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ABSTRACT. We review and reformulate old and prove new results
about the triad PPSLy(Z) < PPSLy(R) C ppsia(R), which pro-
vides a universal generalization of the classical automorphic triad
PSL2(Z) < PSLy(R) C psl2(R). The leading P or p in the univer-
sal setting stands for piecewise, and the group PPSLy(Z) plays at
once the role of universal modular group, universal mapping class
group, Thompson group T and Ptolemy group. In particular, we
construct and study new framed holographic coordinates on the
universal Teichmiiller space and its symmetry group PPSLy(R),
the group of piecewise PSLy(R) homeomorphisms of the circle with
finitely many pieces, which is dense in the group of orientation-
preserving homeomorphisms of the circle. We produce a new basis
of its Lie algebra ppsly(R) and compute the structure constants
of the Lie bracket in this basis. We define a central extension of
ppsla(R) and compare it with the Weil-Petersson form. Finally,
we construct a PPSLg(Z)-invariant 1-form on the universal Te-
ichmiiller space formally as the Maurer-Cartan form of ppsia(R),
which suggests the full program for developing the theory of au-
tomorphic functions for the universal triad which is analogous, as
much as possible, to the classical triad. In the last section we
discuss the representation theory of the Lie algebra ppsls(R) and
then pursue the universal analogy for the invariant 1-form Fy(z)dz,
which gives rise to the spin 1 representation of psila(R) extended by
the trivial representation. We conjecture that the corresponding
automorphic representation of ppsls(R) yields the bosonic CFTs.
Relaxing the automorphic condition from PSLy(Z) to its commu-
tant allows the increase of the space of 1-forms six-fold additively
in the classical case and twelve-fold multiplicatively in our univer-
sal case. This leads to our ultimate conjecture that we can realize
the Monster CFT5 via the automorphic representation for the uni-
versal triad. This conjecture is also bolstered by the links of both
the universal Teichmiiller and the Monster CFT5 theories to the
three-dimensional quantum gravity.
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INTRODUCTION

The idea of studying a universal Teichmiiller space that contains the
union of images of all classical Teichmiiller spaces goes back to Lipman
Bers [1], who considered the group of all quasisymmetric mappings of
the circle S' to itself modulo the Mébius group PSLy(R).

Further development of the classical Teichmiiller spaces [23] and their
applications to string theory led the second-named author to a new
model [24] of the universal Teichmiiller space based on the group, de-
noted Homeo, (S'), of all orientation-preserving self-homeomorphisms
of St with the compact-open topology modulo the Mébius group. The
problem of providing a parametrization for the new larger model of
universal Teichmiiller space and the corresponding group of homeo-
morphisms of S! was also resolved in [24] by identification of the latter
group with the space Tess’ of all ideal tesselations of the hyperbolic
plane together with a choice of distinguished oriented edge, or simply
doe, that is,

(0.1) Homeo (S') ~ Tess'.

In particular, the identity element in Homeo, (S!) corresponds to a
special tesselation called the Farey tesselation. It is obtained by ap-
plying the modular group PSLy(Z) to the doe running from 0 to 0.
In view of the isomorphism (0.1), one can consider coordinates on
Tess = Tess' /PSLy(R) as a measure of the distortion of a given tesse-
lation from the specified Farey tesselation by so called shearing coor-
dinates associated to every nonoriented edge of the Farey tesselation,
or equivalently to the elements of PSLy(Z)/(Z/2), where the Z/2 sub-
group reverses the orientation of edges. The shearing coordinates can
be realized as logarithms of cross-ratios of certain hyperbolic lengths
and are invariant under the action of the Mobius group. As a result
we obtain an injection

(0.2) Homeo, (S')/PSLy(R) - [] RS,
ec{edges}
where R is a copy of R associated to the edge e.
Two questions arise in relation to the parametrization (0.2): the first is
how to characterize its image, and the second is how to circumvent the

factorization by the Mc6bius group and obtain directly the coordinates
of Homeo, (S') itself. To answer these questions, we introduce new
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holographic coordinates and framings in Sections 2 and 3 the paper.
These new coordinates are actually based upon elaborations of the
shearing coordinates defined on a decorated bundle from [23] over the
universal Teichmiiller space which was central also in [24].

The shearing coordinates as well as our holographic coordinates admit
especially simple transformation under the dense subgroup PPSLy(R) <
Homeo, (S!). This subgroup in its turn contains a discrete subgroup
PPSLy(Z) < PPSLy(R) of piecewise PPSLy(Z) homeomorphisms with
rational breakpoints between pieces. Elements of PPSLy(Z) turn out
automatically to be once-continuously differentiable on the circle. This
pair of groups contains the classical pair PSLy(Z) < PSLy(R), which is
the first hint towards the new extended theory of automorphic forms.

Another discrete group that is indispensable in the Teichmiiller theory
is the mapping class group or Teichmiiller modular group. In our uni-
versal context it is realized by the group of the Farey-type tesselations
which coincide with the Farey tesselation outside of a finite polygon
and known as the Ptolemy group Pt, also introduced in [24].

More precisely, the flip on an edge e in a tesselation is defined by
replacing it by the other diagonal of the quadrilateral complementary
to u(T — {e}) in Dy if e is the doe, then the flip on it is enhanced by
inducing the orientation coming from the counter-clockwise rotation
of e. The Ptolemy group(oid) Pt has objects given by tesselations
with doe of D which coincide with the Farey tesselation outside of
a finite polygon and morphisms given by finite compositions of flips.
Triangulations with doe are combinatorially rigid, and this allows flips
to be labeled by edges of a fixed tesselation, so words in these labels
render Pt in fact a group. Furthermore, PSLy(Z) sits inside Pt as those
tesselations which are identical to the Farey tesselation except perhaps
for the location of the doe.

The remarkable fact of the universal setting is that under the iso-
morphism (0.1), these two discrete subgroups of Homeo, (S!) coincide
PPSLy(Z) ~ Pt. Furthermore, this universal mapping class group is
also isomorphic to the celebrated Thompson group T, so

(0.3) Thompson T ~ PPSLy(Z) ~ Ptolemy Pt.

The rich combinatorial structure of T is studied in [5] and numerous
sequels. In particular, T admits a presentation by means of two gener-
ators and certain relations similar to those of the modular group.

The classical theory of automorphic forms on PSLy(R) involves, besides
the classical modular group PSLy(Z), also the large class of discrete
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subgroups I' € PSLy(R) commensurable with the modular group. In
our universal setting, one considers a similar class of infinite discrete
groups PI" associated to such subgroups I' € PSLy(R). By definition,
PT is the subgroup of Homeo, (S') consisting of piecewise I' homeo-
morphisms with finitely many rational breakpoints. To study these
groups, one can consider again the paving, i.e., decomposition into
finite-sided congruent ideal polygons, determined by the action of I' on
the doe from 0 to oo. In Section 1, we consider the special case when
[' = PSLy(Z)" is the commutant of the modular group. We also review
the results of [19] about the class of finitely generated such groups PT,
which turn out to be precisely the groups of genus zero. This is a hint
towards Monstrous Moonshine, and we conclude Section 1 with the
problem of characterizing those I' € PSLy(Z) that occur in Monstrous
Moonshine in these terms.

In the classical theory of automorphic functions, besides the pair of
groups PSLy(Z) < PSLy(R), the Lie algebra psly = psla(R) plays a
pivotal role; we employ this notation psls in the current discussion in-
stead of the more standard notation sly = sly(R) simply to emphasize
the relationship with the associated Lie group. To develop the uni-
versal counterpart of the classical theory, one requires a suitable Lie
algebra for the topological group Homeo, (S!). It has been argued in
[20] that this infinite-dimensional counterpart is precisely the algebra
of piecewise sly vector fields on the circle with finitely many pieces and
rational breakpoints between them. This Lie algebra was denoted psis,
where the where the p stood for piecewise. In the present paper, this Lie
algebra will be denoted ppsly = ppsls(R) to emphasize its relationship
with the group PPSLy(R). In Sections 4 and 5, we continue the study
of this Lie algebra ppsly. In particular following [20], we find a basis
parametrized by the edges of the Farey tesselation, or equivalently by
PSLy(Z)/(Z/2), and explicitly derive the commutation relations in this
basis. In the next Section 6, we define the central extension of the Lie
algebra ppsls viewed as a loop algebra and compare it with the central
extension given by the universal Weil-Petersson 2-form first studied in
[24], which naturally extends the classical Weil-Petersson Kéahler form
computed in [25].

All three structures of our universal triad
(0.4) PPSLy(Z) < PPSLy(R) C ppsla(R)

are combined in our construction of an automorphic 1-form on the
universal Teichmiiller space in Section 7. This construction is one of the
main results of the paper, and it is the first step towards our program
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of developing the theory of automorphic forms for the triad (0.4). Since
PPSLy(R) allows for irrational breakpoints, the triad (0.4) should more
properly be written PPSLy(R) 2 PPSLy(Z) C ppsl2(R). One might
simply restrict to rational breakpoints for PPSLy(R) as well in order
to ensure (0.4), but let us not dwell on this perhaps interesting detail.

Though the proposed new theory is expected to be of a higher level of
complexity than the usual theory for the classical triad

one can pursue the analogy with the classical case whenever possible.
In particular, we argue that our automorphic 1-form on the universal
Teichmiiller space has its classical counterpart in the 1-form Fs(z)dz on
the hyperbolic plane, the universal cover of the classical modular curve,
where Es(z) is the non-holomorphic weight two covariant Eisenstein
series.

In Appendix B, we study its lift to an automorphic function on PSLy(R)
and show that the resulting lift generates an indecomposable represen-
tation of psly(R) with a one-dimesional sub-representation. This in-
decomposable representation together with its conjugate, and common
one-dimensional representation, can be characterized as the harmonic
subspace of automorphic functions, i.e., it is annihilated by the Laplace
operator. Though the realization of the holomorphic and antiholomor-
phic discrete series of weights 4,6, 8, ... by the automorphic functions
is well known, the case of weight 2 has not appeared in the literature to
the best of our knowledge. Yet it is exactly an analogue of this special
automorphic form which arises in our construction of a PPSLy(Z)-

invariant 1-form on universal Teichmiiller space in the formal guise of
the Maurer-Cartan form of PPSLy(R).

Our example of this universal automorphic form opens a new program
of research in this subject for the triad (0.4), as discussed in Section
8. One of the first challenges is to find an analogue of the indecompos-
able representation generated by the lift of the 1-form Ey(z)dz in our
universal setting. Our conjecture explained in Section 8 is that this is
the infinite symmetric power S®V of the bosonic space that appears
in the classical theory, so that S*V is the free bosonic field and is one
of the simplest CFTj.

The theory of automorphic forms instantly enlarges various spaces
by relaxing the the automorphic property to smaller discrete groups.
Thus, the passage from PSLy(Z) to its commutant PSLy(Z)" of index
six increases the space V' additively 6-fold. Similarly, we expect that
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replacing PPSLy(Z) by PPSLy(Z)" will yield a correspondingly multi-
plicative increase of S®V. Thus, we expect that this mechanism will
allow the construction of the Monstrous CFT, of [12], and in other
words capture the Monster as in the title of this paper.

In fact at the end of Section 8, we explain this from the other end of
the theory by recalling that Monstrous Moonshine allows one to at-
tach a genus zero subgroup I' € PSLy(R) to every conjugacy class of
the Monster group. Then one can construct as above a I'-invariant
1-form EY(2)dz, where EL(2) is again the non-holomorphic weight two
covariant Eisenstein series. This can be lifted to a representation V1
of PSLy(R) isomorphic to V' but realized by a different space of auto-
morphic functions. Then the universal analogue is conjectured to yield
a twisted Monster representation A as in in [10], and the comparison
of A and A! should reveal the Monster in the universal automorphic
realization. It will be interesting to see the correspondence between
the Thompson-like groups PI' € PPSL,(R) introduced in Section 1
and the Monster Moonshine groups I' € PSLy(R), both of which are
genus zero and satisfy certain additional properties [6, 7]

Our conjecture on the relationship between automorphic forms on the
universal Teichmiiller space and the Monster CFT, is strongly sup-
ported by the links of both subjects to yet another: three-dimensional
quantum gravity. In fact, the link with universal Teichmiiller theory
has a long history in the physics literature going back to [33]. More
recently, a rigorous definition of the universal phase space of AdS3 grav-
ity was given in [29], and it was proven there that it can be identified
with the cotangent bundle over the universal Teichmiiller space in its
Bers formulation. Thus, one could expect that the space of states of
AdS;3 quantum gravity can be realized in some class of functions on
the universal Teichmiiller space. However, it was also understood in
the physics literature that the Bers version of universal Teichmiiller
space must be enlarged to account for all states related to black holes.
Indeed, such enlargement was an original motivation for [24].

It was argued in [35] that the general philosophy of AdS;/CFT, corre-
spondence suggests that the space of states of the simplest pure quan-
tum gravity is precisely the Monster CFTy constructed in [12]. This
correspondence was further supported by the explanation of Monstrous
Moonshine, and in particular by the mysterious genus zero property,
from the point of view of twisted state sums of three-dimensional quan-
tum gravity [10]. However in spite of all these tantalizing observations,
a rigorous mathematical theory of three-dimensional quantum gravity
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is still missing. Thus, we believe that the development of the theory of
universal automorphic representations can help to build a Monstertrap
for all the Moonshine and at the same time help us to understand the
true nature of three-dimesional quantum gravity.

1. FAREY TESSELATION AND MODULAR GROUP

Let Z < Q € R < C denote the integers, rational, real and complex
numbers, respectively, with Z € Q € R < C denoting their respective
one-point compactifications by the point oo at infinity. Set ¢ = v/—1.

The open unit disk D in the complex plane C is identified with the
Poincaré disk model of the hyperbolic plane in the standard way, where
the boundary unit circle S! is identified with the circle at infinity. Also
consider the upper half-plane Y = {z = xz +iy € C : y > 0}. The
Cayley transform

C: (U,R) - (D,SY

S —1

S —>

s+

induces an isomorphism of pairs.

Figure 1. The first several generations of the Farey tesselation 7,
of the Poincaré disk D with its distinguished oriented edge.

Let t denote the ideal hyperbolic triangle with vertices +1, —i € S! as
in Figure 1, and consider the group R generated by reflections in the
sides of t. Define the Farey tesselation T, to be the full R-orbit of the
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frontier of t. 7, has a distinguished oriented edge given by the interval
from —1 to +1. A direct Euclidean construction of 7, with a discussion
of its history and number theoretic significance is given in [26, §3.1].

More generally, an arbitrary tesselation of D is a locally finite collection
7 of hyperbolic geodesics decomposing D into complementary ideal
triangles. Geodesics in 7 are called its edges, and 7 itself is regarded
as a set of edges. Let 7 denote the set of all oriented edges of T,
and if e € 7, then let |e| € 7 denote the unoriented edge underlying
e. A distinguished oriented edge or doe on T is the specification of an
element e € 7. Let 70 = S! denote the set of all vertices of 7, namely,
the collection of all endpoints of all edges in 7.

As is well-known, (@ ~ 70 under the Cayley transform, namely,

p—iqg _p*—q¢® . 2pq |
O = T e gt
as indicated in Figure 1, and we shall refer to these points as the
rational points of S!. We abuse notation slightly and sometimes let
Le Q denote the point C(p/q) € S'. Le Q is said to be of generation
g if the radial arc in D from the origin to § meets the interior of g > 0
distinct ideal triangles complementary to 7,. The standard doe of 7,
runs between the two rational points of generation zero, from % to %.

Another canonical tesselation of D with doe is the dyadic tesselation 4,
which has the same doe as the Farey tesselation, and indeed the same
generation one vertices as well, and which is recursively characterized
by the property that one vertex of each triangle complementary to
T4 bisects the angle between its other two vertices. Thus, one has
79 = {e¥"(=F) . k e Z}, the points in the circle with dyadic rational
arguments. In contrast, 70 consists of points in the circle with rational
rectilinear coordinates.

The modular group
PSLy; = PSLe(Z) <€ R

of integral fractional linear transformations is the subgroup of R con-
sisting of compositions of an even number of reflections, or in other
words, the group of two-by-two integral matrices A of unit determi-
nant modulo the equivalence relation generated by identifying A with
—A. More generally, the Mdbius group

Méb = PSLy(R) 2 PSL,
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consists of the two-by-two unimodular matrices over R modulo the
same equivalence relation. Mob is the group of orientation-preserving
hyperbolic isometries of D.

In particular, A = (%) € PSL, acts on the right (here following Gauss)
on the rational points by

d —qb
A2 P
q qa — pc
so the edge e4 = (doe).A has initial point —2 = 2% and terminal
point —%l = %.

The Thompson group T is the collection of all orientation-preserving
piecewise homeomorphisms of S* with finitely many breakpoints among
7 which are affine in the coordinate 6 on each piece. Recall from the
Introduction the group PPSLy(Z) of all piecewise PSLy(Z) homeomor-
phisms of S! with finitely many breakpoints among the Farey rationals
79. In fact, the Thompson group T is conjugate in Homeo(S'), to
PPSLy(Z), where the conjugating homeomorphism fixes the endpoints
of the doe and maps the Farey tesselation to the dyadic tesselation of D
in the natural way; this conjugating homeomorphism was first studied

by Minkowski in [21] for its remarkable analytic properties.

Here are two standard propositions which are the starting points of our
discussion:

Proposition 1.1. The modular group PSLs leaves setwise invariant
the Farey tesselation T,, mapping UT, onto UT.. Any orientation-
preserving homeomorphism of the circle leaving invariant T, in this
manner lies in PSLy. The modular group acts simply transitively on
Te. A fundamental domain for the action of the modular group on U is
given by {x +iyeU : 2* + y* > 1 and |z| < 1}. O

Proposition 1.2. A generating set for PSLy is given by any pair of

0 —1 0 —1 11 10
R=(] 1) 5=(; 0)’T:(0 ) U=01 1),

and S? = 1 = R® is a complete set of relations in the generators
R=T7'U and S = TU'T, so PSLy ~ Z/2+7/3. In fact, T~' = R*S
and U = SR? are each of infinite order and are conjugate in PSLy. [

Complete relations in the generators U and T are given by T-1UT~! =
TU T = UT'U = U~'TU !, with these so-called braiding relations
reflecting the fact that PSL, is also the mapping class group of the
once-punctured torus with U and T representing Dehn twists.
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Geometrically, the elliptic element S setwise fixes |e7| and reverses the
orientation of the doe ey, R is the elliptic transformation cyclically
permuting the vertices of the triangle to the right of the doe, and U
(respectively T) is the parabolic transformation with the fixed point %
(respectively §) which cyclically permutes the incident edges of 7, in
the counter-clockwise sense about % (respectively the clockwise sense
about %) Typical aspects of our enumeration of oriented edges by
elements of PSL, are illustrated in Figure 2.

SUA=T"SA4

Figure 2. Enumeration of oriented edges near |e| € 7.

We turn our attention now to the commutant PSL, of PSLy, namely,
the subgroup of PSLy generated by the group commutators aba™1b1,
for a,b € PSLy,. As follows immediately from Proposition 1.2, the
quotient PSLy/PSL), ~ Z/6.

Proposition 1.3. Consider an element of PSLy written as a word
W =W(U,T) in the generators U andT. Then the coset of the element
W in PSLy/PSL;, is given by the residue modulo six of the total exponent
sum of W in the letters U and T~ 1.

Proof. Each of U and T~! is infinite order and maps to the generator
of Z/6 ~ PSLy/PSLj. Since U and T~! are conjugate in PSLs, the
word W may be written as a product of conjugates of U, which thus
abelianizes to the exponent sum of U in this expression of W times the
generator of Z/6. O

Corollary 1.4. Fix any triangle complementary to T, and consider
the sixz possible orientations on its frontier edges. The labels in PSLsy of
these six oriented edges span the six commutant cosets. Furthermore,
PSLY, corresponds to the collection C < 7y of oriented edges determined
by the following conditions: the doe lies in C; suppose an oriented edge
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e € 7 lying in C has ideal endpoint v € S, then every third edge of T
incident on v also lies in C with alternating orientations around v.

Proof. For the first part, consideration of Figure 2 shows that for the
triangle to the right of the doe, we must show that the PSL)-cosets
of I,S,US, T7t = T-1, TS, U are distinct. These have respective
expressions in U, T given by I, UT-'U, U*T'U, T!, TUT U, U}
with respective total exponent sums in U and 7! given by 0, 3,4, 1, 2,
—1 = 5. The general case follows upon conjugation.

For the second part, we likewise argue for the doe with the general
result then following by conjugation. For the doe we must prove that
SU* SU*? ¢ C and SU*? € C (since obviously U, U*% ¢ C) and
likewise for T instead of U. To this end, we write SU = UT'U?,
SU =0T, SU? =UT U3, SU2 =UT U, SU3 =UT- U
and SU™3 = UT~1U~? with respective total exponent sums in U and
T—1 given by 4,2,5,—1,6 = 0,0 as required. O

The theory of the Ptolemy-Thompson group can be compared in rich-
ness only with the modular group. It is natural to ask what is the wider
class of similar groups that have similar properties as PPSLy(Z). In
the case of the modular group, such a class is embodied into so-called
arithmetic groups, namely, subgroups of PSLy(R) which are commen-
surable with PSLy(Z). They have an important common property with
the modular group: their ideal compactification points in D/T" are again

Q. Thus, the piecewise I' subgroups of PPSLy(R), denoted by PT, for
[ arithmetic, might serve as a natural generalization of PPSLy(Z).

The first question one might ask about these groups PI' is when they
are finitely generated. The answer is contained in the dissertation
of Laget [19]: if and only if ' is of genus zero. But this is a hint
towards a possible connection with Monstrous Moonshine, where the
genus zero property also plays a key role. The groups I' that appear
in Monstrous Moonshine also have the width 1 property, namely the
Farey-type tesselation or paving obtained by the action of I on the
edge (0,00) in D is 1-periodic.

These three conditions on I' of arithmeticity, genus zero property and
width 1 restrict the number of possible I' to the large but finite number
6486 according to [8]. On the other hand, there are 194 conjugacy
classes in the Monster, which give rise to groups I' with the same
three properties as above, with some identifications that reduce the
number of groups I' involved in Monster Moonshine to 171 [6]. The
problem that we want to address in this conclusion to the section is:
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How to characterize the Monster Moonshine I' among arithmetic, genus
0, width 1 groups from the properties of the piecewise I' groups PT.

So the Monster began to show up already in Thompson-like groups.
But to capture it, we shall need other aspects of our universal auto-
morphic triad: The universal Teichmiiller space and the corresponding
Lie algebra which we shall review and study in the next sections.

2. FRAMED HOLOGRAPHIC COORDINATES

We shall regard ppsl, as an appropriate limit of copies of sly, one copy at
each Farey rational point in S'. To take the limit, we require suitable
coordinates on ideal polygons in which to calculate representations,
and this section is dedicated to this end. Let us begin with the basic
“lambda length” coordinates (sometimes called Penner coordinates)
which we recall from [23, 26].

A decorated ideal n-gon is an ideal polygon of n sides in hyperbolic
space together with n horocycles, one centered at each of its ideal
vertices. One such coordinate is associated to each of the 2n — 3 edges
in an ideal triangulation of the n-gon including its frontier edges. As
in the Introduction, there is a basic move, called a flip, on the interior
edge of such a triangulation, where one removes the edge so as to
produce a complimentary ideal quadrilateral and then replaces it with
the other diagonal of this quadrilateral to finally produce another ideal
triangulation.

Theorem 2.1. Fiz some n > 3 and consider a decorated ideal n-gon
P in D. Suppose that the frontier edges of P are labeled and choose an
ideal triangulation A of P. Then the moduli space of such decorated
polygons up to the natural action of Mob is given by the assignment
of one real lambda length A\ = \/expl to each unoriented edge e € A,
where € is the signed hyperbolic distance along e between the horocycles
centered at its endpoints, taken with a positive sign if and only if these
horocycles are disjoint. Moreover, the lambda lengths are governed by
the Ptolemy equation

ef =ac+bd
whenever [ arises from a flip on e in the quadrilateral bounded by

a, b, c,d in this counter-clockwise cyclic order, here identifying an edge
with its lambda length for convenience. ]
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Beyond the lambda lengths, other basic coordinates are the h-lengths
assigned to any ideal vertex v of a decorated polygon P by taking
the hyperbolic distance along the horocycle centered at v between the
incident frontier edges of P. A fundamental formula illustrated in
Figure 3 relates lambda lengths and h-lengths in a triangle, where A;\_/\k
is the h-length opposite the edge \;, for {i,j,k} = {0,1,2}, and we
here and hereafter again often conflate an edge with its lambda length
for convenience. It follows that the product of h-lengths of consecutive
vertices is the reciprocal square of the lambda length of the edge they

span, i.e., (A;\j\k) (A/\/J\k) = )\_1,% , so either the triple of lambda lengths

i, for 1 = 0,1,2 or the triple of h-lengths /\_A;\k, for {i,7,k} = {0, 1,2},
give coordinates on the moduli space of Mob-orbits of decorated ideal

triangles by the previous result.

Figure 3. Three horocycles h; whose centers span a dec-
orated ideal triangle with opposite lambda lengths A; and
adjacent h-lengths )\j‘;\k for {i,j,k} = {0,1,2}.

Corollary 2.2. [Holographic parameters on a decorated polygon]: For
anyn = 3, the moduli space of decorated ideal n-gons P up to the action
of Mob is parametrized by the assignment of the lambda length of each
frontier edge together with the assignment of the h-length of each vertex
of P. These parameters are constrained by three rational equations.

Proof. The proof is by induction on n, and the basis step n = 3 was
just discussed. For the induction, choose consecutive edges a,b of P
with intermediate vertex w, let T" be the triangular convex hull of {a, b},
«, B the respective h-lengths in T" opposite the endpoints of a, b distinct
from w, and let 7 denote the h-length at w of 7. Consider also the
h-lengths o/, 5" of the same vertices but in P rather than 7.
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Now consider the closure @) of the complement of 7" in P. Thus @ is
an ideal (n — 1)-gon which inherits all the moduli of P except that the
respective h-lengths in @) at v and v are taken to be o/ — a and ' — (.
The inductive hypothesis therefore applies to () with these parameters,
and hence also to P with parameters o/, 8’ at u, v. Notice the constraint
that af equals the reciprocal square of the lambda length of T'n Q.
This constraint in T" accounts for dimension reduction to confirm that
the three rational constraints in () persist in P. O

The significance of this parametrization arises upon consideration of
the Ptolemy groupoid Pt(P) of an ideal polygon P whose objects are
the ideal triangulations of P with interior doe, and whose morphisms
are the flips along interior edges, where the flip on the doe e induces an
orientation on the resulting edge and is of order four, whereas the flip
on any other edge is of order two; these are the face relations. The flips
on any two edges which do not lie in the frontier of a common triangle
commute, and these are the commutativity relations. The pentagon
relations arise from the serial sequence of flips alternating between two
edges lying in the frontier of a common triangle, which has order five,
unless one of these edges is the doe, in which case the order is ten. See
23, 24, 26| for further details.

According to Proposition 4.5 in [24] and remarks in [23, 24|, we have

Theorem 2.3. Finite sequences of flips supported on the interior of an
ideal polygon P act transitively on the collection of all its triangulations
with interior doe. It follows that flips generate Pt(P). Furthermore,
a complete set of relations are given by the face, commutativity and
pentagon relations. ]

So here finally is the significance of the holographic parameters: Tak-
ing the quotient by flips evidently renders meaningless the notion of
lambda lengths of interior edges, these edges being precisely the data
are obliterated. However, the lambda lengths of its frontier edges and
the h-lengths of its vertices survive flips on interior edges to give pa-
rameters on the quotient. This explains our mechanism of holography.

We must go a bit further still in order to derive useful coordinates. An
ordered triple of pairwise distinct points in the circle is a member of
the configuration space

Cs = {(u,v,w) € (S')® : u,v,w are pairwise distinct},

on which Mob acts simply transitively according to Proposition 1.1. A
framing on an ideal polygon is the specification of an arbitrary element
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of '3, whose members need not be among the vertices of the polygon.
A framed ideal polygon does not necessarily contain any doe, though
an interior doe in a triangulation evidently determines an associated
framing given by the respective initial and terminal points of the doe
followed by the third vertex of the triangle immediately to the right of
the doe.

An ordered triple (u,v,w) € Cs uniquely determines a unit tangent
vector in D as follows. There is a unique geodesic g asymptotic to u
and v, and the orthogonal projection of w onto g provides a point p € .
The unit tangent vector to g at p, where g is oriented with w on its
right, finally provides the asserted unit vector associated to (u,v,w). In
these coordinates on the unit tangent bundle to D, the almost complex
structure is furthermore conveniently described by (u, v, w) — (w, x,v),
where S' 3 2 # w is the endpoint of the geodesic through p which is
asymptotic to w.

Remark 2.4. The term “framing” is motivated by instantons, where
the incorporation of framing dramatically simplifies the formulas and
accounts for the gauge group, cf. [3]. The same phenomena occur
here: the framing kills both the Mob action and the three relations on
holographic parameters in order to produce finally useful coordinates.

To explain the utility of the new coordinates, let us consider lambda
and h-lengths in the upper half space model U. A decorated ideal n-
gon P is uniquely determined by a collection of pairwise disjoint points
s; e R =Ru {oo}, for i = 1,--- n, together with a collection of
Euclidean diameters 9; of corresponding horocycles and perhaps the
y-coordinate d, of a horocycle about co. Evidently these are actually
coordinates, not just parameters, as they satisfy no relations other than
pairwise inequality among the {s;}}.

The collection of pairs (s;,0;), for i = 1,...,n, are called framed holo-
graphic coordinates on the space of all decorated ideal polygons, and
these are our desired coordinates. To explain the relationship with
framed polygons, take a fixed copy of D and choose a fixed Cayley
map C~!: D — U. Thus, given a Mob-orbit of decorated ideal poly-
gon in D with framing (u,v,w) € Cj, there is a well-defined deco-
rated ideal polygon in U gotten by post-composing C' with the unique
Mobius transformation mapping C~*(u), C~*(v), C~!(w) to the respec-

: : 011
tive ponts 7,5, 1

We have proved
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Theorem 2.5. The moduli space of all framed decorated ideal n-gons
modulo the action of Mob is given by the pairwise distinct n-tuples {s;}}
of centers of horocycles in R with Euclidean diameters {8;}7 called the
framed holographic coordinates {(s;,0;) : 1 < i < n}. The action of
A = (2%) € Mob on these coordinates is the usual Tight fractional

linear action s; — _dcss—;fa on the {s;}}, while the {6;}} scale by the
derivative of A at s, so 0; — (a_‘sTZ)Q ) O

Proof. The only point requiring clarification is the transformation law
for § coordinates, which follows from the fact [23, 26] that Euclidean
diameters of horocycles scale by the derivative under a Mdbius trans-
formation. U

Remark 2.6. It is unsurprising that our framed holographic coordi-
nates are reminiscent of the dihedral coordinates of [4] since the latter,
which pertain only to the case of planar surfaces, are effectively related
to the antecedent lambda lengths from [23] for any punctured surface,
which are elaborated in the new coordinates.

Turning finally to stabilization given a framing F = (u,v,w) € Cs,
define the matrix

1 - _
Ly— v(u—w) ulw—v) € SLL(R),
(w—v)(u—w)(v—u) \ v—-w w—v
which maps (u,v,w) — (%, %, %) under the right action, and given a

second framing F, define

LE=LrolL; — <“§ ”?) € SLy(R).

F F
cr dF

Now, given holographic coordinates {(s;, d;)}} with framing F = (u, v, w)

and given (s,0) with s ¢ {s;}}], there is a unique i* € {1,...,n} with
S < 8§ < §xqq. For g =1,...,n+ 1, define
(Sja(sj)v 1f]<2*7
(55,05) = 4 (5,9, if j =i* + 1;

(SjJrla 6j+1)7 if .] > 7;*7

and given a framing F = (i, 7, w) on {(5;,9;)}7"", finally let

fork=1,...,n+ 1.
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Corollary 2.7. In the notation above, the mapping

{(si: 011 = {(s}, )1
describes the stablization of framed holographic coordinates. In particu-
lar, if the framing (u,v,w) = (u,v,w) is constant, then the stablization
15 given by inclusion and re-indexing. ]

Remark 2.8. Furthermore according to [23, 26], the lambda length
between (s, ) and (s, 0') for 5,8 # oo is given by (68')"z|s — /| and
between (s,8) and (90,484) is given by (8,,/8)2. On the level of the
holographic parameters in Proposition 2.2 and in the foregoing nota-
tion, let ¢ denote the lambda length of the edge between s;x and s;x 1,
and let h;x and h;x,; denote the respective nearby h-lengths. If a,b
denote the respective lambda lengths of the decorated edges between s
and s;x, S;x 41, then after stabilization, the h-lengths at s;x, s and s;%41

are respectively given by s + &, = and hp g + 1

3. FRAMED AND DECORATED HOMEMORPHISMS OF S!

Having developed framings on polygons as an alternative to the speci-
fication of a doe in the previous section, let us revisit from this framed
point of view a basic result, Theorem 2.3 of [24], whose proof we first
recall.

Theorem 3.1. The space
Tess' = {tesselations of D with doe}

with topology induced by the Hausdorff topology on uT < D is naturally
homeomorphic to the space

Homeo, ~ Tess'

with the compact-open topology.

Proof. Given f € Homeo, , the image 7 = f(7,) of the Farey tesselation
is another tesselation of D, and the canonical doe e; € 7, maps to the
doe e = f(er) of 7/ = (7,€) € Tess' by definition. For the inverse map
given a tesselation 7/ = (7,e) with doe e € 7, begin by mapping the
respective initial and terminal points of e; to the initial and terminal
points of e. Continue by mapping the further points in 7¥ of the respec-
tive triangles containing |e;| complementary to 7, to the left and right
of e; in 7, to those to the left and right of e in 7. Proceed in this way, es-
sentially relying on the combinatorial rigidity of a tesselation with doe,
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in order to define f°: 7% — 7% an order-preserving injection between

dense subsets by construction. Using that a tesselation is locally-finite
in D by definition, f° is seen to be a surjection as well, which thus
interpolates a homeomorphism f,» € Homeo, called the characteristic
map of 7. That the bijective assignment 7" <> f./ is bicontinuous for
the stated topologies is clear, completing the proof. O

A framing on a tesselation T of D is the specification of an element of
the configuration space Cy of distinct triples in S', whose members are
not required to lie in 7°, where the framed version of the basic result is

Corollary 3.2. The space
Tess! = {tesselations of D}

is naturally homeomorphic to Tess' ~ Homeo, .

Proof. As before for polygons, a doe e for 7 determines an associated
framing, and this gives an inclusion Tess’ © Tess’. Conversely given
a framing (u, v, w) on the tesselation 7, choose a doe e; on T with asso-
ciated framing (u1,v,wy), let Ly = L't € Mob as in the previous
section, and define

(T, u,v,w,e1) = Ly o fu(r) € Tess'
with its doe induced from e; on 7.

We claim that 71 = 7/(7,u, v, w, e7) is independent of the choice of doe
e; and to this end choose another doe e; on 7 with associated framing
(ug, V2, wa), let 7 = 7'(7,u,v,w,e3) and Ly = Ly%?2"2. The compo-
sition (Ly"' o fry)™' o (Ly' o fr) lies in PSLy by Lemma 1.1 since it
leaves 7, invariant, and in fact, it must be the identity since it further-
more pointwise fixes u, v, w. It follows that 7{ and 75 have the same

characteristic maps, and hence 7| = 73 as tesselations with doe.

The assignment (7, u,v,w) — Lo Jr 1s thus a well-defined inverse to

the inclusion Tess’ < Tess! induced by associated framings, which is
thus a homeomorphism as required. U

Let us emphasize that framings thus replace distinguished oriented
edges in all regards: from determining global affine coordinates in this
section, to the identification of Tess’ ~ Tess with Homeo., to the
isomorphisms Pt ~ T ~ PPSLy(Z) as well as their actions on tessela-
tions.

It is straight-forward to describe the group structure on Tess’ induced
by composition of homeomorphisms in Homeo, but difficult to visualize
on the level of tesselations, except in special cases.
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Proposition 3.3. Consider framings Fx on the Farey tesselation T,
associated to does ex for X e PSLy. Then

(T*;-FA) © (7'*7-7:3) = (T*afBA)u
with the analogous statement holding for any tesselation. O

Next we introduce decorated versions of the foregoing spaces and begin
by defining

—_—

Tess! = {decorated and framed tesselations of D},

where a decoration on a tesselation 7 is the specification of one horocy-
cle centered at each point of 7°, so there is a natural forgetful mapping

to Tess! — Tess’, whose fiber can be identified with R¥.

Taking the quotient by the Mob-action on framings, we have

'Tessf/M(')'b ~ Tess" = {tesselations 7: 9,11 € 7},

’Tessf/Méb ~ Tess" = {decorated tesselations 7: 9,11 79

where the superscript n stands for normalized. Notice that the Farey
tesselation 7, is itself already normalized.
As for the analogous elaboration of circle homemorphisms, first define
spaces

Homeo”! = {f € Homeo, : f(t) =t fort = 2,11}

of normalized homeomorphisms, so Tess” ~ Homeo! as Homeo -
spaces. Next define the decorated version

—_—

Hgm\egﬁ —{(f,f): fe Homeo!; covered by f:Tess™ — Tess"}

with the natural group structure, making ( 1, f) — f a group homo-
morphism Hgm\e&}r — Homeo!;. There is analogously an isomorphism
ngr\le_:ﬁ ~ Tess" of ngzég’}r—spaces, where (identity,identity) corre-
sponds to the Farey tesselation with its canonical decoration 7, namely,

the one determined by the condition that the horocycles at endpoints
of any common geodesic are taken to be osculating.

This leads to the commutative cube
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—_——

Tess’ = » Homeo,.

I N

Tess! = » Homeo,

|

Tess" > Homeo’y

. N

Tess" = » Homeo!}

~

where H/om\e(/xr is defined by pull-back, the vertical maps are principal
M ob-bundles, and the maps out of the plane of the page are R“-bundles.

Theorem 3.4. Lambda lengths on edges of . give global affine co-
ordinates on Tess" R™. Indeed, there is an explicit construction
of a Mob-orbit of tesselations of D with doe from the assignment of a
putative lambda length to each edge of Ty. |

The proof of this result as Theorem 3.1 in [24] provides the explicit
recursive construction of a Mob-orbit of decorated tesselations of I
with doe from the assignment of a putative lambda length to each
edge of 7y, in analogy to the proof of Theorem 2.1. The canonical
de/ggrgtion Ty ON Ty, Or in other words the identity element of the group
Homeo!;, corresponds to taking all these lambda length coordinates
equal to unity. In the classical setting of a suitably decorated punctured
surface of finite topological type uniformized by a torsion free subgroup
of finite-index in PSLsy, or a so-called punctured arithmetic surface,
the classical lambda length coordinates on decorated Teichrgii\ll_e/r space
from [23] are likewise all unity, so this identity element in Homeo', may
be regarded as the universal punctured arithmetic surface.

Remark 3.5. It is not difficult to descend these lambda length coor-
dinates on the bottom-back of the previous commutative cube to its
bottom-front by assigning cross ratios i3, or shear coordinates Ings,
instead of lambda lengths e to each edge, where e is the diagonal of the

quadrilateral with frontier edges a,b, ¢, d in this cyclic order; see [24].

We next discuss framed tesselations as limits of framed polygons. To
this end, notice that there is the natural linear ordering on Q arising
from the lexicographic ordering on pairs given by Farey generation
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followed by the counter-clockwise order in S! starting from %, and there

is thus an induced bijective enumeration Z-q — Q.

Remark 3.6. This is the raison d’étre for the Farey construction. In-
deed, the mineralogist Farey published without proof this solution to
the long-standing open problem of producing an explicit bijective enu-
meration of the rational numbers, and the proof was essentially imme-
diately supplied by Cauchy.

Construction 3.7. Suppose that S < S' is a countable dense sub-
set enumerated by the bijection u : Z>q — S. Construct a function
fu: Q — S as follows. For the basis step of our recursive construction,
define f,(9) = p(0) and f,(3) = (1) € S'. Recursively suppose that
the images of the Farey points of generation at most g = 0 have been de-
fined. This collection of image points decomposes S' into 29*! open cir-
cular intervals. Each such interval with endpoints = f,( ’5’), y = fu(%)

contains a point z € S of least index ;1 ~'(2), and we define fu(z%) =z
in this case, thereby extending the function f, to generation g +1. We
furthermore derive a collection 7, = {f,.(e) : e € 7.} of geodesics with
doe f,(er), where f,(e) denotes the geodesic in D with endpoints the

fu-image of the endpoints of e € 7,.

Suppose that p : Z-og — S is a bijective enumeration of a countable
dense subset S = S'. A circular interval / < S! with endpoints z,y € S
is said to be solid provided p~'(z) > max{u~t(z), " (y)} for every z
in the interior of I. The enumeration u is said to be convergent if every
infinite proper nested family Iy 2 I; 2 --- of solid open intervals is
disjoint from S, that is, S N (\,50I; = &.

For any e € 7, other than the doe, exactly one of the circular intervals in
S! complementary to its endpoints is solid, and the Farey enumeration
of Q is convergent by definition of the Farey ordering. We may always
assume that an enumeration of a countable dense subset is indexed by
the Farey tesselation in its canonical linear ordering.

Proposition 3.8. For any convergent bijective enumeration Q-5
of a countable dense subset S = S, Construction 3.7 yields a bijection
fu Q — S and a tesselation T, = [u(7) with doe. Conversely, if
fu s Q > Sisa bijection, then 7, is a tesselation, and p must be
convergent.

Proof. Suppose that p is convergent and z € S. For g > 0, let I,

denote the component of S'—{ f,,(z) : 2 € Q is of generation at most g}
which contains z. It follows that Iy 2 I; 2 --- is a nested family
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of solid intervals. This sequence must terminate, for otherwise z €
SN mg>0 I, # & contradicts convergence of p. Thus, f, maps onto S
and is injective by construction, and so is a bijection.

To see that 7, = f,(7.) is locally finite, suppose in order to derive a
contradiction that a sequence of points in e; = f,(e}), for ¢ > 1 and
e; € T, accumulates at some point in D. It follows that e; limits to
some geodesic ey, in . Since the {e;} are pairwise disjoint in D by
construction, we may assume that they all lie on one side of e,,. By
density of S in S!, there is some z € S on the other side of e, and
it lies in the f,-image of some generation g point of Q by the already
established surjectivity. Taking a further subsequence if necessary, the
complementary intervals to the endpoints of e; that contains z are
solid. The generation of these endpoints is therefore bounded above by
g, so that {e;} is a finite set, as required. The same argument shows
that each component of D — U7, is an ideal triangle, so 7, is indeed a
tesselation.

Conversely, suppose that f, : Q — S < S' is surjective and z €
Sn) =1 I; for some nested sequence Iy 2 I; 2 --- of solid intervals
with endpoints in S. The point z € S must a fortiori have some fixed
generation, which bounds above the generations of the endpoints of
the intervals. Since there are only finitely many points of any given
generation, the sequence must terminate, as required. U

It is an easy matter now to stabilize nested, decorated and framed ideal
polygons:

Theorem 3.9. Consider a nested sequence
PhcPc--CPCPyC

of ideal polygons with a common framing F € Cs3, where Py is a geo-
desic, P, has 29 sides for g = 1, and P,y1 — P, consists of 29 ideal
triangles, for all g = 0. If the union of the ideal vertices of all the
polygons is dense, then there is a well-defined limiting tesselation also
framed by F, and any such is conversely given by such a limit. The
analogous statement holds for decorated framed polygons and decorated
framed tesselations. Moreover, the tuple of framed holographic coordi-
nates

(s%,5%),(s;,5 ),(3;,5%)(3_

1
0" 0 1

[
(=%
|
1=
~—
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n (R x R.g)¥ of decorated polygons in the weak topology given in
their natural Farey ordering, where the {s;} are required to be pair-
wise distinct and U{s;} to be dense in R, provide global coordinates on

Tess’ ~ Homeo. . ]

4. THE LIE ALGEBRA ppslsy

Let sly = sl3(R) denote the usual Lie algebra of traceless two-by-two
real matrices with generators e = (34), f = (19) and h = (] %)
and Lie brackets [h,e] = 2e, [h, f] = —2f and [e, f] = h. (Context
will distinguish the notational inconvenience of determining between
e€slyoreet.)

Exponentiating (;“ _g ) € sly yields a one-parameter family of diffeo-
morphisms giving rise to a vector field on the circle which is given
by

(4 8) cos 0+ 20 5in 04 (1~ )}
where 6—69 denotes the constant unit vector field on S' and 6 its usual
angular coordinate. A vector field A on S! arising in this way is called
a (global) sly vector field, and we write A € sly in this case. The values
of an sly vector field at any three distinct points in S! determine it
uniquely. In case two vector fields ¥; and 95 on S' differ by a global
sly vector field, then we shall write ¥ = 9.

More generally, a vector field ¥ on S!' is a piecewise sly vector field
if S decomposes into finitely many open connected circular intervals
with pairwise disjoint interiors whose endpoints are among the rational
points of S! so that ¥ restricts on the interior of each such interval to
some global sly vector field. ppsly denotes the collection of all such
vector fields including the possibility of no breakpoints, namely slo <
ppsly itself. The endpoints of the maximal such intervals are called the
breakpoints of 1 itself. There are no restrictions on the behavior of ¥
at its breakpoints (except that the breakpoints, if any, are rational),
and indeed ¢ € ppsl, may not even be defined at its breakpoints in
general, in which case its value is implicitly given as the average of the
two one-sided limits.

Remark 4.1. Let us parenthetically recall a seminal result of Dirichlet,
which he proved in Berlin at age 24 thereby besting the top mathemati-
cians of his day: the Fourier series of a piecewise smooth function with
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finitely many pieces converges pointwise to the function itself except
at the breakpoints where it is the average of its two one-sided limits.

A bracket [01,92] € ppsly of two 1,05 € ppsly is defined in the nat-
ural way: the resulting vector field has preliminary breakpoints given
by the union of those of ¥¥; and those of 9, and on each complemen-
tary component in S' of this union, the bracket is given by the usual
bracket on sly. It may happen that the actual breakpoints of [0y, V5]
form a proper subset of the preliminary breakpoints since we demand
maximality of intervals complementary to the actual breakpoints.

Consider breakpoints +1, +i € S* < C, so the complementary intervals
lie in respective quadrants I-IV in the complex plane enumerated as
usual in the counterclockwise sense beginning with quadrant I where
both coordinates are non-negative, and define

(g 8;5;1 ), on quadrant ;

-1
As) = (stl_l %), on quadrant IT;
(SSI 0), on quadrant III;

T—s s

(S 5_1*3), on quadrant IV,

0 st

for s € R— {0}, a one-parameter family in PPSLy(R). It is not difficult
to check that each A(s) is moreover once-continuously differentiable on
St including at its breakpoints.

Since lambda lengths are M ob-invariant, it is clear that A(s) leaves in-
variant all lambda lengths on 7, with any decoration, except the lambda
length of the doe, which it scales by a factor s. Thus, A(s) is a one-
parameter family in PPSLy(R) scaling just one affine lambda length
coordinate, or in other words a multiplicative coordinate deformation.

More specifically, A(s) € PPSLy(R) is a one-parameter family which
on each circular interval determined by the intersection of a quadrant
with S! is a hyperbolic transformation whose axis is spanned by the
endpoints of the interval. In the parlance of the Thurston school, an
earthquake is an element of PPSLy(R) with two pieces, one of which is
the identity and the other is a hyperbolic transformation whose axis is
asymptotic to the breakpoints. Thus, A(s) is a special one-parameter
family of compositions of four earthquakes, where the four hyperbolic
translations are chosen in order to produce homeomorphisms A(s) that
are once-continuously differentiable on S!.

The derivative of A(s) with respect to s at s = 1 is the extremely
special element 9 € ppsly illustrated in Figure 4 and called the mother



UNIVERSAL AUTOMORPHIC FUNCTIONS 25

wavelet. It is the basic building block of ppsly. Justification for the
appellate “wavelet” used here is given in [27].

h i s s .
0<6<2n

Figure 4. The mother wavelet 1.
Direct computation confirms that the mother wavelet ¢ is given by

+h + 2e, in quadrant I;
—h +2f, in quadrant II;
—h —2f, in quadrant III;
+h —2e, in quadrant IV

and vanishes at each of its breakpoints, where it is once-continuously
differentiable. Notice that in general if an element of ppsl, is twice
continuously differentiable at a breakpoint, then it is not actually a
breakpoint at all, that is, if two elements of Mob agree to second order
at a point, then they must coincide.

Let us employ the adjoint action on each piece and define the (arith-
metic) wavelets

94(0) = A™19,4(0.A)A, for A e PSLy,

where the right A-action on § € S' is the natural one. A short cal-
culation shows that ¥¢ = ¥; = 1, and therefore if A,, A_ correspond
to the two different orientations on a common edge, i.e., if Ay = SAL
then ¥4, = ¥4 . It follows that for any unoriented edge we have
lea| = |esal, and there is a corresponding vector field ¥} .| = ¥4 = Vga.

Now for each A € PSLs, define a corresponding X 4 € sly where X4 and
94 take the same values at the three points +1, —i € S!, or in other
words at Farey points %, %, %, and define the normalization

U4 =04 — X4, for A e PSLs,.
It is not difficult to compute X4 explicitly for A € PSL,.
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Here and herein we shall deviate slightly from the notation of previous
works, which we first recall.

Following [20, 26] for each A € PSLy, define for each A € PSL, the
infinite sums
a= D, yna and ¢y = D Juna
n=0 n<0
respectively called normalized left and right fans and the further infinite
sums
ha = Z n Yyna and ¢ = Z n Jyna

n=0 n<0
respectively called normalized left and right hyperfans. We have added
bars to the notation for normalized (hyper)fans from earlier work and
keep the undecorated symbol for more natural normalizations to be
introduced in the next section. It is not difficult to compute that
D=0 Xuna diverges thus explaining the need for normalization.

Assuming for the moment that these sums converge, as we shall discuss
presently, there is the following prescribed consequence of this “hyper-
fan formalism” given by infinite sums of infinite sums in this way.

Proposition 4.2. For each A € PSLy, we have
%EA = Z QEU"A and ?fo = Z CEE”A,
n=1 n<0
as well as B B B B ~
Ya —Yua = dya and ¢pa — dya = V4,
Via— Vi =¢n and ¢ — ¢4 =0}
(]

Corollary 4.3. For each A € PSLy, equating 94 = Uga gives the so-
called USA relation
Yua =294+ Yy-1a4 = Yusa — 2954 + Yu-154,
Via — 204 + Uy = Yusa — 254 + Yy-iga-
L]

The formulas in Proposition 4.2 and Corollary 4.3 thus follow immedi-
ately from the hyperfan formalism and the symmetry ¥4 = Jg4. The
catch is showing that the putative (hyper)fans converge. However, no-
tice that convergence of Y nz, implies that of >} x,, so the hyperfan
formalism follows from convergence of hyperfans alone.
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In the remainder of this section, we shall recall results from [20] which
in particular give sense to the normalized (hyper)fans as elements of
ppsly, and indeed converge pointwise uniformly on compacta. The
harmonic analysis of normalized hyperfans is discussed in Appendix A.

The first big surprise is that in fact normalized fans and hyperfans
have only finitely many breakpoints and lie in ppsls, even though they
are defined by infinite sums. Indeed, a fan always has exactly three
breakpoints and is described by a continuous but not differentiable
function on the circle, and a hyperfan always has exactly two break-
points described by a function on the circle which is discontinuous at
exactly one point. Such is the nature of telescoping for normalized
(hyper)fans, which are not enjoyed by unnormalized (hyper)fans.

For example, ¢y takes values —2¢ on quadrant I, 2(h — f) on quadrant
II and vanishes on quadrants III and IV, while v; takes values —2e on
quadrants I and II and vanishes on quadrants III and IV. In fact, one
finds that ¢y + ¢ is the global sl, vector field —2e, and together with
the fact that 14 = A~'4; A by construction, it follows that the span of
the left hyperfans together with sly contains the right hyperfans. We
shall therefore henceforth restrict our attention to the former and drop
the appellate “left” tacitly taking only left fans and hyperfans. There
is an entirely parallel discussion using right fans and hyperfans.

Just as one might suspect, bracketing destroys one degree of smooth-
ness. Brackets of normalized wavelets are similarly expressed as finite
sums of normalized fans while brackets of normalized fans are expressed
in terms of normalized hyperfans.

The second big surprise is that here the algebra closes with the
additive basis of normalized left hyperfans, i.e., brackets of hyperfans
are finite linear combinations of hyperfans.

Summarizing several of the main achievements in [20], to which we
refer the reader for proofs of the first two big surprises, we have

Theorem 4.4. The set of normalized left hyperfans together with the
generators e, f, h € sly give an additive spanning set for the vector space
ppsls which is closed under bracketing. Moreover, the collection of USA
relations in Corollary 4.3, one for each edge of Ty, gives a complete set
of relations among normalized left hyperfans. O

In fact, there is an error in the proof in [20] that normalized left hy-
perfans span ppsl, which is corrected in Theorem 2.1 of [27] as follows.

Theorem 4.5. Define orientations on the edges of T, with the orienta-

tion from % to (l) as usual and otherwise always pointing from lower to
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higher generation in the Farey enumeration, and denote this set of ori-
ented edges O < T,. Then B = {14 : A€ O} together with e, f,h € sly
1s an additive basis for ppsls. ]

5. THE NEW FORMALISM FOR ppsly

The normalization of vector fields in the previous section was neces-
sary in order to guarantee their pointwise convergence and assure the
hyperfan formalism. However from the point of view of representation
theory, the failure of exact equality in favor of equality ¥4 = A~1¢; A
up to global sly vector fields introduces untoward complications. Fur-
thermore from the point of view of physics, the treatment of sly in the
previous section represents merely an additional copy of sl essentially
decoupled from the higher Fourier modes, not the creation/annihilation
and energy operators one might anticipate.

Let us remedy both of these deficiencies by defining (unnormalized) (or
really differently normalized) hyperfans as follows:

by = e, on quadrants I and II;
= 0, on quadrants III and IV,

thus dropping the pre-factor —2 from before and furthermore guaran-
teeing the desired conjugacy formula by defining

ba(0) = A719;(6.A)A, for A€ PSLy.
It thus follows that B~'4B = 1 4p.

The third big surprise, which is new to this paper, is that sly is
actually in the finitely supported span of these new hyperfans, as we
next prove.

Proposition 5.1. For A = <Z 2

Vo =thsra — 2154 + Vsr-14 — {Yva — 2004 + Yy-14}.
Then we have the identity

Uy ={c(d+b)+ald—b}h + (d>—b*+2bd)e + (a®—c®— 2ac)f.

> e PSL,, define

In particular

\I/[=h+€+f, \I[T=2€+f, \I/U*1:€+2f>
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whence
h 1 3 -1 -1 L\
el==(0 2 -1 Ur
)3 \o -1 2/ \w,.

Proof. The reader will recognize W 4 as the difference of the two sides
of the USA relation which holds for normalized hyperfans and fails by
a global sls for unnormalizaed hyperfans. The proposition follows from
direct computation using that v — 28 = 2a — §, where

a=A"eA =cdh + d*e — f, f=(SA)"'eSA = abh + b*e — a*f,
v = (UA)e(UA) = (c+a)(d +b)h + (d + b)*e — (c + a)*f
— (STA)"'¢(STA),
§=(U 1A e(U1A) = (c—a)(d—bh+ (d—b)’e— (c—a)f
= (ST 'A) le(STA).
0

We shall refer to the expression for W, in terms of e, f,h given in
Proposition 5.1 as the USA identity for A € PSLs.

Theorem 5.2. The hyperfans {14 : A € PSLa} span ppsla, a complete
set of relations on them is given by the USA identities as A varies over
PSLy, and {4 : A € O} provides a basis for ppsly, where O < T is
given in Theorem 4.5.

Proof. In the old formalism, the span of normalized hyperfans together
with e, f, h was shown to be all of ppsly. This contains all unnormalized
hyperfans by definition; indeed, ¥4 = 14, and the reverse inclusion
follows from the last part of the previous proposition. For the second
assertion, suppose that > a4 = 0 is a finite linear relation among
the unnormalized hyperfans. It follows that then Y a4 = 0, and
since both sides of this equation vanish at %, %, %, it must be that in
fact Yl aahs = 0, whence this relation is a consequence of the USA
relations by Theorem 4.4. A non-trivial finite linear relation among
{ta + A € O} likewise gives such a relation on {4 : A € O}, which
would contradict Theorem 4.5. 0

Another favorable aspect of the new formalism is that the structure
constants of ppsly admit an explicit if not entirely trivial expression,
and it is to this end that we dedicate the remainder of this section.
The next two results follow from direct and elementary computation,
which are left to the reader.



30 IGOR FRENKEL AND ROBERT PENNER

Proposition 5.3. In the basis e, f,h for sly, the adjoint x — A~z A
of A = (z Z) € sly 18 given by the matriz

d?  —b? 2bd
My= |- a? —2ac
cd —ab ad+ be

)

and so
a’> —b* —2ab
M'=My=|- &  2cd
—ac bd ad+ be

O

Just as 1; takes values e € sly on quadrants I and Il and vanishes
on quadrants III and 1V, we have the following analogous result for
f, h e Slg.

Proposition 5.4. ¢s + f and ; + Yys — s — Yy-1 — f each have
support on quadrants I and II with the former taking there the value f
and the latter the value h. ]

Now in order to compute the bracket [¢p,14], for A, B € PSL,, it
suffices to compute simply [¢7,14], since we have

(*) [#’BﬂﬁA] = [B_1¢IB7¢A] = B_l[d}thB*l]B'

To this end with A = (CCL Z), there are four essential cases:

Case 1: 0 < —‘El < —g, S0 e4 lies in the bottom half plane oriented
from right to left.

Case 2: 0 < -2 < —‘zl, S0 e4 lies in the bottom half plane oriented

from left to righ%c.

Case 3: —¢ < —g < 0, so ey lies in the top half plane oriented from

left to righ%.

Case 4: —g < —g < 0, so ey lies in the top half plane oriented from
right to left.

In each case, the support of ¥4 lies to the left of e4 by definition. In
Case 1, the supports are therefore disjoint, and so [¢;,14] = 0. In
Case 2, the support of v; is contained in the support of ¥4, and the
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bracket is supported on quadrants I and II taking value —c*h + 2cde,
which is given according to Proposition 5.4 by

— (Y1 + Yus — Ys — Yu-1 — [) + 2cdy);
= c(2d — o)Y; + P (s + Yy — Yus + ).

Case 3 is more challenging requiring Proposition 5.3. We compute

2cd 2ac(ad + be)
M 0 | = —4c3d :
—c? —c*(3ad + be)

whence

[, 4] = 2ac(ad + be)pg — 4c*d(Ygs + A1 FA)
— 02(3ad + bC){i/JA + Yusa — Ysa — Yy-1 — A_lfA}.
Case 4 is still a bit more involved since [¢7, 1 4] perhaps has two compo-
nents and can be expressed as the difference yp—v, where p is supported
on quadrants I and IT taking value 2cde —c?h, and v is supported on the

region to the left of eg4 and taking the same value there. Meanwhile,
Proposition 5.4 gives the expression

= c(2d — c)pr + F (g + Yy-1 — Yus + f)

as in Case 2. For the other term v, we compute

2cd A —d? —2cd 2cd
Mg 1 0 |=1[-a®> 2ab 0
—c? ac  —bd —(ad+bc)) \—c?
4¢3d

= | —2ac(ad + be) |,
*(3ad + be)

whence

v =4c3dipsa — 2ac(ad + be)(1ha + (SA) ' fSA)
+ 02(3ad + bc){wSA + wUA - wA - ¢U—15A - (SA)flfSA}.

Putting all this together, a little further computation finally proves
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a b

Theorem 5.5. For A = (c d> € PSL,, we have

( . d b.
0, lf0<—2<—a,

c(2d — )iy + A (s + Yy-1 — Yus + f),
if 0<-2<-4

c’

2ac(ad + be)pa — 43 d(ihga + AL A)

[Vr, 4] = { — *(Bad + be){pa + Yusa — Ysa — Yy—r — AT A},
if — % < -t <o

a

c(2d — c)r + (g + hur — Yus + f)
— 4P dipg s + 2ac(ad + be)(Ya + (SA) T FAS)

— (3ad + be){tsa + Yua — Va4 — Py-194 — (SA) T FASY,
if —2<-4<0.

\

L]
It is worth noting that [¢;,14] = 0 if ¢ = 0 and that to complete
the calculation of brackets in the basis {104 : A € O}, one must still
conjugate as in equation (*) and finally use the constructive proof of our
Theorem 5.2 given in [20] to express several of the resulting hyperfans
in terms of this basis. The point, however, is that brackets are explicitly
computable in the new formalism in contrast to the old.

6. THREE 2-FORMS

As before, let a—% denote the counter-clockwise unit vector field on S*
in its usual angular coordinate ¢ and L, = iemg%, for n € Z, de-
note the usual generators for the Witt algebra, satisfying for m,n € Z
the bracket identity [L,.,L,] = (m —n) Ly.,. The Witt algebra
is naturally regarded [30] as the tangent space at the identity to the
manifold Diff | = Diff, (S!) of real-analytic orientation-preserving dif-
feomorphisms of S*.

As the tangent space to Homeo, 2 Diff, as in Section 3, ppsls con-
tains the Witt algebra; this inclusion is explicitly computed in Theorem
A.1. Conversely for A € PSLsy, the Fourier expansion of the normalized
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wavelets 1 4 (given in Theorem A.2) or hyperfans ¢4 (given in Proposi-
tion A.4), describes how ppsls lies inside the topological closure of the
Witt algebra.

The quotient manifold Diff, /Mob, has tangent space at the identity
given by the span of L,, for n? > 1, that is, the span of e, f,h €
sly is naturally identified with the span of L_q, Lo, L. As likewise
follows from Section 3, the quotient Homeo”, ~ Homeo, /Mdb can be
identified with the space Tess™ of all normalized tesselations of I, and
the natural bundle Tess” — Tess” over this space admits global affine
lambda length coordinates.

There are the following several 2-forms defined on these spaces, which
are compared in this section:

e The (pull-back from Tess™ of the) universal Weil-Petersson (WP)
Kéhler 2-form [25, 24] to Tess" ~ Homeo} is given by

w = —22 dloga A dlogh + dlogb A dloge + dloge A dloga,

where the sum is over the set of all triangles complementary to 7, in
D and the triangle has edges, here conflated with lambda lengths as
usual, in the clockwise order a, b, ¢ in the orientation on the underlying

surface. This sum converges provided the homeomorphism is C2+e
smooth on S!, cf. [32].

e The Kirillov-Kostant (KK) form [18, 32] is defined on Diff, /Mdb by
Ka(Lims L) = a(m® — m)6m_n,

where a € C and ¢ is the Kronecker delta function.

e The natural loop-algebra (LA) 2-cocycle [13] is defined by

i) = o [Ta(ve) - awe).

0

2w

where 1,1, € sl§1 and tr denotes the trace. Our algebra ppsls is a
sub-algebra of a certain completion of sl§1 on which this 2-cocycle still
makes sense, and indeed integration by parts provides in this case the
explicit expression

1
A0 = 5 3 el 0n) + )] [ - v}
feI(1?)
for the 2-cocycle v on ppsly, where I1(¢)) < Q <= S! denotes the set

of breakpoints of 1) and #* denotes a point slightly % the point
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6 € TI(¢)) in the counter-clockwise orientation on S'. One can verify
directly that v is a 2-cocycle by checking skew-symmetry and the 2-
cocycle property, which follows from the 2-cocycle property for the first
expression in this paragraph for v on sl§1.

In fact, these three 2-forms are pairwise identical up to overall con-
stants, as we shall discuss. The constant for WP and LA will be com-
puted here, and the constant for KK and WP was already calculated
in Theorem 5.5 of [24], namely, we have

Theorem 6.1. The WP Kahler 2-form w and the KK form k, are
related by

W = Kg, for a = 2.

The computational proof in [24] using the basis of normalized arith-
metic wavelets is involved and delicate depending upon the constraints
on small Fourier modes described in Remark A.3.

Theorem 6.2. The WP Kdhler 2-form w and the LA cocycle v are
related by

v = —4w.

~

Proof. Recall that II(1)) < Q < S' denotes the (finite) set of break-
points of 1 € ppsly and let ¥4 = ¥4 — Xy, i.e., ¥4 is the normalized
arithmetic wavelet and 19, the unnormalized one. In particular, we
have

H(@A) =II(¥4) = I1(V).A, for A e PSLy,
and moreover

7(1§A,1§B) = ’y(ﬁA,ﬁB), for A, B € sl,,

since Xz is both added and subtracted in a difference of ¥ -values in
their contribution to . Thus

Y(94,95) = ¥(Va,95), for A, B € sly

as well by skew symmetry of ~.
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We first claim that y(ﬁA, Vp) = 0 if ¥, takes a common value Yy € sl
at each point of I1(¢¥g). To see this, we compute

YW 4,08) = v¥(Ia,98) = ¥(Ya,Vp)

- ) tr{YA [9p(0F) — 193(9‘)]}

0eTi(95)
— 9;@ tr{YA [95(0".B) — ﬁB(G.B)]}

= tr 06%) YA{B‘1[0(9+) - 19(9‘)]3}

- tr{YAB_l (9€§ﬁ)[ﬂ<9+> - 19(9‘)]) B}

= tr{YAB_1[4e +2(f—e—h)—4f +2(h+ f — e)]B}
=tr Y4B '0B

=0.

It remains to consider (94,9 4) and (94, 974), and we begin with
the former. Let £5,np denote the respective initial and terminal point
of eg = e;.B, where e; is the doe of 7, as usual, so

H(?§A) = {€A77]A777U*1A77]UA}7
I(Jya) = {€a. 14, Nua, N2 a}-

Thus
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[ [9a(E"A) +0a(&.A)] [Pua(€.A) = dya(€.A)] )
2 tr 4 +[Pa(n™ A) +9a(n” . A)] [Jua(n™.A) = dyaln.A)]
+[IalnT UA) +Da(n™.UA)] [Jua(n™ UA) = dya(n . UA)]

H2[0a(n U A)] [Puan® UPA) = dua(n~.U*A)]
([0 + ()] [U)EUHU = (U)o U U] )
+HI(n ") +9(n7)] (U)Wt UHU — (U)W~ .U~ HU]

W+ U) + A7~ U)] (U)W ™)U — (U)""0(n~)U]
| +2[0(n".U?)] [(U) (" U)U — (U) "0 (n~.U)U]

= tr <

_l’_

= tr <

—~
0O
[es]en]
~—

—

|
(o cXen]
|
O
~—
—~
|
Qo 0o
|
Qo 0o
~
DN
—~
O
onN
~—
N~

=tr{ _

=38,

and accounting for the orientation and —2 in the expression above for
the WP form yields the asserted constant v = —4w.

Finally in the remaining case to compute (1) 4, 974), replace A € PSL,
by SUA, so that

V(D stm, Irsen) = v(On, Va) = +8
by skew symmetry since Jgp = Up, for B € PSL,, and
TSUA =TT 'UT'UA = UT'UA = SA.
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7. UNIVERSAL AUTOMORPHIC 1-FORM ON PPSL,(R)

Given a decoration 7 on a tesselation 7 with framing framing F, define

&=

5 > 94 dlog A, € Q' (Homeo”:, ppsiy),

AEPSL2

where ¥4 is the wavelet ¥4 normalized with respect to F, and .
denotes the lambda length of e = e4. Alternatively, we may write
Er = ZeET* U dlog A, since ¥4 = 0g4 and Ao = A\, = A

€SA"

&7 is to be apprehended as a 1-form on the group H&E&ﬁ taking val-
ues in its Lie algebra ppsls. It evidently could be interpreted as the
Maurer-Cartan form since the result of applying it to a multiplica-
tive deformation of the lambda length, or in other words an additive
deformation of the logarithm of the lambda length, is precisely the cor-
responding normalized vector field on S! in its Lie algebra ppsls, as was
discussed in Section 3.

More precisely, we have the diagram
Homeo ~ Homeo” /M&b
i !

P .
Homeo, & Homeo’} ~ Homeo, /M b,
SF

where 7 is the forgetful map, p is the projection given by precomposi-
011

tion with LT'3:* 1=, and for any framing F = (u, v, w), the section
FGLF(E)F(T)

sF of pis given by precomposition with Lg% . It is a tautology that

if w is the Maurer-Cartan form of Homeo+,1 then Er =1%o shw.
Theorem 7.1. For any fized framing F € C3, the Lie-algebra valued
1-form &7 € QY (Homeo, , ppsly) is invariant under flips.

Proof. As a Lie algebra valued 1-form on a group, it is described by
right-translating from the cotangent plane of the identity, and our com-
putations will take place there.

Recall that the Farey tesselation 7, admits a canonical decoration 7, de-
termined by the property that all the lambda lengths are ConstfagtJequal
to unity, and that this is the identity element of the group Homeo} as
discussed in Section 3.

To establish notation, refer to Figure 1 and consider the four generation-

cio1 101 : 1; :
zero and -one Farey points 5, —1, 7, 1 decomposing S* into four circular

intervals which are conflated with the respective quadrants I,II,IIT and
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IV containing them. The convex hull of these points is an ideal quadri-
lateral with oriented frontier edges a = egp,b = esy,¢ = ey-1 and
d = ep-1 in this counter-clockwise order starting from %. The doe e;
will be denoted simply e = e;, and the edge arising from its flip, with

respective initial and terminal points % and —%, will be denoted f.

The second-generation —%, —%, %, % Farey points further decompose the
circular intervals I = I_ v I,,... IV = IV_ u IV, occurring in this
counter-clockwise order starting from %. The Farey points of generation
at most two together span an ideal octagon with oriented frontier edges
€572, €SUT, €TSU, €SU2, €U—2, ep—1y—1, eg—1p—1, and ep—2 in this counter-
clockwise order starting from %, as indicated in Figure 2.

The hyperbolic transformations which are primitive in PSLy along the
respective axes e and f are given by the exponentials of (7§ 9) and
(94), and along each of the other edges e4 above by the exponential
of XA € Slz with

Xor=(§-2), Xsv=(_39), X1 =(23 ), Xp1=(702),

and

Xor2 = (§ 1), Xsur=(_3_3),

Xrsy = (% 3), Xsvz = (__1),

Xy = (217), Xrw = (213),
Xy = (233), Xpp—1 = (5 1)

The proof is a direct computation and is omitted.

These are the logarithms of the component earthquakes for the wavelets
Uy, for x € {a,b,c,d,e, f}, so it is not difficult to combine them four
at a time and normalize with respect to the the standard framing F =

(9,5, 1) on 7. One finds
(767%), onk
7§ =9 = (7%7(1))7 on IL
©0 ] B), onn
(733), onlv,
(7571), only (9-4), onl;
9 = (7%::13)’ OIlI_,.; @ . (,3,2‘), ODI_,.;
. —10 1I: S0 Va = 00 1I:
(Z2%), onlIL (90), onll
(759), onIIland 1V, (99), on Il and IV,
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As illustrated in Figure 5, letting & = dlog A, for = € {a,b,c,d, e, f},

and putting all of this together, we find that

3, dlog \,

2

ze{a,b,c,d,e}
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E

@@ a6 5 (b Der a3 e

) ,¥. in the respective rings
}191 dlog A, on the outside.

Figure 5. Depiction of 0, ...
A,...,E and )

ze{a,b,c,d,e

Let 7/ denote the tesselation that arises from 7, by a flip along the
edge e € Ty, let ¥ denote the vectorfield on S! corresponding in the
natural way to the edge x € {a,b,c,d, f} < 7/, and let ¥, denote the
normalization of ¥/, relative to the same framing . Thus, we have

and a further consequence of the primitives for logarithms of hyperbolic
transformations computed before is that
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on I and IV;
on II;

on III_;

on III,,

on I;

on II and III,;
on IV_;

on IV,.

Again putting all this together as illustrated in Figure 6, we find

> 9 dlog ),
ze{a,b,c,d, f}
(Ve () (2 e (2 )da (1 2)F |
( 0 %)CH'( 0%>b+<07%)c+< 0 g)d+(071)f, on L
(2 Da+(CE)p+ (20)e+ (C22)d+(0DF onLs
-2 1 01 0o-1 0o 2 -1)J> ;
10\~ AT 30\ 1o\~ -
(F3)a+ (5 3)p+ (5 3)er (51)d+ (ADF ontL
1 1 ~ 3 _1 ~ ~
(3 9)a+ (2 )0+ (5 0)ew (T))d+ (DS, onlLy
Lo : 2 :
= 1 1 ~ 3 1 . _
(ip)as (g)ie (g)ee (H])d (D7 ontit
3 0\~ 3 07 -3 2\~ “30\5 ., (-1 0\7F )
(13)a+ ()i (Gg)es (L)d+ (D7 onmL
_1 _1 ~ 1 5 _ ~ ~
(F)ar(5)p+ (37)e+ (G2)a+ (007 onves
-3 1)~ -11\3 1-1\. -25\5 o\ F ‘
(G)as (Gope (G0)ex (GE)d+ (007 o1V

\

Using the fact that

e+

by the Ptolemy relation ef = ac + bd, since a = b =c = d =1 for the
identity element 7, a computation with rather miraculous cancellations

as illustrated in Figure 7 confirms that

2

ze{a,b,c,d,e}

3, dlog \, =

2

ze{a,b,c,d,e}

9. dlog Ay,
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as required to check invariance under the flip along the doe for the

standard framing F = (9,3, 1).

6 9e-(% i ) 6 9e-6 962
HGHE CRIL !
{w)( ENLMERN } JIV {u P Die( ) }
PG Y] v 3 )i (s Dl ianieerd]

v
(; 01) *(; ;‘)d"(; 01) \/ \/ \/ (L‘] j) *(01 1)d+(0 1)

Figure 7. Difference between expressions in Figures 5 and
6 vanishes for all lambda lengths equal to unity, i.e., at the
universal punctured arithmetic surface.

This establishes the invariance for a flip on the doe with the associ-
ated framing. In the general case first of all, the 1-form is invariant
under push-forward by the Mobius group since lambda lengths are
M ob-invariant, so we may assume that the framing is one that is as-
sociated to a doe. Likewise without loss of generality, we may assume
that the flip is performed on the edge with endpoints %,% e S', with
the doe however potentially located elsewhere.
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Thus, the asserted invariance must be checked for the various possibil-
ities of relative position of doe and the edge with endpoints %, % to be
flipped. In the presented computation, these two edges coincide, and
there are four further cases to check depending upon which quadrant
in C 2 D contains the doe, thereby determining the normalization.
These four similar but simpler calculations, each corresponding to a
different normalization of the common unnormalized formulae already

presented in the proof, are left as an exercise for the reader. 0

Consider an arbitrary framing F and let
nr = shwe Q' (Homeo, /Mob),
which by general principles should satisfy

1
Maurer — Cartan equation : 0 = dnr + 5[77;, nr], for any framing F;

Compatibility Equation : ng = Ad(hzg) nr + higwus, for framings

F,G,where hrg = sg o 3}1, Ad denotes the adjoint and w4 is the

Maurer-Cartan form on M ob.

Note that the Compatibility Equation together with the result for the
flip on the doe with its associated framing would give an alternative
proof of Theorem 7.1. This putative proof is a bit of a swindle because
there is no Maurer-Cartan form on the topological group Homeo, ex-
cept for the version here, and hence no a priori Compatibility Equation.

Remark 7.2. The expression for £ as a Poincaré series in framed
holographic coordinates is easily derived from Remark 2.8.

As we have noted, the form &7 is morally the Maurer-Cartan form
in the sense that its value on the tangent vector ﬁ at the identity

of PPSLy(R) is the corresponding normalized element 94 of the Lie
algebra ppsly. However, £+ has been shown here to be invariant under
the lattice PPSLy(Z) rather than under the full group PPSLy(R), whose
invariance we may conjecture. On the other hand, one might therefore
more squarely regard £ solely as an automorphic form, and this is the
viewpoint of the next section.

8. FUTURE PERSPECTIVES

We conclude with a heuristic discussion of constructing the automor-
phic representation for our universal triad corresponding to the auto-
morphic 1-form obtained in Section 7. To this end, we combine the
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original constructions of [34] and of Vaughan Jones [16, 17|, also de-
scribed in [22].

We recall from Appendix B that we have constructed an indecompos-
able automorphic representation V' of PSLy(R) by lifting the weight 2
Eisenstein series Fy. Viewed as the Lie algebra psly = psily(R) repre-
sentation, it can be identified with the Laurent polynomial ring

vV~ O(C) = C[*].
with the psly action given by

d d d
=— h=2z—, f=2"—.
‘T @ & f== dz
The space V' has a natural multiplication map

V-VeV

which commutes with the action of psl,. One can also identify the
restricted dual space with Laurent 1-forms

V'~ QHC¥) = C[z*]dz,

with the pairing of V' and V' given by the residue of the product at 0.
This gives the dual map

(8.1) ViV eV,
which can be used for the inductive limit construction as in [16, 17, 22].

Namely for any polygon P, with frontier v, we assign a tensor product
H,=QV,
j=1

where n is the number of edges in . There is a partial ordering on the
set of polygons given by inclusion P, < P/, which induces the partial
ordering v < 7/ on frontiers. Clearly the Lie subalgebra

ppsla(y) < ppsls

of piecewise psly, maps with breakpoints at the vertices of v acts on H,
in the natural way, where psl, corresponding to the j'" edge acts on the
j™ factor of H,. Then the map (8.1) induces a family of intertwining
operators

T,;Y . H’Y — H’Y”
so that T = 1 and the consistency condition T’ 3,, = TJ,:T 77, holds when-
ever v < v < ~”. The direct limit
(8.2) H =lim H,
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yields a representation of ppsly. It can be made unitary by means of a
1-cocycle determined by the one-dimensional subrepresentation vV, < V'
as in [34] or alternatively using a modification of the construction above
based upon the approximation of the representation V' of psiy by the
representations of the complementary series V(\), for 0 < A < 2 with
A # 1, so that V(A) ~ V(2—\) with ;Lr% V(A) =V and ;12% V(A =V

see [34] for details.

Remark 8.1. The partial ordering above on ideal polygons occurring
as fundamental domains for punctured surfaces leads one to consider
the so-called punctured solenoid H, which is an initial object for the
category of punctured surfaces with morphisms given by finite cov-
ers branched only over the punctures. The unpunctured version was
introduced and studied by Dennis Sullivan in [31]. The decorated Te-
ichmiiller space of H was studied in [28] and parametrized by certain
coordinates on the Farey tesselation 7., namely, lambda length func-
tions, one such continuous and PSLs(Z)-equivariant function from the
profinite completion of PSLy(Z) to R~ for each edge of .. Flip-like
generators for the mapping class group of H are derived in [28], and a
complete set of relations in these generators is finally given in [2].

To implement our program, we want to realize H, or heuristically
(V)®* as an automorphic representation on PPSLy(Z)\PPSLy(R) of
ppsly . To this end, we notice first that the space of harmonic functions
on PSLy(R), cf. (B.3), can be identified with the space of functions on
the boundary of PSLy(R), which is dual to the space of functions of
the holographic coordinates {(s,d)} introduced in Section 2. Further-
more for both spaces, we can also identify the corresponding PSLs(R)
actions, and therefore, we can realize V' by imposing modular invari-
ance on the space of functions depending on a single pair (s,0) of
holographic coordinates. This realization clearly extends to finite ten-
sor products (V')®" associated to n-gons P,. We conjecture that the
inductive limit H also admits a realization by the automorphic func-
tions in holographic coordinates, with PPSLy(Z) playing the role of the
modular group PSLy(Z).

On the other hand, the analogy between PPSLy(Z) and the mapping
class group suggests an extension of the former by an infinite symmetric
group, or more generally by an infinite braid group, which is still a
discrete subgroup of Homeo, (S!), cf. [14] and the references therein.
The reduction of H by the additional symmetry yields the space A, or
heuristically S®V”’, which is naturally identified with the free bsosonic
field, one of the simplest CFTs.
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As discussed in Appendix B, the theory of automorphic forms allows
the enlargement of various spaces by relaxing the automorphic property
to smaller discrete subgroups; for example, the restriction to invariance
by the commutant PSLy(Z) < PSLy(Z) enlarges V sixfold additively.
Similarly, we expect that replacing PPSLy(Z) by P(PSL2(Z))" will cor-
respondingly yield a multiplicative increase of A and thereby allow the
construction of a CFTy of size comparable to the Monster CFTs.

Finally we come to the question of how we can effectively capture the
Monster using the new universal automorphic theory, and in particular
how we can derive the Monstrous Moonshine. At this moment, we do
not know the complete answer, but we can begin on the opposite side,
which will help to clarify the problem and capture the beast. Namely,
we consider all 194 conjugacy classes of the Monster and the Thomp-
son series of the representations of these classes in the the Monster
representation of [12]. Then we know from [1] that they are the canon-
ical Hauptmoduln Jr(z) for some genus-zero discrete subgroups I' of
PSLy(R) of Moonshine type, i.e., groups commensurable with PSLy(7Z)
which contain ', = {£({7)}. Then one has

00]
Jr(z) = g7+ ) er(n)g”,
n=1

for some integral coefficients cr(n). One can also construct the corre-
sponding Eisenstein series using a logarithmic derivative of Jr(z), or
as usual an analytic continuation to s = 0 of the series

E}(z,5) = Z (Im 2)"

T T (cz + d)?|cz + d|*

As in the classical example I' = PSLy(Z), the resulting Fisenstein series
after multiplication by dz is I'-invariant though not holomorphic. Then
we can repeat the lift of a I'-invariant 1-form recalled in Appendix B
to the automorphic function

f=Ey > ¢5(g) = (ci +d)f(g - ),
where g = (29) € PSLy(R), and we again obtain an indecomposable
representation of PSLy(IR) that we shall denote VI, In fact, we just get
another model of the same indecomposable representation of PSLy(R).
We can also expect a similar construction of the space of universal
automorphic forms for PT' denoted Al. It is natural to conjecture
that we find a twisted conformal field theory associated to Al and the
Monster conjugacy class corresponding to I'. The comparison of A and
AT should yield the Monster element in this conjugacy class, and they
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together will allow realization of the Monster group via automorphisms
of A. At this point, the trap will close upon the Monster, and the
Moonshine will follow.

APPENDIX A. HARMONIC ANALYSIS

To begin, we express the generators of the Witt algebra in terms of the
normalized arithmetic wavelets as computed in Theorem 4.13 of [26]
and going back in essence to [20].

Theorem A.1. For each n € 7Z, we have the wavelet expansion

0 : iy ©
Ly =em™— = (bp + 07,7 +b" e 9)(—

00 0
i n n 77+§ n n 9
b Snte e+ T @ | .0)
¢ = n=<
where e € T, has ideal points £, m e S' and
+1,n = 0(4); 0,n = 0(4); 0,n = 0(4);
" O,n=1(4); ., +1L,n=1(4); , 0,n = 1(4);
by = _ . by = . . b, = .
+1,n = 2(4); —i,n = 2(4); +i,n = 2(4);
0,n = 3(4); 0,n = 3(4); +1,n = 3(4)

This is not the simplest expression e = ZMGT* gfﬁ‘e‘, rather these
particular coefficients g¢, are specially chosen in Theorem A.1 to guar-
antee their suitable decay in n, cf. Theorem 6.4 of [27].

The next result, Theorem 4.11 of [26], which goes back to [24], is of basic
utility and provides the Fourier expansion of the normalized arithmetic
wavelets.

Theorem A.2. ]fA (¢b) € PSLy, then the Fourier exzpansion 04 ~
D ez Cn eme 0 5 Jor n? > 1 is given by

mi(n® —n) ¢, = —[(c—a)*+ (b— d)Q]l

+2(2 + d?) [Z ; Z] + 2(a® + b2)[b — m}

—[(c+a)* + (b+d)2][(b+d> _2(313]"
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where the Fourier modes cy,cy1 are chosen to guarantee that the ex-
pansion is normalized. In particular for the mother wavelet, we have
J=9~ B N Lm0l

i n=2(4) n3-n 00
Remark A.3. A sketch of the proof is that since ¥4 is once con-
tinuously differentiable, we can twice integrate by parts the standard
expression for the Fourier coefficients ¢, with n? > 1 and derive these
expressions without difficulty. For n? < 1 the corresponding equa-
tions give certain constraining equations on the zeroeth Fourier modes,
which are crucial for the computation of the Kirillov-Kostant form, cf.
Section 6

It is not difficult to compute directly the Fourier expansion of the
(unnormalized) hyperfans as follows.

Proposition A.4. Given A= (%%) e PSLy, let
b—1ia d—ic
= = St
¢ b+ ia’ G+ d+ic
Then the hyperfan 14 has Fourier expansion a4 ~ Y. ¢, €™ with

[ d=ie)? (d+ic)? _, A+ d?
27rzcn—§l—Q(n+1)C_+—2(n_1)Cl— - ]
| (d—ic)? (d+ic)* | A+d?
BT e |
forn* > 2, and
Y -2
271 002%[C;1—C_1]—@[§+—C—]

+i( + d?)[0, —0_],

o ey = ;@[ £ 082 1 (2 4 @) — ()
o
ST,

where 0+ = arctan (.

Proof. 144 is supported on an interval with respective initial and ter-
minal points given by (' and (', and takes there the values

-1 01 . cd d2
A (0 O)A_ (*02 —cd

or in other words w e? + % e ® — (¢* + d?). The standard
expression for Fourier coefficients yields the results. 0
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Notice that the normalized hyperfans 14 have the same higher Fourier
coefficients as 14 since 14 = 4. The small Fourier modes for 4,
and likewise those of #4, can be computed with some difficulty by
calculating the values of these vector fields at 9, 1,2 € S'. As we do
not require them, we omit the details.

APPENDIX B. THE F, AUTOMORPHIC REPRESENTATION

The automorphic form that we have constructed on the universal Te-
ichmiiller space has a simple analogue on the hyperbolic plane, namely,

§(2) = Ex(2)dz,
where Ey(z) is an almost holomorphic modular form of weight 2. Since
dz transforms with respect to PSLy(R) with the factor balancing that
of Fy(z), we obtain a PSLy(Z)-invariant 1-form that can be viewed

as the classical counterpart of the automorphic form constructed in
Section 7.

To state our results unambiguously, let us recall the following explicit
formulae, c.f. [9]. Set

Eo(z) =1—24 i o(n)q”,

where o(n) is the sum of all the positive divisors of n and we set ¢ =
exp(2miz). Then Ey(2) is holomorphic but not quite modular invariant
since

To get an honest weight 2 form, we need a correction
3
E(z)=E -

() = Eale) ~ s
but we thereby lose the holomorphicity of Es(z), since

d 31 1

—FE(z) = ———.

) = s e
In the classical theory of automorphic forms, one can lift the holomor-
phic modular forms from the hyperbolic plane to PSLy(R) so that they
become the lowest weight vectors of the holomorphic series representa-
tions. Specifically for a weight 2k holomorphic form f : U4 — C, where
k = 2, we define

dr(g) = (ci+d)~>  f(g - 1),
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as in [15], where g = (1 5%) € PSLy(R). It follows that ¢ is invariant
under the left action

(B.1) ¢r(vg) = ¢y(g), for v € PSLy(Z)

of PSLy(Z). One can then define the action of PSLy(R) on a certain
space of automorphic functions generated by ¢, by the right action

(m(9)¢)(h) = é(hg), for h,g e PSLy(R),

so that ¢y becomes the lowest weight vector for the Lie algebra psis(RR)
in the appropriate basis F, F, H.

To state the explicit formulae, we shall rely on explicit calculations
from [11]. Let h,e, f be the standard basis of psly(R) and consider the
Cayley transform of this basis

0 —1 /1 i 1/1 —i
H:(i 0>’E:§<i —1>’F:§(—i 1)'
Using the standard parametrization
a b\ (1 =z y% 0 cosf sin6
(B-2) <c d) N (0 1) (0 y‘%) <—sin0 cos@)

of PSLy(R), one can find an explicit action of the Lie algebra basis as
follows

H = —0dy,
E = 2@322‘9@@—%09),
F = —2ie_2i9(y62—269).
Thus, one has
Foy = 0,
Hop = 2koy.

In the case that k = 1, the first of these two equations no longer holds,

and instead one has
3
For = —
It follows that ¢ is no longer a highest weight vector, but it also gen-
erates a one-dimensional sub-representation. Only after factorization
with respect to this sub-representation does one obtain the weight 2
irreducible representation of the holomorphic series, denoted V..

Similarly using the complex conjugation, one gets the weight 2 repre-
sentation of the antiholomorphic series denoted V_. The one-dimensional
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sub-representation, denoted Vj, is common to both the weight 2 inde-
composable representations, and we get a larger indecomposable rep-
resentation, denoted V', which has a simple composition series

0>V >V -V, V. —0.

In order to characterize the resulting three component representation,
one can use the Casimir operator, which in the explicit coordinates
(B.2) has the form

0? 0? 0?
A=y + =) — .
v Gzt 32 " Vaag
It annihilates the weight 2 automorphic representation generated by
®; and its conjugate, where f = Ej, to wit

(B.3) A, =0

One can check that this harmonic property (B.3) together with the
automorphicity condition (B.1) and the usual growth condition of au-
tomorphic functions characterizes the three component representation
V' that we have obtained by lifting the Fy modular 1-form. The prob-
lem of fundamental importance in our new theory is to construct a
representation of the Lie algebra ppsly(R) using a lift of our automor-
phic 1-form in Section 7.

The automorphic representation V' that we have constructed is well
known in the representation theory of PSLy(R) as a limit of comple-
mentary series [34]. The representations V, and V_ are the spin 1 ir-
reducible representations of the holomorphic and antiholomorphic dis-
crete series. Note that the lift of Eisenstein series Foy, for k = 2,3, .. .,
yields spin k irreducible representations of the same series. The repre-
sentation V plays a pivotal role and somehow seems to have been missed
in the theory of automorphic functions for the pair PSLy(Z) < PSLy(R)
Thus it is expected that the counterpart of the representation V' in our
new theory will play an equally fundamental role, and it is one of our
main open problems to construct it explicitly.

One can ask what is an advantage of a realization of this representa-
tion as an automorphic representation. One such benefit is that we can
naturally increase this representation by relaxing the automorphicity
condition (B.1) from the modular group PSLy(Z) to various subgroups
including its commutant PSLy(Z)" considered in Section 1. This im-
mediately yields six copies of the weight 2 representation.

Finally, we note that we could also consider the weight 1 representations
which correspond to the limit of the holomorphic discrete series of
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The index of the commutant is [SLy(R) : SLo(R)"] = 12

in this case, and we get correspondingly 12 copies upon relaxing the
automorphicity condition.
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