DIRICHLET FORMS AND MARKOV SEMIGROUPS ON
NON-ASSOCIATIVE VECTOR BUNDLES
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ABSTRACT. We introduce non-associative vector bundles and study Dirichlet
forms and the associated Markov semigroups on these bundles.

1. INTRODUCTION

A non-commutative theory of Dirichlet forms and Markov semigroups has
been developed in [1, 8, 9, 10]. Two forms of non-commutative theory are usu-
ally considered: either the domains of the Dirichlet forms are furnished by some
non-commutative C*-algebras, typically, the non-commutative L?(A) spaces of a
semifinite von Neumann algebra A, or, one considers the semigroups acting on sec-
tions of vector bundles over Riemannian manifolds, with non-commutative fibres.
In [9, 10], the latter case has been studied for C*-bundles over compact manifolds
whose fibres are finite-dimensional real C*-algebras. To be precise, the Dirichlet
forms in both cases are defined in terms of the Hermitian part of the relevant
spaces, namely, either the Hermitian part

L;(A)={r e L*(A) : 2" =z}

of the non-commutative space L?(.A), as in [1, p. 177], or the section L?(A;) with
bundle 2, whose fibres are the Hermitian part

Ap={r e A:z" =z}

of a finite-dimensional real C*-algebra A, equipped with the Lo-norm of a trace,
as in [9, Theorem 2]. It was also noted in [9] that a natural alternative approach
would be to consider bundles whose fibres have the structure of a compact Jordan
algebra.

In this paper, we consider more general vector bundles modelled on the non-
associative LP-spaces, usually infinite dimensional, of a semifinite Jordan von Neu-
mann algebra. This includes the bundles 2, considered in [9] as well as the alter-
native approach proposed in [9] and mentioned above. We describe a framework
for a non-associative theory of Dirichlet forms on these bundles and extend to this
setting some contractivity results concerning the associated Markov semigroups

(cf. [9, 10, 17)).
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We begin by describing the non-associative LP-spaces, constructed from a
Jordan algebra. We recall that a real, but not necessarily associative, algebra A
is called a Jordan algebra if its algebraic product satisfies

TY = yx and  2%(yr) = (2%y)x (z,y € A).

By a Jordan von Neumann algebra A, we mean a real Banach space A which is
also a Jordan algebra, with a (necessarily unique) separable predual A,, such that

lzyll < [lz]llly]

2% = [ll®

2% < fla® + 2]
for z,y € A. Without the separability condition on the predual, these algebras are
known as JBW-algebras in literature [19]. The weak topology on A is the topology
o(A, A.). We note that A contains an identity 1 and the order in A is induced
by the closed cone

AT ={2?:2 € A}
and we have A = A" — A". Given z € A, one can define its modulus |z| =
(z?)Y/? € A*. Each x € A has a polar decomposition

x = s|z|

where s is a symmetry in A which means that s? = 1.
Example 1.1. Let A be a (complex) von Neumann algebra with a separable

predual, for instance, the algebra B(H) of bounded linear operators on a complex
separable Hilbert space H. Then the Hermitian part

Ap={TeA:T" =T}

is a Jordan von Neumann algebra, with the Jordan product defined by
1

where the product on the right is the original product in A. The positive cone
AT ={T*T : T € A} coincides with A"

Example 1.2. Let A be a real C*-algebra. Then its complexification A=A+iA
can be given a norm so that it becomes a (complex) C*-algebra, and A embeds

isometrically as a real C*-subalgebra of A [15, 15.4]. We note that A is generally
not identical with the Hermitian part of A. If A has a separable predual, then its

Hermitian part
Ay ={r € A: 2" =2z}
is a Jordan von Neumann algebra, with the Jordan product defined by
1
zoy=g(zy+yz)

where the associative product on the right is the original product in A.
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We refer to [19] for other examples of Jordan von Neumann algebras which
are not the Hermitian part of a real or complex C*-algebra.

We recall that a Jordan von Neumann algebra A is semifinite if it admits a
faithful semifinite normal trace. A trace on A is an additive function 7 : AT —
[0, oo] satisfying

(i) 7(az) = ar(x) (> 0)

(i) 7(szs) = 7(x) (s is a symmetry).
A trace 7 is faithful if 7(x) = 0 implies x = 0. It is called semifinite if for any
z € AT\{0}, there exists y € A"\{0} such that y < z and 7(y) < oo. If 7
preserves monotone convergence, then it is called normal.

A prototypic example of a semifinite Jordan von Neumann algebra is the
Hermitian part B(H); of the algebra B(H) of bounded operators on a separa-
ble Hilbert space H, with the canonical trace; but important examples include
Hermitian parts of all finite von Neumann algebras with separable predual, in par-
ticular, the group von Neumann algebras of infinite-conjugacy-class groups which
are type II; factors (cf. [27, p.367]).

In the sequel, A will denote a semifinite Jordan von Neumann algebra with a
faithful semifinite normal trace 7. There is a weakly dense ideal of A associated
with 7, namely,

N =N =N
where
Nt ={ae A" :7(a) < 0}
and the trace 7 can be extended to a linear functional on N, still denoted by 7.
For 1 < p < oo, we define the LP-norm

llzlll, = (|2 (z € A7)

where |z|? € N is defined by function calculus. The completion of the normed
space (N, ||| - ||lp) is denoted by LP(A, ), called the non-associative LP-space of
A with respect to T. The space L'(A, ) is linearly isometric to A, and L?*(A, 1)
is a Hilbert space with inner product denoted by (,-),;. We define L*(A,7) = A
and refer to [20] for further details of these LP spaces.

One can construct a non-commutative LP-space LP(M, 1) of a (complex)
von Neumann algebra M with a faithful semifinite normal trace 7p. If M has
a separable predual, then the Hermitian part A = M, of M is a Jordan von
Neumann algebra with trace 7 which is the restriction of 7y to A", and LP(A, )
identifies with the Hermitian part L} (M, 1) of LP(M, 1) [2].

Example 1.3. If A = B(H), is the Hermitian part of the algebra of bounded op-
erators on a separable Hilbert space H, with the canonical trace 7, then L?(A,7) =
N is the space of self-adjoint Hilbert-Schmidt operators on H and is separable.

Example 1.4. If A is a finite-dimensional real C*-algebra, then L?(Aj,7) =
(An, ||| - |||2) for any trace 7 on A,. This is the space considered in [9].
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2. NON-ASSOCIATIVE VECTOR BUNDLES AND DIRICHLET FORMS

In this section, we introduce non-associative vector bundles on Riemannian
manifolds and the setting for a non-associative theory of Dirichlet forms. These
bundles are vector bundles whose fibres have Jordan algebraic structures, more
precisely, the fibres of these bundles are real Hilbert spaces isometric to a non-
associative Hilbert space of a semifinite Jordan von Neumann algebra.

Throughout, let M be a Riemannian manifold equipped with a o-finite Borel
measure . Let L2(A,7) be a non-associative Hilbert space as before. We denote
by L*(M,L?*(A,7)) the real Hilbert space of (equivalence classes of) L*(A,T)-
valued Bochner integrable functions f on M satisfying

Il = ([ H|f(:v)|||§du(m))% <0

(cf. [13, p.97]), with inner product

(f.g) = /M (F(2), 9(2))rdpu(z).

Let C>®(M, L?(A, 7)) be the space of smooth L?(A, 7)-valued functions on M with
compact support. Standard arguments show that C>°(M, L*(A,7)) is || - ||o-dense
in L?(M, L*(A,1)).

A vector bundle 7 : E — M is called a non-associative bundle if its fibres E,
are all real Hilbert spaces linearly isometric to the non-assoicative Hilbert space
L*(A,7) of a Jordan von Neumann algebra A with a faithful semifinite normal
trace 7. In this case, F is a Hilbert manifold modeled on the real Hilbert space
L*(A,7) X R* where n = dim M. We denote the inner product in E, by (-,-),.
Given the linear isometry

Yo : By — L*(A,7)
we have (€,()s = (V2(£),72())r. The set C°(E) of smooth sections on M with
compact support is a vector space with inner product and norm:

(1) = [ (pla),vla))adu(o)
el = (w0, 9) "2

The completion £L2(E) of C*(E) with respect to the above norm identifies with

the real Hilbert space L?(M, L?>(A, 7)). More generally, for 1 < p < oo, we denote

by LP(FE) the completion of C°(E) with respect to the following norm:

lell = ([ tota) etz aute)) v

Let £2(FE) be the space of (essentially) bounded sections on M.
The LP-space LP(A, T) can be partially ordered by the cone L?(A, 7)* which is
defined to be the ||| - |||,-closure of N;*. For p € (1,00), the norm ||| - |||, is Fréchet
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differentiable except at 0. Given a map f : R — LP(A,7)*, differentiable at
to € R with f(ty) # 0, we have, by [20, Lemma 14],

%7‘ (f@)") le=ty = pT (f(to)pI%f(t) ‘t:t()) )

For z,w € L?(A,7)*, we have (z,w), > 0 (cf.[20, Lemma 1]). Every z €
L?*(A,7) has a decomposition z = 2z — 2z~ with 27,2~ > 0 and 272~ = 0. The
modulus of z is defined to be |z| = 2T + 2™.

Each fibre E, of the non-associative vector bundle w : E — M carries the
above order and Jordan algebraic structures of L%(A,7) via the isometry 7, :
E, — L*(A, 7). A section ¢ of E is said to be positive if p(x) > 0 for almost all
x € M. We denote this by ¢ > 0.

Let T'(E) be the space of smooth sections of E. Given ¢ € I'(E), we define
p*(z) = p(z)* and |p|(z) = |p(z)| for x € M. Then ¢ = ¢* — ¢~ and |¢| =
ot 4+ ¢ . We have

(p*07) = /M(¢($)+, o(z)7)zdu(z) = 0.

The above order structures can be extended to the completion £?(E) = L*(M, L*(A, 7)).
A linear map P : L2(E) — L%(E) is called positive, in symbol, P > 0, if ¢ > 0
implies Py > 0.

Let @ be a closable non-negative quadratic form with domain C®(E) C
L?(E). Then there is a positive self-adjoint operator L in £?(F) such that

Qp, ) = (Lo,v) (o0 € CZ(E))

where we use the same symbol () for the associated symmetric bilinear form. We
denote by D(L) the domain of L.
The proof of the following result is similar to [9, Theorem 1].

Theorem 2.1. Let Q(-) = (L'/?(-), L/?(-)) be a quadratic form where L : D(L) —
L2(E) is a self-adjoint, positive operator which generates a semigroup (Py)i>o on
L*(E). The following conditions are equivalent.

(i) P, >0 fort>0.

(ii) Given ¢ € D(L'?), we have |¢| € D(LY?) and Q(|¢]) < Q(y).
(iii) Given ¢ € D(LY?), we have |p| € D(LY?) and Q(¢*, p~) < 0.
(iv) For ¢ € L2(E) and ¢ > 0, we have (a+ L)™' (p) > 0 for all a > 0

Proof. (i) = (ii). Let ¢ € D(L'/?). Then by positivity of P;, we have
(Pup,p)y = (Pt — P, 0" —¢7)
= (Pt o") + (P 0 ) = (Pp",07) = (P ,0")
< (Bilel, lel)-

N

Hence
(I = P)g, )

o~ | =

(1= Plel, I <
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and limsup,_,o 2((I — P.)|¢|, |¢]) < (LY?p, L'?¢). It follows that |¢| € D(LY/?)
and Q(|¢]) < Q(¢)-

(ii) < (iii). This follows from

4Q(¢", ¢7) = Qlel) — Qly)
where ¢, |p| € D(LY?) implies that ¢* € D(LY/?).

(iii) = (iv). Fix a > 0. Denote K = D(L'/?) which is a Hilbert space with respect
to the inner product
(W, b = (L2, L'?g) + o, ).
Let J : K — L%(F) be the natural embedding. Then, for ¢ € K, ¢ € L?(E), we
have
W, (a+ D)7 'eh = (L2, L' (a+ L))
+a(yp, (a+ L)y

= ((a+ L)y, (a+ 1) 'p)

= (. 9) = {JP, 0).
Therefore J*¢ = (a + L) . Let 1 = J*p. We have

(ol 1 = QUI) + e, [¥])
< Q) +aly,¥) = (¥, ).

Let ¢ > 0. Then

<W)|7¢>1 = <‘¢|,J*(p>1
= (¢l )
> (Y,0) = (b, J¢)1 = (¢, ¥)1.
Hence (a+ L) \p = Jo = = || > 0,

(iv) = (i). This follows from

P, = lim (I—i—EL) .
n

n—0o0

d

A quadratic form @ in £%(E) satisfying the conditions in Theorem 2.1 and
generating a contractive semigroup (F;) on LP(F) for p € [1,00] is called a Dirich-
let form, where P, is called a contraction on L£P(E) if it maps £?(E) N LP(E) into
L%(E) N LP(E), and is contractive in the LP-norm.

From now on, we fix a non-associative vector bundle 7 : E — M with fibres
isometric to the real Hilbert space L?(A,7) of a Jordan von Neumann algebra
A with a faithful semifinite normal trace 7. By [21, Theorem 1.8.19], the vector
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bundle 7 : E — M has a Riemannian metric, that is, the inner product (-, ),
on E, can be chosen to depend smoothly on z € M. Let T'E be the total tangent
space of E. By [21, Theorem 1.8.23], the above vector bundle possesses a metric
connection K : TE — E| compatible with the Riemannian structure such that,
for each ¢ € T'(E),
Dxp(z) :=Kodp,(X) € E

is the associated covariant derivation of ¢ in the direction X € T, M, where dy, :
T M — T, E is the differential of ¢ at x € M. For any vector field X on M,
Dxp is a smooth section of F (cf.[21, p.49]) and

We note that K o dp, € L(T,M, E,), the space of linear maps between T, M and
E,, and the tensor product £, ® Ty M is dense in L(T, M, E,) in the compact open
topology (cf. [13, p.240]). If the fibre E, is finite-dimensional, then L(T,M, E,) =
E, ® T*M and we have the connection D : I'(E) — T'(E) @ ['(T*M) given by

Dy = K o dep.
For ¢,1 € C*(FE), we define

(Dg(x), D () = 3 _(Dx(%), Dx,th(x))a

where {X1,..., X,} is an orthonormal moving frame on M.

Given m : E — M endowed with a Riemannian structure and a compatible
connection D, the qudratic form

E(p, 1)) = /M (D, D)y (g € C(E))

satisfies the conditions in Theorem 2.1 since £(¢™*, ¢ ) = 0.

3. HYPERCONTRACTIVITY

The theory of hypercontractive semigroups was introduced in a fundamental
paper of Nelson [24] who discovered that the Ornstein-Uhlenbeck semigroup P, :
LP(RY, ) — LY(R%, ) is bounded if p,q and t are properly related, where p
is the Gaussian measure. After important improvements in [14, 26|, the precise
minimum time ¢ for contractivity from L? to L? was established in [25].

In his seminal paper [17], Gross proved the equivalence of hypercontractivity
and a logarithmic Sobolev inequality for diffusion semigroups which may be stated
as follows. Let (P,);>o be the diffusion semigroup associated to a local Dirichlet
form (€, F) on L*(X, X, ) for some o-finite measure space (X, X, u). Let

(1) ue(f) = [ (7inf)du - ( /. fdu> (ln /. fdu>
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denote the entropy of f. Let a > 0 and b > 0. Define

p(t) =1+ (p—1)e*  m@)=0b(p~" —pt)™").

Then the following logarithmic Sobolev inequality

(2) Ent(f*) <a€(f, f)+0llfll;  (FeF)
holds if, and only if|
(3) 1P:f 1oy < €™ 11f Iy

forall f € LP(X,X,pu), p € (1,00) and t > 0. We refer to [3, 6, 11, 12, 17, 18] for
the evolution of this form of Gross’s theorem. We also refer to [7] for a bibliographic
review of hyercontractivity.

Let m : E — M be a non-associative vector bundle, endowed with a Riemann-
ian structure and a compatible connection D. Let

E(p, ) = /M (Do, Dyedn (0,1 € C2(E) C L(E))

be a Dirichlet form. Let (P;)¢>0 be the diffusion semigroup of the vector bundle £
with generator L defined by £. That is, P, = e *F and the self-adjoint operator L
is determined via integration by parts

/M (Do, DY) dp = /M (L, ) dyp.

As L?(E) ~ L*(M, L*(A, 1)), each ¢ € L?(F) identifies with a function in
L*(M,L?*(A, 7)) and we define
ol (2) = (p(z), p(2))>  (z € M)

which is abbreviated to |p|2 = (¢, ), if no confusion is likely. As before, let ||p]|,
denote the LP-norm of |¢p|,.

In the following result for non-associative vector bundles, the special case for
line bundles is implicit in the fundamental work of Gross [17]. Our proof uses an
argument of Bakry [4].

Proposition 3.1. Let a > 0, b > 0. The following two conditions are equivalent.

(i) (P)i>0 possesses hypercontractivity, that is,

(4) 1Pl < €™, (9 € CX(E)) with

() pt)=1+@—De', mt)=b(p —p®)™") >0, p>1)
(ii) For all p > 1, we have

2
ap 5 d
E Py <« =& p—2

|Prolz + bl -
t=0
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Proof. Consider the function F(t) = e ™ || Pyp| |, where m(0) = 0 and p(0) = p.
We have F'(0) = ||¢|[,- A straightforward computation shows that

p'(1) 1
P(t)* || Pl %)

e | P LAl
2HPtso||p

Multiplying both sides by HPtg0||§(t), we obtain

(7) 9 1ogF(t) = —m'(t)+

p Ent (|PipP®)

d
® Pl (d—logFm)

(¢ d|P90|2 m'(t)p(t)?
_ ()[Et(\P 0) + / Piplp-2 2 — T Pl )

- PR(t)
By definition, p(t) and m(t) are chosen to solve the following differential equations:
t)? ap?
A p0) =
p(t)  4p—1)
and
i t t 2
140)

Assume (i). Since F'(0) = ||¢||y, the hypercontractivity of (P;) implies F'(0) < 0
which gives, via (8),
m'(0)p”
|[Pipl = [l <0
=0 P'(0)

Ent (|o[7) +

dt

Together with (5), this shows (6) holds.

Conversely, assume (ii). Applying (6) to P;p and using (8), we see that (6)
implies £ log F'(t) < 0, so F'(t) < 0. Therefore F(t) < F(0) which in turn yields
the hypercontractivity of (P;):>o. O

Theorem 3.2. Let (P;)i>0 be the diffusion semigroup on a non-associative vector
bundle E — M with the generator L associated with the Dirichlet form

Ep, ) = /M (D, DY), du (6. € C>(E)).

Then the hypercontractivity of (P;)i>o is equivalent to the following log-Sobolev
inequality

9) Ent (|o[?) < a/ (D, D) rdp + bl|o| |2 .
M
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Proof. As
d 9 d
| Pel@) =2 (Pp(a), Pp(2))e = 2{Le(2), ¢(2))a
we have
p—2 d 2 p—2
(10) — | |l =1 [Pyplidu=2 [ (Do, D(lo[f™ p))dp .
M dt t=0 M

For any 8 > 0, we have by the product rule,
D(lell¢) = (dlel?) ¢ + ¢l Dy

so that

ID(lelPo)lZ = ((dlel?) o + @’ Dy, (dol?) ¢ + 0! Dy),

= |dlelf’¢l? + |¢°| Do|? + (Dg, (d|o]’) ¢)- .
While
(Do, D(lg[?"%¢))7 = (D, (dl??) @)7 + l@lP*| D2,

and therefore, with 5 = (p — 2)/2, we have

(Do, D(leP20)), = |D(lelf0)|2 — |d|p|2]?|¢)2

D_ (p— 2)2 »
= |D(plz7 o)z - p |2 .

Hence, by Proposition 3.1, the hypercontractivity of (P;):>o is equivalent to the
following entropy inequality:

2 _2)2
Ent 2<L/ (DQ—(p d T2)+b 2
(62) < g5 [ (Dol = 2= idlel ) + bl

for all p > 1 and ¢ € CX°(E). Our claim will follow if we can show for any given
©, the right-hand side is minimized when p = 2. To this end we consider

2 2
p s (p—2) 2>

U = / (D ‘- d|o|,

(p) b1/, | Dy 2 |d[e]-|
2 (p—2)?
= [ oo - 2R [ el
M p M
where it is clear that

p
v =" ([ 1= [ )

Therefore U(p) takes its minimum value at p = 2, or at [, [Dy|2 = [}, |d|¢||%,
where in the latter case, U(p) is constant. In both cases, the minimum value of
U(p) is 4 [,, |De|? which proves our claim. O

p
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In the scalar case, the reduction in (6) from any value p to p = 2 (logarithmic
Sobolev inequality) is achieved by the simple fact that [, |[Dy|* = [, |d|¢||*>. The
latter is no longer true for sections of vector bundles. Our only contribution is
the observation that, nevertheless, such a reduction can still be obtained via a
max-min argument instead.

Corollary 3.3. Let pu be a o-finite measure on a Riemannian manifold M. If a
logarithmic Sobolev inequality holds for functions:

) Bu(f)<a [ [VIP4BIfIE forall feCE(M),
M

then the semigroup (P;)i>0 on a non-associative vector bundle E — M as in
Theorem 3.2 possesses hypercontractivity.

Proof. Since D is compatible with the Riemannian structure on E, we have

dlol* = 2(Dp, @)

so that |d|¢|?| < 2|Dy|,|p|, which implies that |d|¢|,| < |Dy|,. However |d|p|,| =
|Vl]p|;|, therefore by applying (11) to |¢|,, we obtain

Ent (o) < a /M ol ? + bl 2

< / Dl + bll2 -
M

The conclusion now follows from the above theorem immediately. O

4. HARMONIC FUNCTIONS

To conclude, we discuss harmonic functions with respect to a Dirichlet Lapla-
cian in the scalar case on Lie groups. We show, not surprisingly, the absence of a
nontrivial L? harmonic function for 1 < p < oc.

Let G be a connected Lie group with a right invariant Haar measure A, and
let LP(G) be the Lebesgue spaces with respect to the Haar measure A. Given a
Dirichlet form £ on L?(G), we consider the associated positive self-adjoint operator
L in L?(Q), the Dirichlet Laplacian of &, satisfying

E(p,¥) = (Lyp,4b) (o, € D(L)).
We assume that L commutes with right translations of G":
Lry, =r,L (e € G)

where r, : © — xa € G is a right translation by a. In this case, the Markov
semigroup

P IP(G) — LP(G)  (t>0)
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generated by L, commutes with right translations of G’ and is a convolution semi-
group:

P(f)=fxor  (f €LP(G))
where (0¢)i>0 is a family of probability measures on G and the support of each

oy generates the group G. A complex function f € D(L) is called L-harmonic if
Lf=0.

Theorem 4.1. Let 1 < p < oo and let f € LP(G). If f is L-harmonic, then f is
constant.

Proof. Let (04)¢>0 be the induced convolution semigroup of probability measures
on G. Then we have f x 0, = f and since the support of o; generates G, by [5,
Theorem 3.12], f is constant. d

We note that, given a complete Riemannian manifold M and the Laplace op-
erator A of its Riemannian metric, it is a well-known result of Yau [28] that all L?
A-harmonic functions on M are constant, for 1 < p < oo, and if in addition, M
has non-negative Ricci curvature, then all L' harmonic functions on M are also
constant [29, 22] (see also [16]). Yau’s result applies to Lie groups for 1 < p < oo,
however, it has been shown by Milnor [23] that for almost all left-invariant Rie-
mannian metrics on a Lie group, the Ricci curvature changes sign and in this case,
the above L' result does not apply directly although Theorem 4.1 shows that it is
still true for all Lie groups.
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