One question from the Polishchuk and Positselski book on Quadratic
algebras

Natalia Iyudu and Stanislav Shkarin

May 6, 2016

Abstract

In the book ’Quadratic algebras’ by Polishchuk and Positselski [23] algebras with small number
of generators (n = 2,3) is considered. For some number of relations r possible Hilbert series are
listed, and those appearing as series of Koszul algebras are specified. The first case, where it was
not possible to do, namely the case of three generators n = 3 and six relations r = 6 is formulated
as an open problem. We give here a complete answer to this question, namely for quadratic algebras
with dim A; = dim A = 3 we list all possible Hilbert series, and find out which of them can come
from Koszul algebras, and which can not.
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1 Introduction

Quadratic algebras have been studied intensely during the past several decades. Being interesting in
their own right, they have many important applications in various parts of mathematics and physics
including algebraic geometry, algebraic topology and group theory as well as in mathematical physics.

They frequently originate in physics. One example is that the 3-dimensional Sklyanin algebras were
introduced and used in order to integrate a wide class of quantum systems on a lattice. These algebras
have their duals in the class of quadratic algebras A with dim A; = dim Ay = 3, the very class we study
in this paper.

Quadratic algebras are noncommutative objects which lie in foundation of many noncommutative
theories, for example, in work of A.Connes and Dubois-Violette [8] notions of noncommutative differen-
tial geometry obtain their purely algebraic counterpart through introducing the appropriate quadratic
form on quadratic algebras. The big area of research generalizing notions of algebraic geometry to
noncommutative spaces, due to Artin, Tate, Van den Bergh, Stafford etc. [3, 4, 5, 25] contains a great
deal of studying structural and homological properties of quadratic algebras and their representations.
Certain quadratic algebras serve as important examples for the notions of noncommutative (symplectic)
spaces introduced by Kontsevich, [18, 19] so information about general rules on the structure of such
algebras makes it possible to describe examples explicitly.

We find it very important to study fundamental, most general properties of quadratic algebras,
their Hilbert series, Koszulity, other homological properties, PBW type properties, etc. and to develop
appropriate tools for that, which is a goal of present paper.

For further information on quadratic algebras, their Hilbert series and various aspects of their appli-
cations, we refer to [1, 2, 7, 14, 15, 17, 16, 23, 9, 21, 24, 13, 26, 22, 10, 11, 6, 20, 27, 12] and references
therein, however it will give still the list which is far from being exhaustive.

Throughout this paper K is an arbitrary field. For a Z,-graded vector space B, B,, always stands

o] .
for the m*™ component of B and Hp(t) = 5 dim B; #/ is the Hilbert series of B.
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If V is an n-dimensional vector space over K, then F' = F(V) is the tensor algebra of V', which is
naturally identified with the free algebra K(x1,...,z,) for any choice of a basis xj,...,x, in V. We



often use the juxtaposition notation for the operation in F(V') (for instance, we write z;x), instead of
xj ®xy). We always use the degree grading on F: the m'™ graded component F, of F'is V™. A degree
graded algebra A is a quotient of F' by a proper graded ideal I (I is graded if it is the direct sum of
I N F,,). This ideal is called the ideal of relations of A. If xy,...,x, is a fixed basis in V' and the
monomials in x; carry an ordering compatible with the multiplication, we can speak of the Grobner
basis of the ideal of relations of A. If A is the set of leading monomials of the elements of such a basis,
then the normal words for A are the monomials in z; featuring no element of A as a submonomial.
Normal words form a basis in A as a K-vector space. Thus, knowing the normal words implies knowing
the Hilbert series.

If R is a subspace of the n?-dimensional space V2, then the quotient of F by the ideal I(V, R)
generated by R is called a quadratic algebra and denoted A(V,R). Following [23], we say that a
quadratic algebra A = A(V, R) is a PBW-algebra if there are linear bases x1,...,x, and g1,..., g in
V and R respectively such that gi,...,gm is a Grobner basis of the ideal I = I(V, R) with respect

to some compatible with multiplication well-ordering on the monomials in x1,...,z,. For a given
basis x1,...,2, in V, we get a bilinear form on K(x1,...,z,) by setting [u,v] = ¢, for every pair of
monomials v and v in 21, ...,2,. The quadratic algebra A' = A(V, R*), where R+ = {u € V?: [r,u] =

0 for each r € R}, is called the dual algebra of A. Note that up to an isomorphism, the graded algebra
A" does not depend on the choice of a basis in V. It is well-known that A is PBW if and only if A' is
PBW.

A degree graded algebra A is called Koszul if K as a graded left A-module (the structure is provided
by the augmentation map) has a free resolution - - - — M, — -+ — M; - A — K — 0 with the second
last arrow being the augmentation map, and with each M} generated in degree k. The latter means
that the matrices of the maps M,, — M,,_1 with respect to some free bases consist of homogeneous
elements of degree 1. Replacing left modules by the right ones leads to the same class of algebras. We
use the following well-known properties of Koszul algebras:

every Koszul algebra is quadratic; every PBW-algebra is Koszul;

A is Koszul < A' is Koszul;
Ha(—t)H 4 (t) = 1if A is Koszul. (1.1)

In [23, Chapter 6, Section 5] possible Hilbert series of Koszul algebras A with small values of dim 4;
and dim A, are listed. The first case not covered there is dim A; = dim A, = 3. In this case, only the
Hilbert series of PBW algebras are given. It is stated in [23] that the complete list of Hilbert series of
quadratic algebras satisfying dim A; = dim Ay = 3 as well as the complete list of the Hilbert series of
Koszul algebras in this case are unknown. We fill this gap by proving the following results.

Theorem 1.1. For quadratic algebras A satisfying dim Ay = dim As = 3, the complete list of possible
Hilbert series is {Hu, ..., Hi1}, where

Hi (t)=1+3t+3t%; Hy(t)=1+3t+3t2+13 = (1 + t)3;
H3(£)=1+3t+3t2+3 4144104 . = 112220, Hy(t)=143t+3t*+2t%;
Hs(t)=1+3t+3t>+23 4+t He(t)=1+3t+3t>+ 263+t ++ . .. :%;
Hy(8)=1+43t4+302 42034204425 . =182 Fo(1)=143¢4+ 312436343t 43¢5+ ... =112,
Ho(t)=1+43t432+483 +4t 4467+ . =L Ho(6)=14314362+405 454617 . =LH2E
Hyy (£)=1+3t4+362+ 53481413154 . = 1E20 0

where the last series, starting from the third term formed by consecutive Fibonacci numbers.

As we have mentioned above, the complete list of Hilbert series of PBW algebras A satisfying
dim A; = dim Ay = 3 can be found in [23]. It consists of H; with j € {2,7,8,9,10,11}.

Theorem 1.2. For Koszul algebras A satisfying dim A1 = dim Ay = 3, the complete list of Hilbert
series consists of Hj with j € {2,5,6,7,8,9,10,11}. That is, for each j € {2,5,6,7,8,9,10,11}, there
is a Koszul algebra A satisfying Ha = H;, while for j € {1,3,4}, every quadratic algebra A satisfying
H, = Hj is non-Koszul.



Note that the list of series acquires two extra members Hs and Hg when the PBW condition is
relaxed to Koszulity. The key lemma, allowing to manage all possibilities, is the following linear
algebra statement.

Lemma 1.3. Let V be a 3-dimensional vector space over an infinite field K and R be a 6-dimensional
subspace of V@ V. Then at least one of the following statements is true:

(P1) there is a 1-dimensional subspace L C V' such that (VRQL)®R=V @V or (LIV)SR=VR®V;
(P2) there is 1-dimensional subspace L C V' such that V@ L C R or L@V C R;
(P3) there is an invertible linear map T : V — V such that R = span{z @ Tx : x € V'}.

While (P1) and (P2) are not mutually exclusive, (P3) is incompatible with each of (P1) and (P2).

In Section 2 we show that the Hilbert series of any quadratic algebra A, satisfying dim A1 = dim Ay =
3 belongs to {H1,...,Hi1}, applying Lemma 1.3 and Grébner basis techniques. Then in Section 3 we
give a proof of Lemma 1.3. In Section 4 we show that H; is the Hilbert series of a quadratic algebra A
for 1 < j < 11. We also observe that A can be chosen Koszul if j € {2,5,6,7,8,9,10,11} and that every
algebra A with Hy = H; for j € {1, 3,4} is non-Koszul, thus completing the proofs of Theorems 1.1
and 1.2.

Throughout the paper, when talking of Grobner bases, assume that the monomials carry the left-
to-right degree lexicographical ordering with the variables ordered by = > y > z or 1 > x2 > x3
(depending on how the variables are called in each case).

2 Admissible series

In this section we apply Lemma 1.3 and Grobner basis arguments to prove the following result. Next
sectio will be dedicated to the proof of the Lemma 1.3 itself.

Proposition 2.1. Let A be a quadratic K-algebra satisfying dim A; = dim As = 3. Then Hy €
{Hl, ey Hll}.

Since replacing the ground field K by a field extension does not change the Hilbert series of an algebra
given by generators and relations, for the purpose of proving Proposition 2.1, we can without loss of
generality assume that K is algebraically closed. Then K is infinite. By Lemma 1.3, Proposition 2.1 is
an immediate corollary of the following three lemmas. We essentially consider three possibilities given
by Lemma 1.3, and in each case find out which series are possible, looking mainly at the shape of
Grobner basis.

Lemma 2.2. Let V be a 3-dimensional vector space over K and R be a 6-dimensional subspace of
V@V such that condition (P1) of Lemma 1.3 is satisfied. Then for the quadratic algebra A = A(V,R),
Hj € {Hy,...,Hg}.

Lemma 2.3. Let V' be a 3-dimensional vector space over an algebraically closed field K and R be a
6-dimensional subspace of V. ® V' such that condition (P2) of Lemma 1.3 is satisfied, while (P1) fails.
Then for the quadratic algebra A = A(V,R), Ha € {H1,Ho, H3, H7, Hy, H1o, H11}.

Lemma 2.4. Let V be a 3-dimensional vector space over K and R C'V ® V' be a subspace satisfying
condition (P3) of Lemma 1.3. Then for the quadratic algebra A= A(V,R), H4 = H>.

Proof of Lemma 2.2. Since (P1) is satisfied, there is a 1-dimensional subspace L C V such that (V ®
LY R=V®Vor (LaV)dR=V®V. These two cases reduce to each other by passing to the
algebra with the opposite multiplication. Thus we can assume that (L®V)® R =V ® V. Pick a basis
x1,x2,x3 in V such that x3 spans L. Since (L® V)@ R =V ® V, there is a linear basis in R of the
form (we skip the symbol ® for the rest of the proof):

Tik = T;Tp — w3u;r for 1 <j<2and 1 <k <3, where ujp € V. (2.1)



It follows that in the algebra A, Ay = x3V = z3A;. Then A3 = AV = x3VV = x34, = :L‘%V.
Iterating, we get A, = x3d,_1 = a:g—lv for each n > 2. In particular, dim 4,, < dim A,_1 < 3 for
each n > 2. We also know that dim A; = dim Ay = 3.

Case 1: dim A3z = 3. This can only happen if 7 form a Grobner basis of the ideal I = I(V, R).
Since the leading monomials of these relations are z;z, for 1 < j <2 and 1 < k < 3, the normal words
of degree n > 3 are xg_lxj for 1 < j < 3. Hence dim A, = 3 for n > 3 and Hy = Hs.

Case 2: dim A3 = 2. This happens when there is exactly one degree 3 element g of the Grobner basis
of I. The leading monomial of g must have the shape z3z; with 1 < j < 3. If j = 3, we have g = 23 and
x3 = 0in A. Hence for n >4, A, = 2%7'V = {0}. Thus Ha = 1 + 3t + 3> + 263 = Hy. It remains to
consider the case j € {1,2}. Swapping x; and x9, if necessary, we can without loss of generality assume
that j = 1. We know that dim A4 < dim A3 = 2. The case dim A4 = 2 can only happen if the relations
rj % together with g form a Grobner basis of 1. In this case the normal words of degree n > 3 are
a:g_lxk with k € {2,3}. This gives Hq = 1+ 3t + 3t +2t3 +2t* + 254 ... = Hy. It remains to consider
the case dim A4 = 1. This happens when there is exactly one degree 4 element h in the Grobner basis
of I. The leading monomial of h must have the shape zjz; with 2 < k < 3. If k = 3, we have h = x4
and 3 = 0 in A. Hence for n > 5, A, = 257 'V = {0}. Thus Ha = 1 + 3t + 3> + 2t> + ¢* = H;.
Assume now that k = 2. If the relations r;; together with g and h do not form the Grébner basis of
I, there is a degree 5 element ¢ of this Grobner basis. By looking at the leading terms of 7, g and
h, we see that the only possibility is for ¢ to be equal zg up to a non-zero scalar multiple. Again, this
gives Hy = Hs. On the other hand, if r;; together with g and A do form the Grébner basis of I, the
only normal word of degree n > 4 is 2. Hence Hq = 1+ 3t + 3t> + 2¢3 +t* + 5+ ... = H;.

Case 3: dim A3 = 1. This happens when there are exactly two degree 3 elements g and h of the
Grobner basis of I. By swapping g and h, if necessary, we can assume that the leading terms of g and
h are x%xj and x%xk respectively with 1 < j <k < 3. If £ = 3, we have h = x% and :Ug =01in A. Hence
forn > 4, A, = mgL*lV = {0}. Thus Hy = 1+ 3t + 3t> + t3 = Hy. It remains to consider the case
Jj =1, k = 2. If the relations r;; together with g and h do not form the Grobner basis of I, there is a
degree 4 element ¢ in this Grobner basis. By looking at the leading terms of 7, g and h, we see that
the only possibility is for g to be equal a;§ up to a non-zero scalar multiple. Again, this gives Hy = Ho.
If r; 1 together with g and h do form the Grobner basis of I, the only normal word of degree n > 3 is
zj. Hence Hy =1+ 3t + 32 + 3 +t* +t°+ ... = Hj.

Case 4: dim Az = 0. Obviously, H4 = 1+ 3t + 3t> = H;. O

Proof of Lemma 2.3. Since (P2) holds, there is a 1-dimensional subspace L of V' such that VL C R or
LV C R (we skip the symbol ® throughout the proof). The cases VL C R and LV C R reduce to each

other by passing to the algebra with the opposite multiplication. Thus we can assume that LV C R.
Pick x in V', which spans L. Since (P1) fails,

for each uw € V'\ {0}, there is v = v(u) € V' \ {0} such that uv € R. (2.2)

We shall verify that there are y, z € V such that x,y, z is a basis in V' and at least one of the following
conditions holds:

R = span{zz,zy, vz, yx, zz, h} with h € {yy,yz — azy,yz — zy + 2z} (a € K); (2.3)
R = span{zz,zy, xz,yy, 2y, h} with h € {yz — zz,yz — zz,yz,yz, 2z, 22}; (2.4)
R = span {zz, xy, xz,yy, 2z, h} with h € {yx + zx,yz + 2y, yx + 2z — yz — 2y}.

Case 1: VL C R. Pick arbitrary u,v € V such that x,u,v is a basis in V. Then the 5-dimensional
soace LV + VL spanned by Sy = {zz, zu, zv,uz,vr} is contained in R. Since R is 6-dimensional, it is
spanned by So U {f}, where f = auu + buv + cvu + dvv with (a,b,c,d) € K*, (a,b,c,d) # (0,0,0,0).
Since K is algebraically closed, there is a non-zero (p,s) € K2 such that ap? + (b + ¢)ps + ds®> = 0.
Next, pick (g,t) € K2 such that (p,s) and (q,t) are linearly independent. The non-degenerate linear
substitution, in which old u and v are replaced by pu 4+ qv and su + tv respectively, transforms f into
g = auv + fvu + yvv with non-zero (o, 8,7) € K3. If a = 0 and 3 # 0, we set y = v and z = Bu + v,



while if @ # 0 and 8 = 0, we set y = au + yv and z = w. This substitution transforms g into a
(non-zero) scalar multiple of yz. Now, with respect to the basis z,y, z, R is spanned by S U {yz} with
S = {xx,zy,xz,yr,2x}. If « = f =0, we set y = v and z = u and observe that R is spanned by

SU{yy}. faf #0and a+ B # 0, we set y = u+ J—fﬂ, z = v and observe that R is spanned by

SuU {yz + gzy} If af # 0 and a+ 8 = v = 0, with respect to y = v and z = v, R is spanned by
SU{yz — zy}. Finally, if a8y # 0 and a+ 5 =0, we set y = Ofy—“ and z = v, with respect to which R is
spanned by S U {yz — zy + zz}. Thus (2.3) is satisfied provided VL C R.

Case 2: VM C R for a 1-dimensional subspace M of V such that M # L. Pick v € M \ {0}.
Since L # M, z and u are linearly independent. For w € V such that x,u,w is a basis in V, R =
span (SoU{f}), where Sy = {zx, zu, 2w, uu, wu} and f = auzx +buw + cwz + dww with (a, b, c,d) € K4,
(a,b,¢,d) # (0,0,0,0). For a € K* and p, ¢ € K we can consider the basis x, y, z in V defined by u = ay
and w = z + pr + qy. A direct computation shows that with respect to this basis, R = span (S U {g}),
where S = {zz, xy, xz,yy, zy} and

g = (aa+ bpa + cq + dpq)yz + (boe + dq)yz + (¢ + dp)zx + dzz.

If d # 0 and ad = bc, by choosing a = 1, ¢ = —g and p = —9, we turn g into a (non-zero) scalar
multiple of zz. If d = 0 and ad # be, by choosing o = %, q= —% and p = —9, we turn g into a
scalar multiple of yx — zz. If d = 0 and bc # 0, by choosing a = —7, p =0 and ¢ = §, we turn g into
a scalar multiple of yz — zz. If b = d = 0 and ¢ # 0, by choosing a = 1, p =0 and ¢ = —%, we turn g
into a scalar multiple of zz. If ¢ = d = 0 and b # 0, by choosing a = 1, ¢ = 0 and p = —%, we turn
g into a scalar multiple of yz. Finally, if b = ¢ = d = 0, by choosing « = 1 and p = ¢ = 0, we turn g
into a scalar multiple of yz. Thus (2.4) is satisfied provided VM C R for a 1-dimensional subspace M
different from L.

Case 3: VM ¢ R for every 1-dimensional subspace M of V. This is precisely the negation of the

assumptions of Cases 1 and 2. First, we shall verify that in this case
yz ¢ R whenever z,y, z is a basis in V. (2.6)

We argue by contradiction. Assume that (2.6) fails. Then there are y, z € V such that x,y, z is a basis in
V and yz € R. By (2.2), there are non-zero (a, b, c), (p, q,r) € K> such that z(ax +by+c2), (y+ 2)(pr +
qy+71z) € R. The assumption of Case 3 implies linear independence of z, ax + by + cz and px +qy+7z.
Indeed, if they were linearly dependent, using the inclusions yz, z(azx+by+cz), (y+2)(pr+qy+rz) € R,
one easily finds a non-zero u € V such that yu, zu € R. Since xu € R, this implies VM C R with M
being the linear span of u. Linear independence of z, ax + by + cz and px + qy + rz implies that aq # bp
and that

R = span{xx,zy,x2,yz, z(ax + by + cz), (y + 2)(pxr + qy + 72) }. (2.7)

Since K is infinite, we can pick § € K\ {0,1}. By (2.2), there is a non-zero («, 3,7) € K3 such that
(y +02)(ax + fy+vz) € R. By (2.7), there exist ¢1, c2,c3 € K such that
(y + 02)(ax + By +72) = cryz + cez(ax + by + cz) + c3(y + 2)(pr + qy + r2),
where the equality holds in K(x,y, z). Opening up the brackets in the above display, we obtain
a—pcg=L0—qcs=v—c1 —rcg=al —aco — qeg = PO — beg — geg = v0 — ccog — reg = 0.

Plugging o = pes and = ges into o — aca — ges = B0 — bea — gez = 0, we get bea + (1 — 0)ges =
aca + (1 — @)pes = 0. Since 6 # 1 and aq # bp, the determinant (1 — 0)(bp — aq) of this system of
two linear equations on ¢z and c3 is non-zero. Hence co = c3 = 0. Since 6 # 0, the above display
implies &« = pc3 =0, 8 = gc3 = 0 and v = % = 0, which contradicts («, ,7) # (0,0,0). This
contradiction proves (2.6).

Now (2.6) together with (2.2) imply that

for each u € V' \ L, there is (ay, b,) € K*\ {(0,0)} such that u(a,u + b,z) € R. (2.8)



Observe that a, # 0 for a Zarisski generic u € V. Indeed, otherwise VL C R. Next, b, # 0 for
a Zarisski generic v € V. Indeed, otherwise R contains the 6-dimensional space S of symmetric
elements of V2. Since R also contains LV and LV NS is one-dimensional, dim R > 8 > 6, which is a
contradiction. Thus we can pick s,t € V such that x, s, t is a basis in V' and asbsatb; # 0. Now, using
the inclusions s(ass + bss), t(ait + bpx) € R, we can pick p,q € K* such that for u = ps and v = ¢t,
u(z —u),v(x —v) € R. For a = ay4y and b = by, according to (2.8), we have (a,b) # (0,0) and
(u+v)(au+av+bzr) € R. Then R = span {zz, zu, zv,u(x — u),v(x —v), (u+v)(au+ av + bx)}. Now
set y = x —wu and z = x — v. With respect to the basis x,y, z, the last equality can be rewritten as
R = span (S U {c(y + 2)x — a(yz + zy)}, where S = {zx,zy, xz,yy, 2z} with ¢ = b+ 2a. If ¢ =0, then
R =span (S U{yz + zy}). If a =0, then R = span (S U {yx + zz}). If ac # 0, then replacing y and z
by ay and az for an appropriate a € K*, we get R = span (S U {yx + zz — yz — zy}). Thus (2.5) is
satisfied provided VM ¢ R for every 1-dimensional subspace M of V.

It remains to determine the Hilbert series of A = A(V, R) when R satisfies one of the conditions
(2.3), (2.4) or (2.5). If (2.3) is satisfied, the defining relations zzx, zy, zz, yz, zx, and h of A form a
Grobner basis of the ideal I = I(V, R). If h = yz — azy or h = yz — zy + zz, then the normal words of
degree n > 2 are 2Fy"~* for 0 < k < n. Since there are n + 1 of them, we have Hy = Hyo. If h = yy,
then the normal words of degree n > 2 are all monomials in y and z, which do not contain yy as a
submonomial. It is easy to see that the number a, of such monomials satisfies the recurrent relation
Gn42 = Gp41 + an, which together with a; = 3 and a3 = 5 implies H4 = Hi;.

Next, assume that (2.4) is satisfied. That is, A is given by the relations zz, zy, xz, yy, zy and h
with h € {yx — zz,yz — zz,yx,yz, zx,2zz}. If h = yr — zz, the defining relations together with yzz,
zzx, zzy and zzz form a Grobner basis of I. The only normal word of degree > 3 is yzx, which gives
H4 = Hs. If h = yz — zx, then the defining relations together with zzx form a Grébner basis of I. The
only normal word of degree n > 3 is 2", which implies Hy = Hs. If h € {yz,yz, zx, 2z}, A is monomial
and therefore the defining relations form a Groébner basis of I. If h = 2z, the only normal word of
degree > 3 is yzx and Hy = Ho. If h = zx, the only normal words of degree n > 3 are 2" and yz""!,
which gives H4 = Hy. If h = yz, the only normal words of degree n > 3 are 2"~z and 2", yielding
Hy = Hy. If h = yz, the only normal words of degree n > 3 are yz" 2z yz"~!, 2"z and 2". Hence
H, = Hy.

Finally, assume that (2.5) is satisfied. That is, A is given by the relations zx, zy, zz, yy, zz and
h with h € {yz + zx,yz + zy,yx + za — yz — zy}. If h = yxr + zx — yz — 2y, the defining relations
together with yzx, yzy and zyz form a Grobner basis of I. There are no normal words of degree > 3
and therefore H4 = H;. If h = yz + zy, the defining relations form a Grobner basis of I. The only
normal word of degree > 3 is zyx and Hy = H». Finally, if h = yx + zx, the defining relations together
with yzz form a Grobner basis of 1. For n > 3 there are exactly 2 normal words of degree n being the
monomials in y and z in which y and z alternate: yzyz... and zyzy... Hence H4 = H7. Since we
have exhausted all the options, the proof is complete. ]

Proof of Lemma 2.4. The fact that R is 6-dimensional is straightforward. Indeed, R is the image of the
6-dimensional space of the symmetric elements of V ® V under the invertible linear map I ® T'. Now,
replacing the ground field by a field extension does not change the Hilbert series of an algebra given
by generators and relations. Hence, without loss of generality we can assume that K is algebraically
closed. This allows us to pick a basis x1,x2,x3 in V with respect to which the matrix of T has the
Jordan normal form.

If T has 3 Jordan blocks, T has the diagonal matrix with respect to the basis x1, x2, x3 with the
non-zero numbers (eigenvalues) Aj, Ay and A3 on the diagonal. One easily sees that in this case R is
spanned by x? with 1 < j < 3 and M\yzjzp + Ajopa; with 1 < j < k < 3. If T has 2 Jordan blocks,
we can assume that the size two block is in the left upper corner and corresponds to the eigenvalue A,
while the size one block is in the right lower corner and corresponds to the eigenvalue p. In this case
m%, )\x% + xoxq, x%, T1To + Tox1, ur1rs + Arsry and puxexs + xr3xri + Axrsre forms a linear basis in R.
Finally, if T has just one Jordan block corresponding to the eigenvalue A, a linear basis in R is formed
by 1’%, )\x% + xox1, Ax3Ti + AT329 + x%, T1x2 + Tox1, T1x3 + T3x1 — Toxy and xox3 + xr3xo + x3x1. In
any case, this linear basis in R is also a Grobner basis in I(V, R) with the only normal word of degree



> 3 being z3xoxy. This gives Hy = Ho. O

This completes the proof of Proposition 2.1. Note that if K is algebraically closed and A is a
quadratic algebra satisfying Hq = H; for j € {8,9,10,11}, Lemma 1.3 can be applied and A falls into
one of the cases considered in the proofs of Lemmas 2.2 and 2.3. Scanning the proofs, one sees that
whenever Hy = Hj for j € {8,9,10,11}, A is actually PBW and therefore Koszul. Since the Hilbert
series or Koszulity do not notice an extension of the ground field, we can drop the condition that K is
algebraically closed. This observation automatically implies the following Koszulity result.

Proposition 2.5. If A is a quadratic algebra satisfying Hy = H; for j € {8,9,10,11}, then A is
Koszul. Moreover, A is PBW provided K is algebraically closed.

3 Proof of Lemma 1.3

We start by reformulating Lemma 1.3. First, if we take a pairing on V' ® V as in the definition of a
dual algebra, then in terms of S = R', Lemma 1.3 reads in the following way.

Lemma 3.1. Let V be a 3-dimensional vector space over an infinite field K and S be a 3-dimensional
subspace of V@ V. Then at least one of the following statements is true:

(P1") there is a 2-dimensional subspace M C V such that (VRM)DS=VRV or (MV)®aS=VaV;
(P2') there is a 2-dimensional subspace M C V' such that V@ M DS or M ®V D S,
(P3') there is an invertible linear map T : V — V such that S = span{z @ Ty —y @ Tz : z,y € V}.

For two vector spaces V; and V5 over K, L(V1, Va) stands for the vector space of all linear maps from
V1 to V. Using the natural isomorphism between V ® V and L(V*, V') together with the fact that a
two-dimensional subspace of V' is exactly the kernel of a non-zero linear functional, we can reformulate
Lemma 3.1 in the following way.

Lemma 3.2. Let V be a 3-dimensional vector space over an infinite field K and S be a 3-dimensional
subspace of L(V*,V'). Then at least one of the following statements is true:

(P1”) there is f € V* such that the map A — Af or the map A~ A*f from S to V is injective;
(P2") there is a non-zero f € V* such that Af =0 for all A€ S or A*f =0 for all A € S;
(P3") there is an invertible T € L(V,V) such that g(TAf) = —f(TAg) for all f,g € V* and A€ S.

In other words, we have to show that (P3”) holds if both (P1”) and (P2”) fail. Hence, Lemma 3.2
and therefore Lemma 1.3 will follow if we prove the following result.

Lemma 3.3. Let Vi and Va be a 3-dimenstonal vector spaces over an infinite field K and S be a
3-dimensional subspace of L(V1,Va). Assume also that

(L1) ) ker A= () ker A* = {0};
AeS AesS

(L2) {Au: A€ S} # Vs for each w € Vi and {A*f : A€ S} # Vi* for each f € V.

Then there exist linear bases in Vi and Vo such that S in the corresponding matriz form is exactly the
space of 3 X 3 antisymmetric matrices.

Proof. First, we shall show that
for every non-zero x € Vi, the space Sz = {Az : A € S} is two-dimensional. (3.1)

By (L1), Sx # {0} for each x € V1 \ {0}. By (L2), Sz # V4 for each = € V;. Thus Sz for z € V; \ {0}
is either one-dimensional or two-dimensional. Assume that (3.1) fails. Then there is z; € Vj such
that Sz is one-dimensional. Then we can pick a basis Ay, A, A3 in S such that Ayxy = y; # 0 and
Asxy = Aszry = 0. By (L1), the linear span of the images of all A € S is V5. Hence we can pick



x9,x3 € V7 such that xq, 29,23 is a basis in V7, while yq,¥2,y3 is a basis in V5, where y; = Ajz;. With
respect to the bases x1,x2, x3 and y1, y2, y3, the matrices of Ay, As and Az have the shape

1 * 0 0 = 0 « 0
0 * x |, 0 1 = and 0 = 0 |, respectively.
0 x = 0 0 = 0 * 1

Keeping the basis in Vs as well as x1 and replacing x5 and x3 by z2 + ax; and x3 + Sz respectively
with appropriate «, 8 € K, we can kill the second and the third entries in the first row of the first
matrix. With respect to the new basis, the matrices of A1, As and Az are

1 0 0 0 0 as 0 ag O
0 a1 as |, 0 1 ag and 0 a9 O with a; € K.
0 asz ag4 0 0 ar 0 aio 1

By (L2), for every u = (z,y,2) € K3, Aju, Agu, Azu are linearly dependent and ATu, ATu, ATu are
linearly dependent as well (here A; stand for the matrices of the linear maps A;), where T" denotes the
transpose matrix. Computing these vectors, we see that these conditions read

T a1y +agz a3y -+ a2 T a1y + asz asy + aqz
det | asz y+agz arz =det| O Y asx +agy +arz | =0
asy agy ay + 2 0 agr+ agy + aipz z

for all z,y, z € K. Since K is infinite, the above two determinants must be zero as polynomials in x, ¥, z.
The first determinant has the shape z(a10y? + agz? + (1 + agaip — azag)yz) + g with g € Kly, z]. Hence
a0 = ag = 0 and a7rag = 1. Taking into account that a;g = ag = 0, we see that the zyz-coefficient of
the second determinant is ayag. Hence arag = 0, which contradicts ayag = 1. This contradiction proves
(3.1).

Now we pick a non-zero u € Vi. By (L2), there is a non-zero A; € S such that Aju = 0. Since
Ay # 0, there is © € Vj such that Ajx # 0. Since a Zarisski generic x will do, we can assure the
extra condition Su # Sz (otherwise (L1) is violated). Obviously, v and z are linearly independent.
By (3.1), we can find Ay € S such that A;z and Asx are linearly independent. Again suppose Aj is
Zarisski generic and therefore we can achieve the extra condition that Az, Asxz and Asu are linearly
independent (otherwise Su = Sz). Now y; = —Aqu, yo = A1z and y3 = Az form a basis in V5. By
(L2), there is a non-zero Az € S such that Agz = 0. Clearly, A; are linearly independent (=they form
a basis in S). Pick a basis x1, 29,23 in V4 such that 1 = x and 3 = u. With respect to the bases
1, Z2,x3 and Y1, Y2, Y3, the matrices of Ay, A3 and As have the form

0 -1 0
0 and 0
0 0

0 0
0 |, 0 , respectively.
0 1

* X X

* %k X

* X X
*

1
0
Keeping the basis in V5 as well as 21 and z3 and replacing xo by zs + axy + Szs with appropriate

a, B € K, we can kill the middle entry in the first matrix and the second entry of the first row of the
second matrix. With respect to the new basis, the matrices of Ay, As and Ag have shape:

0 aq 0 0 0 —1 0 ag ag
1 0 0 |, 0 ag O and 0 a7 aio with a; € K.
0 ay O 1 as O 0 as an

By (L2), for every vector u = (x,y,2) € K®, Aju, Asu, Asu are linearly dependent and ATu, ATu, ATu
are linearly dependent. Computing these vectors, we see that these conditions mean:

ary x asy Y a1 + azz 0
det —z a4y T+ asy =det | —=z asy + asz x =0
aey +agz ary+ajpz agy +anz 0 agr+ary+agz agx + ajpy + a1z



for all x,y,2z € K. Since K is infinite, these two determinants are zero as polynomials in z,y, z. The
terms containing 22 in the first determinant amount to z?2 (agy + agz), which implies ag = ag = 0. The
yz2-coefficient of the same polynomial is —agaig. Hence asaig = 0. First, we show that as = 0. Indeed,
assume the contrary. Then as # 0 and therefore a19 = 0. Now z3-coefficient in the second determinant
is —agai1. Hence a1 = 0. Taking into account that ag = ag = a9 = a1 = 0, we see that in the
first determinant the terms containing z amount to z(agzy — a2a7y2). It follows that a7 = ag = 0
and therefore A3 = 0, which is a contradiction. Hence as = 0. Recall that we already know that
ag = ag = 0. Next, we show that a; # 0. Indeed, assume the contrary: a; = 0. Then the first
determinant simplifies to zx(agy + a112). Hence ag = a1; = 0. Now the second determinant simplifies
to agai0y® + asaioy’z — arxy®. Hence ay = 0 and aqai9 = asaig = 0. If a9 = 0, we have Az = 0, which
is a contradiction. If ajg # 0, we have as = a5 = 0. In this case the second column of each A; is zero.
Thus the second basic vector in V; is in the common kernel of all elements of S, which contradicts (L1).
These contradictions prove that a; # 0. By normalizing the second basic vector in V; appropriately,
we can assume that a; = —1. Taking this into account together with as = ag = ag = 0, we see that
the xy2 and zz2 coefficients in the first determinant are —a7 and aj; respectively. Hence a7 = a1 = 0.
Now the determinants in the above display simplify to

—agagy® + (ag + ar0)zyz + asaioy’z and agaioy® + asaioy’z — (ag + aip)zyz.

Since they vanish, a19 = —ag. If ag = 0, then a1g = 0 and A3 = 0, which is a contradiction. Thus
ag # 0. Now vanishing of the polynomials in the above display implies a4 = a5 = 0. Hence, the matrices
A1, Ay and As acquire the shape

0 -1 0 0 0 —1 00 O
1 0 0], 0 0 O and ag[ 0 0 -1 with ag # 0
0 0 O 1 0 0 01 0
and S becomes the space of all antisymmetric matrices. O

Since Lemma 3.3 is equivalent to Lemma 1.3, the proof of Lemma 1.3 is now complete.

4 Specific algebras satisfying Hy = H;

For each j € {1,...,11}, we provide a quadratic algebra A; (generated by degree 1 elements z, y and
z) satisfying Ha, = Hj. In each case the last equality is an easy exercise since we supply the finite
Grobner basis in the ideal of relations and describe the normal words. These 11 examples are presented
in Table 1.

Counting normal words is trivial for all A; except the last one, where the normal words of degree
n = 3 are exactly monomials in z and y, which do not contain yy as a submonomial. In this case, as
it was already observed in the proof of Lemma 2.3, the numbers a, of such monomials of degree n are
consecutive Fibonacci numbers with az = 5, yielding H4,, = Hii.

Proof of Theorem 1.1. By Proposition 2.1, H4 € {H;,..., Hy1} for every quadratic K-algebra A satis-
fying dim Ay = dim Ay = 3. The examples in Table 1 show that each H; with 1 < j < 11 is indeed the
Hilbert series of a quadratic K-algebra. O

It remains to deal with Koszulity. We need the following elementary observation.

Lemma 4.1. Assume that A is a degree graded algebra on generators x1,. .., Ty, that the monomials in
xj carry a well-ordering compatible with the multiplication and that A is the set of the leading monomials
of all members of the corresponding Grébner basis of the ideal of relations of A. Let also 1 < j,k < n
be such that x; # 0, x3, # 0 and x;x, = 0 in A. Finally, assume that A contains no monomial ending
with xsxy, for s # j. Then for u € A, uxy =0 <= u = vx; for somev € A.



Table 1: Algebras A; for 1 < j <11

. . . other elements of normal words Hilbert
j defining relations of A; - i ;
the Grobner basis | of degrees > 3 series

1 | xx—zx, xy—22, 2, yx, Yy—2y, Y2 | 22%, 22y, 222 none H,

2 | xx, yx, Yy, 2x, 2Y, 22 none TYz H,

3 | zx—2zx, TY, TZ, YT, YYy—2Y, Y2 Z2T, 22Y z" forn >3 H;

4 | xx, 2y, TZ—22, YT, YY, Y2—22 22z 22X, 229 Hy

5 | zx—yzx, Yy, Yy, Yz, 2T, 22 zZyx T2Y, YTz, YTzY H;

6 | xz—yz, 2y, YT, Yy, 2T, 22 ZYz yzy, ™ forn > 3 Hg

7 | xx, Ty, T2, YY, 2T, 2Y none 2 yz" L forn >3 H;

8 | xy, xz, yx, yz, 2T, 2Y none ", y", 2" forn > 3 Hg

9 | zx, xz, yx, 2T, 2Y, 22 none zy™ L Yy 2%z, oy, Hy
y" 1z forn >3

10 | zx, 2y, xz, yx, Yz, 2x none My~ for n > 3, Hig
0o<m<n

11 | zx, 2y, x2, yx, Yy, 2T none all monomials in y, 2 Hyy
without yy as a subword

Proof. Since xjri, = 0in A, uxy = vrjz;, = 0 if u = vz, for some v € A.

Assume now that v € A and uxy = 0. It remains to show that v = vx; for some v € A. Let
N be the set of all normal words for A. That is, N is the set of monomials containing no member
of A as a submonomial. Since N is a linear basis in A, we can write u as a linear combination of
elements of /. We also separate those words in this combination ending with z; from the rest of them:

u =Y cqwaxj+ Y dgvg, where both sums are finite (an empty sum is supposed to be zero), wqaz;, vg
o B

are pairwise distinct normal words, none of vg ends with z; and c,,dg € K*. Then

0=uxp =) cowaxjTy + Y dgvgxy = Y dgvgxy in A,
a B B

where the last equality is due to zjz; = 0. Since vg does not end with z; and A contains neither z;
nor xj nor any monomial ending with zsx) with s # x;, we easily see that each vgxy, is a normal word.
Since the set of normal words is linearly independent in A, the above display implies that the sum
> dgvg is empty and therefore u = ) coawax; = va; with v =) cawa. O
B « «

Proposition 4.2. The algebras A; with j € {2,5,6,7,8,9,10,11} are Koszul.

Proof. For j € {2,7,8,9,10,11}, A; is a monomial algebra. Hence A; is PBW and therefore is Koszul.
It remains to verify Koszulity of A5 and Ag. Consider the algebra B given by the generators x,y, z and
the relations xx 4+ yx, xz, zy and the algebra C given by the generators x,y, z and the relations zx,
zz +yz, zy. A direct computation shows that B' = A5 and C' = Ag. Hence Koszulity of As and Ag is
equivalent to Koszulity of B and C respectively. It remains to prove that B and C' are Koszul, which
is our objective now.

Consider the following sequences of free graded left B-modules and C'-modules:

0—>B£>B2 s B3 ®, B3 % 9K 0, (4.1)
Lol 02 02 8, 08 0208 0 0 0K 0, (4.2)

where dy and dg are the augmentation maps,

di(u,v,w) = ux + vy + wz, da(u,v,w) = (u(z +y), vz, wr), ds(u,v) = (0, uz,v(z + y)),
da(u) = (u(z +y),0), 01(u,v,w) = ux + vy + wz, da(u,v,w) = (ux,vz,w(z +y)),
I3(u,v) = (uz,v(z +1vy),0), da(u) = (uz,0) and d5(u) = uz.
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Using the relations of B and C, one easily sees that the composition of any two consecutive arrows
in both sequences is indeed zero. By definition of Koszulity, the proof will be complete if we show
that these sequences are exact. The exactness of (4.1) and (4.2) boils down to verifying the following
statements:

forue B,u(zr+y)=0 <= u=0,
forue B, ur =0 <= u=v(z+y) for some v € B,
foru € B, uz =0 <= u = vz for some v € B,
foru e C, ur =0 <= u = vz for some v € C,

forue C,u(zr+y) =0 < u=0,

A~ N~~~
o o
0 J O Ot b= W
S N S N N N

forue C,uz=0 <= u=v(x+y) for some v € C.

Indeed, the exactness of (4.1) at the leftmost B is equivalent to (4.3), its exactness at B2 is equivalent to
(4.3) and (4.4) and its exactness at the leftmost B3 is equivalent to (4.3), (4.4) and (4.5). The exactness
of (4.2) at each C which is to the left of C? is equivalent to (4.6), its exactness at C? is equivalent to
(4.6) and (4.7), while its exactness at the leftmost C? is equivalent to (4.6), (4.7) and (4.8). Checking
the exactness of both complexes at three terms on the right is a straightforward exercise. Alternatively,
one can notice that (4.1) and (4.2) are the Koszul complexes of B and C' respectively, and that the
Koszul complex happens to be exact at three right terms for every quadratic algebra, see [23] (exactness
of the Koszul complex at the two right terms holds for every graded algebra generated in degree 1,
while the exactness at the term third from the right holds for all quadratic algebras).

Thus it remains to prove (4.3 - 4.8). Observe that the defining relations xx +yzx, xz, zy of B together
with zyz + yyx form the Grobner basis of the ideal of relations of B, while the defining relations zx,
xz +yz, zy of C together with xzyz form the Grobner basis of the ideal of relations of C'. Now a direct
application of Lemma 4.1 justifies (4.5) and (4.6). In order to prove the rest, we perform the following
linear substitution. Keeping x and z as they were, we set the new y to be = + y in the old variables.
This substitution provides an isomorphism of B and the algebra A given by the generators x, y, z and
the relations zz, yx, zz — zy. These relations together with zyz form the Grobner basis of the ideal
of relations of A. The same substitution provides an isomorphism of C' and the algebra D given by
the generators z, y, z and the relations zx, yz, zx — zy. These relations together with zyx form the
Grobner basis of the ideal of relations of D.

Now we can rewrite (4.3), (4.4), (4.7) and (4.8) in terms of multiplication in A and D. Namely, they
are equivalent to

forue A,uy=0 < u=0, (4.9)
forue A, ur =0 <= u = vy for some v € A, (4.10)
forue D, uy=0 <= u =0, (4.11)

)

forue D, uz =0 <= u = vy for some v € D, (4.12

respectively. Again, Lemma 4.1 justifies (4.10) and (4.12). Next, one easily sees that the sets of normal
words for both A and D are closed under the multiplication by y on the right. This implies (4.9) and
(4.11). Hence (4.3 - 4.8) hold and therefore B and C' are Koszul. O

Proposition 4.3. Let A be a quadratic algebra such that Ha € {Hy, Hs, Hy}. Then A is non-Koszul.
Proof. Assume the contrary. Then A is Koszul and by (1.1), Hay(t) = m. In particular, all

coeflicients of the series m must be non-negative. On the other hand,

ﬁ =1+4+3t+6t34+9t3+9t* —27t5+ ... and @ = 14+3t+683+10t3 4+ 14t* +16t° + 1266 — 47+ . ..

Hence H; and Hs can not be Hilbert series of a Koszul algebra.
It remains to consider the case Hy = Hj4. Since replacing the ground field by a field extension
does not effect the Hilbert series or Koszulity, we can without loss of generality assume that K is
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algebraically closed. By Lemmas 1.3, 2.3 and 2.4, A = A(V,R) with R satisfying condition (P1) of
Lemma 1.3. Thus, by passing to the algebra with the opposite multiplication, if necessary, we can
assume that RG (L ® V) =V ® V for a 1-dimensional subspace L of V. Now choose a basis z, y, z
in V such that = spans L. Then R* @& (M ® V) = V ® V, where M = span{y, z}. It follows that we
can choose a basis f, g, h in R such that the leading monomials of f, g and h are zz, zy and zz
respectively. Since Hy = Hy = 1 + 3t + 3t% + 2t3, a direct computation shows that
Hy = gy = 1+ 3t + 667 + 11¢% 4 2181 + 4267 + 850 + ..
A

(we need few first coefficients). Since dim A§ = 11, there should be exactly one degree 3 element g of
the Grobner basis of the ideal of relations of A'. The leading monomial 7 of ¢ can have either the shape
uiugz or the shape ujusus, where u; € {y, z}. First, assume that § = ujugus. Then AZ is spanned by
vivgusz with v; € {y, 2z} and vivavs # wiugus and by vivevsvy with v; € {y, 2} and vivovs # urugus,
voU3Vy # uiuoug. The number of these monomials is 20 if w1 = us = uz and is 19 otherwise. Thus
dim A}, < 20. Since by the above display dim A', = 21, we have arrived to a contradiction, which proves
that § can not be of the shape ujusug.

Hence ¢ = wjugz with uj,us € {y,2z}. In this case, were the relations f, g, h together with ¢ is
the Grobner basis, the dimension of A} would have been 22. Since dim A} = 21, there is exactly one
degree 4 element p of the Grébner basis of the ideal of relations of A'. The leading monomial p of p can
have either the shape wjwowsz or the shape wiwowsws, where w; € {y,z}. Again, first, assume that
P = wiwowswy. Then Ag is spanned by vivovsvsr with v; € {y, z} and vsvy # ujuy and by v1v2v3V4V5
with v; € {y, 2} and vivavzvy # wiwowswy, V2U3V4Vs # wWiwawswy. It easily follows that dim A!5 < 41.
Since by the above display dim Aé = 42, we have arrived to a contradiction, which proves that p can
not be of the shape wywowswy.

Hence p = wjwowszx with w; € {y,z} and wows # ujuy. In this case, A!G is spanned by 64 ele-
ments v1v203v4v506 With v; € {y, 2z} and by 20 elements vivovsvavsz with v; € {y, 2}, vavs # ujus,
v3UU5 # wiwsws. Hence dim AIG < 84. Since by the above display dim AIG = 85, we have arrived to a
contradiction. Thus Hy is not the Hilbert series of a Koszul algebra. O

Proof of Theorem 1.2. By Proposition 4.2, for j € {2,5,6,7,8,9,10,11}, there is a Koszul algebra A
satisfying Hq = H;. By Proposition 4.3, every quadratic algebra A satisfying Hy = H; with j € {1,3,4}
is non-Koszul. ]

4.1 Some remarks

1. The condition of K being infinite in Lemma 1.3 can be relaxed to K having sufficiently many
elements. More precisely, examining closely the idea behind the proof, one gets that Lemma 1.3 holds
if the condition of K being infinite is relaxed to |K| > 4. On the other hand, the following example
shows that the conclusion of Lemma 1.3 fails if |K| = 2.

Example 4.4. Let x, y, z be a basis of a 3-dimensional vector space V over the 2-element field K = Zs.
Let also R CV ®V be the linear span of r @z, yQy, 2@ 2, YyR2z+2Q0Y, QY+ 20+ 22Xy and
rT®z4+yRx+2®y. Then R is a 6-dimensional subspace of V& V' for which each of the conditions
(P1-P3) of Lemma 1.3 fails.

We leave the verification to the reader. It can be done by brute force since V™ = V '\ {0} has just
7 elements. For example, to show that (P1) fails, one has to find for every u € V¥, v,w € VT such
that u ® v,w ® u € R. Note that extending K to a 4-element field forces R from the above example to
satisfy (P1). We do not know whether the conclusion of Lemma 1.3 holds if |K| = 3.

2. By Proposition 2.5, A is automatically Koszul if H4 = H; for j € {8,9,10,11}. Note that if A is
a quadratic algebra satisfying H4 = H; with j € {2,5,6, 7}, this does not necessarily mean that A is
Koszul. We construct the following examples to illustrate this. In these examples we assume |[K| > 2
and a € K is an arbitrary element different from 0 or 1. Table 2 is completed by computing the Grébner
bases of ideals of relations of algebras B;.
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Table 2: Algebras B; for j € {2,5,6,7}

. . ther elements of . |
relations of B; © Hp, | relations of B;
J J the Groébner basis B J
2 | xxtyz, xz, YT, yy+22, 2y, 22 yzx—zay,xyz—zxy | He | xx—yz, zy, yy—zx
5 | 2T, :ijzx, Yyr—2zx, yy:zla:, P o | zztyz+(1—a)zz, B
T2 QET— 15 22, Y2z — 5 22 rxt+ry+yr+yy+ze+o(l—a)zz
6 | xx—Qzr, TY—2Y, YT, T2—Q2ZT, Y2, Yy | 22T, 222y Hg | xzx+xz+ ézx, xy + 2y, 22
T | xx—2z,2Y, YT, T2—QZL, YZ, Yy 22x H; | xx+azxz+ zx, 2y, 22

Computing the Grobner bases of ideals of relations of algebras B]!. up to degree 4, we easily obtain
the data presented in Table 3.

Table 3: The series (Hp,(—t))™" and HB;_ (t) up to degree 4
(Hp,(—t))~" up to t1 HB;_ (t) up to t*
1+3t+6t2+1083 + 15t + ... [ 1 +3t+6t2+ 1083 + 17t5 + . ..
14+3t+6t2+ 113 +20t* +... | 1+ 3t +6t2 + 1163 + 214 + ...
14+3t+6t2+ 113 +20t* +... | 1+ 3t +6t2 + 1163 + 214 + ...
1+3t+622+ 1183 + 195 + ... [ 1+ 3t + 612+ 1183 + 2065 + . ..

|| U DN .

Table 3 ensures that each B; fails to satisfy Hp,(—t)Hp (t) = 1 and therefore each B; is non-Koszul.
J
Thus the following statement holds true.

Proposition 4.5. Assuming |K| > 2, for each j € {2,5,6,7}, there is a non-Koszul quadratic algebra
B satisfying Hp = Hj.

3. By the duality formula (1.1), Theorem 1.2 implies the list of all Hilbert series of Koszul algebras
A satisfying dim A; = 3 and dim Ay = 6. They are the series 1/H(—t) for H from the list specified in
Theorem 1.2. Thus we have the following corollary.

Corollary 4.6. For Koszul algebras A satisfying dim A; = 3 and dim Ay = 6, the complete list of
Hilbert series consists of ﬁ with j € {2,5,6,7,8,9,10,11}.

4. A quadratic algebra A satisfying Ha(t)H 4 (—t) = 1 is called numerically Koszul. There are
examples of non-Koszul numerically Koszul quadratic algebras [23]. While proving Proposition 4.3, we
have actually shown that H; with j € {1,3,4} can not be the Hilbert series of a numerically Koszul
quadratic algebra. We do not know an answer to the following question.

Question 4.7. Let A be a numerically Koszul quadratic algebra satisfying dim Ay = dim Ay = 3. Is it
true that A is Koszul?

We are especially interested in the following particular case.

Question 4.8. Let A be a quadratic algebra satisfying Ha(t) = (1 — )™ and H 4 (t) = (1 +t)3. Is it
true that A is Koszul?

Note that (1—%)~3 is the Hilbert series of K[z, 3, z]. The following example shows that for a quadratic
algebra A, the equality Ha = (1 —t)~3 alone does not guarantee numeric Koszulity.

Example 4.9. Let A be the quadratic algebra given by the generators x, vy, z and the relations xx,
rz+yy+zx, vy +yr+zz. Then Hy = (1 —1)73, while H 4 = Hs. In particular, A is not numerically
Koszul and therefore is non-Koszul.
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Proof. A direct computation shows that the defining relations of A together with yyz—zyy and yzz—zyy
form a Grobner basis for the ideal of relations of A. Now one easily sees that the normal words for A
are zF(yz)ly™a® with k,I,m € Zy and € € {0,1} and that the number of normal words of degree n is
w. Hence H(t) = (1 —t)™3. The dual A' is given by the relations yz, zy, yy — 2z, Tz — 2z,
xy — zz and yx — zz, which together with zxx, zzx and zzz form a Grobner basis for the ideal of
relations of A'. The only normal word of degree n > 3 is ™, which gives H 4 (t) = Hs. O

5. The following question remains open.

Question 4.10. Which series feature as the Hilbert series of quadratic algebras satisfying dim Ay = 3
and dim As = 47. Which of these occur for Koszul A?

The answer to the above question would complete the list of Hilbert series of Koszul algebras A
satisfying dim A; = 3. In [23] it is mentioned that it is unknown whether there is a Koszul algebra A
satisfying dim A; = 3, dim As = 4 and dim A3 = 3. It is important to answer also because if such an
algebra exists, it would provides a counterexample to the conjecture on rationality of the Hilbert series
of Koszul modules over Koszul algebras. However if such an algebra does not exist, nothing can be
derived about rationality.

Acknowledgements:
We are grateful to IHES and MPIM for hospitality, support, and excellent research atmosphere. This
work is funded by the ERC grant 320974, and partially supported by the project PUT9038.

References

[1] D. Anick, Generic algebras and CW complexes, Algebraic topology and algebraic K-theory (Princeton, N.J.,
1983), 247-321, Ann. of Math. Stud. 113, Princeton Univ. Press, Princeton, NJ, 1987

[2] D. Anick, Noncommutative graded algebras and their Hilbert series, J. Algebra 78 (1982), 120-140

[3] M. Artin and W. Shelter, Graded algebras of global dimension 3, Adv. in Math. 66 (1987), 171-216.

[4] Artin, M.; Tate, J.; Van den Bergh, M. Modules over regular algebras of dimension 3 Invent.Math. 106
(1991), 335-388.

[5] Artin, M.; Tate, J.; Van den Bergh, M. Some algebras associated to automorphisms of elliptic curves. The
Grothendieck Festschrift, Vol. I, 33 - 85, Progr. Math., 86, Birkhduser Boston, Boston, MA, 1990.

[6] Bocklandt, Raf; Schedler, Travis; Wemyss, Michael Superpotentials and higher order derivations. J. Pure
Appl. Algebra 214 (2010), no. 9, 1501-1522.

[7] P. Cameron and N. Iyudu, Graphs of relations and Hilbert series, J. Symbolic Comput. 42 (2007), 1066-1078
[8] Alain Connes, Michel Dubois-Violette, Non commutative finite dimensional manifolds II. Moduli space and
structure of non commutative 3-spheres, Communications in Mathematical Physics 281 (2008), 23-127
[9] V. Drinfeld, On quadratic quasi-commutational relations in quasi-classical limit, Selecta Math. Sovietica 11

(1992), 317-326.

[10] Dubois-Violette, Michel Graded algebras and multilinear forms. C. R. Math. Acad. Sci. Paris 341 2005, no.
12, 719-724.

[11] Dubois-Violette, Michel Multilinear forms and graded algebras. J. Algebra 3172007, no. 1, 198-225.

[12] Ershov, M., GolodShafarevich groups: A survey. Int. J. Algebra Comput. 22(2012), N5, 1-68

[13] E. Golod and I. Shafarevich, On the class field tower (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964),
261-272.

[14] N. Iyudu and S. Shkarin, The Golod-Shafarevich inequality for Hilbert series of quadratic algebras and the
Anick conjecture, Proc. Roy. Soc. Edinburgh A141 (2011), 609-629

[15] N. Iyudu and S. Shkarin, Finite dimensional semigroup quadratic algebras with minimal number of relations,
Monatsh. Math. 168 (2012), 239-252

[16] N. Iyudu and S. Shkarin, Asymptotically optimal k-step nilpotency of quadratic algebras and the Fibonacci
numbers, Combinatorica [to appear]

[17] N. Iyudu and S. Shkarin, Optimal 5-step nilpotent quadratic algebras, J. Algebra 412 (2014), 1-14

[18] Kontsevich, Maxim, Formal (non)commutative symplectic geometry. The Gel’fand Mathematical Seminars,
1990-1992, 173-187, Birkhuser Boston, Boston, MA, 1993.

[19] Kontsevich, Maxim, Rosenberg, Alexander Noncommutative smooth spaces. arXivmath /9812158

14



[20]
[21]
[22]
[23]
[24]
[25]
[26]

[27]

T. H. Lenagan and Agata Smoktunowicz, An infinite dimensional affine nil algebra with finite Gelfand-
Kirillov dimension, J. Amer. Math. Soc. 20 (2007), 989-1001.

Manin Yu.l. Some remarks on Koszul algebras and quantum groups Annales de l'institut Fourier 37 (1987)
n.4, p.191-205

Odesskii, A. V.; Feigin, B. L. Sklyanin’s elliptic algebras. (Russian) Funktsional. Anal. i Prilozhen. 23 (1989),
no. 3, 45-54; translation in Funct. Anal. Appl. 23 (1990), no. 3, 207-214

A. Polishchuk and L. Positselski, Quadratic algebras, University Lecture Series 37 American Mathematical
Society, Providence, RI, 2005

Priddy, Stewart Koszul resolutions and the Steenrod algebra. Bull. Amer. Math. Soc. 76 (1970), no. 4,
834-839

S.Sierra, D. Rogalski, J. T. Stafford, Noncommutative blowups of elliptic algebras Algebras and Representa-
tion Theory, 18 (2015), 491-529.

Sklyanin, E. K. Some algebraic structures connected with the Yang-Baxter equation. Representations of a
quantum algebra. (Russian)Funktsional. Anal. i Prilozhen, 17 (1983), no. 4, 34-48.

Zelmanov, E. Some open problems in the theory of infinite dimensional algebras, J. Korean Math. Soc.
44(2007), N5, 1185-1195.

NATALIA IYUuDU

SCHOOL OF MATHEMATICS

THE UNIVERSITY OF EDINBURGH

JAMES CLERK MAXWELL BUILDING

THE KING’S BUILDINGS

PETER GUTHRIE TAIT ROAD

EDINBURGH

ScoTLAND EH9 3FD

E-MAIL ADDRESS: niyudu@staffmail.ed.ac.uk

STANISLAV SHKARIN

QUEENS’S UNIVERSITY BELFAST

DEPARTMENT OF PURE MATHEMATICS
UNIVERSITY ROAD, BELFAST, BT7 1NN, UK
E-MAIL ADDRESSES: s.shkarin@qub.ac.uk

15



