DIRICHLET FORMS AND MARKOV SEMIGROUPS ON NON-ASSOCIATIVE VECTOR BUNDLES

CHO-HO CHU AND ZHONGMIN QIAN

ABSTRACT. We introduce non-associative vector bundles and study Dirichlet forms and the associated Markov semigroups on these bundles.

1. Introduction

A non-commutative theory of Dirichlet forms and Markov semigroups has been developed in [1, 8, 9, 10]. Two forms of non-commutative theory are usually considered: either the domains of the Dirichlet forms are furnished by some non-commutative C*-algebras, typically, the non-commutative $L^p(\mathcal{A})$ spaces of a semifinite von Neumann algebra \mathcal{A} , or, one considers the semigroups acting on sections of vector bundles over Riemannian manifolds, with non-commutative fibres. In [9, 10], the latter case has been studied for C*-bundles over compact manifolds whose fibres are finite-dimensional real C*-algebras. To be precise, the Dirichlet forms in both cases are defined in terms of the Hermitian part of the relevant spaces, namely, either the Hermitian part

$$L_h^2(\mathcal{A}) = \{ x \in L^2(\mathcal{A}) : x^* = x \}$$

of the non-commutative space $L^2(\mathcal{A})$, as in [1, p. 177], or the section $L^2(\mathfrak{A}_h)$ with bundle \mathfrak{A}_h whose fibres are the Hermitian part

$$A_h = \{ x \in A : x^* = x \}$$

of a finite-dimensional real C*-algebra A, equipped with the L_2 -norm of a trace, as in [9, Theorem 2]. It was also noted in [9] that a natural alternative approach would be to consider bundles whose fibres have the structure of a compact Jordan algebra.

In this paper, we consider more general vector bundles modelled on the non-associative L^p -spaces, usually infinite dimensional, of a semifinite Jordan von Neumann algebra. This includes the bundles \mathfrak{A}_h considered in [9] as well as the alternative approach proposed in [9] and mentioned above. We describe a framework for a non-associative theory of Dirichlet forms on these bundles and extend to this setting some contractivity results concerning the associated Markov semigroups (cf. [9, 10, 17]).

We begin by describing the non-associative L^p -spaces, constructed from a Jordan algebra. We recall that a real, but not necessarily associative, algebra \mathcal{A} is called a *Jordan algebra* if its algebraic product satisfies

$$xy = yx$$
 and $x^2(yx) = (x^2y)x$ $(x, y \in A)$.

By a Jordan von Neumann algebra \mathcal{A} , we mean a real Banach space \mathcal{A} which is also a Jordan algebra, with a (necessarily unique) separable predual \mathcal{A}_* , such that

$$||xy|| \le ||x|| ||y||$$

$$||x^2|| = ||x||^2$$

$$||x^2|| \le ||x^2 + y^2||$$

for $x, y \in \mathcal{A}$. Without the separability condition on the predual, these algebras are known as JBW-algebras in literature [19]. The weak topology on \mathcal{A} is the topology $\sigma(\mathcal{A}, \mathcal{A}_*)$. We note that \mathcal{A} contains an identity $\mathbf{1}$ and the order in \mathcal{A} is induced by the closed cone

$$\mathcal{A}^+ = \{x^2 : x \in \mathcal{A}\}$$

and we have $\mathcal{A} = \mathcal{A}^+ - \mathcal{A}^+$. Given $x \in \mathcal{A}$, one can define its modulus $|x| = (x^2)^{1/2} \in \mathcal{A}^+$. Each $x \in \mathcal{A}$ has a polar decomposition

$$x = s|x|$$

where s is a symmetry in A which means that $s^2 = 1$.

Example 1.1. Let \mathcal{A} be a (complex) von Neumann algebra with a separable predual, for instance, the algebra B(H) of bounded linear operators on a complex separable Hilbert space H. Then the Hermitian part

$$\mathcal{A}_h = \{ T \in \mathcal{A} : T^* = T \}$$

is a Jordan von Neumann algebra, with the Jordan product defined by

$$T \circ S = \frac{1}{2}(TS + ST)$$

where the product on the right is the original product in \mathcal{A} . The positive cone $\mathcal{A}^+ = \{T^*T : T \in \mathcal{A}\}$ coincides with \mathcal{A}_h^+ .

Example 1.2. Let A be a real C*-algebra. Then its complexification $\widetilde{A} = A + iA$ can be given a norm so that it becomes a (complex) C*-algebra, and A embeds isometrically as a real C*-subalgebra of \widetilde{A} [15, 15.4]. We note that A is generally not identical with the Hermitian part of \widetilde{A} . If A has a separable predual, then its Hermitian part

$$A_h = \{ x \in A : x^* = x \}$$

is a Jordan von Neumann algebra, with the Jordan product defined by

$$x \circ y = \frac{1}{2}(xy + yx)$$

where the associative product on the right is the original product in A.

We refer to [19] for other examples of Jordan von Neumann algebras which are not the Hermitian part of a real or complex C*-algebra.

We recall that a Jordan von Neumann algebra \mathcal{A} is semifinite if it admits a faithful semifinite normal trace. A trace on \mathcal{A} is an additive function $\tau: \mathcal{A}^+ \longrightarrow [0, \infty]$ satisfying

- (i) $\tau(\alpha x) = \alpha \tau(x)$ $(\alpha \ge 0)$
- (ii) $\tau(sxs) = \tau(x)$ (s is a symmetry).

A trace τ is faithful if $\tau(x) = 0$ implies x = 0. It is called semifinite if for any $x \in \mathcal{A}^+ \setminus \{0\}$, there exists $y \in \mathcal{A}^+ \setminus \{0\}$ such that $y \leq x$ and $\tau(y) < \infty$. If τ preserves monotone convergence, then it is called normal.

A prototypic example of a semifinite Jordan von Neumann algebra is the Hermitian part $B(H)_h$ of the algebra B(H) of bounded operators on a separable Hilbert space H, with the canonical trace; but important examples include Hermitian parts of all finite von Neumann algebras with separable predual, in particular, the group von Neumann algebras of infinite-conjugacy-class groups which are type II_1 factors (cf. [27, p.367]).

In the sequel, \mathcal{A} will denote a semifinite Jordan von Neumann algebra with a faithful semifinite normal trace τ . There is a weakly dense ideal of \mathcal{A} associated with τ , namely,

$$\mathcal{N}_{ au} = \mathcal{N}_{ au}^+ - \mathcal{N}_{ au}^+$$

where

$$\mathcal{N}_{\tau}^{+} = \{ a \in \mathcal{A}^{+} : \tau(a) < \infty \}$$

and the trace τ can be extended to a linear functional on \mathcal{N}_{τ} , still denoted by τ . For $1 \leq p < \infty$, we define the L^p -norm

$$|||x|||_p = \tau(|x|^p)^{1/p} \qquad (x \in \mathcal{N}_\tau)$$

where $|x|^p \in \mathcal{N}_{\tau}^+$ is defined by function calculus. The completion of the normed space $(\mathcal{N}_{\tau}, |\|\cdot\|\|_p)$ is denoted by $L^p(\mathcal{A}, \tau)$, called the non-associative L^p -space of \mathcal{A} with respect to τ . The space $L^1(\mathcal{A}, \tau)$ is linearly isometric to \mathcal{A}_* and $L^2(\mathcal{A}, \tau)$ is a Hilbert space with inner product denoted by $\langle \cdot, \cdot \rangle_{\tau}$. We define $L^{\infty}(\mathcal{A}, \tau) = \mathcal{A}$ and refer to [20] for further details of these L^p spaces.

One can construct a non-commutative L^p -space $L^p(\mathcal{M}, \tau_0)$ of a (complex) von Neumann algebra \mathcal{M} with a faithful semifinite normal trace τ_0 . If \mathcal{M} has a separable predual, then the Hermitian part $\mathcal{A} = \mathcal{M}_h$ of \mathcal{M} is a Jordan von Neumann algebra with trace τ which is the restriction of τ_0 to \mathcal{A}^+ , and $L^p(\mathcal{A}, \tau)$ identifies with the Hermitian part $L_h^p(\mathcal{M}, \tau_0)$ of $L^p(\mathcal{M}, \tau_0)$ [2].

Example 1.3. If $\mathcal{A} = \mathcal{B}(H)_h$ is the Hermitian part of the algebra of bounded operators on a separable Hilbert space H, with the canonical trace τ , then $L^2(\mathcal{A}, \tau) = \mathcal{N}_{\tau}$ is the space of self-adjoint Hilbert-Schmidt operators on H and is separable.

Example 1.4. If A is a finite-dimensional real C*-algebra, then $L^2(A_h, \tau) = (A_h, ||| \cdot |||_2)$ for any trace τ on A_h . This is the space considered in [9].

2. Non-associative vector bundles and Dirichlet forms

In this section, we introduce non-associative vector bundles on Riemannian manifolds and the setting for a non-associative theory of Dirichlet forms. These bundles are vector bundles whose fibres have Jordan algebraic structures, more precisely, the fibres of these bundles are real Hilbert spaces isometric to a non-associative Hilbert space of a semifinite Jordan von Neumann algebra.

Throughout, let M be a Riemannian manifold equipped with a σ -finite Borel measure μ . Let $L^2(\mathcal{A}, \tau)$ be a non-associative Hilbert space as before. We denote by $L^2(M, L^2(\mathcal{A}, \tau))$ the real Hilbert space of (equivalence classes of) $L^2(\mathcal{A}, \tau)$ -valued Bochner integrable functions f on M satisfying

$$||f||_2 = \left(\int_M ||f(x)||_2^2 d\mu(x)\right)^{\frac{1}{2}} < \infty$$

(cf. [13, p.97]), with inner product

$$\langle f, g \rangle = \int_{M} \langle f(x), g(x) \rangle_{\tau} d\mu(x).$$

Let $C_c^{\infty}(M, L^2(\mathcal{A}, \tau))$ be the space of smooth $L^2(\mathcal{A}, \tau)$ -valued functions on M with compact support. Standard arguments show that $C_c^{\infty}(M, L^2(\mathcal{A}, \tau))$ is $\|\cdot\|_2$ -dense in $L^2(M, L^2(\mathcal{A}, \tau))$.

A vector bundle $\pi: E \longrightarrow M$ is called a non-associative bundle if its fibres E_x are all real Hilbert spaces linearly isometric to the non-associative Hilbert space $L^2(\mathcal{A}, \tau)$ of a Jordan von Neumann algebra \mathcal{A} with a faithful semifinite normal trace τ . In this case, E is a Hilbert manifold modeled on the real Hilbert space $L^2(\mathcal{A}, \tau) \times \mathbb{R}^n$ where $n = \dim M$. We denote the inner product in E_x by $\langle \cdot, \cdot \rangle_x$. Given the linear isometry

$$\gamma_x: E_x \longrightarrow L^2(\mathcal{A}, \tau)$$

we have $\langle \xi, \zeta \rangle_x = \langle \gamma_x(\xi), \gamma_x(\zeta) \rangle_\tau$. The set $C_c^{\infty}(E)$ of smooth sections on M with compact support is a vector space with inner product and norm:

$$\langle \varphi, \psi \rangle = \int_{M} \langle \varphi(x), \psi(x) \rangle_{x} d\mu(x)$$
$$\|\varphi\|_{2} = \langle \varphi, \varphi \rangle^{1/2}.$$

The completion $\mathcal{L}^2(E)$ of $C_c^{\infty}(E)$ with respect to the above norm identifies with the real Hilbert space $L^2(M, L^2(\mathcal{A}, \tau))$. More generally, for $1 \leq p < \infty$, we denote by $\mathcal{L}^p(E)$ the completion of $C_c^{\infty}(E)$ with respect to the following norm:

$$\|\varphi\|_p = \left(\int_M \langle \varphi(x), \varphi(x) \rangle_x^{p/2} d\mu(x)\right)^{1/p}.$$

Let $\mathcal{L}^{\infty}(E)$ be the space of (essentially) bounded sections on M.

The L^p -space $L^{\widehat{p}}(\mathcal{A}, \tau)$ can be partially ordered by the cone $L^p(\mathcal{A}, \tau)^+$ which is defined to be the $|||\cdot|||_p$ -closure of \mathcal{N}_{τ}^+ . For $p \in (1, \infty)$, the norm $|||\cdot|||_p$ is Fréchet

differentiable except at 0. Given a map $f: \mathbb{R} \longrightarrow L^p(\mathcal{A}, \tau)^+$, differentiable at $t_0 \in \mathbb{R}$ with $f(t_0) \neq 0$, we have, by [20, Lemma 14],

$$\frac{d}{dt}\tau (f(t)^{p})|_{t=t_{0}} = p\tau \left(f(t_{0})^{p-1}\frac{d}{dt}f(t)|_{t=t_{0}}\right).$$

For $z, w \in L^2(\mathcal{A}, \tau)^+$, we have $\langle z, w \rangle_{\tau} \geq 0$ (cf. [20, Lemma 1]). Every $z \in L^2(\mathcal{A}, \tau)$ has a decomposition $z = z^+ - z^-$ with $z^+, z^- \geq 0$ and $z^+z^- = 0$. The modulus of z is defined to be $|z| = z^+ + z^-$.

Each fibre E_x of the non-associative vector bundle $\pi: E \longrightarrow M$ carries the above order and Jordan algebraic structures of $L^2(\mathcal{A}, \tau)$ via the isometry $\gamma_x: E_x \longrightarrow L^2(\mathcal{A}, \tau)$. A section φ of E is said to be *positive* if $\varphi(x) \geq 0$ for almost all $x \in M$. We denote this by $\varphi \geq 0$.

Let $\Gamma(E)$ be the space of smooth sections of E. Given $\varphi \in \Gamma(E)$, we define $\varphi^{\pm}(x) = \varphi(x)^{\pm}$ and $|\varphi|(x) = |\varphi(x)|$ for $x \in M$. Then $\varphi = \varphi^{+} - \varphi^{-}$ and $|\varphi| = \varphi^{+} + \varphi^{-}$. We have

$$\langle \varphi^+, \varphi^- \rangle = \int_M \langle \varphi(x)^+, \varphi(x)^- \rangle_x d\mu(x) = 0.$$

The above order structures can be extended to the completion $\mathcal{L}^2(E) \cong L^2(M, L^2(\mathcal{A}, \tau))$. A linear map $P: \mathcal{L}^2(E) \longrightarrow \mathcal{L}^2(E)$ is called *positive*, in symbol, $P \geq 0$, if $\varphi \geq 0$ implies $P\varphi \geq 0$.

Let Q be a closable non-negative quadratic form with domain $C_c^{\infty}(E) \subset \mathcal{L}^2(E)$. Then there is a positive self-adjoint operator L in $\mathcal{L}^2(E)$ such that

$$Q(\varphi, \psi) = \langle L\varphi, \psi \rangle \qquad (\varphi, \psi \in C_c^{\infty}(E))$$

where we use the same symbol Q for the associated symmetric bilinear form. We denote by $\mathcal{D}(L)$ the domain of L.

The proof of the following result is similar to [9, Theorem 1].

Theorem 2.1. Let $Q(\cdot) = \langle L^{1/2}(\cdot), L^{1/2}(\cdot) \rangle$ be a quadratic form where $L : \mathcal{D}(L) \longrightarrow \mathcal{L}^2(E)$ is a self-adjoint, positive operator which generates a semigroup $(P_t)_{t\geq 0}$ on $\mathcal{L}^2(E)$. The following conditions are equivalent.

- (i) $P_t \ge 0 \text{ for } t > 0.$
- (ii) Given $\varphi \in \mathcal{D}(L^{1/2})$, we have $|\varphi| \in \mathcal{D}(L^{1/2})$ and $Q(|\varphi|) \leq Q(\varphi)$.
- (iii) Given $\varphi \in \mathcal{D}(L^{1/2})$, we have $|\varphi| \in \mathcal{D}(L^{1/2})$ and $Q(\varphi^+, \varphi^-) \leq 0$.
- (iv) For $\varphi \in \mathcal{L}^2(E)$ and $\varphi \geq 0$, we have $(\alpha + L)^{-1}(\varphi) \geq 0$ for all $\alpha > 0$.

Proof. (i) \Rightarrow (ii). Let $\varphi \in \mathcal{D}(L^{1/2})$. Then by positivity of P_t , we have

$$\langle P_{t}\varphi, \varphi \rangle = \langle P_{t}\varphi^{+} - P_{t}\varphi^{-}, \varphi^{+} - \varphi^{-} \rangle$$

$$= \langle P_{t}\varphi^{+}, \varphi^{+} \rangle + \langle P_{t}\varphi^{-}, \varphi^{-} \rangle - \langle P_{t}\varphi^{+}, \varphi^{-} \rangle - \langle P_{t}\varphi^{-}, \varphi^{+} \rangle$$

$$\leq \langle P_{t}|\varphi|, |\varphi| \rangle.$$

Hence

$$\frac{1}{t}\langle (I - P_t)|\varphi|, |\varphi|\rangle \le \frac{1}{t}\langle (I - P_t)\varphi, \varphi\rangle$$

and $\limsup_{t\to 0} \frac{1}{t} \langle (I-P_t)|\varphi|, |\varphi| \rangle \leq \langle L^{1/2}\varphi, L^{1/2}\varphi \rangle$. It follows that $|\varphi| \in \mathcal{D}(L^{1/2})$ and $Q(|\varphi|) \leq Q(\varphi)$.

 $(ii) \Leftrightarrow (iii)$. This follows from

$$4Q(\varphi^+, \varphi^-) = Q(|\varphi|) - Q(\varphi)$$

where $\varphi, |\varphi| \in \mathcal{D}(L^{1/2})$ implies that $\varphi^{\pm} \in \mathcal{D}(L^{1/2})$.

(iii) \Rightarrow (iv). Fix $\alpha > 0$. Denote $K = \mathcal{D}(L^{1/2})$ which is a Hilbert space with respect to the inner product

$$\langle \psi, \varphi \rangle_1 = \langle L^{1/2} \psi, L^{1/2} \varphi \rangle + \alpha \langle \psi, \varphi \rangle.$$

Let $J: K \longrightarrow \mathcal{L}^2(E)$ be the natural embedding. Then, for $\psi \in K$, $\varphi \in \mathcal{L}^2(E)$, we have

$$\begin{split} \langle \psi, (\alpha + L)^{-1} \varphi \rangle_1 &= \langle L^{1/2} \psi, L^{1/2} (\alpha + L)^{-1} \varphi \rangle \\ &+ \alpha \langle \psi, (\alpha + L)^{-1} \varphi \rangle \\ &= \langle (\alpha + L) \psi, (\alpha + L)^{-1} \varphi \rangle \rangle \\ &= \langle \psi, \varphi \rangle = \langle J \psi, \varphi \rangle. \end{split}$$

Therefore $J^*\varphi = (\alpha + L)^{-1}\varphi$. Let $\psi = J^*\varphi$. We have

$$\langle |\psi|, |\psi| \rangle_1 = Q(|\psi|) + \alpha \langle |\psi|, |\psi| \rangle$$

 $< Q(\psi) + \alpha \langle \psi, \psi \rangle = \langle \psi, \psi \rangle_1.$

Let $\varphi \geq 0$. Then

$$\begin{aligned} \langle |\psi|, \psi \rangle_1 &= \langle |\psi|, J^* \varphi \rangle_1 \\ &= \langle |\psi|, \varphi \rangle \\ &\geq \langle \psi, \varphi \rangle = \langle \psi, J^* \varphi \rangle_1 = \langle \psi, \psi \rangle_1. \end{aligned}$$

Hence $(\alpha + L)^{-1}\varphi = J^*\varphi = \psi = |\psi| \ge 0.$

 $(iv) \Rightarrow (i)$. This follows from

$$P_t = \lim_{n \to \infty} \left(I + \frac{t}{n} L \right)^{-n}.$$

A quadratic form Q in $\mathcal{L}^2(E)$ satisfying the conditions in Theorem 2.1 and generating a contractive semigroup (P_t) on $\mathcal{L}^p(E)$ for $p \in [1, \infty]$ is called a *Dirichlet form*, where P_t is called a *contraction* on $\mathcal{L}^p(E)$ if it maps $\mathcal{L}^2(E) \cap \mathcal{L}^p(E)$ into $\mathcal{L}^2(E) \cap \mathcal{L}^p(E)$, and is contractive in the L^p -norm.

From now on, we fix a non-associative vector bundle $\pi: E \longrightarrow M$ with fibres isometric to the real Hilbert space $L^2(\mathcal{A}, \tau)$ of a Jordan von Neumann algebra \mathcal{A} with a faithful semifinite normal trace τ . By [21, Theorem 1.8.19], the vector

bundle $\pi: E \longrightarrow M$ has a Riemannian metric, that is, the inner product $\langle \cdot, \cdot \rangle_x$ on E_x can be chosen to depend smoothly on $x \in M$. Let TE be the total tangent space of E. By [21, Theorem 1.8.23], the above vector bundle possesses a metric connection $K: TE \longrightarrow E$, compatible with the Riemannian structure such that, for each $\varphi \in \Gamma(E)$,

$$D_X \varphi(x) := K \circ d\varphi_x(X) \in E$$

is the associated covariant derivation of φ in the direction $X \in T_xM$, where $d\varphi_x : T_xM \longrightarrow T_{\varphi(x)}E$ is the differential of φ at $x \in M$. For any vector field X on M, $D_X\varphi$ is a smooth section of E (cf.[21, p.49]) and

$$X\langle \varphi, \psi \rangle = \langle D_X \varphi, \psi \rangle + \langle \varphi, D_X \psi \rangle.$$

We note that $K \circ d\varphi_x \in L(T_xM, E_x)$, the space of linear maps between T_xM and E_x , and the tensor product $E_x \otimes T_x^*M$ is dense in $L(T_xM, E_x)$ in the compact open topology (cf. [13, p.240]). If the fibre E_x is finite-dimensional, then $L(T_xM, E_x) = E_x \otimes T_x^*M$ and we have the connection $D: \Gamma(E) \longrightarrow \Gamma(E) \otimes \Gamma(T^*M)$ given by

$$D\varphi = K \circ d\varphi.$$

For $\varphi, \psi \in C_c^{\infty}(E)$, we define

$$\langle D\varphi(x), D\psi(x)\rangle_{\tau} = \sum_{i=1}^{n} \langle D_{X_i}\varphi(x), D_{X_i}\psi(x)\rangle_{x}$$

where $\{X_1, \ldots, X_n\}$ is an orthonormal moving frame on M.

Given $\pi: E \longrightarrow M$ endowed with a Riemannian structure and a compatible connection D, the qudratic form

$$\mathcal{E}(\varphi,\psi) = \int_{M} \langle D\varphi, D\psi \rangle_{\tau} d\mu \qquad (\varphi, \psi \in C_{c}^{\infty}(E))$$

satisfies the conditions in Theorem 2.1 since $\mathcal{E}(\varphi^+, \varphi^-) = 0$.

3. Hypercontractivity

The theory of hypercontractive semigroups was introduced in a fundamental paper of Nelson [24] who discovered that the Ornstein-Uhlenbeck semigroup P_t : $L^p(\mathbb{R}^d,\mu) \longrightarrow L^q(\mathbb{R}^d,\mu)$ is bounded if p,q and t are properly related, where μ is the Gaussian measure. After important improvements in [14, 26], the precise minimum time t for contractivity from L^p to L^q was established in [25].

In his seminal paper [17], Gross proved the equivalence of hypercontractivity and a logarithmic Sobolev inequality for diffusion semigroups which may be stated as follows. Let $(P_t)_{t\geq 0}$ be the diffusion semigroup associated to a local Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $L^2(X, \mathcal{X}, \mu)$ for some σ -finite measure space (X, \mathcal{X}, μ) . Let

(1)
$$\operatorname{Ent}(f) = \int_X (f \ln f) \, d\mu - \left(\int_X f \, d\mu \right) \left(\ln \int_X f \, d\mu \right)$$

denote the entropy of f. Let a > 0 and $b \ge 0$. Define

$$p(t) = 1 + (p-1)e^{4t/a}; \quad m(t) = b(p^{-1} - p(t)^{-1}).$$

Then the following logarithmic Sobolev inequality

(2)
$$\operatorname{Ent}(f^2) \le a\mathcal{E}(f, f) + b||f||_2^2 \qquad (f \in \mathcal{F})$$

holds if, and only if,

$$(3) ||P_t f||_{p(t)} \le e^{m(t)} ||f||_p$$

for all $f \in L^p(X, \mathcal{X}, \mu)$, $p \in (1, \infty)$ and t > 0. We refer to [3, 6, 11, 12, 17, 18] for the evolution of this form of Gross's theorem. We also refer to [7] for a bibliographic review of hyercontractivity.

Let $\pi: E \to M$ be a non-associative vector bundle, endowed with a Riemannian structure and a compatible connection D. Let

$$\mathcal{E}(\varphi,\psi) = \int_{M} \langle D\varphi, D\psi \rangle_{\tau} d\mu \qquad (\varphi, \psi \in C_{c}^{\infty}(E) \subset \mathcal{L}^{2}(E))$$

be a Dirichlet form. Let $(P_t)_{t\geq 0}$ be the diffusion semigroup of the vector bundle E with generator L defined by \mathcal{E} . That is, $P_t = e^{-tL}$ and the self-adjoint operator L is determined via integration by parts

$$\int_{M} \langle D\varphi, D\psi \rangle_{\tau} d\mu = \int_{M} \langle L\varphi, \psi \rangle_{\tau} d\mu.$$

As $\mathcal{L}^2(E) \simeq L^2(M, L^2(A, \tau))$, each $\varphi \in \mathcal{L}^2(E)$ identifies with a function in $L^2(M, L^2(A, \tau))$ and we define

$$|\varphi|_{\tau}(x) = \langle \varphi(x), \varphi(x) \rangle_{\tau}^{1/2} \qquad (x \in M)$$

which is abbreviated to $|\varphi|_{\tau}^2 = \langle \varphi, \varphi \rangle_{\tau}$ if no confusion is likely. As before, let $||\varphi||_p$ denote the L^p -norm of $|\varphi|_{\tau}$.

In the following result for non-associative vector bundles, the special case for line bundles is implicit in the fundamental work of Gross [17]. Our proof uses an argument of Bakry [4].

Proposition 3.1. Let a > 0, $b \ge 0$. The following two conditions are equivalent.

(i) $(P_t)_{t>0}$ possesses hypercontractivity, that is,

$$(4) ||P_t\varphi||_{p(t)} \le e^{m(t)}||\varphi||_p (\varphi \in C_c^{\infty}(E)) with$$

(5)
$$p(t) = 1 + (p-1)e^{\frac{4}{a}t}$$
, $m(t) = b(p^{-1} - p(t)^{-1})$ $(t > 0, p > 1)$.

(ii) For all p > 1, we have

(6)
$$Ent(|\varphi|_{\tau}^{p}) \leq -\frac{ap^{2}}{8(p-1)} \int_{M} |\varphi|_{\tau}^{p-2} \frac{d}{dt} \Big|_{t=0} |P_{t}\varphi|_{\tau}^{2} + b||\varphi||_{p}^{p}.$$

Proof. Consider the function $F(t) = e^{-m(t)}||P_t\varphi||_{p(t)}$ where m(0) = 0 and p(0) = p. We have $F(0) = ||\varphi||_p$. A straightforward computation shows that

(7)
$$\frac{d}{dt} \log F(t) = -m'(t) + \frac{p'(t)}{p(t)^2} \frac{1}{||P_t \varphi||_{p(t)}^{p(t)}} \operatorname{Ent} \left(|P_t \varphi|_{\tau}^{p(t)} \right) + \frac{1}{2||P_t \varphi||_{p(t)}^{p(t)}} \int_M |P_t \varphi|_{\tau}^{p(t)-2} \frac{d}{dt} |P_t \varphi|_{\tau}^2.$$

Multiplying both sides by $||P_t\varphi||_{p(t)}^{p(t)}$, we obtain

(8)
$$||P_{t}\varphi||_{p(t)}^{p(t)} \left(\frac{d}{dt}\log F(t)\right)$$

$$= \frac{p'(t)}{p^{2}(t)} \left[\operatorname{Ent} \left(|P_{t}\varphi|_{\tau}^{p(t)} \right) + \frac{p(t)^{2}}{2p'(t)} \int_{M} |P_{t}\varphi|_{\tau}^{p(t)-2} \frac{d|P_{t}\varphi|_{\tau}^{2}}{dt} - \frac{m'(t)p(t)^{2}}{p'(t)} ||P_{t}\varphi||_{p(t)}^{p(t)} \right]$$

By definition, p(t) and m(t) are chosen to solve the following differential equations:

$$\frac{p(t)^2}{p'(t)} = \frac{ap^2}{4(p-1)} , \quad p(0) = p$$

and

$$\frac{m'(t)p(t)^2}{p'(t)} = b , \qquad m(0) = 0 .$$

Assume (i). Since $F(0) = ||\varphi||_p$, the hypercontractivity of (P_t) implies $F'(0) \leq 0$ which gives, via (8),

Ent
$$(|\varphi|_{\tau}^p) + \frac{p^2}{2p'(0)} \int_M |\varphi|_{\tau}^{p-2} \frac{d}{dt}\Big|_{t=0} |P_t \varphi|_{\tau}^2 - \frac{m'(0)p^2}{p'(0)} ||\varphi||_p^p \le 0$$
.

Together with (5), this shows (6) holds.

Conversely, assume (ii). Applying (6) to $P_t\varphi$ and using (8), we see that (6) implies $\frac{d}{dt}\log F(t) \leq 0$, so $F'(t) \leq 0$. Therefore $F(t) \leq F(0)$ which in turn yields the hypercontractivity of $(P_t)_{t\geq 0}$.

Theorem 3.2. Let $(P_t)_{t\geq 0}$ be the diffusion semigroup on a non-associative vector bundle $E \longrightarrow M$ with the generator L associated with the Dirichlet form

$$\mathcal{E}(\varphi,\psi) = \int_{M} \langle D\varphi, D\psi \rangle_{\tau} d\mu \qquad (\varphi, \psi \in C_{c}^{\infty}(E)).$$

Then the hypercontractivity of $(P_t)_{t\geq 0}$ is equivalent to the following log-Sobolev inequality

(9)
$$\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) \leq a \int_{M} \langle D\varphi, D\varphi \rangle_{\tau} d\mu + b||\varphi||_{2}^{2}.$$

Proof. As

$$\left. \frac{d}{dt} \right|_{t=0} |P_t \varphi|_{\tau}^2(x) = \left. \frac{d}{dt} \right|_{t=0} \langle P_t \varphi(x), P_t \varphi(x) \rangle_x = 2 \langle L \varphi(x), \varphi(x) \rangle_x,$$

we have

$$(10) \qquad -\int_{M} |\varphi|_{\tau}^{p-2} \left. \frac{d}{dt} \right|_{t=0} |P_{t}\varphi|_{\tau}^{2} d\mu = 2 \int_{M} \langle D\varphi, D(|\varphi|_{\tau}^{p-2}\varphi) \rangle_{\tau} d\mu .$$

For any $\beta > 0$, we have by the product rule,

$$D(|\varphi|_{\tau}^{\beta}\varphi) = (d|\varphi|_{\tau}^{\beta}) \varphi + |\varphi|_{\tau}^{\beta}D\varphi$$

so that

$$|D(|\varphi|_{\tau}^{\beta}\varphi)|_{\tau}^{2} = \langle (d|\varphi|_{\tau}^{\beta})\varphi + |\varphi|_{\tau}^{\beta}D\varphi, (d|\varphi|_{\tau}^{\beta})\varphi + |\varphi|_{\tau}^{\beta}D\varphi\rangle_{\tau}$$
$$= |d|\varphi|_{\tau}^{\beta}|^{2}|\varphi|_{\tau}^{2} + |\varphi|_{\tau}^{2\beta}|D\varphi|_{\tau}^{2} + \langle D\varphi, (d|\varphi|_{\tau}^{2\beta})\varphi\rangle_{\tau}.$$

While

$$\langle D\varphi, D(|\varphi|_{\tau}^{p-2}\varphi)\rangle_{\tau} = \langle D\varphi, (d|\varphi|_{\tau}^{p-2})\varphi\rangle_{\tau} + |\varphi|_{\tau}^{p-2}|D\varphi|_{\tau}^{2}$$

and therefore, with $\beta = (p-2)/2$, we have

$$\begin{split} \langle D\varphi, D(|\varphi|_{\tau}^{p-2}\varphi)\rangle_{\tau} &= |D(|\varphi|_{\tau}^{\beta}\varphi)|_{\tau}^{2} - |d|\varphi|_{\tau}^{\beta}|^{2}|\varphi|_{\tau}^{2} \\ &= |D(|\varphi|_{\tau}^{\frac{p}{2}-1}\varphi)|_{\tau}^{2} - \frac{(p-2)^{2}}{p^{2}}|d|\varphi|_{\tau}^{\frac{p}{2}}|^{2} \; . \end{split}$$

Hence, by Proposition 3.1, the hypercontractivity of $(P_t)_{t\geq 0}$ is equivalent to the following entropy inequality:

$$\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) \leq \frac{ap^{2}}{4(p-1)} \int_{M} \left(|D\varphi|_{\tau}^{2} - \frac{(p-2)^{2}}{p^{2}} |d|\varphi|_{\tau}|^{2}\right) + b||\varphi||_{2}^{2}$$

for all p > 1 and $\varphi \in C_c^{\infty}(E)$. Our claim will follow if we can show for any given φ , the right-hand side is minimized when p = 2. To this end we consider

$$U(p) = \frac{p^2}{p-1} \int_M \left(|D\varphi|_\tau^2 - \frac{(p-2)^2}{p^2} |d|\varphi|_\tau|^2 \right)$$

= $\frac{p^2}{p-1} \int_M |D\varphi|_\tau^2 - \frac{(p-2)^2}{p-1} \int_M |d|\varphi|_\tau|^2$,

where it is clear that

$$U'(p) = \frac{p(p-2)}{(p-1)^2} \left(\int_M |D\varphi|_\tau^2 - \int_M |d|\varphi|_\tau^2 \right) .$$

Therefore U(p) takes its minimum value at p=2, or at $\int_M |D\varphi|_\tau^2 = \int_M |d|\varphi|_\tau|^2$, where in the latter case, U(p) is constant. In both cases, the minimum value of U(p) is $4\int_M |D\varphi|_\tau^2$ which proves our claim.

In the scalar case, the reduction in (6) from any value p to p=2 (logarithmic Sobolev inequality) is achieved by the simple fact that $\int_M |D\varphi|^2 = \int_M |d|\varphi||^2$. The latter is no longer true for sections of vector bundles. Our only contribution is the observation that, nevertheless, such a reduction can still be obtained via a max-min argument instead.

Corollary 3.3. Let μ be a σ -finite measure on a Riemannian manifold M. If a logarithmic Sobolev inequality holds for functions:

(11)
$$\operatorname{Ent}(f^2) \le a \int_M |\nabla f|^2 + b||f||_2^2 \quad \text{for all } f \in C_c^{\infty}(M) ,$$

then the semigroup $(P_t)_{t\geq 0}$ on a non-associative vector bundle $E \longrightarrow M$ as in Theorem 3.2 possesses hypercontractivity.

Proof. Since D is compatible with the Riemannian structure on E, we have

$$d|\varphi|^2 = 2\langle D\varphi, \varphi \rangle$$

so that $|d|\varphi|_{\tau}^2| \leq 2|D\varphi|_{\tau}|\varphi|_{\tau}$ which implies that $|d|\varphi|_{\tau}| \leq |D\varphi|_{\tau}$. However $|d|\varphi|_{\tau}| = |\nabla|\varphi|_{\tau}|$, therefore by applying (11) to $|\varphi|_{\tau}$, we obtain

$$\operatorname{Ent}\left(|\varphi|_{\tau}^{2}\right) \leq a \int_{M} |d|\varphi|_{\tau}|^{2} + b||\varphi||_{2}^{2}$$

$$\leq a \int_{M} |D\varphi|_{\tau}^{2} + b||\varphi||_{2}^{2}.$$

The conclusion now follows from the above theorem immediately.

4. HARMONIC FUNCTIONS

To conclude, we discuss harmonic functions with respect to a Dirichlet Laplacian in the scalar case on Lie groups. We show, not surprisingly, the absence of a nontrivial L^p harmonic function for $1 \le p < \infty$.

Let G be a connected Lie group with a right invariant Haar measure λ , and let $L^p(G)$ be the Lebesgue spaces with respect to the Haar measure λ . Given a Dirichlet form \mathcal{E} on $L^2(G)$, we consider the associated positive self-adjoint operator L in $L^2(G)$, the *Dirichlet Laplacian* of \mathcal{E} , satisfying

$$\mathcal{E}(\varphi, \psi) = \langle L\varphi, \psi \rangle \qquad (\varphi, \psi \in \mathcal{D}(L)).$$

We assume that L commutes with right translations of G:

$$Lr_a = r_a L \qquad (a \in G)$$

where $r_a:x\mapsto xa\in G$ is a right translation by a. In this case, the Markov semigroup

$$P_t: L^p(G) \longrightarrow L^p(G) \qquad (t \ge 0)$$

generated by L, commutes with right translations of G and is a convolution semi-group:

$$P_t(f) = f * \sigma_t \qquad (f \in L^p(G))$$

where $(\sigma_t)_{t\geq 0}$ is a family of probability measures on G and the support of each σ_t generates the group G. A complex function $f \in \mathcal{D}(L)$ is called L-harmonic if Lf = 0.

Theorem 4.1. Let $1 \le p < \infty$ and let $f \in L^p(G)$. If f is L-harmonic, then f is constant.

Proof. Let $(\sigma_t)_{t\geq 0}$ be the induced convolution semigroup of probability measures on G. Then we have $f * \sigma_t = f$ and since the support of σ_t generates G, by [5, Theorem 3.12], f is constant.

We note that, given a complete Riemannian manifold M and the Laplace operator Δ of its Riemannian metric, it is a well-known result of Yau [28] that all L^p Δ -harmonic functions on M are constant, for 1 , and if in addition, <math>M has non-negative Ricci curvature, then all L^1 harmonic functions on M are also constant [29, 22] (see also [16]). Yau's result applies to Lie groups for $1 , however, it has been shown by Milnor [23] that for almost all left-invariant Riemannian metrics on a Lie group, the Ricci curvature changes sign and in this case, the above <math>L^1$ result does not apply directly although Theorem 4.1 shows that it is still true for all Lie groups.

Acknowledgment

The first-named author gratefully acknowledges support of the European Commission through its 6th Framework Programme "Structuring the European Research Area" and the contract RITA-CT-2004-505493, during his visit at IHÉS, France.

References

- [1] S. Albeverio and R. H ϕ egh-Krohn, Dirichlet forms and Markov semigroups on C*-algebras, Comm. Math. Phys. 56 (1977) 173-187.
- [2] Sh. A. Ayupov and R.Z. Abdullaev, On isometries of nonassociative L_p -spaces, in "Quantum probability and applications IV (Rome 1987)", (Lecture Notes in Math. 1396, Springer-Verlag, Berlin 1989) 99-106.
- [3] D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in "Ecole d'Eté de Probabilités de Saint Flour 1992", Lecture Notes in Math. 1581, Springer-Verlag, Berlin, (1994) 1-114.
- [4] D. Bakry, On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, in "New Trends in Stochastic Analysis" (ed. K. D. Elworthy) World Scientific (1997) 43-75.
- [5] C-H. Chu, Harmonic function spaces on groups, J. London Math. Soc. 70 (2004) 182-198.
- [6] E.B. Davies, Heat kernels and spectral theory, Cambridge Univ. Press, 1989, Cambridge.
- [7] E.B. Davies, L. Gross and B. Simon, *Hpercontractivity: a bibliographic review*, in "Ideas and methods in quantum and statistical physics", Cambridge Univ. Press (1992) 370-389.
- [8] E.B. Davies and J.M. Lindsay, Non-commutative symmetric Markov semigroups, Math. Z. 210 (1992) 379-411.

- [9] E.B. Davies and O.S. Rothaus, *Markov semigroups on C* bundles*, J. Funct. Analysis 85 (1989) 264-286.
- [10] E.B. Davies and O.S. Rothaus, A BLW inequality for vector bundles and applications to spectral bounds, J. Funct. Analysis 86 (1989) 390-410.
- [11] E.B. Davies and B. Simon, Ultracontractivity and the heat kernel for Schödinger operators and Dirichlet Laplacians, J. Func. Analysis 59 (1992) 335-395.
- [12] J.-D. Deuschel and D.W. Stroock, Large Deviations, Academic Press, New York, 1989.
- [13] J. Diestel and J.J. Uhl, Vector measures, Mathematical Survey 15, Amer. Math. Soc. 1977.
- [14] J. Glimm, Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys. 8 (1968) 12-25.
- [15] K.R. Goodearl, Notes on real and complex C*-algebras, Shiva, England 1982.
- [16] R.E. Greene and H. Wu, Integrals of subharmonic functions on manifolds of nonnegative curvature, Invent. Math. 27 (1974) 265-298.
- [17] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975) 1061-1083.
- [18] L. Gross, Logarithmic Sobolev inequalities and contractivity properties of semigroups, in "Dirichlet forms (Varenna 1992)", Lecture Notes in Math. 1563, Springer-Verlag, Berlin (1993) 54-88.
- [19] H.Hanche-Olsen and E. Stormer, Jordan operator algebras, Pitman, London, 1984.
- [20] B. Iochum, Non-associative L^p -spaces, Pacific J. Math. 122 (1986) 417-433.
- [21] W. Klingenberg, Riemannian geometry, de Gruyter, Berlin (1982).
- [22] P. Li and R. Schoen, L^p and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984) 279-301.
- [23] J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293-329.
- [24] E. Nelson, A quartic interaction in two dimensions, in "Mathematical Theory of Elementary Particles", 69-73, M.I.T. Press, Cambridge, Mass. 1966.
- [25] E. Nelson, The free Markoff field, J. Funct. Analysis, 12 (1973) 211-227.
- [26] I.E. Segal, Construction of non-linear local quantum processes I, Ann. of Math. 92 (1970) 462-481.
- [27] M. Takesaki, Theory of operator algebras I, Springer-Verlag, Heildelberg, 1979.
- [28] S-T. Yau, Some function-theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. Math. J. 25 (1976) 659-670.
- [29] S-T. Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975) 201-228.

IHÉS, F-91440 BURES-SUR-YVETTE, FRANCE

E-mail address: chu@ihes.fr

and

School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS, UK

E-mail address: c.chu@qmul.ac.uk

MATHEMATICAL INSTITUTE, UNIVERSITY OF OXFORD, OXFORD OX1 3LB, UK *E-mail address*: qianz@maths.ox.ac.uk