DIAGRAMMES DE DIAMOND ET (φ, Γ) -MODULES

par

Christophe Breuil

Résumé. — Soit ρ une représentation continue semi-simple générique de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ sur $\overline{\mathbb{F}_p}$. La correspondance de Langlands modulo p pour $\operatorname{GL}_2(\mathbb{Q}_p)$ définie dans [3] peut, comme réalisée dans [7], se traduire en une recette simple permettant de retrouver le (φ, Γ) -module associé à ρ à partir du "diagramme de Diamond" associé à ρ . Soit F une extension finie non-ramifiée de \mathbb{Q}_p et ρ une représentation continue semi-simple générique de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur $\overline{\mathbb{F}_p}$. Lorsque l'on étend formellement cette recette aux diagrammes de Diamond associés à ρ dans [4], on montre que l'on obtient essentiellement le (φ, Γ) -module de l'induite tensorielle de F à \mathbb{Q}_p de ρ .

Table des matières

1. Introduction	2
2. Rappels sur les diagrammes et les diagrammes de Diamond	5
3. Rappels sur les $(\varphi,\Gamma)\text{-modules}$ en caractéristique $p\dots\dots$	7
4. Diagrammes de type semi-simple et (φ, Γ) -modules	10
5. Diagrammes de Diamond et (φ, Γ) -modules	16
6. Valeurs privilégiées de paramètres	22
7. Bref retour aux représentations de $\mathrm{GL}_2(F)$	25
Références	29

Cet article fait suite à un travail en collaboration avec V. Paškūnas ([4]) et l'auteur remercie ce dernier pour lui avoir appris l'importance des sommes (2) ci-après. Il remercie L. Berger pour son intérêt et ses remarques concernant la partie 3. Il remercie enfin J. de Jong et P. Cartier pour d'agréables discussions à Columbia et à l'I.H.É.S. sur le théorème 7.1 et la remarque qui suit.

1. Introduction

La correspondance de Langlands modulo p pour $GL_2(\mathbb{Q}_p)$, définie initialement dans [3] dans sa version semi-simple, est maintenant bien comprise grâce à la théorie des (φ, Γ) -modules ([7]). En particulier, un résultat essentiel de [7] est la construction d'un foncteur permettant de passer de la représentation de $GL_2(\mathbb{Q}_p)$ au (φ, Γ) -module de la représentation de $Gal(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ à laquelle elle correspond.

Si F est une extension finie non-ramifiée de \mathbb{Q}_p de degré f, l'étude et la classification des représentations lisses admissibles de $\mathrm{GL}_2(F)$ sur $\overline{\mathbb{F}_p}$ se révèle bien plus complexe que lorsque $F = \mathbb{Q}_p$. Un phénomène troublant a lieu : dès que f > 1, il existe une très grande quantité de représentations lisses admissibles irréductibles supercuspidales (voir [4]). Leur classification est à ce jour incomprise.

Néanmoins, dans [4], une famille (en général infinie) de représentations lisses admissibles de $\operatorname{GL}_2(F)$ sur $\overline{\mathbb{F}_p}$ est associée (de manière ad hoc) à une représentation continue ρ de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur $\overline{\mathbb{F}_p}$ lorsque cette dernière est suffisamment générique en partant de la généralisation des poids de Serre développée dans [5] (appelés ici poids de Diamond). La méthode est d'abord d'associer à ρ une famille de structures plus simples, introduites initialement dans [11] et appelées "diagrammes", puis de considérer ensuite la famille de toutes les représentations lisses admissibles de $\operatorname{GL}_2(F)$ "engendrées" par l'un quelconque de ces diagrammes (essentiellement). Un diagramme D sera ici la donnée d'une représentation D_0 de $\operatorname{GL}_2(\mathbb{F}_{p^f})$ de dimension finie sur $\overline{\mathbb{F}_p}$ et d'une action de la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$ sur les invariants de D_0 par les matrices unipotentes supérieures $U(\mathbb{F}_{p^f})$. Une des propriétés cruciales des diagrammes associés à ρ (appelés diagrammes de Diamond) est que le socle de la $\operatorname{GL}_2(\mathbb{F}_{p^f})$ -représentation D_0 est la somme directe des poids de Diamond associés à ρ .

Lorsque l'on examine le foncteur de [7] quand $F = \mathbb{Q}_p$ et ρ est semi-simple à la lumière des structures plus simples que sont les diagrammes de Diamond, on se rend compte qu'il existe une recette directe permettant de retrouver le (φ, Γ) -module de ρ à partir du diagramme de Diamond associé à ρ (qui est unique quand $F = \mathbb{Q}_p$). Considèrons le sous-espace suivant de la $\mathrm{GL}_2(\mathbb{F}_p)$ -représentation D_0 :

$$V \stackrel{\text{déf}}{=} (\text{socle de } D_0)^{U(\mathbb{F}_p)}.$$

Sous l'action des matrices triangulaires supérieures, V admet une base de vecteurs propres. Ces vecteurs propres sont reliés entre eux par l'action de sommes :

(1)
$$\sum_{\lambda \in \mathbb{F}_p} \lambda^s \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$$

où $s \in \{0, \dots, p-1\}$. La recette pour retrouver le (φ, Γ) -module de ρ est alors, grossièrement, de remplacer chaque somme (1) reliant deux vecteurs propres de

V par une équation $\varphi(*) = s! X^{p-1-s} *$ reliant deux vecteurs de base du (φ, Γ) module (voir exemple 4.7).

Que devient cette recette quand f > 1? On définit de manière analogue $V \stackrel{\text{déf}}{=}$ (socle de D_0) $^{U(\mathbb{F}_{p^f})}$ à partir d'un quelconque diagramme de Diamond D associé à ρ semi-simple mais les sommes reliant les vecteurs propres de V ont la forme :

(2)
$$\sum_{\lambda \in \mathbb{F}_{p^f}} \lambda^{s_0} \lambda^{ps_1} \cdots \lambda^{p^{f-1}s_{f-1}} \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$$

où $s_j \in \{0, \dots, p-1\}$. Un théorème de Stickelberger (th.7.1) suggère alors de remplacer chaque somme (2) par l'équation (voir §5 pour la construction précise) :

(3)
$$\varphi(*) = s_0! s_1! \cdots s_{f-1}! X^{p-1-s_0+p-1-s_1+\cdots+p-1-s_{f-1}} *.$$

On obtient ainsi un certain (φ, Γ) -module étale M(D) (dépendant de D) et l'on peut calculer la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ sur $\overline{\mathbb{F}_p}$ qui lui correspond. Le théorème suivant est le résultat principal de l'article.

Théorème 1.1 (cor.5.4). — Soit ρ une représentation générique semi-simple de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur $\overline{\mathbb{F}_p}$, D un diagramme de Diamond associé, M(D) le (φ, Γ) -module étale associé à D par la recette ci-dessus et V(M(D)) la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ sur $\overline{\mathbb{F}_p}$ correspondant à M(D). On a:

$$V(M(D))|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_n^{\operatorname{nr}})} \simeq \left(\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho\right)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)}$$

où ind $_F^{\otimes \mathbb{Q}_p} \rho$ est l'induite tensorielle de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ de ρ , $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})$ l'inertie, ω le caractère cyclotomique modulo ρ et les r_i des entiers liés à ρ .

En général, V(M(D)) n'est pas isomorphe à $(\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho) \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)}$ (il faut vraiment prendre la restriction à l'inertie). Néanmoins, cela est vrai pour certains des diagrammes de Diamond D associés à ρ et permet de faire une première sélection parmi les D: voir §6, en particulier le théorème 6.4. Mais cela n'est pas encore suffisant pour permettre d'isoler un diagramme unique pour un ρ fixé.

Le plan de l'article est le suivant : après quelques rappels concernant les diagrammes de Diamond et les (φ, Γ) -modules en caractéristique p aux §§2 et 3, on introduit au §4 une catégorie de diagrammes appelés "de type semi-simple" auxquels on peut attacher de manière formelle des (φ, Γ) -modules étales par la recette (3). Au §5, on considère le cas particulier des diagrammes de Diamond lorsque ρ est générique semi-simple (qui sont de type semi-simple) et on montre le théorème 1.1. Au §6, on montre une condition suffisante sur un diagramme de Diamond Dassocié à ρ pour que V(M(D)) soit exactement $(\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho) \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)}$. Enfin, au §7, on rappelle et montre un théorème de Stickelberger sur la trace de \mathbb{F}_{p^f} à \mathbb{F}_p qui, avec ce qui précède, suggère comment retrouver peut-être les (φ, Γ) -modules M(D) par un vrai foncteur généralisant celui de [7].

Introduisons maintenant les principales autres notations de cet article.

Si $d \geq 1$ est un entier, on note \mathbb{Q}_{p^d} l'extension non-ramifiée de \mathbb{Q}_p de degré d. On note \mathbb{O}_F les entiers de $F = \mathbb{Q}_{p^f}$ et $q \stackrel{\text{def}}{=} p^f$. On note $K \stackrel{\text{def}}{=} \operatorname{GL}_2(\mathbb{O}_F)$, $I \subset K$ le sous-groupe d'Iwahori et $I_1 \subset I$ (resp. $K_1 \subset K$) le sous-groupe des matrices unipotentes supérieures (resp. égales à l'identité) modulo p. On désigne par Π la matrice $\begin{pmatrix} 0 & 1 \\ p & 0 \end{pmatrix}$.

On note $E = \overline{\mathbb{F}_p}$ le corps des coefficients (à ne pas confondre avec le $\overline{\mathbb{F}_p}$ de $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$) et on fixe un plongement $\mathbb{F}_q \hookrightarrow E$ qui sera tacite dans tout l'article.

Si $\chi: I \to E^{\times}$ est un caractère, on note $\chi^s \stackrel{\text{def}}{=} \chi(\Pi \cdot \Pi^{-1})$. On note $\alpha: I \to E^{\times}$ le caractère envoyant $\begin{pmatrix} a & b \\ pc & d \end{pmatrix} \in I$ sur $\overline{a}\overline{d}^{-1}$ via le plongement précédent (où \overline{x} est la réduction modulo p de x). Si $x \in E^{\times}$, on note μ_x le caractère non-ramifié de $\mathbb{Q}_{p^d}^{\times}$ envoyant p sur x.

Si σ est une représentation irréductible de K sur E et χ le caractère donnant l'action de I sur σ^{I_1} supposé tel que $\chi \neq \chi^s$, on note $\sigma^{[s]}$ l'unique représentation irréductible de K sur E telle que I agit sur $(\sigma^{[s]})^{I_1}$ par χ^s . On note ind $_I^K \chi$ la E-représentation des fonctions $f: K \to E$ telles que $f(ik) = \chi(i)f(k)$ $(i \in I, k \in K)$ avec action à gauche de K par (kf)(k') = f(k'k).

On normalise l'inverse de l'application de réciprocité locale de telle sorte que p s'envoie sur un Frobenius géométrique.

On note Frob le Frobenius arithmétique absolu de $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_p)$, c'est-à-dire l'automorphisme envoyant $x \in \overline{\mathbb{F}_p}$ sur x^p . Si $d \geq 1$ est un entier, μ_x peut se voir comme le caractère non-ramifié de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ envoyant le Frobenius géométrique Frob^{-d} de $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_{p^d})$ sur $x \in E^{\times}$.

 $\frac{\operatorname{Pour}\,d}{\frac{g(p^d-\sqrt{-p})}{p^d-\sqrt{-p}}} \geq 1, \text{ on note } \omega_d : \operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d}) \to E^\times \text{ le caractère envoyant } g \text{ sur } \frac{g(p^d-\sqrt{-p})}{p^d-\sqrt{-p}} \in \mathbb{F}_{p^d} \hookrightarrow E. \text{ Lorsque } d=1, \ \omega_1 \text{ s'identifie au caractère cyclotomique modulo } p \text{ et on le note } \omega. \text{ Lorsque } d>1, \ \omega_d \text{ dépend du choix d'un plongement } \mathbb{F}_{p^d} \hookrightarrow E, \text{ mais } \omega_d \text{ interviendra soit dans des induites, auquel cas ce choix n'a pas d'importance, soit pour <math>d$ divisant f, auquel cas on choisit le plongement induit par le plongement déjà fixé $\mathbb{F}_q \hookrightarrow E.$ On a $\omega_d(p)=1$ via la réciprocité locale.

Si ρ est une représentation continue de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ sur un E-espace vectoriel de dimension finie, on note enfin $\operatorname{ind}_{\mathbb{Q}_{p^d}}^{\mathbb{Q}_p} \rho$ l'induite classique de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ à $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ de ρ et $\operatorname{ind}_{\mathbb{Q}_{n^d}}^{\otimes \mathbb{Q}_p} \rho$ son induite tensorielle ([6]).

2. Rappels sur les diagrammes et les diagrammes de Diamond

On rappelle la définition des diagrammes ([11]) et des diagrammes de Diamond ([4]).

On désigne par N le normalisateur de I dans $GL_2(F)$, i.e. $N = I \Pi F^{\times}$.

Définition 2.1. — On appelle diagramme un triplet (D_0, D_1, r) où D_0 est une représentation de KF^{\times} de dimension finie sur E telle que K_1 et $p \in F^{\times}$ agissent trivialement, D_1 une représentation de N sur E et $r: D_1 \hookrightarrow D_0$ une injection IF^{\times} -équivariante qui induit un isomorphisme $D_1 \xrightarrow{\sim} D_0^{I_1} \hookrightarrow D_0$.

Ce que l'on appelle diagramme ici est en fait un cas particulier des "diagrammes fondamentaux" ("basic diagrams") de [4]. Comme nous n'utilisons pas d'autres diagrammes, nous avons préféré alléger la terminologie. Notons que D_0 est en fait une $GL_2(\mathbb{F}_q)$ représentation puisque K_1 agit trivialement.

Les diagrammes forment une catégorie additive (non-abélienne) en un sens évident. Des exemples aussi simples qu'importants de diagrammes sont donnés par les triplets $(\pi^{K_1}, \pi^{I_1}, \operatorname{can})$ où π est une représentation lisse admissible de $\operatorname{GL}_2(F)$ sur E et $\operatorname{can}: \pi^{I_1} \hookrightarrow \pi^{K_1}$ l'inclusion canonique. Il faut comprendre les diagrammes comme une version "enrichie" des modules de Hecke sur $E[I_1\backslash\operatorname{GL}_2(F)/I_1]$ (donnés par π^{I_1}) considérés par exemple dans [12].

Un aspect surprenant (et troublant) est que, lorsque f > 1, il y a beaucoup plus de diagrammes que lorsque f = 1, voir [4]. En particulier, si $\rho : \operatorname{Gal}(\overline{\mathbb{Q}_p}/F) \to \operatorname{GL}_2(E)$ est une représentation générique (cf. ci-dessous) et si f > 1, on attache à ρ dans [4] une famille infinie de diagrammes, que nous rappelons maintenant.

Soit donc ρ une représentation continue générique de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur E. Quitte à tordre ρ par un caractère, on peut l'écrire sous l'une des formes suivantes (voir [4, §11]) :

$$\begin{aligned} \text{(i)} \ \ \rho|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} & \cong \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j} & * \\ 0 & 1 \end{pmatrix} \text{ avec } 0 \leq r_j \leq p-3 \text{ et } (r_j) \notin \{(0,\cdots,0), \\ (p-1,\cdots,p-1)\} \end{aligned}$$

(ii)
$$\rho|_{\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\text{nr}})} \cong \begin{pmatrix} \omega_{2f}^{\sum_{j=0}^{f-1}(r_j+1)p^j} & 0\\ 0 & \omega_{2f}^{2\int_{j=0}^{f-1}(r_j+1)p^i} \end{pmatrix} \text{ avec } 1 \leq r_0 \leq p-2 \text{ et } 0 \leq r_j \leq p-3, \ j>0$$

avec de plus $\det(\rho) = \omega_f^{\sum_{j=0}^{f-1}(r_j+1)p^j}$ (notons que cela entraı̂ne p > 2). À $\rho|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})}$ est associé dans [5] un ensemble de "poids", c'est-à-dire de représentations irréductibles de $\operatorname{GL}_2(\mathbb{O}_F)$ - ou de $\operatorname{GL}_2(\mathbb{F}_q)$ - sur E, noté $\mathfrak{D}(\rho)$.

On associe alors une famille de diagrammes $D = (D_0, D_1, r)$ à ρ comme suit ([4]):

- (i) D_0 est la plus grande représentation de $\operatorname{GL}_2(\mathbb{F}_q)$ sur E (pour l'inclusion) telle que soc $D_0 = \bigoplus_{\sigma \in \mathcal{D}(\rho)} \sigma$ et telle que chaque $\sigma \in \mathcal{D}(\rho)$ n'apparaît qu'une fois dans D_0
- (ii) D_1 est l'unique représentation de N sur $D_0^{I_1}$ qui étend l'action de I
- (iii) $r: D_1 \hookrightarrow D_0$ est une injection *I*-équivariante arbitraire.

En faisant agir $p \in F^{\times}$ trivialement, on obtient ainsi une famille de diagrammes au sens de la définition 2.1. De plus, on peut montrer que tous les facteurs de Jordan-Hölder de D_0 (et pas seulement ceux de son socle) apparaissent avec multiplicité 1 dans D_0 ([4, §13]) et que la représentation D_0 se décompose en une somme directe :

(4)
$$D_0 = \bigoplus_{\sigma \in \mathcal{D}(\rho)} D_{0,\sigma}$$
 où soc $D_{0,\sigma} = \sigma$.

Nous aurons besoin de la description explicite de $\mathcal{D}(\rho)$ lorsque ρ est semi-simple.

Soit (x_0, \dots, x_{f-1}) f variables (formelles). On définit d'abord deux ensembles $\mathcal{RD}(x_0, \dots, x_{f-1})$ et $\mathcal{ID}(x_0, \dots, x_{f-1})$ de f-uplets $\lambda = (\lambda_0(x_0), \dots, \lambda_{f-1}(x_{f-1}))$ où $\lambda_i(x_i) \in \mathbb{Z} \pm x_i$. On convient que $x_f = x_0$ et $\lambda_f(x_f) = \lambda_0(x_0)$ dans ce qui suit.

Si
$$f = 1$$
, $\Re \mathcal{D}(x_0) \stackrel{\text{def}}{=} \{x_0, p - 3 - x_0\}$ et $\Im \mathcal{D}(x_0) \stackrel{\text{def}}{=} \{x_0, p - 1 - x_0\}$.

Si f > 1, $\Re \mathcal{D}(x_0, \dots, x_{f-1})$ est l'ensemble des λ tels que :

- (i) $\lambda_i(x_i) \in \{x_i, x_i + 1, p 2 x_i, p 3 x_i\}$
- (ii) si $\lambda_i(x_i) \in \{x_i, x_i + 1\}$ alors $\lambda_{i+1}(x_{i+1}) \in \{x_{i+1}, p 2 x_{i+1}\}$
- (iii) si $\lambda_i(x_i) \in \{p-2-x_i, p-3-x_i\}$ alors $\lambda_{i+1}(x_{i+1}) \in \{p-3-x_{i+1}, x_{i+1}+1\}$.

Si f > 1, $\mathfrak{ID}(x_0, \dots, x_{f-1})$ est l'ensemble des λ tels que :

- (i) si $0 < i, \lambda_i(x_i) \in \{x_i, x_i + 1, p 2 x_i, p 3 x_i\}$ (resp. $\lambda_0(x_0) \in \{x_0, x_0 1, p 2 x_0, p 1 x_0\}$)
- (ii) si 0 < i et $\lambda_i(x_i) \in \{x_i, x_i + 1\}$ (resp. $\lambda_0(x_0) \in \{x_0, x_0 1\}$), alors $\lambda_{i+1}(x_{i+1}) \in \{x_{i+1}, p 2 x_{i+1}\}$
- (iii) si 0 < i < f 1 et $\lambda_i(x_i) \in \{p 2 x_i, p 3 x_i\}$, alors $\lambda_{i+1}(x_{i+1}) \in \{p 3 x_{i+1}, x_{i+1} + 1\}$
- (iv) si $\lambda_0(x_0) \in \{p-1-x_0, p-2-x_0\}$, alors $\lambda_1(x_1) \in \{p-3-x_1, x_1+1\}$
- $(\mathbf{v}) \text{ si } \lambda_{f-1}(x_{f-1}) \in \{p-2-x_{f-1}, p-3-x_{f-1}\}, \text{ alors } \lambda_0(x_0) \in \{p-1-x_0, x_0-1\}.$

L'ensemble $\mathcal{RD}(x_0, \dots, x_{f-1})$ (resp. $\mathcal{ID}(x_0, \dots, x_{f-1})$) peut s'identifier à l'ensemble des parties J de $\{0, \dots, f-1\}$ comme suit : $j \in J$ si et seulement si

 $\lambda_j(x_j) \in \{p-2-x_j, p-3-x_j\}$ (resp. si j > 0, $j \in J$ si et seulement si $\lambda_j(x_j) \in \{p-2-x_j, p-3-x_j\}$ et $0 \in J$ si et seulement si $\lambda_0(x_0) \in \{p-2-x_0, p-1-x_0\}$). Notons que, pour des raisons pratiques, ces identifications ne sont pas exactement les mêmes que celles choisies dans $[4, \S 11]$.

Pour $\lambda \in \mathcal{RD}(x_0, \dots, x_{f-1})$ ou $\lambda \in \mathcal{ID}(x_0, \dots, x_{f-1})$ on pose :

$$e(\lambda) \stackrel{\text{def}}{=} \frac{1}{2} \left(\sum_{i=0}^{f-1} p^i (x_i - \lambda_i(x_i)) \right) \text{ si } f - 1 \notin J$$

$$e(\lambda) \stackrel{\text{def}}{=} \frac{1}{2} \left(p^f - 1 + \sum_{i=0}^{f-1} p^i (x_i - \lambda_i(x_i)) \right) \text{ sinon.}$$

Si s_0, \dots, s_{f-1} sont f entiers dans $\{0, \dots, p-1\}$, on note (s_0, \dots, s_{f-1}) la représentation irréductible de $GL_2(\mathbb{F}_q)$:

$$(\operatorname{Sym}^{r_0} E^2) \otimes_E (\operatorname{Sym}^{r_1} E^2)^{\operatorname{Frob}} \otimes_E \cdots \otimes_E (\operatorname{Sym}^{r_{f-1}} E^2)^{\operatorname{Frob}^{f-1}}$$

où
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 agit sur $(\operatorname{Sym}^{r_j} E^2)^{\operatorname{Frob}^j}$ via $\begin{pmatrix} a^{p^j} & b^{p^j} \\ c^{p^j} & d^{p^j} \end{pmatrix}$ puis le plongement fixé $\mathbb{F}_q \hookrightarrow E$.

Soit maintenant ρ générique semi-simple de dimension 2. Si ρ est comme dans (i) (avec *=0), on a :

$$\mathcal{D}(\rho) = \{(\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})}, \lambda \in \mathcal{RD}(x_0, \cdots, x_{f-1})\}$$
 et si ρ est comme dans (ii) on a :

$$\mathcal{D}(\rho) = \{(\lambda_0(r_0), \cdots, \lambda_{f-1}(r_{f-1})) \otimes \det^{e(\lambda)(r_0, \cdots, r_{f-1})}, \lambda \in \mathfrak{ID}(x_0, \cdots, x_{f-1})\}.$$

De plus, deux λ différents donnent deux poids différents de sorte que $\mathcal{D}(\rho)$ s'identifie aussi à l'ensemble des parties de $\{0, \dots, f-1\}$ via le λ correspondant.

Il existe une autre définition plus conceptuelle de $\mathcal{D}(\rho)$ (d'où se déduit la description technique ci-dessus) que nous n'utiliserons pas (cf. [5]).

3. Rappels sur les (φ, Γ) -modules en caractéristique p

On rappelle la définition des (φ, Γ) -modules ([9]) en caractéristique p et quelques unes de leurs propriétés.

On fixe $d \geq 1$ et on choisit un plongement $\mathbb{F}_{p^d} \hookrightarrow E$ (dans les applications, soit d sera un diviseur de f de sorte qu'un tel plongement est induit par le plongement fixé $\mathbb{F}_q \hookrightarrow E$, soit le résultat sera indépendant du choix de ce plongement). Soit $\Gamma \stackrel{\text{déf}}{=} \operatorname{Gal}(\mathbb{Q}_{p^d}({}^p\sqrt[\infty]{1})/\mathbb{Q}_{p^d}) \simeq \operatorname{Gal}(\mathbb{Q}_p({}^p\sqrt[\infty]{1})/\mathbb{Q}_p)$ qui s'identifie à \mathbb{Z}_p^{\times} par le caractère cyclotomique p-adique ε .

Définition 3.1. — Un (φ, Γ) -module pour \mathbb{Q}_{p^d} est un $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E$ -module de type fini M muni d'un endomorphisme E-linéaire φ et d'une action $\mathbb{F}_{p^d} \otimes_{\mathbb{F}_p} E$ -linéaire de Γ telles que :

- (i) $\varphi((aX^j \otimes b)v) = (a^p X^{pj} \otimes b)\varphi(v)$ si $v \in M$, $a \in \mathbb{F}_{p^d}$ et $b \in E$
- (ii) $\gamma((aX^j \otimes b)v) = (a((1+X)^{\varepsilon(\gamma)} 1)^j \otimes b)\gamma(v) \text{ si } \gamma \in \Gamma \text{ et } v \in M$
- (iii) $\varphi \circ \gamma = \gamma \circ \varphi \text{ pour tout } \gamma \in \Gamma.$

On dit que l'action de φ (resp. de Γ) est semi-linéaire. Les (φ, Γ) -modules pour \mathbb{Q}_{p^d} forment une catégorie abélienne en un sens évident. Notons qu'un (φ, Γ) -module pour \mathbb{Q}_p est simplement un $\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E$ -espace vectoriel de dimension finie muni d'un φ et d'une action de Γ comme ci-dessus. Un (φ, Γ) -module pour \mathbb{Q}_{p^d} peut toujours se réaliser sur $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} \mathbb{F}$ où \mathbb{F} est un corps fini contenu dans E.

Remarque 3.2. — Les (φ, Γ) -modules sont d'habitude notés D. Nous adoptons la notation M car D désigne ici un diagramme.

L'isomorphisme:

 $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E \simeq (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E)^d$, $aX^j \otimes b \mapsto (abX^j, a^{p^{-1}}bX^j, \cdots, a^{p^{1-d}}bX^j)$ fait que l'on peut écrire un (φ, Γ) -module pour \mathbb{Q}_{p^d} sous la forme $M = M^0 \times M^1 \times \cdots \times M^{d-1}$ où M^j est un $\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E$ -espace vectoriel de dimension finie, φ envoie circulairement M^j dans M^{j+1} et Γ préserve les M^j .

Un (φ, Γ) -module pour \mathbb{Q}_{p^d} M est dit étale si $\varphi(M)$ engendre M sur $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E$. De manière équivalente, on a un isomorphisme $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E$ -linéaire (avec des notations évidentes) :

$$\operatorname{Id} \otimes \varphi : (\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E) \otimes_{\varphi, \mathbb{F}_{-d}((X)) \otimes_{\mathbb{F}_p} E} M \xrightarrow{\sim} M.$$

On vérifie facilement que cela entraı̂ne que tous les M^j sont de même dimension sur $\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E$. En particulier M est alors libre de rang fini sur $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E$.

Le résultat principal de la théorie est le théorème suivant (en se rappellant qu'une représentation galoisienne sur E peut toujours se réaliser sur un corps fini contenu dans E).

Théorème 3.3 ([9]). — La catégorie des (φ, Γ) -modules étales pour \mathbb{Q}_{p^d} est équivalente à la catégorie des représentations de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ sur des E-espaces vectoriels de dimension finie.

On note $M \mapsto V(M)$ le foncteur covariant associant une représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ à un (φ, Γ) -module étale. Il est exact et compatible aux sommes directes et aux produits tensoriels. On n'aura pas besoin ici de la description explicite de ce foncteur (voir e.g. [9] ou [7]).

Rappelons maintenant sans preuve quelques propriétés élémentaires (et bien connues) du foncteur V.

Lemme 3.4. — Soit ρ une représentation non-ramifiée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ sur un E-espace vectoriel de dimension finie V. Le (φ, Γ) -module étale associé à ρ a la forme :

$$M = ((\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) \otimes_E V) \times \cdots \times ((\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) \otimes_E V)$$

$$où (s^j \in \mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E, v^j \in V) :$$

$$\varphi(s^0 \otimes v^0, \dots, s^{d-1} \otimes v^{d-1}) = \left(\varphi(s_{d-1}) \otimes \rho(\operatorname{Frob}^{-d})(v^{d-1}), \varphi(s^0) \otimes v^0, \dots, \varphi(s^{d-2}) \otimes v^{d-2}\right)$$

en notant encore Frob^{-d} un relevé dans $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ du Frobenius géométrique de $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_{p^d})$ et où l'action de γ est l'action usuelle $\operatorname{sur} \mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E$ et triviale $\operatorname{sur} V$.

Proposition 3.5. — Soit s un entier positif ou nul. Le (φ, Γ) -module étale associé à ω_d^{ps} a la forme :

$$M = (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E)F^0 \times (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E)F^1 \times \cdots \times (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E)F^{d-1}$$
où:

$$\varphi(F^j) = F^{j+1}, \quad 0 \le j \le d-2$$

$$\varphi(F^{d-1}) = \frac{1}{X^{s(p-1)}} F^0$$

et où pour $\gamma \in \Gamma$:

$$\gamma(F^j) = \left(\frac{\omega(\gamma)X}{\gamma(X)}\right)^{s\frac{p^j(p-1)}{p^d-1}} F^j, \quad 0 \le j \le d-1.$$

Démonstration. — Cela se déduit de [2, §1].

L'action de Γ dans le lemme 3.5 peut se décrire plus simplement comme l'unique action semi-linéaire de Γ commutant à φ et telle que $\gamma(F^j) - F^j \in X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E)F^j$ pour tout j.

Lemme 3.6. — Soit ρ une représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ sur un E-espace vectoriel de dimension finie et $M = M^0 \times M^1 \times \cdots M^{d-1}$ son (φ, Γ) -module étale associé. Soit $(F_k^0)_{1 \leq k \leq t}$ une base de M^0 sur $\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E$ et $F_k^j \stackrel{\text{def}}{=} \varphi^j(F_k^0)$, $1 \leq j \leq d-1$. Le (φ, Γ) -module étale pour \mathbb{Q}_p associé à $\operatorname{ind}_{\mathbb{Q}_{p^d}}^{\mathbb{Q}_p} \rho$ a la forme $\bigoplus_{j=0}^{d-1} (\bigoplus_{k=1}^t (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) F_k^j)$ où, pour $1 \leq k \leq t$:

$$\varphi(F_k^j) = F_k^{j+1}, \quad 0 \le j \le d-2$$

$$\varphi(F_k^{d-1}) = \varphi^d(F_k^0)$$

et où l'action de Γ sur les F_k^j provient de celle sur M.

Nous utiliserons le corollaire suivant.

Corollaire 3.7. — Soit ρ une représentation non-ramifiée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ sur un E-espace vectoriel de dimension finie $V = \bigoplus_{k=1}^t EF_k^0$ et soit s un entier positif ou nul. Le (φ, Γ) -module étale pour \mathbb{Q}_p associé à $\operatorname{ind}_{\mathbb{Q}_{p^d}}^{\mathbb{Q}_p}(\omega_d^s \otimes_E \rho)$ a la forme $\bigoplus_{j=0}^{d-1} (\bigoplus_{k=1}^t (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E)F_k^j)$ où, pour $1 \leq k \leq t$:

$$\begin{array}{rcl} \varphi(F_k^j) & = & F_k^{j+1}, & 0 \leq j \leq d-2 \\ \varphi(F_k^{d-1}) & = & \frac{1}{X^{s(p-1)}} \rho(\operatorname{Frob}^{-d})(F_k^0) \end{array}$$

en notant encore Frob^{-d} un relevé dans $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^d})$ du Frobenius géométrique et où pour $\gamma \in \Gamma$:

$$\gamma(F_k^j) = \left(\frac{\omega(\gamma)X}{\gamma(X)}\right)^{s\frac{p^j(p-1)}{p^d-1}} F_k^j, \quad 1 \le k \le t, \quad 0 \le j \le d-1.$$

 $D\acute{e}monstration.$ — Le (φ,Γ) -module étale pour \mathbb{Q}_{p^d} associé à $\omega_d^{ps} \otimes_E \rho$ est le produit tensoriel (sur $\mathbb{F}_{p^d}((X)) \otimes_{\mathbb{F}_p} E$) des (φ,Γ) -modules associés à ω_d^{ps} et ρ . Le résultat découle donc des lemmes 3.4, 3.6 et de la proposition 3.5 en remarquant que l'induite $\operatorname{ind}_{\mathbb{Q}_{p^d}}^{\mathbb{Q}_p}(\omega_d^{ps} \otimes_E \rho)$ est isomorphe à l'induite $\operatorname{ind}_{\mathbb{Q}_{p^d}}^{\mathbb{Q}_p}(\omega_d^s \otimes_E \rho)$ puisque ρ est non-ramifiée.

L'action de Γ dans le corollaire 3.7 est aussi l'unique action semi-linéaire commutant à φ et telle que $\gamma(F_k^j) - F_k^j \in X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E)F_k^j$ pour tout k,j.

4. Diagrammes de type semi-simple et (φ, Γ) -modules

On associe des (φ, Γ) -modules étales pour \mathbb{Q}_p à certains diagrammes (§2).

Pour $0 \le s \le q - 1$, on pose :

$$S_s \stackrel{\text{def}}{=} \sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} \in E[\operatorname{GL}_2(F)].$$

Soit $D = (D_0, D_1, r)$ un diagramme. Rappelons que soc D_0 désigne le socle de la $GL_2(\mathbb{F}_q)$ -représentation D_0 .

Lemme 4.1. — Soit $v \in (\operatorname{soc} D_0)^{I_1}$ un vecteur propre sous l'action de I. Il existe un entier s dans $\{0, \dots, q-1\}$ tel que $S_s v \neq 0$ et $S_s v \in (\operatorname{soc} D_0)^{I_1}$.

Démonstration. — Soit χ le caractère de I donnant son action sur Ev. Par réciprocité de Frobenius, la sous-K-représentation $\langle K\Pi v \rangle$ de D_0 engendrée par v est un quotient de l'induite ind $_I^K \chi^s$. Soit τ une représentation irréductible de K apparaissant dans le K-socle de $\langle K\Pi v \rangle$, donc aussi dans le K-socle de soc D_0 . Par [4, Lem.2.6, Lem.2.7] il existe $s \in \{0, \dots, q-1\}$ tel que :

$$\sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} \lambda & 1 \\ 1 & 0 \end{pmatrix} \Pi v$$

est un vecteur propre sous I dans τ .

Notons qu'un entier s comme dans le lemme 4.1 n'est en général pas unique pour un v non-nul donné.

Définition 4.2. — On dit qu'un diagramme $D = (D_0, D_1, r)$ est principal si :

- (i) pour tout $v \in (\operatorname{soc} D_0)^{I_1}$ vecteur propre de I il existe un unique $s(v) \in \{0, \dots, q-1\}$ tel que $S_{s(v)}v \neq 0$ et $S_{s(v)}v \in (\operatorname{soc} D_0)^{I_1}$
- (ii) la fonction $v \mapsto s(v)$ est contante sur chaque sous-espace isotypique (pour I) de $(\operatorname{soc} D_0)^{I_1}$.

Nous verrons que les diagrammes de Diamond sont principaux. Notons que si D et D' sont principaux, il n'en est pas obligatoirement de même pour $D \oplus D'$.

Soit $D = (D_0, D_1, r)$ un diagramme principal. Pour $\chi : I \to E^{\times}$ un caractère de I on note $V_{\chi} \subseteq (\sec D_0)^{I_1}$ le sous-espace isotypique associé. Si $v \in V_{\chi}$, s(v) ne dépend que de χ par hypothèse et on le note $s(\chi)$. L'application $S_{s(\chi)}$ envoie V_{χ} dans $V_{\chi\alpha^{-s(\chi)}}$ et définit une application E-linéaire $S : (\sec D_0)^{I_1} \to (\sec D_0)^{I_1}$ (rappelons que $(\sec D_0)^{I_1} = \bigoplus_{\chi} V_{\chi}$).

Définition 4.3. — On dit qu'un diagramme est de type semi-simple s'il est principal et si l'application S est un isomorphisme.

Nous verrons que les diagrammes de Diamond associés aux représentations génériques semi-simples de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ (de dimension 2) sont de type semi-simple (proposition 5.1).

On note dans la suite $S(\chi) \stackrel{\text{def}}{=} \chi \alpha^{-s(\chi)}$ de sorte que $S: V_{\chi} \to V_{S(\chi)}$.

Lemme 4.4. — Soit $D = (D_0, D_1, r)$ un diagramme de type semi-simple.

- (i) Pour tout χ l'application S induit un isomorphisme $S|_{V_{\chi}}:V_{\chi} \xrightarrow{\sim} V_{S(\chi)}$.
- (ii) Il existe un entier $n \geq 1$, des caractères distincts χ_1, \dots, χ_n de I et des entiers $d_1 \geq 1, \dots, d_n \geq 1$ tels que, pour tout $i, S^j(\chi_i) \neq \chi_i, 1 \leq j \leq d_i 1$, $S^{d_i}(\chi_i) = \chi_i$ et tels que l'on ait un isomorphisme de I-représentations :

$$(\operatorname{soc} D_0)^{I_1} \simeq \bigoplus_{i=1}^n (V_{\chi_i} \oplus V_{S(\chi_i)} \oplus \cdots \oplus V_{S^{d_i-1}(\chi_i)}).$$

 $D\'{e}monstration.$ — (i) Puisqu'il n'y a qu'un nombre fini de caractères de I à valeurs dans E, il existe un plus petit entier $d \geq 1$ tel que $S^d(\chi) = S^{d'}(\chi)$ avec $0 \leq d' \leq d-1$. Comme S est injectif par hypothèse, les espaces $V_{S^j(\chi)}$ pour $d' \leq j \leq d-1$ ont même dimension. Si d'>0, on a d'une part $S:V_{S^{d'-1}(\chi)} \hookrightarrow V_{S^{d'}(\chi)}$ et d'autre part $S:V_{S^{d-1}(\chi)} \overset{\sim}{\to} V_{S^{d'}(\chi)}$ ce qui est impossible puisque $S^{d-1}(\chi) \neq S^{d'-1}(\chi)$ et S est un isomorphisme. On a donc forcément d'=0 i.e. $S^d(\chi)=\chi$. En particulier $V_\chi \overset{\sim}{\to} V_{S(\chi)}$.

Soit $D = (D_0, D_1, r)$ un diagramme de type semi-simple. On munit le dual $((\operatorname{soc} D_0)^{I_1})^*$ de l'action à gauche de I donnée par $hf(v) \stackrel{\text{déf}}{=} f(h^{-1}v)$ si $f \in ((\operatorname{soc} D_0)^{I_1})^*$, $v \in (\operatorname{soc} D_0)^{I_1}$, $h \in I$. On pose :

$$M(D) \stackrel{\text{def}}{=} (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) \otimes_E ((\operatorname{soc} D_0)^{I_1})^*.$$

Si χ est un caractère de I tel que $V_{\chi} \neq 0$, on écrit $s(\chi) = \sum_{j=0}^{f-1} s_j p^j$ avec $s_j \in \{0, \dots, p-1\}$. On pose :

(5)
$$c(\chi) \stackrel{\text{def}}{=} \prod_{i=0}^{f-1} s_i! \in E^{\times}$$

et, pour tout $f \in V_{\chi}^* \subseteq ((\operatorname{soc} D_0)^{I_1})^*$:

(6)
$$\varphi(1 \otimes f) \stackrel{\text{déf}}{=} c(\chi) X^{\sum_{j=0}^{f-1} p-1-s_j} \otimes f \circ S^{-1}.$$

On voit que $\varphi(1 \otimes f) \in (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) \otimes_E V_{S(\chi)}^* \subseteq M(D)$ si $f \in V_{\chi}^*$. On étend φ à tout M(D) par semi-linéarité : $\varphi(s \otimes f) = \varphi(s)\varphi(f)$ et $\varphi(1 \otimes (f+g)) = \varphi(1 \otimes f) + \varphi(1 \otimes g)$. Cela est possible par le (i) du lemme 4.4.

On note dans la suite $|s(\chi)| \stackrel{\text{def}}{=} \sum_{j=0}^{f-1} s_j$ et $\overline{\varphi}(f) \stackrel{\text{def}}{=} c(\chi) f \circ S^{-1}$. Ainsi (6) se récrit :

$$\varphi(1 \otimes f) = X^{f(p-1)-|s(\chi)|} \otimes \overline{\varphi}(f), \quad f \in V_{\chi}^*.$$

Passons maintenant à l'action de Γ .

Lemme 4.5. — Soit $D = (D_0, D_1, r)$ un diagramme de type semi-simple. Il existe une unique action de $\Gamma \simeq \mathbb{Z}_p^{\times}$ sur M(D) semi-linéaire (cf. §3) et commutant avec φ telle que pour tout $f \in ((\operatorname{soc} D_0)^{I_1})^*$ vecteur propre pour I et tout $\gamma \in \Gamma$:

(7)
$$\gamma(1 \otimes f) - 1 \otimes \begin{pmatrix} \varepsilon(\gamma) & 0 \\ 0 & 1 \end{pmatrix} f \in X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E) \otimes f.$$

 $D\acute{e}monstration.$ — Si $a\in\mathbb{Z}_p^\times,$ notons γ_a l'élément de Γ associé. L'égalité (7) est équivalente à :

$$\gamma_a(1 \otimes f) = U_{a,f} \otimes \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} f$$

avec $U_{a,f} \in 1 + X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E)$. De plus, si $\lambda \in E$ et g est dans le même espace isotypique (pour I) que f, les égalités $\gamma_a(1 \otimes \lambda f) = \lambda \gamma_a(1 \otimes f)$ et $\gamma_a(1 \otimes (f+g)) = \gamma_a(1 \otimes f) + \gamma_a(1 \otimes g)$ impliquent $U_{a,\lambda f} = U_{a,f} = U_{a,g} = U_{a,f+g}$. Un calcul facile donne si $v \in V_{\chi}$ et $a \in \mathbb{Z}_p^{\times}$:

$$S^{-1}\Big(\begin{pmatrix}a^{-1}&0\\0&1\end{pmatrix}v\Big)=\overline{a}^{s(\chi)}\begin{pmatrix}a^{-1}&0\\0&1\end{pmatrix}S^{-1}v=\overline{a}^{|s(\chi)|}\begin{pmatrix}a^{-1}&0\\0&1\end{pmatrix}S^{-1}v$$

(où \overline{a} est l'image de a dans E^{\times}) de sorte que si $f \in V_{\chi}^*$

$$\gamma_{a}(\varphi(1 \otimes f)) = c(\chi)U_{a,f \circ S^{-1}} \gamma_{a}(X)^{\sum_{j=0}^{f-1} p-1-s_{j}} \otimes \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} (f \circ S^{-1})
= c(\chi)U_{a,f \circ S^{-1}} \overline{a}^{|s(\chi)|} \gamma_{a}(X)^{\sum_{j=0}^{f-1} p-1-s_{j}} \otimes \begin{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} f \end{pmatrix} \circ S^{-1}
= c(\chi)U_{a,f \circ S^{-1}} \left(\frac{\gamma_{a}(X)}{\overline{a}X}\right)^{\sum_{j=0}^{f-1} p-1-s_{j}} X^{\sum_{j=0}^{f-1} p-1-s_{j}} \otimes \begin{pmatrix} \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} f \right) \circ S^{-1}.$$

Comme:

$$\varphi(\gamma_a(1\otimes f)) = c(\chi)\varphi(U_{a,f})X^{\sum_{j=0}^{f-1}p-1-s_j}\otimes \left(\begin{pmatrix} a & 0\\ 0 & 1\end{pmatrix}f\right)\circ S^{-1},$$

on voit que l'égalité $\gamma_a\circ\varphi=\varphi\circ\gamma_a$ est équivalente à :

(8)
$$U_{a,f \circ S^{-1}} = \left(\frac{\overline{a}X}{\gamma_a(X)}\right)^{f(p-1)-|s(\chi)|} \varphi(U_{a,f})$$

pour tout $a \in \mathbb{Z}_p^{\times}$, tout $\chi: I \to E^{\times}$ et tout $f \in V_{\chi}^*$. Montrons que cela détermine uniquement les unités $U_{a,f}$. Si $f \in V_{\chi}^*$, $U_{a,f}$ ne dépend que de χ (cf. début de la preuve) et on le note $U_{a,\chi}$. Soit d tel que $S^d(\chi) = \chi$ (cf. lemme 4.4) de sorte que $\overline{\varphi}^d|_{V_{\chi}^*}$ est un automorphisme E-linéaire de V_{χ}^* . Soit $f \in V_{\chi}^*$ un vecteur propre de $\overline{\varphi}^d$. Itérant (8), on obtient $U_{a,\overline{\varphi}^d(f)} = U_{a,\chi} = V_{a,\chi} \varphi^d(U_{a,\chi})$ où $V_{a,\chi} \in 1 + X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E)$ est une puissance entière de $\frac{\overline{a}X}{\gamma_a(X)}$. Cela entraîne :

(9)
$$U_{a,\chi} = \prod_{m=0}^{+\infty} \varphi^{md}(V_{a,\chi}) \in 1 + X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E)$$

et on voit que les unités $U_{a,\chi}$ sont complètement déterminées. Cela montre l'unicité d'une action de Γ satisfaisant (7). L'existence consiste à vérifier que $\gamma_a(1 \otimes f) \stackrel{\text{def}}{=} U_{a,\chi} \otimes \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} f$ avec $f \in V_{\chi}^*$ et $U_{a,\chi}$ comme en (9) commute à φ , ce qui revient finalement à "remonter" les calculs précédents. Les détails sont laissés au lecteur intéressé.

On note encore M(D) le (φ, Γ) -module étale pour \mathbb{Q}_p donné par le lemme 4.5. Remarquons que M(D) ne dépendant que de soc D_0 et de l'application S, plusieurs D non-isomorphes peuvent avoir le même M(D) associé.

La proposition suivante décrit la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ sur E correspondant au (φ, Γ) -module M(D).

Proposition 4.6. — Soit D un diagramme de type semi-simple, $n, \chi_1, \dots, \chi_n, d_1, \dots, d_n$ comme au lemme 4.4, M(D) le (φ, Γ) -module étale associé et V(M(D)) la représentation de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ sur E correspondante (cf. §3). On définit pour $1 \leq i \leq n$:

$$c_{i} \in \{0, \cdots, q-1\} \text{ tel que } \chi_{i} \left(\begin{pmatrix} \begin{bmatrix} \lambda \\ 0 \end{bmatrix} \end{pmatrix} \right) = \lambda^{c_{i}} \ \forall \ \lambda \in \mathbb{F}_{q}^{\times}$$

$$(10) \qquad s_{i} \stackrel{\text{def}}{=} \frac{1}{p-1} \sum_{i=0}^{d_{i}-1} p^{d_{i}-1-j} |s(S^{j}(\chi_{i}))|$$

et on note ρ_i la représentation non-ramifiée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^{d_i}})$ sur le E-espace vectoriel $V_{\chi_i}^*$ envoyant le Frobenius géométrique de $\operatorname{Gal}(\overline{\mathbb{F}_p}/\mathbb{F}_{p^{d_i}})$ sur $\overline{\varphi}^{d_i}|_{V_{\chi_i}^*}$. Alors, pour tout $i \in \{1, \dots, n\}$, s_i est un entier et on a:

$$V(M(D)) \simeq \bigoplus_{i=1}^{n} \operatorname{ind}_{\mathbb{Q}_{p}d_{i}}^{\mathbb{Q}_{p}} (\omega_{d_{i}}^{s_{i}} \otimes_{E} \rho_{i}) \otimes \omega^{-(c_{i}+f)}.$$

Démonstration. — Puisque $S^{j}(\chi_{i}) = \chi_{i}\alpha^{-\sum_{j'=0}^{j-1}s(S^{j'}(\chi_{i}))}$ pour $1 \leq j \leq d_{i}$, on a $S^{d_{i}}(\chi_{i}) = \chi_{i} = \chi_{i}\alpha^{-\sum_{j=0}^{d_{i}-1}s(S^{j}(\chi_{i}))}$ et donc $\sum_{j=0}^{d_{i}-1}s(S^{j}(\chi_{i}))$ est divisible par q-1, donc par p-1. Puisque $s(S^{j}(\chi_{i})) - |s(S^{j}(\chi_{i}))|$ est divisible par p-1, on en déduit que $\sum_{j=0}^{d_{i}-1}p^{d_{i}-1-j}|s(S^{j}(\chi_{i}))|$ l'est aussi et donc que s_{i} est un entier. Puisque $\overline{\varphi}$ préserve $\bigoplus_{j=0}^{d_{i}-1}V_{S^{j}(\chi_{i})}^{*}$, on déduit de la définition de φ (et du lemme 4.5) que :

$$M(D) = \bigoplus_{i=1}^{n} M_i$$

où $M_i \stackrel{\text{def}}{=} \oplus_{j=0}^{d_i-1}(\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) \otimes_E V_{S^j(\chi_i)}^*$ est un (φ, Γ) -module facteur direct de M(D). Il suffit donc de vérifier que $V(M_i) = \operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \left(\omega_{d_i}^{s_i} \otimes_E \rho_i \right) \otimes \omega^{-(c_i+f)}$. Soit t_i la dimension de V_{χ_i} et $(f_k)_{1 \leq k \leq t_i}$ une base de $V_{\chi_i}^*$. On peut voir ρ_i comme la représentation non-ramifiée de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_{p^{d_i}})$ sur $\oplus_{k=1}^{t_i} E_{\overline{X^f}} \otimes f_k$ envoyant le Frobenius géométrique Frob $^{-d_i}$ sur $\left(\frac{1}{X^f} \otimes f_k \mapsto \frac{1}{X^f} \otimes \overline{\varphi}^{d_i}(f_k)\right)_{1 \leq k \leq t_i}$. Pour $1 \leq k \leq t_i$ posons $F_k^0 \stackrel{\text{def}}{=} \frac{1}{X^f} \otimes f_k$ et pour $1 \leq j \leq d_i - 1$:

$$F_k^j \stackrel{\text{def}}{=} \frac{1}{X^{\sum_{j'=0}^{j-1} p^{j-1-j'} |s(S^{j'}(\chi_i))|}} \left(\frac{1}{X^f} \otimes \overline{\varphi}^j(f_k)\right).$$

On a $M_i = \bigoplus_{j=0}^{d_i-1} \left(\bigoplus_{k=1}^{t_i} (\mathbb{F}_p((X)) \otimes_{\mathbb{F}_p} E) F_k^j \right)$ et un calcul donne pour $1 \leq k \leq t_i$:

$$\varphi(F_k^j) = F_k^{j+1}, \quad 0 \le j \le d_i - 2$$

$$\varphi(F_k^{d_i - 1}) = \frac{1}{X^{s_i(p-1)}} \rho_i(\text{Frob}^{-d_i})(F_k^0).$$

De plus, par le lemme 4.5 et un calcul facile, $\gamma \in \Gamma$ agit sur M_i de telle sorte que $\gamma(F_k^j) - \omega(\gamma)^{-(c_i+f)} F_k^j \in X(\mathbb{F}_p[[X]] \otimes_{\mathbb{F}_p} E) F_k^j$ pour tout k, j. Par le corollaire 3.7, on reconnaît exactement le (φ, Γ) -module de la représentation $\operatorname{ind}_{\mathbb{Q}_{p^{d_i}}}^{\mathbb{Q}_p}(\omega_{d_i}^{s_i} \otimes_E \rho_i) \otimes \omega^{-(c_i+f)}$.

Exemple 4.7. — Considérons $F = \mathbb{Q}_p$ et $D = (D_0, D_1, r)$ tel que :

où $r_0 \in \{1, \dots, p-2\}$, où le symbole "—" désigne l'unique K-extension non-scindée entre les deux poids (qui est une $\mathrm{GL}_2(\mathbb{F}_q)$ -extension) et où l'on ignore les poids qui n'ont aucun sens (e.g. Sym^{-1})

- (ii) $D_1 \stackrel{\text{déf}}{=} D_0^{I_1} = (\sec D_0)^{I_1} = Ex^{r_0} \oplus Ex^{p-1-r_0}$ avec $\Pi x^{r_0} \stackrel{\text{déf}}{=} x^{p-1-r_0}$ et $\Pi x^{p-1-r_0} \stackrel{\text{déf}}{=} x^{r_0}$ (si $r_0 = (p-1)/2$, le lecteur notera qu'il y a un léger abus de notation)
- (iii) $r: D_1 \hookrightarrow D_0$ est l'injection canonique.

Le diagramme D est l'unique diagramme associé à ρ générique irréductible telle que $\det(\rho) = \omega^{r_0+1}$ lorsque f = 1 (cf. §2). Il est de type semi-simple et l'application S est donnée par (cf. [4, Lem.2.7] par exemple) :

$$Sx^{r_0} = \sum_{\lambda \in \mathbb{F}_p} \lambda^{r_0} \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} x^{r_0} = (-1)^{r_0+1} \Pi x^{r_0} = (-1)^{r_0+1} x^{p-1-r_0}$$

$$Sx^{p-1-r_0} = \sum_{\lambda \in \mathbb{F}_p} \lambda^{p-1-r_0} \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} x^{p-1-r_0} = -\Pi x^{p-1-r_0} = -x^{r_0}$$

ce qui donne par (6) pour φ :

$$\varphi(1 \otimes (x^{r_0})^*) = r_0! X^{p-1-r_0} \otimes (-1)^{r_0+1} (x^{p-1-r_0})^*$$

$$\varphi(1 \otimes (x^{p-1-r_0})^*) = (p-1-r_0)! X^{r_0} \otimes -(x^{r_0})^*$$

où $((x^{r_0})^*, (x^{p-1-r_0})^*)$ est la base duale de (x^{r_0}, x^{p-1-r_0}) . En posant $F^0 \stackrel{\text{déf}}{=} X^{-1} \otimes (x^{r_0})^*$ et $F^1 \stackrel{\text{déf}}{=} X^{-r_0} (X^{-1} \otimes (-1)^{r_0+1} r_0! (x^{p-1-r_0})^*)$, on retrouve :

$$\varphi(F^0) = F^1$$

$$\varphi(F^1) = \frac{-1}{X^{(p-1)(r_0+1)}}F^0.$$

En tenant compte de l'action de Γ , on voit avec le corollaire 3.7 qu'il s'agit du (φ, Γ) -module de la représentation $\left(\operatorname{ind}_{\mathbb{Q}_{n^2}}^{\mathbb{Q}_p}(\omega_2^{r_0+1}\otimes\mu_{-1})\right)\otimes\omega^{-(r_0+1)}=\rho\otimes\omega^{-(r_0+1)}$.

5. Diagrammes de Diamond et (φ, Γ) -modules

On montre le résultat principal de l'article, c'est-à-dire le calcul de V(M(D)) lorsque D est un diagramme de Diamond associé à une représentation générique semi-simple de dimension 2 de $Gal(\overline{\mathbb{Q}_p}/F)$ (§2).

On définit une application bijective $\delta_{\text{réd}}$ (resp. δ_{irr}) de l'ensemble des parties J de $\{0, \dots, f-1\}$ dans lui-même comme suit (avec la convention (f-1)+1=0): $i \in \delta_{\text{réd}}(J)$ si et seulement si $j+1 \in J$ (resp. si j < f-1, $j \in \delta_{\text{irr}}(J)$ si et seulement si $j+1 \in J$ et $f-1 \in \delta_{\text{irr}}(J)$ si et seulement si $0 \notin J$). Autrement dit $\delta_{\text{réd}}(J)$ est le translaté d'un cran à gauche de J dans $\{0, \dots, f-1\}$ (resp. $\delta_{\text{irr}}(J)$ est le translaté d'un cran à gauche de J où l'on prend ensuite le "négatif" sur f-1).

Si ρ est semi-simple générique réductible (resp. irréductible), on a identifié $\mathcal{D}(\rho)$ à l'ensemble des parties de $\{0,\cdots,f-1\}$ au $\S 2$ (notons au passage la petite différence avec $[4,\S 15]$ sur la définition de $\delta_{\mathrm{irr}}(J)$ venant du changement de convention sur cette identification, cf. $\S 2$). On peut donc également voir $\delta_{\mathrm{réd}}$ (resp. δ_{irr}) comme une application bijective de $\mathcal{D}(\rho)$ dans lui-même : si $\sigma \in \mathcal{D}(\rho)$ correspond à $J \subseteq \{0,\cdots,f-1\}$, $\delta_{\mathrm{réd}}(\sigma) \in \mathcal{D}(\rho)$ (resp. $\delta_{\mathrm{irr}}(\sigma) \in \mathcal{D}(\rho)$) correspond à $\delta_{\mathrm{réd}}(J)$ (resp. $\delta_{\mathrm{irr}}(J)$).

Proposition 5.1. — Soit ρ une représentation générique de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur E et D un diagramme de Diamond associé.

- (i) Le diagramme D est principal.
- (ii) $Si \rho$ est semi-simple, le diagramme D est de type semi-simple.

Démonstration. — (i) Soit $\sigma \in \mathcal{D}(\rho)$, il existe un unique $\tau \in \mathcal{D}(\rho)$ tel que $\sigma^{[s]}$ apparaît dans $D_{0,\tau}$ (cela découle de la décomposition (4) de D_0 et du fait que $\sigma^{[s]}$ n'apparaît qu'une seule fois dans D_0 , cf. §2). Si χ désigne l'action de I sur σ^{I_1} , $v \in \sigma^{I_1} = V_{\chi}$ et $\langle K\Pi v \rangle$ est la sous-K-représentation de D_0 engendrée par Πv , on voit donc que $\langle K\Pi v \rangle \subseteq D_{0,\tau}$ est l'unique quotient de $\operatorname{ind}_I^K \chi^s$ de socle irréductible τ (cf. la preuve du lemme 4.1). Par [4, Lem.2.7], il existe un unique $s \in \{0, \dots, q-1\}$ tel que $S_s v \neq 0$ et $S_s v \in (\operatorname{soc} D_0)^{I_1}$ car on a alors $S_s v \in \operatorname{soc}\langle K\Pi v \rangle = \tau$. Comme tous les V_{χ} ont dimension 1 dans le cas des diagrammes de Diamond, la propriété (ii) de la définition 4.2 est trivialement satisfaite.

(ii) Soit ρ semi-simple réductible (resp. irréductible) et $\sigma, \tau \in \mathcal{D}(\rho)$ comme au (i). On a dans ce cas $\tau = \delta_{\text{réd}}(\sigma)$ (resp. $\tau = \delta_{\text{irr}}(\sigma)$) par [4, Lem.15.2] (avec les notations de loc. cit., on vérifie en effet que $S^+ = S^- = \emptyset$). Si $\sigma^{I_1} = V_{\chi}$, alors $V_{S(\chi)} = \delta_{\text{réd}}(\sigma)^{I_1}$ (resp. $V_{S(\chi)} = \delta_{\text{irr}}(\sigma)^{I_1}$) et puisque tous ces espaces sont de dimension 1, on a $S|_{V_{\chi}} : V_{\chi} \xrightarrow{\sim} V_{S(\chi)}$. En écrivant l'ensemble $\mathcal{D}(\rho)$, comme la réunion disjointe des orbites de l'application $\delta_{\text{réd}}$ (resp. δ_{irr}), on voit donc que (soc D_0)^{I_1} s'écrit comme dans le (ii) du lemme 4.4. En particulier D est de type semi-simple.

Grâce à la proposition 5.1 et aux constructions du §4, si ρ est générique semisimple et D un diagramme de Diamond associé alors on dispose d'un (φ, Γ) module étale M(D) (pour \mathbb{Q}_p). On va appliquer la proposition 4.6 pour expliciter V(M(D)), mais il faut encore quelques préliminaires. Jusqu'à la fin de cette section, on fixe ρ (générique semi-simple), D et M(D) comme ci-dessus.

On peut identifier l'ensemble des parties J de $\{0, \dots, f-1\}$ avec l'ensemble des parties J' de $\{0, \dots, 2f-1\}$ vérifiant la condition : pour chaque $i \in \{0, \dots, f-1\}$, J' contient un et un seul des deux éléments i, i+f. On passe de J à J' par $J' = J \coprod \{f+j, j \in \overline{J}\}$ où \overline{J} est le complémentaire de J dans $\{0, \dots, f-1\}$ et de J' à J par $J = J' \cap \{0, \dots, f-1\}$. L'application δ_{irr} est alors simplement la composée : $J \mapsto J'$ suivi du décalage d'un cran à gauche de J' dans $\{0, \dots, 2f-1\}$ suivi de l'intersection avec $\{0, \dots, f-1\}$.

Si $J \subseteq \{0, \dots, f-1\}$, on note $d_{\text{r\'ed}}(J)$ (resp. $d_{\text{irr}}(J)$) le plus petit entier ≥ 1 tel que $\delta_{\text{r\'ed}}^{d_{\text{r\'ed}}(J)}(J) = J$ (resp. $\delta_{\text{irr}}^{d_{\text{irr}}(J)}(J) = J$). Par ce qui précède, si $J' \subset \{0, \dots, 2f-1\}$ correspond à J, on voit que $d_{\text{irr}}(J)$ est aussi le plus petit entier $d \geq 1$ tel que J' est égal à son translaté de d crans à gauche. Si $J \subseteq \{0, \dots, f-1\}$ (resp. $J' \subseteq \{0, \dots, 2f-1\}$), on note :

$$\iota(J) \stackrel{\text{def}}{=} \{f - 1 - j, \ j \in J\} \quad (\text{resp. } \iota(J') \stackrel{\text{def}}{=} \{2f - 1 - j, \ j \in J'\}).$$

Il est clair que $d_{\text{réd}}(\iota(J)) = d_{\text{réd}}(J)$ et que $d_{\text{irr}}(\iota(J') \cap \{0, \dots, f-1\}) = d_{\text{irr}}(J)$.

Lemme 5.2. — Soit $J \subseteq \{0, \dots, f-1\}$ et $J' \subset \{0, \dots, 2f-1\}$ le sous-ensemble correspondant, alors :

- (i) $d_{\text{r\'ed}}(J)$ divise f dans \mathbb{Z} (resp. $d_{\text{irr}}(J)$ divise 2f dans \mathbb{Z})
- (ii) $\frac{p^f-1}{p^{d_{\text{réd}}(J)}-1}$ divise $\sum_{j\in\iota(J)}p^j$ dans \mathbb{Z} et le quotient est $\sum_{\substack{j\in\iota(J)\\j< d_{\text{réd}}(J)}}p^j$ (resp. $\frac{p^{2f}-1}{p^{d_{\text{irr}}(J)}-1}$ divise $\sum_{j\in\iota(J')}p^j$ dans \mathbb{Z} est le quotient est $\sum_{\substack{j\in\iota(J')\\j< d_{\text{irr}}(J)}}p^j$).

 $D\acute{e}monstration.$ — (i) Soit $\mathfrak S$ le groupe des permutations de l'ensemble $\{0,\cdots,f-1\},\,\sigma_{\mathrm{r\acute{e}d}}\in\mathfrak S$ l'élément qui envoie i>0 sur i-1 et 0 sur f-1 et $\mathfrak S_J$ le stabilisateur de J. Alors $d_{\mathrm{r\acute{e}d}}(J)$ est le plus petit entier ≥ 1 tel que $\sigma_{\mathrm{r\acute{e}d}}^{d_{\mathrm{r\acute{e}d}}(J)}\in\mathfrak S_J$. Mais si G est un groupe fini, $G'\subseteq G$ un sous-groupe et $g\in G$, le plus petit entier $d\geq 1$ tel que $g^d\in G'$ divise toujours l'ordre de g dans G. Comme l'ordre de $\sigma_{\mathrm{r\acute{e}d}}$ dans $\mathfrak S$ est f, on en déduit le résultat pour $d_{\mathrm{r\acute{e}d}}(J)$. Dans le cas irréductible, soit σ_{irr} la permutation de $\{0,\cdots,2f-1\}$ envoyant i>0 sur i-1 et 0 sur 2f-1, alors $d_{\mathrm{irr}}(J)$ est le plus petit entier ≥ 1 tel que $\sigma_{\mathrm{irr}}^{d_{\mathrm{irr}}(J)}$ est dans le stabilisateur de J'. La preuve est ensuite la même que la précédente en remarquant que l'ordre de la permutation σ_{irr} est 2f.

(ii) Posons $d \stackrel{\text{def}}{=} d_{\text{réd}}(J) = d_{\text{réd}}(\iota(J))$ pour alléger les notations. Par (i), notons que $X^d - 1$ divise $X^f - 1$ dans $\mathbb{Z}[X]$. Il suffit de montrer que $\sum_{j \in J} X^j = \frac{X^f - 1}{X^d - 1} \left(\sum_{\substack{j \in J \\ j < d}} X^j \right)$ dans $\mathbb{Z}[X]$ puis de spécialiser en X = p et de

l'appliquer à $\iota(J)$. Comme $\delta^d_{\text{réd}}(J) = J$, on a dans $\mathbb{Z}[X]/(X^f - 1) = \mathbb{Z}[\mathbb{Z}/f\mathbb{Z}]$:

(11)
$$\sum_{j \in J} X^{j} = \sum_{\substack{j \in J \\ j > d}} X^{j-d} + \sum_{\substack{j \in J \\ j < d}} X^{j+f-d}$$

qui est une égalité dans $\mathbb{Z}[X]$ puisque les puissances de X qui apparaissent sont toutes de degré < f. L'égalité (11) se récrit en multipliant par X^d des deux côtés (dans $\mathbb{Z}[X]$) :

$$X^{d}\left(\sum_{j\in J} X^{j}\right) = \sum_{j\in J} X^{j} + (X^{f} - 1)\left(\sum_{\substack{j\in J\\ j < d}} X^{j}\right).$$

On a donc dans $\mathbb{Z}[X]$ puisque $X^d - 1$ divise $X^f - 1$:

$$\sum_{j \in J} X^j = \frac{X^f - 1}{X^d - 1} \left(\sum_{\substack{j \in J \\ i \le d}} X^j \right)$$

d'où le résultat. La preuve dans le cas irréductible est la même en travaillant avec J' et dans $\mathbb{Z}[X]/(X^{2f}-1)=\mathbb{Z}[\mathbb{Z}/2f\mathbb{Z}]$.

On note $n_{\text{réd}}$ (resp. n_{irr}) le nombre d'orbites de l'application $\delta_{\text{réd}}$ (resp. δ_{irr}) sur l'ensemble des parties de $\{0, \dots, f-1\}$.

Rappelons que p agit sur $\det(\rho)$ par l'identité et que l'on est dans l'un des deux cas suivants :

(i)
$$\rho \cong \begin{pmatrix} \omega_f^{\sum_{j=0}^{f-1} (r_j+1)p^j} \mu_{\alpha} & 0 \\ 0 & \mu_{-\alpha} \end{pmatrix}, \quad 0 \leq r_j \leq p-3, \quad (r_j) \notin \{(0, \dots, 0), (p-1), \dots, p-1)\}, \quad \alpha \in E^{\times}$$

(ii)
$$\rho|_{\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\text{nr}})} \cong \begin{pmatrix} \omega_{2f}^{\sum_{j=0}^{f-1}(r_j+1)p^j} & 0\\ 0 & \omega_{2f}^{\sum_{j=0}^{f-1}(r_j+1)p^i} \end{pmatrix}, 1 \leq r_0 \leq p-2, 0 \leq r_j \leq p-3, j>0.$$

Dans le cas (ii), la condition sur $det(\rho)$ implique que l'on a exactement :

(12)
$$\rho \cong \operatorname{ind}_{\mathbb{Q}_{n^{2f}}}^{\mathbb{Q}_{p^{f}}} \left(\omega_{2f}^{\sum_{j=0}^{f-1} (r_{j}+1)p^{j}} \otimes \mu_{-1} \right).$$

Théorème 5.3. — (i) Supposons ρ réductible. Choisissons $n_{\text{réd}}$ sous-ensembles $J_1, \dots, J_{n_{\text{réd}}}$ de $\{0, \dots, f-1\}$, un dans chaque orbite de $\delta_{\text{réd}}$ et notons $d_i \stackrel{\text{déf}}{=} d_{\text{réd}}(J_i)$. Alors, pour tout i, $\omega_f^{\sum_{j \in \iota(J_i)} p^j}$ est une puissance entière de ω_{d_i} , et il existe $\alpha_1, \dots, \alpha_{n_{\text{réd}}}$ dans E^{\times} tels que :

$$V(M(D)) \simeq \bigoplus_{i=1}^{n_{\text{réd}}} \left(\operatorname{ind}_{\mathbb{Q}_{p^{d_i}}}^{\mathbb{Q}_p} \omega_f^{(\sum_{j \in \iota(J_i)} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)} \right) \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)} \mu_{\alpha_i}.$$

(ii) Supposons ρ irréductible. Choisissons n_{irr} sous-ensembles $J_1, \dots, J_{n_{irr}}$ de $\{0, \dots, f-1\}$, un dans chaque orbite de δ_{irr} , et notons $J'_1, \dots, J'_{n_{irr}}$ les sous-ensembles correspondant dans $\{0, \dots, 2f-1\}$ et $d_i \stackrel{\text{déf}}{=} d_{irr}(J_i)$. Alors, pour tout $i, \omega_{2f}^{\sum_{j \in \iota(J'_i)} p^j}$ est une puissance entière de ω_{d_i} , et il existe $\alpha_1, \dots, \alpha_{n_{irr}}$ dans E^\times tels que :

$$V(M(D)) \simeq \bigoplus_{i=1}^{n_{\operatorname{irr}}} \left(\operatorname{ind}_{\mathbb{Q}_{pd_i}}^{\mathbb{Q}_p} \omega_{2f}^{(\sum_{j \in \iota(J_i')} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)} \right) \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)} \mu_{\alpha_i}.$$

 $D\acute{e}monstration$. — Le fait que $\omega_f^{\sum_{j\in\iota(J_i)}p^j}$ (resp. $\omega_{2f}^{\sum_{j\in\iota(J_i')}p^j}$) est une puissance entière de ω_{d_i} découle immédiatement du (ii) du lemme 5.2. Dans les deux cas, on calcule s_i et c_i pour tout i (cf. (10)) puis on applique la proposition 4.6. On note $\sigma_i \in \mathcal{D}(\rho)$ le poids associé à J_i .

(i) On note δ au lieu de $\delta_{\text{réd}}$. Soit $\lambda_i \stackrel{\text{déf}}{=} (\lambda_{i,j}(x_j)) \in \mathcal{RD}(x_0, \cdots, x_{f-1})$ le f-uplet associé à σ_i (cf. §2) et $h_i \stackrel{\text{déf}}{=} \frac{1}{2} | (J_i \cup \delta(J_i)) \setminus (J_i \cap \delta(J_i)) |$. On peut voir que h_i est le nombre de séquences $p-2-\cdot, p-3-\cdot, \cdots, p-3-\cdot, \cdot+1$ dans λ_i . Calculons d'abord s_i . Si J est un sous-ensemble quelconque de $\{0, \cdots, f-1\}, \sigma \in \mathcal{D}(\rho)$ le poids correspondant, χ le caractère donnant l'action de I sur σ^{I_1} , $\lambda = (\lambda_j(x_j)) \in \mathcal{RD}(x_0, \cdots, x_{f-1})$ le f-uplet associé à σ et $\delta(\lambda) = (\delta(\lambda)_j(x_j))$ celui associé à $\delta(\sigma)$, un examen de la position de $\delta(\sigma)$ dans l'induite indI χ (de socle σ et co-socle $\sigma^{[s]}$) montre, en utilisant [4, Lem.2.7], que l'on a $s(\chi) = 0$ si $\delta(\sigma) = \sigma$ et, si $\delta(\sigma) \neq \sigma$:

$$(13) |s(\chi)| = \Big(\sum_{\substack{0 \le k \le f-1\\ \delta(\lambda)_k(x_k) = p-2-x_k}} r_k + 1\Big) + \Big(\sum_{\substack{0 \le k \le f-1\\ \delta(\lambda)_k(x_k) = x_k+1}} p - 2 - r_k\Big).$$

Des formules (13) et (10), on déduit alors :

$$s_i = h_i(1 + p + \dots + p^{d_i - 1}) + \frac{1}{p - 1} \sum_{j=0}^{d_i - 1} p^{d_i - 1 - j} \Delta_j$$

où:

$$\Delta_j \stackrel{\text{déf}}{=} \sum_{\substack{0 \le k \le f-1 \\ \delta^{j+1}(\lambda_i)_k(x_k) = p-2-x_k}} (r_k+1) - \sum_{\substack{0 \le k \le f-1 \\ \delta^{j+1}(\lambda_i)_k(x_k) = x_k+1}} (r_k+1).$$

Un calcul montre que, dans l'expression $\frac{1}{p-1}\sum_{j=0}^{d_i-1}p^{d_i-1-j}\Delta_j$, le coefficient de $(r_j+1),\ 0\leq j\leq f-1$ est congru modulo $p^{d_i}-1$ (dans \mathbb{Z}) à $p^j\sum_{\substack{k\in J_i\\k< d_i}}p^{d_i-1-k}$ si

 $j \notin J_i$ et à $-(1+p+\cdots+p^{d_i-1})+p^j\sum_{\substack{k\in J_i\\k< d_i}}p^{d_i-1-k}$ si $j\in J_i$. On a donc :

$$(14) \quad s_i \equiv \left(h_i - \sum_{j \in J_i} (r_j + 1)\right) (1 + p + \dots + p^{d_i - 1})$$

$$+ \left(\sum_{\substack{k \in J_i \\ k < d_i}} p^{d_i - 1 - k}\right) \left(\sum_{j = 0}^{f - 1} (r_i + 1)p^j\right) \quad (p^{d_i} - 1).$$

Comme $\sum_{j\in\iota(J_i)}p^j=\frac{p^f-1}{p^{d_i}-1}\sum_{\substack{j\in\iota(J_i)\j< d_i}}p^j$ ((ii) du lemme 5.2) et :

$$\sum_{\substack{j \in \iota(J_i) \\ j < d_i}} p^j = \sum_{\substack{f - 1 - j \in J_i \\ j < d_i}} p^j = \sum_{\substack{d_i - 1 - j \in J_i \\ j < d_i}} p^j = \sum_{\substack{k \in J_i \\ k < d_i}} p^{d_i - 1 - k},$$

on voit avec (14) que:

$$\begin{split} \omega_{d_{i}}^{s_{i}} &= \omega_{d_{i}}^{(h_{i} - \sum_{j \in J_{i}} (r_{j} + 1)) \frac{p^{d_{i}} - 1}{p - 1}} \omega_{d_{i}}^{\left(\sum_{\substack{k \in J_{i} \\ k < d_{i}}} p^{d_{i} - 1 - k}\right) \left(\sum_{\substack{j = 0 \\ j = 0}}^{f - 1} (r_{i} + 1) p^{j}\right)} \\ &= \omega^{h_{i} - \sum_{j \in J_{i}} (r_{j} + 1)} \omega_{f}^{\frac{p^{f}} - 1} \left(\sum_{\substack{j \in \iota(J_{i}) \\ j < d_{i}}} p^{j}\right) \left(\sum_{\substack{j = 0 \\ j < d_{i}}}^{f - 1} (r_{i} + 1) p^{j}\right)} \\ &= \omega^{h_{i} - |J_{i}| - \sum_{j \in J_{i}} r_{j}} \omega_{f}^{\left(\sum_{\substack{j \in \iota(J_{i}) \\ j < d_{i}}} p^{j}\right) \left(\sum_{\substack{j = 0 \\ j = 0}}^{f - 1} (r_{i} + 1) p^{j}\right)}. \end{split}$$

Calculons maintenant c_i . Rappelons que l'on a $\sigma_i = (\lambda_{i,j}(r_j)) \otimes \det^{e_i}$ avec $e_i \stackrel{\text{déf}}{=} e(\lambda_i)(r_0, \dots, r_{f-1})$ (cf. §2). On vérifie facilement :

$$\sum_{j=0}^{f-1} \lambda_{i,j}(r_j) p^j \equiv -\sum_{j \in J_i} (r_j + 1) p^j + \sum_{j \notin J_i} r_j p^j - |J_i| + 2h_i \quad (p-1)$$

et de la formule pour $e(\lambda_i)$ (cf. §2), un calcul donne :

$$e_i = \sum_{j \in J_i} (r_j + 1) p^j - \sum_{\lambda_{i,j}(x_j) = x_j + 1} p^j \equiv \sum_{j \in J_i} (r_j + 1) p^j - h_i \quad (p - 1).$$

Comme $c_i = \sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j + e_i$, on obtient finalement :

(15)
$$c_i \equiv \sum_{j \notin J_i} r_j - |J_i| + h_i \quad (p-1).$$

Ainsi:

$$\left(\operatorname{ind}_{\mathbb{Q}_{pd_{i}}}^{\mathbb{Q}_{p}} \omega_{d_{i}}^{s_{i}}\right) \otimes \omega^{-(c_{i}+f)} \simeq \left(\operatorname{ind}_{\mathbb{Q}_{pd_{i}}}^{\mathbb{Q}_{p}} \omega_{f}^{(\sum_{j \in \iota(J_{i})} p^{j})(\sum_{j=0}^{f-1} (r_{i}+1)p^{j})}\right) \otimes \omega^{-(\sum_{j \in J_{i}} r_{j})-(\sum_{j \notin J_{i}} r_{j})-f}$$

$$\simeq \left(\operatorname{ind}_{\mathbb{Q}_{pd_{i}}}^{\mathbb{Q}_{p}} \omega_{f}^{(\sum_{j \in \iota(J_{i})} p^{j})(\sum_{j=0}^{f-1} (r_{i}+1)p^{j})}\right) \otimes \omega^{-\sum_{j \in J_{i}} (r_{j}+1)p^{j}}.$$

Le résultat pour (i) découle alors de la proposition 4.6 puisque les représentations non-ramifiées $\rho_i = \mu_{\lambda_i}$ sont ici toutes de dimension 1.

(ii) On note δ pour δ_{irr} et $\lambda_i \stackrel{\text{def}}{=} (\lambda_{i,j}(x_j)) \in \mathfrak{ID}(x_0, \dots, x_{f-1})$ le f-uplet associé à σ_i . Remarquons d'abord que :

$$\sum_{j \in \iota(\delta(J_i'))} p^j = \sum_{j \in \delta^{-1}(\iota(J_i'))} p^j \equiv p\left(\sum_{j \in \iota(J_i')} p^j\right) \ (q-1),$$

et on voit qu'il est équivalent de démontrer le théorème pour $\delta(J_i)$ ou pour J_i . Quitte à remplacer ainsi J_i par $\delta^s(J_i)$ pour s convenable, on peut toujours supposer $\lambda_{i,0}(x_0) \in \{x_0, p-2-x_0\}$. Notons encore h_i le nombre de séquences $p-2-\cdot, p-3-\cdot, \cdots, p-3-\cdot, \cdots+1$ dans λ_i . Le calcul de c_i est alors le même qu'en (i) et en particulier c_i vérifie la congruence (15). Passons à s_i . Si J est un sous-ensemble quelconque de $\{0,\cdots,f-1\}$, $\sigma\in\mathcal{D}(\rho)$ le poids correspondant, χ le caractère donnant l'action de I sur σ^{I_1} , J' le sous-ensemble de $\{0,\cdots,2f-1\}$ associé à J, $\lambda' = (\lambda'_j(x_j)) \in \mathcal{RD}(x_0,\cdots,x_{2f-1})$ le 2f-uplet formellement associé à J' par la même règle que dans le cas réductible du $\S 2$ mais avec 2f au lieu de f et $\delta(\lambda') = (\delta(\lambda')_j(x_j)) = (\lambda'_{j+1}(x_{j+1}))$, un examen de la position de $\delta(\sigma)$ dans l'induite indI χ^s montre, en utilisant comme précédemment [4, Lem.2.7], que l'on a :

$$(16) |s(\chi)| = \left(\sum_{\substack{1 \le k \le f-1\\ \delta(\lambda')_k(x_k) = p-2-x_k}} r_k + 1\right) + \left(\sum_{\substack{1 \le k \le f-1\\ \delta(\lambda')_k(x_k) = x_k+1}} p - 2 - r_k\right) + \varepsilon^+ r_0 + \varepsilon^- (p - 1 - r_0)$$

où $\varepsilon^+ = 1$ (resp. $\varepsilon^- = 1$) si $\delta(\lambda')_0(x_0) = p - 2 - x_0$ (resp. $\delta(\lambda')_0(x_0) = x_0 + 1$) et $\varepsilon^+ = 0$ (resp. $\varepsilon^- = 0$) sinon. Des formules (16) et (10), on déduit alors par un calcul similaire à celui en (i) :

$$s_i = (h_i(1+p+\cdots+p^{d_i-1})+C_0) + (C_0r_0+\sum_{j=1}^{f-1}C_j(r_j+1))$$

où:

$$C_{j} \equiv p^{j} \left(\sum_{\substack{k \in \iota(J'_{i}) \\ k < d_{i}}} p^{k} \right) \quad (p-1) \text{ si } j \notin J_{i}$$

$$C_{j} \equiv -(1+p+\dots+p^{d_{i}-1}) + p^{j} \left(\sum_{\substack{k \in \iota(J'_{i}) \\ k < d_{i}}} p^{k} \right) \quad (p-1) \text{ si } j \in J_{i}.$$

On montre alors comme au (i) en utilisant le (ii) du lemme 5.2 que l'on a :

$$\left(\operatorname{ind}_{\mathbb{Q}_n d_i}^{\mathbb{Q}_p} \omega_{d_i}^{s_i}\right) \otimes \omega^{-(c_i+f)} = \left(\operatorname{ind}_{\mathbb{Q}_n d_i}^{\mathbb{Q}_p} \omega_{2f}^{(\sum_{j \in \iota(J_i')} p^j)(\sum_{j=0}^{f-1} (r_i+1)p^j)}\right) \otimes \omega^{-\sum_{j \in J_i} (r_j+1)p^j}$$

et le résultat découle de la proposition 4.6.

On en déduit le résultat cherché :

Corollaire 5.4. — On a un isomorphisme :

$$V(M(D))|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} \simeq (\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)}.$$

Démonstration. — Un calcul évident à partir des expressions pour $\rho|_{\mathrm{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\mathrm{nr}})}$ données juste avant le théorème 5.3 donne :

(i)
$$\left(\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho\right)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} \simeq \bigoplus_{i=1}^{n_{\operatorname{r\'ed}}} \operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \omega_f^{(\sum_{j \in J_i} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)}$$

(ii)
$$\left(\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho\right)|_{\operatorname{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p^{\operatorname{nr}})} \simeq \bigoplus_{i=1}^{n_{\operatorname{irr}}} \operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \omega_{2f}^{(\sum_{j \in J_i'} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)}$$

suivant les cas (i) ρ scindée et (ii) ρ irréductible. Comme $(\iota \circ \delta_{\text{réd}}^s)(J_i) = (\delta_{\text{réd}}^{-s} \circ \iota)(J_i)$ (resp. $(\iota \circ \delta_{\text{irr}}^s)(J_i') = (\delta_{\text{irr}}^{-s} \circ \iota)(J_i')$), l'application $J_i \mapsto \iota(J_i)$ (resp. $J_i \mapsto \iota(J_i') \cap \{0, \dots, f-1\}$) envoie une orbite de $\delta_{\text{réd}}$ (resp. de δ_{irr}) sur une autre orbite et induit une permutation sur les orbites de $\delta_{\text{réd}}$ (resp. de δ_{irr}). Puisque l'on somme sur toutes les orbites, on a donc :

(i)
$$\bigoplus_{i=1}^{n_{\text{réd}}} \operatorname{ind}_{\mathbb{Q}_{p}d_{i}}^{\mathbb{Q}_{p}} \omega_{f}^{(\sum_{j \in J_{i}} p^{j})(\sum_{j=0}^{f-1} (r_{j}+1)p^{j})} \simeq \bigoplus_{i=1}^{n_{\text{réd}}} \operatorname{ind}_{\mathbb{Q}_{p}d_{i}}^{\mathbb{Q}_{p}} \omega_{f}^{(\sum_{j \in \iota(J_{i})} p^{j})(\sum_{j=0}^{f-1} (r_{j}+1)p^{j})}$$

(ii)
$$\bigoplus_{i=1}^{n_{\operatorname{irr}}}\operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \omega_{2f}^{(\sum_{j\in J_i'} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)} \simeq \bigoplus_{i=1}^{n_{\operatorname{irr}}}\operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \omega_{2f}^{(\sum_{j\in \iota(J_i')} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)}$$

d'où le résultat par le théorème 5.3.

6. Valeurs privilégiées de paramètres

On montre qu'il existe des valeurs "privilégiées" de certains des paramètres apparaissant sur les diagrammes de Diamond associés à ρ , valeurs qui assurent que V(M(D)) est isomorphe à $\left(\operatorname{ind}_F^{\otimes \mathbb{Q}_p}\rho\right)\otimes\omega^{-\sum_{j=0}^{f-1}(r_j+1)}$ (et non plus seulement en restriction à l'inertie).

Soit ρ semi-simple générique et D un diagramme de Diamond associé comme au §5. Soit $n_{\text{réd}}$, (J_i) , (d_i) , $1 \le i \le n_{\text{réd}}$ (resp. n_{irr} , (J_i) , (d_i) , $1 \le i \le n_{\text{irr}}$) comme dans le théorème 5.3. Notons χ_i l'action de I sur $\sigma_i^{I_1}$ où $\sigma_i \in \mathcal{D}(\rho)$ est le poids associé à J_i . Pour tout i, rappelons que l'on a en particulier des isomorphismes $S^{d_i}: V_{\chi_i} \xrightarrow{\sim} V_{\chi_i}$. Comme $\dim_E V_{\chi_i} = 1$, on voit que S^{d_i} est la multiplication par un scalaire $\nu_i \in E^\times$. Si l'on remplace χ_i par $S^s(\chi_i)$, cela ne change pas la valeur de ν_i , qui ne dépend donc que de l'orbite de $\delta_{\text{réd}}$ (resp. δ_{irr}) contenant J_i . On dit que les ν_i sont des "paramètres" associés au diagramme de Diamond choisi.

Lemme 6.1. — Si
$$d_i = 2$$
 alors $\nu_i = (-1)^{\sum_{j=0}^{f-1} r_j}$.

Démonstration. — Notons indifféremment δ pour $\delta_{\text{réd}}$ ou δ_{irr} et soit λ_i le f-uplet associé à σ_i (comme dans la preuve du théorème 5.3). Puisque $d_i = 2$, on a $\delta(J_i) \neq J_i$ et $\delta^2(J_i) = J_i$ ce qui force les deux cas suivants, quitte à remplacer peut-être J_i par $\delta(J_i)$:

- (i) ρ réductible, f pair, $\lambda_{i,j}(x_j) = p 2 x_j$ si j pair, $\lambda_{i,j}(x_j) = x_j + 1$ si j impair
- (ii) ρ irréductible, f impair, $\lambda_{i,0}(x_0) = x_0$, $\lambda_{i,j}(x_j) = x_j + 1$ si j > 0 pair, $\lambda_{i,j}(x_j) = p 2 x_j$ si j impair.

En particulier, on a $\delta(\sigma_i) = \sigma_i^{[s]}$ et, écrivant $\sigma_i = (\lambda_{i,j}(r_j)) \otimes \det^{e_i}$:

$$\chi_i \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \overline{a}^{\sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j} (\overline{a}\overline{d})^{e_i}
S(\chi_i) \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} = \overline{d}^{\sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j} (\overline{a}\overline{d})^{e_i}.$$

Soit v_i une base quelconque de V_{χ_i} , on en déduit par [4, Lem.2.7] :

$$S(v_i) = \sum_{\lambda \in \mathbb{F}_q} \lambda^{\sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j} \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} v_i = (-1)^{1+e_i + \sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j} \Pi v_i$$

$$S(\Pi v_i) = \sum_{\lambda \in \mathbb{F}} \lambda^{q-1-\sum_{j=0}^{f-1} \lambda_{i,j}(r_j)p^j} \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} \Pi v_i = (-1)^{1+e_i} \Pi^2 v_i$$

d'où:

$$S^{2}(v_{i}) = (-1)^{\sum_{j=0}^{f-1} \lambda_{i,j}(r_{j})} \Pi^{2} v_{i} = (-1)^{\sum_{j=0}^{f-1} r_{j}} v_{i}$$

puisque par hyothèse $\Pi^2 = p$ agit trivialement (voir aussi l'exemple 4.7).

Lorsque $d_i \neq 2$, les ν_i peuvent prendre des valeurs quelconques dans E^{\times} .

Reprenons maintenant les scalaires α_i apparaissant dans le théorème 5.3. Notons que seul $\alpha_i^{d_i}$ est bien défini puisque l'on peut toujours "faire rentrer" le caractère non-ramifié μ_{α_i} dans l'induite. On peut calculer explicitement les scalaires $\alpha_i^{d_i}$ en fonction des paramètres ν_i .

Lemme 6.2. — (i) Supposons ρ réductible et soit $h_i \stackrel{\text{déf}}{=} \frac{1}{2} | (J_i \cup \delta_{\text{réd}}(J_i)) \setminus (J_i \cap \delta_{\text{réd}}(J_i)) |$, alors pour tout i on a:

$$\alpha_i^{d_i} = (-1)^{\frac{d_i h_i}{f} \sum_{j=0}^{f-1} r_j} \nu_i^{-1}.$$

(ii) Supposons ρ irréductible et soit $h_i \stackrel{\text{def}}{=} |(J_i \cup \delta_{irr}(J_i)) \setminus (J_i \cap \delta_{irr}(J_i))|$, alors pour tout i on a:

$$\alpha_i^{d_i} = (-1)^{\frac{d_i h_i}{2f} (1 + \sum_{j=0}^{f-1} r_j)} \nu_i^{-1}.$$

Démonstration. — Par la proposition 4.6, α_i est tel que $\overline{\varphi}^{d_i}(f_i) = \alpha_i^{d_i} f_i$ où $V_{\chi_i}^* = E f_i$. De la définition de $\overline{\varphi}$ (cf. §4), on déduit :

(17)
$$\alpha_i^{d_i} = \left(\prod_{j=0}^{d_i-1} c(S^j(\chi_i))\right) \nu_i^{-1}.$$

(i) Un calcul utilisant (13) ainsi que (5) fournit :

$$\prod_{i=0}^{d_i-1} c(S^j(\chi_i)) = \left(\prod_{i=0}^{f-1} (r_i+1)! (p-2-r_j)!\right)^{\frac{d_i h_i}{f}} = (-1)^{\frac{d_i h_i}{f} \sum_{j=0}^{f-1} r_j}$$

(notons que h_i est bien divisible par f/d_i par "périodicité"). Avec (17) on a donc $\alpha_i^{d_i} = (-1)^{\frac{d_i h_i}{f} \sum_{j=0}^{f-1} r_j} \nu_i^{-1}$.

(ii) Un calcul analogue au précédent utilisant (16) et (5) fournit cette fois :

$$\prod_{i=0}^{d_i-1} c(S^j(\chi_i)) = \left(r_0!(p-1-r_0)! \prod_{i=1}^{f-1} (r_j+1)!(p-2-r_j)!\right)^{\frac{d_ih_i}{2f}} = (-1)^{\frac{d_ih_i}{2f}(1+\sum_{j=0}^{f-1} r_j)}$$

et on conclut de même avec (17).

La preuve du lemme suivant est un calcul explicite que l'on laisse au lecteur à partir des expressions de ρ données avant le théorème 5.3 (rappelons que $\overline{J_i}$ désigne le complémentaire de J_i dans $\{0, \dots, f-1\}$).

Lemme 6.3. — (i) Si ρ est réductible, on a :

$$\operatorname{ind}_{F}^{\otimes \mathbb{Q}_{p}} \rho \simeq \bigoplus_{i=1}^{n_{\operatorname{réd}}} \operatorname{ind}_{\mathbb{Q}_{p}d_{i}}^{\mathbb{Q}_{p}} \left(\omega_{f}^{(\sum_{j \in J_{i}} p^{j})(\sum_{j=0}^{f-1} (r_{j}+1)p^{j})} \otimes \mu_{\alpha^{(|J_{i}|-|\overline{J_{i}}|)\frac{d_{i}}{f}}} \right).$$

(ii) Si ρ est irréductible, on a :

$$\mathrm{ind}_F^{\otimes \mathbb{Q}_p} \rho \simeq \bigoplus_{i=1}^{n_{\mathrm{irr}}} \mathrm{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \bigg(\omega_{2f}^{(\sum_{j \in J_i'} p^j)(\sum_{j=0}^{f-1} (r_j+1)p^j)} \otimes \mu_{(-1)^{\frac{d_i}{2}}} \bigg).$$

Notons que, dans le cas réductible, $|J_i|$ et $|\overline{J_i}|$ sont toujours divisibles par f/d_i , de sorte que $(|J_i| - |\overline{J_i}|)\frac{d_i}{f}$ est un entier, qui de plus ne dépend que de l'orbite de J_i sous $\delta_{\text{réd}}$. De même, dans le cas irréductible, d_i est toujours divisible par 2 (exercice!).

Une des questions importantes du programme de Langlands modulo p pour $\mathrm{GL}_2(F)$ est de savoir si certaines valeurs des paramètres apparaissant sur les diagrammes de Diamond, en particulier les paramètres ν_i , jouent un rôle privilégié. On peut combiner le théorème 5.3 avec les résultats précédents pour "distinguer" certaines valeurs des ν_i :

Théorème 6.4. — Pour que $V(M(D)) \simeq (\operatorname{ind}_F^{\otimes \mathbb{Q}_p} \rho) \otimes \omega^{-\sum_{j=0}^{f-1} (r_j+1)}$, il suffit que l'on ait les valeurs suivantes pour les ν_i :

(i) si
$$\rho$$
 réductible, $\nu_i = (-1)^{\frac{d_i h_i}{f} \sum_{j=0}^{f-1} r_j} \alpha^{(|\overline{J_i}| - |J_i|) \frac{d_i}{f}}$ pour tout i

(ii) si
$$\rho$$
 irréductible, $\nu_i = (-1)^{\frac{d_i}{2} + \frac{d_i h_i}{2f}(1 + \sum_{j=0}^{f-1} r_j)}$ pour tout i.

Démonstration. — Sous la condition (i), on a en effet par le lemme 6.2 pour tout $i \in \{0, \dots, n_{\text{réd}}\}$:

$$\operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \left(\omega_f^{(\sum_{j \in \iota(J_i)} p^j)(\sum_{j=0}^{f-1} (r_j+1) p^j)} \otimes \mu_{\alpha^{(|J_i|-|\overline{J_i}|)} \frac{d_i}{f}} \right) \simeq \\ \operatorname{ind}_{\mathbb{Q}_p d_i}^{\mathbb{Q}_p} \left(\omega_f^{(\sum_{j \in \iota(J_i)} p^j)(\sum_{j=0}^{f-1} (r_j+1) p^j)} \otimes \mu_{\alpha_i^{d_i}} \right)$$

en remarquant que, si $\iota(i)$ est l'indice de l'orbite de $\delta_{\text{réd}}$ contenant $\iota(J_i)$, on a $d_{\iota(i)} = d_i$, $|J_{\iota(i)}| = |J_i|$ et $|\overline{J_{\iota(i)}}| = |\overline{J_i}|$. Le résultat pour (i) découle donc du lemme 6.3 et du théorème 5.3. La preuve de (ii) est similaire.

Lorsque $d_i=1$, ce qui n'arrive que si ρ est réductible, le théorème 6.4 donne la condition $\nu_i=\alpha$ si $J_i=\emptyset$ (c'est-à-dire si $\sigma_i=(r_0,\cdots,r_{f-1})$) et $\nu_i=\alpha^{-1}$ si $J_i=\{0,\cdots,f-1\}$ (c'est-à-dire si $\sigma_i=(p-3-r_0,\cdots,p-3-r_{f-1})\otimes \det^{\sum_{j=0}^{f-1}(r_j+1)p^j})$. Ces conditions sont bien connues dans le cas f=1 (cf. [4, §10,§20] par exemple).

Proposition 6.5. — Lorsque $d_i = 2$, les conditions du théorème 6.4 sont automatiquement réalisées.

Démonstration. — Lorsque $d_i = 2$, on peut calculer que l'on a $h_i = |J_i| = |\overline{J_i}| = f/2$ si ρ est réductible et $h_i = f$ si ρ est irréductible. Dans les deux cas, le théorème 6.4 donne $\nu_i = (-1)^{\sum_{j=0}^{f-1} r_j}$ qui est bien aussi la valeur donnée par le lemme 6.1.

Malheureusement, pour f > 1, il y a en général bien d'autres "paramètres" dans D que les ν_i précédent, de sorte que fixer les valeurs du théorème 6.4 ne suffit pas à privilégier un unique diagramme de Diamond D pour une représentation ρ donnée. Le seul cas pour f > 1 où D est complètement déterminé par les ν_i est f = 2 et ρ irréductible. Il n'y a alors qu'un paramètre $\nu_1 = \nu$ et le théorème 6.4 fournit la valeur "privilégiée" $\nu = (-1)^{r_0 + r_1 + 1}$.

7. Bref retour aux représentations de $GL_2(F)$

Cette partie, d'ordre essentiellement heuristique, esquisse un scénario pour tenter de retrouver les (φ, Γ) -modules du §5 à partir de représentations de $\mathrm{GL}_2(F)$ sur E.

Soit W un E-espace vectoriel sur lequel le mono" de $\begin{pmatrix} p^{\mathbb{N}} & \mathcal{O}_F \\ 0 & 1 \end{pmatrix}$ agit E-linéairement à gauche et W^* son dual. Si $f \in W^*$ et $h \in \mathrm{GL}_2(F)$ tel que $h^{-1} \in \begin{pmatrix} p^{\mathbb{N}} & \mathcal{O}_F \\ 0 & 1 \end{pmatrix}$, on note $hf \in W^*$ la fonction $hf(w) \stackrel{\mathrm{def}}{=} f(h^{-1}w)$. Soit $s \in \{0, \cdots, q-1\}$

1) et $S: W \to W$ l'application $w \mapsto \sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} p & [\lambda] \\ 0 & 1 \end{pmatrix} w$. Supposons pour simplifier S bijectif, alors on a tautologiquement :

(18)
$$f = \sum_{\lambda \in \mathbb{F}_a} \lambda^s \begin{pmatrix} p^{-1} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & -[\lambda] \\ 0 & 1 \end{pmatrix} (f \circ S^{-1}).$$

Si l'on pose $\varphi(f) \stackrel{\text{déf}}{=} \begin{pmatrix} p & 0 \\ 0 & 1 \end{pmatrix} f$ comme dans [7] ou [1], (18) se récrit formellement :

(19)
$$\varphi(f) = \sum_{\lambda \in \mathbb{F}_a} \lambda^s \begin{pmatrix} 1 & -[\lambda] \\ 0 & 1 \end{pmatrix} (f \circ S^{-1}).$$

Soit $U(\mathbb{F}_p)$ l'unipotent supérieur de $\mathrm{GL}_2(\mathbb{F}_p)$. On pose dans $\mathbb{F}_p[U(\mathbb{F}_p)] \otimes_{\mathbb{F}_p} E \simeq E[U(\mathbb{F}_p)]$:

$$X \stackrel{\text{def}}{=} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

On a alors $E[U(\mathbb{F}_p)] \simeq E[X]/X^p$.

Théorème 7.1 (Stickelberger). — Écrivons $s = \sum_{j=0}^{f-1} s_j p^j$ avec $0 \le s_j \le p-1$ et soit $c(s) \stackrel{\text{def}}{=} \prod_{i=0}^{f-1} s_j! \in \mathbb{F}_p^{\times}$. Alors il existe $U(X) \in 1 + XE[U(\mathbb{F}_p)]$ tel que dans $E[U(\mathbb{F}_p)]$:

(20)
$$\sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} 1 & -\operatorname{tr}(\lambda) \\ 0 & 1 \end{pmatrix} = (-1)^{f-1} c(s) X^{\sum_{j=0}^{f-1} p - 1 - s_j} U(X)$$

où tr désigne la trace de \mathbb{F}_q à \mathbb{F}_p .

Démonstration. — Le résultat est vrai pour f=1 car on a alors l'égalité (pour un certain U(X) dépendant de s) :

$$\sum_{\lambda \in \mathbb{F}_p} \lambda^s \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} = \sum_{j=0}^{p-1} (-j)^s (1+X)^j = s! X^{p-1-s} U(X).$$

Supposons f > 1. On retranscrit dans notre contexte la preuve du théorème 2.1 de [10, §1.2]. Notons $G_s \stackrel{\text{déf}}{=} \sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} 1 & -\operatorname{tr}(\lambda) \\ 0 & 1 \end{pmatrix}$. Si s = q-1, on a $G_{q-1} = -1 + G_0 = -1 + 0 = -1$ et $(-1)^{f-1}c(s)X^{\sum_{j=0}^{f-1}p-1-s_j} = (-1)^{f-1}(-1)^f = -1$: l'égalité est vraie (avec U(X) = 1). Si s = q-2, on a :

$$G_{q-2} = \sum_{\lambda \in \mathbb{F}_q} \lambda^{q-2} (1+X)^{-\operatorname{tr}(\lambda)} = \sum_{\lambda \in \mathbb{F}_q^{\times}} \lambda^{q-2} (1-\operatorname{tr}(\lambda)X + X^2 P(X))$$

(pour un certain $P(X) \in E[X]/X^p$). Si $\lambda \neq 0$ on a $\lambda^{q-2} \operatorname{tr}(\lambda) = \lambda^{-1} \sum_{j=0}^{f-1} \lambda^{p^j} = \sum_{j=0}^{f-1} \lambda^{p^j-1}$ d'où on déduit :

$$\sum_{\lambda \in \mathbb{F}_q^{\times}} -\lambda^{q-2} \operatorname{tr}(\lambda) = -\sum_{\lambda \in \mathbb{F}_q^{\times}} \sum_{j=0}^{f-1} \lambda^{p^j-1} = -\sum_{j=0}^{f-1} \left(\sum_{\lambda \in \mathbb{F}_q^{\times}} \lambda^{p^j-1} \right) = 1.$$

Ainsi $G_{q-2} = X + X^2 P(X) = XU(X)$ qui est bien ce que l'on retrouve à droite. On fait maintenant une récurrence descendante en supposant le résultat vrai pour $s \ge k+1 \ge 2$ et en le démontrant pour $s=k \ge 1$. On distingue deux cas. Premier cas : q-1-k=p(q-1-k') avec k < k' < q-1. Alors :

$$G_k = G_{pk'-(p-1)(q-1)} = \sum_{\lambda \in \mathbb{F}_q} \lambda^{pk'} \begin{pmatrix} 1 & -\operatorname{tr}(\lambda) \\ 0 & 1 \end{pmatrix} = \sum_{\lambda \in \mathbb{F}_q} \lambda^{k'} \begin{pmatrix} 1 & -\operatorname{tr}(\lambda) \\ 0 & 1 \end{pmatrix} = G_{k'}$$

puisque $\operatorname{tr}(\lambda) = \operatorname{tr}(\lambda^p)$. Comme c(k) = c(k') et comme la puissance de X est la même pour k ou k', on voit que l'égalité pour k découle de celle pour k', qui est vraie par récurrence.

Deuxième cas : (q - 1 - k, p) = 1.

Un calcul classique sur les sommes de Gauss donne $G_sG_{s'}=G_{s+s'}J_{s,s'}$ où $J_{s,s'}\stackrel{\text{def}}{=}\sum_{\lambda\in\mathbb{F}_q}\lambda^s(1-\lambda)^{s'}$ lorsque $0\leq s,s'\leq q-1$ et s+s' n'est pas divisible par q-1. Comme $G_k=G_{q-2+k+1}$ (car $k\geq 1$) et k+q-1 n'est pas divisible par q-1 puisque 0< k< q-1, on a $J_{q-2,k+1}G_k=G_{q-2}G_{k+1}$. Par ailleurs :

$$J_{q-2,k+1} = \sum_{\lambda \in \mathbb{F}_q^{\times}} \lambda^{-1} (1-\lambda)^{k+1} = \sum_{j=0}^{k+1} (-1)^j \binom{k+1}{j} \sum_{\lambda \in \mathbb{F}_q^{\times}} \lambda^{j-1} = k_0 + 1$$

si l'on écrit $k = \sum_{j=0}^{f-1} k_j p^j$. Comme (k+1,p) = 1, on a en particulier $k_0 < p-1$ d'où $k_0 + 1 \neq 0$ dans \mathbb{F}_p . Du cas s = q-2 et de l'hypothèse de récurrence pour k+1, on déduit :

$$G_k = \frac{1}{k_0 + 1} (XU(X))(-1)^{f-1} c(k+1) X^{p-2-k_0} X^{\sum_{j=1}^{f-1} p - 1 - k_j}$$
$$= (-1)^{f-1} c(k) X^{\sum_{j=0}^{f-1} p - 1 - k_j} U(X)$$

qui est l'égalité cherchée pour $k \geq 1$. Enfin l'égalité est trivialement vraie pour k = 0 puisque l'on a 0 des deux côtés.

À torsion près par $(-1)^{f-1}$, l'égalité (20) avec l'égalité (19) "où l'on a pris la trace" sont à rapprocher de la définition de φ en (6) et motivent cette dernière. L'unité U(X) est inutile dans (6) (et n'y apparaît donc pas) car, à changement de base près, on peut vérifier qu'elle ne modifierait pas le (φ, Γ) -module M(D) du §4.

Remarque 7.2. — L'égalité (20) se récrit dans $E[U(\mathbb{F}_p)]$:

$$\sum_{\lambda \in \mathbb{F}_q} \lambda^s \begin{pmatrix} 1 & -\operatorname{tr}(\lambda) \\ 0 & 1 \end{pmatrix} = (-1)^{f-1} V(X) \prod_{j=0}^{f-1} \left(\sum_{\lambda \in \mathbb{F}_p} \lambda^{s_j} \begin{pmatrix} 1 & -\lambda \\ 0 & 1 \end{pmatrix} \right)$$

pour une unité $V(X) \in 1 + XE[U(\mathbb{F}_p)]$. Il est même possible que l'on puisse en fait prendre V(X) = 1 dans cette dernière égalité.

Soit maintenant ρ une représentation générique de dimension 2 de $\operatorname{Gal}(\overline{\mathbb{Q}_p}/F)$ sur E, D un diagramme de Diamond associé (cf. §2) et π une représentation lisse admissible de $\operatorname{GL}_2(F)$ sur E vérifiant les 3 conditions $\operatorname{soc}_K \pi = \bigoplus_{\sigma \in \mathcal{D}(\rho)} \sigma$, $(\pi^{K_1}, \pi^{I_1}, \operatorname{can})$ contient le diagramme D ("can" est l'injection canonique $\pi^{I_1} \hookrightarrow \pi^{K_1}$) et π est engendrée par D_0 . On sait par [4] que de telles représentations existent mais leur étude semble très délicate lorsque f > 1. On peut néanmoins formellement poser comme dans [7] (voir aussi [8]) :

$$M_F(\pi) \stackrel{\text{def}}{=} \left(\sum_{n>0} \begin{pmatrix} p^n & \mathcal{O}_F \\ 0 & 1 \end{pmatrix} D_0 \right)^*$$

(dual algébrique). C'est un E-espace vectoriel naturellement muni d'une structure de $E[[U(\mathfrak{O}_F)]]$ -module où $E[[U(\mathfrak{O}_F)]]$ est l'algèbre d'Iwasawa sur E de $U(\mathfrak{O}_F)$.

La trace de \mathcal{O}_F à \mathbb{Z}_p induit un morphisme E-linéaire d'algèbres d'Iwasawa :

$$E[[U(\mathcal{O}_F)]] \to E[[U(\mathbb{Z}_p)]]$$

que l'on peut composer avec l'inclusion $E[[U(\mathbb{Z}_p)]] \subset \operatorname{Frac}(E[[U(\mathbb{Z}_p)]]) \simeq E((X))$. Les considérations précédentes suggèrent d'étudier le E((X))-espace vectoriel suivant (dont j'ignore s'il est de dimension finie quand f > 1):

$$M(\pi) \stackrel{\text{def}}{=} M_F(\pi) \otimes_{E[[U(\mathcal{O}_F)]]} \operatorname{Frac}(E[[U(\mathbb{Z}_p)]]).$$

Il est muni d'une action semi-linéaire de $\Gamma \cong \mathbb{Z}_p^{\times}$ via l'action de $\begin{pmatrix} \mathbb{Z}_p^{\times} & 0 \\ 0 & 1 \end{pmatrix}$ (noter que $\operatorname{tr}(ax) = a\operatorname{tr}(x)$ si $a \in \mathbb{Z}_p^{\times}$ et $x \in \mathcal{O}_F$). On a par ailleurs des morphismes :

$$M_F(\pi) \to \left(\sum_{n>1} \begin{pmatrix} p^n & \mathcal{O}_F \\ 0 & 1 \end{pmatrix} D_0 \right)^* \leftarrow M_F(\pi)$$

où la première flèche est $f\mapsto f\circ \begin{pmatrix} p^{-1} & 0\\ 0 & 1\end{pmatrix}$ et la deuxième la restriction. Tensorisons le tout par $\operatorname{Frac}(E[[U(\mathbb{Z}_p)]])$ comme précédemment (noter que $\operatorname{tr}(px)=p\operatorname{tr}(x)$ si $x\in \mathcal{O}_F$). Si la flèche de droite devient alors un isomorphisme, on peut l'inverser et définir $\varphi:M(\pi)\to M(\pi)$ comme le composé avec celle de gauche (cf. [7] pour $F=\mathbb{Q}_p$). Si de plus $M(\pi)$ est de dimension finie sur E((X)), on peut imaginer qu'il s'agit de l'extension des scalaires de $\mathbb{F}_p((X))\otimes_{\mathbb{F}_p}E$ à E((X)) d'un (φ,Γ) -module pour \mathbb{Q}_p qui, lorsque ρ est semi-simple, a peut-être un lien avec le (φ,Γ) -module étale "combinatoire" M(D) du §5.

Références

- [1] Berger L., Représentations modulaires de $GL_2(\mathbb{Q}_p)$ et représentations galoisiennes de dimension 2, à paraître à Astérisque.
- [2] Berger L., Représentations supersingulières de $GL_2(\mathbb{Q}_p)$ et (φ, Γ) -modules, prépublication 2008.
- [3] Breuil C., Sur quelques représentations modulaires et p-adiques de $\mathrm{GL}_2(\mathbf{Q}_p)$ I, Comp. Math. 138, 2003, 165-188.
- [4] Breuil C., Paškūnas V., Towards a modulo p Langlands correspondence for GL₂, prépublication 2007.
- [5] Buzzard K., Diamond F., Jarvis F., On Serre's conjecture for mod ℓ Galois representations over totally real fields, prépublication 2005.
- [6] Collins M., Tensor induction and transfer, Quart. J. Math. Oxford 40, 275-279, 1989.
- [7] Colmez P., Représentations de $GL_2(\mathbb{Q}_p)$ et (φ, Γ) -modules, prépublication 2007.
- [8] Emerton M., On a class of coherent rings, with applications to the smooth representation theory of $GL_2(\mathbb{Q}_p)$ in characteristic p, prépublication 2008.
- [9] Fontaine J.-M., Représentations p-adiques des corps locaux I, Progr. Math. 87, 249-309, 1990.
- [10] Lang S., Cyclotomic fields I and II, Springer-Verlag, combined second edition, 1990.
- [11] Paškūnas V., Coefficient systems and supersingular representations of $GL_2(F)$, Mém. Soc. Math. de France 99, 2004.
- [12] Vignéras M.-F., Representations of the p-adic group GL(2, F) modulo p, Comp. Math. 140, 2004, 333-358.

C. Breuil, C.N.R.S. & I.H.É.S., Le Bois-Marie, 35 route de Chartres, 91440 Bures-sur-Yvette, France • E-mail: breuil@ihes.fr