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Abstract. We review and reformulate old and prove new results
about the triad PPSL2pZq Ď PPSL2pRq ýppsl2pRq, which pro-
vides a universal generalization of the classical automorphic triad
PSL2pZq Ď PSL2pRq ýpsl2pRq. The leading P or p in the univer-
sal setting stands for piecewise, and the group PPSL2pZq plays at
once the role of universal modular group, universal mapping class
group, Thompson group T and Ptolemy group. In particular, we
construct and study new framed holographic coordinates on the
universal Teichmüller space and its symmetry group PPSL2pRq,
the group of piecewise PSL2pRq homeomorphisms of the circle with
finitely many pieces, which is dense in the group of orientation-
preserving homeomorphisms of the circle. We produce a new basis
of its Lie algebra ppsl2pRq and compute the structure constants
of the Lie bracket in this basis. We define a central extension of
ppsl2pRq and compare it with the Weil-Petersson form. Finally,
we construct a PPSL2pZq-invariant 1-form on the universal Te-
ichmüller space formally as the Maurer-Cartan form of ppsl2pRq,
which suggests the full program for developing the theory of au-
tomorphic functions for the universal triad which is analogous, as
much as possible, to the classical triad. In the last section we
discuss the representation theory of the Lie algebra ppsl2pRq and
then pursue the universal analogy for the invariant 1-form E2pzqdz,
which gives rise to the spin 1 representation of psl2pRq extended by
the trivial representation. We conjecture that the corresponding
automorphic representation of ppsl2pRq yields the bosonic CFT2.
Relaxing the automorphic condition from PSL2pZq to its commu-
tant allows the increase of the space of 1-forms six-fold additively
in the classical case and twelve-fold multiplicatively in our univer-
sal case. This leads to our ultimate conjecture that we can realize
the Monster CFT2 via the automorphic representation for the uni-
versal triad. This conjecture is also bolstered by the links of both
the universal Teichmüller and the Monster CFT2 theories to the
three-dimensional quantum gravity.
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Introduction

The idea of studying a universal Teichmüller space that contains the
union of images of all classical Teichmüller spaces goes back to Lipman
Bers [1], who considered the group of all quasisymmetric mappings of
the circle S1 to itself modulo the Möbius group PSL2pRq.
Further development of the classical Teichmüller spaces [23] and their
applications to string theory led the second-named author to a new
model [24] of the universal Teichmüller space based on the group, de-
noted Homeo`pS1q, of all orientation-preserving self-homeomorphisms
of S1 with the compact-open topology modulo the Möbius group. The
problem of providing a parametrization for the new larger model of
universal Teichmüller space and the corresponding group of homeo-
morphisms of S1 was also resolved in [24] by identification of the latter
group with the space T ess1 of all ideal tesselations of the hyperbolic
plane together with a choice of distinguished oriented edge, or simply
doe, that is,

Homeo`pS1
q « T ess1.(0.1)

In particular, the identity element in Homeo`pS1q corresponds to a
special tesselation called the Farey tesselation. It is obtained by ap-
plying the modular group PSL2pZq to the doe running from 0 to 8.
In view of the isomorphism (0.1), one can consider coordinates on
T ess “ T ess1{PSL2pRq as a measure of the distortion of a given tesse-
lation from the specified Farey tesselation by so called shearing coor-
dinates associated to every nonoriented edge of the Farey tesselation,
or equivalently to the elements of PSL2pZq{pZ{2q, where the Z{2 sub-
group reverses the orientation of edges. The shearing coordinates can
be realized as logarithms of cross-ratios of certain hyperbolic lengths
and are invariant under the action of the Möbius group. As a result
we obtain an injection

Homeo`pS1
q{PSL2pRq Ñ

ź

ePtedgesu

Re
`,(0.2)

where Re
` is a copy of R` associated to the edge e.

Two questions arise in relation to the parametrization (0.2): the first is
how to characterize its image, and the second is how to circumvent the
factorization by the Möbius group and obtain directly the coordinates
of Homeo`pS1q itself. To answer these questions, we introduce new
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holographic coordinates and framings in Sections 2 and 3 the paper.
These new coordinates are actually based upon elaborations of the
shearing coordinates defined on a decorated bundle from [23] over the
universal Teichmüller space which was central also in [24].

The shearing coordinates as well as our holographic coordinates admit
especially simple transformation under the dense subgroup PPSL2pRq Ď
Homeo`pS1q. This subgroup in its turn contains a discrete subgroup
PPSL2pZq Ď PPSL2pRq of piecewise PPSL2pZq homeomorphisms with
rational breakpoints between pieces. Elements of PPSL2pZq turn out
automatically to be once-continuously differentiable on the circle. This
pair of groups contains the classical pair PSL2pZq Ď PSL2pRq, which is
the first hint towards the new extended theory of automorphic forms.

Another discrete group that is indispensable in the Teichmüller theory
is the mapping class group or Teichmüller modular group. In our uni-
versal context it is realized by the group of the Farey-type tesselations
which coincide with the Farey tesselation outside of a finite polygon
and known as the Ptolemy group Pt, also introduced in [24].

More precisely, the flip on an edge e in a tesselation is defined by
replacing it by the other diagonal of the quadrilateral complementary
to Ypτ ´ teuq in D; if e is the doe, then the flip on it is enhanced by
inducing the orientation coming from the counter-clockwise rotation
of e. The Ptolemy group(oid) Pt has objects given by tesselations
with doe of D which coincide with the Farey tesselation outside of
a finite polygon and morphisms given by finite compositions of flips.
Triangulations with doe are combinatorially rigid, and this allows flips
to be labeled by edges of a fixed tesselation, so words in these labels
render Pt in fact a group. Furthermore, PSL2pZq sits inside Pt as those
tesselations which are identical to the Farey tesselation except perhaps
for the location of the doe.

The remarkable fact of the universal setting is that under the iso-
morphism (0.1), these two discrete subgroups of Homeo`pS1q coincide
PPSL2pZq « Pt. Furthermore, this universal mapping class group is
also isomorphic to the celebrated Thompson group T, so

Thompson T « PPSL2pZq « Ptolemy Pt.(0.3)

The rich combinatorial structure of T is studied in [5] and numerous
sequels. In particular, T admits a presentation by means of two gener-
ators and certain relations similar to those of the modular group.

The classical theory of automorphic forms on PSL2pRq involves, besides
the classical modular group PSL2pZq, also the large class of discrete
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subgroups Γ Ď PSL2pRq commensurable with the modular group. In
our universal setting, one considers a similar class of infinite discrete
groups PΓ associated to such subgroups Γ Ď PSL2pRq. By definition,
PΓ is the subgroup of Homeo`pS1q consisting of piecewise Γ homeo-
morphisms with finitely many rational breakpoints. To study these
groups, one can consider again the paving, i.e., decomposition into
finite-sided congruent ideal polygons, determined by the action of Γ on
the doe from 0 to 8. In Section 1, we consider the special case when
Γ “ PSL2pZq1 is the commutant of the modular group. We also review
the results of [19] about the class of finitely generated such groups PΓ,
which turn out to be precisely the groups of genus zero. This is a hint
towards Monstrous Moonshine, and we conclude Section 1 with the
problem of characterizing those Γ Ď PSL2pZq that occur in Monstrous
Moonshine in these terms.

In the classical theory of automorphic functions, besides the pair of
groups PSL2pZq Ď PSL2pRq, the Lie algebra psl2 “ psl2pRq plays a
pivotal role; we employ this notation psl2 in the current discussion in-
stead of the more standard notation sl2 “ sl2pRq simply to emphasize
the relationship with the associated Lie group. To develop the uni-
versal counterpart of the classical theory, one requires a suitable Lie
algebra for the topological group Homeo`pS1q. It has been argued in
[20] that this infinite-dimensional counterpart is precisely the algebra
of piecewise sl2 vector fields on the circle with finitely many pieces and
rational breakpoints between them. This Lie algebra was denoted psl2,
where the where the p stood for piecewise. In the present paper, this Lie
algebra will be denoted ppsl2 “ ppsl2pRq to emphasize its relationship
with the group PPSL2pRq. In Sections 4 and 5, we continue the study
of this Lie algebra ppsl2. In particular following [20], we find a basis
parametrized by the edges of the Farey tesselation, or equivalently by
PSL2pZq{pZ{2q, and explicitly derive the commutation relations in this
basis. In the next Section 6, we define the central extension of the Lie
algebra ppsl2 viewed as a loop algebra and compare it with the central
extension given by the universal Weil-Petersson 2-form first studied in
[24], which naturally extends the classical Weil-Petersson Kähler form
computed in [25].

All three structures of our universal triad

PPSL2pZq Ď PPSL2pRq ýppsl2pRq(0.4)

are combined in our construction of an automorphic 1-form on the
universal Teichmüller space in Section 7. This construction is one of the
main results of the paper, and it is the first step towards our program
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of developing the theory of automorphic forms for the triad (0.4). Since
PPSL2pRq allows for irrational breakpoints, the triad (0.4) should more
properly be written PPSL2pRq Ě PPSL2pZq ýppsl2pRq. One might
simply restrict to rational breakpoints for PPSL2pRq as well in order
to ensure (0.4), but let us not dwell on this perhaps interesting detail.

Though the proposed new theory is expected to be of a higher level of
complexity than the usual theory for the classical triad

PSL2pZq Ď PSL2pRq ýpsl2pRq,

one can pursue the analogy with the classical case whenever possible.
In particular, we argue that our automorphic 1-form on the universal
Teichmüller space has its classical counterpart in the 1-form E2pzqdz on
the hyperbolic plane, the universal cover of the classical modular curve,
where E2pzq is the non-holomorphic weight two covariant Eisenstein
series.

In Appendix B, we study its lift to an automorphic function on PSL2pRq
and show that the resulting lift generates an indecomposable represen-
tation of psl2pRq with a one-dimesional sub-representation. This in-
decomposable representation together with its conjugate, and common
one-dimensional representation, can be characterized as the harmonic
subspace of automorphic functions, i.e., it is annihilated by the Laplace
operator. Though the realization of the holomorphic and antiholomor-
phic discrete series of weights 4, 6, 8, . . . by the automorphic functions
is well known, the case of weight 2 has not appeared in the literature to
the best of our knowledge. Yet it is exactly an analogue of this special
automorphic form which arises in our construction of a PPSL2pZq-
invariant 1-form on universal Teichmüller space in the formal guise of
the Maurer-Cartan form of PPSL2pRq.

Our example of this universal automorphic form opens a new program
of research in this subject for the triad (0.4), as discussed in Section
8. One of the first challenges is to find an analogue of the indecompos-
able representation generated by the lift of the 1-form E2pzqdz in our
universal setting. Our conjecture explained in Section 8 is that this is
the infinite symmetric power S8V of the bosonic space that appears
in the classical theory, so that S8V is the free bosonic field and is one
of the simplest CFT2.

The theory of automorphic forms instantly enlarges various spaces
by relaxing the the automorphic property to smaller discrete groups.
Thus, the passage from PSL2pZq to its commutant PSL2pZq1 of index
six increases the space V additively 6-fold. Similarly, we expect that
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replacing PPSL2pZq by PPSL2pZq1 will yield a correspondingly multi-
plicative increase of S8V . Thus, we expect that this mechanism will
allow the construction of the Monstrous CFT2 of [12], and in other
words capture the Monster as in the title of this paper.

In fact at the end of Section 8, we explain this from the other end of
the theory by recalling that Monstrous Moonshine allows one to at-
tach a genus zero subgroup Γ Ď PSL2pRq to every conjugacy class of
the Monster group. Then one can construct as above a Γ-invariant
1-form EΓ

2 pzqdz, where EΓ
2 pzq is again the non-holomorphic weight two

covariant Eisenstein series. This can be lifted to a representation V Γ

of PSL2pRq isomorphic to V but realized by a different space of auto-
morphic functions. Then the universal analogue is conjectured to yield
a twisted Monster representation ΛΓ as in in [10], and the comparison
of Λ and ΛΓ should reveal the Monster in the universal automorphic
realization. It will be interesting to see the correspondence between
the Thompson-like groups PΓ Ď PPSL2pRq introduced in Section 1
and the Monster Moonshine groups Γ Ď PSL2pRq, both of which are
genus zero and satisfy certain additional properties [6, 7]

Our conjecture on the relationship between automorphic forms on the
universal Teichmüller space and the Monster CFT2 is strongly sup-
ported by the links of both subjects to yet another: three-dimensional
quantum gravity. In fact, the link with universal Teichmüller theory
has a long history in the physics literature going back to [33]. More
recently, a rigorous definition of the universal phase space of AdS3 grav-
ity was given in [29], and it was proven there that it can be identified
with the cotangent bundle over the universal Teichmüller space in its
Bers formulation. Thus, one could expect that the space of states of
AdS3 quantum gravity can be realized in some class of functions on
the universal Teichmüller space. However, it was also understood in
the physics literature that the Bers version of universal Teichmüller
space must be enlarged to account for all states related to black holes.
Indeed, such enlargement was an original motivation for [24].

It was argued in [35] that the general philosophy of AdS3/CFT2 corre-
spondence suggests that the space of states of the simplest pure quan-
tum gravity is precisely the Monster CFT2 constructed in [12]. This
correspondence was further supported by the explanation of Monstrous
Moonshine, and in particular by the mysterious genus zero property,
from the point of view of twisted state sums of three-dimensional quan-
tum gravity [10]. However in spite of all these tantalizing observations,
a rigorous mathematical theory of three-dimensional quantum gravity
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is still missing. Thus, we believe that the development of the theory of
universal automorphic representations can help to build a Monstertrap
for all the Moonshine and at the same time help us to understand the
true nature of three-dimesional quantum gravity.

1. Farey tesselation and modular group

Let Z Ď Q Ď R Ď C denote the integers, rational, real and complex
numbers, respectively, with Ẑ Ď Q̂ Ď R̂ Ď Ĉ denoting their respective
one-point compactifications by the point 8 at infinity. Set i “

?
´1.

The open unit disk D in the complex plane C is identified with the
Poincaré disk model of the hyperbolic plane in the standard way, where
the boundary unit circle S1 is identified with the circle at infinity. Also
consider the upper half-plane U “ tz “ x ` iy P C : y ą 0u. The
Cayley transform

C : pU , R̂q Ñ pD,S1
q

s ÞÑ
s´ i

s` i
induces an isomorphism of pairs.
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Figure 1. The first several generations of the Farey tesselation τ˚
of the Poincaré disk D with its distinguished oriented edge.

Let t denote the ideal hyperbolic triangle with vertices ˘1,´i P S1 as
in Figure 1, and consider the group R generated by reflections in the
sides of t. Define the Farey tesselation τ˚ to be the full R-orbit of the



8 IGOR FRENKEL AND ROBERT PENNER

frontier of t. τ˚ has a distinguished oriented edge given by the interval
from ´1 to `1. A direct Euclidean construction of τ˚ with a discussion
of its history and number theoretic significance is given in [26, §3.1].

More generally, an arbitrary tesselation of D is a locally finite collection
τ of hyperbolic geodesics decomposing D into complementary ideal
triangles. Geodesics in τ are called its edges, and τ itself is regarded
as a set of edges. Let τ̃ denote the set of all oriented edges of τ ,
and if e P τ̃ , then let |e| P τ denote the unoriented edge underlying
e. A distinguished oriented edge or doe on τ is the specification of an
element e P τ̃ . Let τ 0 Ď S1 denote the set of all vertices of τ , namely,
the collection of all endpoints of all edges in τ .

As is well-known, Q̂ « τ 0
˚ under the Cayley transform, namely,

C pp{qq “
p´ iq

p` iq
“
p2 ´ q2

p2 ` q2
´ i

2pq

p2 ` q2
P S1,

as indicated in Figure 1, and we shall refer to these points as the
rational points of S1. We abuse notation slightly and sometimes let
p
q
P Q̂ denote the point Cpp{qq P S1. p

q
P Q̂ is said to be of generation

g if the radial arc in D from the origin to p
q

meets the interior of g ě 0

distinct ideal triangles complementary to τ˚. The standard doe of τ˚
runs between the two rational points of generation zero, from 0

1
to 1

0
.

Another canonical tesselation of D with doe is the dyadic tesselation τd,
which has the same doe as the Farey tesselation, and indeed the same
generation one vertices as well, and which is recursively characterized
by the property that one vertex of each triangle complementary to
τd bisects the angle between its other two vertices. Thus, one has
τ 0
d “ te2πip1´kq : k P Zu, the points in the circle with dyadic rational

arguments. In contrast, τ 0
˚ consists of points in the circle with rational

rectilinear coordinates.

The modular group

PSL2 “ PSL2pZq Ď R

of integral fractional linear transformations is the subgroup of R con-
sisting of compositions of an even number of reflections, or in other
words, the group of two-by-two integral matrices A of unit determi-
nant modulo the equivalence relation generated by identifying A with
´A. More generally, the Möbius group

M:ob “ PSL2pRq Ě PSL2
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consists of the two-by-two unimodular matrices over R modulo the
same equivalence relation. M:ob is the group of orientation-preserving
hyperbolic isometries of D.

In particular, A “ p a bc d q P PSL2 acts on the right (here following Gauss)
on the rational points by

A :
p

q
ÞÑ

pd´ qb

qa´ pc
,

so the edge eA “ pdoeq.A has initial point ´ b
a
“ b`ia

b´ia
and terminal

point ´d
c
“ d`ic

d´ic
.

The Thompson group T is the collection of all orientation-preserving
piecewise homeomorphisms of S1 with finitely many breakpoints among
τ 0
d which are affine in the coordinate θ on each piece. Recall from the

Introduction the group PPSL2pZq of all piecewise PSL2pZq homeomor-
phisms of S1 with finitely many breakpoints among the Farey rationals
τ 0
˚ . In fact, the Thompson group T is conjugate in HomeopS1q` to

PPSL2pZq, where the conjugating homeomorphism fixes the endpoints
of the doe and maps the Farey tesselation to the dyadic tesselation of D
in the natural way; this conjugating homeomorphism was first studied
by Minkowski in [21] for its remarkable analytic properties.

Here are two standard propositions which are the starting points of our
discussion:

Proposition 1.1. The modular group PSL2 leaves setwise invariant
the Farey tesselation τ˚, mapping Yτ˚ onto Yτ˚. Any orientation-
preserving homeomorphism of the circle leaving invariant τ˚ in this
manner lies in PSL2. The modular group acts simply transitively on
τ̃˚. A fundamental domain for the action of the modular group on U is
given by tx` iy P U : x2 ` y2 ą 1 and |x| ă 1

2
u. l

Proposition 1.2. A generating set for PSL2 is given by any pair of

R “
` 0 ´1

1 1

˘

, S “
` 0 ´1

1 0

˘

, T “
` 1 1

0 1

˘

, U “
` 1 0

1 1

˘

,

and S2 “ 1 “ R3 is a complete set of relations in the generators
R “ T´1U and S “ TU´1T , so PSL2 « Z{2 ˚Z{3. In fact, T´1 “ R2S
and U “ SR2 are each of infinite order and are conjugate in PSL2. l

Complete relations in the generators U and T are given by T´1UT´1 “

TU´1T “ UT´1U “ U´1TU´1, with these so-called braiding relations
reflecting the fact that PSL2 is also the mapping class group of the
once-punctured torus with U and T representing Dehn twists.
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Geometrically, the elliptic element S setwise fixes |eI | and reverses the
orientation of the doe eI , R is the elliptic transformation cyclically
permuting the vertices of the triangle to the right of the doe, and U
(respectively T ) is the parabolic transformation with the fixed point 0

1

(respectively 1
0
) which cyclically permutes the incident edges of τ˚ in

the counter-clockwise sense about 0
1

(respectively the clockwise sense

about 1
0
). Typical aspects of our enumeration of oriented edges by

elements of PSL2 are illustrated in Figure 2.

Figure 2. Enumeration of oriented edges near |eA| P τ˚.

We turn our attention now to the commutant PSL12 of PSL2, namely,
the subgroup of PSL2 generated by the group commutators aba´1b´1,
for a, b P PSL2. As follows immediately from Proposition 1.2, the
quotient PSL2{PSL12 « Z{6.

Proposition 1.3. Consider an element of PSL2 written as a word
W “ W pU, T q in the generators U and T . Then the coset of the element
W in PSL2{PSL12 is given by the residue modulo six of the total exponent
sum of W in the letters U and T´1.

Proof. Each of U and T´1 is infinite order and maps to the generator
of Z{6 « PSL2{PSL12. Since U and T´1 are conjugate in PSL2, the
word W may be written as a product of conjugates of U , which thus
abelianizes to the exponent sum of U in this expression of W times the
generator of Z{6. �

Corollary 1.4. Fix any triangle complementary to Yτ˚ and consider
the six possible orientations on its frontier edges. The labels in PSL2 of
these six oriented edges span the six commutant cosets. Furthermore,
PSL12 corresponds to the collection C Ď τ̃˚ of oriented edges determined
by the following conditions: the doe lies in C; suppose an oriented edge
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e P τ̃˚ lying in C has ideal endpoint v P S1, then every third edge of τ˚
incident on v also lies in C with alternating orientations around v.

Proof. For the first part, consideration of Figure 2 shows that for the
triangle to the right of the doe, we must show that the PSL12-cosets
of I, S, US, T´1 “ T´1, TS, U´1 are distinct. These have respective
expressions in U, T given by I, UT´1U , U2T´1U , T´1, TUT´1U , U´1

with respective total exponent sums in U and T´1 given by 0, 3, 4, 1, 2,
´1 ” 5. The general case follows upon conjugation.

For the second part, we likewise argue for the doe with the general
result then following by conjugation. For the doe we must prove that
SU˘1, SU˘2 R C and SU˘3 P C (since obviously U˘1, U˘2 R C) and
likewise for T instead of U . To this end, we write SU “ UT´1U2,
SU´1 “ UT´1, SU2 “ UT´1U3, SU´2 “ UT´1U´1, SU3 “ UT´1U4

and SU´3 “ UT´1U´2 with respective total exponent sums in U and
T´1 given by 4, 2, 5,´1,6 ” 0, 0 as required. �

The theory of the Ptolemy-Thompson group can be compared in rich-
ness only with the modular group. It is natural to ask what is the wider
class of similar groups that have similar properties as PPSL2pZq. In
the case of the modular group, such a class is embodied into so-called
arithmetic groups, namely, subgroups of PSL2pRq which are commen-
surable with PSL2pZq. They have an important common property with
the modular group: their ideal compactification points in D{Γ are again

Q̂. Thus, the piecewise Γ subgroups of PPSL2pRq, denoted by PΓ, for
Γ arithmetic, might serve as a natural generalization of PPSL2pZq.

The first question one might ask about these groups PΓ is when they
are finitely generated. The answer is contained in the dissertation
of Laget [19]: if and only if Γ is of genus zero. But this is a hint
towards a possible connection with Monstrous Moonshine, where the
genus zero property also plays a key role. The groups Γ that appear
in Monstrous Moonshine also have the width 1 property, namely the
Farey-type tesselation or paving obtained by the action of Γ on the
edge p0,8q in D is 1-periodic.

These three conditions on Γ of arithmeticity, genus zero property and
width 1 restrict the number of possible Γ to the large but finite number
6486 according to [8]. On the other hand, there are 194 conjugacy
classes in the Monster, which give rise to groups Γ with the same
three properties as above, with some identifications that reduce the
number of groups Γ involved in Monster Moonshine to 171 [6]. The
problem that we want to address in this conclusion to the section is:
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How to characterize the Monster Moonshine Γ among arithmetic, genus
0, width 1 groups from the properties of the piecewise Γ groups PΓ.

So the Monster began to show up already in Thompson-like groups.
But to capture it, we shall need other aspects of our universal auto-
morphic triad: The universal Teichmüller space and the corresponding
Lie algebra which we shall review and study in the next sections.

2. Framed holographic coordinates

We shall regard ppsl2 as an appropriate limit of copies of sl2, one copy at
each Farey rational point in S1. To take the limit, we require suitable
coordinates on ideal polygons in which to calculate representations,
and this section is dedicated to this end. Let us begin with the basic
“lambda length” coordinates (sometimes called Penner coordinates)
which we recall from [23, 26].

A decorated ideal n-gon is an ideal polygon of n sides in hyperbolic
space together with n horocycles, one centered at each of its ideal
vertices. One such coordinate is associated to each of the 2n´ 3 edges
in an ideal triangulation of the n-gon including its frontier edges. As
in the Introduction, there is a basic move, called a flip, on the interior
edge of such a triangulation, where one removes the edge so as to
produce a complimentary ideal quadrilateral and then replaces it with
the other diagonal of this quadrilateral to finally produce another ideal
triangulation.

Theorem 2.1. Fix some n ě 3 and consider a decorated ideal n-gon
P in D. Suppose that the frontier edges of P are labeled and choose an
ideal triangulation ∆ of P . Then the moduli space of such decorated
polygons up to the natural action of M:ob is given by the assignment
of one real lambda length λ “

?
exp ` to each unoriented edge e P ∆,

where ` is the signed hyperbolic distance along e between the horocycles
centered at its endpoints, taken with a positive sign if and only if these
horocycles are disjoint. Moreover, the lambda lengths are governed by
the Ptolemy equation

ef “ ac` bd

whenever f arises from a flip on e in the quadrilateral bounded by
a, b, c, d in this counter-clockwise cyclic order, here identifying an edge
with its lambda length for convenience. l
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Beyond the lambda lengths, other basic coordinates are the h-lengths
assigned to any ideal vertex v of a decorated polygon P by taking
the hyperbolic distance along the horocycle centered at v between the
incident frontier edges of P . A fundamental formula illustrated in
Figure 3 relates lambda lengths and h-lengths in a triangle, where λi

λjλk

is the h-length opposite the edge λi, for ti, j, ku “ t0, 1, 2u, and we
here and hereafter again often conflate an edge with its lambda length
for convenience. It follows that the product of h-lengths of consecutive
vertices is the reciprocal square of the lambda length of the edge they
span, i.e.,

`

λi
λjλk

˘` λj
λiλk

˘

“ 1
λ2
k

, so either the triple of lambda lengths

λi, for i “ 0, 1, 2 or the triple of h-lengths λi
λjλk

, for ti, j, ku “ t0, 1, 2u,

give coordinates on the moduli space of M:ob-orbits of decorated ideal
triangles by the previous result.

Figure 3. Three horocycles hi whose centers span a dec-
orated ideal triangle with opposite lambda lengths λi and
adjacent h-lengths λi

λjλk
for ti, j, ku “ t0, 1, 2u.

Corollary 2.2. [Holographic parameters on a decorated polygon]: For
any n ě 3, the moduli space of decorated ideal n-gons P up to the action
of M:ob is parametrized by the assignment of the lambda length of each
frontier edge together with the assignment of the h-length of each vertex
of P . These parameters are constrained by three rational equations.

Proof. The proof is by induction on n, and the basis step n “ 3 was
just discussed. For the induction, choose consecutive edges a, b of P
with intermediate vertex w, let T be the triangular convex hull of ta, bu,
α, β the respective h-lengths in T opposite the endpoints of a, b distinct
from w, and let γ denote the h-length at w of T . Consider also the
h-lengths α1, β1 of the same vertices but in P rather than T .
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Now consider the closure Q of the complement of T in P . Thus Q is
an ideal (n´ 1)-gon which inherits all the moduli of P except that the
respective h-lengths in Q at u and v are taken to be α1´α and β1´ β.
The inductive hypothesis therefore applies to Q with these parameters,
and hence also to P with parameters α1, β1 at u, v. Notice the constraint
that αβ equals the reciprocal square of the lambda length of T X Q.
This constraint in T accounts for dimension reduction to confirm that
the three rational constraints in Q persist in P . �

The significance of this parametrization arises upon consideration of
the Ptolemy groupoid PtpP q of an ideal polygon P whose objects are
the ideal triangulations of P with interior doe, and whose morphisms
are the flips along interior edges, where the flip on the doe e induces an
orientation on the resulting edge and is of order four, whereas the flip
on any other edge is of order two; these are the face relations. The flips
on any two edges which do not lie in the frontier of a common triangle
commute, and these are the commutativity relations. The pentagon
relations arise from the serial sequence of flips alternating between two
edges lying in the frontier of a common triangle, which has order five,
unless one of these edges is the doe, in which case the order is ten. See
[23, 24, 26] for further details.

According to Proposition 4.5 in [24] and remarks in [23, 24], we have

Theorem 2.3. Finite sequences of flips supported on the interior of an
ideal polygon P act transitively on the collection of all its triangulations
with interior doe. It follows that flips generate PtpP q. Furthermore,
a complete set of relations are given by the face, commutativity and
pentagon relations. l

So here finally is the significance of the holographic parameters: Tak-
ing the quotient by flips evidently renders meaningless the notion of
lambda lengths of interior edges, these edges being precisely the data
are obliterated. However, the lambda lengths of its frontier edges and
the h-lengths of its vertices survive flips on interior edges to give pa-
rameters on the quotient. This explains our mechanism of holography.

We must go a bit further still in order to derive useful coordinates. An
ordered triple of pairwise distinct points in the circle is a member of
the configuration space

C3 “ tpu, v, wq P pS1
q
3 : u, v, w are pairwise distinctu,

on which M:ob acts simply transitively according to Proposition 1.1. A
framing on an ideal polygon is the specification of an arbitrary element
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of C3, whose members need not be among the vertices of the polygon.
A framed ideal polygon does not necessarily contain any doe, though
an interior doe in a triangulation evidently determines an associated
framing given by the respective initial and terminal points of the doe
followed by the third vertex of the triangle immediately to the right of
the doe.

An ordered triple pu, v, wq P C3 uniquely determines a unit tangent
vector in D as follows. There is a unique geodesic g asymptotic to u
and v, and the orthogonal projection of w onto g provides a point p P D.
The unit tangent vector to g at p, where g is oriented with w on its
right, finally provides the asserted unit vector associated to pu, v, wq. In
these coordinates on the unit tangent bundle to D, the almost complex
structure is furthermore conveniently described by pu, v, wq ÞÑ pw, x, vq,
where S1 Q x ‰ w is the endpoint of the geodesic through p which is
asymptotic to w.

Remark 2.4. The term “framing” is motivated by instantons, where
the incorporation of framing dramatically simplifies the formulas and
accounts for the gauge group, cf. [3]. The same phenomena occur
here: the framing kills both the M:ob action and the three relations on
holographic parameters in order to produce finally useful coordinates.

To explain the utility of the new coordinates, let us consider lambda
and h-lengths in the upper half space model U . A decorated ideal n-
gon P is uniquely determined by a collection of pairwise disjoint points
si P R̂ “ R Y t8u, for i “ 1, ¨ ¨ ¨ , n, together with a collection of
Euclidean diameters δi of corresponding horocycles and perhaps the
y-coordinate δ8 of a horocycle about 8. Evidently these are actually
coordinates, not just parameters, as they satisfy no relations other than
pairwise inequality among the tsiu

n
1 .

The collection of pairs psi, δiq, for i “ 1, . . . , n, are called framed holo-
graphic coordinates on the space of all decorated ideal polygons, and
these are our desired coordinates. To explain the relationship with
framed polygons, take a fixed copy of D and choose a fixed Cayley
map C´1 : D Ñ U . Thus, given a M:ob-orbit of decorated ideal poly-
gon in D with framing pu, v, wq P C3, there is a well-defined deco-
rated ideal polygon in U gotten by post-composing C with the unique
Möbius transformation mapping C´1puq, C´1pvq, C´1pwq to the respec-
tive points 0

1
, 1

0
, 1

1
.

We have proved
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Theorem 2.5. The moduli space of all framed decorated ideal n-gons
modulo the action of M:ob is given by the pairwise distinct n-tuples tsiu

n
1

of centers of horocycles in R̂ with Euclidean diameters tδiu
n
1 called the

framed holographic coordinates tpsi, δiq : 1 ď i ď nu. The action of
A “ p a bc d q P M:ob on these coordinates is the usual right fractional
linear action si ÞÑ

dsi´b
´csi`a

on the tsiu
n
1 , while the tδiu

n
1 scale by the

derivative of A at s, so δi ÞÑ
δi

pa´csiq2
. l

Proof. The only point requiring clarification is the transformation law
for δ coordinates, which follows from the fact [23, 26] that Euclidean
diameters of horocycles scale by the derivative under a Möbius trans-
formation. �

Remark 2.6. It is unsurprising that our framed holographic coordi-
nates are reminiscent of the dihedral coordinates of [4] since the latter,
which pertain only to the case of planar surfaces, are effectively related
to the antecedent lambda lengths from [23] for any punctured surface,
which are elaborated in the new coordinates.

Turning finally to stabilization given a framing F “ pu, v, wq P C3,
define the matrix

LF “
1

pw ´ vqpu´ wqpv ´ uq

ˆ

vpu´ wq upw ´ vq
u´ w w ´ v

˙

P SL2pRq,

which maps pu, v, wq ÞÑ p0
1
, 1

0
, 1

1
q under the right action, and given a

second framing F̄ , define

LF̄
F “ LF ˝ L

´1
F̄ “

´

aF̄F bF̄F
cF̄F dF̄F

¯

P SL2pRq.

Now, given holographic coordinates tpsi, δiqu
n
1 with framing F “ pu, v, wq

and given ps, δq with s R tsiu
n
1 , there is a unique i˚ P t1, . . . , nu with

si˚ ă s ă si˚`1. For j “ 1, . . . , n` 1, define

ps̄j, δ̄jq “

$

’

&

’

%

psj, δjq, if j ď i˚;

ps, δq, if j “ i˚ ` 1;

psj`1, δj`1q, if j ą i˚,

and given a framing F̄ “ pū, v̄, w̄q on tps̄j, δ̄jqu
n`1
1 , finally let

s1k “ ps̄kqL
F̄
F ,

δ1k “ pδ̄kq
d

ds

ˆ

ps̄kqL
F̄
F

˙

,

for k “ 1, . . . , n` 1.
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Corollary 2.7. In the notation above, the mapping

tpsi, δiqu
n
1 ÞÑ tps1i, δ

1
iqu

n`1
1

describes the stablization of framed holographic coordinates. In particu-
lar, if the framing pu, v, wq “ pū, v̄, w̄q is constant, then the stablization
is given by inclusion and re-indexing. l

Remark 2.8. Furthermore according to [23, 26], the lambda length

between ps, δq and ps1, δ1q for s, s1 ‰ 8 is given by pδδ1q´
1
2 |s´ s1| and

between ps, δq and p8, δ8q is given by pδ8{δq
1
2 . On the level of the

holographic parameters in Proposition 2.2 and in the foregoing nota-
tion, let c denote the lambda length of the edge between si˚ and si˚`1,
and let hi˚ and hi˚`1 denote the respective nearby h-lengths. If a, b
denote the respective lambda lengths of the decorated edges between s
and si˚ , si˚`1, then after stabilization, the h-lengths at si˚ , s and si˚`1

are respectively given by hi˚ `
b
ac

, c
ab

and hi˚`1 `
a
bc

.

3. Framed and decorated homemorphisms of S1

Having developed framings on polygons as an alternative to the speci-
fication of a doe in the previous section, let us revisit from this framed
point of view a basic result, Theorem 2.3 of [24], whose proof we first
recall.

Theorem 3.1. The space

T ess1 “ ttesselations of D with doeu

with topology induced by the Hausdorff topology on Yτ Ă D is naturally
homeomorphic to the space

Homeo` « T ess1

with the compact-open topology.

Proof. Given f P Homeo`, the image τ “ fpτ˚q of the Farey tesselation
is another tesselation of D, and the canonical doe eI P τ˚ maps to the
doe e “ fpeIq of τ 1 “ pτ, eq P T ess1 by definition. For the inverse map
given a tesselation τ 1 “ pτ, eq with doe e P τ , begin by mapping the
respective initial and terminal points of eI to the initial and terminal
points of e. Continue by mapping the further points in τ 0

˚ of the respec-
tive triangles containing |eI | complementary to τ˚ to the left and right
of eI in τ˚ to those to the left and right of e in τ . Proceed in this way, es-
sentially relying on the combinatorial rigidity of a tesselation with doe,
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in order to define f 0 : τ 0
˚ Ñ τ 0, an order-preserving injection between

dense subsets by construction. Using that a tesselation is locally-finite
in D by definition, f 0 is seen to be a surjection as well, which thus
interpolates a homeomorphism fτ 1 P Homeo` called the characteristic
map of τ 1. That the bijective assignment τ 1 Ø fτ 1 is bicontinuous for
the stated topologies is clear, completing the proof. �

A framing on a tesselation τ of D is the specification of an element of
the configuration space C3 of distinct triples in S1, whose members are
not required to lie in τ 0, where the framed version of the basic result is

Corollary 3.2. The space

T essf “ ttesselations of Du
is naturally homeomorphic to T ess1 « Homeo`.

Proof. As before for polygons, a doe e for τ determines an associated
framing, and this gives an inclusion T ess1 Ă T essf . Conversely given
a framing pu, v, wq on the tesselation τ , choose a doe e1 on τ with asso-
ciated framing pu1, v1, w1q, let L1 “ Lu1,v1,w1

u,v,w P M:ob as in the previous
section, and define

τ 1pτ, u, v, w, e1q “ L´1
1 ˝ fτ 11pτ˚q P T ess

1

with its doe induced from eI on τ˚.

We claim that τ 11 “ τ 1pτ, u, v, w, e1q is independent of the choice of doe
e1 and to this end choose another doe e2 on τ with associated framing
pu2, v2, w2q, let τ 12 “ τ 1pτ, u, v, w, e2q and L2 “ Lu2,v2,w2

u,v,w . The compo-

sition pL´1
2 ˝ fτ 12q

´1 ˝ pL´1
1 ˝ fτ 11q lies in PSL2 by Lemma 1.1 since it

leaves τ˚ invariant, and in fact, it must be the identity since it further-
more pointwise fixes u, v, w. It follows that τ 11 and τ 12 have the same
characteristic maps, and hence τ 11 “ τ 12 as tesselations with doe.

The assignment pτ, u, v, wq ÞÑ L´1
1 ˝ fτ 11 is thus a well-defined inverse to

the inclusion T ess1 Ď T essf induced by associated framings, which is
thus a homeomorphism as required. �

Let us emphasize that framings thus replace distinguished oriented
edges in all regards: from determining global affine coordinates in this
section, to the identification of T essf « T ess1 with Homeo`, to the
isomorphisms Pt « T « PPSL2pZq as well as their actions on tessela-
tions.

It is straight-forward to describe the group structure on T essf induced
by composition of homeomorphisms in Homeo` but difficult to visualize
on the level of tesselations, except in special cases.
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Proposition 3.3. Consider framings FX on the Farey tesselation τ˚
associated to does eX for X PPSL2. Then

pτ˚,FAq ˝ pτ˚,FBq “ pτ˚,FBAq,

with the analogous statement holding for any tesselation. l

Next we introduce decorated versions of the foregoing spaces and begin
by defining

ČT essf “ tdecorated and framed tesselations of Du,

where a decoration on a tesselation τ is the specification of one horocy-
cle centered at each point of τ 0, so there is a natural forgetful mapping

to ČT essf Ñ T essf , whose fiber can be identified with Rω.

Taking the quotient by the M:ob-action on framings, we have

T essf{M:ob « T essn “ ttesselations τ : 0
1
, 1
1
, 1
0
P τ 0

u ,

ČT essf{M:ob « ČT essn “ tdecorated tesselations τ : 0
1
, 1
1
, 1
0
P τ 0

u

where the superscript n stands for normalized. Notice that the Farey
tesselation τ˚ is itself already normalized.

As for the analogous elaboration of circle homemorphisms, first define
spaces

Homeon` “ tf P Homeo` : fptq “ t for t “ 0
1
, 1
1
, 1
0
u

of normalized homeomorphisms, so T essn « Homeon` as Homeon`-
spaces. Next define the decorated version

ČHomeon` “ tpf̃ , fq : f P Homeon` covered by f̃ : ČTessn Ñ ČTessnu

with the natural group structure, making pf̃ , fq ÞÑ f a group homo-

morphism ČHomeon` Ñ Homeon`. There is analogously an isomorphism
ČHomeon` «

ČT essn of ČHomeon`-spaces, where (identity,identity) corre-
sponds to the Farey tesselation with its canonical decoration τ̃˚, namely,
the one determined by the condition that the horocycles at endpoints
of any common geodesic are taken to be osculating.

This leads to the commutative cube
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ČT essf ČHomeo`

T essf Homeo`

ČT essn ČHomeon`

T essn Homeon`

«

«

«

«

where ČHomeo` is defined by pull-back, the vertical maps are principal
M:ob-bundles, and the maps out of the plane of the page are Rω-bundles.

Theorem 3.4. Lambda lengths on edges of τ˚ give global affine co-

ordinates on ČT essn Ď Rτ˚
` . Indeed, there is an explicit construction

of a M:ob-orbit of tesselations of D with doe from the assignment of a
putative lambda length to each edge of τ˚. l

The proof of this result as Theorem 3.1 in [24] provides the explicit
recursive construction of a M:ob-orbit of decorated tesselations of D
with doe from the assignment of a putative lambda length to each
edge of τ˚, in analogy to the proof of Theorem 2.1. The canonical
decoration τ̃˚ on τ˚, or in other words the identity element of the group
ČHomeon`, corresponds to taking all these lambda length coordinates

equal to unity. In the classical setting of a suitably decorated punctured
surface of finite topological type uniformized by a torsion free subgroup
of finite-index in PSL2, or a so-called punctured arithmetic surface,
the classical lambda length coordinates on decorated Teichmüller space

from [23] are likewise all unity, so this identity element in ČHomeon` may
be regarded as the universal punctured arithmetic surface.

Remark 3.5. It is not difficult to descend these lambda length coor-
dinates on the bottom-back of the previous commutative cube to its
bottom-front by assigning cross ratios ac

bd
, or shear coordinates lnac

bd
,

instead of lambda lengths e to each edge, where e is the diagonal of the
quadrilateral with frontier edges a, b, c, d in this cyclic order; see [24].

We next discuss framed tesselations as limits of framed polygons. To
this end, notice that there is the natural linear ordering on Q̂ arising
from the lexicographic ordering on pairs given by Farey generation
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followed by the counter-clockwise order in S1 starting from 0
1
, and there

is thus an induced bijective enumeration Zě0 Ñ Q̂.

Remark 3.6. This is the raison d1être for the Farey construction. In-
deed, the mineralogist Farey published without proof this solution to
the long-standing open problem of producing an explicit bijective enu-
meration of the rational numbers, and the proof was essentially imme-
diately supplied by Cauchy.

Construction 3.7. Suppose that S Ď S1 is a countable dense sub-
set enumerated by the bijection µ : Zě0 Ñ S. Construct a function

fµ : Q̂Ñ S as follows. For the basis step of our recursive construction,
define fµp

0
1
q “ µp0q and fµp

1
0
q “ µp1q P S1. Recursively suppose that

the images of the Farey points of generation at most g ě 0 have been de-
fined. This collection of image points decomposes S1 into 2g`1 open cir-
cular intervals. Each such interval with endpoints x “ fµp

p
q
q, y “ fµp

r
s
q

contains a point z P S of least index µ´1pzq, and we define fµp
p`r
q`s
q “ z

in this case, thereby extending the function fµ to generation g` 1. We
furthermore derive a collection τµ “ tfµpeq : e P τ˚u of geodesics with
doe fµpeIq, where fµpeq denotes the geodesic in D with endpoints the
fµ-image of the endpoints of e P τ˚.

Suppose that µ : Zě0 Ñ S is a bijective enumeration of a countable
dense subset S Ď S1. A circular interval I Ď S1 with endpoints x, y P S
is said to be solid provided µ´1pzq ą maxtµ´1pxq, µ´1pyqu for every z
in the interior of I. The enumeration µ is said to be convergent if every
infinite proper nested family I0 Ľ I1 Ľ ¨ ¨ ¨ of solid open intervals is
disjoint from S, that is, S X

Ş

jě0 Ij “ H.

For any e P τ˚ other than the doe, exactly one of the circular intervals in
S1 complementary to its endpoints is solid, and the Farey enumeration
of Q̂ is convergent by definition of the Farey ordering. We may always
assume that an enumeration of a countable dense subset is indexed by
the Farey tesselation in its canonical linear ordering.

Proposition 3.8. For any convergent bijective enumeration Q̂ Ñ S
of a countable dense subset S Ă S1, Construction 3.7 yields a bijection
fµ : Q̂ Ñ S and a tesselation τµ “ fµpτ˚q with doe. Conversely, if

fµ : Q̂ Ñ S is a bijection, then τµ is a tesselation, and µ must be
convergent.

Proof. Suppose that µ is convergent and z P S. For g ě 0, let Ig
denote the component of S1´tfµpxq : x P Q̂ is of generation at most gu
which contains z. It follows that I0 Ľ I1 Ľ ¨ ¨ ¨ is a nested family
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of solid intervals. This sequence must terminate, for otherwise z P
S X

Ş

gě0 Ig ‰ H contradicts convergence of µ. Thus, fµ maps onto S
and is injective by construction, and so is a bijection.

To see that τµ “ fµpτ˚q is locally finite, suppose in order to derive a
contradiction that a sequence of points in ei “ fµpe

1
iq, for i ě 1 and

e1i P τ˚, accumulates at some point in D. It follows that ei limits to
some geodesic e8 in D. Since the teiu are pairwise disjoint in D by
construction, we may assume that they all lie on one side of e8. By
density of S in S1, there is some z P S on the other side of e8, and
it lies in the fµ-image of some generation g point of Q̂ by the already
established surjectivity. Taking a further subsequence if necessary, the
complementary intervals to the endpoints of ei that contains z are
solid. The generation of these endpoints is therefore bounded above by
g, so that teiu is a finite set, as required. The same argument shows
that each component of D´Yτµ is an ideal triangle, so τµ is indeed a
tesselation.

Conversely, suppose that fµ : Q Ñ S Ď S1 is surjective and z P
S X

Ş

jě1 Ij for some nested sequence I0 Ľ I1 Ľ ¨ ¨ ¨ of solid intervals
with endpoints in S. The point z P S must a fortiori have some fixed
generation, which bounds above the generations of the endpoints of
the intervals. Since there are only finitely many points of any given
generation, the sequence must terminate, as required. �

It is an easy matter now to stabilize nested, decorated and framed ideal
polygons:

Theorem 3.9. Consider a nested sequence

P0 Ď P1 Ď ¨ ¨ ¨ Ď Pg Ď Pg`1 Ď ¨ ¨ ¨

of ideal polygons with a common framing F P C3, where P0 is a geo-
desic, Pg has 2g`1 sides for g ě 1, and Pg`1 ´ Pg consists of 2g ideal
triangles, for all g ě 0. If the union of the ideal vertices of all the
polygons is dense, then there is a well-defined limiting tesselation also
framed by F , and any such is conversely given by such a limit. The
analogous statement holds for decorated framed polygons and decorated
framed tesselations. Moreover, the tuple of framed holographic coordi-
nates

ps 0
1
, δ 0

1
q, ps 1

0
, δ 1

0
q, ps 1

1
, δ 1

1
qps´ 1

1
, δ´ 1

1
q, . . .
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in pR̂ ˆ Rą0q
ω of decorated polygons in the weak topology given in

their natural Farey ordering, where the tsiu are required to be pair-

wise distinct and Ytsiu to be dense in R̂, provide global coordinates on
ČT essf « ČHomeo`. l

4. The Lie algebra ppsl2

Let sl2 “ sl2pRq denote the usual Lie algebra of traceless two-by-two
real matrices with generators e “ p 0 1

0 0 q, f “ p 0 0
1 0 q and h “

`

`1 0
0 ´1

˘

and Lie brackets rh, es “ 2e, rh, f s “ ´2f and re, f s “ h. (Context
will distinguish the notational inconvenience of determining between
e P sl2 or e P τ̃ .)

Exponentiating
`

α β
γ ´α

˘

P sl2 yields a one-parameter family of diffeo-
morphisms giving rise to a vector field on the circle which is given
by

tpγ ` βq cos θ ` 2α sin θ ` pγ ´ βqu
B

Bθ
,

where B

Bθ
denotes the constant unit vector field on S1 and θ its usual

angular coordinate. A vector field A on S1 arising in this way is called
a (global) sl2 vector field, and we write A P sl2 in this case. The values
of an sl2 vector field at any three distinct points in S1 determine it
uniquely. In case two vector fields ϑ1 and ϑ2 on S1 differ by a global
sl2 vector field, then we shall write ϑ1

.
“ ϑ2.

More generally, a vector field ϑ on S1 is a piecewise sl2 vector field
if S1 decomposes into finitely many open connected circular intervals
with pairwise disjoint interiors whose endpoints are among the rational
points of S1 so that ϑ restricts on the interior of each such interval to
some global sl2 vector field. ppsl2 denotes the collection of all such
vector fields including the possibility of no breakpoints, namely sl2 Ď
ppsl2 itself. The endpoints of the maximal such intervals are called the
breakpoints of ϑ itself. There are no restrictions on the behavior of ϑ
at its breakpoints (except that the breakpoints, if any, are rational),
and indeed ϑ P ppsl2 may not even be defined at its breakpoints in
general, in which case its value is implicitly given as the average of the
two one-sided limits.

Remark 4.1. Let us parenthetically recall a seminal result of Dirichlet,
which he proved in Berlin at age 24 thereby besting the top mathemati-
cians of his day: the Fourier series of a piecewise smooth function with
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finitely many pieces converges pointwise to the function itself except
at the breakpoints where it is the average of its two one-sided limits.

A bracket rϑ1, ϑ2s P ppsl2 of two ϑ1, ϑ2 P ppsl2 is defined in the nat-
ural way: the resulting vector field has preliminary breakpoints given
by the union of those of ϑ1 and those of ϑ2, and on each complemen-
tary component in S1 of this union, the bracket is given by the usual
bracket on sl2. It may happen that the actual breakpoints of rϑ1, ϑ2s

form a proper subset of the preliminary breakpoints since we demand
maximality of intervals complementary to the actual breakpoints.

Consider breakpoints ˘1,˘i P S1 Ď C, so the complementary intervals
lie in respective quadrants I-IV in the complex plane enumerated as
usual in the counterclockwise sense beginning with quadrant I where
both coordinates are non-negative, and define

Λpsq “

$

’

’

’

&

’

’

’

%

`

s s´s´1

0 s´1

˘

, on quadrant I;
`

s´1 0
s´s´1 s

˘

, on quadrant II;
`

s´1 0
s´1´s s

˘

, on quadrant III;
`

s s´1´s
0 s´1

˘

, on quadrant IV,

for s P R´t0u, a one-parameter family in PPSL2pRq. It is not difficult
to check that each Λpsq is moreover once-continuously differentiable on
S1 including at its breakpoints.

Since lambda lengths are M:ob-invariant, it is clear that Λpsq leaves in-
variant all lambda lengths on τ˚ with any decoration, except the lambda
length of the doe, which it scales by a factor s. Thus, Λpsq is a one-
parameter family in PPSL2pRq scaling just one affine lambda length
coordinate, or in other words a multiplicative coordinate deformation.

More specifically, Λpsq P PPSL2pRq is a one-parameter family which
on each circular interval determined by the intersection of a quadrant
with S1 is a hyperbolic transformation whose axis is spanned by the
endpoints of the interval. In the parlance of the Thurston school, an
earthquake is an element of PPSL2pRq with two pieces, one of which is
the identity and the other is a hyperbolic transformation whose axis is
asymptotic to the breakpoints. Thus, Λpsq is a special one-parameter
family of compositions of four earthquakes, where the four hyperbolic
translations are chosen in order to produce homeomorphisms Λpsq that
are once-continuously differentiable on S1.

The derivative of Λpsq with respect to s at s “ 1 is the extremely
special element ϑ P ppsl2 illustrated in Figure 4 and called the mother
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wavelet. It is the basic building block of ppsl2. Justification for the
appellate “wavelet” used here is given in [27].

0 1 2 3 4 5 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 ≤ θ ≤ 2π

Figure 4. The mother wavelet ϑ.

Direct computation confirms that the mother wavelet ϑ is given by

ϑ “

$

’

’

’

&

’

’

’

%

`h` 2e, in quadrant I;

´h` 2f, in quadrant II;

´h´ 2f, in quadrant III;

`h´ 2e, in quadrant IV

and vanishes at each of its breakpoints, where it is once-continuously
differentiable. Notice that in general if an element of ppsl2 is twice
continuously differentiable at a breakpoint, then it is not actually a
breakpoint at all, that is, if two elements of M:ob agree to second order
at a point, then they must coincide.

Let us employ the adjoint action on each piece and define the (arith-
metic) wavelets

ϑApθq “ A´1ϑApθ.AqA, for A P PSL2,

where the right A-action on θ P S1 is the natural one. A short cal-
culation shows that ϑS “ ϑI “ ϑ, and therefore if A`, A´ correspond
to the two different orientations on a common edge, i.e., if A¯ “ SA˘
then ϑA` “ ϑA´ . It follows that for any unoriented edge we have
|eA| “ |eSA|, and there is a corresponding vector field ϑ|eA| “ ϑA “ ϑSA.

Now for each A P PSL2, define a corresponding XA P sl2 where XA and
ϑA take the same values at the three points ˘1,´i P S1, or in other
words at Farey points 0

1
, 1

0
, 1

1
, and define the normalization

ϑ̄A “ ϑA ´XA, for A P PSL2.

It is not difficult to compute XA explicitly for A P PSL2.
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Here and herein we shall deviate slightly from the notation of previous
works, which we first recall.

Following [20, 26] for each A P PSL2, define for each A P PSL2 the
infinite sums

φ̄A “
ÿ

ně0

ϑ̄UnA and φ̄˚A “
ÿ

nď0

ϑ̄UnA

respectively called normalized left and right fans and the further infinite
sums

ψ̄A “
ÿ

ně0

n ϑ̄UnA and ψ̄˚A “
ÿ

nď0

n ϑ̄UnA

respectively called normalized left and right hyperfans. We have added
bars to the notation for normalized (hyper)fans from earlier work and
keep the undecorated symbol for more natural normalizations to be
introduced in the next section. It is not difficult to compute that
ř

ně0XUnA diverges thus explaining the need for normalization.

Assuming for the moment that these sums converge, as we shall discuss
presently, there is the following prescribed consequence of this “hyper-
fan formalism” given by infinite sums of infinite sums in this way.

Proposition 4.2. For each A P PSL2, we have

ψ̄A “
ÿ

ně1

φ̄UnA and ψ̄˚A “
ÿ

nă0

φ̄˚UnA,

as well as
ψ̄A ´ ψ̄UA “ φ̄UA and φ̄A ´ φ̄UA “ ϑA,

ψ̄˚UA ´ ψ̄
˚
A “ φ̄˚A and φ̄˚UA ´ φ̄

˚
A “ ϑ˚A

l

Corollary 4.3. For each A P PSL2, equating ϑ̄A “ ϑ̄SA gives the so-
called USA relation

ψ̄UA ´ 2ψ̄A ` ψ̄U´1A “ ψ̄USA ´ 2ψ̄SA ` ψ̄U´1SA,

ψ̄˚UA ´ 2ψ̄˚A ` ψ̄
˚
U´1A “ ψ̄˚USA ´ 2ψ̄˚SA ` ψ̄

˚
U´1SA.

l

The formulas in Proposition 4.2 and Corollary 4.3 thus follow immedi-
ately from the hyperfan formalism and the symmetry ϑ̄A “ ϑ̄SA. The
catch is showing that the putative (hyper)fans converge. However, no-
tice that convergence of

ř

nxn implies that of
ř

xn, so the hyperfan
formalism follows from convergence of hyperfans alone.
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In the remainder of this section, we shall recall results from [20] which
in particular give sense to the normalized (hyper)fans as elements of
ppsl2, and indeed converge pointwise uniformly on compacta. The
harmonic analysis of normalized hyperfans is discussed in Appendix A.

The first big surprise is that in fact normalized fans and hyperfans
have only finitely many breakpoints and lie in ppsl2, even though they
are defined by infinite sums. Indeed, a fan always has exactly three
breakpoints and is described by a continuous but not differentiable
function on the circle, and a hyperfan always has exactly two break-
points described by a function on the circle which is discontinuous at
exactly one point. Such is the nature of telescoping for normalized
(hyper)fans, which are not enjoyed by unnormalized (hyper)fans.

For example, φ̄U takes values ´2e on quadrant I, 2ph´ fq on quadrant
II and vanishes on quadrants III and IV, while ψ̄I takes values ´2e on
quadrants I and II and vanishes on quadrants III and IV. In fact, one
finds that ψ̄I ` ψ̄

˚
I is the global sl2 vector field ´2e, and together with

the fact that ψA
.
“ A´1ψIA by construction, it follows that the span of

the left hyperfans together with sl2 contains the right hyperfans. We
shall therefore henceforth restrict our attention to the former and drop
the appellate “left” tacitly taking only left fans and hyperfans. There
is an entirely parallel discussion using right fans and hyperfans.

Just as one might suspect, bracketing destroys one degree of smooth-
ness. Brackets of normalized wavelets are similarly expressed as finite
sums of normalized fans while brackets of normalized fans are expressed
in terms of normalized hyperfans.

The second big surprise is that here the algebra closes with the
additive basis of normalized left hyperfans, i.e., brackets of hyperfans
are finite linear combinations of hyperfans.

Summarizing several of the main achievements in [20], to which we
refer the reader for proofs of the first two big surprises, we have

Theorem 4.4. The set of normalized left hyperfans together with the
generators e, f, h P sl2 give an additive spanning set for the vector space
ppsl2 which is closed under bracketing. Moreover, the collection of USA
relations in Corollary 4.3, one for each edge of τ˚, gives a complete set
of relations among normalized left hyperfans. l

In fact, there is an error in the proof in [20] that normalized left hy-
perfans span ppsl2 which is corrected in Theorem 2.1 of [27] as follows.

Theorem 4.5. Define orientations on the edges of τ˚ with the orienta-
tion from 0

1
to 1

0
as usual and otherwise always pointing from lower to
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higher generation in the Farey enumeration, and denote this set of ori-
ented edges O Ă τ̃˚. Then B “ tψ̄A : A P Ou together with e, f, h P sl2
is an additive basis for ppsl2. l

5. The new formalism for ppsl2

The normalization of vector fields in the previous section was neces-
sary in order to guarantee their pointwise convergence and assure the
hyperfan formalism. However from the point of view of representation
theory, the failure of exact equality in favor of equality ψ̄A

.
“ A´1ψ̄IA

up to global sl2 vector fields introduces untoward complications. Fur-
thermore from the point of view of physics, the treatment of sl2 in the
previous section represents merely an additional copy of sl2 essentially
decoupled from the higher Fourier modes, not the creation/annihilation
and energy operators one might anticipate.

Let us remedy both of these deficiencies by defining (unnormalized) (or
really differently normalized) hyperfans as follows:

ψI “

#

e, on quadrants I and II;

0, on quadrants III and IV,

thus dropping the pre-factor ´2 from before and furthermore guaran-
teeing the desired conjugacy formula by defining

ψApθq “ A´1ψIpθ.AqA, for A P PSL2.

It thus follows that B´1ψAB “ ψAB.

The third big surprise, which is new to this paper, is that sl2 is
actually in the finitely supported span of these new hyperfans, as we
next prove.

Proposition 5.1. For A “

ˆ

a b
c d

˙

P PSL2, define

ΨA “ ψSTA ´ 2ψSA ` ψST´1A ´ tψUA ´ 2ψA ` ψU´1Au.

Then we have the identity

ΨA “ tcpd` bq ` apd´ bquh ` pd2
´ b2

` 2bdqe ` pa2
´ c2

´ 2acqf.

In particular

ΨI “ h` e` f, ΨT “ 2e` f, ΨU´1 “ e` 2f,
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whence
¨

˝

h
e
f

˛

‚“
1

3

¨

˝

3 ´1 ´1
0 2 ´1
0 ´1 2

˛

‚

¨

˝

ΨI

ΨT

ΨU´1

˛

‚

Proof. The reader will recognize ΨA as the difference of the two sides
of the USA relation which holds for normalized hyperfans and fails by
a global sl2 for unnormalizaed hyperfans. The proposition follows from
direct computation using that γ ´ 2β “ 2α ´ δ, where

α “ A´1eA “ cdh` d2e´ c2f, β “ pSAq´1eSA “ abh` b2e´ a2f,

γ “ pUAq´1epUAq “ pc` aqpd` bqh` pd` bq2e´ pc` aq2f

“ pSTAq´1epSTAq,

δ “ pU´1Aq´1epU´1Aq “ pc´ aqpd´ bqh` pd´ bq2e´ pc´ aq2f

“ pST´1Aq´1epST´1Aq.

�

We shall refer to the expression for ΨA in terms of e, f, h given in
Proposition 5.1 as the USA identity for A P PSL2.

Theorem 5.2. The hyperfans tψA : A P PSL2u span ppsl2, a complete
set of relations on them is given by the USA identities as A varies over
PSL2, and tψA : A P Ou provides a basis for ppsl2, where O Ă τ̃ is
given in Theorem 4.5.

Proof. In the old formalism, the span of normalized hyperfans together
with e, f, h was shown to be all of ppsl2. This contains all unnormalized
hyperfans by definition; indeed, ψA

.
“ ψ̄A, and the reverse inclusion

follows from the last part of the previous proposition. For the second
assertion, suppose that

ř

αAψA “ 0 is a finite linear relation among
the unnormalized hyperfans. It follows that then

ř

αAψ̄A
.
“ 0, and

since both sides of this equation vanish at 0
1
, 1

0
, 1

1
, it must be that in

fact
ř

αAψ̄A “ 0, whence this relation is a consequence of the USA
relations by Theorem 4.4. A non-trivial finite linear relation among
tψA : A P Ou likewise gives such a relation on tψ̄A : A P Ou, which
would contradict Theorem 4.5. �

Another favorable aspect of the new formalism is that the structure
constants of ppsl2 admit an explicit if not entirely trivial expression,
and it is to this end that we dedicate the remainder of this section.
The next two results follow from direct and elementary computation,
which are left to the reader.
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Proposition 5.3. In the basis e, f, h for sl2, the adjoint x ÞÑ A´1xA

of A “

ˆ

a b
c d

˙

P sl2 is given by the matrix

MA “

¨

˝

d2 ´b2 2bd
´c2 a2 ´2ac
cd ´ab ad` bc

˛

‚,

and so

M´1
A “MA´1 “

¨

˝

a2 ´b2 ´2ab
´c2 d2 2cd
´ac bd ad` bc

˛

‚.

l

Just as ψI takes values e P sl2 on quadrants I and II and vanishes
on quadrants III and IV, we have the following analogous result for
f, h P sl2.

Proposition 5.4. ψS ` f and ψI ` ψUS ´ ψS ´ ψU´1 ´ f each have
support on quadrants I and II with the former taking there the value f
and the latter the value h. l

Now in order to compute the bracket rψB, ψAs, for A,B P PSL2, it
suffices to compute simply rψI , ψAs, since we have

p˚q rψB, ψAs “ rB´1ψIB,ψAs “ B´1
rψI , ψAB´1sB.

To this end with A “

ˆ

a b
c d

˙

, there are four essential cases:

Case 1: 0 ď ´d
c
ă ´ b

a
, so eA lies in the bottom half plane oriented

from right to left.

Case 2: 0 ď ´ b
a
ă ´d

c
, so eA lies in the bottom half plane oriented

from left to right.

Case 3: ´d
c
ă ´ b

a
ď 0, so eA lies in the top half plane oriented from

left to right.

Case 4: ´ b
a
ă ´d

c
ď 0, so eA lies in the top half plane oriented from

right to left.

In each case, the support of ψA lies to the left of eA by definition. In
Case 1, the supports are therefore disjoint, and so rψI , ψAs “ 0. In
Case 2, the support of ψI is contained in the support of ψA, and the
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bracket is supported on quadrants I and II taking value ´c2h ` 2cde,
which is given according to Proposition 5.4 by

´c2
pψI ` ψUS ´ ψS ´ ψU´1 ´ fq ` 2cdψI

“ cp2d´ cqψI ` c
2
pψS ` ψU´1 ´ ψUS ` fq.

Case 3 is more challenging requiring Proposition 5.3. We compute

M´1
A

¨

˝

2cd
0
´c2

˛

‚“

¨

˝

2acpad` bcq
´4c3d

´c2p3ad` bcq

˛

‚,

whence

rψI , ψAs “ 2acpad` bcqψA ´ 4c3dpψSA ` A
´1fAq

´ c2
p3ad` bcqtψA ` ψUSA ´ ψSA ´ ψU´1 ´ A´1fAu.

Case 4 is still a bit more involved since rψI , ψAs perhaps has two compo-
nents and can be expressed as the difference µ´ν, where µ is supported
on quadrants I and II taking value 2cde´c2h, and ν is supported on the
region to the left of eSA and taking the same value there. Meanwhile,
Proposition 5.4 gives the expression

µ “ cp2d´ cqψI ` c
2
pψS ` ψU´1 ´ ψUS ` fq

as in Case 2. For the other term ν, we compute

M´1
SA

¨

˝

2cd
0
´c2

˛

‚“

¨

˝

c2 ´d2 ´2cd
´a2 b2 2ab
ac ´bd ´pad` bcq

˛

‚

¨

˝

2cd
0
´c2

˛

‚

“

¨

˝

4c3d
´2acpad` bcq
c2p3ad` bcq

˛

‚,

whence

ν “4c3dψSA ´ 2acpad` bcqpψA ` pSAq
´1fSAq

` c2
p3ad` bcqtψSA ` ψUA ´ ψA ´ ψU´1SA ´ pSAq

´1fSAu.

Putting all this together, a little further computation finally proves
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Theorem 5.5. For A “

ˆ

a b
c d

˙

P PSL2, we have

rψI , ψAs “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0, if 0 ď ´d
c
ă ´ b

a
;

cp2d´ cqψI ` c
2pψS ` ψU´1 ´ ψUS ` fq,

if 0 ď ´ b
a
ă ´d

c
;

2acpad` bcqψA ´ 4c3dpψSA ` A
´1fAq

´ c2
p3ad` bcqtψA ` ψUSA ´ ψSA ´ ψU´1 ´ A´1fAu,

if ´ d
c
ă ´ b

a
ď 0;

cp2d´ cqψI ` c
2
pψS ` ψU´1 ´ ψUS ` fq

´ 4c3dψSA ` 2acpad` bcqpψA ` pSAq
´1fASq

´ c2
p3ad` bcqtψSA ` ψUA ´ ψA ´ ψU´1SA ´ pSAq

´1fASu,

if ´ b
a
ă ´d

c
ď 0.

l

It is worth noting that rψI , ψAs “ 0 if c “ 0 and that to complete
the calculation of brackets in the basis tψA : A P Ou, one must still
conjugate as in equation (*) and finally use the constructive proof of our
Theorem 5.2 given in [20] to express several of the resulting hyperfans
in terms of this basis. The point, however, is that brackets are explicitly
computable in the new formalism in contrast to the old.

6. Three 2-forms

As before, let B

Bθ
denote the counter-clockwise unit vector field on S1

in its usual angular coordinate θ and Ln “ ieinθ B
Bθ

, for n P Z, de-
note the usual generators for the Witt algebra, satisfying for m,n P Z
the bracket identity rLm, Lns “ pm ´ nq Lm`n. The Witt algebra
is naturally regarded [30] as the tangent space at the identity to the
manifold Diff` “ Diff`pS1q of real-analytic orientation-preserving dif-
feomorphisms of S1.

As the tangent space to Homeo` Ě Diff` as in Section 3, ppsl2 con-
tains the Witt algebra; this inclusion is explicitly computed in Theorem
A.1. Conversely for A P PSL2, the Fourier expansion of the normalized
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wavelets ϑ̄A (given in Theorem A.2) or hyperfans ψA (given in Proposi-
tion A.4), describes how ppsl2 lies inside the topological closure of the
Witt algebra.

The quotient manifold Diff`{M:ob, has tangent space at the identity
given by the span of Ln, for n2 ą 1, that is, the span of e, f, h P
sl2 is naturally identified with the span of L´1, L0, L`1. As likewise
follows from Section 3, the quotient Homeon` « Homeo`{M:ob can be
identified with the space T essn of all normalized tesselations of D, and

the natural bundle ČT essn Ñ T essn over this space admits global affine
lambda length coordinates.

There are the following several 2-forms defined on these spaces, which
are compared in this section:

‚ The (pull-back from T essn of the) universal Weil-Petersson (WP)

Kähler 2-form [25, 24] to ČT essn « ČHomeon` is given by

ω “ ´2
ÿ

dloga^ dlogb ` dlogb^ dlogc ` dlogc^ dloga,

where the sum is over the set of all triangles complementary to τ˚ in
D and the triangle has edges, here conflated with lambda lengths as
usual, in the clockwise order a, b, c in the orientation on the underlying
surface. This sum converges provided the homeomorphism is C

3
2
`ε

smooth on S1, cf. [32].

‚ The Kirillov-Kostant (KK) form [18, 32] is defined on Diff`/M:ob by

κapLm, Lnq “ apm3
´mqδm,´n,

where a P C and δ is the Kronecker delta function.

‚ The natural loop-algebra (LA) 2-cocycle [13] is defined by

γpψ1, ψ2
q “

1

2π

ż 2π

0

tr

ˆ

ψ1
pθq ¨ dψ2

pθq

˙

,

where ψ1, ψ2 P sl
S1

2 and tr denotes the trace. Our algebra ppsl2 is a
sub-algebra of a certain completion of slS

1

2 on which this 2-cocycle still
makes sense, and indeed integration by parts provides in this case the
explicit expression

γpψ1, ψ2
q “

1

2

ÿ

θPΠpψ2q

tr

"

rψ1
pθ`q ` ψ1

pθ´qs rψ2
pθ`q ´ ψ2

pθ´qs

*

for the 2-cocycle γ on ppsl2, where Πpψq Ă Q̂ Ă S1 denotes the set
of breakpoints of ψ and θ˘ denotes a point slightly beyond

before
the point
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θ P Πpψq in the counter-clockwise orientation on S1. One can verify
directly that γ is a 2-cocycle by checking skew-symmetry and the 2-
cocycle property, which follows from the 2-cocycle property for the first
expression in this paragraph for γ on slS

1

2 .

In fact, these three 2-forms are pairwise identical up to overall con-
stants, as we shall discuss. The constant for WP and LA will be com-
puted here, and the constant for KK and WP was already calculated
in Theorem 5.5 of [24], namely, we have

Theorem 6.1. The WP Kähler 2-form ω and the KK form κa are
related by

ω “ κa, for a “ 2πi.

The computational proof in [24] using the basis of normalized arith-
metic wavelets is involved and delicate depending upon the constraints
on small Fourier modes described in Remark A.3.

Theorem 6.2. The WP Kähler 2-form ω and the LA cocycle γ are
related by

γ “ ´4ω.

Proof. Recall that Πpψq Ă Q̂ Ă S1 denotes the (finite) set of break-
points of ψ P ppsl2 and let ϑ̄A “ ϑA ´ XA, i.e., ϑ̄A is the normalized
arithmetic wavelet and ϑA the unnormalized one. In particular, we
have

Πpϑ̄Aq “ ΠpϑAq “ Πpϑq.A, for A P PSL2,

and moreover

γpϑ̄A, ϑ̄Bq “ γpϑ̄A, ϑBq, for A,B P sl2,

since XB is both added and subtracted in a difference of ϑ̄B-values in
their contribution to γ. Thus

γpϑ̄A, ϑ̄Bq “ γpϑA, ϑBq, for A,B P sl2

as well by skew symmetry of γ.
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We first claim that γpϑ̄A, ϑ̄Bq “ 0 if ϑ̄A takes a common value YA P sl2
at each point of Πpϑ̄Bq. To see this, we compute

γpϑ̄A, ϑ̄Bq “ γpϑ̄A, ϑBq “ γpYA, ϑBq

“
ÿ

θPΠpϑBq

tr

"

YA ¨ rϑBpθ
`
q ´ ϑBpθ

´
qs

*

“
ÿ

θPΠpϑq

tr

"

YA ¨ rϑBpθ
`.Bq ´ ϑBpθ

´.Bqs

*

“ tr
ÿ

θPΠpϑq

YA

"

B´1
rϑpθ`q ´ ϑpθ´qsB

*

“ tr

"

YAB
´1

ˆ

ÿ

θPΠpϑq

rϑpθ`q ´ ϑpθ´qs

˙

B

*

“ tr

"

YAB
´1
r4e` 2pf ´ e´ hq ´ 4f ` 2ph` f ´ eqsB

*

“ tr YAB
´10B

“ 0.

It remains to consider γpϑ̄A, ϑ̄UAq and γpϑ̄A, ϑ̄TAq, and we begin with
the former. Let ξB, ηB denote the respective initial and terminal point
of eB “ eI .B, where eI is the doe of τ˚ as usual, so

Πpϑ̄Aq “ tξA, ηA, ηU´1A, ηUAu,

Πpϑ̄UAq “ tξA, ηA, ηUA, ηU2Au.

Thus

γ “ γpϑ̄A, ϑ̄UAq “ γpϑA, ϑUAq

“
1

2

ÿ

θPΠpϑUAq

trtrϑApθ
`
q ` ϑApθ

´
qsrϑApθ

`
q ´ ϑApθ

´
qsu,
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so

2γ “ tr

$

’

’

’

’

&

’

’

’

’

%

rϑApξ
`.Aq ` ϑApξ

´.Aqs rϑUApξ
`.Aq ´ ϑUApξ

´.Aqs

`rϑApη
`.Aq ` ϑApη

´.Aqs rϑUApη
`.Aq ´ ϑUApη

´.Aqs

`rϑApη
`.UAq ` ϑApη

´.UAqs rϑUApη
`.UAq ´ ϑUApη

´.UAqs

`2rϑApη
`.U2Aqs rϑUApη

`.U2Aq ´ ϑUApη
´.U2Aqs

,

/

/

/

/

.

/

/

/

/

-

“ tr

$

’

’

’

’

&

’

’

’

’

%

rϑpξ`q ` ϑpξ´qs rpUq´1ϑpξ`.U´1
qU ´ pUq´1ϑpξ´.U´1

qU s

`rϑpη`q ` ϑpη´qs rpUq´1ϑpη`.U´1
qU ´ pUq´1ϑpη´.U´1

qU s

`rϑpη`.Uq ` A´1ϑpη´.Uqs rpUq´1ϑpη`qU ´ pUq´1ϑpη´qU s

`2rϑpη`.U2
qs rpUq´1ϑpη`.UqU ´ pUq´1ϑpη´.UqU s

,

/

/

/

/

.

/

/

/

/

-

“ tr

$

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

„

`

´1 0
´2 1

˘

` p ´1 0
2 1 q



p 1 0
´1 1 q

„

`

´1 0
´2 1

˘

´ p ´1 0
2 1 q



p 1 0
1 1 q

`

„

p 1 2
0 ´1 q `

`

1 ´2
0 ´1

˘



p 1 0
´1 1 q

„

`

1 ´2
0 ´1

˘

´
`

´1 0
´2 1

˘



p 1 0
1 1 q

`

„

p ´1 0
2 1 q ` p

1 2
0 ´1 q



p 1 0
´1 1 q

„

p 1 2
0 ´1 q ´

`

1 ´2
0 ´1

˘



p 1 0
1 1 q

`2p ´1 0
2 1 qp

1 0
´1 1 q

„

p ´1 0
2 1 q ´ p

1 2
0 ´1 q



p 1 0
1 1 q

,

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

-

“ tr
 

p 0 0
´8 0 q `

`

0 ´4
´8 0

˘

` p ´8 ´8
8 8 q ` 2p 4 2

0 0 q
(

“ 8,

and accounting for the orientation and ´2 in the expression above for
the WP form yields the asserted constant γ “ ´4ω.

Finally in the remaining case to compute γpϑ̄A, ϑ̄TAq, replace A P PSL2

by SUA, so that

γpϑ̄SUA, ϑ̄TSUAq “ γpϑ̄UA, ϑ̄Aq “ `8

by skew symmetry since ϑ̄SB “ ϑ̄B, for B P PSL2, and

TSUA “ TT´1UT´1UA “ UT´1UA “ SA.

�
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7. Universal automorphic 1-form on PPSL2pRq

Given a decoration τ̃ on a tesselation τ with framing framing F , define

ξF “
1

2

ÿ

APPSL2

ϑ̄A dlog λeA P Ω1
p ČHomeon`, ppsl2q,

where ϑ̄A is the wavelet ϑA normalized with respect to F , and λe
denotes the lambda length of e “ eA. Alternatively, we may write
ξF “

ř

ePτ˚
ϑ̄e dlog λe since ϑA “ ϑSA and λe “ λeA “ λeSA

.

ξF is to be apprehended as a 1-form on the group ČHomeon` taking val-
ues in its Lie algebra ppsl2. It evidently could be interpreted as the
Maurer-Cartan form since the result of applying it to a multiplica-
tive deformation of the lambda length, or in other words an additive
deformation of the logarithm of the lambda length, is precisely the cor-
responding normalized vector field on S1 in its Lie algebra ppsl2, as was
discussed in Section 3.

More precisely, we have the diagram

ČHomeon` «
ČHomeon`{M:ob

Ó π Ó

Homeo`
p

Õ
sF

Homeon` « Homeo`{M:ob,

where π is the forgetful map, p is the projection given by precomposi-

tion with L
0
1
, 1
0
, 1
1

fp 0
1
q,fp 1

0
q,fp 1

1
q
, and for any framing F “ pu, v, wq, the section

sF of p is given by precomposition with Lu,v,w0
1
, 1
0
, 1
1

. It is a tautology that

if ω is the Maurer-Cartan form of Homeo`, then ξF “ π˚ ˝ s˚F ω.

Theorem 7.1. For any fixed framing F P C3, the Lie-algebra valued

1-form ξF P Ω1pČHomeo`, ppsl2q is invariant under flips.

Proof. As a Lie algebra valued 1-form on a group, it is described by
right-translating from the cotangent plane of the identity, and our com-
putations will take place there.

Recall that the Farey tesselation τ˚ admits a canonical decoration τ̃˚ de-
termined by the property that all the lambda lengths are constant equal

to unity, and that this is the identity element of the group ČHomeon` as
discussed in Section 3.

To establish notation, refer to Figure 1 and consider the four generation-
zero and -one Farey points 1

0
,´1

1
, 0

1
, 1

1
decomposing S1 into four circular

intervals which are conflated with the respective quadrants I,II,III and
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IV containing them. The convex hull of these points is an ideal quadri-
lateral with oriented frontier edges a “ eST , b “ eSU , c “ eU´1 and
d “ eT´1 in this counter-clockwise order starting from 1

0
. The doe eI

will be denoted simply e “ eI , and the edge arising from its flip, with
respective initial and terminal points 1

1
and ´1

1
, will be denoted f .

The second-generation ´2
1
,´1

2
, 1

2
, 2

1
Farey points further decompose the

circular intervals I “ I´ Y I`, . . . , IV “ IV´ Y IV` occurring in this
counter-clockwise order starting from 1

0
. The Farey points of generation

at most two together span an ideal octagon with oriented frontier edges
eST 2 , eSUT , eTSU , eSU2 , eU´2 , eT´1U´1 , eU´1T´1 , and eT´2 in this counter-
clockwise order starting from 1

0
, as indicated in Figure 2.

The hyperbolic transformations which are primitive in PSL2 along the
respective axes e and f are given by the exponentials of p ´1 0

0 1 q and
p 0 1

1 0 q, and along each of the other edges eA above by the exponential
of XA P sl2 with

XST “ p
1 2
0 ´1 q, XSU “ p

1 0
´2 ´1 q, XU´1 “

`

´1 0
´2 1

˘

, XT´1 “ p ´1 2
0 1 q,

and
XST 2 “ p 1 4

0 ´1 q, XSUT “ p
3 4

´2 ´3 q,

XTSU “ p
3 2

´4 ´3 q, XSU2 “ p 1 0
´4 ´1 q,

XU´2 “
`

´1 0
´4 1

˘

, XT´1U´1 “
`

´3 2
´4 3

˘

,

XU´1T´1 “
`

´3 4
´2 3

˘

, XU´1T´1 “ p ´1 4
0 1 q.

The proof is a direct computation and is omitted.

These are the logarithms of the component earthquakes for the wavelets
ϑx, for x P ta, b, c, d, e, fu, so it is not difficult to combine them four
at a time and normalize with respect to the the standard framing F “

p0
1
, 1

0
, 1

1
q on τ˚. One finds

ϑ̄e “ ϑe “

$

’

’

’

&

’

’

’

%

p ´1 ´2
0 1 q, on I;

p 1 0
´2 ´1 q, on II;

p 1 0
2 ´1 q, on III;

p ´1 2
0 1 q, on IV,

ϑa “

$

’

’

’

&

’

’

’

%

p ´1 ´4
0 1 q, on I´;

p 3 4
´2 ´3 q, on I`;
`

´1 0
´2 1

˘

, on II;

p ´1 0
0 1 q, on III and IV,

so ϑ̄a “

$

’

’

’

&

’

’

’

%

p 0 ´4
0 0 q, on I´;

p 4 4
´2 ´4 q, on I`;

p 0 0
2 0 q, on II;

p 0 0
0 0 q, on III and IV,
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ϑb “

$

’

’

’

&

’

’

’

%

p 1 2
0 ´1 q, on I;

p ´3 ´2
4 3 q, on II´;

p 1 0
´4 ´1 q, on II`;

p 1 0
0 ´1 q, on III and IV,

so ϑ̄b “

$

’

’

’

&

’

’

’

%

p 0 2
0 0 q, on I;

p ´4 ´2
4 4 q, on II´;

p 0 0
´4 0 q, on II`;

p 0 0
0 0 q, on III and IV,

ϑ̄c “ ϑc “

$

’

’

’

&

’

’

’

%

p 1 0
0 ´1 q, on I and II;

p 1 0
4 ´1 q, on III´;

`

´3 2
´4 3

˘

, on III`;
`

1 ´2
0 ´1

˘

, on IV,

and ϑ̄d “ ϑd “

$

’

’

’

&

’

’

’

%

p ´1 0
0 1 q, on I and II;

`

´1 0
´2 1

˘

, on III;
`

3 ´4
2 ´3

˘

, on IV´;

p ´1 4
0 1 q, on IV`

As illustrated in Figure 5, letting x̃ “ dlog λx, for x P ta, b, c, d, e, fu,
and putting all of this together, we find that

ÿ

xPta,b,c,d,eu

ϑ̄x dlog λx

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

p 0 ´4
0 0 qã` p

0 2
0 0 qb̃` p

1 0
0 ´1 qc̃` p

´1 0
0 1 qd̃` p

´1 ´2
0 1 qẽ, on I´;

p 4 4
´2 ´4 qã` p

0 2
0 0 qb̃` p

1 0
0 ´1 qc̃` p

´1 0
0 1 qd̃` p

´1 ´2
0 1 qẽ, on I`;

p 0 0
2 0 qã` p

´4 ´2
4 4 qb̃` p

1 0
0 ´1 qc̃` p

´1 0
0 1 qd̃` p

1 0
´2 ´1 qẽ, on II´;

p 0 0
2 0 qã` p

0 0
´4 0 qb̃` p

1 0
0 ´1 qc̃` p

´1 0
0 1 qd̃` p

1 0
´2 ´1 qẽ, on II`;

p 1 0
4 ´1 qc̃`

`

´1 0
´2 1

˘

d̃` p 1 0
2 ´1 qẽ, on III´;

`

´3 2
´4 3

˘

c̃`
`

´1 0
´2 1

˘

d̃` p 1 0
2 ´1 qẽ, on III`;

`

1 ´2
0 ´1

˘

c̃`
`

3 ´4
2 ´3

˘

d̃` p ´1 2
0 1 qẽ, on IV´;

`

1 ´2
0 ´1

˘

c̃` p ´1 4
0 1 qd̃` p

´1 2
0 1 qẽ, on IV`.
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Figure 5. Depiction of ϑ̄a, . . . , ϑ̄e in the respective rings
A, . . . , E and

ř

xPta,b,c,d,eu ϑ̄x dlog λx on the outside.

Let τ 1 denote the tesselation that arises from τ˚ by a flip along the
edge e P τ˚, let ϑ1x denote the vectorfield on S1 corresponding in the
natural way to the edge x P ta, b, c, d, fu Ď τ 1, and let ϑ̄1x denote the
normalization of ϑ1x relative to the same framing F . Thus, we have

ϑ̄1f “ ϑ1f “ ϑ̄e,

and a further consequence of the primitives for logarithms of hyperbolic
transformations computed before is that
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Figure 6. Depiction of ϑ̄1a, . . . , ϑ̄
1
f in the respective rings

A1, . . . D1, F 1 and
ř

xPta,b,c,d,fu ϑ̄
1
x dlog λx on the outside.

ϑ̄1a “ ϑ1a `
´

1
2
´1

0 ´ 1
2

¯

, where ϑ1a “

$

’

’

’

&

’

’

’

%

p ´1 ´4
0 1 q, on I´;

p 3 4
´2 ´3 q, on I`;

p 0 1
1 0 q, on II and III;

p ´1 2
0 1 q, on IV,

ϑ̄1b “ ϑ1b `
´

´ 1
2

0

´1 1
2

¯

, where ϑ1b “

$

’

’

’

&

’

’

’

%

p 0 1
1 0 q, on I and IV;

p ´3 ´2
4 3 q, on II´;

p 1 0
´4 ´1 q, on II`;

p 1 0
2 ´1 q, on III,



42 IGOR FRENKEL AND ROBERT PENNER

ϑ̄1c “ ϑ1c `
´

1
2

0

1 ´ 1
2

¯

, where ϑ1c “

$

’

’

’

&

’

’

’

%

`

0 ´1
´1 0

˘

, on I and IV;

p 1 0
´2 ´1 q, on II;

p 1 0
4 ´1 q, on III´;

`

´3 2
´4 ´1

˘

, on III`,

ϑ̄1d “ ϑ1d `
´

´ 1
2

1

0 1
2

¯

, where ϑ1d “

$

’

’

’

&

’

’

’

%

p ´1 ´2
0 1 q, on I,;

`

0 ´1
´1 0

˘

, on II and III;
`

´3 4
´2 3

˘

, on IV´;

p ´1 4
0 1 q, on IV`.

Again putting all this together as illustrated in Figure 6, we find
ÿ

xPta,b,c,d,fu

ϑ̄1x dlog λx

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

´

´ 1
2
´5

0 1
2

¯

ã`
´

´ 1
2

1

0 1
2

¯

b̃`
´

1
2
´1

0 ´ 1
2

¯

c̃`
´

´ 3
2
´1

0 3
2

¯

d̃` p 1 2
0 ´1 qf̃ , on I´;

´

7
2

3

´2 ´ 1
2

¯

ã`
´

´ 1
2

1

0 1
2

¯

b̃`
´

1
2
´1

0 ´ 1
2

¯

c̃`
´

´ 3
2
´1

0 3
2

¯

d̃` p 1 2
0 ´1 qf̃ , on I`;

´

1
2

0

1 ´ 1
2

¯

ã`
´

´ 7
2
´2

3 7
2

¯

b̃`
´

3
2

0

´1 ´ 3
2

¯

c̃`
´

´ 1
2

0

´1 1
2

¯

d̃` p ´1 0
2 1 qf̃ , on II´;

´

1
2

0

1 ´ 1
2

¯

ã`
´

1
2

0

´5 ´ 1
2

¯

b̃`
´

3
2

0

´1 ´ 3
2

¯

c̃`
´

´ 1
2

0

´1 1
2

¯

d̃` p ´1 0
2 1 qf̃ , on II`;

´

1
2

0

1 ´ 1
2

¯

ã`
´

1
2

0

1 ´ 1
2

¯

b̃`
´

3
2

0

5 ´ 3
2

¯

c̃`
´

´ 1
2

0

´1 1
2

¯

d̃`
`

´1 0
´2 1

˘

f̃ , on III´;
´

1
2

0

1 ´ 1
2

¯

ã`
´

1
2

0

1 ´ 1
2

¯

b̃`
´

´ 5
2

2

´3 5
2

¯

c̃`
´

´ 1
2

0

´1 1
2

¯

d̃`
`

´1 0
´2 ´1

˘

f̃ , on III`;
´

´ 1
2

1

0 1
2

¯

ã`
´

´ 1
2

1

0 1
2

¯

b̃`
´

1
2
´1

0 ´ 1
2

¯

c̃`
´

5
2
´3

2 ´ 5
2

¯

d̃`
`

1 ´2
0 ´1

˘

f̃ , on IV´;
´

´ 1
2

1

0 1
2

¯

ã`
´

´ 1
2

1

0 1
2

¯

b̃`
´

1
2
´1

0 ´ 1
2

¯

c̃`
´

´ 3
2

5

0 3
2

¯

d̃`
`

1 ´2
0 ´1

˘

f̃ , on IV`;

Using the fact that

ẽ` f̃ “
1

ac` bd
pã` b̃` c̃` d̃q “

1

2
pã` b̃` c̃` d̃q

by the Ptolemy relation ef “ ac ` bd, since a “ b “ c “ d “ 1 for the
identity element τ̃˚, a computation with rather miraculous cancellations
as illustrated in Figure 7 confirms that

ÿ

xPta,b,c,d,eu

ϑ̄x dlog λx “
ÿ

xPta,b,c,d,eu

ϑ̄1x dlog λx,
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as required to check invariance under the flip along the doe for the
standard framing F “ p0

1
, 1

0
, 1

1
q.

Figure 7. Difference between expressions in Figures 5 and
6 vanishes for all lambda lengths equal to unity, i.e., at the
universal punctured arithmetic surface.

This establishes the invariance for a flip on the doe with the associ-
ated framing. In the general case first of all, the 1-form is invariant
under push-forward by the Möbius group since lambda lengths are
M:ob-invariant, so we may assume that the framing is one that is as-
sociated to a doe. Likewise without loss of generality, we may assume
that the flip is performed on the edge with endpoints 0

1
, 1

0
P S1, with

the doe however potentially located elsewhere.
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Thus, the asserted invariance must be checked for the various possibil-
ities of relative position of doe and the edge with endpoints 0

1
, 1

0
to be

flipped. In the presented computation, these two edges coincide, and
there are four further cases to check depending upon which quadrant
in C Ě D contains the doe, thereby determining the normalization.
These four similar but simpler calculations, each corresponding to a
different normalization of the common unnormalized formulae already
presented in the proof, are left as an exercise for the reader. �

Consider an arbitrary framing F and let

ηF “ s˚F ω P Ω1
pHomeo`{M:obq,

which by general principles should satisfy

Maurer´ Cartan equation : 0 “ dηF `
1

2
rηF , ηF s, for any framing F ;

Compatibility Equation : ηG “ Adph´1
FGq ηF ` h˚FG ωM:ob, for framings

F , G,where hFG “ sG ˝ s
´1
F ,Ad denotes the adjoint and ωM:ob is the

Maurer-Cartan form on M:ob.

Note that the Compatibility Equation together with the result for the
flip on the doe with its associated framing would give an alternative
proof of Theorem 7.1. This putative proof is a bit of a swindle because
there is no Maurer-Cartan form on the topological group Homeo` ex-
cept for the version here, and hence no a priori Compatibility Equation.

Remark 7.2. The expression for ξF as a Poincaré series in framed
holographic coordinates is easily derived from Remark 2.8.

As we have noted, the form ξF is morally the Maurer-Cartan form
in the sense that its value on the tangent vector B

BlnλA
at the identity

of PPSL2pRq is the corresponding normalized element ϑ̄A of the Lie
algebra ppsl2. However, ξF has been shown here to be invariant under
the lattice PPSL2pZq rather than under the full group PPSL2pRq, whose
invariance we may conjecture. On the other hand, one might therefore
more squarely regard ξF solely as an automorphic form, and this is the
viewpoint of the next section.

8. Future perspectives

We conclude with a heuristic discussion of constructing the automor-
phic representation for our universal triad corresponding to the auto-
morphic 1-form obtained in Section 7. To this end, we combine the
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original constructions of [34] and of Vaughan Jones [16, 17], also de-
scribed in [22].

We recall from Appendix B that we have constructed an indecompos-
able automorphic representation V of PSL2pRq by lifting the weight 2
Eisenstein series E2. Viewed as the Lie algebra psl2 “ psl2pRq repre-
sentation, it can be identified with the Laurent polynomial ring

V « OpCˆq “ Crz˘1
s.

with the psl2 action given by

e “
d

dz
, h “ 2z

d

dz
, f “ z2 d

dz
.

The space V has a natural multiplication map

V Ñ V b V

which commutes with the action of psl2. One can also identify the
restricted dual space with Laurent 1-forms

V 1 « Ω1
pCˆq “ Crz˘1

sdz,

with the pairing of V and V 1 given by the residue of the product at 0.
This gives the dual map

V 1 Ñ V 1 b V 1,(8.1)

which can be used for the inductive limit construction as in [16, 17, 22].

Namely for any polygon Pγ with frontier γ, we assign a tensor product

Hγ “

n
â

j“1

V 1,

where n is the number of edges in γ. There is a partial ordering on the
set of polygons given by inclusion Pγ Ď Pγ1 , which induces the partial
ordering γ ď γ1 on frontiers. Clearly the Lie subalgebra

ppsl2pγq Ď ppsl2

of piecewise psl2 maps with breakpoints at the vertices of γ acts on Hγ

in the natural way, where psl2 corresponding to the jth edge acts on the
jth factor of Hγ. Then the map (8.1) induces a family of intertwining
operators

T γ
1

γ : Hγ Ñ Hγ1 ,

so that T γγ “ 1 and the consistency condition T γγ2 “ T γ
1

γ2T
γ
γ1 holds when-

ever γ ď γ1 ď γ2. The direct limit

H “ lim
ÝÑ

Hγ(8.2)
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yields a representation of ppsl2. It can be made unitary by means of a
1-cocycle determined by the one-dimensional subrepresentation V0 Ď V
as in [34] or alternatively using a modification of the construction above
based upon the approximation of the representation V 1 of psl2 by the
representations of the complementary series V pλq, for 0 ă λ ă 2 with
λ ‰ 1, so that V pλq « V p2´λq with lim

λÑ2
V pλq “ V and lim

λÑ0
V pλq “ V 1;

see [34] for details.

Remark 8.1. The partial ordering above on ideal polygons occurring
as fundamental domains for punctured surfaces leads one to consider
the so-called punctured solenoid H, which is an initial object for the
category of punctured surfaces with morphisms given by finite cov-
ers branched only over the punctures. The unpunctured version was
introduced and studied by Dennis Sullivan in [31]. The decorated Te-
ichmüller space of H was studied in [28] and parametrized by certain
coordinates on the Farey tesselation τ˚, namely, lambda length func-
tions, one such continuous and PSL2pZq-equivariant function from the
profinite completion of PSL2pZq to Rą0 for each edge of τ˚. Flip-like
generators for the mapping class group of H are derived in [28], and a
complete set of relations in these generators is finally given in [2].

To implement our program, we want to realize H, or heuristically
pV 1qb8, as an automorphic representation on PPSL2pZqzPPSL2pRq of
ppsl2 . To this end, we notice first that the space of harmonic functions
on PSL2pRq, cf. (B.3), can be identified with the space of functions on
the boundary of PSL2pRq, which is dual to the space of functions of
the holographic coordinates tps, δqu introduced in Section 2. Further-
more for both spaces, we can also identify the corresponding PSL2pRq
actions, and therefore, we can realize V 1 by imposing modular invari-
ance on the space of functions depending on a single pair ps, δq of
holographic coordinates. This realization clearly extends to finite ten-
sor products pV 1qbn associated to n-gons Pγ. We conjecture that the
inductive limit H also admits a realization by the automorphic func-
tions in holographic coordinates, with PPSL2pZq playing the role of the
modular group PSL2pZq.

On the other hand, the analogy between PPSL2pZq and the mapping
class group suggests an extension of the former by an infinite symmetric
group, or more generally by an infinite braid group, which is still a
discrete subgroup of Homeo`pS1q, cf. [14] and the references therein.
The reduction of H by the additional symmetry yields the space Λ, or
heuristically S8V 1, which is naturally identified with the free bsosonic
field, one of the simplest CFT2.
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As discussed in Appendix B, the theory of automorphic forms allows
the enlargement of various spaces by relaxing the automorphic property
to smaller discrete subgroups; for example, the restriction to invariance
by the commutant PSL2pZq1 Ď PSL2pZq enlarges V sixfold additively.
Similarly, we expect that replacing PPSL2pZq by PpPSL2pZqq1 will cor-
respondingly yield a multiplicative increase of Λ and thereby allow the
construction of a CFT2 of size comparable to the Monster CFT2.

Finally we come to the question of how we can effectively capture the
Monster using the new universal automorphic theory, and in particular
how we can derive the Monstrous Moonshine. At this moment, we do
not know the complete answer, but we can begin on the opposite side,
which will help to clarify the problem and capture the beast. Namely,
we consider all 194 conjugacy classes of the Monster and the Thomp-
son series of the representations of these classes in the the Monster
representation of [12]. Then we know from [1] that they are the canon-
ical Hauptmoduln JΓpzq for some genus-zero discrete subgroups Γ of
PSL2pRq of Moonshine type, i.e., groups commensurable with PSL2pZq
which contain Γ8 “ t˘p 1 n

0 1 qu. Then one has

JΓpzq “ q´1
`

8
ÿ

n“1

cΓpnqq
n,

for some integral coefficients cΓpnq. One can also construct the corre-
sponding Eisenstein series using a logarithmic derivative of JΓpzq, or
as usual an analytic continuation to s “ 0 of the series

EΓ
2 pz, sq “

ÿ

pc,dqPΓ{Γ8

pIm zqs

pcz ` dq2|cz ` d|2s
.

As in the classical example Γ “ PSL2pZq, the resulting Eisenstein series
after multiplication by dz is Γ-invariant though not holomorphic. Then
we can repeat the lift of a Γ-invariant 1-form recalled in Appendix B
to the automorphic function

f “ EΓ
2 ù φf pgq “ pci` dq

´2fpg ¨ iq,

where g “ p a bc d q P PSL2pRq, and we again obtain an indecomposable
representation of PSL2pRq that we shall denote V Γ. In fact, we just get
another model of the same indecomposable representation of PSL2pRq.
We can also expect a similar construction of the space of universal
automorphic forms for PΓ denoted ΛΓ. It is natural to conjecture
that we find a twisted conformal field theory associated to ΛΓ and the
Monster conjugacy class corresponding to Γ. The comparison of Λ and
ΛΓ should yield the Monster element in this conjugacy class, and they
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together will allow realization of the Monster group via automorphisms
of Λ. At this point, the trap will close upon the Monster, and the
Moonshine will follow.

Appendix A. Harmonic analysis

To begin, we express the generators of the Witt algebra in terms of the
normalized arithmetic wavelets as computed in Theorem 4.13 of [26]
and going back in essence to [20].

Theorem A.1. For each n P Z, we have the wavelet expansion

Ln “ einθ
B

Bθ
“ pbn0 ` b

n
`1e

iθ
` bn´1e

´iθ
q
B

Bθ

`
i

4

ÿ

ePτ˚

"

npξn ` ηnq `
η ` ξ

η ´ ξ
pξn ´ ηnq

*

ϑepθq,

where e P τ˚ has ideal points ξ, η P S1 and

bn0 “

$

’

’

’

&

’

’

’

%

`1, n ” 0p4q;

0, n ” 1p4q;

`1, n ” 2p4q;

0, n ” 3p4q;

bn`1 “

$

’

’

’

&

’

’

’

%

0, n ” 0p4q;

`1, n ” 1p4q;

´i, n ” 2p4q;

0, n ” 3p4q;

bn´1 “

$

’

’

’

&

’

’

’

%

0, n ” 0p4q;

0, n ” 1p4q;

`i, n ” 2p4q;

`1, n ” 3p4q.

This is not the simplest expression einθ
.
“

ř

|e|Pτ˚
genϑ̄|e|, rather these

particular coefficients gen are specially chosen in Theorem A.1 to guar-
antee their suitable decay in n, cf. Theorem 6.4 of [27].

The next result, Theorem 4.11 of [26], which goes back to [24], is of basic
utility and provides the Fourier expansion of the normalized arithmetic
wavelets.

Theorem A.2. If A “ p a bc d q P PSL2, then the Fourier expansion ϑ̄A „
ř

nPZ cn e
inθ B

Bθ
for n2 ą 1 is given by

πipn3
´ nq cn “ ´rpc´ aq2 ` pb´ dq2s

„

pb´ dq ´ ipa´ cq

pb´ dq ` ipa´ cq

n

` 2pc2
` d2

q

„

d´ ic

d` ic

n

` 2pa2
` b2

q

„

b´ ia

b` ia

n

´ rpc` aq2 ` pb` dq2s

„

pb` dq ´ ipa` cq

pb` dq ` ipa` cq

n

,
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where the Fourier modes c0, c˘1 are chosen to guarantee that the ex-
pansion is normalized. In particular for the mother wavelet, we have
ϑ̄ “ ϑ „ 8

πi

ř

n”2p4q
1

n3´n
einθ B

Bθ
.

Remark A.3. A sketch of the proof is that since ϑ̄A is once con-
tinuously differentiable, we can twice integrate by parts the standard
expression for the Fourier coefficients cn with n2 ą 1 and derive these
expressions without difficulty. For n2 ď 1 the corresponding equa-
tions give certain constraining equations on the zeroeth Fourier modes,
which are crucial for the computation of the Kirillov-Kostant form, cf.
Section 6

It is not difficult to compute directly the Fourier expansion of the
(unnormalized) hyperfans as follows.

Proposition A.4. Given A “ p a bc d q P PSL2, let

ζ´ “
b´ ia

b` ia
, ζ` “

d´ ic

d` ic
P S1.

Then the hyperfan ψA has Fourier expansion ψA „
ř

cn e
inθ with

2πi cn “ ζn´

„

pd´ icq2

2pn` 1q
ζ´ `

pd` icq2

2pn´ 1q
ζ´1
´ ´

c2 ` d2

n



´ ζn`

„

pd´ icq2

2pn` 1q
ζ` `

pd` icq2

2pn´ 1q
ζ´1
` ´

c2 ` d2

n



,

for n2 ą 2, and

2πi c0 “
pd´ icq2

2
rζ´1
` ´ ζ´1

´ s ´
pd` icq2

2
rζ` ´ ζ´s

` ipc2
` d2

qrθ` ´ θ´s,

2πi c˘1 “ ¯
pd˘ icq2

2
rζ˘2
` ´ ζ˘2

´ s ˘ pc
2
` d2

qrζ˘1
` ´ ζ˘1

´ s

´
ipd¯ icq2

2
rθ` ´ θ´s,

where θ¯ “ arctan ζ˘.

Proof. ψA is supported on an interval with respective initial and ter-
minal points given by ζ´1

´ and ζ´1
` , and takes there the values

A´1

ˆ

0 1
0 0

˙

A “

ˆ

cd d2

´c2 ´cd

˙

or in other words pd´icq2

2
eiθ ` pd`icq2

2
e´iθ ´ pc2 ` d2q. The standard

expression for Fourier coefficients yields the results. �
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Notice that the normalized hyperfans ψ̄A have the same higher Fourier
coefficients as ψA since ψA

.
“ ψ̄A. The small Fourier modes for ψ̄A,

and likewise those of θ̄A, can be computed with some difficulty by
calculating the values of these vector fields at 0

1
, 1

1
, 1

0
P S1. As we do

not require them, we omit the details.

Appendix B. The E2 automorphic representation

The automorphic form that we have constructed on the universal Te-
ichmüller space has a simple analogue on the hyperbolic plane, namely,

ξpzq “ E2pzqdz,

where E2pzq is an almost holomorphic modular form of weight 2. Since
dz transforms with respect to PSL2pRq with the factor balancing that
of E2pzq, we obtain a PSL2pZq-invariant 1-form that can be viewed
as the classical counterpart of the automorphic form constructed in
Section 7.

To state our results unambiguously, let us recall the following explicit
formulae, c.f. [9]. Set

E2pzq “ 1´ 24
8
ÿ

n“1

σpnqqn,

where σpnq is the sum of all the positive divisors of n and we set q “
expp2πizq. Then E2pzq is holomorphic but not quite modular invariant
since

E2p´
1

z
q “ z2E2pzq `

12

2πi
z.

To get an honest weight 2 form, we need a correction

Epzq “ E2pzq ´
3

π Impzq
,

but we thereby lose the holomorphicity of E2pzq, since

d

dz̄
Epzq “

3i

2π

1

pImpzqq2
.

In the classical theory of automorphic forms, one can lift the holomor-
phic modular forms from the hyperbolic plane to PSL2pRq so that they
become the lowest weight vectors of the holomorphic series representa-
tions. Specifically for a weight 2k holomorphic form f : U Ñ C, where
k ě 2, we define

φf pgq “ pci` dq
´2kfpg ¨ iq,
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as in [15], where g “ p 1 b
c d q P PSL2pRq. It follows that φf is invariant

under the left action

φf pγgq “ φf pgq, for γ P PSL2pZq(B.1)

of PSL2pZq. One can then define the action of PSL2pRq on a certain
space of automorphic functions generated by φf by the right action

pπpgqφqphq “ φphgq, for h, g P PSL2pRq,
so that φf becomes the lowest weight vector for the Lie algebra psl2pRq
in the appropriate basis E,F,H.

To state the explicit formulae, we shall rely on explicit calculations
from [11]. Let h, e, f be the standard basis of psl2pRq and consider the
Cayley transform of this basis

H “

ˆ

0 ´1
i 0

˙

, E “
1

2

ˆ

1 i
i ´1

˙

, F “
1

2

ˆ

1 ´i
´i 1

˙

.

Using the standard parametrization
ˆ

a b
c d

˙

“

ˆ

1 x
0 1

˙ˆ

y
1
2 0

0 y´
1
2

˙ˆ

cos θ sin θ
´sin θ cos θ

˙

(B.2)

of PSL2pRq, one can find an explicit action of the Lie algebra basis as
follows

H “ ´Bθ,

E “ 2ie2iθ
pyBz̄ ´

1

4
Bθq,

F “ ´2ie´2iθ
pyBz̄ ´

1

4
Bθq.

Thus, one has

Fφf “ 0,

Hφf “ 2kφf .

In the case that k “ 1, the first of these two equations no longer holds,
and instead one has

Fφf “
3

π
.

It follows that φf is no longer a highest weight vector, but it also gen-
erates a one-dimensional sub-representation. Only after factorization
with respect to this sub-representation does one obtain the weight 2
irreducible representation of the holomorphic series, denoted V`.

Similarly using the complex conjugation, one gets the weight 2 repre-
sentation of the antiholomorphic series denoted V´. The one-dimensional
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sub-representation, denoted V0, is common to both the weight 2 inde-
composable representations, and we get a larger indecomposable rep-
resentation, denoted V , which has a simple composition series

0 Ñ V0 Ñ V Ñ V` b V´ Ñ 0.

In order to characterize the resulting three component representation,
one can use the Casimir operator, which in the explicit coordinates
(B.2) has the form

∆ “ y2
p
B2

Bx2
`
B2

By2
q ´ y

B2

BxBθ
.

It annihilates the weight 2 automorphic representation generated by
Φf and its conjugate, where f “ E2, to wit

∆φE2 “ 0.(B.3)

One can check that this harmonic property (B.3) together with the
automorphicity condition (B.1) and the usual growth condition of au-
tomorphic functions characterizes the three component representation
V that we have obtained by lifting the E2 modular 1-form. The prob-
lem of fundamental importance in our new theory is to construct a
representation of the Lie algebra ppsl2pRq using a lift of our automor-
phic 1-form in Section 7.

The automorphic representation V that we have constructed is well
known in the representation theory of PSL2pRq as a limit of comple-
mentary series [34]. The representations V` and V´ are the spin 1 ir-
reducible representations of the holomorphic and antiholomorphic dis-
crete series. Note that the lift of Eisenstein series E2k, for k “ 2, 3, . . .,
yields spin k irreducible representations of the same series. The repre-
sentation V plays a pivotal role and somehow seems to have been missed
in the theory of automorphic functions for the pair PSL2pZq Ď PSL2pRq
Thus it is expected that the counterpart of the representation V in our
new theory will play an equally fundamental role, and it is one of our
main open problems to construct it explicitly.

One can ask what is an advantage of a realization of this representa-
tion as an automorphic representation. One such benefit is that we can
naturally increase this representation by relaxing the automorphicity
condition (B.1) from the modular group PSL2pZq to various subgroups
including its commutant PSL2pZq1 considered in Section 1. This im-
mediately yields six copies of the weight 2 representation.

Finally, we note that we could also consider the weight 1 representations
which correspond to the limit of the holomorphic discrete series of
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SL2pRq. The index of the commutant is rSL2pRq : SL2pRq1s “ 12
in this case, and we get correspondingly 12 copies upon relaxing the
automorphicity condition.
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