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Dedicated to Igor Frenkel on the occasion of his 60th birthday with great admire

ABSTRACT. Minimal representations of a real reductive group G are the ‘small-
est’ irreducible unitary representations of G. We discuss special functions that
arise in the analysis of L2-model of minimal representations.

1. Introduction

An irreducible unitary representation of a real reductive Lie group G is called
minimal if its infinitesimal representation is annihilated by the Joseph ideal [IT]
in the enveloping algebra. Loosely speaking, minimal representations of G are the
‘smallest’ infinite dimensional unitary representations.

The Weil representation, known for a prominent role in number theory (e.g. the
theta correspondence), provides minimal representations of the metaplectic group
Mp(n,R). The minimal representation of a conformal group SO(4,2) appears in
mathematical physics, e.g., as the bound states of the hydrogen atom, and inci-
dentally as the quantum Kepler problem. In these classical examples the repre-
sentations are highest weight modules, however, for more general reductive groups,
minimal representations (if exist) may not be highest weight modules, see a pio-
neering work of Kostant [21] for SO(4,4).

In the last decade I have been developing a geometric and analytic theory of
minimal representations with my collaborators, S. Ben Said, J. Hilgert, G. Mano, J.
Mollers, B. Orsted, and M. Pevzner, see [0, B, @, 8, 9, 12, I3, [5, 16, 7, I8, T4,
20]. Among all, in this paper, we focus on ‘special functions’ that arise naturally in
the L2-model of minimal representations. Needless to say, the interaction between
special functions and group representations has a long history and there is extensive
literature on this subject. A new feature in our setting for minimal representations
is that the representation of the group is realized on the Hilbert space L?(Z) where
the dimension of a manifold = (see (E7HI), or more generally Section 23 for the
definition of =) is strictly smaller than the dimension of any nontrivial G-space
in most cases. This means that G cannot act geometrically on Z but there is
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a natural action of G on L?(Z). As a result, the Casimir element of a compact
subgroup acts as a fourth-order differential operator. The indefinite orthogonal
group G = O(p+1,¢g+ 1) is the most interesting for this purpose in the sense that
the group G itself contains two parameters p and ¢, and we shall highlight this case
by giving occasionally some perspectives to other reductive groups.

Acknowledgements: I first met Igor Frenkel when I visited Yale University in
2009 to give a colloquium talk. It was then a surprising pleasure that Igor told me
his recent theory on quaternionic analysis [3, @, B] with Libine uses some of my
work [I7, 9] on geometric analysis of minimal representations, which encourages
me to develop further the analytic theory of minimal representations.

I would like to thank the organizers P. Etingof, M. Khovanov, A. Kirillov Jr., A.
Lachowska, A. Licata, A. Savage and G. Zuckerman for their hospitality during the
stimulating conference “Perspectives in Representation Theory” in honor of Prof.
Igor Frenkel’s 60th birthday at Yale University, 12-16 May 2012. Thanks are also
due to an anonymous referee for his/her careful comments.

2. A generalization of the Fourier transform

2.1. Algebraic characterization of Fourier transforms. We begin with
an algebraic characterization of the Euclidean Fourier transform Fg~. Let Q; := x;
be the multiplication operators by coordinates, and P; := \/%T%' Then we have:
PROPOSITION 2.1. Any continuous operator A on L?(R™) satisfying
AoQj=PjoA, AoPj=-Qj0oA onSR") (1<j<n)
is a scalar multiple of the Fuclidean Fourier transform Fgrn. In particular, any such
continuous operator A is unitary up to scaling.

In place of R™, let us consider the isotropic cone

(2.1) == {xERP+Q\{O}:J€+~~+$ZQ)—$§+1 f~~~fx12)+q =0},
equipped with a measure dy = %rp+q_3drdwd77 in the bipolar coordinates:
(2.2) R, x SP71x STL 52 (r,w,n) — (rw,rn).

REMARK 2.2. This cone Z is a special case of the Lagrangian submanifold of a
minimal real coadjoint orbit, denoted by the same letter =, given in Theorem P10
where we deal with more general reductive groups.

Recall from [I7] that the fundamental differential operators R; (1 < j < p+q)
on = are mutually commuting operators which are obtained as the restriction of
the tangential differential operators

0
J

toZ, wheree; =1 (1<j<p)=-1(p+1<j<p+gq),0:= Zzgsa;—é (the
Laplacian on R?9) and E := Y P79 xa% (the Euler operator). Then we have

THEOREM 2.3 ([I7, Theorem 1.2.3]). Suppose p + q is even, > 4. Then there
exists a unitary operator F= on L*(Z) satisfying the following relation for A:

(2.3) AoQj=RjoA, AoR;j=Q;0oA on CFE) (1<j<p+q).
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Conversely, any continuous operator A satisfying (B3) is a scalar multiple of the
unitary operator F=.

2.2. Unitary inversion operator Fz. The similar nature of Fg» and Fz
indicated in Proposition 0 and Theorem E23 is derived from the common fact that
they arise as the unitary inversion operators in the L?>-model (Schrédinger model)
of minimal representations of real reductive groups Mp(n,R) and O(p + 1,9 + 1),
respectively.

To see some more details of Theorem =3, let n, n, and [ be the Lie algebras
generated by the operators Q;, R;, and [Q;, R;] (1 <i,j < p+q). Then g :=a+Il+n
is isomorphic to o(p +1,¢+ 1), and p = [+ n =~ (o(p, q) + R) x RP*Y is a maximal
parabolic subalgebra of g.

For p 4 ¢ even, > 4, we proved in [T9] that there exists an irreducible unitary
representation 7 of the group G := O(p + 1,q + 1) on the Hilbert space L?(Z) of
which the infinitesimal representation is given by @, (the action of n) and R, (the
action of W), see also [, Chapter 1]. We set

(2.4) w = (IOP _qu> ca.

Geometrically, p is the Lie algebra of the conformal transformation group (O(p, q) -
R<o) x RP? of the flat pseudo-Riemannian Euclidean space RP*9, and w induces the
conformal inversion of R?¢ by the Mobius transform.

The unitary operators 7(g) are of simple form if g € G belong to the maximal
parabolic subgroup P with Lie algebra p, namely, they are given by the multipli-
cation of certain elementary functions on = and the translations coming from the
geometric action of the Levi subgroup of P on E (see [I'7, Chap.2, Sect.3]). In view
of the Bruhat decomposition

G = P1I PwP,
it is enough to find an explicit formula of the unitary operator m(w) in order to
give a global formula of the G-action on L?(Z). We call 7(w) the unitary inversion
operator, and set

(2.5) Fz = w(w).
We initiated in a series of papers [IH, 6, 0] the following:

PROGRAM 2.4 (|7, Program 1.2.5]). Use the unitary inversion operator Fz
for minimal representations as an analog of the Euclidean Fourier transform Fg»,
and develop a theory of ‘Fourier analysis’ on Z.

In the classical Schrédinger model of the Weil representation of the metaplec-
tic group Mp(n,R) on L?(R™), the unitary inversion operator is nothing but the
Euclidean Fourier transform Fg» (up to scalar of modulus one), see Example B.
We note that Mp(n,R) and O(p + 1,q + 1) with p + ¢ even are simple Lie groups
of type C and D, respectively.

The first stage of Program B4 is to establish a framework of the L?-model
(Schrédinger model) of minimal representations, and to introduce the unitary in-
version operator F= with an algebraic characterization such as Theorem E=3. In [8]
we gave such a model and defined Fz by using Jordan algebras, see Section EZ3. In
this case = is a Lagrangian subvariety of a minimal nilpotent coadjoint orbit and
the resulting representations on L?(Z) include a slightly wider family of unitary
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representations than minimal representations (e.g. the full complementary series
representations of O(n, 1)).

The second stage is to solve the following:
PrROBLEM 2.5. Find an explicit formula of the integral kernel of Fz.

We will discuss Problem P73 in Section B. It is noteworthy that I. Frenkel and
M. Libine have developed their original theory on quaterionic analysis in a series
of papers [3, 4, 5] from the viewpoint of representation theory of the conformal
group SL(2,Hc) ~ SL(4,C) and its real forms, and have demonstrated a close
connection between minimal representations of various O(p, ¢)’s and quaternionic
analysis. For instance, the explicit formula of Fz for O(3,3) which was obtained in
Kobayashi-Mano [I7)] is used in [5] for the study of the key operator (Plg in their
notation) in the analysis of the space Hg of split quaternions.

The third stage and beyond will be based on the algebraic property (Theorem
23) and analytic property (Problem PZ3) of the unitary inversion operator Fz=.
Among various, potentially interesting directions of the ‘Fourier analysis’ on Z,
here are some few topics:

e A theory of holomorphic semigroups was given in Howe [I0] for Mp(n,R)
and in Kobayashi-Mano [I6] for SO(n + 1, 2).

e A deformation theory of the Euclidean Fourier transform Fg~ [0, e.g. an
interpolation between Fg» and the unitary inversion operator of SO(n +
1,2).

e A generalization of the classical Bargmann—Segal transform. See [U] in
the case G/K is of tube type.

Stage 1 already includes a solution for the Plancherel-type theorem of F=. A
natural but open question would be a Paley—Wiener type theorem of Fz=:

QUESTION 2.6. Find an explicit characterization of F=(CX(E)).

Another important space of functions is an analog of Schwartz functions. For
this we may consider:

DEFINITION 2.7 (Schwartz space on Z). Let S(Z) be the Fréchet space of
smooth vectors of the unitary representation of G on L?(Z).

This definition makes sense in a more general setting (see Theorem PZ10). By
the general theory of unitary representations, we have:

PROPOSITION 2.8. Fz induces automorphisms of the Hilbert space L*(Z) and
the Fréchet space S(Z).

F=:L*(E) 5 L*(E) (Plancherel type theorem),
U U
S(E) = S(E)  (Paley-Wiener type theorem).
The following question is also open:

QUESTION 2.9. Find an explicit characterization of S(Z).
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2.3. Schrodinger model of minimal representations. Suppose that V is
a real simple Jordan algebra. Let G and L be the identity components of the
conformal group and the structure group of the Jordan algebra V', respectively.
Then the Lie algebra g is a real simple Lie algebra and has a Gelfand—Naimark
decomposition g = n + [+ n, where n ~ V is regarded as an Abelian Lie algebra,
[ ~ ste(V) the structure algebra, and T acts on V' by quadratic vector fields.

Let O (C g*) be a (real) minimal nilpotent coadjoint orbit. By identifying g
with the dual g*, we consider the intersection
E=VNOS,

which is a Lagrangian submanifold of the symplectic manifold 0% endowed with
the Kirillov-Kostant—Souriau symplectic form. There is a natural L-invariant

Radon measure on =, and we write L?(Z) for the Hilbert space consisting of square
integrable functions on =.

THEOREM 2.10 (Schrédinger model [R]). Suppose V' is a real simple Jordan
algebra such that its maximal Fuclidean Jordan algebra is also simple. Among all
such Jordan algebras V, we exclude the case where V ~ RP? with p + q odd (see
Ezamples 213 and Z17).

1) For an appropriate finite covering group G of G there exists a natural unitary
representation ofé on L*(Z). It is irreducible if and only if = is connected.

2) The Gelfand-Kirillov dimension of ® attains its minimum among all infinite
dimensional representations of 5’, i.e. DIM(7) = %dim (O)g]fn.

3) The annihilator of the differential representation dm is the Joseph ideal in the
enveloping algebra U(gc) if V is split and gc is not of type A.

The simple Lie algebras g that appear in Theorem PI0 are categorized into
four cases as below:

sl(2k,R), 50(2k,2k),50(p + 1,q + 1), e7(7),
sp(k,R), su(k, k), 50" (4k),50(2, k), e7(_25),
sp(k,C),sl(2k,C),s0(4k,C), s0(k + 2,C), e7(C),
sp(k, k), su*(4k),so(k, 1).

ExampLE 2.11. If V is a Euclidean Jordan algebra, then G is the automorphism
group of a Hermitian symmetric space of tube type and the corresponding Lie
algebra g is listed in (222). In this case E consists of two connected components,
and the resulting representation 7 is the direct sum of an irreducible unitary highest
weight module and its dual.

REMARK 2.12. In the case (Z39) the complex minimal nilpotent orbit %< does

not meet the real form g, and there does not exist an admissible representation of
any Lie group with Lie algebra g. In particular, the representation 7 in Theorem
D10 is not a minimal representation but still one of the ‘smallest’ infinite dimen-
sional representations in the sense that the Gelfand—Kirillov dimension attains its
minimum.

EXAMPLE 2.13. Let V = Sym(n,R). Then g = sp(n,R) and
(2.10) E={Xe€MnR): X ="X,rank X = 1}.
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Let 2, := {X € VNOY, : Trace X > 0}. Via the double covering map (folding
map)

R"\ {0} = Z,, v~ol
we can identify the representation on L?(Z ) with the even part of the Schrédinger
model on L?*(R™) of the metaplectic group Mp(n,R) [2, T0]. See [8] for the re-
alization of the odd part of the Weil representation in the space of sections for a
certain line bundle over = .

EXAMPLE 2.14. We define a multiplication on RPT? = R @ RPT9~1 by

P pt+q
(x1,2") - (y1,9) = (z1y1 — Zl’zyz + Z ziyi, 21y + 2').
i=2 i=p+1

The resulting Jordan algebra is denoted by RP¢ (by a little abuse of notation). It is
a semisimple Jordan algebra of rank two, and its conformal algebra is o(p+1,¢+1).
Suppose now V' = RP'? with p+ ¢ even. Then = in Theorem P11 coincides with the
isotropic cone given in (E). For ¢ = 1, V is an Euclidean Jordan algebra, and =
consists of two connected components according to the sign of the first coordinate
x1, i.e. the past and future cones. For p,q > 2, V is non-Euclidean, = is connected,
and our representation m on L?(Z) is the same as the Schrédinger model of the
minimal representation of O(p + 1,¢q + 1) constructed in [IT9, Part III], which is
neither a highest nor a lowest weight module.

REMARK 2.15. There is no minimal representation for any group with Lie
algebra o(p + 1,q + 1) with p + q odd, p, ¢ > 3 (see [23, Theorem 2.13]).

3. Unitary inversion operator f=

By the Schwartz kernel theorem, the unitary inversion operator Fz can be given
by a distribution kernel K (z,y) € D’ (2 x E), namely,

/K:v y)u(y)du(y) for all u e C°(E).

Problem 23 asks for an explicit formula of K(z,y). In the setting of Theorem
P10, we can generalize the definition (E33) of Fgz by taking w to be a lift of the
conformal inversion on V| see [H]. So far, Problem PZ has been solved for minimal
representations in the following two cases:
Case A. G is the biholomorphic transformation group of a Hermitian symmetric
space of tube type ([9]).
Case B. G=0(p+1,q+1) (Theorem B33).

Case A includes the following earlier results:

ExAMPLE 3.1. 1) G = Mp(n,R), 2 =R", 7 = the Weil representation.
c
K — _ —V=1(z,y)
(z,y) e
In this case Fz is the Euclidean Fourier transform Fg- up to a phase
factor ¢ with |¢| = 1, see [2].
2) G = SO(p+ 1,2), E is the light cone (¢ = 1 in (Z0)), 7 = the highest
weight representation of the smallest Gelfand—Kirillov dimension and of
the smallest K-type.

K(.T,y) = chT’E‘ (2 2<x,y))
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where Jy(t) = (L)7*JA(t) is a renormalization of the J-Bessel function
([os]).

3.1. Mellin—Barnes type integral expression. In [I'7] we brought an idea
of the Radon transform in the analysis of the unitary inversion operator Fz for
minimal representations. Recall that the Euclidean Fourier transform Fr» can be
written as the composition of the one-dimensional Fourier transform and the Radon
transform (plane wave decomposition). We can generalize this decomposition to
the unitary inversion operator Fz for the minimal representations and some small
representations on L%(Z) given by Theorem P10, namely, there exists a distribution

®(t) of one variable such that the distribution kernel K (x, y) of Fz is of the following
form:

(3.1) K(z,y) = ®((z,y)),
where (, ) is some (natural) bilinear form of the ambient space V. Thus Problem
23 reduces to find a formula of ®(t).

EXAMPLE 3.2. In Example B (2) we have seen ®(t) = cjprs.(Q\/ZTf) when

G = O(p+ 1,2). Therefore, Fg reduces to the Hankel transform composed with a
‘Radon transform’ on = in this case.

The formula of ®(t) is more involved for G = O(p+1, ¢+ 1) with p, g > 2 as the
corresponding minimal representation is not a highest weight module and ®(¢) is
not always locally integrable (see Question B4 below). An explicit formula of ®(t)
in this case can be given in terms of ‘Bessel distributions’ [I'4, Theorem 5.1.1]. Here
we give an alternative expression of ®(t), namely, by using a distribution-valued
Mellin—Barnes integral.

We define a distribution of ¢ with meromorphic parameter A by

_ (=N
b\ 1) = F(A+P—#—1)(2m'

Here the Riesz distribution (2t)i is defined as a locally integrable function on R by
(2t)* t>0
2t)} =
(20} {0 0

for Re A > —1, and is extended as a distribution by the meromorphic continuation
on A € C. Let m := %(p +q—4), and L,, be a contour starting at v — ico, passes
the real axis between (—m — 1, —m) and ends at v + 0o when v > —1. We define
distributions ®”:4(t) by a distribution-valued Mellin-Barnes integral:

Jr, B BN (Case A-1),
OPA(t) == q [, b\, t)dA (Case B-1),
fLm tbafr?;k bs(1>r\1 7r)t\) )d)\ (Case B_2)’

according to the following three cases:
Case A-1. p=1lorqg=1,
Case B-1. p,q > 1 and both odd,
Case B-2. p,q > 1 and both even.
Then ®P4(t) is independent of the choice of the contour and « under the above
mentioned constraints.
Let ( , ) be the (positive definite) inner product on RP4. Then we have
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THEOREM 3.3 ([I7, §6.2]). For G =O(p+ 1,9+ 1) with p+ q even, > 4, the
kernel K (x,y) of the unitary inversion Fz= is given by

K(z,y) = ¢p ({2, y))
for some constant ¢, 4.

3.2. Local integrability of the kernel. The kernel of the Euclidean Fourier
transform Fgn is given by e~*%£) which is locally integrable. We may ask to which
extent this analytic feature remains to hold. To be more precise, let ®(t) be the
distribution on R as in (BI). We ask

QUESTION 3.4. When is ®(t) locally integrable?

For a Euclidean Jordan algebra V' we proved in [9] that ®(¢) is locally integrable.
See (E72) for the list of the corresponding conformal Lie algebras g

For G=0(p+1,q+ 1) with p 4+ ¢ even > 2, the Mellin-Barnes type integral
formula (Theorem B33) leads to the following proposition (see [I7, Theorem 6.2.1]):

PROPOSITION 3.5. We have the identities modulo Li, (R, rP+9=3dr).

0 (Case A-1),
PPty =< e d 0 T =111 (5” (t) (Case B-1),
C2 Zl 0 mt_l 1 (Case B-2)7

for some nonzero constants c1, co. Here m = %(p +q—4).
Thus we have a complete answer to Question B2 in this case:

COROLLARY 3.6. ®(t) is locally integrable if and only if g = o(p+1,2),0(2,q+
1) or 0(3,3) ~ sl(4,R).

We note that the minimal representations for g = o(p+ 1,2) or 0(2,q + 1) are
highest (or lowest) weight modules, whereas minimal representations do not make
sense for g = 0(3,3) which is isomorphic to s[(4,R). (Recall that the Joseph ideal
is defined when gc is not of type A.)

The delicate answer indicated in Corollary B is closely related to the regularity
of the ‘Radon transform’ on =. To be more precise, the Radon transform on Z is
defined as the integral over the codimension-one submanifold

(x,y) =t inZE.

which collapses when ¢ = 0. Accordingly, the Radon transform

(Ru)(a, t) = / w()3((,y) — t)dy

has a better regularity as ¢ tends to 0. (On the other hand, the asymptotic behavior
as |t| — oo is similar to the Euclidean case.) The singular part of ®79(¢) in
Proposition B3 fits well with the behavior of Ru(x,t) as ¢ tends to 0.

Question B4 is open for minimal representations without highest weights except
for the case G=0(p+1,q+1).
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4. Fourth order differential equations

4.1. Gaussian kernel and minimal K-type. The Euclidean Fourier trans-
form Fgn is of order four, and therefore its eigenvalues in L?(R") are among
{£1,++/—1}. An important eigenfunction with eigenvalue 1 is the Gaussian kernel
e_%‘|7”|‘27 namely,

]:Rn(e*%\lrlf) — e sll=l?,
Thus the Gaussian kernel e~ 2l21” is a square integrable function on R" satisfying
the following property:
(4.1) Jref =f and fis O(n)-invariant.

Next let p > ¢ > 1, p 4+ q even, and we consider the isotropic cone = in RP:?
as in (Z0). The unitary inversion operator Fz of the minimal representation 7 of
O(p+ 1,q + 1) is of order two because F= = m(w) and w? = I, 1, (see (Z4)), and

—

therefore its eigenvalues in L?(Z) are either 1 or —1. An important eigenfunction
of Tz is Ki(y_2)(2[z|) where K\(t) := (L) K\(t) is a renormalization of the K-
Bessel function. This is a square integrable function on = satisfying the following
property:

(4.2) F=f==xf and fis O(p) x O(g)-invariant.

To be more precise,

Fef - f ?fp—qEO mod 4,
—f ifp—¢g=2 mod 4.

EXAMPLE 4.1. For p=3 and ¢ = 1, we have
Fz(e2ely = g2l

because
(4.3) (t) = Y—et.

oIl arises as the wave function for the hydrogen atom with

=
“[5

The function e~2I

the lowest energy.

From the view point of representation theory, the Gaussian kernel e~ zll=l?

generates the minimal K-type of the Weil representation of Mp(n,R), whereas the
function Ky (,_5)(2[|[|) generates that of the minimal representation of O(p+1,¢+
1) realized in L%(Z).

4.2. The Mano polynomial. We recall a classical fact that the Hermite
polynomials form an orthogonal basis for the radial part of the Schrodinger model
L?(R™) of the Weil representation e.g. [2, M|, whereas the Laguerre polynomials
arise in the minimal representation of the conformal group SO(4,2). The bottom
of the series correspond to what we have discussed in Section EI.

We notice that these two minimal representations are quite special, namely,
they are highest weight modules. However, for more general reductive groups,
minimal representations are not always highest weight modules, and we need new
‘orthogonal polynomials’ and ‘special functions’ to describe a natural basis of func-
tions satisfying (E2) or alike.
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For p e C\{-1,-2,-3,---} and ¢ € N, the Mano polynomials {M;"Z(x)}jeN
are defined by
L(j+p+1) o

(4.4) M (z) = —— T o

= _ GH*(t, x),
! J120T(j + 4Ly ot (t, )

t=0

where the generating function G*!(¢,z) is given by

(45) Gt ) 1= (ig_)zze Iy <2<1t:i t)) Kiy (2(1x—t)) '

Here I,(z) := (5)7*Ia(2) and Ko(2) = (5)7*Ka(z) denote the renormalized I-
and K-Bessel functions. With this normalization, the polynomial M’ () is of the
following top term:

—1) .
M;"Z(a:) = %xﬁ'z + lower order terms.
4!
EXAMPLE 4.2 (Special values of the Mano polynomial).
(1) The bottom of the series with j = 0 is related with the K-Bessel functions
with half-integer parameter:

1

L
N -1 z I
Mt (@) = 7 12K (2) (= Y
k=

20— k)
=i

o

(2) The polynomials M}’ “(z) for £ = 0 reduce to the Laguerre polynomials

“, L I'n+rv+1) & n zk
M (o) = 1 o) (= ,;) (1" <k> v

(3) The function M}’ e(m) is not a polynomial when ¢ & N, but it is convenient
to include the negative integer case. In particular, for £ = —1, it follows
from [B, Corollary 5.3] and [@, Lemma 3.2] that Mf*l(x) is essentially
the Laguerre polynomial:

aM®"Hz) =L ()  (jEN).

Many of the classical orthogonal polynomials are obtained as eigenfunctions
of self-adjoint differential operators of second-order, but the Mano polynomials
M J’L ’e(a:) are obtained as those of fourth-order. Indeed this is a requirement from
representation theory because the Casimir operator (for a compact subgroup) acts
as a fourth-order differential operator on =. To see this we may recall that the
Lie algebra n acts as a second order differential operator (e.g. the fundamental
differential operator R; in (23)).

We begin with a second order differential operator on R

I R [
and introduce a fourth order differential operator

1
'ng ZZERMZRO;Z‘
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ProprosiTION 4.3 ([@]). (1) (Differential equation) The Mano polynomial Mf’g(x)
is an eigenfunction of P, -

(4.6) Puou=30+p+1)u.

(2) (Completeness) If u > 20+ 1 is an odd integer, then {M]”’e}jeN forms an
orthogonal basis of L>(R, "~ e~%dx).

There are two proofs of an explicit formula for the L?-norm of M J" ’Z(:L'), see [,
Theorem 2.4] and [IR, Corollary 4.1].

4.3. K-finite vectors for minimal representations. We discuss a rela-
tionship between the Mano polynomials and minimal representations. Let = be the
isotropic cone in RP*Y as in (E) with p + ¢ > 4 and even.

We recall that the space of kth spherical harmonics

HFR) == {p € C®°(S" 1) : Agn-1p = —k(k +n —2)p}

is a finite dimensional vector space, on which the orthogonal group O(n) acts
irreducibly by rotations. Then we have an irreducible representation of K :=
O(p+1)xO(g+1) on

Vj = Hj(Rp+1)®Hj+172;q(Rq+l)7 ] :07172a"' .

Let L?(Z)k be the underlying (g, K )-module of the minimal representation L?(=Z)
of G=0(p+1,¢+1). Then by 18], L?(Z)f is isomorphic to the multiplicity-free
sum @j:OVj as K-modules. We write L?(Z); for the corresponding K-irreducible
subspace of L?(Z).

With the notation of Section B2, K N P ~ O(p) x O(q) X Zs. We set M :=
O(p)xO(q). The representation of the whole group G (or even the maximal compact
subgroup K) on L?(Z) does not come from the geometric action of G on =, but
the action of the subgroup M is given by rotation in the argument and the bipolar
coordinates (E2) respect the M-action. Correspondingly, it is not straightforward
to find explicit K-finite vectors in L?(Z), whereas the M-invariant functions only
depend on the radial parameter r € R,. We identify the space L?(Z)M of M-
invariants in L?(Z) with L2(R, (1/2)rPT473dr) as we saw in Section 2.

PROPOSITION 4.4 ([B, Section 8]). Let G = O(2m,2n). For every j € N, the

subspace L*(Z); N L*(E)M is one-dimensional and given by the Mano polynomials:

m,n
J

Here x = 2r in the bipolar coordinates (22) of E.

(x) := x_2"+36_zMj2m_3’2"_3(x).

m,n

Therefore the functions {u;]
(B22). To be more precise, we have

(2r)}jen give a basis of functions f satisfying

man_ Ju; " ifn—m=j mod 2,
Fzu " =
J —u;" ifn—m#j mod 2.

EXAMPLE 4.5. 1) The bottom parameter j = 0 explains that I?%(qd)(%)
generates the minimal K-type (Section E).
2) The case n = 1 recovers the classical fact that the Laguerre polynomials generate
every K-finite vectors for the minimal representations of SO(2m, 2).
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The following remarkable observation is a consequence of Example B2 (3) and
Proposition B2

OBSERVATION 4.6. Let G = O(2m,4) with m > 2. Then any K-type of 7 is
giwen by using Laguerre polynomials.

We notice that the minimal representations of O(2m,4) are not highest weight
modules. It would be interesting to find a different proof for Observation B,
possibly in connection with other areas of mathematics.

In contrast to Proposition B4 for G = O(2m,2n), K-finite vectors in L%(Z)
cannot be expressed by elementary functions for G = O(2m + 1,2n + 1). For this
we introduced in [B] a family of real analytic functions {A}"”(x)};en on Ry by the
generating function:

o0

D A (2) =

Jj=0

1 ~  tr T
I Ky
(lft)u+l2l+2 %(1_t) 2(1_t

).

Then we have the following Proposition:

PROPOSITION 4.7 ([B, Corollary 8.2]). Let G = O(p+1,q+1) with p+q even,
> 2. Then
L*(2); N LM = CAZ~ 272 (2r)
for all j € N.

COROLLARY 4.8. For p > v > —1, p,v € Z with p = v mod 2 and (u,v) #
(=1,-1), {A"(2)}jen forms an orthogonal basis in L*(Ry, z# ™ dx).

REMARK 4.9. The function A;‘ ¥ can be expressed by elementary functions
when v € 2Z + 1:

| 2r(j + )

LG +p+1)

Thus Proposition B=7 includes Proposition B4 as a special case.

w2041 —20—1 —x j ritrt
Al (2) x e "M (2x).

REMARK 4.10. The indefinite orthogonal group O(p, q) has two parameters p
and ¢, and the corresponding special functions are expected to be the most general.
In fact, for other minimal representations and some small representations given in
Theorem PO, analogous results of Proposition BZ4 remain true by a specific choice
of the parameters p and v.

References

1. S. Ben Said, T. Kobayashi, and B. @Orsted, Laguerre semigroup and Dunkl operators, Com-
position Math. 148 (2012), pp. 1265-1336.

2. G. B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies 122, Prince-
ton University Press, Princeton, NJ, 1989.

3. L. Frenkel and M. Libine, Quaternionic analysis, representation theory and physics, Adv.
Math. 218 (2008), 1806-1877.

4. 1. Frenkel and M. Libine, Split quaternionic analysis and separation of the series for SL(2, R)
and SL(2,C)/SL(Z,K). Adv. Math. 228 (2011), 678-763.

5. I. Frenkel and M. Libine, Quaternionic Analysis and the Schrdinger Model for the Minimal
Representation of O(3, 3), International Mathematics Research Notices, 2012-21, (2012), pp.
4904-4923.

6. J. Hilgert, T. Kobayashi, G. Mano, and J. Méllers, Special functions associated to a certain
tourth order differential operator, The Ramanujan Journal 26 (2011), 1-34.


http://dx.doi.org/10.1112/S0010437X11007445
http://dx.doi.org/10.1016/j.aim.2011.06.001
http://dx.doi.org/10.1016/j.aim.2011.06.001
http://dx.doi.org/10.1093/imrn/rnr209
http://dx.doi.org/10.1093/imrn/rnr209
http://dx.doi.org/10.1007/s11139-011-9315-0
http://dx.doi.org/10.1007/s11139-011-9315-0

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

To

SPECIAL FUNCTIONS IN MINIMAL REPRESENTATIONS 13

. J. Hilgert, T. Kobayashi, G. Mano, and J. Mdllers, Orthogonal polynomials associated to a
certain fourth order differential equation, The Ramanujan Journal 26 (2011), 295-310.

. J. Hilgert, T. Kobayashi and J. Méllers, Minimal representations via Bessel operators, 72 pp.
to appear in Jour. Math. Soc. Japan (cf. arXiv-TT06 3621 ).

. J. Hilgert, T. Kobayashi, J. Mollers, and B. Orsted, Segal-Bargmann transform and FocK

space realization for minimal holomorphic representations, J. Funct. Anal. 263 (2012), 3492—

3563 (cf. arXiv- 1203 5467 )

R. Howe, The oscillator semigroup, Proc. Sympos. Pure Math. 48, Amer. Math. Soc., 1988,

61-132.

A. Joseph, The minimal orbit in a simple lie algebra and its associated maximal ideal, Ann.

Scient. Ec. Norm. Sup. 9 (1976), 1-30.

T. Kobayashi, Conformal geometry and global solutions to the Yamabe equations on classical

pseudo-Riemannian manifolds, Rend. Circ. Mat. Palermo (2) Suppl. 71, (2003), pp. 15-40.

T. Kobayashi, [Algebraic analysis of mimamal representations, Publ. Res. Inst. Math. Sci. 47

(2011), 585—611, Special issue in commemoration of the golden jubilee of algebraic analysis.

T. Kobayashi, Varna lecture on L?-analysis of minimal representations, In: Lie Theory and Its

Applications in Physics, IXth International Workshop 2011 held at Varna (ed., V. Dobrev),

Springer Proceedings in Mathematics & Statistics, vol. 36, Springer, 2013, pp. 77-93.

T. Kobayashi and G. Mano, [ntegral formulas for the minimal representation of O(p, 2), Acta

Appl. Math. 86 (2005), 103-113.

T. Kobayashi and G. Mano, The inversion formula and holomorphic extension of the mini-

mal representation of the conformal group, In: Harmonic Analysis, Group Representations,

Automorphic Forms and Invariant Theory: In honor of Roger E. Howe, Singapore University

Press and World Scientific Publishing, 2007, pp. 159-223 (available at math.R1/0607007).

T. Kobayashi and G. Mano, The Schrodinger model for the minimal representation of the

indefinite orthogonal group O(p, ¢), Mem. Amer. Math. Soc. (2011), 212, no—T000 | vi+132

pp. (available at BrXinv:(7121769)

T. Kobayashi and J. Méllers, [An _integral formula for L?-eigenfunctions of a fourth orden

Bessel-type_differential operator, Integral Transforms and Special Functions 22 (2011), 521—

531.

T. Kobayashi and B. Orsted, Analysis on the minimal representation of O(p,q). I—="Real:

wzation_and conformal geometry, 1. — Branching laws, [11. — Ultra-hyperbolic_equations o

RP—LA—Y " Adv. Math. 180 (2003), 486-512; 513-550; 551-595.

T. Kobayashi, B. @rsted, and M. Pevzner, Geometric analysis on small unitary representa-

tions of GL(N,R), J. Funct. Analy. 260 (2011), 1682-1720.

B. Kostant, The vanishing of scalar curvature and the minimal representation of SO(4,4),

Operator algebras, unitary representations, enveloping algebras, and invariant theory

(A. Connes, M. Duflo, A. Joseph, and R. Rentschler, eds.), Progr. Math., 92, Birkh&user,

Boston, 1990, pp. 85-124.

A. Kowata and M. Moriwaki, Invariant differential operators on the Schréodinger model for

the minimal representation of the conformal group, J. Math. Sci. Univ. Tokyo, 18 (2011),

355-395.

D. A. Vogan, Jr., Singular unitary representations, Noncommutative harmonic analysis and

Lie groups (Marseille, 1980), Lecture Notes in Math., vol. 880, Springer, Berlin, 1981, pp. 506—

535.

Kavrr IPMU AND GRADUATE SCHOOL OF MATHEMATICAL SCIENCES, THE UNIVERSITY OF
KYO, 3-8-1 KoMABA, MEGURO, TOKYO, 153-8914, JAPAN.
E-mail address: toshi@ms.u-tokyo.ac. jp


http://uk.arxiv.org/abs/1106.3621
http://dx.doi.org/10.1016/j.jfa.2012.08.026
http://dx.doi.org/10.1016/j.jfa.2012.08.026
http://uk.arxiv.org/abs/1203.5462
http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1365.pdf
http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1365.pdf
http://dx.doi.org/10.2977/PRIMS/45
http://dx.doi.org/10.1007/978-4-431-54270-4_6
http://www.springerlink.com/content/pt65717043175035/fulltext.pdf
http://uk.arxiv.org/abs/math.DG/0607007
http://dx.doi.org/10.1090/S0065-9266-2011-00592-7
http://arxiv.org/abs/0712.1769
http://dx.doi.org/10.1080/10652469.2010.533270
http://dx.doi.org/10.1080/10652469.2010.533270
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00012-4
http://dx.doi.org/10.1016/S0001-8708(03)00013-6
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://dx.doi.org/10.1016/S0001-8708(03)00014-8
http://dx.doi.org/10.1016/j.jfa.2010.12.008
http://dx.doi.org/10.1016/j.jfa.2010.12.008

	1. Introduction
	2. A generalization of the Fourier transform
	3. Unitary inversion operator F
	4. Fourth order differential equations
	References

