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Abstract

We study compactifications of type IIA supergravity on cosets exhibiting SU(3)
structure. We establish the consistency of the truncation based on left-invariance,
providing a justification for the choice of expansion forms which yields gauged N = 2
supergravity in 4 dimensions. We explore N = 1 solutions of these theories, empha-
sizing the requirements of flux quantization, as well as their non-supersymmetric
companions. In particular, we obtain a no-go result for de Sitter solutions at string
tree level, and, exploiting the enhanced leverage of the N = 2 setup, provide a
preliminary analysis of the existence of de Sitter vacua at all string loop order.
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1 Introduction

In the era of LHC, much effort is being invested in finding phenomenologically viable string
vacua. Much of this work takes place by considering compactifications to N = 1 theories
in 4d. In this paper, we will focus instead on a framework which yields 4 dimensional
theories that have N = 2 symmetry realized off-shell. While the N = 1 setup allows for
more flexibility in choosing the various ingredients of the theory, and hence (currently)
permits the construction of more realistic vacua, the increased rigidity of the N = 2
setup has the advantage of allowing a more exhaustive treatment of α′, string loop, and
foreseeably even brane instanton corrections. An impressive example of the power of the
N = 2 framework is the recent proof [1] that N = 2 gauged supergravities without vector
multiplets do not permit de Sitter vacua, in spite of the presence of such solutions in the
one-brane-instanton approximation [2]. Studying theories in the N = 2 framework hence
presents one promising avenue towards assessing the viability of the approximations that
are necessary to get off the ground in less supersymmetric frameworks.

The best studied example of N = 2 theories obtained from string theory are type II
Calabi-Yau compactifications [3, 4]. The differential operators governing the geometric
moduli problem of the internal Calabi-Yau manifolds turn out to coincide with the mass
operators of the supergravity theory. Unobstructed deformations hence give rise to mass-
less excitations, resulting in the beautiful identification between the massless scalar fields
of these theories, whose VEVs parametrize a family of supergravity solutions, and the
geometric moduli of the Calabi-Yau. The masslessness of the scalars is protected by su-
persymmetry, as N = 2 forbids a potential in the case of uncharged matter. In [5], the
study of type II compactifications on SU(3) structure manifolds was initiated (recall that
Calabi-Yau manifolds satisfy the stronger condition of SU(3) holonomy). This setup is
more akin to the phenomenologically motivated N = 1 analyses: solutions of the super-
gravity equations of motion on these internal manifolds require the presence of background
fluxes [6, 7], and compactification gives rise to 4d N = 2 gauged supergravity theories
[8, 9], which, in contrast to the Calabi-Yau case with uncharged matter, exhibit a poten-
tial for the scalar fields in the theory. The increased phenomenological viability comes at
a price: the very presence of a potential makes it unlikely that the choice of light degrees
of freedom of the theory can be associated to a geometric moduli problem. Indeed, a
systematic approach to a reduction ansatz for these theories is still lacking. Following our
work in [10] and [11], we here pursue an alternative approach towards justifying the reduc-
tion ansatz, that of consistent truncation: obtaining a field theory with a finite number
of fields upon compactification requires truncating most of the degrees of freedom of the
higher dimensional theory; this truncation is called consistent when all solutions to the
lower dimensional equations of motion lift to solutions of the higher dimensional theory.
Note the contrast to a Kaluza-Klein reduction [12], which is an expansion valid around a
single 10 dimensional solution (hence referred to as a base-point dependent reduction in
[13]).

Consistently truncated lower dimensional field theories are powerful allies in studying the
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vacuum structure of the higher dimensional string theory. This is partially a consequence
of computational techniques being more refined in lower dimensions. E.g., various leading
non-trivial contributions in α′ to the 10d type II supergravity action have been deter-
mined [14, 15, 16]. One may hope to establish the complete action to this order by 10d
supersymmetric completion [17]. However, the 10d supersymmetry equations have simply
proved too cumbersome to date. By contrast, the supersymmetric completion of the con-
tribution of these terms to the 4d N = 2 supergravity action is readily available, yielding
the full string tree level and one loop corrected action. In fact, in 4d we can, as we will
discuss, even draw conclusions regarding the all string loop corrected action. Studying
the lower dimensional theory is however not merely a question of computational conve-
nience. An effective higher dimensional description of worldsheet or brane instantons is
even conceptually problematic.

In [11], it was shown that expansion forms can be defined on Nearly Kähler manifolds that
satisfy the conditions of [13], implying that the reduction of the type IIA action based on
these forms yields N = 2 gauged supergravity in 4d. It was further demonstrated that
the truncation in this setting is consistent in the supersymmetric sector (i.e. 4d solutions
preserving N = 1 supersymmetry lift). In this paper, we shift our focus to certain
coset spaces which subsume the currently known set of 6d Nearly Kähler manifolds. We
introduce these spaces in section 2. Considering the emphasis on base point independence
of the reduction, it was perhaps somewhat disappointing that the theories based on Nearly
Kähler reduction yielded a single supersymmetric vacuum for a given choice of fluxes.
Cosets by contrast permit multiple N = 1 solutions for a given choice, which are all
accessible via the 4d theory. We demonstrate this in section 3. Due to flux quantization,
the solutions come in a discrete family. We perform the required K-theory analysis. In
section 4, we demonstrate that the left-invariant coset reductions represent a consistent
truncation by establishing that the 10d equations of motion reduce to the 4d equations
following from the appropriate N = 2 action. This extends the analysis of [10] beyond
the RR sector and overcomes the restriction to consistency merely of the supersymmetric
sector [11, 18]. Fueled by this result, we turn to the study of non-supersymmetric vacua
of the 4d theories in sections 5 and 6. We find several non-supersymmetric Nearly Kähler
companions to the solution of section 3 and study their stability, in particular with regard
to deformations away from the Nearly Kähler locus. We also consider the question of
the existence of de Sitter vacua, which has received some attention recently in the type
IIA context [19, 1, 20, 21]. We demonstrate that such vacua are absent at string tree
level (we prove this result in greater generality than the coset context: it is valid for any
gauged supergravity with merely the universal tree-level hypermultiplet, irrespective of
the specifics of the vector multiplet sector). Due to the increased leverage in the N = 2
setup, we are able to push this analysis beyond tree level. We obtain the full string loop
corrected potential, which evades the tree-level no-go theorem, and uncover a necessary
condition on the contribution of the NS sector to the potential for de Sitter vacua to be
possible.
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2 Introducing the internal geometries

We consider dimensional reductions of massive type IIA supergravity on left coset spaces
M6 = G/H endowed with a left-invariant SU(3) structure. An exhaustive list of such
cosets was provided in ref. [22] (see section 1 and in particular table 1 therein). In the
following, we are going to focus on the cosets whose SU(3) structure cannot be further
reduced to SU(2), namely

SU(3)

U(1)× U(1)
,

Sp(2)

S(U(2)× U(1))
,

G2

SU(3)
, (2.1)

where S(U(2)× U(1)) is non-maximally embedded in Sp(2).

It is easy to see that a reduction performed on these manifolds by expanding the higher
dimensional fields in a basis of left-invariant forms satisfies the constraints of [13] and
therefore yields a gauged N = 2 supergravity in 4d.

The remaining cosets listed in [22] have vanishing Euler characteristic and admit a left-
invariant vector: their SU(3) structure group is therefore further reduced to at least SU(2).
For these cosets, the N = 2 reduction ansatz based on the presence of SU(3) structure
can be more naturally enlarged to include the whole set of left-invariant forms, possibly
yielding a further extended supergravity (N ≥ 4) in 4d.

The only non-vanishing torsion classes1 characterizing the SU(3) structure of the cosets
(2.1) are W1 and W2, i.e. the SU(3) invariant 2- and 3-form J and Ω satisfy

dJ =
3

2
Im (W̄1Ω) ,

dΩ = W1J ∧ J + W2 ∧ J . (2.2)

In fact, G2
SU(3) allows just W1 $= 0 and is therefore a Nearly Kähler manifold. The cosets

SU(3)
U(1)×U(1) and Sp(2)

S(U(2)×U(1)) also admit a region in the SU(3) structure parameter space in
which they are Nearly Kähler, but in general, their W2 torsion class does not vanish. Since
W1 and W2 can be chosen purely imaginary, these cosets fall into the class of ‘half-flat’
manifolds, characterized by Re W1 = Re W2 = W4 = W5 = 0 [24].

A description of the coset spaces (2.1) was given e.g. in [25]. In the context of SU(3)
structure compactifications of (massive) type IIA supergravity, supersymmetric AdS4

backgrounds on these manifolds have recently been found in [22, 26, 27, 28] and fur-
ther discussed in [29], while refs. [30, 20] study the properties of the associated effective
4d N = 1 supergravity in the presence of orientifold projections (see also [27] for a previ-
ous work considering the coset SU(3)

U(1)×U(1)). Type IIA reduction on Nearly Kähler manifolds

has been worked out in [11]. The cosets (2.1) have also been employed in [31] for heterotic
dimensional reductions.

1For a review of SU(3) structures and their torsion classes, see e.g. subsection 3.2 of ref. [23].
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2.1 The expansion forms

In the following we provide the most general left-invariant positive-definite metric for each
coset (2.1), as well as a basis for all the left-invariant differential forms, on which we are
going to expand the supergravity fields.

We define the 6d coset spaces (2.1) as in ref. [22], and in particular adopt the set of group
structure constants listed therein. The same reference also provides a summary of the
needed mathematical notions about coset spaces, while a more extended review can be
found e.g. in [25].

Using the local coframe2 {em} inherited from G, a differential form on the coset G/H
reads ωk = 1

k!ωm1...,mk
em1 ∧ · · · ∧ emk . This is invariant under the left action of G if

its components are constant and satisfy the following relation involving the G structure
constants

fp
i[m1

ωm2...,mk]p = 0 , (2.3)

where the index i is associated with the generators of the algebra h, while the underlined
indices label a basis for the complement of h in g. For the coset metric ds2 = gmnem⊗ en

the relation is analogous to (2.3), with a symmetrization of indices replacing the antisym-
metrization. The action of the exterior derivative preserves left-invariance, and is also
determined by the structure constants of G.

None of the cosets we consider admits left-invariant 1– or 5–forms.

We define the ‘standard volume’ of the cosets as

I :=

∫
e123456 .

2.1.1 SU(3)
U(1)×U(1)

Left-invariant metric:

gmn = diag(v1, v1, v2, v2, v3, v3) , v1 > 0, v2 > 0, v3 > 0 . (2.4)

The left-invariant forms are spanned by

ω0 = 1 , ω1 = −e12 , ω2 = e34 , ω3 = −e56 ,

α =
1

2
√

I
(e135 + e146 − e236 + e245) , β =

1

2
√

I
(−e136 + e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

I
e3456 , ω̃2 = −1

I
e1256 , ω̃3 =

1

I
e1234 . (2.5)

2Here and in the following (see in particular subsection 4.3), frame indices are underlined.
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2.1.2 Sp(2)
S(U(2)×U(1))

Left-invariant metric:

gmn = diag(v1, v1, v1, v1, v2, v2) , v1 > 0, v2 > 0 . (2.6)

Basis of left-invariant forms:

ω0 = 1 , ω1 = −e12 − e34 , ω2 = e56 ,

α =
1

2
√

I
(e135 + e146 + e236 − e245) , β =

1

2
√

I
(e136 − e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

2I
(e1256 + e3456) , ω̃2 = −1

I
e1234 . (2.7)

2.1.3 G2
SU(3)

Left-invariant metric:

gmn = diag(v1, v1, v1, v1, v1, v1) , v1 > 0 . (2.8)

Basis of left-invariant forms:

ω0 = 1 , ω1 = −e12 + e34 − e56 ,

α =
1

2
√

I
(e135 + e146 − e236 + e245) , β =

1

2
√

I
(−e136 + e145 − e235 − e246) ,

ω̃0 =
1

I
e123456 , ω̃1 =

1

3I
(e3456 − e1256 + e1234) . (2.9)

2.1.4 Properties

The overall factors in the basis forms (2.5), (2.7), and (2.9) have been chosen in such a
way that ∫

〈ωA, ω̃B〉 = δB
A ,

∫
α ∧ β = 1 , (2.10)

where A = (0, a) , B = (0, b) and a, b label the left-invariant 2– and 4–forms. The an-
tisymmetric pairing 〈 , 〉 is defined on even forms ρ, σ as 〈ρ, σ〉 = [λ(ρ) ∧ σ]top, with

λ(ρk) = (−)
k
2 ρk , k being the degree of ρ.

The basis forms define a closed differential system,

dωa = qaα ,

dα = 0 , dβ = qaω̃
a ,

dω̃A = 0 , (2.11)

which is also closed under the action of the Hodge star operator,

∗α = β , ∗ω̃0 =
1

Vol
, ∗ω̃a = − 1

4Vol
Gabωb .
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SU(3)
U(1)×U(1)

Sp(2)
S(U(2)×U(1))

G2
SU(3)

range of a : 1, 2, 3 1, 2 1

geometric flux qa : q1 = q2 = q3 = −
√

I q1 = 2
√

I , q2 =
√

I q1 = 2
√

3I

Gab = diag
(

4(v1)2 , 4(v2)2 , 4(v3)2
)

diag
(

2(v1)2 , 4(v2)2
)

4
3(v

1)2

Vol = v1v2v3I (v1)2v2I (v1)3I

I = 25π3 27π3

3
144π3

5

Table 1: Values of the different quantities introduced in this subsection.

Here, the qa encode what are sometimes referred to as geometric fluxes, Vol denotes the
volume of the coset, and the matrix Gab is the inverse of

Gab =
1

4Vol

∫
ωa ∧ ∗ωb , (2.12)

corresponding to the special Kähler metric on the space of the internal metric and B-field
deformations [13]; see subsection A.1 of the appendix for more details.

In table 1, we give the values of the quantities introduced above for each coset. The
standard volume I was computed following ref. [25].3 Its evaluation requires knowledge
of the Euler characteristic of our cosets. Since the harmonic forms on a compact coset
reside among the left-invariant forms, we can read off the cohomology from the differential
relations (2.11). We immediately conclude that all our cosets have trivial odd cohomology.
Concerning the even cohomology, for SU(3)

U(1)×U(1) , with

ω′
1 = ω1 − ω3 , ω′

2 = ω2 − ω3 , (2.13)

we have
H2 = Span ([ω′

1], [ω
′
2]) , H4 = Span

(
[ω̃1], [ω̃2]

)
,

hence the Euler characteristic is χ = 6.

For Sp(2)
S(U(2)×U(1)) , we have b2 = 1 and χ = 4, while for G2

SU(3) , b2 = 0 and χ = 2.

2.2 The SU(3) structure

For each coset in (2.1), the pair of left-invariant forms parametrized by va,

J = vaωa , Ω = 2
√

Vol(α + iβ) , (2.14)

3We have a 26 supplementary factor in I with respect to [25]. This is due to the fact that for the
normalization of the group structure constants we follow the choice of [22], and this differs from the one
of [25] by a factor 1/2.

6



satisfies the relations J ∧ Ω = 0 and 3i
4 Ω ∧ Ω̄ = J ∧ J ∧ J and hence determines a left-

invariant SU(3) structure. The metric specified by J and Ω is precisely the one given in
eq. (2.4), (2.6), and (2.8) respectively for the three cosets. Using the properties of the
basis forms listed in subsection 2.1.4 above, one can see that the differential relations (2.2)
are satisfied, with torsion classes4

W1 = − ivaqa

3
√

Vol
, (2.15)

W2 = − 2i

3
√

Vol
qa

(
vavb − 3

4
Gab

)
ωb.

Substituting the quantities given in the table of subsection 2.1.4, we see that the Nearly
Kähler condition W2 = 0 is identically satisfied on G2

SU(3) . For Sp(2)
S(U(2)×U(1)) and SU(3)

U(1)×U(1) ,

this condition is satisfied on a line in the parameter space determined by v1 = v2 and
v1 = v2 = v3 respectively. In this Nearly Kähler limit the cosets are Einstein manifolds
(the only other loci at which the Einstein condition is satisfied are 2v1 = v2 for Sp(2)

S(U(2)×U(1))

and 2v1 = 2v2 = v3, or cyclic permutations of this, for SU(3)
U(1)×U(1) [25] ).

The forms (2.14) are the most general left-invariant pair satisfying the SU(3) structure
defining relations (the unphysical overall phase freedom in Ω has been chosen in order to
make the torsion classes purely imaginary). In particular, since the volume Vol is fixed
by the va, we see that Ω identifies a rigid SL(3,C) structure, and there are no almost
complex structure moduli.

2.3 An alternative basis?

In [13], conditions on the expansion forms were emphasized that arise when these are
moduli dependent, as is the case with the basis of harmonic forms on which Calabi-Yau
reductions are based (the *-ed conditions in section 2 of [13]). For the set of expansion
forms that we have introduced above, these conditions are trivially satisfied, as the forms
are moduli independent. In this sense, our expansion ansatz here is technically simpler
than in the Calabi-Yau case. However, in a small flux approximation, the laplacian
∆ = − ∗ d ∗ d− d ∗ d∗ becomes the mass operator for the modes of the 10d supergravity
fields, and an expansion in eigenforms of it is physically motivated. Can we replace the
forms introduced above by such a basis of eigenforms?

In the Nearly Kähler case the expansion in eigenforms of the laplacian is further motivated
by the fact that both J and Ω are themselves eigenforms of ∆ [11]. In the more general
case W2 $= 0, this is still true for Ω,5

∆Ω =
(
3|W1|2 +

1

4
W2!W̄2

)
Ω , (2.16)

4The evaluation of W2 is performed rewriting the second line of (2.2) as W2 = 2W1J − ∗dΩ.
5One needs the relation dW2 = i

4 (W2!W̄2)Re Ω, satisfied by the cosets (2.1).

7



but not for J , which instead satisfies

∆J = 3|W1|2J −
3

2
Re (W̄1W2) .

Considering e.g. the coset SU(3)
U(1)×U(1) , a change of basis sending the 2–forms introduced in

(2.5) to a set of eigenforms of the laplacian is

ω′
1 = ω1 − ω3 , ω′

2 = ω2 − ω3 , ω′
3 =

∑
a(v

a)2ωa∑
b(v

b)2
, (2.17)

where ∆ω′
1 = ∆ω′

2 = 0 , while ∆ω′
3 = (v1)2+(v2)2+(v3)2

v1v2v3 ω′
3 . The harmonic 4–forms are

spanned by

∗ ω′
1 ∝

v3

v1
ω̃1 − v1

v3
ω̃3 , ∗ω′

2 ∝
v3

v2
ω̃2 − v2

v3
ω̃3 , (2.18)

while ∗ω′
3 ∝ −

√
I(ω̃1 + ω̃2 + ω̃3) = dβ is exact.

The condition va∂vbωa (*7 of [13]) gives rise to a complicated set of equations for possible
va dependent normalization factors of the primed basis. However, it is easy to see upon
inspection that the moduli independence of the triple intersection product (condition *8
of [13]) cannot be satisfied for any such choice. The question whether the choice of left-
invariant expansion forms can be motivated from a Kaluza-Klein reduction point of view
hence remains an interesting open question.

3 Supersymmetric 10d solutions parametrized by fluxes

In this section, we will rewrite the family of N = 1 solutions of the 10d supergravity
equations found in [22] in a manner which makes the discreteness of this family as a
result of flux quantization manifest. By [10] and [11], these solutions can be recovered
from the 4d point of view. After proving the full consistency of our reduction in section
4, we will proceed to complement these solutions with their non-supersymmetric relatives
in section 6.

3.1 Flux quantization and K-theory

RR-fields are classified topologically by K-theory classes. This has two consequences for
the choice of fluxes associated to the RR-fieldstrengths,. Firstly, the naive integer quan-
tization of fluxes must be replaced by quantization in multiples of fractions determined
also by the topology of the compactification manifold. Secondly, not every choice of flux
number satisfying these quantization conditions will possess a K-theory lift and hence be
permissible. We will now study these two points in turn.

In [32], fluxes were conjectured to take values in the image of the map
√

Â(X) ch(·) : K(X) → Heven(X, Q) .

8



ch(x) is the Chern character as extended to a K-theory element x = E − F via ch(x) =
ch(E)− ch(F ). Hence,

[F (x)]

2π
=

√
Â ch(x) , (3.1)

where F =
∑5

i=0 F2i denotes a formal sum of all RR-fieldstrengths, and [·] indicates
rational cohomology class (rational rather than integral due to the fractional coefficients
of Chern classes that appear in the expansion of the Chern character). When H $= 0, the
equations of motion and Bianchi identity of F are modified from the naive Maxwell form,
enforcing harmonicity of F , to a version of these equations twisted by H. In particular, F
now satisfies (d−H)F = 0. When H is exact, as will be the case in our study, H-twisted
cohomology maps to ordinary cohomology via F → e−BF , where H = dB. It hence
proves convenient to introduce a basis of RR fields given by G = e−BF . Equation (3.1)
then holds for G rather than F , and the term ‘fluxes’ refers to the cohomology classes
[G].

To decide which fluxes we can choose as boundary conditions of our physical system (and
then parametrize our solutions by this choice), we need to decide on electric vs. magnetic
variables. Ignoring subtleties related to torsion, which does not enter in a supergravity
analysis, we can choose the electric basis to lie in ⊕3

i=1H
2i(X, Q).

Let us now consider the question of flux quantization. To this end, we expand the right
hand side of (3.1) in terms of Chern classes for x the class of a vector bundle F on X,

ch0(F ) = rank(F ) , ch1(F ) = c1(F ) , ch2(F ) =
1

2
[c1(F )2 − 2c2(F )] ,

ch3(F ) =
1

3!
[c1(F )3 − 3c1(F )c2(F ) + 3c3(F )] ,

Â = 1− p1

24
+ . . . .

Hence,

[G0]

2π
= rank(F ) ,

[G2]

2π
= c1(F ) ,

[G4]

2π
=

1

2
[c1(F )2 − 2c2(F )] ,

[G6]

2π
=

1

3!
[c1(F )3 − 3c1(F )c2(F ) + 3c3(F )]− p1(X)

48
c1(F ) .

As Chern classes take value in integral cohomology, it follows that in the presence of
G2 flux, G4/2π is generically half-integrally quantized. Neglecting gravitational effects,
G6/2π is quantized in multiples of 1

6 , incorporating the Â-genus generically yields quanti-
zation in multiples of 1

48 . In particular, for the cosets we are considering, the Pontrjagin
classes are given by

p

(
SU(3)

U(1)× U(1)

)
= 1 , p

(
Sp(2)

S(U(2)× U(1))

)
= (1+x2)4 , p

(
G2

SU(3)

)
= 1 . (3.2)
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SU(3)
U(1)×U(1)

Sp(2)
S(U(2)×U(1))

G2
SU(3)

G0 Z Z Z
G2 Z Z −
G4

1
2Z 1

2Z −
G6

1
6Z 1

12Z 1
3Z

Table 2: Quantization condition on fluxes.

The first result follows from a theorem of Borel and Hirzebruch, according to which the
Pontrjagin class of a coset G/U , with U a maximal torus of G, is trivial. The latter two
follow from the identification of the two cosets topologically with CP3 and S6 respectively.
The x that occurs is the generator of the integer cohomology of CP3. It follows that G6/2π
is quantized in multiples of 1

6 for the cosets SU(3)
U(1)×U(1) and G2

SU(3) , and in multiples of 1
12 for

Sp(2)
S(U(2)×U(1)) . For G2

SU(3) , we can go further. In [33], the following mod 2 relation among
Chern classes is derived

c3(E) = c1(E)c2(E) + Sq2c2(E) mod 2 .

Since G2
SU(3) has no 2- and 4-cohomology, it follows that c3(E) must be even for any vector

bundle on this space ([33] provide an index theory argument for this conclusion). We
conclude that on this coset, G6 is quantized in units of 1

3 .

We turn to the second question raised above: given an element of H∗(X, Q) satisfying the

integrality conditions just discussed, when does it lie in the image of the map
√

Â ch(·),
thus qualifying as a viable choice of flux? We will not provide a general answer, but address
the following two subquestions which will be relevant in the next subsection.

Is it possible to have only G0 and G6 non-vanishing? It is a theorem (see e.g.
Thm. V.3.25 in [34]) that the map (3.1) provides an isomorphism when the domain is
extended to rational K-theory, K(X)⊗Q. It follows that any class in H∗(X, Q) lifts to
a fractional K-theory class. Multiiplying our choice of G0 and G6 with an appropriate
integer hence always provides a viable choice of flux.

Given G2 = 0, which G4 are permissible? When G2 vanishes, G4 is integrally
quantized. For the two cosets with non-trivial 2- and 4-cohomology, this is the only
restriction on G4, i.e. all of H4(X, Z) is a permissible choice for this flux. As pointed
out in [33], this situation arises whenever the cohomology of the manifold is generated in
second degree. If we call the generators xi, line bundles Li exist with c1(Li) = xi. The
K-theory classes xij = Li ⊗ Lj − Li ⊕ Lj can then be used as building blocks for lifting
any G4-flux, by

ch(xij) = xixj +
1

2
(x2

i xj + xix
2
j) .
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3.2 The solution

The N = 1 supersymmetry conditions for an AdS4 vacuum have been determined by [35].
A nontrivial warp factor is not allowed, and the dilaton φ has to be constant. Furthermore,
in our conventions6 the equations governing the H-field and the internal RR field strengths
read

H =
2m

5
eφ Re Ω , (3.3)

F0 = m , F2 = −f

9
J + ie−φW2 , F4 =

3m

10
J ∧ J , F6 =

f

6
J ∧ J ∧ J ,

where the only nonvanishing purely imaginary torsion classes are W1 = 4i
9 eφf and W2.

The only Bianchi identity which is not automatically satisfied is dF2 − HF0 = 0. This
imposes

dW2 = ie2φ
( 2

27
f 2 − 2

5
m2

)
Re Ω . (3.4)

The AdS curvature is determined by

Λ = −3e2φ

(
m2

25
+

f 2

9

)
. (3.5)

Following work of [28], [22] showed that these equations can be solved on the cosets we
introduced in the previous section, by expanding all fields in forms invariant under the
left group action. We will repeat this analysis, but parametrize the solutions by the
fluxes [G], as introduced in the previous subsection, rather than the parameter f and the
dilaton. This is the favored approach as it allows us to take flux quantization into account
naturally (from a 4d point of view, the distinction between fluxes and parameters such
as f and the dilaton is most striking, as the former correspond to charges, the latter to
VEVs; in 10d, while fluxes can also be considered as VEVs, they are distinguished by
encoding topological information).

We will focus on SU(3)
U(1)×U(1) for concreteness. This example is the most rich among the

three cosets we are considering, as it has the largest set of left-invariant forms, and the
largest cohomology.

The ansatz (2.14) already led to the expressions (2.15) for W1 and W2 in terms of the
metric parameters va. It will prove convenient for this section to express the internal
component b of the B-field using the closed 2-forms (2.13),

b = b′1ω′
1 + b′2ω′

2 + b′3ω3 .

6Our supergravity field strengths are as in [36]. We derive the susy conditions starting from an ansatz
for the two type IIA susy parameters ε1, ε2 wich assigns negative chirality to ε1 and positive chirality to
ε2. For the gamma matrices and the SU(3) structure we adopt the conventions listed in subsection A.2
of [10]. The resulting equations (3.3) and the SU(3) torsion classes differ from the ones in [22] by just a
few minus signs.
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Thus, b′1 and b′2 capture topological information about the B-field, while b′3 enters in H.
Likewise, our ansatz for G is

G0 = m ,

G2 = m′1ω′
1 + m′2ω′

2 ,

G4 = −e1ω̃
1 − e2ω̃

2 − ξ̃ dβ ,

G6 = −eω̃0 .

The equations of motion for G are complicated, and are encoded in the equations (3.3).
By contrast, the Bianchi identities are already guaranteed by the ansatz (hence the use
of primed forms).

To solve (3.3) in terms of the flux parameters, we begin by solving (3.4) in term of φ,
invoking the relation between W1 and f ,

e2φ =
5

16m2v1v2v3
[6

∑

a<b

vavb − 5
∑

(va)2] .

For the rest of this section, φ will denote this solution.

Utilizing the equation for H, this allows us to solve for b′3 in terms of the metric param-
eters,

b′3 = −4m

5

√
v1v2v3eφ

= − m

|m|

√√√√5

(
6
∑

a<b

vavb − 5
∑

(va)2

)
.

We next want to solve for f , starting with

F6 = G6 + B ∧G4 +
1

2
B2 ∧G2 +

1

3!
B3 ∧G0 =

f

6
J ∧ J ∧ J . (3.6)

We eliminate the B3 term via

F4 = G4 + B ∧G2 +
1

2
B ∧B ∧G0 =

3m

10
J ∧ J

⇔ mB3 =
3m

5
B ∧ J ∧ J − 2B ∧G4 − 2B2 ∧G2 .

Hence,

f

6
J ∧ J ∧ J = G6 +

2

3
B ∧G4 +

1

6
B2 ∧G2 +

m

10
B ∧ J ∧ J ,

and substituting f into

F2 = G2 + B ∧G0 = −f

9
J + ie−φW−

2

12



yields three equations which can be solved for b′1, b′2 and ξ̃,

b′1 =
(5v1 − 3(v2 + v3))

√
v1v2v3

4v2v3m
e−φ − m′1

m
,

b′2 =
(5v2 − 3(v1 + v3))

√
v1v2v3

4v1v3m
e−φ − m′2

m

We omit the expression for ξ̃, which is lengthy and not illuminating.

At this stage, we have expressed ξ̃, b′a, eφ in terms of va. Substituting these into the F4

equation,

G4 + G2 ∧B +
1

2
B ∧B ∧G0 =

3m

10
J ∧ J , (3.7)

yields three independent equations for va, two of which take the simple form

(v1 − v3)(v1v2 + v2v3 − 3v1v3)

v1v3
− e2φ(

me1

I
+ m′2(2m′1 + m′2)) = 0 ,

(v2 − v3)(v1v2 + v1v3 − 3v2v3)

v2v3
− e2φ(

me2

I
+ m′1(m′1 + 2m′2)) = 0 . (3.8)

The main new feature we wish to demonstrate, as compared to the Nearly Kähler analysis
of [11], is the presence of several supersymmetric vacua of a given theory, i.e. upon a fixed
choice of fluxes. This phenomenon already occurs at ea = m′a = 0, which is a permissible
choice of flux by the previous subsection. The third equation following from (3.7) here
takes the form

15eφ
√

v1v2v3 e− 8I v2v3(v2v3 − 3v1v2 − 3v1v3) = 0 .

It is easy to see that this system of equations has, aside from the Nearly Kähler solution
at

v1 = v2 = v3 = −
√

15

2

(
1

20I

e

|m|

) 1
3

,

the solution

v1 = v2 = 2v3 = −
√

15

4

(
1

2I

e

|m|

) 1
3

,

as well as two others which arise upon cyclic permutation of v1, v2, v3. Note that physical
supersymmetric solutions exist only for e < 0.

The symmetry between the three metric parameters v1, v2, v3 can be broken by considering
backgrounds with G4 flux. E.g., maintaining G2 = 0, we obtain from (3.8)

e1 $= 0 → v1 $= v3 ,

e2 $= 0 → v2 $= v3 ,

e1 $= e2 → v1 $= v2 .

We have checked numerically that e.g. at e1 $= 0, e2 = 0, solutions with v2 = v3 exist.
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4 The dimensional reduction

4.1 The truncation scheme

As announced, we will adopt a reduction prescription in which the higher dimensional
supergravity fields are expanded on a basis for the left-invariant tensors admitted by the
coset. This expansion basis was introduced in subsect. 2.1 for the three cosets (2.1).

We stress again that this G-invariant truncation does not coincide with a massless Kaluza-
Klein ansatz. We can illustrate the differences between the two schemes e.g. by consider-
ing the gauge vectors of the dimensionally reduced theory arising from the decomposition
of the higher dimensional metric. The conventional massless Kaluza-Klein ansatz as-
sociates a gauge vector of the truncated theory to each Killing vector on the compact
manifold, the gauge symmetry being inherited from the reparameterization invariance of
the higher dimensional spacetime.7 On the other hand, the G-invariant ansatz preserves
just a subgroup of the full isometry group of the internal manifold G/H. The theory of
compact left coset spaces endowed with a left-invariant metric (such are the cosets we
consider) states that in general the isometry group of G/H is G×N(H)/H, where N(H)
is the normalizer of H in G, defined as N(H) := {g ∈ G : gH = Hg} . The G factor in
G×N(H)/H is associated with the left action of G on the coset, while the N(H)/H factor
derives from the right action of G. The Killing vectors generating the right isometries
are left-invariant, while this is not the case for the ones generating the left isometries.8 It
follows that a left-invariant reduction ansatz keeps only the former, and the gauge group
descending from the higher dimensional metric sector is just N(H)/H.

For the cosets we consider the G-invariant ansatz is particularly simple, because N(H)/H
turns out to be trivial. This can be seen either by observing that rank G = rank H [25],
or by noticing that our cosets do not admit left-invariant vectors at all. We conclude that
no gauge vectors will descend from the dimensional reduction of the type II supergravity
NSNS sector, and the whole (abelian) gauge group will be provided by the RR sector.
This is analogous to what is realized in Calabi-Yau compactifications.

Though physically well motivated, dimensional reductions based on the full massless KK
ansatz have a drawback: they are generically inconsistent [38, 12]. Rare exceptions are
known, an example being the S7 reduction of [39] (see [40] for a discussion of consistent
KK sphere reductions). The G-invariant reduction scheme is instead believed to provide
consistent truncations, due to the fact that the preserved invariant fields never generate
the truncated non-invariant modes. A further argument for consistency is that the substi-
tution of a G-invariant ansatz guarantees the dropping of the dependence on the internal
coordinates y from the higher dimensional Lagrangian, see e.g. [41, 12] for more details.
The consistency of the G-invariant scheme was explicitly shown in ref. [42] for a reduction

7In principle, nonvanishing background values of the non-metric supergravity fields may break the
gauge symmetry to a subgroup of the isometry group, however this is guaranteed not to happen as far
as these vevs are invariant under the isometries [12, pag. 16].

8A detailed discussion of the isometries of G/H can be found in section 2 of ref. [37].
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of the pure gravity action. Recent related discussions can be found in [43] (for coset space
reductions of Einstein-Yang-Mills theories), in [44, 45] (for Scherk-Schwarz reductions on
group manifolds), and in [46, 47] (for consistent reductions on spaces supporting AdS so-
lutions, and their relation with the dual SCFT). However, an explicit check of consistency
in the context of SU(3) structure compactifications with fluxes had not been performed
to date. In subsection 4.3 we will work out the reduction of the higher dimensional equa-
tions of motion in detail, and prove the consistency of the truncation of the full type IIA
bosonic sector for the cosets (2.1).

4.2 The 4d action

Following the reduction prescription for type IIA on SU(3) structure manifolds initiated
in [5], the complete 4d gauged N = 2 bosonic action has by now been derived [48, 49,
50, 27, 13]. Here, we will use the notation of ref. [10]. Separating the contributions of the
NSNS and RR sectors, the action S(4) arising from a reduction on our cosets (2.1) reads

S(4) = S(4)
NS + S(4)

RR, with

S(4)
NS =

∫

M4

( 1

2
R4 ∗ 1− 1

4
e−4ϕdB ∧ ∗dB − dϕ ∧ ∗dϕ− Gabdta ∧ ∗dt̄b − VNS ∗ 1

)
, (4.1)

S(4)
RR =

∫

M4

{ 1

4
ImNABFA ∧ ∗FB +

1

4
ReNABFA ∧ FB − e2ϕ

4
(Dξ ∧ ∗Dξ + dξ̃ ∧ ∗dξ̃)

+
1

4
dB ∧

[
ξdξ̃ − ξ̃Dξ + 2eAAA + ξ̃ qaA

a
]
− 1

4
mAeAB ∧B − VRR ∗ 1

}
. (4.2)

The different quantities appearing in this 4d action are introduced in appendix A, where
we also give some details about the derivation from the higher dimensional supergravity.
The 4d degrees of freedom descending from the NSNS sector are the metric gµν , the 2–
form B, the complex scalars ta = ba + iva and the 4d dilaton ϕ, defined in (A.2). The
RR sector yields the scalars ξ and ξ̃ introduced in the first line of (A.12), as well as the
gauge potentials AA, whose modified field strengths FA are defined in (A.13) (recall that
the index A runs over (0, a) ).

The N = 2 action S(4) contains the gravitational multiplet (gµν , A0), a number of vector
multiplets (ta, Aa) (see table 1 for the coset dependent range of a), and one tensor multiplet
(B, ϕ, ξ, ξ̃). When mA = 0 the antisymmetric tensor B becomes massless and can be
dualized to a scalar, yielding the universal hypermultiplet. From Dξ = dξ − qaAa it
follows that ξ is charged under the Aa, the charges being provided by the geometric fluxes
qa given in table 1. The graviphoton A0 instead does not participate to this gauging (due
to the fact that the compactification manifolds (2.1) don’t allow for a flux of the NSNS
3–form [5]).

The special Kähler metric Gab governing the kinetic terms for the scalars in the vector
multiplets is given in table 1, and further discussed in subsection A.1 of the appendix,
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together with the period matrix NAB describing the kinetic and topological terms for the
gauge potentials.

The full 4d scalar potential reads V = VNS + VRR. Reduction of the internal NSNS sector
on our coset spaces yields9

VNS ≡ −e2ϕ

2

(
R6 −

1

2
H!H

)

=
e2ϕ

4Vol
qaqb

(
Gab − 3vavb + babb

)
, (4.3)

where the 6d Ricci scalar R6 has been evaluated in terms of the torsion classes expressed
in eq. (2.15) via the formula10 [51]

R6 =
15

2
|W1|2 −

1

2
W2!W 2 , (4.4)

while for the internal NSNS 3–form we have H = d6b = baqaα.

The RR contribution to the scalar potential, obtained from the general expression given
in eq. (A.14) of the appendix, is

VRR = −e4ϕ

4

[
mAImNABmB+(eA+qAξ̃−mCReNCA)(ImN )−1 AB(eB+qB ξ̃−ReNBDmD)

]
,

(4.5)
where qA = (0, qa). Notice that while ξ̃ appears in the potential, the other RR scalar ξ is
a flat direction. Since the matrix ImN is negative, VRR is positive semi-definite.

4.3 Consistency of the truncation

We now prove the consistency of the dimensional reduction leading to the 4d action S(4)

introduced in the previous subsection. To this end, we plug the G-invariant reduction
ansatz into the bosonic equations of motion (EoM) of type IIA supergravity, and show
that these yield the EoM following from the reduced action S(4).

The reduction of the equations for the RR degrees of freedom was already described in the
general analysis of [10] and is summarized, for the specific compactification on the coset
spaces (2.1), in subsection A.2 of the appendix. In fact, the piece (4.2) of the 4d action
has been established requiring its compatibility with the EoM for the 4d fields AA, ξ, ξ̃ as
obtained from the higher dimensional equations (A.9), (A.10). It follows that, as far the
RR sector is concerned, the reduction is consistent by construction.

9For any pair of forms P,Q of degree k we define the contraction P ! Q := 1
k!Pm1...mkQm1...mk , so that(

P ! Q
)
∗ 1 = P ∧ ∗Q. This also holds for the 10d spacetime equations of the forthcoming subsection.

10An equivalent expression for R6 was given in [25] using a general formula relating the Riemann tensor
of G/H to the structure constants of G. The 4 factor mismatch we have w.r.t. that expression is due to
the different normalization of the SU(3) structure constants already mentioned in footnote 3.
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Hence, we just have to analyse the equations of motion for the NSNS degrees of free-
dom, namely the B-field, the Einstein and the dilaton equations. For the democratic
formulation of type IIA supergravity [36] in string frame, these read

d(e−2φ ∗ Ĥ)− 1

2
[F̂ ∧ ∗F̂]8 = 0 , (4.6)

R̂MN + 2∇̂M∂Nφ− 1

2
ιMĤ!ιNĤ − e2φ

4

10∑

k=0

ιM F̂(k)!ιN F̂(k) = 0 , (4.7)

R̂− 1

2
Ĥ!Ĥ + 4

(
∇̂2φ− ∂Mφ∂̂Mφ

)
= 0 , (4.8)

where the hat denotes 10d quantities, F̂ ≡
∑10

k=0 F̂(k) is the sum of the RR field-strengths,
and M, N are 10d spacetime indices.

B̂-field EoM

The B̂-field EoM (4.6) is an 8–form equation. Its expansion in the left-invariant forms on
M6 yields two independent equations: the first exhibiting two indices along 4d spacetime
M4 and 6 indices along M6, and the second with 4 indices along M4 and 4 indices along
M6. We get no equation with 5 indices along M6 due to the absence of invariant 5-forms
on the cosets (2.1). Concretely, recalling (A.10) we rewrite the RR piece of (4.6) as

[F̂ ∧ ∗F̂]8 = [F̂ ∧ λ(F̂)]8 = [Ĝ ∧ λ(Ĝ)]8 .

Expanding B̂ as in (A.4) and Ĝ as in (A.11), we see that eq. (4.6) reduces to

[
d(e−4ϕ ∗ dB) + GA

(0)G̃(2)A − G̃(0)AGA
(2) + G̃(1) ∧G(1)

]
ω̃0 = 0 (4.9)

and

− 4d4(Gab ∗4 d4b
b)ω̃a + e−2φ+4ϕvol4 ∧ d6(∗6d6b) + (4.10)

+
[
G0

(0)G̃(4)a + G0
(4)G̃(0)a −KabcG

b
(0)G

c
(4) −G0

(2) ∧ G̃(2)a +
1

2
KabcG

b
(2) ∧Gc

(2)

]
ω̃a = 0 ,

where the 4d forms G(p), G̃(p) are expressed in (A.12), and we used ωa ∧ ωb = −Kabcω̃c,
with the Kabc given in (A.6).

Eq. (4.9) provides the EoM for the 2–form B in 4d. It already appeared in section 5 of
ref. [10], where it was employed in order to deduce the 4d action S(4) written in subsection
4.2 above. It follows that, on the same footing as the RR equations, consistency of this
equation with the action S(4) is guaranteed by construction.

Eq. (4.10) (which was not analysed in [10]) corresponds to the EoM for the 4d scalars ba

defined by the expansion of the internal B-field b on the basis 2–forms. Using d6 ∗6 d6b =
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qbbbqaω̃a, substituting the expressions (A.12) for G(2), G̃(2), G(4), G̃(4) and the definition
(A.13) of FA, eq. (4.10) reads

4∇µ(Gab∂
µbb) − e2ϕ qbbbqa

Vol
− ImNaB ∗ (F 0 ∧ ∗FB)− ReNaB ∗ (F 0 ∧ FB)

+
1

2
Kabc ∗ (F b ∧ F c) + e4ϕ

[
G0

(0)(ImNG(0) − ReNL)a − G̃(0)aL
0 +KabcG

b
(0)L

c
]

= 0,

where we denote L ≡ (ImN )−1(G̃(0) −ReNG(0)). Recalling the form of ImN and ReN
in (A.7) and (A.8), as well as VNS in (4.3) and VRR in (A.14), one checks that this equation
can be reformulated as

2∇µ(Gab∂
µbb)− 1

4
∂baImNBC ∗ (FB∧∗FC)− 1

4
∂baReNBC ∗ (FB∧FC)−∂ba(VNS +VRR) = 0

which is precisely the EoM obtained varying S(4) in (4.1), (4.2) with respect to ba.

10d Einstein equation

We first deal with the term R̂MN + 2∇̂M∂Nφ in eq. (4.7). Starting from the G–invariant
metric ansatz (A.1) and recalling that the 4d dilaton ϕ(x) satisfies (A.3), we derive the
following decomposition11

R̂µν + 2∇̂µ∂νφ = Rµν −
1

4
gmpgnq∂µgmn∂νgpq − 2∂µϕ∂νϕ− gµν∇2

4 ϕ ,

R̂µn = 0 = ∇̂µ∂nφ ,

R̂mn + 2∇̂m∂nφ = Rmn +
1

2
e−2ϕ

(
gpq∂µgmp∂

µgnq −∇2
4 gmn

)
. (4.11)

Taking the trace, we get

R̂ + 4∇̂2φ− 4∂Mφ∂̂Mφ = e−2ϕ
(
R4 + e2ϕR6 −

1

4
gmpgnq∂µgmn∂

µgpq − 2∇2
4 ϕ− 2∂µϕ∂µϕ

)
.

(4.12)
In the previous expressions, quantities labeled with 4 or 6 are associated to (M4, gµν) or
(M6, gmn) respectively. The 4d indices on the r.h.s. are raised using the rescaled metric gµν

of eq. (A.1). Notice that all the terms depend just on xµ: indeed, thanks to G-invariance,
the whole dependence on the internal coordinates drops out.

Let’s now consider the µν components of the 10d Einstein equation (4.7). Using (4.11),
(4.12) we find (we reinstate in the Einstein equation the term proportional to ĝµν , which

11The nonvanishing higher dimensional Christoffel symbols are:

Γ̂ρ
µν = Γρ

µν + ∂µϕδρ
ν + ∂νϕδρ

µ − gµν∂ρϕ , Γ̂ρ
mn = −1

2
e−2ϕ∂ρgmn , Γ̂p

µn =
1
2
gpq∂µgnq , Γ̂p

mn = Γp
mn .

In the derivation of R̂µn = 0 we assume ∇me
p
n = 0.
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actually vanishes thanks to the dilaton EoM (4.8) ),

R̂µν + 2∇̂µ∂νφ−
1

2
ιµĤ!ινĤ − 1

2
ĝµν

(
R̂ + 4∇̂2φ− 4∂ρφ∂̂ρφ− 1

2
Ĥ2

)
=

= Rµν −
1

4
e−4ϕHµνρH

ρσ
ν − 2∂µϕ∂νϕ− 2Gab∂(µt

a∂ν)t̄
b (4.13)

− gµν

( 1

2
R4 −

1

24
e−4ϕHµνρH

µνρ − ∂µϕ∂µϕ− Gab∂µt
a∂µt̄b − VNS

)
.

For the RR piece, taking into account all the terms of the expansion described in subsec-
tion A.2 of the appendix, we arrive at

− e2φ

4

10∑

k=0

ιµF̂(k)!ινF̂(k) =
1

2
ImNABιµF

A!ινF
B − 1

2
e2ϕ(DµξDνξ + ∂µξ̃∂ν ξ̃)

−gµν

{ 1

4
ImNABFA!FB − e2ϕ

4
[(Dµξ)

2 + (∂µξ̃ )2]− VRR

}
. (4.14)

From (4.13), (4.14) we see that the equation arising from the µν components of (4.7)
precisely reproduces the 4d Einstein equation following from S(4).

Since there are no left-invariant 1–forms on the cosets (2.1), the 10d Einstein equation
with µn indices is trivialized by our left-invariant truncation prescription, and does not
yield any constraint at the 4d level. Indeed, one can check that all the µn terms in (4.7)
vanish once the truncation ansatz is plugged in.

Finally, we study the purely internal components of (4.7) in flat mn indices. Depending
on which of the cosets (2.1) we consider, these yield just one, two or three 4d scalar
equations, labeled by the index a. On our cosets, any left-invariant symmetric rank-2
tensor has the same diagonal structure as the invariant metric gmn given in subsection
2.1. Furthermore, the left-invariant Ricci tensor on coset spaces satisfies Rmn = ∂

∂gmn R6.

Focusing for definiteness on SU(3)
U(1)×U(1) , we have (recall Gab in table 1)

R2a−1 2a−1 ≡ R2a 2a = −1

8
Gab∂vbR6 , a = 1, 2, 3 .

Then, using the last line of (4.11), we get

R̂2a 2a + 2∇̂2a∂2aφ−
1

2
ι2aĤ!ι2aĤ =

e−2ϕGab

4

[
− 2∇µ(Gbc∂

µvc) + ∂vbGcd∂µt
c∂µt̄d + ∂vbVNS

]
.

(4.15)
Concerning the RR term, a tedious computation gives

− e2φ

4

10∑

k=0

ι2aF̂(k)!ι2aF̂(k) =
e−2ϕGab

4

[
∂vbVRR −

1

4
∂vb(ImNCD)FC!FD

]
. (4.16)

Analogous steps can be repeated for the cosets Sp(2)
S(U(2)×U(1)) and G2

SU(3) , leading to the same
r.h.s. of the above equations.
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From (4.15), (4.16) we conclude that the components of the 10d Einstein equation (4.7)
with two internal indices precisely match the EoM for the scalars va following from S(4):

− 2∇µ(Gab∂
µvb) + ∂vaGbc∂µt

b∂µt̄c + ∂va(VNS + VRR)− 1

4
∂va(ImNBC)FB!FC = 0 .

Dilaton equation

Subtracting the trace over the µν components of (4.7) from the 10d dilaton equation (4.8),
we eventually obtain

2∇2
4ϕ +

1

6
e−4ϕHµνρH

µνρ − e2ϕ

2

[
(Dµξ)

2 + (∂µξ̃)
2
]
− 2VNS − 4VRR = 0 , (4.17)

which is the EoM for the 4d dilaton ϕ following from S(4).

This concludes the consistency proof of the dimensional reduction.

5 The 4d potential via N = 2

In this section, we recast the scalar potential obtained in (4.3) and (4.5) in 4d N = 2
language. In this framework, given the prepotential F governing the special geometry data
of the vector multiplet sector and the quaternionic metric huv of the hypermultiplet sector,
the potential is uniquely determined by the gauged isometries of huv. This structure allows
us to incorporate string loops into our considerations, which correct the hypermultiplet
metric. As the 4 dimensional quaternionic metrics with the isometry structure imposed
by our compactifications are highly constrained, we use the results of [57, 59] to write
down the general form of the all-loop string corrected potential in subsection 5.2. We
analyse this potential further in subsection 6.3.

The general form of the potential in 4d N = 2 gauged supergravity is [9, 52, 53, 54]

V = 4eKhuv(X
Aku

A − k̃uAFA)(X̄Bku
B − k̃uBF̄B)

−
[
1

2
(ImN )−1 AB + 4eKXAX̄B

]
(Px

A − P̃CxNCA)(Px
B − P̃DxN̄DB) . (5.1)

The coordinates X, the prepotential F , and the gauge coupling matrix N encode special
geometry data and are discussed further in appendix A. huv refers to the universal hy-
permultiplet metric, which is expressed in terms of the quaternionic vielbein components
as

h = u⊗ ū + v ⊗ v̄ .

We will denote the quaternionic coordinates collectively by qu. ku
A and k̃uA are the com-

ponents of the Killing vectors describing the isometries of the hypermultiplet metric being
gauged by the Ath gauge vector. The Sp(1) factor ω of the spin connection of the hyper-
multiplet metric enters in the potential via its relation to the Killing prepotentials. For
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the case that the 3 components of the curvature of ω each are invariant under an isometry
ku∂qu of the metric, the corresponding Killing prepotential is given by [52, 55]

Px = ωx
uku .

In this case, one can rewrite the potential in a more convenient form. Introducing

Qu
A = ku

A − k̃uBNBA ,

we obtain

V = Qu
AQ̄v

B

[
4eKXAX̄B

(
u⊗ ū+v⊗ v̄

)
uv
−

(
4eKXAX̄B +

1

2
(ImN )−1 AB

) ∑

x

(
ωx⊗ωx

)
uv

]
.

(5.2)

5.1 Tree level

At tree level, the quaternionic vielbein is given by [56]12

u =
1

2
eϕ(dξ̃ − idξ) ,

v = dϕ− i
e2ϕ

2

(
da + ξ̃dξ

)
.

The Sp(1) connection has the following form in terms of these quaternionic vielbein com-
ponents13

ω1 = i(ū− u) , ω2 = −(u + ū) , ω3 =
i

2
(v − v̄) .

In the class of theories we are considering, the isometries being gauged are described by
the following Killing vectors

kA =
√

2

(
eA

∂

∂a
+ qA

∂

∂ξ

)
,

k̃A =
√

2mA ∂

∂a
.

Since Qu does not contain a non-vanishing entry for u = ϕ, the real part of v does not
enter upon contraction with Qu, hence we can substitute

∑

x

(
ωx ⊗ ωx

)
∼ 4u⊗ ū + v ⊗ v̄

12ϕ, ξ, ξ̃ were introduced above. The coordinate a is related to the dual aB of the spacetime component
of the B-field via aB = a + ξξ̃

2 .
13The components ωx of the Sp(1) curvature ω should not be confused with the expansion forms ωa.
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in the potential, obtaining

V = Qu
AQ̄v

B

[
− e2ϕ

(1

2
(ImN )−1 AB + 3eKXAX̄B

)(
dξ2 + dξ̃2

)
uv

−1

8
e4ϕ(ImN )−1 AB

(
da + ξ̃dξ

)2

uv

]
.

This coincides with (4.3) and (4.5) obtained above via reduction from 10 dimensions.

5.2 All string loop

For the case of the universal hypermultiplet with 3 isometries, the quaternionic metric is
of the Calderbank-Pedersen form [57], determined by a single function

√
ρF (ρ, η) = ρ2−c

[58, 59], such that

u =

√
ρ2 + c

2(ρ2 − c)
(dξ̃ − idξ) ,

v =
ρ

2(ρ2 − c)
√

ρ2 + c

[
2
ρ2 + c

ρ
dρ + i(da + ξ̃dξ)

]
. (5.3)

This class of metrics hence comes in a 1-parameter family. The metric at string tree level
lies at c = 0, and the variable identification

ρ = e−ϕ

takes up back to the expression for the metric introduced above.14

In terms of the quaternionic vielbein components (5.3), the Sp(1) connection of the
Calderbank-Pedersen metric is [57]

ω1 =
ρ√

ρ2 + c
i(ū− u) = − ρ

ρ2 − c
dξ ,

ω2 = − ρ√
ρ2 + c

(u + ū) = − ρ

ρ2 − c
dξ̃ ,

ω3 =

√
ρ2 + c

ρ

i

2
(v − v̄) = − 1

2(ρ2 − c)
(da + ξ̃dξ) .

The N = 2 potential (5.2) for this choice of metric becomes

V =
Qu

AQ̄v
B

(ρ2 − c)2

[(
− 1

2
(ImN )−1 AB − 3eKXAX̄B

)
ρ2(dξ2 + dξ̃2)uv

−1

8
(ImN )−1 AB(da + ξ̃dξ)2

uv + c eKXAX̄B(dξ2 + dξ̃2)uv

− c

ρ2 + c
eKXAX̄B(da + ξ̃dξ)2

uv

]
. (5.4)

14The coordinates used in [59] are related to our choice via ψ = a+ξξ̃
2 , η = − ξ

2 , φ = ξ̃.
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In the case of Calabi-Yau compactifications, the metric is corrected away from c = 0 in
passing from tree level to one-loop [59]. Beyond 1-loop, all corrections can be captured
by field redefinitions. This means that the quaternionic metric (i.e. the value of c)
remains unchanged, the identification ρ = e−ϕ however is modified (note that the isometry
structure of the metric determines the identification of the other 3 Calderbank-Pedersen
coordinates with the 10d variables as indicated in footnote 14; this is why we have not
introduced separate notation for them).

To study perturbative string corrections in the case of interest, let us review the argu-
ment of [59]. The 1-loop correction to the four dimensional Einstein-Hilbert term can be
determined by reduction of the 1-loop R4 correction in 10d.15 In the normalization of
[59], this yields

SEinstein−Hilbert =

∫
d4x
√

g
(
e−2φ − 4ζ(2)χ

(2π)3

)
R .

Unfortunately, the full 1-loop corrected 10d action is not available as a means towards
obtaining the 1-loop completion of the 4d action. Nonetheless, after parametrizing the
ignorance regarding this action and comparing to the 4d effective action obtained by
choosing the Calderbank-Pedersen metric on the universal hypermultiplet scalar manifold,
[59] finds that only two possible values for c are possible,

c = 0 or c = −4ζ(2)χ

(2π)3
,

with χ the Euler characteristic of the Calabi-Yau. A perturbative string calculation
then establishes that it is the latter value that is correct beyond tree level. Such a
calculation in the case of the coset backgrounds with RR-flux that we are interested in
is very challenging, and beyond the scope of this work. However, the first part of the
analysis of [59] goes through also for these more general backgrounds. In particular, the
10d R4 term is proportional to [59]

t8t8R
4 +

1

4
E8 .

The first term is shorthand for t8t8R4 = tM1···M8tN1···N8RM1M2N1N2 · · ·RM7M8N7N8 , which
is expanded in terms of scalars built out of contractions of four Riemann tensors in eq.
(A.12) of [59]. The second term can be written compactly in form notation as

E8 ∼ ΩAB ∧ ΩCD ∧ ΩEF ∧ ΩGH ∧ ∗(eA ∧ · · · ∧ eH) ,

with ΩA
B = 1

2R
A

BCDeCeD the curvature 2-form and eA, A = 1, . . . , 10 a local coframe
basis. From the expansion of the t8 term in [59], we see that in each scalar invariant,

15As with all such arguments, we are relying on the off-shell continuation of an on-shell string compu-
tation. It would be desireable to back this line of reasoning up with an explicit string computation on
the background in question. We thank Pierre Vanhove for discussions on this point.
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contractions pair at least two Riemann tensors. Hence, this term does not contribute to
the 4d Einstein-Hilbert term upon reduction. The contribution from E8 to the Einstein-
Hilbert term stems, exactly as in the Ricci flat case, from

Ωab ∧ ∗4(e
a ∧ eb) ∧ Ωmn ∧ Ωpq ∧ Ωrs ∧ ∗6(e

m ∧ · · · ∧ es) ,

with a, b flat spacetime and m, n, . . . flat internal indices. We recognize the internal contri-
bution as proportional to the 6 dimensional Euler density. The conclusion of our analysis
is hence that in generalizing beyond Calabi-Yau manifolds, the same two possibilities
for the Calderbank-Pedersen parameter c exist as in the Calabi-Yau case (and await a
perturbative string calculation as arbiter).

6 Non-supersymmetric vacua

As an application of our consistent truncation result, we will search for non-supersymmetric
vacua of the 4d effective action. By the analysis of section 4, these are guaranteed to lift
to 10d solutions.

6.1 Tree level

The potential we obtained at tree level above has the form

V = A1e
2ϕ + A2e

4ϕ , (6.1)

with

A1 = −Qu
AQ̄v

B

(1

2
(ImN )−1 AB + 3eKXAX̄B

)(
dξ2 + dξ̃2

)
uv

,

A2 = −Qu
AQ̄v

B

1

8
(ImN )−1 AB

(
da + ξ̃dξ

)2

uv
. (6.2)

Minimizing the potential with regard to the 4d dilaton yields [60]

Vϕ = − A2
1

4A2
.

As A2 is positive definite, the potential at tree level is negative semi-definite on-shell.
In fact, this result generalizes immediately to any hypermultiplet metric of the general
form [56] that arises upon Calabi-Yau and SU(3) structure compactifications, and the
respective gaugings. The corresponding potential is obtained by appropriately modifying
u and v in (6.2). A2 hence remains positive also in this more general case.

We have thus proved that N = 2 gauged supergravity as it arises in Calabi-Yau like
compactifications at string tree level (i.e. with hypermultiplet metric as given in [56], and
gaugings of axionic isometries) does not permit de Sitter solutions. Due to the consistency
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of the truncation, this 4d result also follows from the 10d no-go theorem of Maldacena-
Nuñez [61]. Note however that our 4d reasoning continues to hold for an arbitrary vector
multiplet sector, i.e. including all possible worldsheet instanton corrections.

The two contributions to (6.1) arise upon compactification from the NSNS and the RR
sector respectively, see (4.3) and (4.5). The positivity of A2 is also manifest here.

6.2 Non-supersymmetric Nearly Kähler companions

The 10d analysis of subsection 3.2 reveals that, given a choice of the RR fluxes G0 and G6,
with all the other fluxes vanishing, there exists a single Nearly Kähler supersymmetric
vacuum on the cosets (2.1). This solution is also recovered adopting the 4d approach, as
discussed in [27, 11].

It is possible to show that, under the same conditions, the 4d tree level scalar potential
V also admits non-supersymmetric Nearly Kähler extrema. In the following formulae, we
introduce the sum of the geometric fluxes q ≡

∑
a qa, we rename the RR fluxes as e0 → e ,

m0 → m, and we call the equal va and the equal ba respectively v and b.

We obtain three Nearly Kähler extrema, lying at

v =

√
15

2

(
1

20I

∣∣∣
e

m

∣∣∣
)1/3

, b =
1

2

(
1

20I

e

m

)1/3

, ξ̃ =
24Imb2

q
, e2ϕ =

5q2

48I2m2v4
,

(6.3)

v =
√

3

(
1

20I

∣∣∣
e

m

∣∣∣
)1/3

, b = −
(

1

20I

e

m

)1/3

, ξ̃ = −12Imb2

q
, e2ϕ =

q2

12I2m2v4
,

(6.4)
and

v =

(
1√
5I

∣∣∣
e

m

∣∣∣
)1/3

, b = 0 = ξ̃ , e2ϕ =
5q2

36I2m2v4
. (6.5)

By comparing to section 3.2, we learn that the only extremum preserving supersymmetry
is (6.3), provided e < 0.

Thanks to the consistency of the reduction, the non-supersymmetric extrema of V found
here also solve the 10d equations of motion. Unlike the situation for the supersymmetric
solution, stability is of course no longer guaranteed. As in any truncation scheme, a full
stability analysis can only take place in the higher dimensional theory. What we can offer
in our 4 dimensional theory is a stability analysis with regard to the modes we retain.
To this end, we rescale the scalar fields16 (va, ba, ϕ, ξ̃) to obtain canonically normalized
kinetic terms, and then diagonalize the mass matrix at the respective solutions.

The case G2
SU(3) is depicted in figure 1: the first two extrema (6.3) and (6.4) are minima,

while the remaining extremum is a saddle point. For SU(3)
U(1)×U(1) and Sp(2)

S(U(2)×U(1)) , (6.4) is
a minimum, whereas due to modes leading away from the Nearly Kähler locus va = v

16Note that the shift symmetry of a and ξ is gauged, the background value of these fields is hence a
gauge choice.
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Figure 1: The potential for G2
SU(3) : we plot the rescaled potential e

5
3 m

1
3 I

4
3 V as a function of (Im/e) 1

3 b

and |Im/e| 13 v, at the extremum of ϕ and ξ̃. The deepest minimum corresponds to solution (6.4). The
cut of the plot at V = 0 is due to the constraint eϕ(b,v) > 0.

for all a, (6.3) is merely a saddle point, as is (6.5). To analyse stability, we compare the
magnitude of the negative masses at the saddle points with the Breitenlohner-Freedman
bound

m2
tachyonic ≥ −

3

4
|V | .

All extrema (including the saddle point depicted in figure 1) prove stable.

Finally, we remark that α′ and string loop corrections can be safely neglected for the
solutions above by tuning the RR fluxes e and m in such a way that the internal
volume Vol ≡ v3I ∼ e/m becomes sufficiently large and the string coupling constant
eφ ≡ eϕ

√
Vol ∼ e−

1
6 m− 5

6 becomes small (recall the definition (A.2) of the 4d dilaton). We
can study moderately large string coupling by invoking the corrected potential (5.4). A
preliminary numerical analysis for the coset G2

SU(3) indicates that all three AdS extrema
survive string loop corrections.

6.3 de Sitter vacua at all string loop order?

In face of the no-go result for de Sitter vacua obtained in subsection 6.1, we would like to
analyse how loop corrections modify the outcome of this study. Of course, to guarantee
the consistency of the truncation, the analysis in section 4 must be extended beyond
the two derivative case. However, the arguments put forth in subsection 4.1 in favor of
consistency apply to the additional terms as well. We will also assume in this section
that c $= 0, as in the Calabi-Yau case. Note that by the results above, we can perform
an (almost) complete analysis of the full loop corrected potential. The identification of
the physical coordinate ϕ and the Calderbank-Pedersen coordinate ρ, which is modified
order by order in the string coupling and is not available, merely enters in identifying the
range of the CP coordinate, see below. Away from very strong coupling (in which brane
instanton corrections would have to be considered regardless), this does not affect the
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search for de Sitter minima.

Focusing on the ρ dependence of the potential (5.4) and taking the obvious positivity
constraints on the coefficients into account does not rule out de Sitter vacua. One can
then proceed to derive various constraints on these coefficients. E.g., by noting that the
potential (5.4) has the form

V (ρ) = P (ρ)Q(ρ) ,

with P (ρ) = 1
(ρ2−c)2 , we obtain

V (ρ0) = −P 2

P ′ Q
′|ρ0

=
Qu

AQ̄v
B

2(ρ2
0 − c)

[(
− 1

2
(ImN )−1 AB − 3eKXAX̄B

)
(4dξ2)uv

+
c

(ρ2
0 + c)2

eKXAX̄B(da + ξ̃dξ)2
uv

]
,

where ρ0 signifies the value of ρ at a minimum of the potential. Since c is negative for the
cosets we are considering, a de Sitter vacuum requires the first term in the square bracket
to be positive at the minimum of the potential. This term is proportional the tree level
NSNS contribution to V , given in eq. (4.3). Hence, our necessary condition translates
into the following inequality involving the internal NSNS 3–form and Ricci scalar

H!H − 2R6 > 0 .

Recalling eq. (4.4), this is obviously true whenever the non-vanishing SU(3) torsion
classes satisfy 15|W1|2 < W2!W 2. For the simple case of Nearly Kähler manifolds (i.e.
when W2 = 0) the inequality is however non-trivial, and reads 3b2 − 5v2 > 0.

We hope to return to a more complete analysis of the all loop corrected potential in the
near future.
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A Details of the dimensional reduction

The G-invariant reduction ansatz strongly constrains the dependence of all the higher
dimensional fields on the G/H coordinates, relegating it into the coframe em introduced
in subsection 2.1. In particular, the most general G-invariant 10d metric is (here and in
the following, the hat denotes 10d fields):

dŝ2 = e2ϕ(x)gµν(x)dxµ ⊗ dxν + gmn(x)em(y)⊗ en(y) , (A.1)

where xµ and ym are respectively coordinates on the 4d spacetime and the internal man-
ifold M6, and gmn satisfies the G-invariance condition discussed in subsection 2.1. Com-
ponents of the 10d metric with mixed 4d-6d indices are not allowed since there are no
left-invariant 1–forms on our coset manifolds (2.1). Since the invariant scalars on the
coset are necessarily constant, a nontrivial warp factor is also not permitted (see [62, 63]
for recent discussions of a non-trivial warp factor in the N = 1 context). The Weyl factor
e2ϕ(x) in front of the 4d metric is needed in order to obtain a canonical lower dimen-
sional Einstein-Hilbert term

∫
M4

vol4R4 from the string frame higher dimensional action∫
M10

vol10e−2φR̂, with

ϕ(x) = φ(x)− 1

2
log

∫

M6

d6y
√

g6 , (A.2)

where φ(x) is the 10d dilaton and
√

g6 ≡
√

det gmn(x, y) =
√

det gmn(x) | det e
p
q(y)| .

Notice that, thanks to this factorization of the x and y dependence, ∂µ log
√

g6 does not
depend on the internal coordinates, and

∂µϕ = ∂µφ−
1

2
∂µ log

√
g6 . (A.3)

The ansatz for the 10d supergravity field strengths must be chosen consistently with their
Bianchi identities. For instance, from the Bianchi identity dF̂2 = ĤF̂0, one sees that if
F̂0 $= 0, then the NSNS 3–form Ĥ has to be exact: Ĥ = dB̂, with a globally defined
2–form potential B̂. The most general B̂ respecting left-invariance on M6 is

B̂ = B + b , (A.4)

where B(x) is along 4d spacetime, while b(x, y) = ba(x)ωa(y) lives on M6 (the left-invariant
2–forms ωa are given in subsection 2.1).

We deal with the expansion of the RR fields in subsection A.2.

A.1 Special Kähler geometry from the NSNS sector

Combining the 2–form J of subsection 2.2 and the internal NS field b we introduce t =
b + iJ , whose expansion t = taωa on the basis 2–forms defines the complex 4d scalars
ta = ba + iva. The associated kinetic term is determined by

1

8
gmpgnq

(
∂µgmn∂

µgpq + ∂µbmn∂
µbpq

)
=

1

4Vol

∫

M6

∂µt ∧ ∗∂µt̄ = Gab∂µt
a∂µt̄b , (A.5)
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where the l.h.s. originates from the reduction of the 10d Ricci scalar and Ĥ2 terms,
while the σ-model metric Gab was introduced in eq. (2.12). The first equality in (A.5)
is derived recalling that the internal metric is fixed by the forms J and Ω defining the
SU(3) structure: indeed, calling I the almost complex structure induced by Ω, we have
gmn = JmpIp

n. Notice that we get no contribution from the variation of I since the
associated Ω, given in eq. (2.14), is rigid.

The metric Gab is special Kähler: indeed, it can be obtained via Gab = ∂2K
∂ta∂t̄b from the

Kähler potential

K = − log
4

3

∫
J ∧ J ∧ J = − log 8Vol .

It in turn is determined by a prepotential F via the special Kähler geometry formula

K = − log i( X
AFA −XAFA ), where XA ≡ (X0, Xa) = (1,−ta) and FA = ∂F(X)

∂XA .

For each of the cosets we consider, the explicit expressions of Gab and Vol are given in
table 1. The (cubic) prepotential reads

F(X) =
1

6
Kabc

XaXbXc

X0
,

where the non-vanishing triple intersection numbers Kabc :=
∫

ωa ∧ ωb ∧ ωc (recall the
2–forms ωa in subsection 2.1) are

K123 = I for SU(3)
U(1)×U(1)

K112 = 2I for Sp(2)
S(U(2)×U(1))

K111 = 6I for G2
SU(3) .

(A.6)

The period matrixNAB of special Kähler geometry is given by the formula (see e.g.[64])

NAB = FAB + 2i
Im (FAC)XCIm (FBD)XD

XEIm (FEF )XF
, where FAB ≡

∂2F
∂XA∂XB

.

Equivalently, we can directly obtain it from the coset geometry via [18]:

(ImN )−1 AB = −
∫
〈ω̃A, ∗bω̃

B〉 , [ReN (ImN )−1] B
A = −

∫
〈ωA, ∗bω̃

B〉 ,

[ImN + ReN (ImN )−1ReN ]AB = −
∫
〈ωA, ∗bωB〉 ,

with ∗b( · ) ≡ e−b ∗λ(eb · ) . The operator λ and the pairing 〈 , 〉 were defined below (2.10).

We obtain the matrices

ImN = −Vol

(
1 + 4Gabbabb 4Gabbb

4Gabbb 4Gab

)
, (A.7)

ReN = −
(

1
3Kabcbabbbc 1

2Kabcbbbc

1
2Kabcbbbc Kabcbc

)
. (A.8)
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A.2 The RR sector

In order to reduce the RR sector we specialize the general procedure described in section5
of ref. [10] for M6 corresponding to our coset spaces. Adopting the democratic formulation
of type IIA supergravity [36], the RR degrees of freedom can be encoded in a field strength
Ĝ consisting of a formal sum of forms of all possible even degrees, satisfying

Bianchi identity : dĜ = 0 (A.9)

self-duality constraint : F̂ = λ(∗F̂) , where F̂ ≡ eB̂Ĝ and λ(F̂(k)) = (−)
k
2 F̂(k). (A.10)

Due to the self-duality constraint, the equations of motion for the RR degrees of freedom
are equivalent to the Bianchi identities.

We implement the reduction ansatz by expanding Ĝ on the basis of left-invariant internal
forms introduced in subsection 2.1,

Ĝ = (GA
(0) + GA

(2) + GA
(4))ωA− (G̃(0)A + G̃(2)A + G̃(4)A)ω̃A + (G(1) + G(3))α− (G̃(1) + G̃(3))β.

(A.11)
G(p)(x) and G̃(p)(x) are p–forms in 4d spacetime. Plugging this expansion into eqs. (A.9),
(A.10), and going through the derivation of [10], one identifies the 4d variables

GA
(0) = mA , G̃(0)A = eA + qA ξ̃ (A.12)

G(1) = Dξ ≡ dξ − qaA
a , G̃(1) = dξ̃

GA
(2) = dAA , G̃(2)A + BG̃(0)A = ImNAB ∗ FB + ReNABFB

G(3) = −B ∧Dξ + e2ϕ ∗ dξ̃ , G̃(3) = −B ∧ dξ̃ − e2ϕ ∗Dξ

GA
(4) + B ∧GA

(2) +
1

2
B2 GA

(0) = e4ϕ
[
(ImN )−1(G̃(0) − ReNG(0))

]A ∗ 1

G̃(4)A + B∧G̃(2)A +
1

2
B2G̃(0)A = e4ϕ

[
− ImNG(0) + ReN (ImN )−1(G̃(0) − ReNG(0))

]
A
∗ 1

where the propagating fields are the two real scalars ξ, ξ̃ and the 1–forms AA. We also
introduced the modified field strengths

FA ≡ dAA + mAB . (A.13)

Furthermore we introduce qA = (0, qa), the qa being the geometric fluxes defined in sub-
section 2.1.4, while mA, eA are constant flux parameters satisfying qama = 0. Notice that
one of the ea is redundant, since it can be eliminated via a constant shift of ξ̃ . This
reflects the fact that on our cosets the linear combination qaω̃a is exact (see eq. (2.11)),
and therefore doesn’t support any flux.

The residual content of (A.9)–(A.11) not included in eqs. (A.12) consists of a set of equa-
tions to be read as the EoM for ξ, ξ̃ and AA. We use these equations to reconstruct the
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4d action S(4)
RR of subsection 4.2. In particular, we infer the RR contribution to the 4d

scalar potential,

VRR = −e4ϕ

4

[
G(0)ImNG(0) + (G̃(0) −G(0)ReN )(ImN )−1(G̃(0) − ReNG(0))

]
. (A.14)

Substitution of the explicit expressions for G(0) and G̃(0) given in (A.12) yields eq. (4.5).

As a last remark, we stress that the whole procedure of section 5 of [10] applies here with
no need to take any integral over M6. In other words, once the left-invariant truncation
ansatz has been plugged in, the dependence of eqs.(A.9), (A.10) on the internal coordinates
automatically factorizes out.
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