SUPER HYPERBOLIC LAW OF COSINES: SAME
FORMULA WITH DIFFERENT CONTENT

ROBERT PENNER

ABSTRACT. We derive the Laws of Cosines and Sines in the su-
per hyperbolic plane using Minkowski supergeometry and find the
identical formulae to the classical case, but remarkably involving
different expressions for cosines and sines of angles which include
substantial fermionic corrections. In further analogy to the clas-
sical case, we apply these results to show that two parallel su-
pergeodesics which are not ultraparallel admit a unique common
orthogonal supergeodesic, and we briefly describe aspects of ele-
mentary supernumber theory, leading to a prospective analogue of
the Gauss product of quadratic forms.

INTRODUCTION

It is a pleasure and and an honor to participate in this volume cele-
brating Norbert A’Campo on the occasion of his 80th birthday. We
have been friends for roughly one quarter of his life, approximately one
third of mine, enthusiastically introduced to one another by our com-
mon lifelong friend Athanase Papadopoulos. Athanase was certain we
would be sympatico, and he was correct.

There are many ways to do mathematics, from abstracting ponder-
ously huge machinery to computing explicit examples and everything
in between. I have learned that the A’Campo way is something quite
special: To appreciate a field of flowers, one can ascertain the deeper
beauty and structure of a single bloom, its profound reality, and cul-
tivate a preternatural intimacy with it. Nothing fancy, nothing grand,
but rather a humble and natural communion that nevertheless brings
with it the deepest comprehension of the entire meadow as reflected in
one lone blossom.
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In a more mathematical rendition, Athanase paraphrases the great
Lobachevsky as follows:

In order to understand a geometry, both locally and globally, it is
enough to understand its triangles.

This informs the basic purview of my birthday present here to Norbert,
to answer the question:

What are the Laws of Cosines and Sines for triangles in hyperbolic
superspace?’

In order to explain, let K, = K,[0] ® K,[1] be the Z/2-graded algebra
over the field K = R or C with one central generator 1 € K < K,[0] of
degree zero and countably infinitely many anti-commuting generators
in K,[1] of degree one. ay is called the body of the supernumber a € K,,
and a is said to be even or odd, respectively, if it lies in K,[0] or K,[1].

One can define Riemannian supermanifolds and super Riemann sur-
faces in the natural way modeled on affine spaces constructed from
K., as in [2] and see also [10] in general, and as in [1, 9, 12] for Rie-
mann surfaces in particular. This is discussed in the next section in
detail sufficient to our purposes here. While no particular mathemat-
ical justification for such formalism is necessary, for one can study a
flower simply for its own reward especially according to the A’Campo
way, it is worth pointing out that supermanifolds are part and parcel of
the Standard Model of high energy physics, roughly with odd variables
corresponding to the fermions comprising matter, and even variables
to the bosons formalizing interactions between them.

A fundamental example from physics is the super upper half plane [1]
1
U, = {(2,0) e C1 : Im » = §(Z —Z) > 0},

where the overline denotes complex conjugation, with its supermetric
ds = (Zm z + £00)7'|dz + 0df| invariant under the action
az +b vz + 0
cz+d  (cz+d)?
+d O(1+13i6
cz+d cz+d

Z =

of the so-called modular supergroup SPL(2,R), where a, b, ¢, d are even
satisfying ad — bc = 1, and ~, § are odd. In particular, elements of the
modular supergroup have three even and two odd degrees of freedom.
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The body of SPL(2,R) & U, is evidently the classical action of the
Mobius group on the standard upper half plane model for the hyper-
bolic plane, with its absolute the compactified real axis, but this is
not the model for the action of orientation-preserving isometries of the
super hyperbolic plane that we shall adopt here. Rather, we shall work
with the orthosymplectic group OSp(1]2) ~ SPL(2,R) [4], recalled in
§2, acting on super Minkowski space R>!2, and in particular on its
upper sheet IH of the unit hyperboloid of two sheets, as explained in
§1, which gives our equivariantly isometric model OSp(1]|2) & H for
SPL(2,R) C U,.

The body of OSp(1]2) & R is the usual action SO, (2,1) & R?*! on
Minkowski 3-space, with its quadratic form 2% — 22 —y? in the standard
coordinates, under the component SO (2, 1) of the identity in SO(2, 1).
Classically, the upper sheet of the hyperboloid of two sheets inherits a
Riemannian metric from the ambient quadratic form, giving a model
for the hyperbolic plane. Moreover, the unit hyperboloid of one sheet
parametrizes the oriented hyperbolic geodesics, and the open positive
light-cone of isotropic vectors at positive height parametrizes the space
of all horocycles; cf. [8]. There are analogously defined respective conics
H and £* in Minkowski superspace.

There are numerous reasons for working in the super Minkowski model.
First of all, hyperbolic supergeometry is the same but different from the
usual hyperbolic geometry, and some of these differences are more read-
ily manifest in the Minkowski model. As is well-known [5] and clear
in either model, orientation-preserving isometries do not act transi-
tively on triples of ideal points, and orbits of such triples have a single
odd modulus, which is the genesis of the odd coordinates on super Te-
ichmiiller space [9], whose analysis is based on the Minkowski model
and follows the general approach of decorated Teichmiiller theory [8].

A less well-known difference, again from [9], is that OSp(1]|2) does not
act transitively on the super positive light-cone; there is again one
odd modulus, and the OSp(1]2)-orbit corresponding to the vanishing
of this modulus is the so-called special light-cone £y < L% of [9]. It is
the action OSp(1]2) & Ly whose body captures the usual action of the
modular supergroup on the hyperbolic absolute in the sense that there
is an equivariant map from the former to the latter, as for the bodies
in the classical case.

One of the most stark differences is that not every supergeodesic ray
in U, is asymptotic to a point in the superabsolute! In fact, super-
geodesic rays in H are always asymptotic to a ray in L1, but in U, are
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only asymptotic to a point in the superabsolute if the corresponding
supergeodesic ray in IH is asymptotic to a ray in the super positive
light-cone £* that happens to lie in the special light-cone Ly. It is still
true, however, that two distinct points in the superabsolute determine
a unique so-called special supergeodesic which is asymptotic to them,
but supergeodesics are generically not special. The assertions of this
paragraph can be derived from results in [9] together with those of this
paper, but these matters, together with the further fact that special
supergeodesics are precisely those that are dual to points in the super
hyperboloid H of one sheet, will be taken up elsewhere.

Having thus sketched some of the ways in which classical intuition can
be misleading in hyperbolic supergeometry, we turn finally to the scope
of this paper. The first basic question that has motivated this work
is what relations hold between the angles and pairwise distances for a
triple of non-collinar points in IH. Of course, the preliminary issues of
what are the natures of collinearity, studied in §4, angles and distances
in hyperbolic superspace must be addressed first. The answer in §5, in
a sense disappointing, is that the exact same formulae for the classical
hyperbolic Laws of Cosines and Sines hold in hyperbolic superspace.

However, the possible disappointment fades upon realizing that the
cosine and sine of an angle in hyperbolic superspace are wildly differ-
ent from their classical counterparts, as proved in §6, with substantial
odd contributions, called fermionic corrections as motivated by physics.
Thus, the same formulae relate wildly different quantities, and this is
quite remarkable.

These formulae are our main takeaways, but we also employ these
results in §6 to include another super analogue of a classical result:
two parallel supergeodesics which are not ultraparallel, in the sense
that they do not share asymptotes in £, admit a unique common
orthogonal supergeodesic. Moreover along the way in §3, we briefly
consider elementary supernumber theory and in particular an abelian
group structure analogous to the Gauss groups of quadratic forms.

The reader may correctly gather that the results of this paper are
just a beginning, one flower in the field of supergeometry, hyperbolic
and otherwise. It is finally worth mentioning that much of this paper
applies to supergeodesics and supertriangles in hyperbolic superspace
of arbitrary dimension.
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1. SUPER MINKOWSKI SPACE AND ITS CONICS

Let K, = K,[0]®K,[1] be the Z/2-graded module over the field K = R
or C with one central generator 1 € K < K,[0] of degree zero and
countably infinitely many anti-commuting generators e, es, . .. € K,[1]
of degree one, so that an arbitrary a € K, can be written uniquely as

a=ay + Zaiei + Zaijeiej + + Z Aijk€i€j€K -« -,
7 i<j i<j<k

where ay,a;, a;j, a;ji. ... € K. ay is called the body of the supernum-
ber a € K,. One allows only finitely many anti-commuting factors in
any product and only finitely many summands in any supernumber,
a constraint we shall call reqularity. (The reason for taking infinitely
many anti-commuting variables is that in the full theory one wants the
graded version d(fg) = (df)g— f(dg) of the usual Leibnitz rule to hold,
and this would be confounded by taking f to be the finite product of
all the anti-communting variables and ¢ to be any of them.)

Regularity implies that a — a4 is always nilpotent, i.e., for each a € K,
there is some n € Zzg with (a —ay)® = 0. It follows that if ay # 0,
then we may write

1 1 1 1

o agptla—ay) ay 14+

1 a—a a—an)’ a—ax\""
e () e () )
A A QA A

and hence a € K, is invertible if and only if ay # 0. It similarly
follows from regularity that the zero divisors in K, are given by the
ideal generated by K,[1].

One analogously extends real-analytic functions on K to K, with Taylor
series under appropriate restrictions on the body. For instance for later
application, we have the elementary

Lemma 1.1. Suppose that \* = 0. If a has nonzero body, then
1 1 A A

and if a has positive body, then

1A 1M
Va+Ad=+va (1+z=—==).
2a 8a?

If a € K,[0], then it is said to be an even supernumber or boson, while
if a € K,[1], then it is said to be an odd supernumber or fermion. An
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order relation < on K induces one on a, b € K,, where a < b if and only
if A4 < b#.

Affine K superspace is defined to be
Kn|m = {(1}1,172, sy Iy | 917025 s 79771) € K;H_m "I € K*[O]’ej € K*[l]}

One can define n|m supermanifolds with charts based on affine super-
space K™ in the usual way, and a (Riemannian ) supermetric on an
n|m supermanifold is defined to be a positive definite boson-valued
quadratic form on each tangent space K™ as usual.

A tuple of points x; € K*™ is said to be linearly independent (in the
super sense) if there is no relation 0 = ), a;x; where all the a; € K,
have non-zero body. In particular for n = 2, x; and x5 are said to be
parallel if there is some a € K, with non-zero body so that x; = axs.

The principal example for us here is (real) super Minkowski 2,1|2 space

R = {(w1, 00,y | 6,4) € RY : 1,25,y € R[0] and ¢, ¢ € R[1]},

which supports the boson-valued symmetric bilinear pairing

1
(@1, 22,y [ 9,9), (21, 25,9 | ¢',9)) = 5 (wrwy +2122) —yy' + 0" + 'Y
with associated quadratic form z29 — y? + 2¢1).

The body of R*'? with this inner product is evidently the classical
Minkowski space R*! with its (negative) definite restriction to

H = {x = (z1,72,9) e R*' : (x,x) = 1 and | + 25 > 0}

providing a model of the hyperbolic plane, and we analogously define
the super hyperbolic plane to be

H = {x = (21, 20,y | ¢,00) e R¥?: (x,x) =1 and z; + 2, > 0} 2 H’
with its metric likewise induced from the inner product.
Continuing by analogy, let
H = {heR>» :(hh)=—1}
denote the hyperboloid of one sheet and
H={heR>P:(hh)=—-1} 2H

its super analogue. Let L denote the collection of isotropic vectors in
R21 with
LT ={u= (up,us,v) € L: uy +uy >0}
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the (open) positive light cone (whose points are affine duals to horocy-
cles in IH', as in [8]), and let £ denote the collection of isotropic vectors
in R>'? with

LY ={u= (up,us,v | &n)eL:u +uy > 0}.

Though we shall not require it here, the special light-cone discussed in
the Introduction is defined by

Lo ={u= (u,uz,v|¢)e L 29 =y}
note the equivalence of the conditions x1¢ = y¢ and x2¢ = y1» on L.

2. THE ORTHOSYMPLECTIC GROUP OSP(1]2)

Here we provide basic information concerning the orthosymplectic group,
which is the simplest Lie supergroup, whose body is the classical spe-
cial linear group SL(2,R). We refer the interested reader to [4, 5] for
further details about general Lie superalgebras and supergroups and to
9] for details about OSp(1|2)~SPL(2,R).

Given a Lie algebra g, consider the Lie superalgebra g(S) = S® g for
some Grassmann algebra S with its decomposition S = S[0] @ S[1]
into even and odd elements. It follows that g(S) is both a right and
left S-module, ie., s@T = (-1)FIT1®T)(s®1)if se Sand T e
g are homogeneous elements of respective degrees |s| and |T'|. This
provides a representation of the corresponding Lie superalgebra g(.5)
in the space S ® R™" from a given representation of g in R™"™  and
then a representation of the corresponding Lie supergroup G(S) by
exponentiating pure even elements from g(S) in S @ R™".

In particular to be entirely explicit about the signs when writing a super
matrix representing the action of SL(2,R)(S) or sl,(S) as elements of
S ® End(R™"™) on S x R™" the product of two supermatrices from
OSp(1]2) is given by'

a1 b1 a1 az by az araz+bica—a1y2 atbe+bide—ai1d2 araz+bifatai fo
c1 di Bi c2 d2 B2 | = | ciazt+dica—Biv2 cibetdida—p1d2 crae+diBa+Bifz .
71 61 f1 Y2 62 fo Taz+d1c2+0172 y1be+do1de+f1d2 —y1a2—0182+f1f2
!The usual (super)matrix multiplication (without the minus signs above) is re-
covered upon replacing the odd entries in the third row by their negatives. This
difference in sign arises from the fact that one typically considers the action of
group elements on S[0]"™ x S[1]", which can be identified with the space of even
elements in S @ R™" and the extra minus sign comes from that isomorphism.
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aba
The superdeterminant or Berezinian of g = (c d /]6;) € OSp(1/2) is given
gl

by
sdet ¢ = f7' det [(CCL Z) + f <gz gg)]

provided f is invertible. The analogue of the classical determinant, the
Berezinian [4, 5, 10] is characterized by being a multiplicative homo-
morphism satisfying sdet exp g = exp(a + d — f), i.e., the exponential
of the supertrace of g, but unlike the classical determinant, it is only
defined for invertible supermatrices.

The supergroup OSp(1|2) can be faithfully realized as (2]1) x (2|1)
supermatrices g with sdet equal to unity obeying the relation

9" Jg=J,
where
0 1 0
J=1 -1 0 0
0 0 -1
and where the supertranspose g*t of g is given by
a b « a ¢ v
g=| ¢ d p implies ¢* = b d ¢
v o f —a —f f
This provides a simple formula
d —b ¢
gfl _ JflgstJ _ —c a —v
-6 a f

for inversion in OSp(1]2) as well as leading to the system
a=by—ad, [ =dy—cd, f=1+ap,
y=aB —ca, 06=0b8—da, f'=ad-—bc
of constraints on the entries of g, which, together with the demand that
sdet g = 1, completely characterize elements of OSp(1]2).
There is a canonical inclusion SL(2,R) < OSp(1]2), which extends to
SL(2, R,[0]) < OSp(1]2), given by (44) — (£d0). Tt is worth empha-
sizing that it is not the Mobius group, but rather the full special linear
group that appears here, so that a suitable representation of a Fuchsian
group into OSp(1]2) provides, upon taking the body, a representation

in SL(2,R), or equivalently a spin structure on the underlying Riemann
surface, cf. [6, 9].
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It is not difficult to prove the following useful

Lemma 2.1. Any element of OSp(1|2) can be written uniquely in the

form
a b 0 -2 0 a 1-28 0 aat+bs a b 0
c d 0 0 1-2 g = 0 1-22 ca+dp c d 0],
0 0 1 B —a 1+ap B —a 14+ap 0 0 1

for appropriate fermions a, B and bosons a, b, c,d with ad — bc = 1.

As a point of notation for later utility, for any two fermions «, (3, let

-2 0 a
u(a,f) = o 1-2¢ 5 | e€OSp(1]2).

B —a l+ap

3. HYPERBOLIC SUPERGEOMETRY AND SUPERNUMBER THEORY

Minowski three space R?! ~ R3?, as the space of binary quadratic forms
or binary symmetric bilinear forms, is naturally coordinatized by

A:(Z“‘CU Yy >:($1 y)eR2|1,
Y Z—T Yy X2
where the quadratic form is (u,v) — (wv)A(Y%) = z1u? + 2yuv + T90%,

and g € SO, (1,2) acts via isometry on A € R%! as change of basis via
the adjoint

g: A g'Ag.
This action of SO4(1,2) ~ PSL(2,R) as the group of isometries of the

hyperbolic plane IH’ is a fundamental link between hyperbolic geometry
and elementary number theory.

Likewise, R*'? &~ R312 as a space of quadratic superforms, is naturally
coordinatized by

X y ¢
A= Yy  xo Y GRQ’”Q,
- - 0

where (u,v,6) — (u,v,—ﬂA(%) = 11U’ + 2yuv + z90? takes the same

values as before but with u,v arbitrary bosons, and g € OSp(1]2) acts
on A as change of basis again via the adjoint

g: A g Ag.
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One checks using Lemma 2.1 that this action is again isometric and
hence restricts to an action on IH itself. In fact according to Theorem
1.2 of [9], the mapping
1=y —1
z=y—¢w and9=£(1+iy)—i¢
L2 L2
establishes an equivariant isometry IH — U, which conjugates the ac-
tion OSp(1]|2) & H to the action SPL(2,R) U,, just as in the classical

case [8].

The body of this action of OSp(1|2) on IH is the classical action of
orientation-preserving isometries on the hyperbolic plane, and this ex-
tension is our analogous action of this Lie supergroup on the super
hyperbolic plane. This is the main point of this section, the rest of
which can be skipped for the sequel.

Before turning attention to hyperbolic supergeometry, let us take a
moment to ponder elementary supernumber theory. Consider the ring
Z,, defined as in the first sentence of Section 1 for the ring K = Z
rather than for a field. Take the usual definition of divisibility, which
is complicated by the plethora of divisors of unity and zero in Z,,
in order to define the least common multiple and greatest common
divisor. These must constitute subsets rather than elements of Z,,
since the ordering on Z, induced from 7Z is not even a partial ordering,
let alone a linear ordering. Two supernumbers are relatively prime if
their only common divisors are divisors of unity.

As above, g € SL(2,7Z) acts by change of basis on <b72 bé2>’ whose

corresponding quadratic form axz? + bxy + cy? is called primitive pro-
vided a, b, c are pairwise relatively prime. This action evidently leaves
invariant the discriminant D = b? — 4ac and turns out also to preserve
primitivity. Gauss defined an abelian product on the finite collection
G(D) of SL(2,7Z)-orbits of primitive forms of discriminant D, which is
essentially the ideal class group Q(v/D) of Kummer. In fact, the Gauss
product extends to an abelian semigroup structure on UG(D), where
the union is over all discriminants with common square-free kernel, a
condition interpreted geometrically in [7].

It is natural to wonder whether these considerations might extend to
supernumbers and supergeometry. The sub supergroup OSp(1(2,Z,) <
OSp(1|2) whose entries lie in Z, acts as above by change of basis on

a b/2 ¢

(b/2 ¢ w), where a,b,c € Z,[0] are pairwise relatively prime and
¢ =0

¢, € Z,[1], and it leaves invariant the discriminant D = b*—4ac+8¢1),
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which differs from the bosonic case even though the quadratic forms
agree. It is natural to conjecture that there is an abelian semigroup
structure on the analogously defined UG(D) with geometric underpin-
nings similar to [7].

This putative super version of the Gauss product might be uninterest-
ing, or it might shed light on ideal class numbers. In any case, the idea
of studying supernumber theory seems to warrant further thought.

4. SUPERGEODESICS

To begin, we recall from [3] that hyperbolic supergeodesics have the
same general parametric form as relativistic geodesics.

Theorem 4.1 (Theorem 1.2 of [3]). Geodesics on the super hyperboloid
of two sheets are described by the equation

x = ucosht 4+ vsinht,

where u € H, v € H and (u,v) = 0. The asymptotes of the corre-
sponding supergeodesic are given by the rays containing the vectors

e=u+v, f=u-vel

Conversely, points e,f € L with {e,f) = 2 uniquely define a geodesic,
where e, f give rise tou = (e +f)eIH and v = 3(e — f) e H.

Proof. The result follows directly from the variational principle applied

to the functional
J (VIG + A0 — 1)),

where the dot stands for the derivative with respect to the parameter
t along the curve, with corresponding Euler-Lagrange equations

X =2)x, (x,x)=1
with ¢ is chosen so that |[(x,x%)| = 1. Differentiating two times the

second equation and combining with the first equation we find the
expression

)\ — _<X7 X>
2
One shows that the A = —1/2 solution can be ruled out, and in the
case of A = 1/2, it is expressed in terms of hyperbolic functions

x = ucosht + vsinht.

Applying the conditions —(x,x) = (x,x) = 1, we find that u, v satisfy
the conditions of the theorem. O
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For any u € IH and v € H with (u,v) = 0, we shall let
Lyy = {cosht u +sinht v :t € R}

denote the supergeodesic determined in accordance with Theorem 4.1.

Remark 4.2. The relationship between the bodies u € IH',v € H in
the classical case and the usual dual h € H' to the geodesic is as follows.
The vectors e = u+ v, f = u— v determine d € R*! so that (d,d) = 0
and {(d, e) = {(d, f) = 2. This follows directly from considerations of the
signature of the restriction of the inner product to the subspace spanned
by e, f, and indeed there are two such choices for d with d, e, f providing
a basis for R?°, one on either side of the hyperplane determined by e
and f. One easily computes in this basis h = 2_%(9 +f—d)eH so
that (h,u) = (h,v) = 0. In effect, the geodesic which is the dual of
h € H' is the geodesic which is perpendicular to the dual of v € H' that
contains u € IH’. This h is especially significant in the classical setting
since given two geodesics L, L’ with respective h, h’ € H', their square
inner product ¢h, h')? has geometric significance; see §6 for details and
for contrast with the super case.

Corollary 4.3. For any two points x1,xo € IH, there is a unique super-
geodesic between them, and the distance d(x1,Xy) between them satisfies
cosh d(Xl, Xg) = <X1, X2>.
Proof. The system of equations

x; = cosh p u; + sinh p u,,

X9 = cosh ¢ u; + sinh g uy

is tantamount to the linear system

(e 0) (2)- ()

where A, B,C, D are the 5-by-5 diagonal matrices with respective di-
agonal entries cosh p, sinh p, cosh ¢, sinh ¢, which is readily solved. The
two conditions uy, uy € H are equivalent to

cosh?p 4 cosh?q — 2(x1,x,) cosh p cosh ¢
= sinh®p + sinh®q — 2(x;, X3) cosh p cosh ¢
= —[(cosh p sinh q)° — (cosh p sinh ¢)°]?.

The first equality gives cosh(p — q) = (x1,X2), proving the claim re-
garding distance, and together with the second equality provides the
asserted unique solution. O
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Corollary 4.4. Let L = Ly and sete = u+v,f =u—ve L. Then

we have
L={PeH:(P,e) (P, f) = 1},

_ {2\;@(me+yf):x,y>0}.

Proof. For the inclusion of L in the first equality, write

P =coshpu + sinhp v,
so that (P,u + v) = coshp F sinh p, so
(P,e) (P,f) = cosh’p — sinh?p = 1.

For the reverse inclusion, suppose that
1=(P,e) (P, f)
= (P,u)* — (P, v)’
and define Q = (P,uyu — (P, v) v, whence

QQ = (Pwu- Py, Pwu- v )

= <P7 u>2 - <P7V>2
~1,

so Q € I[H. Moreover by the previous corollary, the cosh of the distance
between P and Q is given by

P, Q) =P, (P, uyu—(P,v)v
= (P,w? —(P,v)?,

so the distance between P and Q is zero and P = Q, proving the first
identity.

For the second equality, suppose Q = xe + yf, for x,y > 0, so

Q. e)(Q,f) = 4oy =(Q,Q)
since (e,f) = 2. The first equality shows that #@Q € Ly and the

1 .
5 \/@Q e [H as required. U

The significant computational importance of this result is that a su-
pergeodesic is the projectivization to lie in [H of the convex linear span
of vectors lying in its asymptotes in L*.

second that
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Proposition 4.5. Let e;, f; € LT with {e;,f;) = 2 and define

eH—fi ei—fi
y, Vi =
2 2

u; = , forv=1,2.

Then Ly, v, = Lu, v, as oriented supergeodesics if and only if e1,es (and
£, ,£5, respectively) are proportional. Moreover in this case es = Ina eq,
for a =1, implies f3 = ﬁfl, and

coshp u; + sinhp vy = cosh(p —a) uy + sinh(p —a) vy, for all s.

In other words, scaling u + v and u — v by reciprocal amounts merely
shifts the origin of the parametrization of L,, ,, and interchanging them
reverses the orientation. We shall refer to the point u € L, arising
from vanishing parameter as the origin of the parametrization, so u, v
determines not only the line but also an origin within it.

Proof. In case Ly, v, = Luy,v,, the claimed proportionality follows eas-
ily from the second part of the previous result. For the converse with
b=1Ina, eg = be; and fy = cf; implies

2 ={ey, fy) = (bey, cf)) = 2bc,

whence bc = 1. Thus, we find

1 -1 .

ugz%uler g vy = cosha u; + sinha vy,
_p—1 -1 .

vy = 2 g u; + bHQ’ v = sinha u; + cosha vy,

and so
coshp u; + sinhp v = cosh g [cosha u; + sinha v;]

+ sinh ¢ [sinh @ u; + cosha vi]

follows from
coshp = cosha coshq + sinha sinh g = cosh (a + ¢),
sinhp = sinha coshg + cosha sinh g = sinh (a + ¢),
upon taking respective inner products with uy, vy, whence

coshp sinhp  cosh (a + ¢) sinh (a + q)
2 a 2

and sop=a+q. O

sinh 2p = = sinh 2(a + ¢),
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5. Law OF COSINES

It follows from Corollary 4.3 that any three points of IH not lying
on a common supergeodesic determine a supertriangle, namely, three
geodesic segments with disjoint interiors meeting pairwise at the given
points. We adopt the usual terminology of sides and opposite angles
from their bodies, and have

Corollary 5.1. The usual hyperbolic laws of cosines and sines hold for
supertriangles, that is given a supertriangle with sides of edge lengths
A, B,C and opposite angles a, b, c, then we have

cosh A = cosh B cosh(C' — sinh B sinh C' cosa,

cosa = —cosb cosc + sinb sinc cosh A,

sina sinb  sinc

sinhA  sinhB  sinhC’
Proof. According to Theorem 4.1, the supergeodesic from X € IH to
Y € IH may be parametrized
Y - X(X,)Y)

VX Y)Y -1

where the unit tangent vector at X to the line from X to Y is given

Y-X(X,Y) . . .
by NEaat Letting X denote the vertex opposite the side of length

X, for X = A, B,C and taking the inner product of the unit tangent
vectors at A to the supergeodesics through A and B, C thus gives

. _<B—A<A,B> C—A(A C)
“\VAB? 1 AC? 1/

X cosht +

sinht, for t € R,

and so
cosa sinh B sinh C' = (B, C) — (A, B)cosh B — (A, C)cosh C
+ (A, A) cosh B coshC
= cosh A — cosh C' cosh B — cosh B cosh C'
+ cosh B cosh C
= cosh A — cosh B cosh C,
proving the first identity. It is a well-known and easy exercise to derive

the second and third identities purely algebraically from this using just
cos’z + sin’r = 1 = cosh?X — sinh?X. O

Corollary 5.2. Given a supergeodesic L and a point P ¢ L, there
exists a unique supergeodesic L' through P perpendicular to L.
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Proof. Suppose that L = Ly, and let d = d(p) > 0 denote the distance
from P to the point coshp u + sinhp v € L. According to Corollary
4.3, we have

coshd = (P,coshp u + sinhp v)
= coshp (P,u) + sinhp (P, u).

The unique critical point dipcoshd = 0 occurs for

(P
P,v)’

which is a minimum since Wcoshd = coshd > 0. Uniqueness follows
from convexity of cosh for positive argument, and the Law of Cosines

easily implies that this minimizer is perpendicular to L. U

tanhp =

The point

(P
P.v)

u+pv
NIES
_ <P7V>u — <P,u>v

V(P u)? + (P, v)?

is the orthogonal projection of P on Ly .

coshp u + sinhp v = , for tanhp =

6. PAIRS OF SUPERGEODESICS
We begin with a technical lemma.
Lemma 6.1. Assume that
ard + bie + &1f +(0,0,0 | o, B1) = aod + bge + cof + (0,0,0 | g, 52),

where d = (x,%,% | 0,0), € = (x,%,% | $,0), f = (x,%,% | 0,¢) € L
with {(d,ey = (e,f) = {(f;d) = 2. Then a; = az,by = by,c; = ¢y and

ay = g, f1 = Pa.
Proof. The respective inner products of the assumed equality with d, e,

. a2 a2 0 011
f yield M(22) =M<b2> + (¢(5162)),whereM= (%(1) ), so that

1
€2 (a1—az) 0
ag ay 1 -1 1 1 0
by | =101 |+ 3 1 -1 1 o(Pr — Pa)
Co C1 1 1 -1 (Oél — Oég)w

and with (0,0,0 | ¢,0) and (0,0,0 | 0,%) yield
(a1 — a2)tp = (b — b1) 1),
O(P1 = B2) = (2 — 1) 9.
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It follows that
ag = a; + 3 [(52 —b1) + (c2 — c1)]o¥,

by — by = %[(52 —b1) — (c2 — 1)),

Co—C = %[(02 —c1) — (b — by)]o7),

whence a; = ag, and likewise for by = by, ¢; = o, from which it finally
follows that a; = an, f1 = fo. O

Theorem 6.2. Consider the supergeodesic L = Ly~ determined by
¢ LY

u—(***| 2)EIH
Vo= (%, %, %’_%)EH‘

Let
e=u+v=_x%x]¢0), f=u—v=_x==|01)eLl"
and choose
d=(x+=]00)e L’ sothat (d,e)= (e f)=(fe) =2
Suppose that L' = Ly is another supergeodesic and write
u' =ad + be + cf + (0,0,0 | 2, 23),
v =zd +ye + 2f +(0,0,0 | 2£,27).

Define
A={(u,u’), B={(v,u),
C= <11, V/>7 D = <V7 V/>’
and set B4+ 6)
_ 2 2 % (6% +
P L (E
2 P2 1 En(4 + )
J=[C"—D*+1] [1+—O2 D2+1]'

Then L and L' intersect if and only if the following conditions hold:
(62.1) C*-~D*+1>A?-B?>—12>0,

(6.2.2) AC — BD + IJ = (na + ) (4 + ¢nb),

(6.2.3) —2IJ(AC — BD) = J?(A?—B?> - 1)+ I*(C* - D*+1),
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(6.2.4) 4(Ja + I€) = [(A— B)J + (C — D)I]o,
(6.2.5) 4(JB + In) = [(A+ B)J + (C + D)I]¢.

Moreover, under these conditions, the unique point of intersection is
given by
,  Ju+ v (AJ+Clu+ (BJ+ DI)v
CLEerp 72 - 2] |
Proof. 1t follows from the definitions that
A=2a+b+c+ap+¢B8, B=c—b—ay + ¢p,

C=2v+y+z+&+9¢n, D=z—y—E&b+ ¢n,

LnL

whence
A—-B A+ B
b= —a+ 5 —ay, c=—a+ ; — ¢,
C—-D C+D
y=—x+ 5 — &Y, z=—x+ 5 — on.
Moreover, we have
1 = ' u')=4(ab+ bc+ ca) + 4(bdps + cap +2a8), (1)
—1 = V) =A(zy +yz+2x) + dyon + 260 + 2n),  (2)
0 = W, v)=2[aly+2)+blz+2)+clx+y)] (3)

+ 2(c€ + bom + zanp + yoB) + 4(an + £B).

Now writing eqn (1) in terms of a alone gives the quadratic
0= —4a® —da(av + ¢B) + [A* — B> = 1+ 4aB(2 + ¢v)],
from which it follows that
0= (v + 9B+ 1)
where [ is defined in the statement of the theorem.

The analogous computation using eqn (2) gives

1
v = =5 (& + ot ),

yielding first of all the two constraints A> — B> —-1>0<C?-D?+1
which form part of condition (6.2.1) in the theorem. Moreover, a and
2 must have opposite signs in order for L to intersect L', and the sign
of I in a must be positive in order that u’ € IH. We therefore find

a= —%(&w +¢B—1)and x = —%(f¢ + ¢n + J).
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Writing eqn (3) in terms of a and z gives
AC — BD + 4(an + £B) + 20 (an + £P)
= dax + 2a(¢n + &) + 2z(ar) + @),

and finally plugging in the values of a and x yields condition (6.2.2) of
the theorem.

Now take the respective inner products of
coshp u’' + sinhp v/ = coshqu + sinhq v (4)
with d, e, f to get the linear system

a T 2cosh g 0
MX | b|+MY |y ]| = | coshq—sinhq |-2 | ¢ coshp + ¢n sinhp
c z cosh ¢ + sinh ¢ ap coshp + &1 sinhp

where X and Y are 3-by-3 diagonal matrices with respective diagonal
entries cosh s and sinh s with

02 2 e R
M=12 0 2] sothat M~ ' == 1 -1 1
2 2 0 S S
It follows that
2(acoshp + zsinhp) = (o) + ¢f)coshp + (£ + ¢n)sinhp, (5)
2(bcoshp + ysinhp) = (8 — arp)coshp + (¢pn — £)sinh p
+ coshq + sinhq, (6)
2(ccoshp + zsinhp) = () — ¢f)coshp + (£ — ¢n)sinh p
+ coshq — sinhg. (7)
Eqn (5) gives
sinhp [
tanhp = _Z
— coshp J’
whence ,
coshp = ——— and sinhp = ——,
[~ 72—

taking the parameter p > 0. Eqn (5) therefore furthermore implies the
inequality C? — D? + 1 > A? — B? — 1, thus completing the proof of
necessity of condition (6.2.1) of the theorem.
Meanwhile, the sum of eqn (6) and eqn (7) provides
coshq = (b+ ¢)coshp + (y + z)sinhp
= (A — I)coshp + (C + J)sinhp,
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while their difference yields

sinhg = [b— ¢ + () — ¢f)]coshp + [y — = + (€0 — on)]sinh p
= —Bcosh p — Dsinh p.

Computation shows that the constraint 1 = cosh? ¢ — sinh? ¢ is equiv-
alent to condition (6.2.3) of the theorem.

The final two fermionic constraints (6.2.4) and (6.2.5) arise by equat-
ing the last two coordinate entries of eqn (4). The stated necessary
conditions are clearly sufficient, and the formula for L n L’ then follows
immediately from eqn (4). O

Remark 6.3. For any e,f € £ with (e, f) = 2, it is an easy matter
to find g € OSp(1]2) so that g.e and g.f satisfy the conditions of the
previous theorem. Indeed for e = (z1, 29,y | £,1), f = (uy, ug,v | p,v),
we may simply take g = u(yfjlf:;ﬁ, yﬁ)”:ﬁi) in the generic case that
Yyv # T1ug, which can itself also be easily arranged by explicit pertur-
bation. Since g(L n L") = g(L) n g(L’), for any two supergeodesics
L, L' and g € OSp(1|2), the previous result in fact gives conditions and

formulae for intersections in the general case.

Corollary 6.4. Consider supergeodesics L = Ly and L' = Ly in
the notation of Theorem 4.1 and set X = A2—B*—1,Y = C?-D?+1
with Z =Y + X +2(AB+CD)(BD—AC). If L and L' intersect at the
point P € IH, then the cosine of the angle at P from L to L' is given

by

Z _ 24+ ¢Y) [(aﬁ +&n) + (AB + CD)(na + 55)]
_ _ Z(aB—€n) | 16ZafE )

y-x =X oyt ex

More interesting than the particular form of the second summand is
the substantial fermionic correction to the bosonic term % that it
represents. This puts into focus the Super Law of Cosines Corollary 5.1,
where the familiar purely bosonic formula rather remarkably concisely
includes this and other fermionic corrections.

Proof. From the formulae for P = L n L’ in Theorem 4.1, the cosine of
the angle at P from L to L' is given by
(V' +IW (A + CI)v + (BJ + DI)u)
J2_ ]2
(AD + BO)(J* + I*) + 2(AB+CD)I1J
J2 ]2 ’
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Plugging in the constraint [.J = BD — AC + (na + 5¢)(4 + ¢) from
(6.2.2) gives the asserted formula after a bit of computation using con-
straints (6.2.3) and (6.2.4) to conclude that af&n¢yp = 0. O

A pair of supergeodesics L; = Ly,.,, for i = 1,2, in the bosonic case
are determined by a pair u; € IH" and v; € H' with {(u;,v;) = 0, or
equivalently by a pair h; € H, where (h;, u;) = ¢(h;, v;) = 0, and in this
case [11] we have

cosh? d, if L1 n Ly = ¢ and are not ultraparallel,
(hy, hyy? — where d is the distance between L; and Lo;
U T Y costa,  if Ly n Ly # &,
where « is the angle between L; and L,

where two geodesics or two supergeodesics are parallel provided they
do not intersect and are furthermore ultraparallel if they share an as-
ymptotic ray in L£7.

Moreover in the first case that L; and L, are parallel and not ultra-
parallel, then they admit a unique common perpendicular. The sequel
is dedicated to the analogue in hyperbolic superspace.

Theorem 6.5. Two supegeodesics that are parallel and not ultraparallel
admit a unique common perpendicular.

Proof. Denote the two supergeodesics L; = Ly, v,, for i« = 1,2, and
define

a = <ul7 u2>7 b= <V17 u2>7
C = <111, V2>, b = <V17 V2>.
First note that the condition {u; £ v1} N {us + vo} = J that Ly and

L are not ultraparallel thus implies positivity of each of the four linear
combinations

(a—b—c+d),(a—b+c—d),(a+b—c—d),(a+b+c+d),

since the inner product of any two points in £ which lie in different
rays from the origin in R>!? is positive. In particular, the various
pairwise sums of these inequalities imply that a > max{+b, +¢, £d},
whence a? > max{b?, ¢?, d*}.

Distinct points u;cosht; + v;sinht; € L;, for i« = 1,2, determine a
unique supergeodesic L containing them according to Corollary 4.3,
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and furthermore the cosh of the length d of the segment between L L,
and L n Ly is given by

cosh d = (ujcosh p; + visinh p;, uscosh ps + vosinh py)
= a coshp; coshps + b sinhp; coshp,
+ c coshpy sinhps + d sinhp; sinhp,,

whence

ocosh d
p1

= sinh p;{a coshpy, + ¢ sinhpsy}

+ coshpi{b coshpy + d sinhps},

ocosh d
Op2

= sinh po{a coshp; + b sinhp,}

+ coshpe{c coshp; + d sinhp;},
and it follows that at a critical point
d tanhps + b

—tanhp, =
P ctanhp, + a’
(8)
tanh d tanhp; + ¢
—tan = )
b2 btanhp, + a

Plugging the latter equation into the former gives the quadratic
0 = pi(ab — cd) + pi(a® + b* — & — d®) + (ab — cd)
with discriminant
A= (a®+ b —c®—d*)? —4(ab — cd)?
=(a—b—c+d)(la—b+c—d)(a+b—c—d)(a+b+c+d)
>0

since each factor is positive, as noted above since L; and L, are not
ultraparallel.

To see that this critical point is in fact a minimizer, we apply the second
derivative test for a function of two independent variables. To this end,
we have

0*cosh d B 0?cosh d

o = o = coshd > 0,
0%coshd
g sinh pa{b coshp; + a sinhp;}
0p10p2

+ coshpa{d coshp; + ¢ sinhp;},
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whence
(6zcosh d) < 0%cosh d> B ( 0%cosh d) 2
op? ops Op10ps

2
= [Coshpl(a coshpy + c¢sinhps) + sinhpy(b coshpy + d Sinhpg)]

- lsinhhm(b coshp; + asinhp;) + coshps(d coshp, + ¢ sinhpl)]2
— lcoshpl((a +d) coshpy + (b+ ¢) sinhpy)

+ sinhp((b+ ¢) coshps + (a+d) SinhpQ)]
X lcoshpl((a —d) coshpy — (b—c) sinhpy)

+ sinhp;((b—¢) coshpy — (a —d) sinhpg)]
= |(a + d)cosh(py + p2) + (b + ¢)sinh(p; + pg)]

X 7(@ — d)cosh(p; — p2) + (b — ¢)sinh(p; — pg)]

= cosh(p1 + pg) COSh(pl - Pz)

o oy, P 2074 patd
X_(a )+ — b+ = = (b= —
B cosh(p; + po) cosh(p; — po) A
= a2 _ 2
> 0,

since A > 0 and a? > d? by the remarks that began this proof, where

we have used the equalities (8) to write sinh(p; +py) = ﬁflcosh(pl +ps).

This completes the proof that the critical point is a minimizer, and
since cosh d is convex for d > 0, this guarantees a unique minimizer. It
follows without difficulty from the Super Law of Cosines Corollary 5.1
that this minimizer is indeed orthogonal to L, and L. OJ

The proof provides a formula for the distance between the two geodesics,
which is omitted and is far more complicated than the the classical
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case of two parallel non-ultraparallel geodesics. Just as for the Law of
Cosines, the same result encodes substantial fermionic corrections.
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