Varna Lecture on L?-Analysis of Minimal
Representations

Toshiyuki Kobayashi

Abstract Minimal representations of a real reductive group G are the ‘small-
est’ irreducible unitary representations of G. The author suggests a program
of global analysis built on minimal representations from the philosophy:
small representation of a group = large symmetries in a representation
space.

This viewpoint serves as a driving force to interact algebraic representation
theory with geometric analysis of minimal representations, yielding a rapid
progress on the program. We give a brief guidance to recent works with em-
phasis on the Schrodinger model.

1 What are Minimal Representations?

Minimal representations of reductive groups G are the ‘smallest’ infinite di-
mensional irreducible unitary representations.

The Weil (metaplectic, oscillator, the Segal-Shale-Weil, harmonic) rep-
resentation, known by a prominent role in number theory, consists of two
minimal representations of the metaplectic group Mp(n,R). The minimal
representation of a conformal group SO(4,2) arises on the Hilbert space of
bound states of the Hydrogen atom.

Minimal representations are distinguished among other (continuously many)
irreducible unitary representations of G by the following properties that I
state loosely.

e ‘Smallest’ infinite dimensional representations of G.
e One of the ‘building blocks’ of unitary representations of Lie groups.
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‘Closest’ to the trivial one dimensional representation of G.
‘Quantization’ of minimal nilpotent coadjoint orbits of G.
e Matrix coefficients have a ‘slow decay’ at infinity.

In algebraic representation theory, there is a distinguished ideal J intro-
duced by Joseph [14] in the enveloping algebra of a complex simple Lie algebra
other than type A (see also [§]). An irreducible representation of a real re-
ductive Lie group G is called minimal if its infinitesimal representation is
annihilated by J. Thus the terminology ‘minimal representations’ is defined
inside representation theory. We remark that not all reductive groups admit
minimal representations. Further, minimal representations are not always
highest weight modules. Beyond the case of highest weight modules, there
has been an active study on minimal representations of reductive groups, in
particular, by algebraic approaches, see e.g., [8, [14, [15], B0, [37, 39} 42 [43].

In contrast, my program focuses on global analysis inspired by minimal
representations. For this, we switch the viewpoint, led by

Guiding principle 1.1 ([24])

small representations of a group

= large symmetries in a representation space.
An extremal case of ‘large symmetries’ might be stated as
dimension of = < dimension of any non-trivial G-space (1.1)

when the representation of G is realized on the space of functions on the
geometry =. An obvious implication of (II]) is that G' cannot act on =.

The latter point of view, served as a driving force, has brought us to a
new line of investigation of geometric analysis modeled on minimal represen-
tations. In this program we are trying to dig out new interactions with other
areas of mathematics even outside representation theory:

conformal geometry for general pseudo-Riemannian manifolds [21], B1],
Dolbeault cohomologies on open complex manifolds [23] [30].
conservative quantities for PDEs [21] [33],

breaking symmetries and discrete branching laws [32, [34] [36), [38], [39],
Schrodinger model and the unitary inversion operator [11), 27, 28],
deformation of the Fourier transform [3],

geometric quantization of nilpotent orbits [111 28],

holomorphic semigroup with a generalized Mehler kernel [3] [26], 27],
new orthogonal polynomials for fourth order differential operators [9] [10),
2,

e a generalization of the Fock model and Bargmann transforms [12].

The aim of this article is to provide a brief guidance to the rapid progress
on our program, [3} 9] [0} 1T}, 12] 23] 24, 28| 29| [34], B8]. We should mention
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that in order to avoid an overlap with a recent publication [24], we do not
include here some other constructions such as a conformal model of minimal
representations (e.g. the construction of the intrinsic conservative quantities
for the conformally invariant differential equations). Instead, we highlight an
L2-model (Schridinger model) of the minimal representations and its variant.
We apologize for not being able to mention some other important works on
minimal representations, e.g., see [8] and references therein. For a comparison
of the L?-model with the conformal model, we refer to [28, Introduction].

2 More Symmetric than Symmetric Spaces

The traditional geometric construction of representations of Lie groups G is
given in the following two steps:

Step 1. The group G acts on a geometry X.

Step 2. By the translation, G acts linearly on the space I'(X) of functions
(sections of equivariant bundles, or cohomologies, - - -).

Naively, the Gelfand—Kirillov dimension of the representation on I'(X) is
supposed to be the dimension of X. Thus we may expect that the repre-
sentation on the function space I'(X) is ‘small’ if the geometry X itself is
small.

First of all, we ask when the geometry X is ‘small’.

For this we may begin with the case when G acts transitively on X, or
equivalently, X is a homogeneous space G/H. Further, if we compare two
homogeneous spaces X; = G/H; and Xy = G/Hy with H; C Hs, we may
think that X5 is smaller than X;. Hence ‘smaller’ representations on I'(X)
should be attained if X = G/H where H is a maximal subgroup of G.

Here are two typical settings for real reductive Lie groups G:

e (G, H) is a symmetric pair.
In this case, the Lie algebra h of H is maximal reductive in g. Analysis
on reductive symmetric spaces G/H has been largely developed in par-
ticular, since 1950s by the Gelfand school, Harish-Chandra, Shintani, Hel-
gason, Takahashi, Molchanov, Faraut, Flensted-Jensen, Matsuki-Oshima—
Sekiguchi, Delorme, van den Ban, Schlichtkrull, among others.

e H is a Levi subgroup of G.
In this case, there exists a G-invariant polarization on G/H, and its geo-
metric quantization obtained by the combination of the Mackey induction
(real polarization) and the Dolbeault cohomologies (complex polarization)
produces a ‘generic part’ of irreducible unitary representations of G. The
resulting representations are the ‘smallest’ if H is a maximal Levi sub-

group.

These two typical examples are related: Tempered representations for reduc-
tive symmetric spaces (i.e. irreducible unitary representations that contribute
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to L?(G/H)) are given by the combination of the ordinary and cohomological
parabolic inductions. A missing picture in the above two settings is so called
‘unipotent representations’ including minimal representations.

On the other hand, it is rare but still happens that the representation of G
on the function space I'(X) extends to a representation of a group G which
contains G, even when the G-action on the geometry X does not extend to G
(in particular, Step 1 does not work for the whole group G). We discuss this
phenomenon in the Schrédinger model of minimal representations when G is
a maximal parabolic subgroup (the notation (G, G) here will be replaced by
(P,G) in Section B]). Such a phenomenon also occurs when G is reductive.
Thus the analysis of minimal representations may be thought of as ‘analysis
with more symmetries’ than the traditional analysis on homogeneous spaces.
Here is a typical example:

Example 2.1 ([21, Theorem 5.3]) The minimal representation of the in-
definite orthogonal group G = O(p,q) (p + q:even) is realized in function
spaces on symmetric spaces of the subgroups G = O(p — 1,q) or O(p,q — 1)
on which the whole group G cannot act geometrically.

Example 2.2 ([34]) The restriction of the most degenerate principal series
representations of G = GL(n,R) to the subgroup G = O(p,q) (p+q = n)
reduces to the analysis of the symmetric space of G on which the whole group
G cannot act transitively.

Further examples and explicit branching rules can be found in [21] [32]
34] where the restriction of minimal representations to subgroups (broken
symmetries) reduce to analysis on certain semisimple symmetric spaces.

3 Schrodinger Model of Minimal Representations

Any coadjoint orbit of a Lie group is naturally a symplectic manifold endowed
with the Kirillov—Kostant—Souriau symplectic form. For a reductive Lie group
G, ‘geometric quantization’ of semisimple coadjoint orbits has been consid-
erably well-understood — this corresponds to the ordinary or cohomological
parabolic induction in representation theory, whereas ‘geometric quantiza-
tion’ of nilpotent coadjoint orbits is more mysterious (see [4, [12] 23]).

In this section we explain a recent work [I1] with Hilgert and Méllers on the
L2-construction of minimal representations built on a Lagrangian subvariety
of a real minimal nilpotent orbit, which continues a part of the earlier works
[33] with Orsted, and [28] with Mano.

Suppose that V is a simple Jordan algebra over R. We assume that its
maximal Euclidean Jordan subalgebra is also simple. Let G and L be the
identity components of the conformal group and the structure group of the
Jordan algebra V', respectively. Then the Lie algebra g is a real simple Lie
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algebra and has a Gelfand—Naimark decomposition g = n+[+n, wheren ~ V
is regarded as an Abelian Lie algebra, [ ~ ste(V') the structure algebra, and
n acts on V by quadratic vector fields.

Let (O)ﬁfn be a (real) minimal nilpotent coadjoint orbit. By identifying
g with the dual g*, we consider the intersection V' N @fﬁn, which may be
disconnected (this happens in the case ([B.2) below). Let = be any connected
component of VO(O)G"‘n We note that the group L acts on = but G does not.
There is a natural L-invariant Radon measure on =, and we write L?(Z) for
the Hilbert space consisting of square integrable functions on =. Then we
can define a unitary representation on L?(Z) (Schrédinger model) built on a

Lagrangian submanifold = in this generality [I1], see also [5] [33].

Theorem 3.1 (Schrédinger model) Suppose V £ RPY with p + q odd.

1) Z is a Lagrangian submanifold of QC% .

2) There is a finite covering group G~ of G such that G~ acts on L*(Z) as an
irreducible unitary representation.

3) The Gelfand—Kirillov dimension of m attains its minimum among all in-
finite dimensional representations of G-, i.e. DIM(7) = 1 dim Q%= .

4) The annihilator of the differential representation dm zs the Joseph ideal in
the enveloping algebra U(g) if V is split and g is not of type A.

The simple Lie algebras arisen in Theorem [B.1] are listed as follows:

sl(2k,R),50(2k, 2k),50(p + 1,9 + 1), e7(7), (3.
sp(k,R), su(k, k), 50" (4k),50(2, k), er(—25), (3.
sp(k, C),sl(2k, C),s0(4k,C),s0(k + 2,C), e7(C), (3.
sp(k, k), su*(4k),so(k,1). (3.

W w w w
O SO R
N NG NN

Remark 1. In the case where V is an Euclidean Jordan algebra, G is the
automorphism group of a Hermitian symmetric space of tube type (see (3.2]))
and there are two real minimal nilpotent orbits. The resulting representations
7 are highest (or lowest) weight modules.

Remark 2. If the complex minimal nilpotent orbit (O)flfn intersects with g, then
0% is equal to 0SS, Ng or its connected component. We notice that 0S5 Ng
may be an empty set depending on the real form g. In the setting of Theorem
B1] this occurs for ([B4). In this case, the representation 7 in Theorem Bl is
not a minimal representation as the annihilator of d is not the Joseph ideal,
but 7 is still one of the ‘smallest’ infinite dimensional representations in the

sense that the Gelfand—Kirillov dimension attains its minimum.

Remark 3. There is no minimal representation for any group with Lie algebra
o(p+1,q+1) with p+ g odd, p, ¢ > 3 (see [43, Theorem 2.13]).

Example 3.2 Let V = Sym(m,R). Then G = Sp(m,R) and

Vm([))GR _ {X c M(m’R) X = tX7rankX = 1} (35)

min
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Let = := {X € VNOS: : Trace X > 0}. Then the double covering map
(folding map)
R™\ {0} = =, v ol

induces an isomorphism between L*(Z) and the Hilbert space L*(R™)oven of
even square integrable functions on R™. Thus our representation w on L*(Z)
s nothing but the Schrodinger model of the even part of the Segal-Shale—Weil
representation of the metaplectic group Mp(m,R) [7, [13)].
Example 3.3 Let V = RP? with p+ q even. Then g=o0(p+ 1,9+ 1), and
G

VO, ={eRM™M g+ o+ G-y = =6, =01\ {0}, (3.6)
If p =1, VNO% consists of two connected components according to the
signature of &1, i.e. the past and future cones. They yield highest/lowest weight
modules. For p,qg > 2, V N @an is connected, and our representation m on
L?(Z) is the Schrédinger model of the minimal representation of O(p+1, g+1)
constructed in [33], which is a neither highest nor lowest weight module.

As we discussed in Section Plin contrast to traditional analysis on homoge-
neous spaces, the group G in our setting is too large to act geometrically on
Z. This very feature in the Schrodinger model is illustrated by the fact that
the Lie algebra n acts as differential operators on = of second order. They
are fundamental differential operators [28] in the setting of Example 3.3 (see
also Bargmann—Todorov [2]). In [I1], these differential operators are said to
be Bessel operators, and serve as a basic tool to study the Schréodinger model

7 in the setting of Theorem 311

4 Special Functions to 4th order Differential Operators

Guiding Principle [[T] suggests that there should exist plentiful functional
equations in the representation spaces for minimal representations. Classi-
cally, it is well-known that Hermite polynomials form an orthogonal basis
for the radial part of the Schrodinger model of the Weil representation [7],
whereas Laguerre polynomials arise in the minimal representation of the con-
formal group SO(n,2) ([1]).

These classical minimal representations are highest weight modules. How-
ever, for more general reductive groups, minimal representations do not
always have highest weight vectors, and the corresponding ‘special func-
tions’ do not necessarily satisfy second order differential equations. We
found in [28] that Meijer's G-functions G39(x|b1,ba, b3, bs) play an analo-
gous role in the minimal representation of O(p, q). Here Meijer’s G-functions
G2Q(z|by, ba, b3, by) satisfy a fourth order ordinary differential equation
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4

H(m% —bj)u(x) = zu(z).

j=1
More generally, the following fourth order differential operators

(=) +v+2)
2

Dy = %((9 F )0+ p+v) — 22)(000 + p) — 22) —

appear naturally in the Schréodinger model of minimal representations in the
setting of Theorem 3.1l Here 6 = x%.
The subject of [9} [10, 29] is the study of eigenfunctions of D, , including

generating functions for eigenfunctions of D, .,
asymptotic behavior near the singularities,
L?-eigenfunctions and concrete formulas of L?-norms,
integral representations of eigenfunctions,

recurrence relations among eigenfunctions,

(local) monodromy.

The L?-eigenfunctions of D, , arise as K-finite vectors in the Schrédinger
model of the minimal representations constructed in Theorem[3.1]in a uniform
fashion. These ‘special functions’ with certain integral parameters yield or-
thogonal polynomials (the Mano polynomials M}’ ! (z)) satisfying again fourth
order differential equations [I0], which include Hermite polynomials and La-
guerre polynomials as special cases. We note that the fourth order differential
equation Dy, f = v f reduces to a differential equation of second order when
G/K is a tube domain (see (82)). See also Kowata—Moriwaki [38] for further
analysis of the fundamental differential operators on =.

5 Broken Symmetries and Branching Laws

As indicated in Guiding Principle[I.]] the ‘large symmetries’ in representation
spaces of minimal representations produce also fruitful examples of branching
laws which we can expect a simple and detailed study.

Suppose 7 is a unitary representation of a real reductive Lie group G.
We consider 7 as a representation of a subgroup G’ of G, referring it as
the restriction 7|g/. In general, the restriction 7|gs decomposes into a direct
integral of irreducible representations of G’ (branching law). It often happens
that the branching law contains continuous spectrum if G’ is non-compact.
Even worse, each irreducible representation of G’ may occur in the branching
law with infinite multiplicities. See [20] for such wild examples even when
(G,@") is a symmetric pair. In [I6] [I7], we raised the following:

Program 5.1 1) Determine the triple (G,G',7) for which the restriction
7|er decompose discretely with finite multiplicities.
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2) Find branching laws for (1).

Program (1] intends to single out a nice framework of branching prob-
lems for which we can expect a detailed and explicit study of the restriction.
Concerning Program [5.] (1) for Zuckerman’s derived functor modules 7, a
necessary and sufficient condition for discrete decomposition with finite mul-
tiplicities was proved in [I7], [I9], and a complete classification was given with
Oshima [35] when (G, G’) is a reductive symmetric pair.

As such, the local theta correspondence with respect to compact dual pairs
is a classic example for minimal representations 7:

Example 5.2 Suppose that © is the Weil representation, and that G' = G -

5 is a dual pair in G = Mp(n,R) with Gy compact. Then the restriction
7|qr decomposes discretely and multiplicity-freely. The resulting branching
laws yield a large part of unitarizable highest weight modules of G (Enright—
Howe—-Wallach [G]).

In order to discuss Program [5.1] for minimal representations, we recall from
[1I7, 18, 19] the general theory. Let K be a maximal compact subgroup of
G, T a maximal torus of K, and t, £ the Lie algebras of T', K, respectively.
We choose the set AT (£, t) of positive roots, and denote by t, the dominant
Weyl chamber in /—1t*. We also fix a K-invariant inner product on £, and
regard v/—1t* as a subspace of v/—1¢*.

First, suppose that K’ is a closed subgroup of K. The group K acts on the
cotangent bundle T*(K/K') of the homogeneous space K/K' in a Hamilto-
nian fashion. We write

p:T(K/K'") — v/—1¢"
for the momentum map, and define the following closed cone by
Ck(K') :=Image u Nty

Second, let Suppy () be the set of highest weights of finite dimensional
irreducible representations of K occurring in a K-module 7. The asymptotic
K-support ASk(m) is defined to be the asymptotic cone of Suppg (7). It is
a closed cone in t;. There are only finitely many possibilities of ASk () for
the restriction 7|k of irreducible representations 7 of G.

The asymptotic cone ASk(7) tends to be a ‘small’ subset in t; if 7 is a
‘small’ representation. For example,

ASk(m) ={0} if dimm < oo,
ASk(m) =R4p if 7 is a minimal representation, (5.1)

where § is the highest root of the K-module p¢ := gc/€c. The formula (G.1])
holds in a slightly more general setting where the associated variety of 7 is
the closure of a single minimal nilpotent Kc¢-orbit on pc [36]. Concerning
Program 511 we established an easy-to-check criterion in [I8]:
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Theorem 5.3 Suppose G’ is a reductive subgroup of G such that K' :=
G' N K is a mazimal compact subgroup of G'. If

Cr (K') NASk (m) = {0}, (5.2)

then the restriction w|c decomposes discretely into a direct sum of irreducible
unitary representations of G' with finite multiplicities.

As was observed in [22], we can expect from the formula (5.1]) and from the
criterion (5.2) that there is plenty of subgroups G’ for which the restriction
of the minimal representation of G decomposes discretely and with finite
multiplicities. Reductive symmetric pairs (G,G’) for which the restriction
7|c is (infinitesimally) discretely decomposable for a minimal representation
7 of G has been recently classified in [36].

6 Generalized Fourier Transform as a Unitary Inversion

In the L2-model of the minimal representation m of G on L?(Z), the action of
the maximal parabolic subgroup P with Lie algebra [+ n is simple, namely,
it is given just by translations and multiplications. Let w be the conformal
inversion of the Jordan algebra. In light of the Bruhat decomposition

G = P11 PwP,

it is enough to find m(w) in order to give a global formula of the G-action on
L?(Z). We highlight this specific unitary operator, and set

F= = cm(w), (6.1)

where ¢ is a complex number of modulus one (the phase factor). We call F=
the unitary inversion operator. We studied in a series of papers [26] 27, 28]
with Mano the following:

Problem 6.1 Find an explicit formula of the integral kernel of Fx=.

The kernel of the Euclidean Fourier transform is given by e~*®€) which
is locally integrable. It is plausible that this analytic feature happens if and
only if the corresponding minimal representation is of highest weight. Thus
we raise the following:

Question 6.2 Let (7, L?(Z)) be the L?>-model of a minimal representation
of a simple Lie group G~ constructed on a Lagrangian submanifold = of QS
as in Theorem [31 [I1]. Are the following two conditions equivalent?

(i) The kernel of the unitary inversion operator F= is locally integrable.
(ii) 7 is a highest/lowest weight module.
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Here we have excluded the case where the simple Lie algebra g is of type A,
(the Joseph ideal is not defined for g¢ = s1,,(C)). In the case G = O(p+1, ¢+1)
with p + g even > 2, it was proved in [28] that (i) holds if and only if
either min(p, ¢) = 1 (equivalently, (ii) holds) or (p,q) = (3,3) (equivalently,
g = 0(3,3) ~ sl(4,R) is of type As). The implication (ii) = (i) was proved
in [12] for tube type, see ([83]). The implication (i) = (ii) is an open problem
except for the above mentioned case g = o(p+ 1,¢ + 1).

When G = O(p + 1,q + 1) (see Example B3), F= intertwines the mul-
tiplication of coordinate functions &; (1 < j < p + ¢) with the operators
R; (1 < j < p+ q) which are mutually commuting differential operators of
second order on = (see Bargmann—Todorov [2], [28, Chapter 1]).

This algebraic feature is similar to the classical fact that the Euclidean
Fourier transform Fgr~ intertwines the multiplication operators £; and the
differential operators v/—18; (1 < j < m) (see Example[3.2)). In the setting of
Theorem Bl F= intertwines the multiplication of coordinate functions with
Bessel operators. Actually, this algebraic feature determines uniquely F= up
to a scalar [I1I [2§].

Concerning Problem [61], the first case is well-known (see [7] for example):
1) g =sp(m,R).

F= = the Euclidean Fourier transform on R™.

Here are some recent results on a closed formula of the integral kernel:

2) g=o(p+1,q+1) (with Mano [27]).
3) The associated Riemannian symmetric space G/K is of tube type (see
(E3)).

We note that minimal representations in the cases 1) and 3) are highest
(or lowest) weight modules, whereas minimal representations in the case 2)
do not have highest weights when p,q > 2 and p + ¢ is odd.

Problem is open for other cases, in particular, for minimal representa-
tions without highest weights except for the case G =O(p+ 1,9+ 1).

7 SLy-triple in the Schrodinger Model

On R™, we set |z| := (3°7, x?)%, E =" x;3% (Euler operator) and
J
A=3"0 8%2? (Laplacian). Then it is classically known (e.g., [7, [13]) that
the operators
~ m v—1 v—1

"= F 4+ — =Y |x|? =Y _"A 1
Wepe v g e &

form an sly-triple, namely, the following commutation relation holds:

&) =2¢, [, f1=-2f, [ f]=0.
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On the other hand, we showed in [27] that the following operators

- L /4
h:=2E+m-—1, €:=2V-1lz|, f:= 5 |z| A (7.2)

also forms an sls-triple, i.e., [ﬁ,é] = 2e, [ﬁ, f] = —Zf, €, ﬂ = h.
Further the differential operator

1 JUNN A
D= WA fl(—€+f) = \1‘|(Z -1
dz

extends to a self-adjoint operator and has only discrete spectra on L?(R™, m)

which are given by {—(j + Z5%) : j = 0,1,2,---} (see [27]), whereas the
Hermite operator

1
Di=——
2v/—1
extends to a self-adjoint operator and has only discrete spectra on L?(R™, dz)

which are given by {—1(j+ %) :j=0,1,2,---} (see [7,[13]). Hence, one can
define for Ret > 0:

(& + ) = 3~ [P)

They are holomorphic one-parameter semigroups consisting of Hilbert—Schmidt
operators for Ret > 0, and are unitary operators for Ret = 0.

A closed formula for both et” and e!” is known. That is, the holomorphic
semi%roup e'P has the classical Mehler kernel given by the Gaussian kernel
e~ 171" and reduces to the Euclidean Fourier transform when ¢t = /— 1 (|3
§5] ), whereas the integral kernel of the holomorphic semigroup e*? is given
by the I-Bessel function and the special value at t = v/—17 is by the J-Bessel
function (see [27, Theorem A and Corollary B] for concrete formulas).

We can study these holomorphic semigroups by using the theory of dis-
cretely decomposable unitary representations (e. g. [16][I7, [I8]). Actually, the
aforementioned slo-triple arises as the differential action of the Schrédinger
model of the minimal representations of Mp(m,R) on L?(R™, dx) and
SOg(m +1,2) on L*(R™, \%)’ respectively via

sl(2,R) ~ sp(1,R) C sp(m,R),
sl(2,R) ~ s0(1,2) Cso(m+1,2),

for which we write as d : sI(2,R) < g.
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In both cases, the Lie algebra g contains a subalgebra commuting with
t(sl(2,R)), which is isomorphic to o(m). Then the minimal representations
decompose as the representation of the direct product group SL(2,R) x O(m)
(up to coverings and connected groups) as follows:

oo

@ SL(2,R ;
) S kg (R,
=0

L2(Rm di
Ed

D .
LAR™,dz) ~ Y m S R IR,
=0

where H7(R™) denotes the natural representation of O(m) (or SO(m)) on
the space of harmonic polynomials on R™ of degree j and 7rbs LR stands
for the irreducible unitary lowest weight representation of SL(2,R) (or its
covering group) with minimal K-type b.

These considerations bring us to interpolate operators occurring two min-
imal representations of SOy(m + 1,2) and Sp(m,R). For this, we take a > 0

to be a deformation parameter, and define

hemlpamte=? o Vol g VoL ey

a a a a
The operators ([Z.I]) in the Weil representation corresponds to the case a = 2,
and the operators (2] for SOg(m+1,2) corresponds to the case a = 1. They
extend to self-adjoint operators on the Hilbert space L*(R™, |a|*~2dz), form
an slo-triple, and lift to a unitary representation of the universal covering
group SL(2,R) of SL(2,R) for every a > 0. The Hilbert space decomposes
into a multiplicity-free discrete sum of irreducible unitary representations of
SL(2,R)"x O(m) as follows:

oo
2 -2 @ sr 2,R i
LAR™ |a]*2dz) ~ m].;?_gﬂ X 77 (R™).
j=0
The discrete decomposition of sls-modules becomes a tool to generalize the
study of the unitary inversion operator F= and the holomorphic semigroup
in [26] 27] to the following settings:

e Dunkl operators (with Ben Said and Orsted [3]),
e Conformal group of Euclidean Jordan algebras (with Hilgert and Méollers

[12)).
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8 Quantization of Kostant—Sekiguchi Correspondence

In this section we discuss Theorem [B.1] in a special case where V is Eu-
clidean, equivalently, G/K is a tube domain, and explain a recent work [12]
with Hilgert, Mollers, and Orsted on the construction of a new model (a
Fock-type model) of minimal representations with highest weights and a
generalization of the classical Segal-Bargmann transform, which we called
a ‘geometric quantization’ of the Kostant—Sekiguchi correspondence. In the
underlying idea, the discretely decomposable restriction of sl(2,R), which
appeared in [20], plays again an important role.

We recall (e.g., [7, 13]) that the classical Fock space F(C™) is a Hilbert
space in the space O(C™) of holomorphic functions defined by

F(C™):={fe0o(Cm): / |f(z)|26_‘z‘2dz < oo},

and that the Segal-Bargmann transform is a unitary operator

B:L*R™) 5 F(C™), uw~ (Bu)(z):= - Kg(x,z) f(x)dz,

with the kernel
1
KB(x7Z) = exp(—§<z,z> + 2<va> - <{I?7£IJ>)

From a representation theoretic viewpoint, the classical Segal-Bargmann
transform intertwines the two models of the Weil representation of the meta-
plectic group Mp(m,R), namely, the Schrédinger model on L?(R™) and the
Fock model on F(C™).

In order to find a natural generalization of this classical theory, we begin by
examining how one may rediscover the classical Fock model. Our idea is to use
the action of sls, more precisely, a ‘holomorphically extended representation’
of an open semigroup of SL(2,C) rather than a unitary representation of
SL(2,R) itself. For this, we take a standard basis of s[(2,R) as

e (0) Q) ()

They satisfy the following Lie bracket relations: [h,e] = 2e, [h,f] =
—2f, e, f] = h. We set

ki=i(—e+ f) = (? ff) ,

CD-GDEDEDNE) e
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By a simple matrix computation we have:

exp(—%k)h:m _ <(1) ‘01) € SL(2,R). (8.3)

The formula Ad(c1)k = h shows that ¢; € SL(2,C) gives a Cayley transform.
Correspondingly, the Bargmann transform may be interpreted as

B=‘mouiec).

The right-hand side is not well-defined. We need an analytic continuation in
the Schrodinger model and a lift in the diagram below:

SL(2,RY 5 G 5 GL(L*(5))
}
¢ € SL(2,C) DSL(2,R)

To be more precise, we write w € G for the lift of (83) via de : s[(2,R) — g.
Since the action of the maximal parabolic subgroup P on L?(Z) is given by
the translation and the multiplication of functions, it is easy to see what ‘w(p)’
should look like for p € Pc. Therefore, we could give an explicit formula for
the (generalized) Bargmann transform B = ‘m o ¢(c1)’ if we know the closed

formula of the unitary inversion:

_ 0-1
Fg]:(w)—]-'m<1 0>'
Of course, this is not a rigorous argument, and m(p) does not leave L%(Z)
invariant. However, the formula ([82]) suggests what the function space 7 o
t(c1)(L*(Z)) ought to be, and led us to an appropriate generalization of the
classical Fock space as follows:

F(OEe ) .= [Fe OOk : /KC |F(z)|2f(>\—1(\2|)du(2) < oo} (84)

min min

min

Here (O)fflfn is the minimal nilpotent Kc-orbit in pc which is the counterpart
of the minimal (real) nilpotent coadjoint orbit @IGnﬂf‘n in g* ~ g under the
Kostant—Sekiguchi correspondence [40], see Figure 8.1. Thus the generalized
Fock space F(0X¢ ) is a Hilbert space consisting of L?-holomorphic functions
on the complex manifold @ﬁfn against the measure given by a renormalized

K-Bessel function Kx_1(|z|)dv(z) (see the comments after ([&3)).
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g Pc
U u

Kostant—Sel{lguchl@)KC
>

min

Q%

min
U Lagrangian

Figure 8.1 (minimal nilpotent orbits in g and pc)

Gr

min?’

We recall that = is a Lagrangian submanifold of O and K¢ acts holo-
morphically on QX¢ . Then as a ‘quantization’ of the Kostant—Sekiguchi cor-

respondence, we define the generalized Bargmann transform B : L*(Z) —
L*(Ogs,) by

min

fHFQM%MQ/AAQ (z|x))e™ @) f(2)dp(z),

whereas the unitary inversion operator Fz is given by

(F=f)(y) =27 T () / Frr @/ (@l9) () dpz). (8.5)

Here r = rank G/K, (| ) denotes the trace form of the Jordan algebra V,
and A\ = %dimRIF if V = Herm(k,F) with F = R, C, quaternion H, or the
octonion O (and k = 3) or A = 1(k —2) if V.= RV=1 (1), I(t), and K(t)
are the renormalization of the J-, I-, and K-Bessel function, respectively,
following the convention of [28].
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