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Abstract

We present a novel solution to the nature and formation of the initial state of the
Universe. It derives from the physics of a generally covariant extension of Matrix the-
ory. We focus on the dynamical state space of this background independent quantum
theory of gravity and matter, an infinite dimensional, complex non-linear Grassman-
nian. When this space is endowed with a Fubini–Study-like metric, the associated
geodesic distance between any two of its points is zero. This striking mathematical
result translates into a physical description of a hot, zero entropy Big Bang. The
latter is then seen as a far from equilibrium, large fluctuation driven, metastable or-
dered transition, a “freezing by heating” jamming transition. Moreover, the subsequent
unjamming transition could provide a mechanism for inflation while rejamming may
model a Big Crunch, the final state of gravitational collapse.¶
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1 Where to begin?

Explanations for how the Universe began are as ancient as civilization, but it is only in the

last century that we have been able to commence a rigorous and scientific examination of

the question in light of observational data. The observed expansion of the Universe together

with measurements of the cosmic microwave background radiation (CMBR) vindicate the

paradigm of a hot Big Bang [1]. Standard cosmological models propose an initial spacelike

singularity. Such a state signals the breakdown of spacetime and geometry as effective

descriptions of Nature. Understanding the physics of the singularity and the dynamical

evolution of the Universe at the earliest times remains one of the long standing and unrealized

ambitions of any putative quantum theory of gravity.

Running time’s arrow in reverse, the second law of thermodynamics tells us that the

initial condition for the Universe must have had a very low entropy [2]. Indeed, from the

viewpoint of the unique Hartle–Hawking wave function, this entropy ought to be zero. Yet

accounting for a zero entropy initial condition remains a fundamental puzzle for cosmology.

Another mystery follows. While inflationary models successfully resolve the horizon,

flatness, and magnetic monopole problems and are in accord with precision measurements of

the CMBR, their underlying mechanism is at best unclear. As the dynamical process closest

in time to the Big Bang event, could inflation be a natural or inevitable consequence of how

the Universe began? We shall argue in this essay that the resolution of the cosmological

singularity could in fact facilitate the inflationary phase of expansion in the early Universe.

We address the origin of the Universe, specifically the very nature of its initial state,

in the context of a previously proposed generalization of quantum theory, a background

independent formulation of Matrix theory [3, 4, 5]. A key feature of this extension is a

new state space given by an infinite dimensional, complex non-linear Grassmannian. It is

non-linear because it is the coset space of diffeomorphism groups. In fact, it is the natural

diffeomorphism invariant generalization of the linear Grassmannian CPn of ordinary quantum

mechanics. For background purposes, we provide only a conceptual summary of how this

situation comes about; details may be found in the review [5].

Although the geometric formulation may be unfamiliar, standard quantum mechanics

can be cast as Hamiltonian dynamics over a specific phase space, CPn, the complex projec-

tive Hilbert space of pure states [5, 6]. CPn is a Kähler–Einstein manifold with constant,

holomorphic sectional curvature 2
!. Being Kähler, it possesses notably a triad of compatible

structures, any two of which determine the third. These are a symplectic two-form ω, an

unique Fubini–Study (FS) metric g, and a complex structure j. All the key features of quan-

tum mechanics are encoded in the geometric structure of CPn. In particular, the Riemannian

metric determines the distance between states on the phase space. The geodesic distance is a

measure of change in the system, for example through Hamiltonian time evolution. By way

of the FS metric and the energy dispersion ∆E, the infinitesimal distance in phase space is

ds = 2
! ∆E dt.
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Through this relation, time reveals its statistical, quantum nature. It also suggests that

dynamics in time relate to the behavior of the metric on the configuration space. The

Schrödinger equation is simply a geodesic-like equation for a particle moving on CPn =

U(n + 1)/(U(n) × U(1)) in the presence of an effective external U(n) × U(1) gauge field

whose source is the Hamiltonian of a given physical system. This geometric non-linearity of

CPn and of the geodesic-like Schrödinger equation become linear since these structures can be

lifted into the linear Hilbert space as is familiar in the usual formulation of quantum theory

where only ! and the dimension n (generally infinite) of the space remain. That classical

physical space may be emergent is hinted at by a simple observation. When the configuration

space of the system is the physical space, the unique FS metric reduces precisely to the spatial

metric. If we consider extending the geometry of quantum mechanics to induce emergent,

arbitrarily curved spacetimes, as would be expected in a theory of quantum gravity, we

should generalize the space of states and also its metric structure.

Matrix theory, we recall, is a manifestly second quantized, non-perturbative formulation

of M-theory on a fixed spacetime background [7]. To construct a background independent

formulation of Matrix theory, we relax, albeit slightly, the rigidity of the underlying quantum

theory. Our minimal extension is done by way of a new symmetry, a quantum diffeomorphism

invariance. We require the following features [3, 5, 8]: At the basic level, there are only

dynamical correlations between quantum events. The phase space must have a symplectic

structure, namely a symplectic two-form; it must be diffeomorphism invariant; and it must

be the base space of a U(1) bundle — i.e., there is a Berry phase. We demand a three-

way interlocking of the Riemannian, the symplectic, and the non-integrable almost complex

structures.

In so departing from the integrable complex structure of CPn, the quantum mechanical

phase space is given by the non-linear Grassmannian, Gr(Cn+1) = Diff(Cn+1)/Diff(Cn+1, Cn×
{0}), with n→∞, a complex projective, strictly almost Kähler manifold. This last, strictly

almost complex property has the physical interpretation of promoting the global time of

quantum mechanics to a more provincial local time, a clearly desirable feature for classical

and quantum gravity. Note that we can now generalize the line element so that the energy

uncertainty is measured in terms of a fundamental energy scale, the Planck energy, EP , so

that ds = 2
! EP dt. When applied to a cosmological setting, this relation defines cosmological

time; it is interesting to note that setting dt = 0 implies ds = 0.

Most importantly, the property of diffeomorphism invariance implies that not just the

metric but also the almost complex structure and hence the symplectic structure must be

fully dynamical. Consequently, with the coadjoint orbit nature of Gr(Cn+1), the equations of

motion of this general theory are Einstein-like equations with the energy-momentum tensor

being determined by a holonomic Yang–Mills field strength, the Hamiltonian (“charge”), and

a “cosmological constant” term. We shall refer to these as the Einstein–Yang–Mills equations

over state space. Just as the geodesic equation for a non-Abelian charged particle is contained

in the classical Einstein–Yang–Mills equations, so is the corresponding geometric, covariant
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Schrödinger equation.

Thus Gr(Cn+1) has the necessary properties to be the phase space of quantum gravity,

which itself underlies all of spacetime. If this is correct, then it is reasonable to expect

that this space should provide a description of manifestly quantum gravitational systems,

including the initial cosmological singularity. It is in fact the case that recent mathemati-

cal findings concerning this space indicate that it possesses precisely the correct properties

to provide a description of the beginning of our Universe. Moreover, the features of the

non-linear Grassmannian suggest that the early Universe should be viewed as a far from

equilibrium system that is jam packed like a freeway at rush hour.

2 The Universe vanished in the most unlikely way

In geometric quantum mechanics, every statement about the state space CPn translates into a

physical statement about quantum mechanics. Similarly, we thereby expect a correspondence

between the non-linear Grassmannian Gr(Cn+1) and physics in our extended quantum theory.

Thus we will take seriously any mathematical property of the space and interpret it in a

physical language. One such attribute arises due to a remarkable theorem of Michor and

Mumford [9]. It states that, as measured by the exact analogue of the FS metric on CPn, the

geodesic distance between any two points on the non-linear Grassmannian vanishes. Since

Gr(Cn+1) is the space of states out of which spacetime emerges, we see that the vanishing

theorem naturally describes an initial state in which the Universe exists at a single point,

the cosmological singularity.

Making use of the Michor–Mumford vanishing theorem, the low entropy problem tied to

the initial conditions of the Universe is naturally resolved. In the language of statistical ge-

ometry and quantum distinguishability, the generalized FS metric having vanishing geodesic

distance means that none of the states of our non-linear Grassmannian phase space can be

differentiated from each other. Due to the large fluctuations in curvatures everywhere, the

entire phase space is composed of a single, unique microstate.

A point in the phase space of the theory corresponds to a state of the quantum system

under consideration, which in this case is the entire Universe. This fact should be interpreted

in a non-equilibrium setting. Even though equilibrium thermodynamics does not hold, en-

tropy continues to be a measure of the volume of the configuration space of the system.

Because the FS metric implies that points on Gr(Cn+1) cannot be distinguished, we may

infer via Boltzmann’s formula [10] that the entropy of the Universe is identically zero. This

is precisely the type of configuration that describes the initial state of the Universe.
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3 Everywhere was going nowhere fast

What could be the physics of the low (zero) entropy, but high temperature state associated

to the Big Bang? Namely, how do we obtain an ordered state by heating? We suggest that

the paradoxical zero geodesic distance, everywhere high curvature property of Gr(Cn+1) with

the FS metric finds an equally paradoxical physical realization in the context of the model.

The physical interpretation is to be found in a class of far from equilibrium collective phase

transitions, the so called “freezing by heating” jamming transitions. A non-equilibrium state

is required since in equilibrium, by heating, one necessarily increases the disorder of a system.

From many investigations [11], it has been established that high curvatures in the phase or

configuration manifold of a physical system precisely reflect large fluctuations of the relevant

physical observables at a phase transition point. This correspondence means equating the

high curvatures of the FS metric on Gr(Cn+1) with large (gravitational) fluctuations in our

system at the phase transition. In fact, the vanishing geodesic distance can be taken as the

signature, or order parameter, of a strong fluctuation (or “heat”) induced zero entropy and

hence highly ordered state.

While from an equilibrium physics perspective such a state seems nonsensical, it does,

however, occur in certain far from equilibrium environments. Specifically, we point to a

representative continuum model [12, 13, 14] where such an unexpected state was first dis-

covered. Here, one has a system of particles interacting, not only through frictional and

short range repulsive forces, but also and most importantly via strong driving fluctuations

(e.g., noise, heat, etc.). As the amplitude of the fluctuations (e.g., temperature) goes from

weak to strong to extremely strong and as its total energy increases, such a system exhibits

a thermodynamically counterintuitive evolution: it goes from a fluid to a solid — hence, a

highly ordered, low entropy, crystalline metastable state — and at last to a gas.

While the non-linear dynamics on Gr(Cn+1) are far more intricate than in the above

examples, which are more typically used to model traffic jams, they nevertheless have the

requisite combination of the proper kind of forces to achieve these “freezing by heating”

transitions. Specifically, the system being considered here is far from equilibrium with low

entropy, high temperature, and negative specific heat. Its non-linear dynamics involve at-

tractive and repulsive Yang–Mills forces, short range repulsive forces of D0-branes in the

Matrix theory, repulsive forces from a positive “cosmological” term, and most importantly

large gravitational fluctuations reflected in the large curvatures of the state space.

Now, it is known that geometric quantum mechanics can be seen as a classical completely

integrable Hamiltonian system [15], one with a Kähler phase space, a property tied in a

one-to-one manner to the Hermiticity of all observables in their operatorial representations.

Similarly, our extended quantum theory is viewed as classical non-linear field and particle

dynamics over a strictly almost complex phase space. This last property implies that the

corresponding operators would be non-Hermitian, and thereby our system is dissipative [16],

as required to generate “freezing by heating” transitions. Being a “classical” Einstein–Yang–

Mills system, it is also non-integrable and chaotic [17].
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From the previous considerations, the following qualitative picture emerges. From the

relation between geodesic distance and time, we have the emergence of a cosmological ar-

row of time. While the system has entropy S = 0, the very high curvatures in Gr(Cn+1)

signal a non-equilibrium condition of dynamical instability. Because of its non-linear dis-

sipative and chaotic dynamics, our system will flow toward differentiation, which thereby

yields, through entropy production, distinguishable states in the configuration space. The

dynamical evolution according to the second law is toward some higher entropy but stable

state, the low-temperature Universe that we observe and inhabit today.

This scenario can occur as Gr(Cn+1) has, in principle, an infinite number of metrics, a

subset of which will solve the dynamical equations on the state space. In fact, there is an

infinite one parameter family of non-zero geodesic distance metrics, of which the FS metric

is a special case [9]. During the dynamical evolution to a higher entropy state, spacetime

and canonical quantum mechanics should emerge.

While the unjamming process is still not well understood in the non-equilibrium litera-

ture, we can, in a more speculative vein, envision its mapping within our context into an

emergent spacetime setting. Then the evolution away from a metastable jammed state to a

stable equilibrium state, with its known universal scaling laws and its constituents’ velocities

potentially growing exponentially in time, would translate onto a cosmological evolution with

its requisite period of inflationary exponential expansion followed by a graceful exit. Specif-

ically, consider the time derivative of the size of the Universe a(t) in ds2 = −dt2 + a2(t) dΩ2,

as being analogous to the velocity. Long time tails in the velocity distribution could corre-

spond to a Friedmann–Robertson–Walker (FRW) phase, in which there is power law behavior

for a(t). Finally, jammed states, like many non-equilibrium phenomena, tend to self-tune

their parameters, which might explain the slow-roll inflationary parameters in a natural,

dynamical fashion. Such an attractive scenario is currently under investigation.

4 The end of the road

To the above, we wish to add a related path to be explored. The singularity at the heart of

a gravitational collapse should encode an enormous number of degrees of freedom, of order

101080
. From our geometric perspective, this is related to the evolution of the zero distance

FS, or Big Bang, metric of Gr(Cn+1) toward other available positive definite metrics. The

unwrapping of the very tight folds of the Big Bang metric corresponds to the liberation of an

ever greater number of degrees of freedom, the expected increase in entropy with time. We

can also conceive that such a dynamical evolution could lead ultimately to a rejamming, a

“mini-Big Crunch,” which is the end result of gravitational collapse. This last event proceeds

as a kind of time-reversed counterpart of our resolution of the Big Bang low entropy problem.

The degrees of freedom holographically encoded in the black hole horizon are thus enfolded

in the very structure of the complex non-linear Grassmannian.
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The properties of Gr(Cn+1) suggest that it has the potential to reveal the nature of quan-

tum gravitational systems whose descriptions have long remained elusive. The connection

between this space and freezing by heating systems tells us that our Universe evolved away

from an initial jammed state. This allowed galaxies to form and life to evolve, so that we

could begin rejamming the Universe all over again, one car at a time.
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