
MUSIC OF MODULI SPACES

ROBERT PENNER

Abstract. A musical instrument, the plastic hormonica, is de-
fined here as a birthday present for Dennis Sullivan, who pioneered
and helped popularize the hyperbolic geometry underlying its con-
struction. This plastic hormonica is based upon the Farey tesse-
lation of the Poincaré disk decorated by its standard osculating
horocycles centered at the rationals. In effect, one taps or holds
points of another tesselation τ with the same decorating horocycles
to produce sounds depending on the fact that the lambda length
of e P τ with this decoration is always an integer. Explicitly, tap-
ping a decorated edge e P τ with lambda length λ produces a tone
of frequency 440 ξλ´12N , where ξ12 “ 2 and N is some fixed pos-
itive integer shift of octave. Another type of tap on edges of τ
is employed to apply flips, which may be equivariant for a Fuch-
sian group preserving τ . Sounding the frequency for the edge after
an equivariant flip, one can thereby audibly experience paths in
Riemann moduli spaces and listen to mapping classes. The result-
ing chords, which arise from an ideal triangle complementary to τ
by sounding the frequencies of its frontier edges, correspond to a
generalization of the classical Markoff triples, which are precisely
the chords that arise from the once-punctured torus. In the other
direction, one can query the genera of specified musical pieces.

Introduction

Let D Ď C denote the Poincaré disk lying in the complex plane with
its frontier circle S1 Ď C at infinity. The modular group

PSL2 “ PSL2pZq,

comprised of two-by-two integral unimodular matrices modulo mul-
tiplication by minus one, acts isometrically on D preserving S1. A
horocycle is a curve in D of constant geodesic curvature unity, which
is asymptotic to a unique point in S1 called its center, or equivalently,
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a Euclidean circle in D tangent to S1 at its center, for example, the
horocycle h˚ centered at ´1 P S1 containing the origin 0 P D of C.

The lambda length λ “ λph, h1q of a pair h, h1 of horocycles with
distinct centers is defined by

λ “ exp δ{2,

where δ is the signed hyperbolic distance between h and h1 along the
geodesic connecting their centers, taken with a positive sign if and only
if the horocycles are disjoint. A small calculation given in Section 2
shows that in fact, the lambda length of any two horocycles in the orbit
PSL2ph˚q of h˚ is a positive integer.

Our basic idea here is to capitalize upon this integrality in order to
define a virtual musical instrument, which is capable of both human
play and automatic actuation, in order to provide not only a mecha-
nism for musical composition but also a tool for the auditory probing
of Riemann moduli spaces and mapping class groups of punctured sur-
faces. After all, human auditory acuity far exceeds the other senses, so
such a musical probe could help elucidate both geometry and algebra.

Recall that there are 12 musical tones in an octave, and frequency
doubling corresponds to going up in tone by one octave. The difference
between two consecutive notes is called a hemitone. The frequencies
of musical notes in so-called equally tempered tuning, which is often
implemented for instance in electric pianos, are given by ωn “ a ξn,
where ξ “ 2

1
12 “ 1.05946... and a is a constant, conventionally taken

as a “ 440 Hz corresponding to the nearest note A above middle C,
called A4, where the subscript determines the octave. The note with
frequency ωn is the musical note that is n hemitones above or below
A4.

Integrality of lambda lengths is exploited here, at first blush anyway,
in the simplest way possible: the frequency assigned to a pair of horo-
cycles with lambda length λ is given by 440 ξλ´12N “ 27.5 ξλ, where
the shift N “ 4 in octave is chosen so that small positive values of λ
lie just in the audible range, which for newborn humans is something
like 20-20,000 Hz. Thus, N “ 4 does the trick, with A0 of frequency
27.5 the effectively unhearable note A four octaves below A4

More specifically, the Farey tesselation τ˚ of D, to be recalled in some
detail the next section, is the orbit τ˚ “ PSL2pe˚q, where e˚ is the
geodesic in D with endpoints ˘1 P S1. A collection of horocycles, one
centered at each endpoint of a family of geodesics, is called a decoration
on the family, and PSL2ph˚q thus provides a decoration of τ˚ called the
Farey decoration. Define the lambda length of a geodesic e decorated
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by respective horocycles h, h1 centered at its endpoints to be

λpeq “ λph, h1q.

Figure 1. Flip on an edge e.

A flip is the basic combinatorial move on a tesselation τ , defined by
removing a single edge e from τ , so as to produce a complementary
ideal quadrilateral with diagonal e, and replacing e in τ by the other
diagonal f of this quadrilateral, as depicted in Figure 1. The Ptolemy
equation

ef “ ac` bd

describes the effect of flips on lambda lengths, which are here con-
flated with the edges themselves, where e and f are diagonals of the
quadrilateral with edges a opposite c and b opposite d.

Thus, beginning with the untuned instrument τ˚, one might perform
a sequence of flips to tune the instrument to another tesselation τ , still
with the original decoration, in order to assign various integral lambda
lengths, and hence this number of hemitones above some fixed tone, to
the edges of τ .

In a visual representation of τ on a computer screen not unlike a
piano keyboard or a harp, one might thus touch the edges of τ in
order to generate a musical sound at the frequency determined by the
lambda length. (We actually do something a little more elaborate than
this to produce sounds in order to capture standard Western chords,
cf. Section 4.1.)

To probe moduli spaces, we consider a torsion-free subgroup Γ of
finite-index in PSL2, so D{Γ is a punctured arithmetic surface

F “ F s
g “ D{Γ

of some genus g ě 0 with a finite number s ě 1 of punctures of negative
Euler characteristic 2g ´ 2 ` s ă 0, and Γ is a punctured arithmetic
surface group.



4 ROBERT PENNER

Instead of flipping a single edge e P τ in a Γ-invariant tesselation
τ , we serially perform flips on an entire orbit Γpeq in order to derive
another Γ-equivariant tesselation of D, or in other words a triangulation
of F with its vertices at the punctures, to be apprehended here as a
Γ-equivariant retuning of τ . As explained in [5, 7], sequences of these
Γ-equivariant flips correspond to paths in the Riemann moduli space
of F , and suitably periodic such sequences to elements of the mapping
class group of F . By listening to the sequences of corresponding tones,
we might probe moduli spaces and mapping class groups alike.

On the other hand, we might also take a fixed piece of music, and
ask for the smallest genus of D{Γ for which the piece may be played
on a Γ-equivariant tuning of τ˚. As we shall see in Section 4.3, any
tune on one instrument using notes from only one octave, has genus at
most three, for example, the classic melody Happy Birthday to You,
for Dennis Sullivan on this happy occasion of his 80th.

Dennis and I have been friends since the early 1980s. He was lec-
turing in Boston on the measurable Riemann mapping theorem in the
days before I married and received my doctorate, and we first met at
a reception to celebrate the former. During the next several years, we
met often on Tuesdays, since I availed myself of his offer to all of us in
the nearby Thurston gang to attend his Einstein seminar at CUNY and
stay for dinner on his dime. At times simultaneously raising families
of roughly comparable ages, we were at points very close indeed.

Over the next many years, I would spend May with him at the IHES,
and we would often meet elsewhere as well. In one of my Parisian visits,
we had without any doubt the most efficient conversation of my life: In
the midst of doing math one evening after dinner, he abruptly looked
me squarely in the eye and uttered “math, love, children, wine and
food,” with each word lifting another finger on his hand, to which I
responded “yes, and music.”

Nevertheless, I offer here to Dennis for his birthday present a musical
instrument, the plastic hormonica, a precursor to which, called the
hormonica, was described in a footnote of [7], which is reproduced here
at the beginning of Section 3. I hope that Dennis among others will
appreciate not only the math underlying the plastic hormonica, for
instance the number-theoretic material on generalized Markoff triples,
referred to here as triangular chords, cf. Section 2, but also the tempting
prospect of musically probing moduli spaces and mapping class groups.

The oeuvre of Dennis pervades the constructions given here. It has
influenced my work, among so many others more generally in so many
regards and in so many directions, including his leading one of the first
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seminars on hyperbolic geometry (at the IHES, in the 1980s). He nur-
tured Bill Thurston, my own post-doctoral teacher, and gave all of us
his seminal works on the distribution of horocycles [9] in hyperbolic
surfaces, measures on the boundary of hyperbolic space [8], random
walks in hyperbolic surfaces [11], the beautiful hyperbolic solenoid
[10], among countless other contributions which have fundamentally
impacted the development of hyperbolic space as a playground for all
sorts of characters uncovering the richness of our modern hyperbolic
geometry

1. Farey Tesselation

Let us begin in the upper half-plane model

U “ tx` iy P C : y ą 0u,

wherein horocycles are represented either as Euclidean circles tangent
to R at their centers or as horizontal lines ty “ c ą 0u when the center
is the point at infinity. Let hn denote the hororcycle with Euclidean
diameter unity centered at n P Z Ď R, for each n P Z together with
the horocycle h8 “ ty “ 1u.

Figure 2. The Farey decoration: a horocyclic packing of U .

Two consecutive horocycles hn, hn`1 determine a triangular region
bounded by the interval rn, n ` 1s Ď R together with the horocyclic
segments connecting the horocycle centers to the point of tangency of
hn and hn`1. There is a well-defined horocycle in each such triangular
region which is tangent to hn, to hn`1, and to the real axis, and we
let hn` 1

2
denote this horocycle, tangent to the real axis at the half-

integer point n ` 1
2

and of Euclidean diameter 1
4
. We may continue

recursively in this manner, adding horocycles tangent to the real axis
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and tangent to pairs of consecutive tangent horocycles, to produce a
family of horocycles H in U . See Figure 2.

Figure 3. Farey tesselation of U .

Lemma 1.1. There is a unique horocycle in H centered at each ex-
tended rational point Q̄ “ Q Y t8u, and the horocycle centered at
p
q
P Q has Euclidean diameter 1

q2
, where p

q
is written in reduced form

with 8 “ ˘1
0
. Furthermore, the horocycles in H centered at distinct

points p
q
, r
s
P Q̄ are tangent to one another if and only if ps´ qr “ ˘1,

and in this case, the horocycle in H tangent to these two horocycles is
centered at p`r

q`s
P Q̄.

It is easy to prove this lemma inductively starting with the second
sentence. Now define the Farey tesselation to be the collection of hy-
perbolic geodesics in U that connect centers of tangent horocyles in H;
see Figure 3.

Finally define the Farey tesselation τ˚ of D to be the image of the
Farey tesselation of U under the Cayley transform z ÞÑ z´i

z`i
as illus-

trated in Figure 4, where τ˚ is regarded as a set of geodesics decom-
posing D into ideal triangles, i.e., regions bounded by three disjoint
geodesics pairwise sharing ideal points at infinity. (The Cayley image
of H in D is the orbit PSL2ph˚q in the Introduction.) The generation of
a Farey point is the number of open ideal triangles met by the geodesic
path from the origin in C to the Farey point.

Lemma 1.2. The modular group leaves invariant the Farey tesselation
τ˚ and acts simply transitively on its oriented edges, so oriented edges
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of τ˚ are labeled by elements of PSL2pZq. A generating set is given by
any pair of

S “
` 0 ´1

1 0

˘

, T “
` 1 1

0 1

˘

, U “
` 1 0

1 1

˘

,

where T´1 “ SUS and U´1 “ STS, and a presentation in the gen-
erators S, T is given by S2 “ 1 “ pST q3. Reversal of orientation
corresponds to precomposition with S.

Figure 4. Farey tesselation of D.

2. Lambda Lengths and Triangular Chords

Direct calculations in the upper half-plane given in [5, 7] prove

Lemma 2.1. If h, h1 are two horocycles in U with respective centers
x, x1 P R and Euclidean diameters δ, δ1 ą 0, then

λph, h1q “
|x´ x1|
?
δδ1

,

while if h1 is centered at infinity with Euclidean height H, then we have

λph, h1q “
b

H
δ

. Furthermore, if γ “ p a bc d q P PSL2pRq maps h to h1,

then x1 “ γpxq and

δ1 “ γ1pxq δ “
δ

pcx` dq2
,

while if γpxq “ 8, then h1 has height δ´1

c2
.
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Corollary 2.2. The lambda length λ of the pair of horocycles in the
Farey decoration with centers p

q
, r
s
, where p, q and r, s are each coprime

pairs, is given by λ “ |ps´ qr|.

Proof. For the horocycles of respective Euclidean diameters 1
q2

and 1
s2

centered at p
q
ă r

s
, we find the lambda length

|
p
q
´ r

s
|

b

1
q2

1
s2

“ |ps´ qr| “ qr ´ ps ą 0.

�

This proves the basic integrality property of lambda lengths on the
Farey decoration which is at the heart of this paper.

Choose any three distinct rational numbers p
q
ă r

s
ă u

v
, each with

coprime numerator and denominator, so the Farey decoration assigns
respective Euclidean diameters 1

q2
, 1
s2

, 1
v2

. The triple of pairwise lambda

lengths of these three horocycles is given by

tqr ´ ps, us´ rv, uq ´ pvu,

and we call such a triple a (triangular) chord.

Example 2.3. For any n ě 1, each of t1, n, n` 1u, t1, n, 2n` 1u and
t1, n ` 1, 2n ` 1u is a triangular chord. To see this in the notation
of Figure 4, serially flip along each of the edges U,U2, U3, . . . , Un, . . .
in this order to produce a polygon P decomposed into a collection
of triangles sharing a vertex with respective triples of lambda lengths
t1, 1, 2u, t1, 2, 3u, t1, 3, 4u, . . . , t1, n, n ` 1u, . . . , proving the first part.
(The weighted edges interior to P comprise a “hyperfan” in the sense
of [6, 7].) Now flip on edges in the frontier P for the other two classes
of chords.

Triangular chords generalize the classical diophantine Markoff triples
in the following sense. Start from a triple of lambda lengths satisfying
the Markoff equation

x2 ` a2 ` b2 “ 3abx,

such as x “ a “ b “ 1. The sum of the two roots of this quadratic
equation in x is given by 3ab according to the quadratic formula, and
yet immediately 3ab “ x`pa2`b2q{x for a solution to this equation. It
follows that if pa, b, xq is a Markoff triple, i.e., a solution to the Markoff
equation, then so too is pa, b, pa2` b2q{xq, and we recognize this as the
Ptolemy transformation applied to the triple pa, b, xq in the surface F 1

1 .
In fact by well-known results [2], the Markoff triples are exactly the
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triangular chords arising from any finite sequence of Γ-equivariant flips
on τ˚ for any Γ ă PSL2 with D{Γ homeomorphic to F 1

1 .
First of all, one can relax this to consider Γ ă PSL2 with any fixed

topological type and take finite sequences of Γ-equivariant flips to define
various modular classes of triangular chords. Or one can “go all the
way” with the “universal” definition above for triangular chords arising
from any finite sequence of simple (i.e., non-equivariant) flips. (See
[3, 6, 7] for the sense in which the latter is universal.)

Let gcdpn1, . . . , nmq denote the greatest common divisor of any finite
set tn1, . . . , nmu Ď Z of integers. The rest of this section is dedicated
to the proof of the following theorem.

Theorem 2.4. A triple λi P Z, for i “ 1, 2, 3 occurs as a triangu-
lar chord if and only if the following two conditions hold whenever
ti, j, ku “ t1, 2, 3u:

1. gcdpλi, λjq divides λk;

2. if n “ gcdpλ1, λ2, λ3q is even, then some λi{n is even.

Lemma 2.5. Given λi P Z, for i “ 1, 2, 3 satisfying Condition 1, let
n “ gcdpλ1, λ2, λ3q. Then n “ gcdpλi, λjq as well, independently of the
distinct i, j P t1, 2, 3u.

This means that the λ1i “ λi{n, for i “ 1, 2, 3 are pairwise coprime (and
hence trivially satisfy both conditions 1 and 2). In particular, at most
one of λ1i, for i “ 1, 2, 3, can be even.

Proof of Lemma 2.5. Since gcdpλi, λjq “ n gcdpλ1i, λ
1
jq divides λk, for

ti, j, ku “ t1, 2, 3u, it follows that gcdpλ1i, λ
1
jq divides λk{n “ λ1k. Thus,

gcdpλ1i, λ
1
jq divides each λi, for i “ 1, 2, 3, and hence also n. Conversely,

gcdpλ11, λ
1
2, λ

1
3q trivially divides gcdpλ1i, λ

1
jq, and hence finally, they must

be equal. �

Proof of Theorem 2.4. We start with necessity of Condition 1 and sup-
pose that the triangular chord in question arises from the triple p

q
ă

r
s
ă u

v
. Choose γ P PSL2pRq with γp r

s
q “ 0

1
as well as γ1pp

q
q “ 1 “ γ1pu

v
q,

and let γpp
q
q “

p1

q1
, γpu

v
q “ u1

v1
. By the second part of Lemma 2.1, the

resulting horocycles centered at p1

q1
and u1

v1
have unchanged diameters,

and now the diameter of the horocycle at 0
1

is given by some δ ą 0.

The resulting lambda length of the horocycles centered at p1

q1
and u1

v1

is given by u1q1 ´ p1v1, which agrees with uq ´ pv owing to PSL2pRq-
invariance of lambda lengths, while the other two lambda lengths are
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expressed as ´ p1
?
δ
“ qr ´ ps and u1?

δ
“ us ´ rv by the first part of

Lemma 2.1, again using invariance of lambda lengths.
It follows that uq ´ pv “ u1q1 ´ p1v1 is a multiple of the greatest

common divisor of ´p1 and u1 and hence of ´ p1
?
δ
“ qr ´ ps and u1?

δ
“

us´ rv as well. Thus, Condition 1 is indeed necessary. It follows that
t10, 12, 15u is not a triangular chord, for example.

Continuing with the proof of Theorem 2.4, let us henceforth adopt
the abiding notation

A “ λ1, B “ λ2, C “ λ3, and a “ A{n, b “ B{n, c “ C{n,

where n “ gcdpA,B,Cq.
We turn to necessity of Condition 2 and suppose not, so that n is

even, and each of a, b, c is odd. Transitivity of PSL2 on triples in Q “
QY t8u allows us to position respective vertices for the ideal triangle
realizing the triangular chord A,B,C at 0

1
, A{r “ na{r, B{s “ nb{s,

for some r, s P Z. It follows that

nc “ C “ As´Br “ npas´ brq,

where we have absorbed the absolute value into the signs of r, s.
Thus, c “ as´br, where each of a, b, c is assumed to be odd, so tr, su

must be equal to t0, 1u modulo 2. This is a contradiction since na{r
and nb{s are each reduced fractions, with n even and precisely one of
r, s even, and this establishes necessity of Condition 2.

Now we suppose that A,B,C is a triple satisfying both Conditions
1 and 2 and must establish that A,B,C is a chord. Write

n “ 2e0 pe11 ¨ ¨ ¨ p
em
m

as a product distinct primes, where e0 ě 0 and e1, . . . , em ě 1.
If e0 “ 0, then it can be ignored and the discussion below for the

other prime factors pertains, and otherwise, by Condition 1 and the
fact already discussed that a, b, c, are pairwise coprime, at most one of
these three can be even, say it is c.

Let us construct the triangular chord with vertices 0
1
, a{r, b{s real-

izing a, b, c where c “ as´ br. From the parities of the a, b, c, it follows
that r and s must have the same parities.

If both of r, s are even, then c may be rewritten as

c “ apb` sq ´ bpa` rq

with 0
1
, a{pa`rq and b{pb`sq still in reduced form and yielding lambda

lengths a, b, c. Replacing

s ÞÑ b` s and r ÞÑ a` r,
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we may assume without loss that r and s are each odd, and in this
case, each of 0

1
, p2e0qa{r, p2e0qb{s is a reduced fraction, thus providing

an ideal triangle for the chord p2e0qa, p2e0qb, p2e0qc.
This shows that if a, b, c is a chord, then so too must be its homothetic

scaling by 2e0 . Now we proceed to include each of the remaining prime
powers in n by adjusting the denominators r, s so that they become
coprime to the numerator we hope to introduce.

Let us explain in detail for the prime power pe11 , where the underlying
observation is that if p1 is coprime to both r and s, then the ideal points

0

1
, p2e0 pe11 qa{r, p2

e0 pe11 qb{s

are already in reduced form and achieve the desired lambda lengths.
Suppose that p1 divides one of r and s, and suppose without loss

that it is r. Note first that if p1 were to also divide s, then it would
moreover divide p2e0qc “ p2e0qas ´ p2e0qbr, and hence p1 would divide
c. By relative primality then p1 cannot divide p2e0qa or p2e0qb, and so
p2e0qb` s and p2e0qa` r are each likewise coprime to p1.

It follows that
0

1
, p2e0qa{pp2e0qa` rq, p2e0qb{pp2e0qb` sq

is a triple of reduced fractions realizing the triple of lambda lengths
p2e0qa, p2e0qb, p2e0qc. Now take

s ÞÑ p2e0qb` s and r ÞÑ p2e0qa` r

to return to the case that p1 is coprime to both r and s, which was
treated before.

It remains only to consider the case that p1 divides r but not s. Since
p1 ‰ 2, p1 is coprime to both p2e0qa ` r and 2p2e0qa ` r and likewise
coprime to at least one of p2e0qb` s and 2p2e0qb` s.

If p1 is coprime to p2e0qb` s, then take

s ÞÑ p2e0qb` s and r ÞÑ p2e0qa` r,

and if p1 divides p2e0qb` s, then take

s ÞÑ 2p2e0qb` s and r ÞÑ 2p2e0qa` r.

In any case, the resulting r and s still satisfy c “ as ´ br and are
respectively coprime to p2e0qa and p2e0qb by the Euclidean Algorithm.
Furthermore, both are coprime to p1, again reducing to the earlier case.

This finally provides an ideal triangle with vertices

0

1
, p2e0pe11 qa{r, p2

e0pe11 qb{s
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realizing lambda lengths p2e0pe11 qa, p2
e0pe11 qb, p2

e0pe11 qc. The inductive
procedure continues in this way through the remaining prime factors
of n. �

It follows from the theorem that pairwise coprime triples are trian-
gular chords, as was noted before, and moreover the union of all tri-
angular chords, as determined in the theorem, is closed under integral
homothety.

Basic problems and questions include:
‚ Characterize the Γ-equivariant triangular chords for var-
ious punctured arithmetic surfaces D{Γ. How does adding
a single puncture F s

g ÞÑ F s`1
g affect the collection of equi-

variant triangular chords?

3. The hormonica and tempering

Here is the footnote from [7] which defines the hormonica, the start-
ing point for this paper.

At the risk of proving beyond any doubt that we have too much spare time,

let us remark that there is a musical instrument, the “hormonica”, based on

this observation [integrality of lambda lengths for the Farey decoration] as

follows. Begin with the Farey tesselation τ˚ as the untuned instrument re-

garded as drawn before you on the computer screen. Perform a sequence

of flips by serially selecting edges to produce another tesselation τ of the

Poincaré disk likewise displayed on the computer screen. Choose some basic

frequency, say middle C, to represent unity, so that any natural number may

be interpreted as a multiple of this frequency. In this way, each edge of τ

with its integral lambda length can be “plucked” to produce a correspond-

ing tone. Moreover, each triangle complementary to τ can be “tapped” to

produce a triple of tones or chord. Attributes such as duration or timbre

could be introduced as further aspects of the tuning process. Maybe this is

crazy, but it could be fun. On the other hand, it is difficult to probe the

combinatorics of moduli spaces visually, and the analogous hormonicas based

upon tesselations of a fixed surface could provide an auditory tool towards

this end.

There are several difficulties with this definition. The first problem
is that frequencies of musical notes are exponential (in equal-tempered
tuning given by 440 ξn, for integral n with ξ12 “ 2) and not multiplica-
tive in this sense and are rationally rather than integrally related, as
discussed below. Another more amusing limitation is that traditional
musical chords, as given in Table 1, cannot be triangular chords on the
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original hormonica, since neither minor chords 10:12:15 nor diminished
chords 160:192:231 (nor its sometimes useful approximation 20:24:29)
satisfy Condition 1 of Theorem 2.4.

However, not all major, minor or diminished chords can arise from
ideal triangles on the plastic hormonica either, with its system λ ÞÑ
27.5 ξλ of assigning frequencies to lambda lengths; for example, the
chords B0 major (2,6,9), C1 minor (3,6,10), and B0 diminished (2,5,8)
violate Condition 1 of Theorem 2.4, where the triples are numbers of
hemitones of individual notes above A0, cf. the first two columns of
Table 1. This deficiency in the musical instrument will be rectified by
activating tones with several fingers.

Frequency Ratios of 3-Tone Musical Chords

Chord Hemitones between notes Ideal Frequency Ratios
Major 4-3 4:5:6
Minor 3-4 10:12:15

Diminished 3-3 160:192:231
Table 1. The tones comprising major, minor and dimin-
ished chords.

This table illustrates both the utilities and deficiencies of equally
tempered tuning, for example, the ideal major chord frequency ratios
in equally tempered tuning are not rational, but are approximated by
ξ4 “ 1.2599... « 5{4 and ξ7 “ 1.498... « 6{4. But in what sense do
these irrational frequency ratios fail to be “ideal”?

That equal tempering is not the most harmonious tuning system
goes back to the ancient Greeks, who argued that we humans find
sonorous those pairs of frequencies whose ratio is a rational number
with small denominator and numerator, for instance the perfect fifth
3:2 and major third 6:5 in the ideal major chord; see Figure 5.

A “tempering” is a compromise in assigning frequencies to notes that
respects the octave as well as preserves perfect fifths, on top of other
desired rational frequency ratios within an octave, as least as much as
possible according to certain criteria. It is thus a compromise between
the physics of a vibrating string and the physiological perceptions of
multiple frequencies.

Pythagoras among others has proposed such compromise systems of
rationally related frequencies in an octave3. An even more elaborate

3Both interesting and beautiful, here are the Pythagorean frequency ratios in the
key of C: C(1:1), D(9:8), E(81:64), F(4:3), G(3:2), A(27:16), B(243:128), C(2:1).
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Figure 5. The ideal musical notes arise from taking perfect
fifths, namely frequencies in the ratio 3:2, starting from C and
going clockwise around the outside of the so-called circle of
fifths illustrated here, so for instance C to G , G to D, and so
on are all perfect fifths. Since p3{2q12 “ 129.74633... is not a
power of 2, there is a resulting inconsistency in octaves. The
lower case inner circle likewise give perfect fifths beginning
from a. Figure courtesy of Mysid/Andeggs.

scheme is used to tune an ordinary piano across its 87 hemitones=71
3

octaves. Moreover, triples of tones are harmonious when their integral
frequencies share a common multiple in each of their eight smallest
multiples according to Helmholtz.

The point is that books have been written [1, 4] on this topic of
tempering with its rich history, and it is more than we can discuss
here. We needed at least to give sense to the term, this compromise in
tuning away from equal tempering to achieve some specified collection
of diophantine frequency ratios.

In practice for a stringed musical instrument, one “fudges” a little
here and there to achieve desired diophantine ratios at the expense of
others, for instance in tuning a piano or in placing the frets of a guitar.
In a viola or violin, direct continuous tempering is determined in real
time by the musician based on where the bow meets the string among
other things, or in a guitar, where notes are determined not only by the
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fret but also by bending the string to change its tension. The plastic
hormonica allows any type of specified tempering analogous to both a
piano and a guitar, as well as its real-time refinement as for a violin,
at heart exponential based on equal temperament

4. The plastic hormonica

This section is finally dedicated to the definition of a musical instru-
ment, the plastic hormonica, and has three parts: first, the definition of
the untuned instrument, which may provide an interesting interaction
with hyperbolic geometry; second, the methods of tuning the instru-
ment, which can be done either one ideal arc at a time, or equivariantly
for some fixed arithmetic Fuchsian group; third and finally, the two es-
sential methods of playing the instrument, one that fixes the tuning
once and for all and another that allows real-time retuning, whether
equivariant or not, while playing.

4.1. The untuned instrument. We shall consider a rendering of the
Farey tesselation τ˚ of D on a large touch-sensitive computer screen,
where for the moment we can either tap an edge e P τ˚ with a finger to
produce a tone or hold it at some point p P e to sustain a tone.

Each e P τ˚ ´ te˚u comes equipped with its canonical orientation
pointing from lower to higher Farey generation of its endpoints, ex-
tended to e˚ pointing from 0

1
to 1

0
by convention. Each such edge e P τ˚

also comes equipped with its distinguished point p0 P e lying in two
Farey horocycles, that is, equidistant to the Farey horocycles centered
at the endpoints of e. This point in turn determines the net of points
pj P e, j P Z, called frets, at hyperbolic distance j

2
expp1

2
q from the

distinguished fret p0 along e.
Fix any edge e P τ˚. In this untuned setting, tapping e always

produces a burst at 27.5 Hz by convention, which is likewise produced
continuously when the distinguished fret p0 P e is held. The fret pi can
be tapped or held and emits the note which is i hemitones from that of
p0 in whatever tempering seems salutary, like keys on a piano keyboard
but also like frets on a guitar.

More generally, holding an arbitrary point on e determines a con-
tinuum of frequency response that interpolates that of the frets in any
desired manner, so tapping or holding nearby a fret modulates the
tempering. It is this more general plasticity of tone, akin to a violin or
mouth harmonica, that is reflected in the name of the new instrument

Let us indicate orientation with a color spectrum on each edge, with
tick marks for the frets, and a special ˆ-mark for the distinguished
fret. As with the hormonica, the timbre of each sound (its character as
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determined by its spectrum) and its attack (how the tone itself initiates
and decays) can be set however one desires, for instance like a staccato
saxophone in one region of τ˚, like a slide guitar in another region, and
like a snare drum in yet another. In principle but impracticably, any
piece of music could be played using one edge of τ˚ for each instrument.

As in the original hormonica, let us also allow tapping and holding
a complementary ideal triangle to actuate the three tones associated
with the distinguished frets in its three frontier edges, which agree for
the untuned τ˚.

4.2. Tuning the instrument. Start from the untuned τ “ τ˚, and
recursively suppose a tesselation τ of D is displayed whose vertices are
given by the Farey rationals and whose colored edges come equipped
with a net of frets at distance 1

2
expp1

2
q from one another, together

with a distinguished fret denoted ˆ as before. There is moreover the
assignment of a burst or sustained tone to the respective tapping or
holding of a point on any edge in τ , as well as triples of tones of the
distinguished frets in the frontier of a complementary ideal triangle for
tapping or holding any point in an ideal triangle complementary to τ .

Given an edge e P τ , imagine a new type of tap called a pedal-tap, for
instance activated by holding down a foot-pedal while tapping. The
effect of a pedal-tap on e P τ is first of all to perform a flip upon this
edge of τ so as to display the new edge f in the resulting tesselation
τ 1. This edge f P τ 1 also runs between Farey rationals and meets
the Farey decoration at points whose hyperbolic distance δ satisfies
exp δ{2 P Z according to Corollary 2.2, and thus extends to a system of
frets on f between the two horocycles, where the distinguished fret is
the equidistant point between them. (Because of the coefficient one half
in our specification of distance between frets, the midpoint is always a
fret, whether the lambda length is even or odd.)

The frequency associated to tapping f or holding its distinguished
fret is given by 27.5 ξλ, where λ is the lambda length of f for the Farey
decoration, and this tone is sounded as the second effect of a pedal-tap.
A pedal-tap not only retunes τ to τ 1, but also returns a tone based on
the resulting new lambda length, so a series of pedal-taps provides not
only a series of tuned instruments, but also a series of tones.

Another method of tuning τ depends upon the specification of a fixed
torsion-free Γ ă PSL2 of finite index preserving τ . In Γ-equivariant
tuning, the pedal-tap on an edge e P τ flips each edge in the orbit Γpeq
to produce another tesselation, which is again preserved by Γ. Each
edge in Γpeq has the same lambda length, and after a Γ-equivariant
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pedal-tap, the instrument sounds a tone of the resulting corresponding
common frequency as before.

This completes the recursive definition of the plastic hormonica τ
and its tuning.

4.3. Playing the instrument. Having tuned the instrument (per-
haps equivariantly), the plastic hormonica τ is played by tapping or
pedal-tapping (perhaps equivariantly) edges of τ , by tapping or hold-
ing a point of a complementary ideal triangle, or by holding any point
of any edge in τ . A sequence of such actions yields in particular a
sequence of tones, and this is how one plays the instrument. There are
several embodiments of the plastic hormonica depending upon tuning
methods and whether holding is permitted or just tapping.

Minimal Simple Embodiment: The simplest version of the plastic
hormonica is to perform a finite sequence of flips once and for all and
then simply allow tapping of edges and triangles. This is essentially the
original hormonica of [7]. The polygon P in the proof of Lemma 2.3
provides a consecutive sequence of hemitones, which could be colored
black and white to mimic the piano keyboard.

There is already here as well as below a method of general utility for
the automatic play of a tuned plastic hormonica τ . Namely, a given
edge e P τ has among its frets of course the distinguished one, but also
the two frets which lie in the horocycles decorating the endpoints of
e. Given a point q P e X h in such a horocycle h, we can traverse h
with unit hyperbolic distance from q in a suitable unit of time, thereby
meeting a sequence qk “ h X ek of points in h X τ , for edges ek P τ .
The sequence of tones for the lambda lengths of ek, played in this
time signature determined by hyperbolic distance along the horocycle,
provides a kind of arpeggio automatic-play of the instrument from a
specified point of the Farey decoration lying in an edge of τ .

Minimal Equivariant Embodiment: Take any punctured arith-
metic surface F “ D{Γ, so Γ ă PSL2 preserves the Farey tesselation
τ˚. Only sequences of Γ-equivariant tunings, that is, finite sequences of
pedal-taps, are permitted in this embodiment. As explained in [5, 7],
such sequences correspond to paths in the decorated Teichmüller space
of F . (These integral lambda lengths correspond to the “centers of top-
dimensional cells” and flips to “crossing codimension-one faces between
these cells.”)

Moreover, the mapping class ϕ : F Ñ F corresponds to the sequence
of flips from an ideal triangulation τ of F to ϕ´1pτq, hence to a sequence



18 ROBERT PENNER

of Γ-equivariant retunings manifest as a periodic sequence of pedal-taps
with its corresponding melody.

There are endless attendant questions and tasks including:
‚ Play the arpeggio of each puncture in some examples of
equivariant tuning. Play some periodic homeomorphisms
of punctured surfaces. How does a pseudo-Anosov home-
omorphism sound? How do these several sonic tasks be-
have under finite-sheeted covers, possibly branched over the
(missing) punctures as with the punctured solenoid? Which
integrally weighted pentagons occur universally, or equivari-
antly, and how do their pentagon relations sound?
‚ Choose any fixed piece of music and ask for the minimal
genus D{Γ, for Γ ă PSL2 so that the piece could be played
on a Γ-equivariant tuning. The hyperfan piano Example 2.3
shows that any single-voiced tune has finite minimal genus
bounded just in terms of the number of octaves it spans.
Chords are another matter entirely, as has been discussed.
‚ Is there a natural tempering of the plastic hormonica more
sonorous than equal temperament, where the frequency of
an edge perhaps depends not only multiplicatively on its
integral lambda length as with the ordinary hormonica,
but also on the rational Farey labeling of its endpoints?
Could the Minkowski question mark function (which maps
the dyadic tesselation to the Farey tesselation, cf. [7]) play
a role in sonorous tempering?

The two minimal embodiments naturally combine: after a finite se-
quence of possibly Γ-equivariant retunings from τ˚, play the resulting
instrument with tapping in one embodiment and with Γ-equivariant
pedal-tapping as well in another, providing dynamic real-time perhaps
equivariant instrument retuning.

Most Flexible Embodiment: On top of the full tapping and pos-
sibly equivariant pedal-tapping instrument, we finally include holding
points on the edges, to unleash a continuum of sound for each edge.
Tuples of points can be simultaneously held to produce any musical
chord. This embodiment involves full functionality of the frets, now
with arpeggio auto-play also enabled for each oriented edge. This is
the full instrument which seems to have the desired nuanced respon-
siveness for musical expression.
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5. Closing remarks

This overall octave scaling N “ 4 to 27.5 ξλ “ 440 ξλ´12N of fre-
quency from lambda length was unrealistic and metaphorical, where
N or more generally some other lowest reasonably audible frequency
can be adjusted as part of pre-tuning. The distinguished fret illustrates
where some fixed octave of the note for the string is located, which is
useful for holding edges.

In probing moduli spaces and mapping class groups with the minimal
equivariant embodiment, any assignment of frequency to lambda length
will suffice, for instance that of the original hormonica. The frequency
tuning of the plastic hormonica is specified simply in order to mimic
familiar instruments for musical expression.

A natural extension of the plastic hormonica, among others, allows
tapping or holding points of a complementary triangle to activate not
just the single triple of frequencies associated to its frontier edges, but
different modulations and combinations of this triple depending on the
point of contact within the triangle.

One can imagine circumstances where the discrepancies between our
own at least locally Euclidean world and the hyperbolic plane may
make instrument play impractical at the scale of fingers on pictures
on screens. The solution is a renormalization by PSL2 “ PSL2pZq or
PSL2pRq if the scale becomes problematic, perhaps with several simul-
taneous screenshots of different regions at different scales, or better
yet, a multi-scale virtual reality implementation, as long as we are be-
ing speculative.

One might also dream of an implementation of the minimal equi-
variant embodiment on a physical model of a punctured surface, i.e.,
a higher-genus touch-sensitive screen as the boundary of a body in
space, a physical three-dimensional version of the equivariant plastic
hormonica of some fixed topological type. Again in principle, this could
presumably be executed in virtual reality.

At the other extreme, there is a purely physical way to imagine
the plastic hormonica with fixed tuning as a collection of strings in
the hyperbolic plane with endpoints on the horocycles of the Farey
decoration. What is the actual physics of the sounds produced by
plucking these strings in hyperbolic space? Does sound perception
differ in spaces of different curvatures?

Plans are afoot to implement one or another of these embodiments,
or at least listen to some mapping classes. It will surely be fun, and we
can always retreat to the Mathematician’s Last Refuge: this all could
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be a little bit too much, I admit, and if so, I hope you agree that at
least there seem to be some interesting questions.
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