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ABSTRACT. There are two approaches to constructing stringy multiplica-
tions for global quotients. The first one is given by first pulling back and
then pushing forward. This has been used to define a global stringy exten-
sion of the functors Ko, K*°?, A* H*[CR, FG, AGV, JKK2]. The second
one is given by first pushing forward and then pulling back. This has been
used in the cyclic case [Kal, Ka2] and in particular for singularities with
symmetries [Ka6] and for symmetric products [Kad]. For Abelian quotients
[CH] discussed such a construction in the de Rham setting.

We give a rigorous formulation of de Rham theory for any global quotient
from both points of view. We also show that the pull-push formalism has a
solution by the push—pull equations in the setting of cyclic twisted sectors.

In the general case, we introduce ring extensions that allow us to treat all
the stringy multiplications mentioned above. The first extension provides
formal sections and a second extension fractional Euler classes. The formal
sections allow us to give a pull-push solution while fractional Euler classes
give a trivialization of the co—cycles of the pull-push formalism using the
presentation of the obstruction bundle of [JKK2]. This trivialization can be
interpreted as defining twist fields.

We end with an outlook on applications to singularities with symmetries
aka. orbifold Landau—Ginzburg models.

INTRODUCTION

For global quotients by finite group actions, there is a by now standard ap-
proach to constructing stringy products via first pulling back and then pushing
forward [CR, FG, AGV, JKK2]. We will call this construction the push—pull,
which stands for push—forward after pulling back.

However, going back to [Kal, Ka2|, there is another mechanism that first
pushes forward and then pulls back. We will call this the pull-push approach.
— read pull after pushing. This approach has been very successful for singu-
larities [Ka2, Ka6] and for special cases of the group, for instance G = S,,, see
[Kad]. The advantage of this approach is that one is left with solving an alge-
braic co-cycle equation. In many cases this cocycle is unique up to normalized
discrete torsion [Ka2, Ka3, Ka4, Ka5, Ka6].

In fact, as we proved in [Ka2, Kad] the solutions of the co—cycle equations
are equivalent to the possible stringy multiplications if the twisted sectors are
cyclic modules over the untwisted sector. In the Abelian case an adaption of
this technique was discussed in [CH]. The authors studied de Rham chains
and presented arguments involving the idea of fractional Thom forms. Un-
fortunately, making strict sense of these arguments would involve dividing by
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nilpotent elements and the ideas are limited to the Abelian case. We give a
rigorous setup for the de Rham case for any global quotient.

We are also able to give the mathematical definition of the notion of twist
fields that is prevalent in the physics literature on orbifold conformal field the-
ory.

For the reader’s convenience, we review the general setup in §1. In §2 we
treat the case of cyclic twisted sectors. Here both approaches exist for all the
geometric functors considered in [JKK2]. We prove that the push—pull formula
of [JKK2] gives a solution for the pull-push formalism. The explicit co—cycle
is given by a push—forward of the obstruction bundle. Of course if we have one
solution it can be twisted by discrete torsion [Kab]. The key in this situation
is the existence of sections of the pull-back maps which allow us to prove the
relevant theorems using only the projection formula. We go on to show that by
adjoining fractional Euler classes the multiplication co—cycles become trivial.
The Euler—classes are defined by adjoining roots much like the formal roots in
the splitting principle.

In the general setting, see §3, we trivialize the multiplication by making a
ring extension in two sets of variables. The first set are again fractional Euler
classes. The second set are formal symbols of Euler classes of the negative
normal bundles of the fixed point sets. The relations we impose turn these
symbols into formally defined sections of the pull-back maps. The trivialization
is in terms of the fractional Euler classes of the rational K—theory classes Sy,
appearing in the definition of the obstruction bundle [JKK2] which hence can
be identified the twist fields.

In §4, we give a rigorous treatment in the de Rham setting. Here we work on
the chain level and the push—forward is given by Thom pushforwards. All the
formulas of the previous study hold at least up to homotopy, that is up to exact
forms. Again we trivialize the co-cycles by adjoining fractional Thom—classes.

Finally, in §5, we axiomatize the setting of our calculations in terms of admis-
sible functors and close with a discussion about possible applications to orbifold
Landau—Ginzburg theories that is singularities with symmetries.
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CONVENTIONS

We will use at least coefficients in Q if nothing else is stated. For some
applications such as de Rham forms we will use R coefficients. All statements
remain valid when passing to C.

1. GENERAL SETUP

We will work in the same setup as in the global part of [JKK2|. That is we
simultaneously treat two flavors of geometry, algebraic and differential. For the
latter, we consider a stably almost complex manifold X with the action of a
finite group G such that the stably almost complex bundle is G equivariant.
While for the former X is taken to be a smooth projective variety.

In both situations for m € G we denote the fixed point set of m by X and
let

1(X) = e X™ (1.1)
be the inertia variety.

We let F be any of the functors H*, Ky, A*, K'*°P, that is cohomology, Grothendieck
Ko, Chow ring or topological K—theory with Q coefficients, and define

fstm’ngy(Xv G) = F(I(X)) = @ f(Xm) (12)
meG
additively.

If F is a bundle we set
op(E if F = H* or A*
Eur(E) = { p(E) it or
A_1(E*) if F = Ky or K%

Notice that on bundles Eu is multiplicative. For general K—-theory elements
we set

(1.3)

c(E) if F=H" or A*

1.4
M(E*)  if F = Ky or Ko (1.4)

EU}"t(E) = {

Remark 1.1. Notice Eur; is always multiplicative and it is a power series that
starts with 1 and hence is invertible in F(X)[[t]].

Definition 1.2. For a positive element E —i.e. E can be represented by a
bundle— with rank r = rk(F) we have that Eug(E) = Eug(EF)|;=—1 for F
either Ky or K and Euz(F) = Coeff of t" in [Eug(E)] if F is A* or H*. To
be able to deal with both situations, for F,r as above, we define
Eur (E)|=—1 if Fis K or K%P
Coeff of t" in [Eug(F)] if Fis A" or H*

we then have evalz|, (Euz(F)) = Eug(E)

Remark 1.3. Notice that for F as above and each subgroup H C G, F(XH)
is an algebra. We will call the internal product F(X7) @ F(X#) — F(XH)
the naive product. There is however a “stringy—product” which preserves the
G-grading. To define it, we recall some definitions from [JKK2].

evalz, (Bur(E)) = (1.5)
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Notation 1.4. If F is fixed, we will just write Eu; for Euz; and Eu for Eugr.

1.1. The stringy product via push—pull. For m € G we let X™ be the
fixed point set of m and for a triple m = (mq,mg, mg) such that [[m; = 1
(where 1 is the identity of G) we let X™ be the common fixed point set, that
is the set fixed under the subgroup generated by them.

In this situation, recall the following definitions. Fix m € G and let r =
ord(m) be its order. Furthermore, let Wy, be the sub-bundle of TX|xm on
which m acts with character exp(2m’§), then

k
k

Notice this formula is invariant under stabilization. )
We also wish to point out that using the identification X™ = X™

S @ (Spp1) = Nym ) x (1.7)

where for an embedding X — Y we will use the notation Ny y for the normal
bundle.

Recall from [JKK2] that in such a situation there is a product on F(X,G)
which is given by

Umy * Vmy 1= €mys (€] (Um, )€3(Vm, ) Eu(R(m))) (1.8)
where the obstruction bundle R(m) can be defined by
R(m) :Sm1|Xm@Sm2|Xm€BSm3|Xm@NXm/X (1.9)

and the ¢; : X™ — X™i and é3 : X™ — X™3" are the inclusions. Notice,
that as it is written R(m) only has to be an element of K-theory with rational
coefficients, but is actually indeed represented by a bundle [JKK2].

Remark 1.5. The first appearance of a push—pull formula was given in [CR]
in terms of a moduli space of maps. The product was for the GG invariants, that
is for the H* of the inertia orbifold (in the differential category of orbifolds)
and is known as Chen—Ruan cohomology. In [FG] the obstruction bundle was
given using Galois covers establishing a product for H* on the inertia variety
level (this is the variety defined in equation (1.1)). This yields a G—Frobenius
algebra as defined in [Kal, Ka2], which is commonly referred to as the Fantechi—
Gottsche ring. The invariants under the G actions reproduce the Chen—Ruan
multiplication. In [JKK1], we put this global structure back into a moduli space
setting and proved the trace axiom. The multiplication on the Chow ring A* for
the inertia stack was defined in [AGV]. The representation of the obstruction
bundle in terms of the S,, and hence the passing to the differentiable setting
as well as the two flavors of K-theory stem from [JKK2].

The following is the key diagram:
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X
i,/ Ti2 N3
Xm™  Xme XM (1.10)
er\\ Tex é3
Xm

Here we used the notation of [JKK2|, where e3 : X™ — X" and i3 :
X™ — X are the inclusion, V : I(X) — I(X) is the involution which sends the

component X™ to xm using the identity map and i3 = i3 0V, é3 = V o e3.
This is short hand notation for the general notation of the inclusion maps
It X" = X, by =m0V = i,,-1.
Notation 1.6. For a € F(X™),be F(X™ ') : (a,b) = [xma-bwhere [y, is
the push—forward to a point and b = V*b.
Lemma 1.7. Let m be the triple (m;l,mfl,mgl)
NXm/X = ’R(m) ) R(l’i’l) ) NXm/Xml D NXm/Xm2 D NXm/XmB (111)
Moreover
['(m) := R(m) © Nxm/xms = Spm; @ Sy © Smgl (1.12)
Proof. This follows directly from (1.7)
R(m) @R(Ih) D NXm/Xml (&) NXm/Xm2 @ NXm/Xm3
= Sy @ Smfl DS Sm, @ Smgl D Sms @ Smgl
= NXml‘Xm @NX”Q’X“‘ @NXM3’)(m @NXm/Xml @Nxm/Xmg @Nxm/xmg,
]
We also define the bundle
S(m) = R(m) & Nym)x = €(Smy) & €3(Smy) & €5(Smy)  (1.13)

1.2. The F(X) module structure and an alternative formulation for
the product. Notice that each F(X™) is an F(X) module in two ways which
coincide. First via the naive product and pull back, i.e. a - vy, := i}, (a)v,, and
secondly via the stringy multiplication (a,vy,) — a % vy,. Now using (1.7) it is
straightforward to check that

a -V =i (@)U = a* vy, (1.14)

In the next two sections, we will give an alternate formulation of the product
using the maps i in lieu of the maps e, and F(X)-module structure on each
of the F(X™). This construction first “pushes forward” by using sections of
the pull back maps ¢} and ¢5 and then pulls back along is.
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First, in §2, we will construct such a product on F(I(X)) for the functors
F € {H* Koy, A*, K'"P} in case that such sections exist. In §4 we construct
the sections and the product in the de Rham setting without any additional
assumptions, but for this we will need to pass to the chain level.

2. PULL-PUSH: THE CYCLIC CASE

In this section, we will assume that sections exist. This implies that each
F(X™) is a cyclic F(X)-module as we prove. In the cyclic case the multipli-
cation * corresponds to a relative cocycle v : G x G — F(X) (in the sense of
[Ka2]) which we compute. Cyclic examples are for instance given by symmetric
products (X*™,S,,), see [Ka2, Ka3| or by manifolds whose fixed loci are empty
or points. In particular, Theorem 2.11 applied to symmetric products gives a
new way to show the existence of the unique co—cycles in this situation first
constructed in [Kad]. In light of [JKK2] this gives the direct relation between
the calculations of [FG] and [Kad4].

2.1. Sections.

Definition 2.1. We say that F admits sections for (X, G) if for every m € G the
inclusion map 4, : X™ — X the induced pull-back map i}, : F(X) — F(X™)
has a section iy,s : F(X™) — F(X), that is i}, 0 s = id : F(X™) — F(X™).

We say F admits sections for (X, G) to order two if furthermore the maps e
have sections. Sections of order two are called I' normalized if é3,(Eu(R(m)) =
é3s(Eu(T'(m)). Sections of order two are called normalized if in addition ig.eg«(Eu(R(m))) =
i3se3s(Eu(S(m))). Here e; and i; are the usual shorthand notation for e,,; and

(.

Lemma 2.2. If F admits sections for (X, G), then for allm and alla € F(X™)
the element im«(a) is divisible by im«(1). This determines ims(a) modulo the
annihilator of ims(1).

Proof. Since 1,5 is indeed a section:

im(ab) = i (i, (ims(a))b) = ts(@)inms () (2.1)

and hence
Ims (@) = tms(a)im«(1) (2.2)
O

;?, respec-

tively e}, and e} (eix)(a) = aEu(Nxm; /xm), I*normalization is always possible
and similarly second order normalization can always be achieved.

Lemma 2.4. If F admits sections for (X,G), then F(X™) is a cyclic F(X)
module, where the module structure for v, € F(X™) is given by a - vy =
i*(a)vm. Moreover, a cyclic generator for the F(X) module F(X™) is the
identity element 1, for the naive product on F(X™).

Remark 2.3. Notice that as sections are unique up to the kernel of ¢
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Proof. Using equation (1.14)

VUm = Gy (Tms(Vm)) = ims(Vm) - Im (2.3)
O
Lemma 2.5. In the situation above, we have for all m and a,b € F(X™):
imx(ab) = ims(@)ims (D) = ims(ab)ims(1m) (2.4)
and
i (ims(@)ims (D)) = 1, (ims (@) )i, (Vs (b)) = ab = iy, (ims(ab)) (2.5)

Proof. The first equation follows from the projection formula
i (@b) = G (1, (ims ())b) = ims(@)ix(b)
the rest are straightforward. O

Lemma 2.6. Let m = (my,ma,m3), s.t. [[,m; = 1. Using the notation of
§1.1 let Ij = ker(i}) then for alla € X™

(Il + Iz)igség*(a) c I3 (26)
Proof.
i3((11 4 Lp)issesi(a)) = 13(11 + I2)é3.(a) =
€3« (E383(I1 + I2)a) = és.(e1i1(11) + ezia(Iz)a) = 0
]

2.2. Stringy Multiplication Cocycles in the Cyclic Case. We fix the
generators 1,, above. If F admits sections for (X, G) set

Ymama = Gmyma s(Lmg * Imy) € F(X) (2.7)

The product * is determined by a collection of elements 7;,, i, in the follow-
ing sense.

Lemma 2.7. For all vy, € F(X™),wn, € F(X™?)

Umy * Wy = imls(vml)imQS(wm2)7m1,m2 Linyme (2'8>
Proof. By equations (1.14), (2.3), the fact that 1,, is an identity for the naive
multiplication, commutativity and associativity, we obtain
Uiy %Wy = (Tmys(Vmy ) Ly )* (Bmgs (Wing ) Imy ) = Gy s(Vmy )imys (Wmgy )¥my ma Lmyme

g
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2.3. The Reconstruction Program. The above considerations are a special
case of what is called the reconstruction program in [Ka2, Kal]. This program
aims to classify all possible G-Frobenius algebra structures on a given G—graded
vector space which has some other given additional data (such as a G action) and
assumptions, e.g. the graded pieces are Frobenius algebras; see loc. cit. for full
details. In the cyclic case it is proved in [Ka2, Kal] that such a multiplication is
given by a relative co—cycle v, m,, m1, m2 € G taking values in the Frobenius
algebra corresponding to the piece graded by the identity element of G. What
this means in particular is that vice versa given a collection 7, m, satisfying
certain properties (given in [Ka2, Kal]), the multiplication defined by (2.8) will
be associative and braided commutative, i.e. yield a G-Frobenius algebra. One
requirement for the multiplication to be well defined is that

(Il + 12)’7m1m2 Cls (2'9)

Using the push—pull version of the product, we can find a particular solution
to the reconstruction program by translating it to a pull-push formula. Math-
ematically this defines a stringy multiplication and physically this corresponds
to fixing the three point functions of the twist fields. For more on twist field see
§3 below. A priori it could happen that there is no solution at all. A posteriori
in the current situation, this will not be the case as the push—pull formalism
produces a solution. Here the G graded space is simply F(I(X)).

Another interesting point that the reconstruction program addresses is that
there could possibly be more solutions. First, given a solution, there is always
the possibility to twist by discrete torsion [Kab]. But in principle it is possible
that there are solutions that are not related to each other by a twist. In some
cases one can prove that this is however not the case. This happens for instance
in the case of symmetric products [Ka4].

Theorem 2.8. Assume F admits sections for (X,G). Let = be the product
defined in (1.8), and
Ymi,my = 13563« (Eu(R(m)) (2.10)
then
Umy * Vmy = B3[115 (Vg )i2s (Umg ) Yy ms (2.11)

Proof. Using the projection formula, the defining equation for the sections 7 o

ijs = td, and the fact that if . : X™ — X is the inclusion then e} oi} = 1" = €507}

(m))]
(m))]
Um,) €3 (Eu(R(m)))]
Uy )i35€3:(Eu(R(m)))]

éslel(vi)es(v2) Eu(R(m))] = éaiefifins(v1)esizizs(va)Eu(R
= €3.[€303015(v1)E515025(v2) Eu(R
= i3[i1s(vm, )i2s

= i; [ils(vml)i%

(
(
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Remark 2.9. Note that in view of Lemma 2.6 indeed (2.9) holds. We can
further decompose the cocycles v by passing to solutions in F (X, G)[[t]]. This
form suggest that the cocycles are trivial when passing to a ring extension.

Proposition 2.10. Assume F admits sections for (X, G). Let  be the product
defined in (1.8), set r = rk(R(m)) and

Ymams (1) = ils(Eut(Sml))i2s(Eut(sz))i?)S(Eut(Sms)eEi*(Eut(@NXm/X)))
= Z‘15(Eut(sm1))Z‘Qs(Eut(sz))ii%s(Eut(esmgl)é3*(Eut(eNXm/X"%)))
(2.12)
then

= eval]:‘r {23015 (Vimy )i25 (Vma ) Ymy yma (£)]
= eval]_—‘,, {ig [ils(vrm Eug(Sm,y))i2s(Vim, Eg(Sm,))
i (Bt S e (B (0N o))} (2.13)

Proof. Again using the projection formula, the defining equation for the sections
iz 0ijs = id, and the fact that e} o i} = €307
3.3 (0my )3 (Vs B (S | X © Sy [ xm © Sy [ xm © Ny )]
a0 (it (W B (S )))) €3 (03 iz (0 e (S )))
3(3(igs (Bt (Smy ) Eus(©Nxcm )]
= €3:[€3(73 (115 (Vmy Bt (Siny )
3075 20 (U B (Sina)))) 4 75 s (Bt (S ) Bt (€ N )]
= B3[irs(vm; Eue(Sm, ))i2s (Umy Bt (Smy ) )izs (Bus (Sms ) )iss (€34 (Bur(© Nxm  x ) )]
B3li1s (Vmy Bt (Smy ) Vs (0my Bt (S ) )izs (Bt (Sms ) Jes« (Euy (© Nxm / X)))]
(2.14)
So that taking the coefficient of ¢" with r = rk(R(m)) we obtain the second
claimed equality. For the first equality we can use the fact (2.5)
€34 (€1 (Vmy ) €3 (Vmy ) Bt (Simy | xm @ Sy [xm @ Spg |xm © NXm/X)]
= e34[e1 (17 (015 (vmy Bi (Smy )))) €3 (13 (i2s (Vm, Bt (S, ))))

€3 (i3 (i35 (s (Smy ) JEus (ONxm / x )]
= E3:[e1(07 (015 (vmy )ins (Bug (S, ))) ) €3 (i3 (s (v, )ios (Bt (S, ))))
€3(i3 (135 (Eu (Smy ) ) ) Eur (S Nxm ) x )] (2.15)
and proceed as above. Finally, for (2.12), we notice that Nym/x = Nym /xms ©
Nxms /x| xm and use (1.7). O

Using these calculations we can show that the x—product from the push—pull
formalism indeed gives rise to a cocycle v that allows the product to be written
in a pull-push formula and moreover give the particular form of these cocycles.
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Theorem 2.11. Let F € {A*, H*, Ko, K{,,} and assume that F admits sec-
tions for (X, Q) then the equation (2.13) solves the re—construction program of
[Ka2] with the co—cycles

Ymi,me = i38é3*Eu(R(m)) = eval}'|r’7m1,m2 (t)

Furthermore, if F admits sections for (X,G) to order two, we have the fol-
lowing alternative representation

TYmima = 538(é38[Eu(6T(Sm1)@ez(smz)@ég(sm1m2)@NXm/X’"3 )es«(1)) (2.16)

Finally, if F admits sections for (X, G) to order two and these sections are
I'-normalized, we have

Ymima = 135635 [E0(€] (S, ) D5 (Simy) ©€3(Smym, )] = i3s€3s(Eu(l'(m))) (2.17)

Proof. This follows from the two propositions above and a direct calculation. A
forteriori, since the product * is well defined and associative, the formulas are
independent of the choice of lift and the Y, m, = evalz|,Ym, m, (t) are indeed
co—cycles and section independent co—cycles in the sense of [Ka2]. This can
independently be checked by a direct computation using Lemma 2.6.

We use the relations Nxm/yms = Nyms x © Nxm/xyms and equation (1.7)
for the third equality and for the last statement, we used the definition of I'
normalized sections. O

3. TWIST FIELDS: TRIVIALIZING THE COCYCLES

In this section, we will construct a ring extension, in which the cocycles
~ can be trivialized. The ring contains so—called fractional Euler classes. In
particular, this allows us to identify the fractional Euler classes of the K-theory
classes S, of [JKK2] as the twist fields that are used in physics.

In the de Rham case, we can represent theses classes by fractional Thom
classes, see §4.

3.1. Motivation. In this section we discuss the motivation and heuristics of
our constructions which are carried out rigorously in the following paragraphs.
In the physics literature, correlation functions for orbifold models are described
using so-called twist fields. There is one twist field o, for each twist by a group
element m. In the mathematical formalism one representation of these fields
would be given by some elements oy, which lie in a ring extension F(X"), such
that the three point functions in this extended ring satisfy

<vm10m1,vm20’m2,vm30m3> = <Um1 * vm27vm3> (3'1)
where the left hand side should be suitably interpreted. One such interpretation
is given in Definition 3.4, see also Remark 3.5. We will construct twist fields in
the presence of sections i,,s and realize the o, as elements of a ring extension of
F(X™) roots of Euler classes. In §4, we will realize the twist fields as fractional
Thom forms. If there are no sections, one can formally add them by using ring
extensions. This is another way of interpreting the twist fields in the general
case.
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If one wishes to look at the multiplication directly, instead of just the three—
point functions one has to “divide” or “strip off” the twist field o,,,. One way
to do this is to introduce a new unknown term in the pull-push formula which
is an “inverse twist field” &, .

€3+ (€1 (vm, ) €3 (vm, ) Eu(R(m))) =: B3 (i1« (Vi) Omy Jize (Vg Omy )13+ (Tims)) - (3.2)
For a rigorous interpretation using power series see §§3.3 and 3.4.

If 1,,, = 4%,(1) is the unit of F(X™) then this formula applied to 1,,*1,,-1 =
€3+« (1m1m) = tms(1) implies

T (O ) s (T p=1) = s (1) (3.3)
while applying it to 1% 1,, = 1,,, we obtain
i (T (O )i (m)) = L = iy (1) (3.4)

which shows the need for the “inverse twists” &.

If we interpret the Lh.s. of (3.1), that is the three point functions, as an
integral over push forwards and express the right hand side of (3.1) using (3.2),
the equation transforms to

/ 114 ('Um1 Omy )22* (UmQUmQ )13* (Um3am3) =

[ im0 iz O ise G i () (35)

where for the r.h.s. we used that i3, and i3 are adjoint. Supposing that these
morphisms are still adjoint when extended to twist fields, one obtains:

/ 13115 (Vmy Oy )12+ (Vimy Oy )]”m30m3 =

[ i1 iz (a5 (30

A stronger version implying the above equation is:
Om = i (tm+(Tm)) = i3 ime (V' (Gm)) = V7 (Gm)Eu(Nxm/x)  (3.7)
The equation (3.7) is indeed stronger, since the postulated equality only

needs to hold inside the three point functions (3.5). Again, there is a solution
in a formal power series, see equation (3.30).

3.2. Trivializing by Adjoining fractional Euler classes. In this subsec-
tion, we suppose that F admits sections for (X, Q).

3.2.1. Positive fractional Euler-classes. We construct a ring extension
of F(X,G) which contains fractional Euler classes. This will be a construction
in several steps.

STEP 1: ADJOINING FRACTIONAL EULER CLASSES

For each of the rings R,, := F(X™) we will adjoin fractional Euler classes
corresponding to the S,,. This can be done by a general procedure. By the
splitting principle [H, FL], given a set of bundles, we can pass to a splitting
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cover, where these bundles split. This also yields a ring extension of R,,, which
contains all the Chern classes of the virtual line bundles, in particular the Euler
classes.

In our case this set of bundles on X™ is given by the bundles Nxm x or
equivalently by the isotypical components W, . We will call the resulting ring
extensions R;,.

In general, we adjoin r—th roots as follows. Let . be a line bundle, e.g. one
obtained from the splittling principle, u = Eu(.Z) and R be a ring that contains
u. We adjoin r—th roots to R by passing to R’ = R[w|/(w" — u).

When extending R;, the line bundles .# for which we adjoin roots are enu-
merated as %, ., where for fixed m and k the .Z,, . ; are the line bundles that
split the bundles W), . We start with R;, and successively adjoin all |m|-th
roots of the various Eu(.Z, ;) and at each step denote by wy, j; a generator
of that extension. Let the resulting ring be called R; where s,r stand for split
and roots.

The original F(X™) is a subring of R and hence we can read off formulae
on this subring analogously to the procedure used in the splitting principle.
For this one just uses the Galois group of both of the extensions, splitting and
roots. Note that at the end of the day, we are working over Q and hence by
Artin’s theorem, we actually only have to check the invariance under the cyclic
subgroups of the cyclic extensions and the symmetric group invariance from the
splitting.

We furthermore extend Eu to u which is defined on the monoid of isomor-

1

phism classes of vector bundles on X™ adjoined elements Wiﬂm’k’l which satisfy

m[ﬁ,ﬁfmk’l] = gm,k,l by setting Eu(ﬁgm,k,l) = Q‘Eu(ﬁjm?k,l) = Wmk,l and
extending the property of Eu as a map of monoids, between the additive struc-
ture on vector bundles and the multiplicative structure in the recipient ring of
Fu.

By definition of ¢u:

Cu(z d y) = Cu(x)Cu(y) (3.8)
and if z + y = F with E a bundle
Cu(z)Cu(y) = Eu(F) (3.9)

which is guaranteed by the choice extensions.

Notice for the equation x ® y = E to hold both sides of the equation have to
be invariant under the Galois group. We will use this equation for R(m),I'(m)
and S(m) where we know this to be true, see §1 and [JKK2].

In this notation we get

Cu(Sm) == [ whi (3.10)
(k,1):k70
We also extend the maps V* in the obvious fashion. Recall that V in compo-
nents is just the identity map VvV : X™ — xm = xm,
STEP 2: EXTENDING THE PULL BACKS ef. Let ¢; : X™ — X" be any of
the inclusions. Parallel to step 1, we first go to a splitting cover which splits all



GLOBAL STRINGY ORBIFOLD COHOMOLOGY, K-THEORY AND DE RHAM THEORY13

bundles e} (W, x). Let the resulting ring extension of Ry, := F(X™) be called
R},. Now the relevant set of virtual line bundles is the set of the e} (%, x,1). We
then, again as in step 1, adjoin the roots of the Euler classes bundles e} (%, k.1)
to the rings R, to obtain rings R;.. Again we extend the monoid of bundles

on X™ by elements ‘m—lﬂef(.fmi’k,l). Furthermore, we extend the maps e by

defining
o 1 1,
€ (W«:fmi,k,l) = Tl (L k) (3.11)
on the extended monoid of bundles and set
1 1
e; (Cu(——Lm, k1)) = Cule] (—Lmi k1)) (3.12)
|| |

as amap e; : R} — Ry This also guarantees the compatibility of e} with €u.

Again the maps for & follow automatically.

STEP 3: EXTENDING THE SECTIONS e€;;, THE PULL—BACKS C;F AND THE
PUSH—FORWARDS ¢€;x

In order to extend the section e;s we have to enlarge the rings R’ to R}"
(split all roots) by adjoining [m;[-th roots of the elements e;s(Eu(e} (L, k1)),

1
for i # j and fix a generator e;s(Eu(e}(Zn; k1)) ™ . After each such an exten-
sion, if it is non—trivial, we recursively extend e; as a ring homomorphism by
setting
1 1
e s (B (Lo ) ) = Ul (Zry ) (313)
J
We now extend the map e;; as follows. We fix a sequence of extensions of
Step 2 and define the maps step by step. Let RZ, be the ring of the splitting

principle in which all the line bundles e}f (fmj,k;,l) split and fix an order of non—

trivial extensions RS, C RL, C --- C Rb, C R such that each extension is of
the form R ' ~ Ri[u]/(ul™i — e*(Zy, k1))

In the chosen order of extensions of Ry, if the extension of R, is by m;—th
roots of Eu(ef (L, k1)), we fix a Q-basis aa(ﬁu("m—(ze;‘(fmi,k,l))) of RL™ with
the a, € R,

€is(aa (751} (L)) 1= eisla) €02 Ly ). (314)

|ml| i
And for ¢ # j if, in the given order of extensions, the extension is by Gu(ﬁe}‘ (Lon; k1))
J

we again fix a Q-basis aq(Eu(e] (ijkl)))m% and set

No

n pide
eis(aaeu(ﬁe;(zmj,k,l)) = eis(aa)eis(Bu(e] (L, k1)) ™ (3.15)
J
We extend the push—forwards e;, by
eir () 1= e;5(x)eix (1) (3.16)
and again extend the constructions to é; in the obvious way.
STEP 4: EXTENDING THE SECTION js, THE PUSH-FORWARDS i+ AND THE
PULL-BACKS z;‘
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Let i; : X™ — X be the inclusions. We now enlarge the ring R = F(X)
to R*" = F(X) by adjoining |m;|-th roots of i;s(Eu(Zy; ,)). Again choose
1

primitive roots ijs(Eu(ZLn; k1)) ™'
For non-trivial extensions, we define
L 1

05 (i5s(Bu( L, 1) ™) = Cu(——=Ln; ki)
[
1
i (iyrs(Bu( L, k1) ™7") = ejs(@u(meir(fmj/,k,i))) j#j (3.17)

For the 75, we proceed exactly as in Step 3, we fix an order of ring extensions
of each of the R;,; made in Steps 1 and 3. We now extend ij;s recursively via
choosing a basis as in Step 3 and setting

. N . s
b (00U T, 1) = 15a (B Lo ) )
. Na & . :La, .
zjs(aaejs(c‘fu(—|m'/|ej/(gmj,,hl)))) = zj/S(Eu(,i”m].,k,l))‘ "Vijs(aq)(3.18)
J

respectively.
We finally set

s () 7= s (2)i4(1) (3.19)
Lemma 3.1. There are ring injections R — R**" R, — R and Ry —
R3a™. For the above ring extensions: the morphisms e;f,i; and their V—checked

analogues are ring homomorphisms. The following formulas and their V—checked
analogues hold

* ek

ejlejs(@) =z, i(ijs(x) ==, €jij =eif, ejleju(x))) = sEu(Nym/xm;)
(3.20)
Furthermore, the projection equation holds on elements of the original rings.

Proof. The injections are clear by construction. All the properties except for
the last one follow from the definitions. Now

ej(ejx(2)) = €j(ejs(x))ej(ee (1)) = 2Eu(Nxm /xm;)

The fractional Euler classes are the twist fields in the following sense.
Theorem 3.2. If we have sections of order two
€1 (Vm, Cu(Sm, ))es(Um, Cu(Sm,)) = é5[(v1 * v2) Eu(Sp,)] (3.21)
356315115 [Um, CU(Sm, ) ]125[Vmy EU(Smy)]] = (V1 * v2) Eu(Spy) (3.22)
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Proof.
€] (Vm, Cu(Sm, ))es(Vm, Eu(Sm,))
= €1(0m,)€3(vm, )Eu(e](Sm, ) © €3(Smy) @ €3(Sm;) © Nxm )/ x)
U5 (S, BN, o)
80163 (o)t (R ()5 (€4(5, 1))
= &([(v1 * v2)Eu(Sp,)]

where for the first equality we used Lemma 3.1 and the fact that ej(Sy,,) @
e5(Sm,) = '(m) ® Smgl =R(m)® S, ®N —1 in the extended monoid

Xm/X™3
of bundles.
The second equation follows from the definition of * and the self-intersection
formula of Lemma 3.1.
Using Lemma 3.1 we can proceed analogously to the proof of Theorem 2.8
to obtain:

€35€3[73 (115 (Vmy CU(Simy )25 (Vimy (S, )] = €3s[€] (Vmy EU(Simy ) €5 (Vm, EU(Sm, )]
O

Remark 3.3. We notice that there is a projection term €és,€3 which we cannot
a priori exclude. In terms of twist fields these projection will be built into
the definition of the three point function. Up to this projection term, we have
trivialized the co-cycles. Notice that we do not divide by the fractional Euler
class éu(Smgl). This operation is not well defined unless we localize, but as

these elements are nilpotent localization would render the zero ring.

Definition 3.4. We define the space of fields as H := @@, F(X")€u(S,,) and
for second order normalized sections, we define the 3—point functions as
(U €U( Sy )y Uiy CU( Sy )y Wing €U (S ) (3.23)
= Omimoms,1 /X 13535303 Imy s (Ui )imas (Vs )ims s (Wing )]

135€35€303Tm1 s EU(Smmy )imas EU(Smy ) imas EU(Smy )] (3.24)
Remark 3.5. Notice that by definition if [[m; =1
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(Um Cu(Sm, ), Vimy EW(Smy)s Wing EU(Simy))

~ /X 553561 (trny )5 (V)€ (g izsess (Bu(S (m)))
- /X i5€35 161 (trny )05 (02)€3 (g Jizeess (Eu(R(m)))
— /X 5434 (€] (tny )€ (0 )€ Wy JE(R (m)))

_ / €3ty )5 (0 )5 (g )Eu(R ()

= <um1 * vaa wm3> (325)

So that the two and three point functions agree with the usual ones.

3.3. An excess intersection calculation. We now drop the assumption of
having sections above. As a motivation for the general case we give a calculation
in F(X, G)[[t]]-

To this end we set r = rk(R(m)) and rewrite (3.2) as

eval i, [iI** i1+ (Vm, 01,6) s (Umy 02, )34 (53,0 )]
= evaly),[€3.(€] (vm, ) €3 (vm, ) Eug (R(m)))] - (3.26)
where now the o;; and o;; are power series.
The main tool will be the excess intersection formula [FL, Qu] on the Carte-
sian square

—1

X'm & X3
(el,eg,ég)O(A,id)OAl l (ig,ig,ig)O(A,id)OA
X1y Xme i xmy ' Li2) X x X x X

which has excess bundle

Xm/X™3
Using it we can transform the L.h.s. of equation (3.26) as follows:
[.h.s.(3.26) = 3[i14(Vm,01)124(Vmy02)i3+(3)]
= e3+[€] (Vmy O1EU(Nxmi ) x))e5(Vm,02Eu(Nxms /x))
e§(&3Eu(NXm51/X))Eu(9N )]

Xm/xms !
= evalgy, {€3le] (vm, 1By (Nxmi /x))e3(vm, 02 B (Nxma /)

é§(63Eut(NXm*1 ))Eut(@NXXm/m?,l)]}

3 /X
(3.28)
where k = rk(FE).
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While the r.h.s. can be transformed to
m.h.5.(3.26) = evalg), {€3«[e](vm, B (Sm, ))es(vm, Eue(Sm,))
€§(UmsEut(Sms))Eut(@NXm/X)]}
= evalgy, {€3:[e] (U, Eug(Spm, ) Eug(Nxm ) x ) B (ONxmi /x))
€3(Vmy Bt (S, )Ewe(Nyms s x ) Eug(©Nxms /x))

5 (B ()5 (Eue(ON o ) JEWON ., )]}

= evalf‘r {ég* [GT (’UmlEut(@Sml—l)Eut(Nxml/X))

€3 (Um, By (©Sm, )Eus (Nxma /x))€3(Eug (65,1 ))Eut(@NXm/Xmgl )]}

(3.29)

3.4. A formal solution. Comparing the two sides, that is equations (3.28)
and (3.29), we set:

o1t = Ew(SS,,-1) = Euy(Sm, )Eu(SNxm x)
o2t = Eut(@smgl) = EUt(SmQ)EUt(@Nme/X)
=V

5’37,5 = Eut(@Sms—1 S} Nxm§1 ) *(Eut(Smd)Eut(@NXmg,/X)Q)(330)

/X
as formal twist fields.

One now is tempted to use a kind of evaluation map, that is to set o; =
eval vy (o,)(0it) and G3 := evalz|y,(5,)(03+) where vr denotes the virtual rank.
This is, however, not possible, since it is not clear that the respective power
series converges for —1 nor is it clear what the coefficient at a rational power or
a negative virtual rank means. We are faced with two challenges, how to make
sense out of evaluating the Eu(S,,) and the Eu(©Nxm; x) at their virtual
rank.

For the former, we can simply use the ring extension above and replace the
evaluation of Euy(Sp,) by €u(Sy,). The evaluation of the elements Eu(©Nxm; /x)
pose more of a problem. These should of course be inverses to Eu(Nxm,, X)
which are nilpotent. Localizing would hence yield the zero ring. The answer is
that the evaluations should be interpreted as formal sections.

That is we will basically adjoin two sets of variables &; := {€u(S,,)} and
G2 := {€u(©Nxm,x)} and mod out by appropriate relations. We think of &,
as fractional Euler classes and &9 as formal sections. The extension for the
variables G; is analogous to the one discussed in the previous section. We will
now give the details for the second adjunction.

3.4.1. Motivation. For a given inclusion ¢ : ¥ — X, the self intersection
formula yields:

i*(ix(a)) = aEu(Nx/y) (3.31)
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this is why we can think
“is(a) == ix(aCu(ONx/y))” (3.32)
We will put equations like this in quotes for the time being.
Indeed, then using the same logic
“i"(is(a)) == i (i« (a€uw(©Nx/y))) = aEu(Nx/y)€u(ONx/y) = a”  (3.33)
Notice that if i, is indeed a section:
ix(ab) = i.(i" (is(a))b) = is(a)i.(b) (3.34)
and hence
ix(a) = is(a)i(1) (3.35)

So that we see that if there are sections indeed:

“is(a) = ix(a) /i (1)” (3.36)
where this equation should be read as equation (3.35) which essentially defines
the is, see Remark 2.3.

3.4.2. Adjoining formal sections. We now define a further ring extension
by additionally adjoining formal symbols encoding the properties of €u(©Nxm X)
and Eu(SNym / xm). To achieve this, we add formal sections before adding the
fractional classes. We again proceed in steps.

STEP 1: We extend the rings Ry, by symbols aQEu(@NXm/ij) for all a €
R;,.

We now define e, as follows:

ejs(a) = ejx(a€u(©Nxm xm;) for a € Ry, (3.37)
and extend e;‘- as a ring morphism by setting
e (ejx(a€u(©Nxm xm;y)) == a (3.38)

hence the e;s are sections.
We then take the quotient of the above ring by the relations

ejs(aCU(ONxm,/xmj))ej(b) — eju(ab) for a,be F(X™)
€jx(aCU(SN xm xm;)) €jx (DEU(S N xm  xm5)))
—€jx (abCUW(ONxm xm;y))  for a,be F(X™)(3.39)

and call this ring R‘;’nj

Notice that under e;'f these relations go to zero and hence e;, ejx and e;s pass
to maps between Ry, and R;‘%J

StEP 2. To F(X) we adjoin elements ij, (a€u(SNxm; /x)) fora € F(X™7),j =
1,2,3 and elements ¢ (a€u(©Nym, x)) for a € F(X™).

We define ¢} as a ring homomorphism to the non quotiented rings of step 1
via:
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Z;ZJ*(G,@’J(@NX"L]/X)) = a
i1 (aC@U(ONym/x)) = €ju(aCu(©Nym, xm;))
i (€O N s x)) = (el EUEN ) A (340

Likewise we define i;, as follows. For a € F(X™i) and a; € F(X™)

ijs(a H ejx(a; CW(SNxm xm;))) =
el
ije(a€u(©Nym; )x)) [ [ te(a:€u(©Nxm/x)) (3.41)
el
We also extend i, by
ijx(a H 6j*(az‘(’3u<9NXm/X’”j ))) = ijx(a) H L+ (a; €u(©Nxm x)) (3.42)
icl iel
We form a quotient R of the ring extension of F(X), by modding out by the
relations

ijx(aCu(ENym; x))ijs(b) — ij«(ab
ijx(a€U(ONxm; ) x))ijx (bEW(ONxm; /xy)
— i (abEUW(ONxm; /xy)
L*(aQEu(@Nij/X))zj*ej*(b) ijxejx(ab
L (a@UONxm; ) x))tx (bEU(O N xm; s x)) — La(abCuU(SNxm; )y

for a,be Ry,

for a,be Ry,
for a,be Ry,
(3.43)

It is now a straightforward check that the maps 7,4, 15 induce maps be-

tween RS and RS
Step 3. Adjoin the fractional Euler classes as in §3.2.1

)
)
) for a,be Ry,
)
)

Theorem 3.6. Theorem 2.8, Theorem 2.11 and Theorem 3.2 hold in the formal
setting as well.

Proof. The only relations were needed in the proofs are guaranteed by the above
constructions. U

Remark 3.7. This means that after adding formal sections there is a pull-
push stringy multiplication in terms of trivializable co—cycles just as in the
cyclic case. This is rather surprising, since a priori from an algebraic stand-
point, if the twisted sectors F(X™) are not cyclic as modules over F(X) the
cocycles describing the stringy multiplication are matrix valued after choosing
generators. We now see a posteriori that these matrices can be chosen to be
“constant”, that is they only depend on the stringy product of the units of
F(X™), which on top only depends on the group elements m. Of course there
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might be some dependence on the connected components, but this is handled
completely through the geometry of the fixed point sets.

One can artificially create such matrix valued products, by for instance taking
two copies of X with the diagonal G action and twisting each copy of the stringy
multiplication by different discrete torsions. In a sense this is of course not a
very serious perturbation, as we move from constant twists by discrete torsion
to locally constant twists. An interesting question is whether one can find
examples in the non—cyclic case of more complicated stringy multiplications
given by “non—constant” matrix co-cycles.

The calculation of the three point functions also gives mathematical rigor
to the physical notion of twist fields, which exists in the formal setting. The
trivialization can be restated in this setting as saying that there is indeed only
one twist field per group element.

4. THE DERHAM THEORY FOR STRINGY COHOMOLOGY OF GLOBAL
QUOTIENTS.

In view of Lemma 2.4, there is no section of the functor F = H*, K* itself,
unless the modules H*(X™), K*(X™) are cyclic. But although the pull back e
is not surjective on cohomology in general or by the usual Chern isomorphism
on K-theory, on the level of de Rham chains the pull back is surjective.

Notice that in the proof of Proposition 2.10, we only used the following three
properties: (1) projection formula, (2) the defining equation for the sections
and (3) the fact that the pull-back is an algebra homomorphism. So after
establishing these facts for forms, we can proceed analogously to the calculation
in the last section.

Notation 4.1. In this section, we fix coefficients to be R and we denote by
0"(X) the n—forms on X. Likewise for a bundle £ — B with compact base we
denote Q7 (E) the n forms on E with compact vertical support and let HY (E)
be the corresponding cohomology with compact vertical support.

4.1. DeRham chains and Thom push—forwards. In this section, we will
use de Rham chains and the Thom construction [BT]. The advantage is that
every form on every X" is a “pull-back” from a tubular neighborhood.

We recall the salient features adapted to our situation from [BT]. Let ¢ :
X — Y be an embedding, then there is a tubular neighborhood Tub(N x /y) of
the zero section of the normal bundle N,y which is contained in Y. We let
J: Tub(Nx/y) — Y be the inclusion.

Now the Thom isomorphism 7 : H*(X) — H:jCOdzm(X/Y) (Nx/y) can be
realized on the level of forms via capping with a Thom form 0: 7 (w) = 7*(w) A
©. The Thom map is inverse to the integration along the fiber 7, and hence
m(©) = 1. In fact, the class of this form is the unique class whose vertical
restriction is a generator and whose integral along the fiber is 1. For any given
tubular neighborhood Tub(Nx/y) of the zero section of the normal bundle one
can find a form representative © such that the supp(©) C Tub(Nx/y ).
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4.2. Push—forward. In this situation the Thom push-forward i, : H*(X) —
H*(Y) is given by 7 followed by the extension by zero j.. These maps are
actually defined on the form level. That is we choose © to have support strictly
inside the tube, and hence the extension by zero outside the tube is well defined
for the forms in the image of the Thom map.

ix(w) = Jx(T(w)) = ja(7"(w) A O) (4.1)

Notice that for two consecutive embeddings X — Y — Z, on cohomology we
have e, 04, = (€0 i), : H*(X) — H*(Z). On the level of forms depending on
the choice of representatives of the Thom form either the identity holds on the
nose, since the Thom classes are multiplicative [BT] or the two push—forwards
differ by an exact form e, o i.(w) = (€0 i), + dr.

4.3. The projection formula on the level of forms. The following propo-
sition follows from standard facts [BT]:

Proposition 4.2 (Projection Formula for Forms). With i : X — Y and em-
bedding and i, defined as above, for any form ¢ € Q*(X) and any closed form
w € QYY) there is an exact form dr € Q*(Y') such that

(i (W) A @) = w Nin(d) + dT (4.2)
Proof. Denote the zero section by z : X — N,y and projection map of the
normal bundle by 7 : Nx/y — X, then i = joz.

7| Tub

X S Tub(Nyy) L Y (4.3)

Since 7 is a deformation retraction, 7* and z* are chain homotopic [BT], hence
™ 0 2"(w) = w + dr. We can now calculate

(W) AP) = Ju(m (i (w) A P) A O)
= Ju(m(Z" (" (W)) AT (¢) N ©))
= (" (W) +dr) A7 (¢) A O)
= WAG(T(P) AO) + juldT AT () A O)
= WAL(P) + dju(T AT (¢) N O) (4.4)
where the penultimate question holds true since © has support inside Tub(Nx /y)

and the last equation holds true since d commutes with the extension by zero
and pull-back. O

4.4. Sections. To construct a section on the level of forms, we first notice that
the Thom class can be represented by using a bump function f so that if X"
is given locally on U by the equations xy =---=zxy =0

T(l)|F=fd:Ek/\'--AdZEN (4.5)
where f is a bump function along the fiber F' that can be chosen such that
supp(f), the support of f, lies strictly inside the tubular neighborhood and
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0

FiGURE 1. A bump function f of the Thom class representative
and a characteristic function g

moreover supp(f) lies strictly inside this neighborhood. We consider a charac-
teristic function g of an open subset U with supp(f) C U C Tub(N) inside the
tubular neighborhood, see Figure 1. Here characteristic function means that
on U g has value 1 and there is an open V such that U C V C V C Tub(N)
such that g = 0 outside V Notice that fg(x) = f(x). We let g be a 0-form
with compact vertical support whose restriction to the fiber is given by g.

For any form w € Q*(X), we define

ims (W) = Jx (&7 (W) (4.6)
Then
i (32 (87 (W) = 207, (57 (G (8770, (W) = 25 (&) 2 (T (W) = w +- T (4.7)
Remark 4.3. Actually i,(w) := j.(7 (w)) is divisible by j.(7(1)):
ims(W) = Ju(T(w)) = ju(mpp (W) A O)
J+(87 (W) A ©)
= zms( )A O (4.8)

Notation 4.4. For a cohomology class a we let T(«) be a choice of form
representative: [Y(a)] = a.

Corollary 4.5. In the situation above we can choose a form representative,
such that

T(Eu(Nx/y)) = i"i(1) =i"(T (1)) =1"(O) (4.9)
and up to closed forms:
is(Y(Eu(Nx/y))) = © + 7 with i* (1) = 0 (4.10)

Proof. The first equation is a well known property of the Thom-form [BT]. The
second equation follows immediately from the fact that 75 is a section of ¢* on
homology. O

Remark 4.6. The equation (1.11) holds in K theory over Z. In particular this
means that the two bundles are stably equivalent. That means there is a trivial
bundle 7, such that when forming the sum with both sides, the bundles become
isomorphic.
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Nxm &b Tn =~ 'R(m) D R(ﬁ’l) ) NXm/Xml &b NXm/Xm2 &b NXm/Xm3 D Tn (411)
Hence we can treat R(m) & NXm?Tl /X as a subbundle of Nxm @ 7,. In order

to factor the inclusion through the respective tubular neighborhoods, we factor
the inclusion of X™ «— X as

XM x Z X = X x B" T X
were B" is a ball, z is the zero section and 7 the first projection. Notice that
H*(X) ~ H*(X') and we will identify these cohomologies.
Now Nxm/xxpn = Nxm &7, and I'(m) = R(m) @ngl is a subbundle and
we can factor

X™ L Tub(T) 5 Tub(Nym xxpn) 25 X/
We let ir = ipjr.

Proposition 4.7. The following equations hold up to choices of form represen-
tatives and closed forms

Coeff of t" in { 15[is1(Wm, )is2(Wmy)isi (T (Eui(Sm,)))is2 (Y (Eui(Sm,)))
i53(T (B (S ) ) Y (Eug (S Nxm ) x)) T (Eu(Nym /xms )] }

B3[i1s(Wm, )izs(Wm, )i3s€s« (T (Eu(R(m)))]

131115 (Winy )i25 (Wms, )irs(Or(m) )] (4.12)

Here Y (v) is a closed form representative of the class v and Opy is a Thom
form for the vector bundle.

Proof. The first equality is by definition of R(m). For the second we use the
factorization of Remark 4.6 and replace X with X' extending the maps i;
appropriately. Then up to choices for form representatives and closed forms

i3sea(T(Eu(R(m))) = d3s€35[T (Eu(R(m))) A T(Eu(N /Xm)]

= ipsers|T(Eu(R(m )))/\T(Eu( )]

/Xm
= irs(Or@m)AON ., )

x™3 /xm
= Zl"s(@f‘(m))
]

Definition 4.8. We define the form level product as given by any of the equa-
tions (4.12) above.

Theorem 4.9.
Wiy * Wiy = €mgx (€] (Wi, )€3(wm,) T(Eu(R(m)))) + dr (4.13)

for some exact form dr.
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Proof. Completely parallel to the proof of Proposition 2.10, since we have es-
tablished all equalities up to chain homotopy. O

Corollary 4.10. The three point functions coincide with the ones induced by
(1.8). That is if T denotes the lift of a class to a form and Y (vy,,;) = wp, then

<wm1 * wm27wm3> = / Wiy * Wiy A Wing
X

= / Y (Vimy * Uy ) A Wing
X
(Umy * Uy U Umyg) N [X] (4.14)
= <7}m1 * Umyg, 'Um3> (4.15)

where [ X] is the fundamental class of X and hence the three point functions are
independent of the lift.

Proof. Straightforward by Stokes. O

4.5. Trivializing the co—cycles, fractional Thom forms. Now using the
formalism of §3.2.1 and passing to a local trivializing neighborhood U, where the

line bundles .Z,, ;, have first Chern class represented by the forms dx;, ... dzy,
then we get a Thom-form representative of €u(S,,)
Ocu(s,lo = ™ T (da)*/I™ (4.16)
k0,

These forms trivialize the co—cycles as explained above. In the Abelian case
this type of expression was used in the arguments of [CH].

What we have now is the generalization to an arbitrary group as well as
a trivialization of the co—cycles in terms of roots, thus completing that (re)—
construction program of [Kal, Ka2| in the de Rham setting of global quotients.
The surprising answer is that there is always a stringy multiplication arising
from a co—cycle that is trivializable in a ring extension obtained by adjoining
roots; see also Remark 3.7.

5. ADMISSIBLE FUNCTORS AND OUTLOOK

5.1. Admissible Functors. Here we collect the formal properties of the func-
tors F we used in our calculations.

Definition 5.1. Let F be a functor together with an Euler-class Eu; which has
the following properties
(1) F The Euler class Eu; is defined for elements of rational K-theory and
is multiplicative and takes values in F(X)[[t]].
(2) F is contravariant, i.e. it has pullbacks and the Euler-class is natural
with respect to these.
(3) F has push-forwards i, for closed embeddings i : X — Y.
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(4) F has an excess intersection formula for closed embeddings. That is we
have an evaluation morphism Eu := eval g, (Euz,) : F(X)[[t]] — F(X)
such that for the Cartesian squares

Z 2 Y
ber g (5.1)
v, & X
we have the following formula
iz(i1+(a)) = ez«(e1(a)ej) (5.2)

where € := Eu(E) with E the excess bundle E := Ny, x|z © Ny, and
r is its rank.

We call such a functor admissible.

All the functors F studied above are admissible and the calculations of this
section —formal and non—formal— carry over to admissible functors. Actually
de Rham forms are admissible up to homotopy, see below, so that mutatis
mutandis we can use the same arguments on the level of forms.

5.1.1. Forms as an admissible functors. In this case, which we worked
out in the previous paragraph, we have an Euler class and all the properties of
an admissible functor are valid on the chain level - up to homotopy, that is up
to closed forms.

(1) The Thom push-forward on the chain level induces the push-forward
in cohomology induced by the Poincaré pairing, since the Thom class
and the Poincaré dual can be represented by the same form [BT].

(2) The projection formula holds, since the pull-back of the Thom class is
the Euler class of the normal bundle [BT].

(3) The excess intersection formula holds up to homotopy. Since it holds in
cobordism theory and cohomology [Qu] we know that for closed w the
two forms i5i1.(w) and es.ef(wY (Eu(E))) differ by a closed form.

(4) In particular, we can use the Thom pushforward and then the divisibility
of the push—forward by the Thom class to give us sections.

5.2. Outlook: Applications to singularities with symmetries aka. orb-
ifold Landau—Ginzburg theories. In conclusion, we wish to make some re-
marks about singularities with symmetries as regarded in [Ka2, Ka6]. We will
restrict to the case of a trivial character Yy = 1 for the G-Frobenius algebra.
Recall that such a character is part of the data of any G-Frobenius algebra,
[Kal, Ka2]. In this case, the formula (1.8) adapted to this setting produces
a solution to the stringy multiplication problem as we outline below. In the
general case, some more care has to be taken, but it is also possible to write
down a solution; see [Ka7| for full details.

We recall that the relevant data is a pair (f, G) of a singularity f : C" — C
with an isolated critical point at zero and a finite group G with embedding into
Gl(n,C) such that g*(f) = f. The character x is given by x(g) := det(g).
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5.2.1. Euler classes and the solution. The analogue of the fixed point
sets X™ are just subsets Fiiz(m) C C" with the singularity given by restriction
of the function f. Likewise for the double intersection.

Pull backs and push forwards are given in this situation. In order to use the
presented setup, all we need are Euler classes. We set

Eu(f) := hess(f) = det(Hess(f)) (5.3)

Using the basic principles of Chern—Weil theory, we can even define a total
Chern class in this situation:

Eu(f) := Ztr(AiHess( Nt (5.4)

To get an expression for the Euler class and the total Chern class of R(m),
we first notice that the role of the tangent space is played by C" together with
its G action. Each subgroup (g), g € G then defines a representation and we can
define S; € Rep(G) ® Q by the formula (1.6) by noticing that the Eigenbundles
in this case are just subrepresentations.

For any subrepresentation V of G we define

Ew (V) = Ztr(AiHess( Flv )t (5.5)

In the Abelian case R(m) is the subrepresentation V' which is given as follows:
simultaneously diagonalize the action of G. Let g = diag(exp(27mi);(g)), with
Aj(g) € [0,1) then V is spanned by the simultaneous Eigenvectors e; whose
log—Eigenvalues satisfy

Ai(9) + Aj(h) = Aj(gh) +1

In the non-Abelian case, we just regard the S, as elements of K¢ (pt) or as
virtual representation. Analogous to Remark 4.6, we can stabilize the normal
bundle and regard R(m) as a subbundle. In order to evaluate the Euler class,
we also stabilize the singularity by adding squares. These two operations of
stabilization are compatible. Indeed in K-theory stabilization (see e.g. [A])
means that we add trivial bundles. In the theory of singularities (see e.g.
[AGLV]) stabilization means that instead of f(z) one considers the function
F(z,w) = f(2) + w} + --- + w? which has the same Milnor ring. Trivially
extending the action of G, we obtain the compatibility of the two stabilizations.

Hence (1.8) defines a multiplication on the orbifold Milnor ring B M (f|Fixz(g))
(cf.[Ka2, Kab]) where M (f|piz(g)) denotes the Minor ring of the function f|p;(g)
which again has an isolated singularity. Pull-back is the restriction of functions
and push—forward is the adjoint map to pull-back. Here “adjoint” is taken in
the sense of maps between Frobenius algebras. Given two Frobenius algebras
A and B with non—degenerate forms (, )4, (, )p and a morphism r : A — B
its adjoint 7T : B — A is defined by

(a, (b)) = (r(a),0)5 (5.6)
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5.2.2. Sections and fractional classes. There are even sections ,,s which
are given by considering a function of fewer variables to be a function of more
variables (cf.[Ka2, Ka6, Kad]). If we furthermore assume that Hess(f) is di-
agonal, the expressions become particularly appealing. We can even give the
expression for the fractional Euler classes.

Eu,(Sy) = [[(1+ 0%/0z3 () (5.7)

J
and

¢u(sy) = [ [(8%/023(f))N (5.8)

J

5.2.3. Remarks on mirror symmetry. It turns out that this multiplica-
tion in general does not respect the bi—grading for orbifold singularitites given
in [Ka6].

In the case fp, = 2z + -+ 2], this gives a multiplication which is part A
model and part B-model. The untwisted sector behaving like the B—side and
the twisted sectors behaving like the A—side. Here A— and B—side are the usual
sides of mirror symmetry. In this particular situation, we can either use the
definitions of [Ka6|, or the general N = 2 framework from physics [LVW, GP]
which distinguishes the two sides for instance by their bi-grading.

What geometry this describes is an intriguing question, to which we plan to
return in a subsequent paper.

REFERENCES

[A] M.F. Atiyah, M. F. K-theory. W. A. Benjamin, Inc., New York-Amsterdam 1967
v+166+xlix pp

[AGLV] V.I. Arnold, V.V Goryunov, O.V. Lyashko and V.A. Vasilev. Singularity theory. I
Springer-Verlag, Berlin, 1998. iv+245 pp

[AGV] D. Abramovich, T. Graber and A. Vistoli. Algebraic orbifold quantum products. Orb-
ifolds in mathematics and physics (Madison, WI, 2001), 1-24, Contemp. Math., 310,
Amer. Math. Soc., Providence, RI, 2002. and Gromov—Witten theory of Deligne—Mumford
stacks Preprint math.AG/0603151.

[BT] R. Bott and L.W. Tu. Differential forms in algebraic topology. Graduate Texts in Math-
ematics, 82. Springer-Verlag, New York-Berlin, 1982.

[CR] W. Chen and Y. Ruan, A new cohomology theory for orbifold. Comm. Math. Phys. 248
(2004), no. 1, 1-31

[CH] B. Chen and S. Hu. A de Rham model for Chen-Ruan cohomology ring of abelian orb-
ifolds. Math. Ann. 336 (2006), no. 1, 51-71

[FG] B. Fantechi and L. Géttsche, Orbifold cohomology for global quotients. Duke Math. J.
117 (2003), 197-227.

[FL] W. Fulton and S. Lang. Riemann-Roch algebra. Grundlehren der Mathematischen Wis-
senschaften, 277. Springer-Verlag, New York, 1985.

[GP] B.R. Greene and M.R. Plesser. Duality in Calabi-Yau moduli space. Nuclear Phys. B
338 (1990), no. 1, 15-37.

[H] F. Hirzebruch. Topological methods in algebraic geometry. Die Grundlehren der Math-
ematischen Wissenschaften, Band 131 Springer-Verlag New York, Inc., New York 1966
x+232



28 RALPH M. KAUFMANN

[JKKI1] T. Jarvis, R. Kaufmann and T. Kimura. Pointed Admissible G-Covers and G-
equivariant Cohomological Field Theories. Compositio Math. 141 (2005), 926-978.

[JKK2] T. Jarvis, R. Kaufmann and T. Kimura. Stringy K-theory and the Chern character.
Inv. Math. 168, 1 (2007), 23-81.

[Kal] R. M. Kaufmann, Orbifold Frobenius algebras, cobordisms, and monodromies. In A.
Adem, J. Morava, and Y. Ruan (eds.), Orbifolds in Mathematics and Physics, Contemp.
Math., Amer. Math. Soc., Providence, RI. 310, (2002), 135-162.

[Ka2] R. M. Kaufmann Orbifolding Frobenius algebras. Int. J. of Math. 14 (2003), 573-619.

[Ka3] R. M. Kaufmann. Discrete torsion, symmetric products and the Hilbert scheme, in:
C. Hertling and M. Marcolli (eds.) ”Frobenius Manifolds, Quantum Cohomology and
Singularities”, Aspects of Mathematics E 36, Vieweg 2004.

[Kad4] R. M. Kaufmann, Second quantized Frobenius algebras, Commun. Math. Phys 248, 33-83
(2004).

[Ka5] R. M. Kaufmann, The algebra of discrete torsion, J. of Algebra,282 (2004), 232-259.

[Ka6] R. M. Kaufmann. Singularities with symmetries, orbifold Frobenius algebras and mirror
symmetry. Contemp. Math. 403 (2006), 67-116.

[Ka7] R. M. Kaufmann. Stringy multiplication for orbifold Landau—Ginzburg theories. Preprint

[LVW] W. Lerche, Wolfgang, C. Vafa and N.P. Warner. Chiral rings in N = 2 superconformal
theories. Nuclear Phys. B 324 (1989), no. 2, 427474

[Qu] D. Quillen, Elementary proofs of some results of cobordism theory using Steenrod opera-
tions, Adv. in Math. 7 (1971), 29-56.

[Ts] Private communication at the IHP, Feb. 2007.

FE-mail address: rkaufman@math.purdue.edu

PURDUE UNIVERSITY DEPARTMENT OF MATHEMATICS, WEST LAFAYETTE, IN 47907



