially the ideal class group Qp

?
Dq of Kummer. In fact, the Gauss

product extends to an abelian semigroup structure on YGpDq, where
the union is over all discriminants with common square-free kernel, a
condition interpreted geometrically in [7].

It is natural to wonder whether these considerations might extend to
supernumbers and supergeometry. The sub supergroup OSpp1|2,Z˚q ă
OSpp1|2q whose entries lie in Z˚ acts as above by change of basis on
ˆ

a b{2 φ
b{2 c ψ
φ ´ψ 0

˙

, where a, b, c P Z˚r0s are pairwise relatively prime and

φ, ψ P Z˚r1s, and it leaves invariant the discriminantD “ b2´4ac`8φψ,
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which differs from the bosonic case even though the quadratic forms
agree. It is natural to conjecture that there is an abelian semigroup
structure on the analogously defined YGpDq with geometric underpin-
nings similar to [7].

This putative super version of the Gauss product might be uninterest-
ing, or it might shed light on ideal class numbers. In any case, the idea
of studying supernumber theory seems to warrant further thought.

4. Supergeodesics

To begin, we recall from [3] that hyperbolic supergeodesics have the
same general parametric form as relativistic geodesics.

Theorem 4.1 (Theorem 1.2 of [3]). Geodesics on the super hyperboloid
of two sheets are described by the equation

x “ u cosh t` v sinh t,

where u P IH, v P H and xu,vy “ 0. The asymptotes of the corre-
sponding supergeodesic are given by the rays containing the vectors

e “ u` v, f “ u´ v P L
Conversely, points e, f P L with xe, fy “ 2 uniquely define a geodesic,
where e, f give rise to u “ 1

2
pe` fq P IH and v “ 1

2
pe´ fq P H.

Proof. The result follows directly from the variational principle applied
to the functional

ż

´

a

|x 9x, 9xy| ` λpxx,xy ´ 1q
¯

dt,

where the dot stands for the derivative with respect to the parameter
t along the curve, with corresponding Euler-Lagrange equations

:x “ 2λx, xx,xy “ 1

with t is chosen so that |x 9x, 9xy| “ 1. Differentiating two times the
second equation and combining with the first equation we find the
expression

λ “ ´
x 9x, 9xy

2
.

One shows that the λ “ ´1{2 solution can be ruled out, and in the
case of λ “ 1{2, it is expressed in terms of hyperbolic functions

x “ u cosh t` v sinh t.

Applying the conditions ´x 9x, 9xy “ xx,xy “ 1, we find that u,v satisfy
the conditions of the theorem. �
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For any u P IH and v P H with xu,vy “ 0, we shall let

Lu,v “ tcosh t u` sinh t v : t P Ru

denote the supergeodesic determined in accordance with Theorem 4.1.

Remark 4.2. The relationship between the bodies u P IH1,v P H1 in
the classical case and the usual dual h P H1 to the geodesic is as follows.
The vectors e “ u`v, f “ u´v determine d P R2,1 so that xd,dy “ 0
and xd, ey “ xd, fy “ 2. This follows directly from considerations of the
signature of the restriction of the inner product to the subspace spanned
by e, f , and indeed there are two such choices for d with d, e, f providing
a basis for R3|0, one on either side of the hyperplane determined by e
and f . One easily computes in this basis h “ 2´

1
2 pe ` f ´ dq P H1 so

that xh,uy “ xh,vy “ 0. In effect, the geodesic which is the dual of
h P H1 is the geodesic which is perpendicular to the dual of v P H1 that
contains u P IH1. This h is especially significant in the classical setting
since given two geodesics L,L1 with respective h,h1 P H1, their square
inner product xh,h1y2 has geometric significance; see §6 for details and
for contrast with the super case.

Corollary 4.3. For any two points x1,x2 P IH, there is a unique super-
geodesic between them, and the distance dpx1,x2q between them satisfies
cosh dpx1,x2q “ xx1,x2y.

Proof. The system of equations

x1 “ cosh p u1 ` sinh p u2,

x2 “ cosh q u1 ` sinh q u2

is tantamount to the linear system
ˆ

A B
C D

˙ ˆ

x1

x2

˙

“

ˆ

x1

x2

˙

,

where A,B,C,D are the 5-by-5 diagonal matrices with respective di-
agonal entries cosh p, sinh p, cosh q, sinh q, which is readily solved. The
two conditions u1,u2 P H are equivalent to

cosh2p` cosh2q ´ 2xx1,x2y cosh p cosh q

“ sinh2p` sinh2q ´ 2xx1,x2y cosh p cosh q

“ ´rpcosh p sinh qq5 ´ pcosh p sinh qq5s2.

The first equality gives coshpp ´ qq “ xx1,x2y, proving the claim re-
garding distance, and together with the second equality provides the
asserted unique solution. �
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Corollary 4.4. Let L “ Lu,v and set e “ u`v, f “ u´v P L`. Then
we have

L “ tP P H : xP, ey xP, fy “ 1u ,

“

"

1

2
?
xy
pxe` yfq : x, y ą 0

*

.

Proof. For the inclusion of L in the first equality, write

P “ cosh p u ` sinh p v ,

so that xP,u˘ vy “ cosh p¯ sinh p, so

xP, ey xP, fy “ cosh2p´ sinh2p “ 1.

For the reverse inclusion, suppose that

1 “ xP, ey xP, fy

“ xP,uy2 ´ xP,vy2

and define Q “ xP,uyu´ xP,vyv, whence

xQ,Qy “

B

xP,uyu´ xP,vyv , xP,uyu´ xP,vyv

F

“ xP,uy2 ´ xP,vy2

“ 1,

so Q P IH. Moreover by the previous corollary, the cosh of the distance
between P and Q is given by

xP,Qy “ xP, xP,uyu´ xP,vyv

“ xP,uy2 ´ xP,vy2,

so the distance between P and Q is zero and P “ Q, proving the first
identity.

For the second equality, suppose Q “ xe` yf , for x, y ą 0, so

xQ, ey xQ, fy “ 4xy “ xQ,Qy

since xe, fy “ 2. The first equality shows that 1
2
?
xy
Q P Lu,v and the

second that 1
2
?
xy
Q P IH as required. �

The significant computational importance of this result is that a su-
pergeodesic is the projectivization to lie in IH of the convex linear span
of vectors lying in its asymptotes in L`.
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Proposition 4.5. Let ei, fi P L` with xei, fiy “ 2 and define

ui “
ei ` fi

2
, vi “

ei ´ fi
2

, for i “ 1, 2.

Then Lu1,v1 “ Lu2,v2 as oriented supergeodesics if and only if e1,e2 (and
f1,f2, respectively) are proportional. Moreover in this case e2 “ ln a e1,
for a ě 1, implies f2 “

1
ln a

f1, and

cosh p u1 ` sinh p v1 “ coshpp´ aq u2 ` sinhpp´ aq v2, for all s.

In other words, scaling u` v and u´ v by reciprocal amounts merely
shifts the origin of the parametrization of Lu,v, and interchanging them
reverses the orientation. We shall refer to the point u P Lu,v arising
from vanishing parameter as the origin of the parametrization, so u,v
determines not only the line but also an origin within it.

Proof. In case Lu1,v1 “ Lu2,v2 , the claimed proportionality follows eas-
ily from the second part of the previous result. For the converse with
b “ ln a, e2 “ be1 and f2 “ cf1 implies

2 “ xe2, f2y “ xbe1, cf1y “ 2bc,

whence bc “ 1. Thus, we find

u2 “
b`b´1

2
u1 `

b´b´1

2
v1 “ cosh a u1 ` sinh a v1,

v2 “
b´b´1

2
u1 `

b`b´1

2
v1 “ sinh a u1 ` cosh a v1,

and so

cosh p u1 ` sinh p v1 “ cosh q rcosh a u1 ` sinh a v1s

` sinh q rsinh a u1 ` cosh a v1s

follows from

cosh p “ cosh a cosh q ` sinh a sinh q “ cosh pa` qq,

sinh p “ sinh a cosh q ` cosh a sinh q “ sinh pa` qq,

upon taking respective inner products with u1, v1, whence

sinh 2p “
cosh p sinh p

2
“

cosh pa` qq sinh pa` qq

2
“ sinh 2pa` qq,

and so p “ a` q. �
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5. Law of Cosines

It follows from Corollary 4.3 that any three points of IH not lying
on a common supergeodesic determine a supertriangle, namely, three
geodesic segments with disjoint interiors meeting pairwise at the given
points. We adopt the usual terminology of sides and opposite angles
from their bodies, and have

Corollary 5.1. The usual hyperbolic laws of cosines and sines hold for
supertriangles, that is given a supertriangle with sides of edge lengths
A,B,C and opposite angles a, b, c, then we have

coshA “ coshB coshC ´ sinhB sinhC cos a,

cos a “ ´cos b cos c ` sin b sin c coshA,

sin a

sinhA
“

sin b

sinhB
“

sin c

sinhC
.

Proof. According to Theorem 4.1, the supergeodesic from X P IH to
Y P IH may be parametrized

X cosh t`
Y ´X xX,Yy
a

xX,Yy2 ´ 1
sinh t, for t P R,

where the unit tangent vector at X to the line from X to Y is given

by Y´X xX,Yy?
xX,Yy2´1

. Letting X denote the vertex opposite the side of length

X, for X “ A,B,C and taking the inner product of the unit tangent
vectors at A to the supergeodesics through A and B,C thus gives

cos a “

B

B´A xA,By
a

xA,By2 ´ 1
,
C´A xA,Cy
a

xA,Cy2 ´ 1

F

,

and so

cos a sinhB sinhC “ xB,Cy ´ xA,BycoshB ´ xA,CycoshC

` xA,Ay coshB coshC

“ coshA´ coshC coshB ´ coshB coshC

` coshB coshC

“ coshA´ coshB coshC,

proving the first identity. It is a well-known and easy exercise to derive
the second and third identities purely algebraically from this using just
cos2x` sin2x “ 1 “ cosh2X ´ sinh2X. �

Corollary 5.2. Given a supergeodesic L and a point P R L, there
exists a unique supergeodesic L1 through P perpendicular to L.



16 ROBERT PENNER

Proof. Suppose that L “ Lu,v, and let d “ dppq ą 0 denote the distance
from P to the point cosh p u ` sinh p v P L. According to Corollary
4.3, we have

cosh d “ xP, cosh p u ` sinh p vy

“ cosh p xP,uy ` sinh p xP,uy .

The unique critical point d
dp

cosh d “ 0 occurs for

tanh p “ ´
xP,uy

xP,vy
,

which is a minimum since d2

dp2
cosh d “ cosh d ą 0. Uniqueness follows

from convexity of cosh for positive argument, and the Law of Cosines
easily implies that this minimizer is perpendicular to L. �

The point

cosh p u` sinh p v “
u` p v
a

p2 ` 1
, for tanh p “ ´

xP,uy

xP,vy

“
xP,vyu ´ xP,uyv
a

xP,uy2 ` xP,vy2

is the orthogonal projection of P on Lu,v.

6. Pairs of supergeodesics

We begin with a technical lemma.

Lemma 6.1. Assume that

a1d` b1e` c1f ` p0, 0, 0 | α1, β1q “ a2d` b2e` c2f ` p0, 0, 0 | α2, β2q,

where d “ p˚, ˚, ˚ | 0, 0q, e “ p˚, ˚, ˚ | φ, 0q, f “ p˚, ˚, ˚ | 0, ψq P L
with xd, ey “ xe, fy “ xf ,dy “ 2. Then a1 “ a2, b1 “ b2, c1 “ c2 and
α1 “ α2, β1 “ β2.

Proof. The respective inner products of the assumed equality with d, e,

f yield M
´

a2
b2
c2

¯

“M
´

a2
b2
c2

¯

`

ˆ

0
φpβ1´β2q
pα1´α2qψ

˙

, where M “

´

0 1 1
1 0 1
1 1 0

¯

, so that

¨

˝

a2
b2
c2

˛

‚“

¨

˝

a1
b1
c1

˛

‚`
1

2

¨

˝

´1 1 1
1 ´1 1
1 1 ´1

˛

‚

¨

˝

0
φpβ1 ´ β2q
pα1 ´ α2qψ

˛

‚

and with p0, 0, 0 | φ, 0q and p0, 0, 0 | 0, ψq yield

pα1 ´ α2qψ “ pb2 ´ b1qφψ,

φpβ1 ´ β2q “ pc2 ´ c1qφψ.
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It follows that

a2 “ a1 `
1

2
rpb2 ´ b1q ` pc2 ´ c1qsφψ,

b2 ´ b1 “
1

2
rpb2 ´ b1q ´ pc2 ´ c1qsφψ,

c2 ´ c1 “
1

2
rpc2 ´ c1q ´ pb2 ´ b1qsφψ,

whence a1 “ a2, and likewise for b1 “ b2, c1 “ c2, from which it finally
follows that α1 “ α2, β1 “ β2. �

Theorem 6.2. Consider the supergeodesic L “ Lu,v determined by

u “ p˚, ˚, ˚ |
φ

2
,`

ψ

2
q P IH,

v “ p˚, ˚, ˚ |
φ

2
,´

ψ

2
q P H .

Let

e “ u` v “ p˚, ˚, ˚ | φ, 0q, f “ u´ v “ p˚, ˚, ˚ | 0, ψq P L`,
and choose

d “ p˚, ˚, ˚ | 0, 0q P L`, so that xd, ey “ xe, fy “ xf , ey “ 2.

Suppose that L1 “ Lu1,v1 is another supergeodesic and write

u1 “ ad` be` cf ` p0, 0, 0 | 2α, 2βq,

v1 “ xd` ye` zf ` p0, 0, 0 | 2ξ, 2ηq.

Define
A “ xu,u1y, B “ xv,u1y,

C “ xu,v1y, D “ xv,v1y,

and set

I “ rA2
´B2

´ 1s
1
2

„

1`
αβp4` φψq

A2 ´B2 ´ 1



,

J “ rC2
´D2

` 1s
1
2

„

1`
ξηp4` φψq

C2 ´D2 ` 1



.

Then L and L1 intersect if and only if the following conditions hold:

(6.2.1) C2 ´D2 ` 1 ě A2 ´B2 ´ 1 ě 0,

(6.2.2) AC ´BD ` IJ “ pηα ` βξqp4` φψq,

(6.2.3) ´2IJpAC´BDq “ J2pA2´B2´1q` I2pC2´D2`1q,
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(6.2.4) 4pJα` Iξq “ rpA´BqJ ` pC ´DqIsφ,

(6.2.5) 4pJβ ` Iηq “ rpA`BqJ ` pC `DqIsψ.

Moreover, under these conditions, the unique point of intersection is
given by

LX L1 “
Ju1 ` Iv1

rJ2 ´ I2s
1
2

“
pAJ ` CIqu` pBJ `DIqv

rJ2 ´ I2s
1
2

.

Proof. It follows from the definitions that

A “ 2a` b` c` αψ ` φβ, B “ c´ b´ αψ ` φβ,

C “ 2x` y ` z ` ξψ ` φη, D “ z ´ y ´ ξψ ` φη,

whence

b “ ´a`
A´B

2
´ αψ, c “ ´a`

A`B

2
´ φβ,

y “ ´x`
C ´D

2
´ ξψ, z “ ´x`

C `D

2
´ φη.

Moreover, we have

1 “ xu1,u1y “ 4pab` bc` caq ` 4pbφβ ` cαψ ` 2αβq, (1)

´1 “ xv1,v1y “ 4pxy ` yz ` zxq ` 4pyφη ` zξψ ` 2ξηq, (2)

0 “ xu1,v1y “ 2rapy ` zq ` bpx` zq ` cpx` yqs (3)

` 2pcξψ ` bφη ` zαψ ` yφβq ` 4pαη ` ξβq.

Now writing eqn (1) in terms of a alone gives the quadratic

0 “ ´4a2 ´ 4apαψ ` φβq ` rA2
´B2

´ 1` 4αβp2` φψqs,

from which it follows that

a “ ´
1

2
pαψ ` φβ ˘ Iq,

where I is defined in the statement of the theorem.

The analogous computation using eqn (2) gives

x “ ´
1

2
pξψ ` φη ˘ Jq,

yielding first of all the two constraints A2 ´B2 ´ 1 ě 0 ď C2 ´D2 ` 1
which form part of condition (6.2.1) in the theorem. Moreover, a and
x must have opposite signs in order for L to intersect L1, and the sign
of I in a must be positive in order that u1 P IH. We therefore find

a “ ´
1

2
pαψ ` φβ ´ Iq and x “ ´

1

2
pξψ ` φη ` Jq.
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Writing eqn (3) in terms of a and x gives

AC ´BD ` 4pαη ` ξβq ` 2φψpαη ` ξβq

“ 4ax` 2apφη ` ξψq ` 2xpαψ ` φβq,

and finally plugging in the values of a and x yields condition (6.2.2) of
the theorem.

Now take the respective inner products of

cosh p u1 ` sinh p v1 “ cosh q u ` sinh q v (4)

with d, e, f to get the linear system

MX

¨

˝

a
b
c

˛

‚`MY

¨

˝

x
y
z

˛

‚ “

¨

˝

2cosh q
cosh q ´ sinh q
cosh q ` sinh q

˛

‚´2

¨

˝

0
φβ cosh p` φη sinh p
αψ cosh p` ξψ sinh p

˛

‚,

where X and Y are 3-by-3 diagonal matrices with respective diagonal
entries cosh s and sinh s with

M “

¨

˝

0 2 2
2 0 2
2 2 0

˛

‚ so that M´1
“

1

4

¨

˝

´1 1 1
1 ´1 1
1 1 ´1

˛

‚.

It follows that

2pacosh p` xsinh pq “ pαψ ` φβqcosh p` pξψ ` φηqsinh p, (5)

2pbcosh p` ysinh pq “ pφβ ´ αψqcosh p` pφη ´ ξψqsinh p

` cosh q ` sinh q, (6)

2pccosh p` zsinh pq “ pαψ ´ φβqcosh p` pξψ ´ φηqsinh p

` cosh q ´ sinh q. (7)

Eqn (5) gives

tanh p “
sinh p

cosh p
“
I

J
,

whence

cosh p “
J

rJ2 ´ I2s
1
2

and sinh p “
I

rJ2 ´ I2s
1
2

,

taking the parameter p ě 0. Eqn (5) therefore furthermore implies the
inequality C2 ´ D2 ` 1 ě A2 ´ B2 ´ 1, thus completing the proof of
necessity of condition (6.2.1) of the theorem.

Meanwhile, the sum of eqn (6) and eqn (7) provides

cosh q “ pb` cqcosh p` py ` zqsinh p

“ pA´ Iqcosh p` pC ` Jqsinh p,
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while their difference yields

sinh q “ rb´ c` pαψ ´ φβqscosh p` ry ´ z ` pξψ ´ φηqssinh p

“ ´Bcosh p´Dsinh p.

Computation shows that the constraint 1 “ cosh2 q ´ sinh2 q is equiv-
alent to condition (6.2.3) of the theorem.

The final two fermionic constraints (6.2.4) and (6.2.5) arise by equat-
ing the last two coordinate entries of eqn (4). The stated necessary
conditions are clearly sufficient, and the formula for LXL1 then follows
immediately from eqn (4). �

Remark 6.3. For any e, f P L` with xe, fy “ 2, it is an easy matter
to find g P OSpp1|2q so that g.e and g.f satisfy the conditions of the
previous theorem. Indeed for e “ px1, x2, y | ξ, ηq, f “ pu1, u2, v | µ, νq,
we may simply take g “ u

`

x1ν´vξ
yv´x1u2

, yν´u2ξ
yv´x1u2

˘

in the generic case that

yv ‰ x1u2, which can itself also be easily arranged by explicit pertur-
bation. Since gpL X L1q “ gpLq X gpL1q, for any two supergeodesics
L,L1 and g P OSpp1|2q, the previous result in fact gives conditions and
formulae for intersections in the general case.

Corollary 6.4. Consider supergeodesics L “ Lu,v and L1 “ Lu1,v1 in
the notation of Theorem 4.1 and set X “ A2´B2´1, Y “ C2´D2`1
with Z “ Y `X`2pAB`CDqpBD´ACq. If L and L1 intersect at the
point P P IH, then the cosine of the angle at P from L to L1 is given
by

Z

Y ´X
`

2p4` φψq

Y ´X

„

pαβ ` ξηq ` pAB ` CDqpηα ` βξq

`
Zpαβ´ξηq
Y´X

`
16Zαβξη
pY´Xq2



.

More interesting than the particular form of the second summand is
the substantial fermionic correction to the bosonic term Z

Y´X
that it

represents. This puts into focus the Super Law of Cosines Corollary 5.1,
where the familiar purely bosonic formula rather remarkably concisely
includes this and other fermionic corrections.

Proof. From the formulae for P “ LXL1 in Theorem 4.1, the cosine of
the angle at P from L to L1 is given by

xJv1 ` Iu1, pAJ ` CIqv ` pBJ `DIquy

J2 ´ I2

“
pAD `BCqpJ2 ` I2q ` 2pAB ` CDqIJ

J2 ´ I2
.
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Plugging in the constraint IJ “ BD ´ AC ` pηα ` βξqp4 ` φψq from
(6.2.2) gives the asserted formula after a bit of computation using con-
straints (6.2.3) and (6.2.4) to conclude that αβξηφψ “ 0. �

A pair of supergeodesics Li “ Lui,vi , for i “ 1, 2, in the bosonic case
are determined by a pair ui P IH1 and vi P H1 with xui,viy “ 0, or
equivalently by a pair hi P H, where xhi,uiy “ xhi,viy “ 0, and in this
case [11] we have

xh1,h2y
2
“

$

’

’

’

&

’

’

’

%

cosh2 d, if L1 X L2 “ H and are not ultraparallel,

where d is the distance between L1 and L2;

cos2 α, if L1 X L2 ‰ H,

where α is the angle between L1 and L2,

where two geodesics or two supergeodesics are parallel provided they
do not intersect and are furthermore ultraparallel if they share an as-
ymptotic ray in L`.

Moreover in the first case that L1 and L2 are parallel and not ultra-
parallel, then they admit a unique common perpendicular. The sequel
is dedicated to the analogue in hyperbolic superspace.

Theorem 6.5. Two supegeodesics that are parallel and not ultraparallel
admit a unique common perpendicular.

Proof. Denote the two supergeodesics Li “ Lui,vi , for i “ 1, 2, and
define

a “ xu1,u2y, b “ xv1,u2y,

c “ xu1,v2y, b “ xv1,v2y.

First note that the condition tu1 ˘ v1u X tu2 ˘ v2u “ H that L1 and
L2 are not ultraparallel thus implies positivity of each of the four linear
combinations

pa´ b´ c` dq, pa´ b` c´ dq, pa` b´ c´ dq, pa` b` c` dq,

since the inner product of any two points in L` which lie in different
rays from the origin in R2,1|2 is positive. In particular, the various
pairwise sums of these inequalities imply that a ą maxt˘b,˘c,˘du,
whence a2 ą maxtb2, c2, d2u.

Distinct points uicosh ti ` visinh ti P Li, for i “ 1, 2, determine a
unique supergeodesic L containing them according to Corollary 4.3,
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and furthermore the cosh of the length d of the segment between LXL1

and LX L2 is given by

cosh d “ xu1cosh p1 ` v1sinh p1,u2cosh p2 ` v2sinh p2y

“ a cosh p1 cosh p2 ` b sinh p1 cosh p2

` c cosh p1 sinh p2 ` d sinh p1 sinh p2,

whence
Bcosh d

Bp1
“ sinh p1ta cosh p2 ` c sinh p2u

` cosh p1tb cosh p2 ` d sinh p2u,

Bcosh d

Bp2
“ sinh p2ta cosh p1 ` b sinh p1u

` cosh p2tc cosh p1 ` d sinh p1u,

and it follows that at a critical point

´tanh p1 “
d tanh p2 ` b

c tanh p2 ` a
,

(8)

´tanh p2 “
d tanh p1 ` c

b tanh p1 ` a
.

Plugging the latter equation into the former gives the quadratic

0 “ p21pab´ cdq ` p1pa
2
` b2 ´ c2 ´ d2q ` pab´ cdq

with discriminant

∆ “ pa2 ` b2 ´ c2 ´ d2q2 ´ 4pab´ cdq2

“ pa´ b´ c` dqpa´ b` c´ dqpa` b´ c´ dqpa` b` c` dq

ą 0

since each factor is positive, as noted above since L1 and L2 are not
ultraparallel.

To see that this critical point is in fact a minimizer, we apply the second
derivative test for a function of two independent variables. To this end,
we have

B2cosh d

Bp21
“
B2cosh d

Bp22
“ cosh d ą 0,

B2cosh d

Bp1Bp2
“ sinh p2tb cosh p1 ` a sinh p1u

` cosh p2td cosh p1 ` c sinh p1u,
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whence

ˆ

B2cosh d

Bp21

˙ˆ

B2cosh d

Bp22

˙

´

ˆ

B2cosh d

Bp1Bp2

˙2

“

„

cosh p1pa cosh p2 ` c sinh p2q ` sinh p1pb cosh p2 ` d sinh p2q

2

´

„

sinhh p2pb cosh p1 ` a sinh p1q ` cosh p2pd cosh p1 ` c sinh p1q

2

“

„

cosh p1ppa` dq cosh p2 ` pb` cq sinh p2q

` sinh p1ppb` cq cosh p2 ` pa` dq sinh p2q



ˆ

„

cosh p1ppa´ dq cosh p2 ´ pb´ cq sinh p2q

` sinh p1ppb´ cq cosh p2 ´ pa´ dq sinh p2q



“

„

pa` dqcoshpp1 ` p2q ` pb` cqsinhpp1 ` p2q



ˆ

„

pa´ dqcoshpp1 ´ p2q ` pb´ cqsinhpp1 ´ p2q



“ coshpp1 ` p2q coshpp1 ´ p2q

ˆ

„

pa2 ´ d2q `
pb2 ´ c2q2

a2 ´ d2
´ pb` cq2

a´ d

a` d
´ pb´ cq2

a` d

a´ d



“
coshpp1 ` p2q coshpp1 ´ p2q

a2 ´ d2
∆

ą 0,

since ∆ ą 0 and a2 ą d2 by the remarks that began this proof, where
we have used the equalities (8) to write sinhpp1˘p2q “

b˘c
a˘d

coshpp1˘p2q.

This completes the proof that the critical point is a minimizer, and
since cosh d is convex for d ą 0, this guarantees a unique minimizer. It
follows without difficulty from the Super Law of Cosines Corollary 5.1
that this minimizer is indeed orthogonal to L1 and L2. �

The proof provides a formula for the distance between the two geodesics,
which is omitted and is far more complicated than the the classical
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case of two parallel non-ultraparallel geodesics. Just as for the Law of
Cosines, the same result encodes substantial fermionic corrections.
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