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Abstra
t. Let A 6= B be nonempty subsets of the group of integers modulo aprime p. If p � jAj+jBj�2, then at least jAj+jBj�2 di�erent residue 
lasses 
anbe represented as a+ b, where a 2 A, b 2 B and a 6= b. This result 
omplementsthe solution of a problem of Erd}os and Heilbronn obtained by Alon, Nathanson,and Ruzsa.
1. The ResultFor nonempty subsets A;B of an abelian group G de�ne their restri
ted sumsetas A _+B = fa+ b j a 2 A; b 2 B; a 6= bg:Con
erning a 
onje
ture of Erd}os and Heilbronn [10, 11℄, in 1994 Dias da Silvaand Hamidoune [6℄ established the inequalityjA _+Aj � minfp; 2jAj � 3gvia exterior algebra methods in the 
ase when G = Z=pZ is a 
y
li
 group ofprime order. With an appli
ation of the polynomial method of Alon and Tarsi1Visiting I.H.�E.S. Resear
h partially supported by Hungarian S
ienti�
 Resear
h GrantsOTKA T043623 and T043631. 1



2 GY. K�AROLYI[4℄, Alon, Nathanson, and Ruzsa [2, 3℄ obtained the more 
omprehensive result(1) jA _+Bj � minfp; jAj+ jBj � 2gwhenever jAj 6= jBj, whi
h 
learly implies the relationjA _+Bj � minfp; jAj+ jBj � 3gin general. Some rami�
ations in elementary abelian p-groups have been exploredin a series of papers by Eliahou and Kervaire [7, 8, 9℄.However, jA _+Bj � jAj + jBj � 2 holds in every torsion free abelian groupwhenever A 6= B (see e.g. [14℄), thus (1) has been expe
ted to be also valid inZ=pZ when A 6= B, but the existing methods do not work under the 
onditionjAj = jBj, A 6= B. The purpose of the present paper is to 
ir
umvent thisseemingly te
hni
al problem employing the Combinatorial Nullstellensatz of Alon[1℄. Thus we proveTheorem 1. Let A 6= B be nonempty subsets of the additive group of a �eld of
hara
teristi
 p. Then jA _+Bj � minfp; jAj+ jBj � 2g.Coupled with the results of [15℄ this yields the followingCorollary 2. Let A;B be nonempty subsets of the additive group of a �eld of
hara
teristi
 p � jAj+ jBj � 2. Then jA _+Bj � jAj+ jBj � 2, unless A = B andone of the following holds:(i) jAj = 2 or jAj = 3;(ii) jAj = 4, and A = fa; a+ d; 
; 
+ dg;(iii) jAj � 5, and A is an arithmeti
 progression.
2. The ProofDenote the �eld of 
hara
teristi
 p at issue by F . If jAj+ jBj � 2 > p, then thereexist nonempty subsets A0 � A and B0 � B su
h that jAj + jBj � 2 = p andA0 6= B0. Sin
e A0 _+B0 � A _+B, it is enough to prove Theorem 1 for the pairA0; B0. Thus we may assume that p � jAj+ jBj � 2. The statement is obvious ifp = 2, so we also assume that p is an odd prime, or p =1.If A and B are arbitrary nonempty subsets of F with p � jAj+ jBj � 2, thenjA _+Bj � jAj+ jBj � 3. Indeed, if jAj 6= jBj, then in fa
t jA _+Bj � jAj+ jBj � 2as it was proven by Alon, Nathanson, and Ruzsa in [2℄, see Theorem 1 therein.



RESTRICTED SET ADDITION 3Although it is formally stated only for prime �elds, the proof works in arbitrary�elds, as they mention it at the end of the paper. If jAj = jBj � 2, then thisapplied for the sets A and B0 = B n fbg for any b 2 B givesjA _+Bj � jA _+B0j � jAj+ jB0j � 2 = jAj+ jBj � 3:If one of the sets has only one element, then the statement is obvious. A

ord-ingly, we only have to prove the following version of Theorem 1.Theorem 3. Let A;B be subsets of a �eld F of 
hara
teristi
 p > 2 su
h thatjAj = jBj = k � 2 and p � 2k � 1. If jA _+Bj = 2k � 3, then A = B.Assume that A = fa1; a2; : : : ; akg, B = fb1; b2; : : : ; bkg, and putC = A _+B = f
1; 
2; : : : ; 
2k�3g:The polynomial f 2 F [x; y℄ de�ned asf(x; y) = (x� y) 2k�3Yi=1 (x+ y � 
i)has the property that f(ai; bj) = 0 for any 1 � i; j � k. Re
all the CombinatorialNullstellensatz of Alon [1℄:Lemma 4. Let F be an arbitrary �eld and let f = f(x1; : : : ; xk) be a polyno-mial in F [x1; : : : ; xk℄. Let S1; : : : ; Sk be nonempty �nite subsets of F and de�negi(xi) = Qs2Si(xi � s). If f(s1; s2; : : : ; sk) = 0 for all si 2 Si, then there existpolynomials h1; h2; : : : ; hk 2 F [x1; : : : ; xk℄ satisfying deg(hi) � deg(f) � deg(gi)su
h that f =Pki=1 higi.A

ordingly, we introdu
e the polynomialsg(x) = kYi=1(x� ai) = xk � �1xk�1 + �2xk�2 � : : :+ (�1)k�kand h(y) = kYi=1(y � bi) = yk � �1yk�1 + �2yk�2 � : : :+ (�1)k�k;where �i = �i(A) and �i = �i(B) are the elementary symmetri
 fun
tions ofa1; a2; : : : ; ak resp. b1; b2; : : : ; bk. In view of Lemma 4, there exist polynomialsq; r 2 F [x; y℄ of degree at most k � 2 su
h that(2) f(x; y) = q(x; y)g(x)� r(y; x)h(y):



4 GY. K�AROLYIWritingq(x; y) = k�2Xi=0 qi(x; y); r(x; y) = k�2Xi=0 ri(x; y) and fi(x; y) = (x� y)(x+ y)i�1;where pi; ri; fi are homogeneous polynomials of degree i, with the additionalnotations 
i = �i(C) (1 � i � 2k � 3) andq�1 = q�2 = r�1 = r�2 = 0; �0 = �0 = 
0 = 1;Eq. (2) implies the following equations of homogeneous polynomials of degree2k � 2� t for every integer 0 � t � k:(�1)t
tf2k�2�t(x; y) = tXj=0(�1)t�j��t�jqk�2�j(x; y)xk�t+j(3) ��t�jrk�2�j(y; x)yk�t+j	:Finally writingqi(x; y) = Xu+v=iAuvxuyv and ri(x; y) = Xu+v=iBuvxuyvwe �nd that the equations (3) en
ode 
ertain relations between the 
oeÆ
ientsAuv; Buv and the numbers �i; �i; 
i. The 
areful study of these relations, after ate
hni
al elimination pro
ess that we postpone until the next se
tion, results inthe followingLemma 5. For every integer 1 � t � k, �t = �t and u + v = k � 2 � t impliesAuv = Buv.Consequently, g(z) = h(z). It means that a1; a2; : : : ; ak and b1; b2; : : : ; bk arethe roots of the same polynomial of degree k, hen
e A = B as 
laimed. It onlyremains to prove Lemma 5.
3. DetailsFor 1 � i � 2k � 3, letfi(x; y) = (x� y)(x+ y)i�1 = Xu+v=iCuvxuyv :Then Ci;0 = 1, C0;i = �1, and in 
ase u; v 6= 0 we haveCuv = �Cvu = � i� 1u� 1�� �i� 1u � = 2u� iu � i� 1u� 1�:



RESTRICTED SET ADDITION 5Sin
e i < p, Cuv = 0 if and only if i is even and u = v = i=2. ConsiderCuv + Cu�1;v+1. If u = i, then it isCi;0 + Ci�1;1 = 1 + �i� 1i� 2�� �i� 1i� 1� = i� 1;a nonzero element in F if i > 1. Similarly in the 
ase u = 1,C1;i�1 + C0;i = 1� i 6= 0:In general, if 2 � u � i� 1, thenCuv + Cu�1;v+1 = 2u� iu � i� 1u� 1�+ 2u� 2� iu� 1 � i� 1u� 2�= n2u� iu � i� u+ 1u� 1 + 2u� 2� iu� 1 o� i� 1u� 2�= i(i� 2v � 1)u(u� 1) � i� 1u� 2�:Thus we proved:Claim 6. If i > 1, then Cuv + Cu�1;v+1 = 0 if and only if i� 2v � 1 = 0.We prove Lemma 5 by indu
tion on t. Note that if t > k�2, then by de�nitionu + v = k � 2 � t implies Auv = Buv = 0. For the initial step, �0 = �0 = 1 byde�nition. Let u+ v = k� 2. To see that Auv = Buv, 
onsider Eq. (3) for t = 0.It reads asXu+v=2k�2Cuvxuyv = Xu+v=k�2Auvxu+kyv � Xu+v=k�2Buvyu+kxv:It follows that(4) Buv = �Cv;u+k = Cu+k;v = Auv:For 
omplete indu
tion, let 1 � t � k, and suppose that Lemma 5 has beenalready proved for smaller values of t. We start with the �rst statement. First weverify �t = �t in the 
ase when t is even, that is, t = 2s for some s � 1. We havek�1�s � k�1�(t�1) � 0. Consider the 
oeÆ
ient of the term xk�1�syk�1�s inEq. (3). On the left hand side this 
oeÆ
ient is (�1)t
tCk�1�s;k�1�s = 0. In thepolynomial qk�2�j(x; y)xk�t+j, the 
oeÆ
ient of xk�1�syk�1�s is As�1�j;k�1�sif j � s� 1 and 0 otherwise, whereas in rk�2�j(y; x)yk�t+j, the 
oeÆ
ient of thesame term is Bs�1�j;k�1�s if j � s� 1 and 0 otherwise. Thus Eq. (3) impliess�1Xj=0(�1)t�j��t�jAs�1�j;k�1�s � �t�jBs�1�j;k�1�s	 = 0:



6 GY. K�AROLYISin
e (s� 1� j) + (k � 1� s) = k � 2� j and s� 1 < t, based on the indu
tionhypothesis we have As�1�j;k�1�s = Bs�1�j;k�1�s and �t�j = �t�j for every1 � j � s � 1. The summation 
an thus be redu
ed to the �rst term and weobtain �tAs�1;k�1�s � �tBs�1;k�1�s = 0:Here (s� 1) + (k � 1� s) = k � 2, and in view of Eq. (4)As�1;k�1�s = Bs�1;k�1�s = Cs�1+k;k�1�s 6= 0;sin
e s� 1 + k 6= k � 1� s, given that s � 1. It follows that �t = �t.If t is odd, that is, t = 2s + 1 with some s � 0, then in Eq. (3) we 
onsiderthe sum of the 
oeÆ
ients of the terms xk�1�syk�2�s and xk�2�syk�1�s. (Notethat k�2�s � k�2� (t�2) � 0, unless k = t = 1, whi
h is ex
luded by k � 2.)On the left hand side it is(�1)t
t(Ck�1�s;k�2�s + Ck�2�s;k�1�s) = 0:Therefore Eq. (3) implies0 = sXj=0(�1)t�j�t�jAs�j;k�2�s + s�1Xj=0(�1)t�j�t�jAs�1�j;k�1�s
� sXj=0(�1)t�j�t�jBs�j;k�2�s � s�1Xj=0(�1)t�j�t�jBs�1�j;k�1�s:Sin
e (s� j) + (k � 2� s) = (s� 1� j) + (k � 1� s) = k � 2� j and s < t, theindu
tion hypothesis on
e again allows us to redu
e the above equation to0 = (�1)t�tAs;k�2�s + (�1)t�tAs�1;k�1�s�(�1)t�tBs;k�2�s � (�1)t�tBs�1;k�1�s:In view of Eq. (4) this equation 
an be rewritten as(�t � �t)(Cs+k;k�2�s + Cs�1+k;k�1�s) = 0:Sin
e (2k � 2)� 2(k � 2� s)� 1 = 2s+ 1 = t is not zero in F , in view of Claim6 it follows that the se
ond term is not zero, and we 
on
lude that �t � �t = 0,�t = �t.It remains to verify the se
ond statement of the lemma under the additionalassumption that the �rst statement has been already veri�ed. A

ordingly, weassume t � k � 2, �t = �t, and let u + v = k � 2 � t. On the left handside of Eq. (3), the 
oeÆ
ient of xu+kyv is (�1)t
tCu+k;v. If 0 � j � t, then



RESTRICTED SET ADDITION 7v � k � 2� t < k � t+ j, thus in rk�2�j(y; x)yk�t+j the 
oeÆ
ient of xu+kyv is0. Therefore on the right hand side of Eq. (3), the 
oeÆ
ient of xu+kyv istXj=0(�1)t�j�t�jAt�j+u;v:Consequently, Eq. (3) impliestXj=0(�1)t�j�t�jAt�j+u;v = (�1)t
tCu+k;v:Looking at the 
oeÆ
ient of xvyu+k the same way we obtain� tXj=0(�1)t�j�t�jBt�j+u;v = (�1)t
tCv;u+k:Sin
e Cv;u+k = �Cu+k;v, it follows thattXj=0(�1)t�j�t�jAt�j+u;v = tXj=0(�1)t�j�t�jBt�j+u;v:Be
ause (t� j + u) + v = k� 2� j, the indu
tion hypothesis implies At�j+u;v =Bt�u+j;v for 0 � j < t. We have furthermore assumed �t�j = �t�j for all0 � j � t, therefore the above equality 
an be redu
ed to(�1)t�t�t�tAt�t+u;v = (�1)t�t�t�tBt�t+u;v:Sin
e �0 = �0 = 1, we obtain Auv = Buv.
4. RemarksThe strategy of the above proof is very similar to that of the inverse theorem
ontained in our previous work [15℄, and in fa
t the te
hni
al details are mu
hmore simple. In retrospe
t, the present paper should have pre
eded [15℄, butat that time it seemed very 
ompli
ated to handle the restri
ted sumset of twodi�erent sets using the Combinatorial Nullstellensatz.For any nontrivial group G, let p(G) denote the order of the smallest nontrivialsubgroup in G. In [12, 13℄ we extended the result of Dias da Silva and Hamidouneproving that jA _+Aj � minfp(G); 2jAj � 3g



8 GY. K�AROLYIholds in any abelian group G. Further developing this te
hnique and the methodof group extensions introdu
ed in [16℄, Balister and Wheeler [5℄ establishedjA _+Bj � minfp(G); jAj+ jBj � 3gin every group. It is quite plausible, that Theorem 1 and Corollary 2 
an also begeneralized in the same spirit.A
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