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INTRODUCTION

0.1. A common wisdom says that difficulties arise in Koszul duality because impor-
tant spectral sequences diverge. What really happens here is that one considers the
spectral sequence of a complex endowed with, typically, a decreasing filtration which
is not complete. Indeed, the spectral sequence of a complete and cocomplete filtered
complex always converges in the relevant sense [10]. The solution to the problem,
therefore, is to either replace the complex with its completion, or choose a different
filtration. In this paper, we mostly follow the second path. This involves elaboration
of the distinction between two kinds of derived categories, as we will see below.

The first conclusion is that one has to pay attention to completions if one wants
one’s spectral sequences to converge. What this means in the case of the spectral
sequence related to a bicomplex is that the familiar picture of two spectral sequences
converging to the same limit splits in two halves when the bicomplex becomes infi-
nite enough. The two spectral sequences essentially converge to the cohomology of
two different total complexes. To obtains those, one takes infinite products in the
“positive” direction along the diagonals and infinite direct sums in the “negative”
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direction (like in Laurent series). The two possible choices of the “positive” and
“negative” directions give rise to the two completions. The word “essentially” here
is to be understood as “ignoring the delicate, but often manageable issues related to
nonexactness of the inverse limit”.

0.2. This alternative between taking infinite direct sums and infinite products when
constructing the total complex leads to the classical distinction between differential
derived functors of the first and the second kind [15]. Roughly speaking, one can
consider a DG-module either as a deformation of its cohomology or as a deformation
of itself considered with zero differential; the spectral sequences related to the former
and the latter kind of deformation essentially converge to the cohomology of the
differential derived functors of the first and the second kind, respectively.

Derived categories of the first and the second kind are intended to serve as the
domains of the differential derived functors of the first and the second kind. This
does not always work as smoothly as one wishes; one discovers that, for technical
reasons, it is better to consider derived categories of the first kind for algebras and
derived categories of the second kind for coalgebras. The distinction between the
derived functors/categories of the first and the second kind is only relevant when
certain finiteness conditions no longer hold; this happens when one considers either
unbounded complexes, or differential graded modules.

Let us discuss the story of two derived categories in more detail. When the finite-
ness conditions do hold, the derived category can be represented in two simple ways.
It is both the quotient category of the homotopy category by the thick subcategory of
complexes with zero cohomology and the triangulated subcategory of the homotopy
category formed by the complexes of projective or injective objects. In the gen-
eral case, this simple picture splits in two halves. The derived category of the first
kind is still defined as the quotient category of the homotopy category by the thick
subcategory of complexes (DG-modules, ...) with zero cohomology. It can be also
obtained as a full subcategory of the homotopy category, but the description of this
subcategory is more complicated [26, 16, 6]. On the other hand, the derived category
of the second kind is defined as the quotient category of the homotopy category by
a thick subcategory with a rather complicated description. At the same time, it is
equivalent to the full subcategory of the homotopy category formed by complexes
(DG-comodules, DG-contramodules, . ..) which become injective or projective when
considered without the differential.

0.3. The time has come to mention that there exist two kinds of module categories
for a coalgebra: besides the familiar comodules, there are also contramodules [11].
Comodules can be thought of as discrete modules which are unions of their finite-
dimensional subcomodules, while contramodules are modules where certain infinite



summation operations are defined. For example, the space of linear maps from a
comodule to any vector space has a natural contramodule structure.

The derived category of the first kind is what is known as just the derived category:
the unbounded derived category, the derived category of DG-modules, etc. The
derived category of the second kind comes in two dual versions: the coderived and
the contraderived category. The coderived category works well for comodules, while
the contraderived category is useful for contramodules. The classical notion of a
DG-(co)algebra itself can be generalized in two ways; the derived category of the
first kind is well-defined for an A..-algebra, while the derived category of the second
kind makes perfect sense for a CDG-coalgebra.

Other situations exist when derived categories of the second kind are well-behaved.
One of them is that of a CDG-ring whose underlying graded ring has a finite homolog-
ical dimension. In this case, the coderived and contraderived categories coincide. In
particular, this includes the case of a CDG-algebra whose underlying graded algebra
is free. Such CDG-algebras can be thought of as strictly unital curved A.-coalgebras;
CDG-modules over the former with free and cofree underlying graded modules corre-
spond to strictly unital curved A, -comodules and A.,-contramodules over the latter.

The functors of forgetting the differentials, assigning graded (co/contra)modules
to CDG-(co/contra)modules, play a crucial role in the whole theory of derived cate-
gories of the second kind. So it is helpful to have versions of these functors defined
for arbitrary DG-categories. An attempt to obtain such forgetful functors leads to
a nice construction of an almost involution on the category of DG-categories. The
related constructions for CDG-rings and CDG-coalgebras are important for the non-
homogeneous quadratic duality theory, particularly in the relative case [25].

0.4. Now let us turn to (derived) Koszul duality. This subject originates from
the classical Bernstein—-Gelfand—Gelfand duality (equivalence) between the bounded
derived categories of finitely generated graded modules over the symmetric and ex-
terior algebras with dual vector spaces of generators [5]. Attempting to generalize
this straightforwardly to arbitrary algebras, one discovers that many restricting con-
ditions have to be imposed: it is important here that one works with algebras over
a field, that the algebras and modules are graded, that the algebras are Koszul, that
one of them is finite-dimensional, while the other is Noetherian (or at least coherent)
and has a finite homological dimension.

The standard contemporary source is [4], where many of these restrictions are
eliminated, but it is still assumed that everything happens over a semisimple base
ring, that the algebras and modules are graded, and that the algebras are Koszul.
In (3], Koszulity is not assumed, but positive grading and semisimplicity of the base
ring still are. The main goal of this paper is to work out the Koszul duality for
ungraded algebras and coalgebras over a field, and more generally, differential graded
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algebras and coalgebras. In this setting, the Koszulity condition is less important,
although it allows to obtain a certain generalization of the duality result. As to the
duality over a base more general than a field, we refer the reader to [25, Section 11],
where a version of Koszul duality is obtained for a base coring over a base ring.

The thematic example of ungraded Koszul duality over a field is the relation be-
tween complexes of modules over a Lie algebra g and DG-comodules over its standard
homological complex. Here one discovers that, when g is reductive, the standard
homological complex with coefficients in a nontrivial irreducible g-module has zero
cohomology—even though it is not contractible, and becomes an injective graded co-
module when one forgets the differential. So one has to consider a version of derived
category of DG-comodules where certain acyclic DG-comodules survive if one wishes
this category to be equivalent to the derived category of g-modules. That is how
derived categories of the second kind appear in Koszul duality [12, 19, 17].

0.5. Yet another very good reason for considering derived categories of the second
kind is that in their terms a certain relation between comodules and contramodules
can be established. Namely, the coderived category of CDG-comodules and the con-
traderived category of CDG-contramodules over a given CDG-coalgebra are naturally
equivalent. We call this phenomenon the comodule-contramodule correspondence; it
appears to be almost as important as the Koszul duality.

One can generalize the comodule-contramodule correspondence to the case of
strictly unital curved A,-comodules and A,,-contramodules over a curved A,,-coal-
gebra by considering the derived category of the second kind for CDG-modules over
a CDG-algebra whose underlying graded algebra is a free asssociative algebra.

0.6. This paper can be considered as an extended introduction to [25]; nevertheless,
it contains many results not covered by [25]. The fact that exotic derived categories
arise in Koszul duality was essentially discovered by Hinich [13], whose ideas were
developed by Lefevre-Hasegawa [19]; see also Flgystad [12], Huebschmann [14], and
Nicolas [22]. The terminology of “coderived categories” was introduced in Keller’s
exposition [17]. However, the definition of coderived categories in [19, 17| was not
entirely satisfactory, in our view, in that the right hand side of the purpoted duality
is to a certain extent defined in terms of the left hand side. This defect is corrected
in the present paper. In addition, we emphasize contramodules and CDG-coalgebras,
whose role in the derived categories of the second kind and derived Koszul duality
business does not seem to have been appreciated enough.

0.7. Now let us describe the content of this paper in more detail. In Section 1 we
obtain two semiorthogonal decompositions of the homotopy category of DG-modules
over a DG-ring, providing injective and projective resolutions for the derived category
of DG-modules. We also consider flat resolutions and use them to define the derived
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functor Tor for a DG-ring. Besides, we construct a t-structure on the derived category
of DG-modules over an arbitrary DG-ring.

The derived categories of DG-comodules and DG-contramodules and the differen-
tial derived functors Cotor®’ and Coext’ of the first kind for a DG-coalgebra C' are
briefly discussed in Section 2. Partial results about injective and projective resolu-
tions for the coderived and contraderived categories of a CDG-ring are obtained in
Section 3. The Noetherian and Artinian cases and the finite homological dimension
case are considered; in the latter situation, a natural definition of the differential
derived functor Tor?” of the second kind for a CDG-ring B is given. In addition,
we construct an “almost involution” on the category of DG-categories.

In Section 4 we construct semiorthogonal decompositions of the homotopy cate-
gories of CDG-comodules and CDG-contramodules over a CDG-coalgebra, providing
injective and projective resolutions for the coderived category of CDG-comodules
and the contraderived category of CDG-contramodules. We also define the differ-
ential derived functors Cotor, Coext, and Ctrtor for a CDG-coalgebra, and give a
sufficient condition for a morphism of CDG-coalgebras to induce equivalences of the
coderived and contraderived categories. The comodule-contramodule correspondence
for a CDG-coalgebra is obtained in Section 5.

Koszul duality (or “triality”, as there are actually two module categories on
the coalgebra side) is studied in Section 6. Two versions of the duality theorem
for (C)DG-modules, CDG-comodules, and CDG-contramodules are obtained, one
valid for conilpotent CDG-coalgebras only and one applicable in the general case.
We also construct an equivalence between natural localizations of the categories of
DG-algebras (with nonzero units) and conilpotent CDG-coalgebras.

We discuss the derived categories of A,,-modules and the co/contraderived cate-
gories of curved Ay-co/contramodules in Section 7. We explain the relation between
strictly unital A-algebras and coaugmented CDG-coalgebra structures on graded
tensor coalgebras, and use it to prove the standard results about strictly unital
As-modules. The similar approach to strictly unital curved A.-coalgebras yields
the comodule-contramodule correspondence in the A, case.

In a future version of this paper we plan to include the constructions of model
category structures on the categories of (C)DG- (co,contra)modules and (co)algebras.
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1. DERIVED CATEGORY OF DG-MODULES

1.1. DG-rings and DG-modules. A DG-ring A = (A, d) is a pair consisting of an
associative graded ring A = @,, A’ and an odd derivation d: A — A of degree 1
such that d*> = 0. In other words, it is supposed that d(A‘) C A*"! and d(ab) =
d(a)b + (—1)l%lad(b) for a, b € A, where |a| denotes the degree of a homogeneous
element, i. e., a € Al°l,

A left DG-module (M,dy;) over a DG-ring A is a graded left A-module M =
@, M' endowed with a differential dy;: M — M of degree 1 compatible with the
derivation of A and such that d42, = 0. The compatibility means that the equation
du(ax) = d(a)z + (—1)%ady(z) holds for all a € A and z € M.

A right DG-module (N,dy) over A is a graded right A-module N endowed with a
differential dy of degree 1 satisfying the equations dy(za) = dy(x)a + (—=1)1*lzd(a)
and d% = 0, where z € N7l

Let L and M be left DG-modules over A. The complex of homomorphisms
Homu(L, M) from L to M over A is constructed as follows. The component
Hom', (L, M) consists of all homogeneous maps f: L — M of degree i such that
flax) = (=)!%laf(x) for all @ € A and z € L. The differential in the complex
Hom (L, M) is given by the formula d(f)(x) = du(f(z)) — (=1 f(dL(z)). Clearly,
one has d?(f) = 0; for any composable morphisms of left DG-modules f and g one
has d(fg) = d(f)g + (=) fd(g).

For any two right DG-modules R and N over A, the complex of homomorphisms
Hom (R, N) is defined by the same formulas as above and satisfies the same prop-
erties, with the only difference that a homogeneous map f: R — N belonging to
Hom 4 (R, N) must satisfy the equation f(za) = f(x)a for a € A and x € R.

Let N be a right DG-module and M be a left DG-module over A. The tensor
product complexr N ®4 M is defined as the graded quotient group of the graded
abelian group N ®z M by the relations xra @ y =rx @ ay forx € N, a € A, y€ M,
endowed with the differential given by the formula d(z®y) = d(z)®@y+(—1)*lz®d(y).
For any two right DG-modules R and N and any two left DG-modules L and M the
natural map of complexes Hom 4 (R, N) ®zHom 4 (L, M) — Homz(R®4 L, N@4 M)



is defined by the formula (f ® g)(zr ® y) = (—1)9*If(x) ® g(y). Here Z is considered
as a DG-ring concentrated in degree 0.

For any DG-ring A, its cohomology H(A) = Hy(A), defined as the quotient of
the kernel of d by its image, has a natural structure of graded ring. For a left
DG-module M over A, its cohomology H (M) is a graded module over H(A); for a
right DG-module N, its cohomology H(N) is a right graded module over H(A).

A DG-algebra A over a commutative ring k£ is a DG-ring endowed with DG-ring
homomorphism k& — A° whose image is contained in the center of the algebra
A, where k is considered as a DG-ring concentrated in degree 0; equivalently, a
DG-algebra is a complex of k-modules with a k-linear DG-ring structure.

Remark. One can consider DG-algebras and DG-modules graded by an abelian
group ' different from Z, provided that [' is endowed with a parity homomorphism
' — Z/2 and an odd element 1 € T', so that the differentials would have degree 1.
In particular, one can take I' = Z/2, that is have gradings reduced to parities, or
consider fractional gradings by using some subgroup of QQ consisting of rationals with
odd denominators in the role of I'. Even more generally, one can replace the parity
function with a symmetric bilinear form o: I'xI' — Z/2, to be used in the super sign
rule in place of the product of parities; one just has to assume that o(1,1) = 1 mod 2.
All the most important results of this paper remain valid in such settings.

1.2. DG-categories. A DG-category is a category whose sets of morphisms are
complexes and compositions are biadditive maps compatible with the gradings and
the differentials. In other words, a DG-category DG consists of a class of ob-
jects, complexes of abelian groups Hompg(X,Y'), called the complexes of morphisms
from X to Y, defined for any two objects X and Y, and morphisms of complexes
Hompg(Y, Z) ®z Hompg(X,Y) — Hompg(X, Z), called the composition maps, de-
fined for any three objects X, Y, and Z. The compositions must be associative and
unit elements idx € Hompg(X, X) must exist; the equations d(idx) = 0 then hold
automatically.

For example, left DG-modules over a DG-ring A form a DG-category, which we
will denote by DG(A-mod). The DG-category of right DG-modules over A will be
denoted by DG(mod-A).

A covariant DG-functor DG' — DG" consists of a map between the classes of
objects and (closed) morphisms between the complexes of morphisms compatible with
the compositions. A contravariant DG-functor is defined in the same way, except that
one has to take into account the natural isomorphism of complexes VW ~ WV
for complexes of abelian groups V' and W that is given by the formula v ® w —
(=1)llvly @ V. (Covariant or contravariant) DG-functors between DG’ and DG”
form a DG-category themselves. The complex of morphisms between DG-functors F
and G is a subcomplex of the product of the complexes of morphisms from F(X) to
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G(X) in DG" taken over all objects X € DG'; the desired subcomplex is formed by
all the systems of morphisms compatible with all morphisms X — Y in DG'.

For example, a DG-ring A can be considered as a DG-category with a single object;
covariant DG-functors from this DG-category to the DG-category of complexes of
abelian groups are left DG-modules over A, while contravariant DG-functors between
the same DG-categories can be identified with right DG-modules over A.

A closed morphism f: X — Y in a DG-category DG is an element of
Hom{.(X,Y) such that d(f) = 0. The category whose objects are the objects of
DG and whose morphisms are closed morphisms in DG is denoted by Z°(DG).

An object Y is called the product of a family of objects X, (notation: Y
[1, Xs) if a closed isomorphism of contravariant DG-functors Hompg(—,Y)
[[, Hompg(—, X,) is fixed. An object Y is called the direct sum of a family of
objects X, (notation: Y = @, X,) if a closed isomorphism of covariant DG-functors
Hompg (Y, —) ~ ], Hompg(Xa, —) is fixed.

An object Y is called the shift of an object X by an integer i (notation: Y = X[i]) if
a closed isomorphism of contravariant DG-functors Hompg(—,Y") ~ Hompg(—, X)[7]
is fixed, or equivalently, a closed isomorphism of covariant DG-functors Hompg
(Y, —) ~ Hompg (X, —)[—1] is fixed.

An object Z is called the cone of a closed morphism f: X — Y (notation:
Z = cone(f)) if a closed isomorphism of contravariant DG-functors Hompg(—, Z) ~
cone(f,), where f,: Hompg(—,X) — Hompg(—,Y), is fixed, or equivalently, a
closed isomorphism of covariant DG-functors Hompg(Z, —) ~ cone(f*)[—1], where
f*: Hompg (Y, —) — Hompg(X, —), is fixed.

Let V be a complex of abelian groups and p: V. — V be an endomorphism of
degree 1 satisfying the Maurer-Cartan equation d(p) + p? = 0. Then one can define a
new differential on V' by setting d’ = d + p; let us denote the complex so obtained by
V(p). Let ¢ € Homp¢ (X, X) be an endomorphism of degree 1 satisfying the equation
d(q) + ¢*> = 0. An object Y is called the twist of the object X with respect to g if a
closed isomorphism of contravariant DG-functors Hompg(—, X) ~ Hompg(—, Y)(gs)
is fixed, where ¢,(g) = g o g for any morphism g whose target is X, or equivalently, a
closed isomorphism of covariant DG-functors Hompg (Y, —) ~ Hompg (X, —)(—¢*) is
fixed, where ¢*(g) = (=1)!%g o ¢ for any morphism g whose source is Y.

As any representing objects of DG-functors, all direct sums, products, shifts, cones,
and twists are defined uniquely up to a unique closed isomorphism. The direct sum
of a finite set of objects is naturally also their product, and vice versa. Finite direct
sums, products, shifts, cones, and twists are preserved by any DG-functors. One can
express the cone of a closed morphism f: X — Y as the twist of the direct sum
Y @ X[1] with respect to the endomorphism ¢ induced by f.

Here is another way to think about cones of closed morphisms in DG-categories.
Let DG* denote the category whose objects are the objects of DG and morphisms are

1l
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the (not necessarily closed) morphisms in DG of degree 0. Let X' — X — X" be
a triple of objects in DG with closed morphisms between them that is split exact in
DG*. Then X is the cone of a closed morphism X”[—1] — X". Conversely, for any
closed morphism X — Y in DG with the cone Z there is a natural triple of objects
and closed morphisms Y — Z — X[1], which is split exact in DG¥.

Let DG be a DG-category with shifts, twists, and infinite direct sums. Let --- —
X, — X,_1 —> -+ - be a complex of objects of DG with closed differentials 9;. Then
the differentials 0; induce an endomorphism ¢ of degree 1 on the direct sum €, X;|4]
satisfying the equations d(q) = 0 = ¢®>. The twist of this direct sum with respect
to this endomorphism is called the total object of the complex X, formed by taking
infinite direct sums and denoted by Tot®(X,). For a DG-category DG with shifts,
twists, and infinite products, one can consider the analogous construction with the
infinite direct sum replaced by the infinite product [, X;[7]. Thus one obtains the
definition of the total object formed by taking infinite products Tot™(X,).

For a finite complex X*, the two total objects coincide and are denoted simply by
Tot(X,); this total object only requires existence of finite direct sums/products for
its construction. Alternatively, the total objects Tot, Tot®, and Tot"' can be defined
as certain representing objects of DG-functors. The finite total object Tot can be
also expressed in terms of iterated cones, so it is well-defined whenever cones exist in
a DG-category DG, and it is preserved by any DG-functors.

A DG-functor DG’ — DG” is said to be fully faithful if it induces isomorphisms
of the complexes of morphisms. A DG-functor is said to be an equivalence of
DG@G-categories if it is fully faithful and every object of DG” admits a closed iso-
morphism with an object coming from DG'. This is equivalent to existence of a
DG-functor in the opposite direction for which both the compositions admit closed
isomorphisms to the identity DG-functors. DG-functors F': DG’ — DG” and
G: DG" — DG’ are said to be adjoint if for every objects X € DG’ and Y € DG”
a closed isomorphism of complexes Hompg (F(X),Y) ~ Hompg (X, G(Y)) is given
such that these isomorphisms commute with the (not necessarily closed) morphisms
induced by morphisms in DG’ and DG".

Let DG be a DG-category where (a zero object and) all shifts and cones exist. Then
the homotopy category H°(DG) is the additive category with the same class of objects
as DG and groups of morphisms given by Hompyopg)(X,Y) = H°(Hompg(X,Y)).
The homotopy category is a triangulated category [8]. Shifts of objects and cones of
closed morphisms in DG become shifts of objects and cones of morphisms in the trian-
gulated category H°(DG). Any direct sums and products of objects of a DG-category
are also their directs sums and products in the homotopy category. Adjoint functors
between DG-categories induce adjoint functors between the corresponding categories
of closed morphisms and homotopy categories.



Two closed morphisms f, g: X — Y in a DG-category DG are called homotopic
if their images coincide in H%(DG). A closed morphism in DG is called a homotopy
equivalence if it becomes an isomorphism in H°(DG). An object of DG is called
contractible if it vanishes in H°(DG).

All shifts, twists, infinite direct sums, and infinite direct products exist in the
DG-categories of DG-modules. The homotopy category of (the DG-category of)
left DG-modules over a DG-ring A is denoted by Hot(A-mod) = H°DG(A-mod);
the homotopy category of right DG-modules over A is denoted by Hot(mod-A) =
H°DG(mod-A).

1.3. Semiorthogonal decompositions. Let H be a triangulated category and
A C H be a full triangulated subcategory. Then the quotient category H/A is de-
fined as the localization of H with respect to the multiplicative system of morphisms
whose cones belong to A. The subcategory A is called thick if it coincides with the
full subcategory formed by all the objects of H whose images in H/A vanish. A trian-
gulated subcategory A C H is thick if and only if it is closed under direct summands
in H [28, 20]. The following Lemma is essentially due to Verdier [27]; see also [2, 7].

Lemma. Let H be a triangulated category and B, C C H be its full triangulated
subcategories such that Homy(B,C) = 0 for all B € B and C € C. Then the
natural maps Homy(B, X) — Homy,c(B, X) and Homy (X, C) — Homy (X, C)
are isomorphisms for any objects B € B, C € C, and X € H. In particular, the
functors B — H/C and C — H/B are fully faithful. Furthermore, the following
conditions are equivalent:

(a) B is a thick subcategory in H and the functor C — H/B is an equivalence of
triangulated categories;

(b) C is a thick subcategory in H and the functor B — H/C is an equivalence of
triangulated categories;

(c) B and C generate H as a triangulated category, i. e., any object of H can be
obtained from objects of B and C by iterating the operations of shift and cone;

(d) for any object X € H there exists a distinguished triangle B — X —»
C — B[l] with B € B and C € C (and in this case for any morphism
X' — X" in H there erxists a unique morphism between any distinguished
triangles of the above form for X' and X", so this triangle is unique up to a
unique isomorphism and depends functorially on X );

(e) C is the full subcategory of H formed by all the objects C € H such that
Homy(B,C) = 0 for all B € B, and the embedding functor B — H has a
right adjoint functor (which can be then identified with the localization functor
H— H/C~B),
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(f) C is the full subcategory of H formed by all the objects C € H such that
Homy(B,C) = 0 for all B € B, B is a thick subcategory in H, and the
localization functor H — H/B has a right adjoint functor;

(g) B is the full subcategory of H formed by all the objects B € H such that
Homy(B,C) = 0 for all C € C, and the embedding functor C — H has a
left adjoint functor (which can be then identified with the localization functor
H— H/B~C);

(h) B is the full subcategory of H formed by all the objects B € H such that
Homy(B,C) = 0 for all C € C, C is a thick subcategory in H, and the
localization functor H — H/C has a left adjoint functor. O

1.4. Projective resolutions. A DG-module M is said to be acyclic if it is acyclic
as a complex of abelian groups, i. e., H(M) = 0. The thick subcategory of the
homotopy category Hot(A-mod) formed by the acyclic DG-modules is denoted by
Acycl(A-mod). The derived category of left DG-modules over A is defined as the
quotient category D(A-mod) = Hot(A-mod)/Acycl(A-mod).

A left DG-module L over a DG-ring A is called projective if for any acyclic
left DG-module M over A the complex Homu(L, M) is acyclic. The full trian-
gulated subcategory of Hot(A-mod) formed by the projective DG-modules is de-
noted by Hot(A-mod),.. The following Theorem says, in particular, that the ho-
motopy category H = Hot(A-mod) and its subcategories B = Hot(A-mod),; and
C = Acycl(A-mod) satisfy the equivalent conditions of Lemma 1.3, and so describes
the derived category D(A-mod).

Theorem. (a) The category Hot(A-mod) g is the minimal triangulated subcategory
of Hot(A-mod) containing the DG-module A and closed under infinite direct sums.

(b) The composition of functors Hot(A-mod)po; — Hot(A-mod) — D(A-mod)
1s an equivalence of triangulated categories.

Proof. First notice that the category Hot(A-mod),.; is closed under infinite direct
sums. It contains the DG-module A, since for any DG-module M over A there is a
natural isomorphism of complexes of abelian groups Hom 4 (A, M) ~ M. According to
Lemma 1.3, it remains to construct for any DG-module M a morphism f: F' — M in
the homotopy category of DG-modules over A such that the DG-module F belongs to
the minimal triangulated subcategory containing the DG-module A and closed under
infinite direct sums, while the cone of the morphism f is an acyclic DG-module.
When A is a DG-algebra over a field k, it suffices to consider the bar-resolution of
a DG-module M. It is a complex of DG-modules over A, and its total DG-module
formed by taking infinite direct sums provides the desired DG-module F'.

Let us give a detailed construction in the general case. Let M be a DG-module
over A. Choose a complex of free abelian groups M’ together with a surjective

morphism of complexes M’ — M such that the cohomology H(M') is also a free
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graded abelian group and the induced morphism of cohomology H(M') — H (M) is
also surjective. For example, one can take M’ to be the graded abelian group with the
components freely generated by nonzero elements of the components of M, endowed
with the induced differential. Set F, = A ®z M'; then there is a natural closed
surjective morphism Fy — M of DG-modules over A and the induced morphism of
cohomology H(Fy) — H (M) is also surjective. Let K be the kernel of the morphism
Fy — M (taken in the abelian category Z°DG(A-mod) of DG-modules and closed
morphisms between them). Applying the same construction to the DG-module K in
place of M, we obtain the DG-module F}, etc. Let F' be the total DG-module of the
complex of DG-modules - - - — F} — Fj, formed by taking infinite direct sums. One
can easily check that the cone of the morphism F' — M is acyclic, since the complex
-~ — H(F\) — H(Fy) — H(M) — 0 is acyclic (it suffices to apply the result
of [10] to the increasing filtration of the total complex of --- — F} — Fy — M
coming from the silly filtration of this complex of complexes).

It remains to show that the DG-module F' as an object of the homotopy category
can be obtained from the DG-module A by iterating the operations of shift, cone, and
infinite direct sum. Every DG-module F; is a direct sum of shifts of the DG-module
A and shifts of the cone of the identity endomorphism of the DG-module A. Denote
by X; the total DG-module of the finite complex of DG-modules F; — --- — Fj,.
Then we have F' = lim X; in the abelian category Z°DG(A-mod). So there is an exact
triple of DG-modules and closed morphisms 0 — @ X; — P X;, — F — 0.
Since the embeddings X; — X, split in DG(A-mod)#, the above exact triple also
splits in this additive category. Thus F' is a cone of the morphism @ X; — P X;
in the triangulated category Hot(A-mod). O

1.5. Injective resolutions. A left DG-module M over a DG-ring A is said to be
injective if for any acyclic DG-module L over A the complex Hom (L, M) is acyclic.
The full triangulated subcategory of Hot(A-mod) formed by the injective DG-modules
is denoted by Hot(A-mod);p;.

For any right DG-module N over A and any complex of abelian groups V' the
complex Homgz(N, V) has a natural structure of left DG-module over A with the
graded A-module structure given by the formula (af)(n) = (—1)lU/#") £ (nq).

The following Theorem provides another semiorthogonal decomposition of the
homotopy category Hot(A-mod) and another description of the derived category
D(A-mod).

Theorem. (a) The category Hot(A-mod)iy; is the minimal triangulated subcategory
of Hot(A-mod) containing the DG-module Homz (A, Q/Z) and closed under infinite
products.
(b) The composition of functors Hot(A-mod);,; — Hot(A-mod) — D(A-mod)
15 an equivalence of triangulated categories.
12



Proof. The proof is analogous to that of Theorem 1.4. Clearly, the category
Hot(A-mod)i,; is closed under infinite products. It contains the DG-module
Homy(A,Q/Z), since the complex Homy (L, Homy(A,Q/Z)) ~ Homy(L,Q/Z) is
acyclic whenever the DG-module L is. To construct an injective resolution of a
DG-module M, one can embed in into a complex of injective abelian groups M’ so
that the cohomology H(M') is also injective and H (M) also embeds into H(M').
For example, one can take the components of M’ to be the products of Q/Z over
all nonzero homomorphisms of abelian groups from the components of M to Q/Z.
Take Jy = Homgz(A, M') and consider the induced injective morphism of DG-modules
M — Jy. Set K = Jy/M, J 1 = Homg(A, K'), etc., and J = Tot''(J,). Then the
morphism of DG-modules M — J has an acyclic cone and the DG-module J is iso-
morphic in Hot(A-mod) to a DG-module obtained from Homy(A, Q/Z) by iterating
the operations of shift, cone, and infinite product. O

1.6. Flat resolutions. A right DG-module N over a DG-ring A is said to be flat
if for any acyclic left DG-module M over A the complex N ® 4 M is acyclic. Flat
left DG-modules over A are defined in the analogous way. The full triangulated
subcategory of Hot(A-mod) formed by flat DG-modules is denoted by Hot(A-mod)s.

We denote the thick subcategory of acyclic right A-modules by Acycl(mod-A) C
Hot(mod—A). The quotient category Hot(mod—A)/Acycl(mod—A) is called the de-
rived category of right DG-modules over A and denoted by D(mod-A). The full
triangulated subcategory of flat right DG-modules is denoted by Hot(mod-A)y C
Hot(mod-A).

It follows from Theorems 1.4-1.5 and Lemma 1.3 that one can compute the right
derived functor Exts(L, M) = Homp(a-med)(L, M) for left DG-modules L and M
over a DG-ring A in terms of projective or injective resolutions. Namely, one has
Exta(L, M) ~ H(Homu(L, M)) whenever L is a projective DG-module or M is an
injective DG-module over A. The following Theorem allows to define a left derived
functor Tor*(N, M) for a right DG-module N and a left DG-module M over A so
that it could be computed in terms of flat resolutions.

Theorem. (a) The functor Hot(A-mod)q/(Acycl(A-mod) N Hot(A-mod)y) —
D(A-mod) induced by the embedding Hot(A—mod)y — Hot(A-mod) is an equiva-
lence of triangulated categories.

(b) The functor Hot(mod—A)s/(Acycl(mod—A) NHot(mod-A)s) — D(mod—A) in-
duced by the embedding Hot(mod—A)y — Hot(mod—A) is an equivalence of triangu-
lated categories.

The proof of Theorem is based on the following Lemma.

Lemma. Let H be a triangulated category and A, F C H be full triangulated subcat-
egories. Then the natural functor F/ANF — H/A is an equivalence of triangulated

categories whenever one of the following two conditions holds:
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(a) for any object X € H there ezists an object F € F together with a morphism
F — X in H such that a cone of that morphism belongs to A, or

(b) for any object Y € H there exists an object F' € F together with a morphism
Y — F in H such that a cone of that morphism belongs to A.

Proof of Lemma. 1t is clear that the functor F/A N F — H/A is surjective on the
isomorphism classes of objects under either of the assumptions (a) or (b). To prove
that it is bijective on morphisms, represent morphisms in both quotient categories
by fractions of the form X <— X' — Y in the case (a) and by fractions of the form
X — Y'<— Y in the case (b). O

Proof of Theorem. Part (a): first notice that any projective left DG-module M over a
DG-ring A is flat. Indeed, one has Homy(N®4 M, Q/Z) ~ Hom (M, Homy(N, Q/Z))
for any right DG-module N over A, so whenever N is acyclic, and consequently
Homy(N,Q/Z) is acyclic, the left hand side of this isomorphism is acyclic, too,
and therefore N ® 4 M is acyclic. So it remains to use Theorem 1.4 together with
Lemma 1.3 and the above Lemma. To prove part (b), switch the left and right sides
by passing to the DG-ring A° defined as follows. As a complex, A°P is identified with
A, while the multiplication in A° is given by the formula a°®b°® = (—1)*/®/(ba)°P,
Then right DG-modules over A are left DG-modules over A°P and vice versa. O

Now let us define the derived functor
Tor*: D(mod-A) x D(A-mod) —— k-mod®

for a DG-algebra A over a commutative ring k, where k—mod® denotes the cate-
gory of graded k-modules. For this purpose, restrict the functor of tensor product
®4: Hot(mod-A) x Hot(A-mod) — Hot(k—mod) to either of the full subcategories
Hot(mod-A)s x Hot(A-mod) or Hot(mod-A) x Hot(A-mod)s and compose it with
the cohomology functor H: Hot(k-mod) — k-mod®. The functors so obtained fac-
torize through the localizations D(mod-A) x D(A-mod) and the two induced derived
functors D(mod—A) x D(A-mod) — k—mod® are naturally isomorphic to each other.

Indeed, the tensor product N ®4 M by the definition is acyclic whenever one of
the DG-modules NV and M is acyclic, while the other one is flat. Let us check that
the complex N ® 4 M is acyclic whenever either of the DG-modules N and M is
simultaneously acyclic and flat. Assume that N is acyclic and flat; choose a flat
left DG-module F' over A together with a morphism of DG-modules FF — A with
an acyclic cone. Then the complex N ® 4 F' is acyclic, since NN is acyclic; while the
morphism N ® 4 FF — N ®4 M is a quasi-isomorphism, since N is flat.

To construct an isomorphism of the two induced derived functors, it suffices to
notice that both of them are isomorpic to the derived functor obtained by restricting
the functor ® 4 to the full subcategory Hot(mod-A)q x Hot(A—mod)g. In other words,
suppose that G — N and FF — M are morphisms of DG-modules with acyclic
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cones, where the right DG-module G and the left DG-module F' are flat. Then there
are natural quasi-isomorphisms G @4 M +— G F — N ®4 F.

1.7. Restriction and extention of scalars. Let f: A — B be a morphism of
DG-algebras, i. e., a closed morphism of complexes preserving the multiplication.
Then any DG-module over B can be also considered as a DG-module over A, which
defines the restriction-of-scalars functor R;: Hot(B-mod) — Hot(A-mod). This
functor has a left adjoint functor E; given by the formula Ef(M) = B @4 M and
a right adjoint functor E/ given by the formula E/(M) = Homyu (B, M) (where
the DG-module structure on Hom4(B, M) is defined so that Homu(B, M) —
Homy(B, M) is a closed injective morphism of DG-modules).

The functor R; obviously maps acyclic DG-modules to acyclic DG-modules, and
so induces a functor D(B-mod) — D(A-mod), which we will denote by IR;. The
functor Ef has a left derived functor ILE; obtained by restricting Ef to either of
the full subcategories Hot(A-mod)y; or Hot(A-mod)s C Hot(A-mod) and com-
posing it with the localization functor Hot(B-mod) — D(B-mod). The functor
E7 has a right derived functor RE/ obtained by restricting E7 to the full subcate-
gory Hot(A-mod),; C Hot(A-mod) and composing it with the localization functor
Hot(B-mod) — D(B-mod). The functor LE; is left adjoint to the functor IR, and
the functor REY is right adjoint to the functor IR;.

Theorem. The functors IR;, LE;, RE’ are equivalences of triangulated categories
if and only if the morphism f induces an isomorphism H(A) ~ H(B).

Proof. Morphisms in D(A-mod) between shifts of the DG-module A recover the co-
homology H(A) and analogously for the DG-algebra B, so the “only if” assertion
follows from the isomorphism LE;(A) ~ B. To prove the “if” part, we will show
that the adjunction morphisms LE;(IR;(N)) — N and M — IR/(LE;(M))
are isomorphisms for any left DG-modules M over A and N over B. The for-
mer morphism is represented by the composition B 4 G — B ®4 N — N
for any flat DG-module G over A endowed with a quasi-isomorphism G — N of
DG-modules over A. This composition is a quasi-isomorphism, since the morphisms
B,G+— A®,G — A®4 N ~ N are quasi-isomorphisms. The latter morphism
is represented by the fraction M +— F' — B® 4 F' for any flat DG-module F over A
endowed with a quasi-isomorphism F' — M of DG-modules over A. The morphism
F~A®sF — B®4 F is a quasi-isomorphism. O

1.8. DG-module t-structure. An object Y of a triangulated category D is called
an ectension of objects Z and X if there is a distinguished triangle X — Y —
Z — X|[1]. Let D = D(A-mod) denote the derived category of left DG-modules over
a DG-ring A. Let D?° C D denote the full subcategory formed by all DG-modules
M over A such that H'(M) = 0 for i < 0 and DS® C D denote the minimal full
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subcategory of D(A-mod) containing the DG-modules A[i] for i > 0 and closed
under extensions and infinite direct sums.

Theorem. (a) The pair of subcategories (DS, D) defines a t-structure [2] on the
derived category D(A-mod).

(b) The subcategory DS® C D coincides with the full subcategory formed by all
DG-modules M over A such such that H'(M) = 0 for i > 0 if and only if H'(A) =0
for all i > 0.

Proof. Part (a): clearly, one has DS?[1] ¢ DS°, D*°[—1] ¢ D?° and Homp(D<?,
DZ%[—1]) = 0. It remains to construct for any DG-module M over A a closed mor-
phism of DG-modules FF — M inducing a monomorphism on H! and an isomor-
phism on H® for all 7 < 0 such that F' can be obtained from the DG-modules Ali]
with ¢ > 0 by iterated extensions and infinite direct sums in the homotopy category
of DG-modules. This construction is similar to that of the proof of Theorem 1.4, with
the following changes. One chooses a surjective morphism M’ — M onto M from
a complex of free abelian groups M’ with free abelian groups of cohomology so that
Hi(M') = 0 for i > 0 and the maps H*(M') — H*(M) are surjective for all i < 0.
Then for Fy = A®z M' and K = ker(Fy — M) one chooses a surjective morphism
K' — K onto K from a complex of free abelian groups K’ with free abelian groups
of cohomology so that HY(K') = 0 for ¢ > 1 and the maps H'(K') — H'(K) are
surjective for all 7 < 1 in order to put /7 = A ®; K', etc. The DG-module F' is con-
structed as the total DG-module of the complex - -+ — F} — F{, formed by taking
infinite direct sums. The “only if” assertion in part (b) is clear. To prove “if”, replace
A with its quasi-isomorphic DG-subring 7¢pA4 with the components (r¢oA)" = A for
i <0, (1¢0A)° = ker(A° — A'), and (1oA)" = 0 for 4 > 0; then notice that the
canonical filtrations on DG-modules over 7¢gA considered as complexes of abelian
groups are compatible with the action of the ring 7oA. Il

Remark 1. The t-structure described in part (a) of Theorem can well be degenerate,
though it is clearly nondegenerate under the assumptions of part (b). Namely, one
can have (\DS°[;] # 0. For example, take A = k[z] to be the graded algebra of
polynomials with one generator = of degree 1 over a field £ and endow it with the
zero differential. Then the graded A-module k[z,z7'] considered as a DG-module
with zero differential belongs to the above intersection, since it can be presented as
the inductive limit of the DG-modules z~"k[z]. Moreover, take A = k[z, 2], where
degz =1 and d(x) = 0; then D?° = 0 and DS% = D.

Remark 2. One might wish to define a dual version of the above t-structure on
D(A-mod) where D>° would be the minimal full subcategory of D containing the
DG-modules Homyz(A,Q/Z)[i] for i < 0 and closed under extensions and infinite
products, while DS? would consist of all DG-modules M with H*(M) = 0 for i > 0.
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The dual version of the above proof does not seem to work in this case, however,
because of a problem related to nonexactness of the countable inverse limit.

Remark 3. The above construction of the DG-module t-structure can be generalized
in the following way. Let D be a triangulated category with infinite direct sums. An
object C' € D is said to be compact if the functor Homp(C, —) preserves infinite direct
sums. Let C C D be a subset of objects of D consisting of compact objects and such
that C[1] C C. Let D> be the full subcategory of D formed by all objects X such that
Homp (C, X[—1]) = 0 for all C € C, and let DS? be the minimal full subcategory of D
containing C and closed under extensions and infinite direct sums. Then (DS D>?)
is a t-structure on D. Indeed, let X be an object of D. Consider the natural map into
X from the direct sum of objects from C indexed by morphisms from objects of C to
X; let X, be the cone of this map. Applying the same construction to the object X;
in place of X, we obtain the object X5, etc. Let Y be the homotopy inductive limit
of X;, i. e., the cone of the natural map @, X; — €, X;. Then Y € D?°[—1] and
cone(X — Y)[—1] € DSV,

2. DERIVED CATEGORIES OF DG-COMODULES AND DG-CONTRAMODULES

2.1. Graded comodules. Let £ be a fixed ground field. A graded coalgebra C
over k is a graded k-vector space C = @, C" endowed with a comultiplication
map C' — C' ®; C' and a counut map C — k, which must be homogeneous linear
maps of degree 0 satisfying the coassociativity and counity equations. Namely, the
comultiplication map must have equal compositions with the two maps C ®; C =
C ®; C ®; C induced by the comultiplication map, while the compositions of the
comultiplication map with the two maps C' ®; C' — C induced by the counit map
must coincide with the identity endomorphism of C'.

A graded left comodule M over C is a graded k-vector space M = @, _, M"* endowed
with a left coaction map M — C'®; M, which must be a homogeneous linear map of
degree 0 satisfying the coassociativity and counity equations. Namely, the coaction
map must have equal compositions with the two maps C @, M = C ®, C @, M
induced by the comultiplication map and the coaction map, while the composition
of the coaction map with the map C ®, M — M induced by the counit map must
coincide with the identity endomorphism of M. A graded right comodule N over C'is
a graded vector space endowed with a right coaction map N — N ®; C' satisfying
the analogous linearity, homegeneity, coassociativity, and counity equations.

The cotensor product of a graded right C-comodule N and a graded left
C-comodule M is the graded vector space N Ogc M defined as the kernel of the
pair of linear maps N @, M = N ®; C ®; M, one of which is induced by the right
coaction map and the other by the left coaction map. There are natural isomorphisms
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CO¢ M ~ M and N O¢g C ~ N for any graded left C'-comodule M and graded right
C-comodule N.

Graded left C'-comodules of the form C' ®; V, where V is a graded vector space,
are called cofree graded left C-comodules; analogously for graded right C'-comodules.
The category of graded C-comodules is an abelian category with enough injectives;
injective graded C-comodules are exactly the direct summands of cofree graded
C-comodules.

For any graded left C-comodules L and M, the graded vector space Home (L, M)
consists of homogeneous linear maps f: L — M satisfying the condition that the
coaction maps of L and M form a commutative diagram together with the map f and
the map f,: C ®, L — C ®; M given by the formula f,(c® z) = (—=1)/lc® f(z).
For any graded right C-comodules R and N, the graded vector space Hom¢ (R, N)
consists of homogeneous linear maps f: R — N such that the coaction maps of R
and N form a commutative diagram together with the map f and the map f,: R ®y
C — N ®y C given by the formula f,(z®c) = f.(z) ®c. For any left C-comodule L
and any graded vector space V there is a natural isomorphism Homg (L, C ®; V') ~
Homy (L, V'); analogously in the right comodule case.

2.2. Graded contramodules. A graded left contramodule P over a graded coalge-
bra C' is a graded k-vector space P = @), , P* endowed with the following structure.
Let Homy(C, P) be the graded vector space of homogeneous linear maps C — P;
then a homogeneous linear map Homy(C, P) — P of degree 0, called the left con-
traaction map, must be given and the following contraassociativity and counity equa-
tions must be satisfied. For any graded vector spaces V, W, and P, define the
natural isomorphism Homy(V ®; W, P) ~ Homy (W, Homg(V, P)) by the formula
fw)(v) = (=1)?If(vy ® w). The comultiplication and the contraaction maps in-
duce a pair of maps Hom,(C ®; C, P) ~ Homy(C,Hom(C, P)) = Homg(C, P).
These maps must have equal compositions with the contraaction map; besides, the
composition of the map P — Homy(C, P) induced by the counit map with the
contraaction map must coincide with the identity endomorphism of P.

The graded vector space of cohomomorphisms Cohomeg(M, P) from a graded left
C-comodule M to a graded left C'-contramodule P is defined as the cokernel of the
pair of linear maps Homy(C ®; M, P) — Homy (M, P), one of which is induced by
the left coaction map and the other by the left contraaction map. For any graded
C-contramodule P there is a natural isomorphism Cohom¢(C, P) ~ P.

For any graded right C'-comodule N and any graded vector space V' there is a natu-
ral graded left C'-contramodule structure on the graded vector space of homogeneous
linear maps Homy (N, V) given by the left contraaction map Homy (C, Homg (N, V)) ~
Homy (N ®x C, V) — Homy(N,V) induced by the right coaction map. For any
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graded left C-comodule M, graded right C-comodule N, and graded vector space V/,
there is a natural isomorphism Homy (N O¢ M, V') ~ Cohom¢ (M, Homg (N, V)).

Graded left C-contramodules of the form Homy(C, V') are called free graded left
C-contramodules. The category of graded left C'-contramodules is an abelian category
with enough projectives; projective graded left C-contramodules are exactly the direct
summands of free graded left C-contramodules.

The contratensor product of a graded right C-comodule N and a graded left
C-contramodule P is the graded vector space N ®¢ P defined as the kernel of the
pair of linear maps N ®; Homy(C, P) — N ®y P, one of which is induced by the
left contraaction map, while the other one is obtained as the composition of the
map induced by the right coaction map and the map induced by the evaluation map
C ®,Homy(C, P) — P given by the formula c® f — (—1)°ll/l f(c). For any graded
right C-comodule N and any graded vector space V there is a natural isomorphism
N ®¢ Homy(C, V) ~ N @, V.

For any graded left C-contramodules P and @, the graded vector space Hom® (P, Q)
consists of all homogeneous linear maps f: P — @ satisfying the condition that the
contraaction maps of P and () form a commutative diagram together with the map f
and the map f,: Hom(C, P) — Homy(C, Q) given by the formula f,(g) = fog. For
any graded left C-contramodule ) and any graded vector space V' there is a natural
isomorphism Hom®(Hom,(C,V), Q) ~ Hom(V, Q). For any right C-comodule N,
any graded left C-contramodule P, and any graded vector space V, there is a natural
isomorphism Hom (N ®¢ P, V) ~ Hom® (P, Hom,(N, V)).

The proofs of the results of this subsection are not difficult; some details can be
found in [25]. The assertions stated in the last paragraph can be used to deduce the
assertions of the preceding two paragraphs.

Remark. Ungraded contramodules over ungraded coalgebras can be simply defined
as graded contramodules concentrated in degree 0 over graded coalgebras concen-
trated in degree 0. One might wish to have a forgetful functor assigning ungraded
contramodules over ungraded coalgebras to graded contramodules over graded coal-
gebras. The construction of such a functor is delicate in two ways. Firstly, to assign
an ungraded contramodule to a graded contramodule P, one has to take the direct
product of its grading components [],., P? rather than the direct sum, while the
undraded coalgebra corresponding to a graded coalgebra C' is still constructed as the
direct sum €9, C'. Analogously, to assign an ungraded comodule to a graded co-
module M one takes the direct sum €, M, to assign an ungraded ring to a graded
ring A one takes the direct sum @, , A’, while to assign an ungraded module to a
graded module M one can take either the direct sum €, ., M ¢ or the direct product
[L;cz M*. Secondly, there is a problem of signs in the contraasociativity equation,
which is unique to graded contramodules (no signs are present in the definitions of
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graded algebras, modules, coalgebras, or comodules); it is resolved as follows. A mor-
phism between graded vector spaces f: V — W, when it is not necessarily even,
can be thought of either as a left or as a right morphism. The left and the right
morphisms correspond to each other according to the sign rule f(z) = (=1)f/2l(z)f,
where f(x) is the notation for the left morphisms and (z) f for the right morphisms.
The above definition of graded left contramodules P is given in terms of left mor-
phisms C' — P; to define the functor of forgetting the grading, one has to reinterpret
it in terms of right morphisms. The exposition in [25] presumes right morphisms in
this definition (even if the notation f(z) is being used from time to time).

2.3. DG-comodules and contramodules. A DG-coalgebra C over a field k is a
graded coalgebra endowed with a differential d: C — C of degree 1 with d> = 0
such that the comultiplication map C' — C' ®; C' and the counit map C' — k are
morphisms of complexes. Here the differential on C' ®; C' is defined as on the tensor
product of two copies of the complex C', while the differential on k£ is trivial.

A left DG-comodule M over a DG-coalgebra C' is a graded comodule M over the
graded coalgebra C together with a differential d: M — M of degree 1 with d> = 0
such that the left coaction map M — C ®; M is a morphism of complexes. Here
C ®, M is considered as the tensor product of the complexes C and M over k. Right
DG-comodules are defined in the analogous way. A left DG-contramodule P over C'is
a graded contramodule P over C endowed with a differential d: P — P of degree 1
with @ = 0 such that the left contraaction map Homy(C, P) — P is a morphism
of complexes. Here Homy(C, P) is endowed with the differential of the complex of
homomorphisms from the complex C' to the complex P over k.

Whenever N is a right DG-comodule and M is a left DG-comodule over a
DG-coalgebra C, the cotensor product N O¢ M of the graded comodules N and
M over the graded coalgebra C is endowed with the differential of the subcomplex of
the tensor product complex N ®; M. Whenever M is a left DG-comodule and P is
a left DG-contramodule over a DG-coalgebra C', the graded vector space of cohomo-
morphisms Cohom¢ (M, P) is endowed with the differential of the quotient complex
of the complex of homomorphisms Homy (M, P).

Whenever N is a right DG-comodule and P is a left DG-contramodule over a
DG-coalgebra C, the contratensor product N ®¢ P of the graded comodule N and the
graded contramodule P over the graded coalgebra C' is endowed with the differential
of the quotient complex of the tensor product complex N ®; P.

For any left DG-comodules L and M over a DG-coalgebra C, the graded vector
space of homomorphisms Hom¢(L, M) between the graded comodules L and M over
the graded coalgebra C' is endowed with the differential of the subcomplex of the
complex of homomorphisms Homy(L, M). Differentials on the graded vector spaces
of homomorphisms Hom¢ (R, N) and Hom® (P, Q) for right DG-comodules R, N and
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left DG-contramodules P, ) over a DG-coalgebra C' are constructed in the com-
pletely analogous way. These constructions define the DG-categories DG(C—comod),
DG(comod-C'), and DG(C—contra) of left DG-comodules, right DG-comodules, and
left DG-contramodules over C, respectively.

All shifts, twists, infinite direct sums, and infinite direct products exist in the
DG-categories of DG-comodules and DG-contramodules. The homotopy category of
(the DG-category of) left DG-comodules over C' is denoted by Hot(C—comod), the
homotopy category of right DG-comodules over C is denoted by Hot(comod—C'), and
the homotopy category of left DG-contramodules over C' is denoted by Hot(C—contra).

2.4. Injective and projective resolutions. A DG-comodule M or a DG-contra-
module P is said to be acyclic if it is acyclic as a complex of vector spaces, i. e.,
H(M) = 0 or H(P) = 0, respectively. The classes of acyclic DG-comodules over a
DG-coalgebra C' are closed under shifts, cones, and infinite direct sums, while the
class of acyclic DG-contramodules is closed under shifts, cones, and infinite products.
The thick subcategories of the homotopy categories Hot(C—comod), Hot(comod-C),
and Hot(C—contra) formed by the acyclic DG-comodules and DG-contramodules
over C are denoted by Acycl(C—comod), Acycl(comod—C), and Acycl(C—contra), re-
spectively. The derived categories of left DG-comodules, right DG-comodules, and
left DG-contramodules over C' are defined as the quotient categories D(C—comod) =
Hot(C—comod)/Acycl(C—comod), D(comod-C) = Hot(comod—-C)/Acycl(comod-C),
and D(C—contra) = Hot(C'—contra)/Acycl(C—contra).

A left DG-comodule M over a DG-coalgebra C' is called injective if for any acyclic
left DG-comodule L over C' the complex Hom¢ (L, M) is acyclic. The full triangulated
subcategory of Hot(C—comod) formed by the injective DG-comodules is denoted by
Hot(C—comod);nj. A left DG-contramodule P over a DG-coalgebra C' is called pro-
jective if for any acyclic left DG-contramodule @ over C the complex Hom® (P, Q) is
acyclic. The full triangulated subcategory of Hot(C—contra) formed by the projective
DG-contramodules is denoted by Hot(C—contra) ;.

Theorem. (a) The composition of functors Hot(C—comod);,; — Hot(C—-comod) —
D(C—comod) is an equivalence of triangulated categories.

(b) The composition of functors Hot(C-contra)pe — Hot(C-contra) —
D(C-contra) is an equivalence of triangulated categories.

Proof will be given in subsection 5.5.

2.5. Cotor and Coext of the first kind. Let N be a right DG-comodule and
M be a left DG-comodule over a DG-coalgebra C'. Consider the cobar bicomplex
NJEM — NQJRLCRQJr M — N, CR,C®, M — --- and construct its total
complex by taking infinite products. Let Cotor®’(N, M) denote the cohomology of
this total complex.
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Let M be a left DG-comodule and P be a left DG-contramodule over a
DG-coalgebra C. Consider the bar bicomplex - - - — Homy(M ®; C ®; C, P) —
Homy (M ®; C, P) — Homy(C, P) and construct its total complex by taking infinite
direct sums. Let Coextl (M, P) denote the cohomology of this total complex.

Let k—vect denote the category of vector spaces over k£ and k—vect®" denote the
category of graded vector spaces over k.

Proposition. (a) The functor Cotor®! factorizes through the Carthesian product of
the derived categories of right and left DG-comodules over C, so there is a well-defined
functor Cotor®’: D(comod-C) x D(C-comod) —> k-vect®',

(b) The functor Coexté factorizes through the Carthesian product of the derived
categories of left DG-comodules and left DG-contramodules over C, so there is a
well-defined functor Coextl,: D(C-comod) x D(C—contra) — k-vect®'.

Proof. This follows from the fact that a complete and cocomplete filtered complex is
acyclic whenever the associated graded complex is acyclic [10]. O

Let N be a right DG-comodule and P be a left DG-contramodule over a
DG-coalgebra C. Consider the bar bicomplex - -+ — N ®; Hom,(C ®; C, P) —
N ®; Homg(C,P) — N ®j P and construct its total complex by taking infinite
direct sums. Let Ctrtor®’(N, P) denote the cohomology of this total complex.

Let L and M be left DG-comodules over a DG-coalgebra C. Consider the cobar
bicomplex Homy (L, M) — Homy (L, C ®; M) — Homy (L, C ®; C ®; M) —> -- -
and construct its total complex by taking infinite products. Let Ext{, (L, M) denote
the cohomology of this total complex.

Let P and @) be left DG-contramodules over C'. Consider the cobar bicomplex
Homy, (P, Q) — Homy(Homy(C, P),Q) — Homy(Hom,(C ®; C, P), Q) — ---
and construct its total complex by taking infinite products. Let Ext®’ (P, @) denote
the cohomology of this total complex.

Just as in the above Proposition, the functors Ctrtor®’, Extl, and Ext®! factorize
through the derived categories of DG-comodules and DG-contramodules.

All of these constructions can be extended to As-comodules and A, -contra-
modules over A,-coalgebras; see Remark 7.6.

Remark. Another approach to defining derived functors of cotensor product, co-
homomorphisms, contratensor product, etc., whose domains would be Carthesian
products of the derived categories of DG-comodules and DG-contramodules consists
in restricting these functors to the full subcategories of injective DG-comodules and
projective DG-contramodules in the homotopy categories. To obtain versions of de-
rived functors Cotor® and Coext in this way one would have to restrict the functors
of cotensor product and cohomomorphisms to the homotopy categories of injective
DG-comodules and projective DG-contramodules in both arguments; resolving only

22



one of the arguments does not provide a functor factorizable through the derived
category in the other argument |25, subsection 0.2.3]. To construct version of derived
functors Ctrtor®, Extc, and Ext®, on the other hand, it suffices to resolve just one
of the arguments (the second one, the second one, and the first one, respectively).
The versions of Exte and Ext® so obtained coincide with the functors Hom in the
derived categories. It looks unlikely that the derived functors defined in the way of
this Remark should agree with the derived functors defined above in this subsection.

3. CODERIVED AND CONTRADERIVED CATEGORIES OF CDG-MODULES

3.1. CDG-rings and CDG-modules. A CDG-ring (curved differential graded
ring) B = (B, d, h) is a triple consisting of an associative graded ring B = @,., B’,
an odd derivation d: B — B of degree 1, and an element h € B? satisfying the
equations d?(z) = [h,z] for all x € B and d(h) = 0. A morphism of CDG-rings
f: B — Aisapair f = (f,a) consisting of a morphism of graded rings f: B — A
and an element a € A' satisfying the equations f(dp(z)) = da(f(z)) + [a,z] and
f(hg) = ha+da(a) + a? for all z € B, where B = (B,dg,hp) and A = (A,d4, ha),
while the bracket [y, z] denotes the supercommutator of y and z. The composition of
morphisms is defined by the rule (f,a)o(g,b) = (fog, a+ f(b)). Identity morphisms
are the morphisms (id, 0).

The element h € B? is called the curvature element of a CDG-ring B. The element
a € Al is called the change-of-connection element of a CDG-ring morphism f.

To any DG-ring structure on a graded ring A one can assign a CDG-ring structure
on the same graded ring by setting h = 0. This defines a functor from the category
of DG-rings to the category of CDG-rings. This functor is faithful, but not fully
faithful, as non-isomorphic DG-rings may become isomorphic as CDG-rings.

A left CDG-module (M, dy) over a CDG-ring B is a graded left B-module M =
@iez M" endowed with a derivation da;: M — M compatible with the derivation dg
of B and such that d3;(x) = hx for any x € M. A right CDG-module (N, dy) over
a CDG-ring B is a graded right B-module N = @, ., N* endowed with a derivation
dy: N — N compatible with dg and such that d% (z) = —zh for any z € N.

Let f = (f,a): B — A be a morphism of CDG-rings and (M, dy;) be a left
CDG-module over A. Then the left CDG-module Ry M over B is defined as the graded
abelian group M with the graded B-module structure obtained by the restriction
of scalars via f, endowed with the differential d,;(z) = dy(z) + ax for x € M.
Analogously, let (N, dy) be aright CDG-module over A. Then the right CDG-module
RN over B is defined as the graded module N over B with the graded module
structure induced by f endowed with the differental d'y(z) = dy(z) — (—=1)"za.
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For any left CDG-modules I and M over B, the complex of homomorphisms
Hompg (L, M) from L to M over B is constructed using exactly the same formulas as
in 1.1. It turns out that these formulas still define a complex in the CDG-module case,
as the h-related terms cancel each other. The same applies to the definitions in the
subsequent two paragraphs in 1.1, which all remain applicable in the CDG-module
case, including the definitions of the complex of homomorphisms between right
CDG-modules, the tensor product complex of a left and a right CDG-module, etc.

The cohomology of CDG-rings and CDG-modules is not defined, though, as their
differentials may have nonzero squares. A CDG-algebra over a commutative ring &k
is a graded k-module with a k-linear CDG-ring structure.

So left and right CDG-modules over a given CDG-ring B form DG-categories,
which we denote, just as the DG-categories of DG-modules, by DG(B-mod) and
DG(mod-B), respectively. All shifts, twists, infinite direct sums, and infinite direct
products exist in the DG-categories of CDG-modules. The corresponding homotopy
categories are denoted by Hot(B—mod) and Hot(mod-B).

Notice that there is no obvious way to define derived categories of CDG-modules,
since it is not clear what should be meant by an acyclic CDG-module. Moreover,
the functors of restriction of scalars Ry related to CDG-isomorphisms f between
DG-rings may well transform acyclic DG-modules to non-acyclic ones.

For a CDG-ring B, we will sometimes denote by B# the graded ring B considered
without its differential and curvature element (or with the zero differential and cur-
vature element). For a left CDG-module M and a right CDG-module N over B, we
denote by M# and N# the corresponding graded modules (or CDG-modules with
zero differential) over B¥.

3.2. Some constructions for DG-categories. The reader will easily recover the
details of the constructions sketched below.

Let DG be a DG-category. Define the DG-category DG by the following con-
struction. An object of DG! is a pair (Z,t), where Z in an object of DG and
t € Hompg(Z,Z) is a contracting homotopy with zero square, i. e., d(t) = idx
and t> = 0. Morphisms (Z',#) — (Z",t") of degree n in DG" are morphisms
f: 72" — Z" of degree —n in DG such that d(f) = 0 in DG. The differential on
the complex of morphisms in DG" is given by the supercommutator with ¢, i. e.,
d'(f) =t"f — (~=DVIft.

Obviously, all twists of objects by their Maurer-Cartan endomorphisms exist in
the DG-category DG®. Shifts, (finite or infinite) direct sums, or direct products exist
in DG’ whenever they exist in DG.

Let B = (B,d, h) be a CDG-ring. Construct the DG-ring B~ = (B"™, 0) as follows.
The graded ring B~ is obtained by changing the sign of the grading in the ring BI[d],
which is in turn constructed by adjoining to B an element ¢ of degree 1 with the
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relations [§, z] = d(x) for x € B and 62 = h. The differential d = 9/3¢ is defined by
the rules 0(6) = 1 and O(z) = 0 for all z € B. This construction can be extended to
an equivalence between the categories of CDG-rings and acyclic DG-rings [25] (here
a DG-ring is called acyclic if its cohomology is the zero ring). There is a natural
isomorphism of DG-categories DG(B-mod)* ~ DG(B~-mod).

Let DG be a DG-category with shifts and cones. Denote by f: X —— X% the
functor Z°(DG) — Z°(DG?) assigning to an object X the object cone(idx )[—1] with
its standard constructing homotopy ¢. This functor can be extended in a natural way
to a fully faithful functor DG¥ — Z°(DG"), since not necessarily closed morphisms
of degree 0 also induce closed morphisms of the cones of identity endomorphisms
commuting with the standard contracting homotopies.

The functor 7 has left and right adjoint functors Gt, G~: Z°(DG") — Z°(DG),
which are given by the rules G*(Z,t) = Z and G~ (Z,t) = Z[1], so G" and G~ only
differ by a shift. Whenever all infinite direct sums (products) exist in the DG-category
DG, the functors G*, G~, and § preserve them.

In particular, when DG = DG(B-mod), the category Z°(DG?) can be identified with
the category of graded left B#-modules in such a way that the functor f becomes the
functor M —— M# of forgetting the differential. The category DG(B-mod)# is then
identified with the full subcategory consisting of all graded B#-modules that admit
a structure of CDG-module over B.

For any DG-category DG, objects of the DG-category DG are triples (W, t,s),
where W is an object of DG and t, s: W — W are endomorphisms of degree —1
and 1, respectively, satisfying the equations ¢t = 0 = s?, ts+ st = idy, d(t) = idw,
and d(s) = 0. Assuming that shifts and cones exist in DG, there is a natural fully
faithful functor DG — DG* given by the formula W = cone(idx )[—1].

This functor is an equivalence of DG-categories whenever all twists of objects exist
in DG and all images of idempotent endomorphisms exist in Z°(DG). Indeed, to
recover the object X from the object W, it suffices to take the image of the closed
idempotent endomorphism t¢s of the twisted object W(—s).

In particular, there is a natural equivalence of DG-categories DG(B-mod) =~
DG(B~~-mod). So the DG-category of CDG-modules over an arbitrary CDG-ring is
equivalent to the DG-category of DG-modules over a certain acyclic DG-ring.

The “almost involution” DG — DG’ is not defined on the level of homotopy
categories. Indeed, if DG is the DG-category of complexes over an additive cate-
gory A containing images of its idempotent endomorphisms, then all objects of the
DG-category DG’ are contractible, while the DG-category DG™ is again equivalent to
the DG-category of complexes over A.

3.3. Coderived and contraderived categories. Let B be a CDG-ring. Then the
category Z°DG(B-mod) of left CDG-modules and closed morphisms between them
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is an abelian category, so one can speak about exact triples of CDG-modules. We
presume that morphisms constituting an exact triple are closed. An exact triple of
CDG-modules can be also viewed as a finite complex of CDG-modules, so its total
CDG-module can be assigned to it.

A left CDG-module L over B is called absolutely acyclic if it belongs to the min-
imal thick subcategory of the homotopy category Hot(B—mod) containing the total
CDG-modules of exact triples of left CDG-modules over B. The thick subcategory
of absolutely acyclic CDG-modules is denoted by Acycl®®(B-mod) C Hot(B-mod).
The quotient category D2**(B-mod) = Hot(B-mod)/Acycl®®(B-mod) is called the
absolute derived category of CDG-modules over B.

The thick subcategory Acycl?®(B-mod) is often too small and some ways of enlarg-
ing it turn out to be useful. A left CDG-module over B is called coacyclic if it belongs
to the minimal triangulated subcategory of the homotopy category Hot(B—mod) con-
taining the total CDG-modules of exact triples of left CDG-modules over B and
closed under infinite direct sums. The coacyclic CDG-modules form a thick subcat-
egory of the homotopy category, since a triangulated category with infinite direct
sums contains images of its idempotent endomorphisms [21]. This thick subcategory
is denoted by Acycl®(B-mod) C Hot(B—mod). It is the minimal thick subcategory of
Hot(B-mod) containing Acycl*®*(B-mod) and closed under infinite direct sums. The
coderiwed category of left CDG-modules over B is defined as the quotient category
D<°(B—mod) = Hot(B-mod)/Acycl®(B-mod).

Analogously, a left CDG-module over B is called contraacyclic if it belongs to the
minimal triangulated subcategory of Hot(B—mod) containing the total CDG-modules
of exact triples of left CDG-modules over B and closed under infinite products.
The thick subcategory formed by all contraacyclic CDG-modules is denoted by
Acycl® (B-mod) C Hot(B-mod). It is the minimal thick subcategory of Hot(B—mod)
containing Acycl®®(B-mod) and closed under infinite products. The contrade-
rived category of left CDG-modules over B is defined as the quotient category
D¢ (B-mod) = Hot(B-mod)/Acycl® (B-mod).

All the above definitions can be repeated verbatim for right CDG-modules, so there
are thick subcategories Acycl®(mod-B), Acyc®(mod-B), and Acycl’®(mod-B) in
Hot(mod-B) with the corresponding quotient categories D°(mod-B), D" (mod-B),
and D*(mod-B).

Remark 1. When B is a DG-ring, the coderived and contraderived categories of
DG-modules over B still differ from the derived category of DG-modules and between
each other, in general. Indeed, they can even all differ when B is simply a ring
considered as a DG-ring concentrated in degree 0. For example, let A = k[g/&?]
be the exterior algebra in one variable over a field k. Then there is an infinite
in both directions, acyclic, noncontractible complex of free and cofree A-modules
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- — A — A — ---, where the differentials are given by the action of ¢.
This complex of A-modules is neither coacyclic, nor contraacyclic. Furthermore, let
cvo—>A—>A—k—0and0) —k—A— A — --- be the complexes
of canonical truncation of the above doubly infinite complex. Then the former of
these two complexes is contraacylic and the latter is coacyclic, but not the other way.
There also exist finite-dimensional DG-modules (over finite-dimensional DG-algebras
over fields) that are acyclic, but neither coacyclic, nor contraacyclic. The simplest
example of this kind is that of the DG-algebra with zero differential B = k[e]/e?,
where dege = 1, and the DG-module M over B constructed as the free graded
B-module with one homogeneous generator m for which d(m) = em.

Remark 2. Much more generally, to define the coderived (contraderived) category,
it suffices to have a DG-category DG with shifts, cones, and arbitrary infinite direct
sums (products), for which the additive category Z°(DG) is endowed with an exact
category structure. Examples of such a situation include not only the categories of
CDG-modules, but also, e. g., the category of complexes over an exact category [25].
Then one considers the total objects of exact triples in Z°(DG) as objects of the ho-
motopy category H°(DG) and takes the quotient category of H°(DG) by the minimal
triangulated subcategory containing all such objects and closed under infinite direct
sums (products). It may be advisable to require the class of exact triples in Z°(DG)
to be closed with respect to infinite direct sums (products) when working with this
construction. A deeper notion of an exact DG-category is discussed in Remark 3.5
below, where some results provable in this setting are formulated.

3.4. Bounded cases. Let B a DG-ring. Denote by Hot™ (B-mod) and Hot  (B—mod)
the homotopy categories of DG-modules over B bounded from below and from
above, respectively. That is, M € Hot™(B-mod) iff M? = 0 for all i < 0 and
M € Hot™ (B-mod) iff M* = 0 for all 4 > 0. Set Acycl®™(B-mod) = Acycl(B-mod) N
Hot®(B-mod), and analogously for Acycl®*(B-mod) and Acyc™*(B-mod).

Clearly, the thick subcategories Acycl®®(B-mod) and Acycl® (B-mod) are contained
in the thick subcategory Acycl(B—mod) for any DG-ring B.

Theorem 1. Assume that B* =0 for all i > 0. Then

(a) Acycl®T (B-mod) = Acycl™ (B-mod) and Acycl®"~ (B-mod) = Acycl™ (B-mod);

(b) the natural functors Hot*(B-mod)/Acycl* (B-mod) — D(B-mod) are fully
faithful; and

(c) the natural functors Hot(B-mod)/Acycl®*(B-mod) — D®°(B-mod) and
Hot™(B-mod)/AcycI®™*(B-mod) — D% (B-mod) are fully faithful;

(d) the triangulated subcategories Acycl®®(B-mod) and Acycl™ (B-mod) generate
the triangulated subcategory Acycl(B-mod).

Proof. For a DG-module M over B, denote by 7<, M the subcomplexes of canonical

filtration of M considered as a complex of abelian groups. Due to the condition on B,
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these are DG-submodules. Notice that the quotient DG-modules 7,1 M/7¢, M are
contractible for any acyclic DG-module M. Let M € Acycl®"(B-mod). Then one
has 7¢,M = 0 for n small enough, hence 7, M is coacyclic for all n. It remains
to use the exact triple @, 7<nM — D, 7<nM — M in order to show that M
is coacyclic. The proof of the second assertion of (a) is analogous. To check (b)
and (c), it suffices to notice that whenever a DG-module M is acyclic, coacyclic, or
contraacyclic, the DG-modules 7, M and M /7, M belong to the same class. The
same observation allows to deduce (d) from (a). O

Theorem 2. Assume that B = 0 for all i < 0, the ring B° is semisimple, and
B! =0. Then

(a) Acycl®®™ (B-mod) = Acycl~ (B-mod) and Acycl®"" (B-mod) = Acycl® (B-mod);

(b) the natural functors Hot*™(B-mod)/Acycl*(B-mod) — D(B-mod) are fully
faithful; and

(c) the natural functors Hot®(B-mod)/Acycl®*(B-mod) — D%(B-mod) and
Hot™(B-mod)/Acycl®™*(B-mod) — D% (B-mod) are fully faithful;

(d) the triangulated subcategories Acycl®®(B-mod) and Acycl™ (B-mod) generate
the triangulated subcategory Acycl(B-mod).

Proof. Analogous to the proof of Theorem 1, with the only change that instead of
the DG-submodules 7, M one uses the (nonfunctorial) DG-submodules o5, M C M,
which are constructed as follows. For any DG-module M over B and an integer n,
choose a complementary B’-submodule K C M" to the submodule ker(d": M™ —
M™t) € M™. Set (03,M)" = 0 for i < n, (0%,M)" = K, and (05,M)" = M’
for i > n. Then o3,M is a DG-submodule of M and the quotient DG-modules
Osn—1M /o>, M are contractible for any acyclic DG-module M over B. O

3.5. Noetherian case. Let B be a CDG-ring. Denote by Hot(B-modi,;) the full
subcategory of the homotopy category of left CDG-modules over B formed by all
the CDG-modules M for which the graded module M# over the graded ring B is
injective. Assume that the graded ring B# is graded left Noetherian, i. e., satisfies the
ascending chain condition for homogeneous left ideals. The next Theorem provides a
semiorthogonal decomposition of the homotopy category Hot(B—mod) and describes
the coderived category D*°(B-mod) in terms of injective resolutions.

Theorem. (a) For any CDG-modules L € Acycl®(B-mod) and M € Hot(B-mod;y),
the complex Homp (L, M) is acyclic.

(b) The composition of functors Hot(B-mod;yj) — Hot(B-mod) — D*°(B-mod)
s an equivalence of triangulated categories.

The assertion (a) does not depend on the Noetherianity assumption on B. The
assertion (b) apparently does.
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Proof. Part (a): since the functor Hompg(—, M) transforms shifts, cones, and infinite
direct sums into shifts, shifted cones, and infinite products, it suffices to consider the
case when L is the total CDG-module of an exact triple of CDG-modules. Since M#
is an injective graded B#-module, the complex Homp (L, M) is the total complex of
an exact triple of complexes, and hence an acyclic complex, in this case.

Part (b): by Lemma 1.3, it suffices to construct for any CDG-module M a mor-
phism M — J in the homotopy category of CDG-modules over B such that the
graded B#-module M# is injective and the cone of the morphism M — J is co-
acyclic. Choose an embedding M# — I, of the graded B#-module M# into an
injective graded B*-module I,. For any graded left B¥-module L, denote by G~ (L)
the CDG-module over B cofreely cogenerated by L. Explicitly, G~(L) as a graded
abelian group consists of all formal expressions of the form d~'z + py, where z,
y € L and degd™'z = degxz — 1, degpy = degy. The differential on G~(L) is
given by the formulas d(d~'z) = pz and d(py) = d~'(hy), where h is the curvature
element of B. The action of B is given by the formulas b(d~'z) = (=1)*d~*(bx)
and b(pz) = p(bx) + d ' (d(b)z). There is a bijective correspondence between mor-
phisms of graded B#-modules f: M# — L and closed morphisms of CDG-modules
g: M — G~(L) which is described by the formula g(z) = d~'(f(dz)) + pf(2).
There is also an exact triple of graded B#-modules L[—1] — G~(L)¥ — L. So,
in particular, we have a closed embedding of CDG-modules M — G~ (), where
the graded B#-module G~ (Iy) is injective. Let K be the cokernel of the embed-
ding M — G~ (Iy) (taken in the abelian category Z°DG(B-mod) of CDG-modules
and closed morphisms between them). Applying the same construction to the
CDG-module K in place of M, we obtain the CDG-module G~ (I_;), etc. Let J be
the total CDG-module of the complex of CDG-modules G~ (Iy) — G~ (I 1) — - -
formed by taking infinite direct sums. Since the graded ring B* is Noetherian, the
class of injective graded B#-modules is closed with respect to infinite direct sums, so
the graded B#-module J# is injective.

It remains to show that the cone of the closed morphism M — J is coacyclic.
Here one uses the general fact that the total CDG-module of an exact complex of
CDG-modules 0 — Ey — E; — --- bounded from below is coacyclic. To
prove this, notice that our total CDG-module E is the inductive limit of the total
CDG-modules X, of the finite exact complexes of canonical truncation 0 — Fy —
.-« — E, — K, — 0. So there is an exact triple of CDG-modules and closed
morphisms 0 — @, X,, — @, X, — E — 0. Clearly, the CDG-modules X,
are coacyclic. Now it remains to notice either that the total CDG-module of this exact
triple is coacyclic by definition, or that this exact sequence splits in DG(B-mod)#,
and consequently this total CDG-module is even contractible.

When B is a CDG-algebra over a field or a DG-ring, there is an alternative proof
analogous to the proof of Theorem 4.4 below. O
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Remark. The assertions of Theorem can be extended to the more general set-
ting of eract DG-categories satisfing appropriate conditions. Namely, let DG be
a DG-category with shifts and cones. The category DG is said to be an exact
DG-category if an exact category structure is defined on ZO(DGh) such that the
following conditions formulated in terms of the functor fj are satisfied. Firstly, mor-
phisms in Z°(DG) whose images are admissible monomorphisms in Z°(DG") must
admit cokernel morphisms in Z°(DG?) coming from morphisms in Z°(DG). Analo-
gously, morphisms in Z°(DG) whose images are admissible epimorphisms in Z°(DG?)
must admit kernel morphisms in Z°(DG?) coming from morphisms in Z°(DG). Sec-
ondly, the natural triples Z — G1(Z)" — Z[-1] in Z°(DG") must be exact for
all objects Z € DG". In this case the category Z°(DG) itself acquires an exact cate-
gory structure in which a triple is exact if and only if its image is exact in Z°(DG?);
moreover, the functors G and G~ preserve and reflect exactness of triples. Assume
further that all infinite direct sums exist in DG and the class of exact triples in
Z°%(DGY) is closed under infinite direct sums. Then the coderived category of DG is
defined as the quotient category of the homotopy category H°(DG) by the minimal
triangulated subcategory containing the total objects of exact triples in Z°(DG) and
closed under infinite direct sums; the objects belonging to the latter subcategory are
called coacyclic. The complex of homomorphisms from any coacyclic object to any
object of DG whose image is injective with respect to the exact category ZO(DGH) is
acyclic. Whenever there are enough injectives in the exact category Z°(DG?) and the
class of injectives is closed under infinite direct sums, the full triangulated subcat-
egory of the homotopy category H°(DG) consisting of all the objects whose images
are injective in Z 0(DGh) is equivalent to the coderived category of DG.

3.6. Artinian case. Let B be a CDG-ring. Denote by Hot(B-mod,.;) the full sub-
category of the homotopy category of left CDG-modules over B formed by all the
CDG-modules L for which the graded B#-module L# is projective. Assume that the
graded ring B¥ is graded right Artinian, i. e., satisfies the descending chain condition
for homogeneous right ideals. The next Theorem provides another semiorthogonal de-
composition of the homotopy category Hot(B-mod) and describes the contraderived
category D"(B—mod) in terms of projective resolutions.

Theorem. (a) For any CDG-modules L € Hot(B—-mod,;) and M € Acycl™ (B-mod),
the complex Homp (L, M) is acyclic.

(b) The composition of functors Hot(B-modye;) — Hot(B-mod) — D (B-mod)
15 an equivalence of triangulated categories.

The assertion (a) does not depend on the Artinianity assumption on B. In the
assertion (b), the Artinianity assumption can be slightly weakened (see the proof).
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Proof. Analogous to the proof of Theorem 3.5, with the following changes. Part (a)
is simple. In part (b), one needs to use the construction of the CDG-module G* (L)
over B freely generated by a graded B¥-module L. Elements of G (L) are formal
expressions of the form x + dy with z, y € L; the action of B and the differential d
on GT(L) are given by the equations in the definition of a CDG-module. There is
a natural closed isomorphism of CDG-modules G™(L) ~ G~ (L)[—1]. Then one has
to use the fact that the class of projective graded left modules over a right Artinian
graded ring is closed under infinite products. Indeed, the class of flat graded left
modules over a right coherent graded ring is closed under infinite products [9], and
every flat graded left module over a left perfect graded ring is projective [1]. In the
rest of the proof one can, e. g., use the Mittag-Leffler condition for vanishing of the
derived functor of projective limit (of abelian groups). When B is a CDG-algebra
over a field or a DG-ring, one can also argue as in the proof of Theorem 4.4 below. [

3.7. Finite homological dimension case. Let B be a CDG-ring. Assume that the
graded ring B* has a finite left homological dimension (i. e., the homological dimen-
sion of the category of graded left B¥-modules is finite). The next Theorem identifies
the coderived, contraderived, and absolute derived categories of left CDG-modules
over B and describes them in terms of projective and injective resolutions.

Theorem. (a) The three thick subcategories Acycl®®(B-mod), Acycl®™ (B-mod), and
Acycl?®(B-mod) in the homotopy category Hot(B-mod) coincide.

(b) The compositions of functors Hot(B-mod;,;) — Hot(B-mod) — D**(B-mod)
and Hot(B-mod,,;) — Hot(B-mod) — D*(B-mod) are both equivalences of tri-
angulated categories.

Proof. We will show that the minimal triangulated subcategory of Hot(B-mod) con-
taining the total CDG-modules of exact triples of CDG-modules and the triangulated
subcategory Hot(B—mod);y; form a semiorthogonal decomposition of Hot(B-mod), as
do the triangulated subcategory Hot(B—mod)y; and the same minimal triangulated
subcategory. This implies both (b) and the assertion that this minimal triangulated
subcategory is closed under infinite direct sums and products, which is even stronger
than (a). It suffices to construct for any CDG-module M over B closed CDG-module
morphisms /' — B — J whose cones belong to the mentioned minimal trian-
gulated subcategory, while the graded B#-modules F'# and J# are projective and
injective, respectively. To do so, we start as in the proofs of Theorems 3.5 and 3.6, con-
structing an exact complex of CDG-modules 0 — M — G (1) — G (1) —

- with injective graded B#-modules G~ (I_,)¥, and an analogous left CDG-module
resolution with projective graded B*-modules. Since the graded left homological di-
mension of B¥ is finite, there exists a nonnegative integer d such that the image
K of the morphism G~ (I_41) — G~ (I_4) taken in the category Z°DG(B-mod) is
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injective as a graded B#-module. It remains to take J to be the total CDG-module
of the finite complex of CDG-modules G~ (fy) — --- — G ([ 4 1) — K. O

Remark. Let DG be an exact DG-category in the sense of Remark 3.5. Assume
that the exact category ZO(DGh) has a finite homological dimension and enough
injectives. Then the minimal triangulated subcategory of H°(DG) containing the
total objects of exact triples in Z°(DG) and the full triangulated subcategory of
H°(DG) consisting of all the objects whose images are injective in Z°(DG*) form a
semiorthogonal decomposition of H°(DG). In particular, this minimal triangulated
subcategory is closed under infinite direct sums. It would be interesting to deduce the
latter conclusion without assuming existence of injectives, but only finite homological
dimension of the exact category Z°(DG') together with existence of infinite direct
sums in DG and their exactness in Z°(DG").

So we have D®°(B-mod) = D®"(B-mod) for a CDG-ring B such that the graded
ring B¥ has a finite left homological dimension. There are also some other situa-
tions when the coderived and contraderived categories of CDG-modules over a given
CDG-ring B are naturally equivalent.

In particular, suppose that the graded ring B is quasi-Frobenius, i. e., the classes
of injective and projective graded left B-modules coincide. Then the class of in-
jective graded left B-modules is closed under infinite direct sums and the class of
projective graded left B-modules is closed under infinite products, so the conclu-
sions of Theorems 3.5 and 3.6 hold. Thus we have D®(B-mod) ~ Hot(B-mod;,;) =
Hot(B-mod,j) ~ D" (B-mod). There is also a natural isomorphism D®(B-mod) =~
D (B-mod) when B is a CDG-algebra over a field & such that the underlying graded
algebra B# is finite-dimensional; see 5.2.

3.8. Tor and Ext of the second kind. Let B be a CDG-algebra over a commu-
tative ring k. Our goal is to define differential derived functors of the second kind

Tor?: . Dabs(mod—B) X Dabs(B_mOd) — k—-mod®
Ext} : D**(B-mod)® x D**(B-mod) —— k-mod®"

and give a simple categorical interpretation of these definitions in the finite homolog-
ical dimension case. First we notice that there are enough projective and injective
objects in the category Z°DG(B-mod), and these objects remain projective and in-
jective in the category of graded B#-modules. To construct these projectives and
injectives, it suffices to apply the functors G+ and G~ to projective and injective
graded B#-modules (see the proofs of Theorems 3.5-3.6).

Let N and M be a right and a left CDG-module over B. We will consider
CDG-module resolutions - -+ — Q1 — Qo — N —0Oand --- — P, — Py —
M — 0, i. e., exact sequences of this form in the abelian categories Z°DG(mod-B)
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and Z°DG(B-mod). To any such pair of resolutions we assign the total complex
T = Tot™(Q, ®p P,) of the tricomplex @Q, ®p P, formed by taking infinite prod-
ucts along the diagonal planes. Whenever all the graded right B¥-modules Q7 are
flat, the cohomology of the total complex 7" does not depend of the choice of the
resolution P, and vice versa. Indeed, whenever all graded modules Q¥ are flat, the
natural map Tot"(Q. ®5 P.) — Tor'(Q. ®p M) is a quasi-isomorphism, since it is
an quasi-isomorphism on the quotient complexes by the components of the complete
decreasing filtration induced by the canonical filtration of the complex P,.

Using existence of projective resolutions in the categories Z°DG(mod-B) and
Z°DG(B-mod), one can see that the assignment according to which the cohomol-
ogy H(T) of the total complex T corresponds to a pair (N, M) whenever either all
the graded right B#-modules Q7, or all the graded left B¥-modules P# are flat de-
fines a functor on the category Z°DG(mod—B) x Z°DG(B-mod). It factorizes through
the Carthesian product of the homotopy categories, defining a triangulated functor
of two variables H°DG(mod-B) x H°DG(B-mod) — k-mod®". The latter functor
factorizes through the Carthesian product of the absolute derived categories, hence
the functor which we denote by Tor®.

Analogously, let L and M be left CDG-modules over B. Consider CDG-module
resolutions --+- — P, — P — L —0and 0 — M — Ry — R 1 — ---,
i. e., exact sequences of this form in the category Z°DG(B-mod). To any such
pair of resolutions we assign the total complex T = Tot®(Homp(P,, R,)) of the
tricomplex Homp(P,, R,,) formed by taking infinite direct sums along the diago-
nal planes. The rule according to which the cohomology H(T) corresponds to a
pair (L, M) whenever either all the graded left B#-modules P# are projective, or
all the graded left B#-modules R¥ are injective defines a functor on the category
Z°DG(B-mod)° x Z°DG(B-mod). This functor factorizes through the Cartesian
product of the homotopy categories, defining a triangulated functor of two variables,
which in turn factorizes through the Carthesian product of the absolute derived cat-
egories. Hence the functor which we denote by Ext.

Now assume that the graded ring B* has a finite weak homological dimension,
i. e., the homological dimension of the functor Tor between graded right and left
B#-modules is finite. Let Hot(B-mody) and Hot(mods—B) denote the homotopy
categories of left and right CDG-modules over B that are flat as graded B#-modules.
Using Lemma 1.6 and the construction from the proof of Theorem 3.6, one can
show that the natural functor Hot(B-modg)/Acycl?®(B-mod) N Hot(B-modq) —
D3**(B-mod) is an equivalence of triangulated categories. To prove the analogous
assertion for right CDG-modules over B, it suffices to pass to the opposite CDG-ring
B°P = (B°P, dpgop, hgov ), which coincides with B as a graded abelian group and has the
multiplication, differential, and curvature element defined by the formulas a°?b°P =
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(=1)I9/b(ba)°P, dpo» (b°°) = dp(b)°P, and hpor = —h%, where b denotes the element
of B°P corresponding to an element b € B.

The tensor product of CDG-modules N®p M over B is acyclic whenever one of the
CDG-modules N and M is coacyclic and another one is flat as a graded B#-module.
As in 1.6, it follows that N ® g M is also acyclic whenever one of the CDG-modules
N and M is simultaneously coacyclic and flat as a graded B#-module. So re-
stricting the functor of tensor product over B to either of the Carthesian products
Hot(mody—B) x Hot(B-mod) or Hot(mod-B) x Hot(B-modg), one can construct the
derived functor of tensor product of CDG-modules, which is defined on the Carthe-
sian product of absolute derived categories and factorizes through the Carthesian
product of coderived categories. Thus we get a functor

D*(mod-B) x D*°(B-mod) —— k-mod®".

This derived functor coincides with the above-defined functor Tor™*, since one can
use finite resolutions P, and (), in the construction of the latter functor in the finite
weak homological dimension case.

Analogously, whenever the graded ring B* has a finite left homological dimension,
the functor Hompabsp_moq) (L, M) of homomorphisms in the absolute derived category

coincides with the above-defined functor Ext (L, M).

B,II

4. CODERIVED CATEGORY OF CDG-COMODULES
AND CONTRADERIVED CATEGORY OF CDG-CONTRAMODULES

4.1. CDG-comodules and CDG-contramodules. Let k£ be a fixed ground field.
We will consider graded vector spaces V' over k endowed with homogeneous endo-
morphisms d of degree 1 with not necessarily zero squares. The endomorphism d
will be called “the differential”. Given two graded vector spaces V and W with the
differentials d, the differential on the graded tensor product V ®; W is defined by
the usual formula d(v ® w) = d(v) ® w + (=1)"’lv ® d(w) and the differential on the
graded vector space of homogeneous homomorphisms Homy(V, W) is defined by the
usual formula (df)(v) = d(f(v) — (1)1 f(dv). The graded vector space k is endowed
with the zero differential.

Using a version of Sweedler’s notation, we will denote symbolically the comultipli-
cation in a graded coalgebra C by ¢ — c(1) ® ¢). The coaction in a graded left
comodule M over C' will be denoted by z — x(_1) ® 7(), while the coaction in a
graded right comodule N over C' will be denoted by y — () ® y1). Here x(o) € M,
Yo) € N, and z(_1), ya) € C. The contraaction map Homy(C, P) — P of a graded
left contramodule P over C' will be denoted by 7p.

The graded dual vector space C* = Homy(C, k) to a graded coalgebra C'is a graded
algebra with the multiplication given by the formula (¢ *1)(c) = ¢(c2))¥(c)). Any
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graded left comodule M over C' has a natural structure of a graded left C*-module
given by the rule ¢ %z = ¢(x(_1))z (), while any graded right comodule N over C' has
a natural structure of a graded right C*-module given by y x ¢ = (—1)|¢|¢(y(1))y(0).
In particular, the graded coalgebra C' itself is a graded C*-bimodule. Any graded left
contramodule P over C' has a natural structure of a graded left C*-comodule given
by ¢ p=7p(c— (=1)?Plg(c)p).

A CDG-coalgebra over k is a graded coalgebra C endowed with a homogeneous
endomorphism d of degree 1 (with a not necessarily zero square) and a homogeneous
linear function h: C — k of degree 2 (that is h vanishes on all the components of C
except perhaps C~?) satisfying the following equations. Firstly, the comultiplication
map C — C'®; C and the counit map C — k must commute with the differentials
on C, k, and C ®; C, where the latter two differentials are given by the above rules.
Secondly, one must have d?(c) = h*c— c* h and h(d(c)) = 0 for all c € C. A
homogeneous endomorphism d of degree 1 acting on a graded coalgebra C' is called
an odd coderivation of degree 1 if it satisfies the first of these two conditions.

A morphism of CDG-coalgebras C — D is a pair (f,a), where f: C — D is
a morphism of graded coalgebras and a: C' — k is a homogeneous linear function
of degree 1 such that the equations dp(f(c)) = f(dc(c)) + f(a*c) — (—=1)l f(c* a)
and hp(f(c)) = he(e) + a(de(c)) + a®(c) hold for all ¢ € C. The composition of
morphisms is defined by the rule (g,b) o (f,a) = (go f, bo f +a). Identity morphisms
are the morphisms (id, 0). So the category of CDG-coalgebras is defined.

A left CDG-comodule over C is a graded left C-comodule M endowed with a
homogeneous linear endomorphism d of degree 1 (with a not necessarily zero square)
satisfying the following equations. Firstly, the coaction map M — C ®; M must
commute with the differentials on C' and C ®; M. Secondly, one must have d?(z) =
hxx for all x € M. A right CDG-comodule over C' is a graded right C'-comodule
N endowed with a homogeneous linear endomorphism d of degree 1 such that the
coaction map N — N®;,C commutes with the differentials and the equation d?(y) =
—y * h holds. A left CDG-contramodule over C is a graded left C-contramodule
P endowed with a homogeneous linear endomorphism d of degree 1 such that the
contraaction map Homy(C, P) — P commutes with the differentials on Homy(C, P)
and P, and the equation d?(p) = h * p holds. In each the the above three situations,
a homogeneous k-linear endomorphism d: M — M or d: N — N of degree 1 is
called an odd coderivation of degree 1 compatible with an odd coderivationd: C' — C
of degree 1 or a homogeneous k-linear endomorphism d: P — P of degree 1 is called
an odd contraderivation of degree 1 compatible with an odd coderivation d: C' — C
of degree 1 if the first of the two conditions is satisfied.

For any morphism of graded coalgebras f: C' — D there are restriction-of-
scalars functors assigning to graded comodules and contramodules over C' graded
D-comodule and D-contramodule structures on the same graded vector spaces. Now
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let f = (f,a): C — D be a morphism of CDG-coalgebras and M be a left
CDG-comodule over C'. Then the left CDG-comodule RfM over D is defined by
restricting scalars in the graded C'-comodule M via the morphism of graded coalge-
bras f: C' — D and changing the differential d on M by the rule d'(z) = d(z)+a*x.
Analogously, left N be a right CDG-module over C. Then the right CDG-comodule
RN over D is defined by restricting scalars in the graded comodule N and changing
the differential d on N by the tule d'(y) = d(y) — (—1)"y * a. Finally, let P be a
graded left CDG-contramodule over C. Then the left CDG-contramodule Ry P over
D is defined by restricting scalars in the graded contramodule P via the morphism f
and changing the differential d on P by the rule d'(p) = d(p) + a * p.

Whenever N is a right CDG-comodule and N is a left CDG-comodule over a
CDG-coalgebra C', the tensor product NOg M of the graded comodules N and M over
the graded coalgebra C' considered as a subspace of the tensor product N ®; M is pre-
served by the differential of N ®; M. The restriction of this differential to NOg M has
a zero square, which makes NOg M a complex. Whenever M is a left CDG-comodule
and P is a left CDG-contramodule over a CDG-coalgebra C, the graded space of co-
homomorphisms Cohom¢ (M, P) is an invariant quotient space of the graded space
Homy, (M, P) with respect to the differential on Homy (M, P). The induced differential
on Cohom¢ (M, P) has a zero square, which makes Cohom¢ (M, P) a complex.

Whenever N is a right CDG-comodule and P is a left CDG-contramodule over
a CDG-coalgebra C, the contratensor product N ®¢ P of the graded comodule N
and the graded contramodule P over the graded coalgebra C' is an invariant quotient
space of the tensor product N ®,; P with respect to the differential on N ®; P. The
induced differential on N ®¢ P has a zero square, which makes N ®¢ P a complex.

For any left CDG-comodules L and M over a CDG-coalgebra C', the graded vector
space of homomorphisms between the graded comodules L and M over the graded
coalgebra C' considered as a subspace of the graded space Homy(L, M) is preserved
by the differential on Homy (L, M). The induced differential on Hom¢ (L, M) has a
zero square, which makes Home (L, M) a complex. Differentials with zero squares on
the graded vector spaces of homomorphisms Hom¢ (R, N) and Hom® (P, Q) for right
CDG-comodules R, N and left CDG-contramodules P, ) over a CDG-coalgebra C
are constructed in the analogous way. These constructions define the DG-categories
DG(C-comod), DG(comod-C), and DG(C—contra) of left CDG-comodules, right
CDG-comodules, and left CDG-contramodules over C'.

For a CDG-coalgebra C, we will sometimes denote by C# the graded coalgebra C
considered without its differential d and linear function h (or with the zero differen-
tial and linear function). For left or right CDG-comodules, or CDG-contramodules
M, N, or P we will denote by M#, N#, and P# the corresponding graded co-
modules and contramodules (or CDG-comodules and CDG-contramodules with zero
differentials) over C#. Notice that for DG being the DG-category of DG-comodules
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or DG-contramodules over C, the corresponding additive category ZO(DG”) can be
identified with the category of graded comodules or contramodules over C7#; the
functor f is identified with the functor of forgetting the differential.

All shifts, twists, infinite direct sums, and infinite direct products exist in the
DG-categories of CDG-modules and CDG-contramodules. The homotopy category
of (the DG-category of) left CDG-comodules over C' is denoted by Hot(C—comod),
the homotopy category of right CDG-comodules over C'is denoted by Hot(comod—-C),
and the homotopy category of left CDG-contramodules over C is denoted by
Hot(C—contra). Notice that there is no obvious way to define derived categories
of CDG-comodules or CDG-contramodules, as there is no notion of cohomol-
ogy of a CDG-comodule or a CDG-contramodule, and hence no class of acyclic
CDG-comodules or CDG-contramodules.

4.2. Coderived and contraderived categories. The absolute derived -cate-
gories of CDG-comodules and CDG-contramodules, the coderived categories of
CDG-comodules, and the contraderived categories of CDG-contramodules are
defined in the way analogous to that for CDG-modules. These are all particular
cases of the general definition sketched in Remarks 3.3.2 and 3.5. Let us spell out
these definitions in a little more detail.

Let C' be a CDG-coalgebra. We will consider exact triples in the abelian categories
Z°DG(C—comod) and Z°DG(C—contra), i. e., exact triples of left CDG-modules or
lefr CDG-contramodules over C' and closed morphisms between them. An exact
triple of CDG-comodules or CDG-contramodules can be viewed as a finite com-
plex of CDG-comodules or CDG-contramodules, so the total CDG-comodule or
CDG-contramodule is defined for such an exact triple.

A left CDG-comodule or left CDG-contramodule over C' is called absolutely
acyclic if it belongs to the minimal thick subcategory of the homotopy cat-
egory Hot(C-comod) or Hot(C-contra) containing the total CDG-comodules or
CDG-contramodules of exact triples of left CDG-comodules or left CDG-contra-
modules over C. The thick subcategories of absolutely acyclic CDG-comodules
and CDG-contramodules are denoted by Acycl®®(C-comod) C Hot(C~comod)
and Acycl®®(C—contra) C Hot(C—contra). The quotient categories D?**(C-comod)
and D?*$(C—contra) of the homotopy categories of left CDG-comodules and left
CDG-contramodules by these thick subcategories are called the absolute derived cat-
egories of CDG-comodules and CDG-contramodules over C'.

A left CDG-comodule over C' is called coacyclic if it belongs to the minimal
triangulated subcategory of Hot(C—-comod) containing the total CDG-comodules
of exact triples of left CDG-comodules over C' and closed under infinite direct
sums. The thick subcategory formed by all coacyclic CDG-comodules is de-
noted by Acycl®(C—comod) C Hot(C—comod). The coderived category of left
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CDG-comodules over C' is defined as the quotient category D(C—comod) =
Hot(C—comod)/Acycl®®(C—comod).

A left CDG-contramodule over C' is called contraacyclic if it belongs to the minimal
triangulated subcategory of Hot(C—contra) containing the total CDG-contramodules
of exact triples of left CDG-contramodules over C' and closed under infinite prod-
ucts. The thick subcategory formed by all contraacyclic CDG-contramodules is de-
noted by Acycl™ (C-contra) C Hot(C—contra). The contraderived category of left
CDG-contramodules over C is defined as the quotient category DG (C—contra) =
Hot(C—-contra)/Acycl® (C—contra).

All the above definitions for left CDG-comodules can be repeated verbatim
for right CDG-comodules, so there are thick subcategories Acycl®(comod-C) and
Acycl®®(comod-C) in Hot(comod-C) with the corresponding quotient categories
D% (comod—C) and D?"*(comod-C).

4.3. Bounded cases. Let C be a DG-coalgebra. Denote by Hot™ (C-comod) and
Hot™ (C-contra) the homotopy categories of DG-comodules and DG-contramodules
over C' bounded from below, and denote by Hot™ (C—comod) and Hot (C-contra)
the homotopy categories of DG-comodules and DG-contramodules over C' bounded
from above. That is, M € Hot"(C—comod) iff M* = 0 for all i < 0 and
P € Hot™ (C—contra) iff P* = 0 for all i > 0; similarly for Hot™ (C—comod) and
Hot™ (C-contra). Set Acycl*(C-comod) = Acycl(C-comod) N Hot™(C-comod) and
analogously for Acycl® (C—contra); also set Acycl®*(C-comod) = Acycl®®(C~comod)N
Hot®(C-comod) and analogously for Acycl®*(C—contra).

Clearly, one has Acycl®(C-comod) C Acycl(C—comod) and Acycl® (C—contra) C
Acycl(C—-contra) for any DG-coalgebra C.

Theorem 1. Assume that C* =0 fori < 0. Then

(a) Acyc®*(C-comod) = Acyclt(C—comod) and Acycl™ ™ (C-contra) =
Acycl™ (C—contra);

(b) the natural functors Hot™ (C—comod)/Acycl*(C-comod) — D(C—comod) and
Hot™(Ccontra) /Acycl®(C-contra) — D(C-contra) are fully faithful;

(c) the natural functors Hot™(C-comod)/Acycl®*(C-comod) — D%(C-comod)
and Hot™(C~contra)/Acycl®"*(C~contra) — D (C~contra) are fully faithful.

Proof. Analogous to the proof of Theorem 3.4.1. O

For an ungraded CDG-coalgebra E, the following conditions are equivalent: (i) the
category of left comodules over F is semisimple; (ii) the category of right comodules
over E is semisimple; (iii) the category of left contramodules over E is semisimple;
(iv) E is the sum of its simple subcoalgebras, where a coalgebra is called simple if it
contains no nonzero proper subcoalgebras. A coalgebra F satisfying these equivalent
conditions is called cosemisimple [25, Appendix A].
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Theorem 2. Assume that C* = 0 for i > 0, the coalgebra C° is cosemisimple, and
C'=0. Then

(a) Acycl®”(C-comod) = Acycl”(C-comod) and Acycl™ " (C—contra) =
Acycl™ (C—contra);

(b) the natural functors Hot*(C—comod)/Acycl*(C-comod) — D(C-comod) and
Hot™(C—contra) /Acycl® (C—contra) — D(C—contra) are fully faithful;

(c) the natural functors Hot*(C—comod)/Acycl®*(C~comod) — D%(C-comod)
and Hot*(C—contra)/Acycl®*(C~contra) — D (C—contra) are fully faithful.

Proof. Analogous to the proof of Theorem 3.4.2. O

4.4. Injective and projective resolutions. Let C' be a CDG-coalgebra. Denote
by Hot(C—comodiy) the full triangulated subcategory of the homotopy category of
left CDG-comodules over C' consisting of all the CDG-comodules M for which the
graded comodule M# over he graded coalgebra C7# is injective. Analogously, de-
note by Hot(C—contray;) the full triangulated subcategory of the homotopy cate-
gory of left CDG-contramodules over C' consisting of all the CDG-contramodules
P for which the graded contramodule P# over the graded coalgebra C# is projec-
tive. The next Theorem provides semiorthogonal decompositions of the homotopy
categories Hot(C—comod) and Hot(C—contra), and describes the coderived category
D (C-comod) and the contraderived category D"(C'—contra) in terms of injective
and projective resolutions, respectively.

Theorem. (a) For any CDG-comodules L € Acycl®(C-comod) and M €
Hot(C—comodiyj), the complex Home (L, M) is acyclic.

(b) For any CDG-contramodules P € Hot(C—contray;) and Q € Acycl™ (C—contra),
the compler Hom® (P, Q) is acyclic.

(¢) The composition of functors Hot(C—comody;) — Hot(C-comod) —
D (C—comod) is an equivalence of triangulated categories.

(d) The composition of functors Hot(C-contraye) — Hot(C-contra) —
D (C—contra) is an equivalence of triangulated categories.

Proof. Parts (a) and (b) are easy; see the proof of Theorem 3.5(a). Parts (¢) and (d)
can be proven in the way analogous to that of Theorems 3.5(b) and 3.6(b), or alterna-
tively in the following way. Let us first consider the case of a DG-coalgebra C'. For any
DG-comodule M over C, consider the cobar resolution C®, M — CQ,C Q@ M —>
---. This is a complex of DG-comodules over C' and closed morphisms between them;
denote by J the total DG-comodule of this complex formed by taking infinite direct
sums. Then the graded C#-comodule J# is injective and the cone of the closed
morphism M — J is coacyclic. Analogously, for a DG-contramodule P over C' one
considers the bar resolution - - - — Homy, (C' ®; C, P) — Homy(C, P) and forms its
total DG-contramodule by taking infinite products. In the case of a CDG-coalgebra
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C, the construction has to be modified as follows. Let M be a left CDG-comodule
over C; consider the graded left C#-comodule J = ;2 ,(C*"** ®; M)[—n], where
the comodule structure on C®"*! @, M comes from the comodule structure on the
leftmost factor C' and the shift of the grading introduces the appropriate sign in
the graded comodule structure. The differential on J is described as the sum of
three components 0, d, and 0 given by the formulas d(cy ® ¢1 ® -+ - ® ¢, @ x) =
) ®c®@ - Q@r—c@u(c))®c® - Qr+-+(—1)""R®c1 Q- ®c, @v (),
where p: C — C® C and v: M — C' ® M are the comultiplication and coaction
maps, (—1)"d(co®c1 ® - ®c, ®z) = d(cg) @1 ® -+ @2 + (—1)%leg @ d(e)) ®
QR QT4+ (1)t @ .. @ c, @d(z), and (@1 @ - ®c, @) =
h(c1)co®cr®c3®- - -@x—h(ca)co®c1 Rz s ®- - @+ - -+(—1)" " h(Cn)Co®- - - Cn 1.
The graded C#-comodule J with the differential  + d + § is a CDG-comodule over
C; it is endowed with a closed morphism of CDG-comodules M — J. Denote by
T<nJ the subspaces of canonical filtration of the vector space J considered as a com-
plex with the grading n and the differential 9; then 7¢,J are CDG-subcomodules
of J. The quotient CDG-comodules 7, J/7<,_1J (taken in the abelian category of
CDG-comodules and closed morphisms) are contractible CDG-comodules, the con-
tracting homotopy being given by the map inverse to the differential induced by the
differential 0. The only exception is the CDG-comodule 7/, which is isomorphic
to M. It follows that the cone of the closed morphism M — J is coacyclic. O

Remark. The following results, which are particular cases of Remark 3.5, generalize
simultaneously the above Theorem and Theorems 3.5-3.6. A topological graded
abelian group (with additive topology) is a graded abelian group endowed with a
system of graded subgroups closed under finite intersections and containing with
any subgroup all the larger graded subgroups; graded subgroups belonging to the
system are called open. To any topological graded abelian group one can assign an
(ungraded) topological abelian group by taking the projective limit of the direct sums
of all grading components of the graded quotient groups by open graded subgroups.
A topological graded abelian group with a graded ring structure is called a topological
graded ring if its multiplication can be extended to a topological ring structure on the
associated ungraded topological abelian group. Let us restrict ourselves to separated
and complete topological graded rings B where open two-sided graded ideals form a
base of the topology; these are exactly the graded projective limits of discrete graded
rings. Let (B,d,h) be a CDG-ring structure on B such that the differential d is
continuous; one can easily check that open two-sided graded differential ideals form a
base of the topology of B in this case, so B is a projective limit of discrete CDG-rings.
First assume that all discrete graded quotient rings of B are left Noetherian. A
graded left B-module is called discrete if the annihilator of every its homogeneous
element is an open left ideal in B. Consider the DG-category DG(B-mod) of discrete

graded left B-modules with CDG-module structures. The corresponding coderived
40



category D°(B-mod) is defined in the obvious way. The graded left B-module of
continuous homogeneous abelian group homomorphisms from B into any (discrete)
injective graded abelian group is an injective object in the category of discrete graded
left B-modules. A discrete graded left B-module M is injective if and only if for any
open two-sided graded ideal J C B the annihilator of J in M is an injective graded
left B/J-module. It follows that there are enough injectives in the abelian category of
discrete graded left B-modules and the class of injectives is closed under infinite direct
sums. For any discrete graded left B-module M the graded left B-module G~ (M) is
also discrete. So the category Z°(DG(B-mod)!) can be identified with the category
of discrete graded left B-modules and the result of Remark 3.5 applies. Thus the
coderived category D®(B-mod) is equivalent to the homotopy category of discrete
left CDG-modules over B that are injective as discrete graded modules. Analogously,
assume that all discrete graded quotient rings of B are right Artinian. It is not difficult
to define the DG-category DG(B—contra) of graded left CDG-contramodules over B
(cf. [25, Appendix A]). The corresponding contraderived category D"(B-contra) is
equivalent to the homotopy category of graded left CDG-contramodules that are
projective as graded contramodules. The key step is to show that a graded left
CDG-contramodule P over B is projective if and only if for any open two-sided
graded ideal J C B the maximal quotient contramodule of P whose B-contramodule
structure comes from a B/J-(contra)module structure is a projective B/J-module.

4.5. Finite homological dimension case. Let E be a graded coalgebra. Then the
homological dimensions of the categories of graded right E-comodules, graded left
FE-comodules, and graded left E-contramodules coincide, as they coincide with the
homological dimensions of the derived functors of cotensor product and cohomomor-
phisms on the abelian categories of comodules and contramodules [25]. The common
value of these three homological dimensions we will call the homological dimension
of the graded coalgebra E.

Let C be a CDG-coalgebra. Assume that the graded coalgebra C# has a fi-
nite homological dimension. The next Theorem identifies the coderived category
of C-comodules and the contraderived category of C-contramodules with the corre-
sponding absolute derived categories.

Theorem. (a) The two thick subcategories Acycl®®(C—comod) and Acycl?®(C~comod)
in the homotopy category Hot(C—comod) coincide.

(b) The two thick subcategories Acycl™ (C—contra) and Acycl®®(C—contra) in the
homotopy category Hot(C—contra) coincide.

Proof. The proof is analogous to that of Theorem 3.7 and can be based on either the
constructions from the proof of Theorem 4.4 or appropriate versions of the construc-
tions from the proofs of Theorems 3.5-3.6. Il
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4.6. Cotor, Coext, and Ctrtor. Let us define the derived functors
Cotor®: D®(comod-C) x D®(C-comod) — k—vect®’
Coextc: D®°(C—comod)®? x D®(C—contra) — k—vect®’
Ctrtor® : D®®(comod-C) x D (C—contra) — k—vect®’

for a CDG-coalgebra C. We denote by Hot(modi;j~C) the full subcategory of
Hot(comod—C) formed by all the right CDG-comodules N over C' for which the
graded C*-comodule N# is injective. To check that the composition of functors
Hot(mod;,—C') — Hot(comod-C') — D®(comod—-C'), one can pass to the opposite
CDG-coalgebra C°P = (C°P,d°P, h°P), which coincides with C as a graded vector
space and has the comultiplication, differential, and curvature defined by the formu-
las (cP) 1)@ (cP)(2) = (—1)\0(1)”0(2)'0((’5’)®c(()f), d°?(c°P) = d(c)°P, and h°P(c°P) = —h(c),
where ¢° denotes the element of C°P corresponding to an element ¢ € C.

To define the functor Cotor®, restrict the functor of cotensor product Og:
Hot(comod-C) x Hot(C-comod) — Hot(k-vect) to either of the full subcategories
Hot(modi,;—C') x Hot(C—comod) or Hot(comod-C) x Hot(C-comodisj). The functors
so obtained factorize through the localization D*°(comod-C) x D®(C-comod) and
the two induced derived functors D®(comod-C) x D®(C-comod) — k-vect® are
naturally isomorphic to each other. Indeed, the cotensor product N Os M is acyclic
whenever one of the CDG-comodules N and M is coacyclic and the other is injec-
tive as a graded comodule. This follows from the fact that the functor of cotensor
product with an injective graded comodule sends exact triples of graded comodules
to exact triples of graded vector spaces. To construct an isomorphism between the
two induced derived functors, it suffices to notice that both of them are isomorphic
to the derived functor obtained by restricting the functor O¢ to the full subcategory
Hot(mod;,—C') x Hot(C—comodiy;).

To define the functor Coextc, restrict the functor of cohomomorphisms Cohomg :
Hot(C'—comod)°? x Hot(C'—contra) — Hot(k—vect) to either of the full subcategories
Hot(C—comody;)°® x Hot(C—contra) or Hot(C-comod)°® x Hot(C'—contray;). The func-
tors so obtained factorize through the localization D°(C—comod)®°? x D"(C—contra)
and the two induced derived functors D®(C—comod)°? x D (C—contra) — k—vect®"
are naturally isomorphic. Indeed, the complex of cohomomorphisms Cohom¢ (M, P)
is acyclic whenever either the CDG-comodule M is coacyclic and the CDG-contra-
module P is projective as a graded contramodule, or the CDG-comodule M is injec-
tive as a graded comodule and the CDG-contramodule P is contraacyclic.

To define the functor Ctrtor®, restrict the functor of contratensor product
®c¢: Hot(comod-C) x Hot(C—contra) — Hot(k—vect) to the full subcategory
Hot(comod-C) x Hot(C—contray;). The functor so obtained factorizes through the
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localization D (comod—C') x D" (C'—contra), so one obtains the desired derived func-
tor. Indeed, the contratensor product N ®¢ P is acyclic whenever the CDG-comodule
N is coacyclic and the CDG-contramodule P is projective as a graded contramod-
ule. Notice that one can only obtain the functor Ctrtor as the derived functor in its
second argument, but apparently not in its first argument, as comodules adjusted to
contratensor product most often do not exist.

By Lemma 1.3, one can also compute the functor Extc¢ = Hompe(c comod) Of
homomorphisms in the coderived category of left CDG-comodules in terms of
injective resolutions of the second argument and the functor Ext® = Homper(c-contra)
of homomorphisms in the contraderived category of left CDG-contramodules
in terms of projective resolutions of the first argument. Namely, one has
Extc(L, M) = H(Homg(L,M)) whenever the CDG-comodule M is injective
as a graded C#-comodule and Ext“(P,Q) = H(Hom“(P,Q)) whenever the
CDG-contramodule P is projective as a graded C#-contramodule.

For any right CDG-comodule N over C' and any complex of k-vector spaces V'
the differential on Homy (N, V) defined by the usual formula provides a structure
of CDG-contramodule over C' on Homy(N,V). The functor Homy(—, V') assigns
contraacyclic CDG-contramodules to coacyclic CDG-comodules N and so induces
a functor I Hom(—,V): D®°(comod-C) — D (C—contra) on the level of code-
rived and contraderived categories. There are natural isomorphisms of functors
of two arguments Homy(Cotor®(N, M), H(V)) ~ Coextc(M, THomg(N,V)) and
Homy, (Ctrtor” (N, P), H(V)) ~ Ext®(P, THomy(N,V)), where where H (V') denotes
the cohomology of the complex V.

4.7. Restriction and extension of scalars. Let f: C — D be a morphism of
CDG-coalgebras. Then any CDG-comodule or CDG-contramodule over C' can be
also considered as a CDG-comodule or CDG-contramodule over D, as explained
in 4.1. This defines the restriction-of-scalars functors R;: Hot(C—comod) —
Hot(D-comod) and R/: Hot(C-contra) —» Hot(D-contra). The functor R; has
a right adjoint functor E; given by the formula E;(N) = C Op N, while the func-
tor R/ has a left adjoint functor given by the formula E/(Q) = Cohomp(C, Q); to
define the differentials on E;(N) and E/(Q), it is simplest to decompose f into an
isomorphism of CDG-coalgebras followed by a morphism of CDG-coalgebras with a
vanishing linear function a.

The functors Ry and R/ obviously map coacyclic CDG-comodules and con-
traacyclic CDG-contramodules to CDG-comodules and CDG-contramodules of
the same kind, and so induce functors D®°(C-comod) — D(D-comod) and
D<°(C-contra) — D%(D-contra), which we denote by IR; and IR’/. The functor E;
has a right derived functor RE; obtained by restricting E; to the full subcategory
Hot(D—-comod;y;) C Hot(D-comod) and composing it with the localization functor

43



Hot(C-comod) — D%(C-comod). The functor E/ has a left derived functor LE/
obtained by restricting E/ to the full subcategory Hot(D-contrap;) C Hot(D-contra)
and composing it with the localization functor Hot(C-contra) — D"(C-contra).
The functor RE; is right adjoint to the functor IR; and the functor LE is left
adjoint to the functor IR/

For any two CDG-coalgebras E and F', a CDG-bicomodule K over E and F' is a
graded vector space endowed with commuting structures of a graded left E-comodule
and a graded right F-comodule and a differential d compatible with both the differ-
entials in E and F and satisfying the equation d?(z) = hg*x —z * hy for all z € K.
Notice that a CDG-bicomodule over E and F' has no natural structures of a left
CDG-comodule over E or right CDG-comodule over F, as the equations for d? are
different for CDG-comodules and CDG-bicomodules.

CDG-bicomodules over E and F' form a DG-category with morphisms of
CDG-bicomodules being homogeneous linear maps satisfying the compatibility
equations for both the graded left E-comodule and graded right F-comodule struc-
tures; the differential on morphisms of CDG-bicomodules is defined by the usual
formula. The class of coacyclic CDG-bicomodules over E and F' is constructed in
the same way as the class of coacyclic CDG-comodules, i. e., one considers exact
triples of CDG-bicomodules and closed morphisms between them, and generates the
minimal triangulated subcategory of the homotopy category of CDG-bicomodules
containing the total CDG-bicomodules of exact triples of CDG-bicomodules and
closed under infinite direct sums. A CDG-bicomodule over E and FE is called simply
a CDG-bicomodule over E.

Assume that a graded coalgebra C' is endowed with an increasing filtration by
graded vector subspaces F,C C FiC C ---, C = J, F,C that is compatible with
the comultiplication and the differential, that is u(F,C) C ), FiC ® F;C and
d(F,C) C F,C, where u denotes the comultiplication map. Then the associated
quotient object grp,.C = @, F,,C/F,_1C becomes a CDG-coalgebra with the co-
multiplication and differential induced by those in C, and the counit and the cur-
vature linear function h obtained by restricting the corresponding linear functions
on C to FyC. In particular, FyC' is also a CDG-coalgebra; it is simultaneously a
CDG-subcoalgebra of both C' and grzC and a quotient CDG-coalgebra of grp,C. The
associated quotient space grpC, in addition to a CDG-coalgebra structure, has a
structure of CDG-bicomodule over FyC'.

Now suppose that both CDG-coalgebras C' and D are endowed with increasing
filtrations F' as above and the morphism of CDG-coalgebras f: C — D preserves the
filtrations. Moreover, let us assume that the morphism of CDG-coalgebras FC' —
FyD induced by f is an isomorphism and the cone of the morphism grpC' — grpD
of CDG-bicomodules over FjyD is a coacyclic CDG-bicomodule.
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Theorem. (a) Assume that grpC* and grpD¥ are injective graded right
FyD#-comodules. Then the adjoint functors IR; and RE; are equivalences of
triangulated categories.

(b) Assume that grp,C* and grpD¥ are injective graded left FyD*-comodules.
Then the adjoint functors IRY and LET are equivalences of triangulated categories.

Proof. We will prove (a); the proof of (b) is analogous. Let N be a CDG-comodule
over D such that the graded comodule N# over D¥ is injective. We have to check
that the cone of the morphism of CDG-comodules R;(Ef(N)) = COp N — N
is a coacyclic CDG-comodule over D. Introduce an increasing filtration /' on N by
the rule F,N = v '(F,D ®; N), where v: N — D ®; N denotes the coaction
map. The filtration F' is compatible with the graded comodule structure and the
differential on N. The induced filtration F' on the cotensor product C'Cp N can be
obtained by the same construction applied to the CDG-comodule C Op N over C.
It suffices to check that the associated quotient object grp cone(C Op N — N) is a
coacyclic CDG-comodule over FyD. But this associated quotient object is isomorphic
to the cotensor product cone(gryC — grpD) Op,p FyN, so it remains to notice
that the cotensor product of the CDG-bicomodule cone(grpC — grpD) over FyD
with any left CDG-comodule L over FyD is a coacyclic left CDG-comodule over
FyD in our assumptions. To check the latter, one can choose a morphism from L
into a CDG-comodule that is injective as a graded comodule such that the cone of
that morphism of CDG-comodules is coacyclic. Now let M be a CDG-comodule
over C. We have to check that the cone of the morphism M — RE;(IR;(M)) in
the coderived category of CDG-comodules over C' is trivial. To do so, we will need an
injective resolution of R(AM) that is natural enough, so that filtrations of C, D, and
M would induce a filtration of the resolution in a way compatible with the passage to
the associated quotient objects. One can use either the construction from the proof of
Theorem 4.4, or a version of the construction from the proof of Theorem 3.5 with the
coaction map in the role of a natural embedding of a graded comodule into an injective
graded comodule. Computing the object RE;(IR;(M)) in terms of such a natural
resolution J of the CDG-comodule Ry(M) over D, we find out that it suffices to check
that the cone of the morphism grp,M — gr,(COp J) is a coacyclic CDG-comodule
over FyD. But the cones of the morphisms grp, M — grpJ and gr,(COpJ) — gryJ
are coacyclic CDG-comodules over Fy D, the latter one in view of the above argument
applied to the CDG-comodule N = grpJ over the CDG-coalgebra gr, D endowed with
a morphism of CDG-coalgebras gr,C — grpD. O

5. CoOMODULE-CONTRAMODULE CORRESPONDENCE
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5.1. Functors ®; and V.. Let C' be a CDG-coalgebra over a field k. For any
left CDG-contramodule P over C, let ®¢(P) denote the left CDG-comodule over
C constructed in the following way. The underlying graded vector space of ®¢(P)
is, by the definition, the contratensor product C' ®¢ P, which is a graded quotient
space of the tensor product C ®; P. The graded left C-comodule structure and the
differential on ®¢(P) are induced by the graded left C-comodule structure and the
differential on C' ®; P. The graded left C'-comodule structure on C' ®; P comes from
the graded left C-comodule structure on C', while the differential on C ®;, P is given
by the standard rule as the differential on the tensor product of graded vector spaces
with differentials. It is straightforward to check that ®c(P) is a left CDG-comodule.

For any left CDG-comodule M over C, let U (M) denote the left CDG-contra-
module over C' constructed as follows. The underlying graded vector space of ¥ (M)
is, by the definition, the space of comodule homomorphisms Hom¢(C, M). The
graded left contramodule structure and the differential on W (P) are obtained by re-
stricting the graded left contramodule structure and the differential on Homg(C, M)
to this graded vector subspace. The graded left C-contramodule structure on
Homy (C, M) is induced by the graded right C-comodule structure on C, while the
differential on Homy(C, M) is given by the standard rule as the differential on the
space of homogeneous linear maps between graded vector spaces with differentials.

To a morphism f: L — M in the DG-category of left CDG-comodules over C, one
assigns the morphism ®¢(f) given by the formula c®z — (=)!/lI¥c® f(z). To a mor-
phism f: P — () in the DG-category of left CDG-contramodules over C', one assigns
the morphism W (f) given by the formula g — fog. These rules define DG-functors
®c: DG(C—-contra) — DG(C—comod) and ¥¢: DG(C-comod) — DG(C-contra).
The isomorphism between the complexes of morphisms induced by our standard
isomorphism Homy(C' ®; P, M) ~ Homy(P, Homy(C, M)) makes the DG-functor
®o left adjoint to the DG-functor We. So there are induced adjoint functors
Hot(C—contra) — Hot(C-comod) and Hot(C-comod) — Hot(C-contra), which
we also denote by & and ¥

5.2. Correspondence Theorem. Restricting the functor &, to the full triangu-
lated subcategory Hot(C—contray.o) C Hot(C—contra) and composing it with the
localization functor Hot(C—comod) — D“(C—comod), we obtain the left derived
functor L®¢ : D (C—contra) — D" (C—comod). Restricting the functor ¢ to the
full triangulated subcategory Hot(C—comod;,;) C Hot(C—comod) and composing it
with the localization functor Hot(C-contra) — D"(C'—contra), we obtain the right
derived functor RU¢ : D°°(C—comod) — D"(C—contra).

Theorem. The functors L®c and RY are mutually inverse equivalences between
the coderived category D®(C-comod) and the contraderived category D' (C—contra).
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Proof. One can easily see that the functors & and ¥ between the homotopy cate-
gories of CDG-contramodules and CDG-comodules over C' map the full triangulated
subcategories Hot(C'—contra,,j) and Hot(C—comodiy;) into each other and their restric-
tions to these subcategories are mutually inverse equivalences between them. ]

In particular, let B = (B,d,h) be a CDG-algebra over a field k such that the
graded algebra B is (totally) finite-dimensional. Then there is a natural equivalence
of triangulated categories D°(B-mod) ~ D®"(B-mod). Indeed, let C = B* be the
graded dual vector space to B with the CDG-coalgebra structure defined by the
formulas c(ab) = cp)(a)eqy(b), de(c)(b) = (—1)c(d(b)), and ho(c) = c(h) for
a, b € B and ¢ € C. Then the DG-categories of left CDG-modules over B, left
CDG-comodules over C', and left CDG-contramodules over C' are all isomorphic, so
D<°(B-mod) = D*°(C-comod) ~ D% (C—contra) = D*(B-mod).

5.3. Coext and Ext, Cotor and Ctrtor. For any left CDG-comodules L and
M over a CDG-coalgebra C', there is a natural closed morphism of complexes of
vector spaces Cohome (L, ¥o(M)) — Home (L, M), which is an isomorphism when-
ever either of the graded left C#-comodules L* and M?# is injective. For any left
CDG-contramodules P and @ over C, there is a natural morphism of complexes of
vector spaces Cohomg (®¢(P), Q) — Hom® (P, Q), which is an isomorphism when-
ever either of the graded left C#-contramodules P# and Q¥ is projective.

For any right CDG-comodule N and left CDG-contramodule P over C, there
is a natural closed morphism of complexes of vector spaces N ©®¢c P — N O¢
®(P), which is an isomorphism whenever either the graded right C#-comodule N
is injective, or the graded left C#-contramodule P is projective.

It follows that there are natural isomorphisms of derived functors of two arguments
Exto(M,L®¢(P)) ~ Coexto(M,P) ~ Ext’(R¥Uq (M), P) and Cotorg(N, M) ~
Ctrtorg(N,¥c(M)) for M € D®(C-comod), N € D%(comod-C), and P €
D" (C—contra). In other words, the comodule-contramodule correspondence trans-
forms the functor Coexte into the functors Exte and Ext®, and also it transforms
the functor Cotor® into the functor Ctrtor®.

5.4. Relation with extension of scalars. Let f: C' — D be a CDG-coalgebra
morphism. For any left CDG-comodule N over D such that the graded D#-comodule
N# is injective, there is a natural closed isomorphism W (E(N)) ~ E/(¥p(N)) of
CDG-contramodules over C provided by the isomorphisms Homq(C, C Op N) =~
Homp(C,N) ~ Cohomp(C,Homp(D, N)) of graded vector spaces. Analogously,
for any left CDG-contramodule @) over D such that the graded D#-contramodule
Q% is projective, there is a natural closed isomorphism ®¢(E/(Q)) ~ E;(®p(Q))
of CDG-comodules over C provided by the isomorphisms C' ®¢ Cohomp(C, Q) =~
CopQ~COp(DopQ).
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Notice also that the functors E; and E/ preserve the classes of CDG-comodules
and CDG-contramodules that are injective or projective as graded comodules and
contramodules, while the functors ® and ¥ map these classes into each other. Thus
we have natural isomorphisms of compositions of derived functors RU¢ o RE; ~
LE/oRV, and L&soLES ~ REfoL®p; in other words, the equivalences between the
coderived and contraderived categories of comodules and contramodules transform
the derived functor RE; into the derived functor LE/. Identifying D®(C-comod)
with D (C—contra) and D®(D-comod) with D (D-contra), one can say that the
functor 1Ry is left adjoint to the functor RE; = LE7, while the functor IR/ is right
adjoint to the same functor RE; = LE.

5.5. Proof of Theorem 2.4. Our first aim is to show that the triangulated category
D (C—comod) ~ D (C—contra) is compactly generated for any CDG-coalgebra C.
A triangulated category D where all infinite direct sums exist is said to be compactly
generated if it contains a set of compact objects C (see Remark 1.8.3 for the definition)
such that D coincides with the minimal triangulated subcategory of D containing C
and closed under infinite direct sums.

We will work with the coderived category D°(C-comod). It follows from The-
orem 4.4 that any finite-dimensional CDG-comodule over C represents a compact
object in D°(C~comod), since the full triangulated subcategory Hot(C'-comodiy;) C
Hot(C—comod) is closed under infinite direct sums. Let us check that any CDG-co-
module over C' up to an isomorphism in D®°(C—comod) can be obtained from finite-
dimensional CDG-comodules by iterated operations of cone and infinite direct sum.

A graded coalgebra FE is called cosemisimple if its homological dimension is equal
to zero, or equivalently F is cosemisimple as an ungraded coalgebra. For any graded
coalgebra E there exists a unique maximal cosemisimple graded subcoalgebra E* C
E, which coincides with the maximal cosemisimple subcoalgebra of the ungraded
coalgebra E. The quotient coalgebra (without counit) E/E® is conilpotent, i. e.,
for any element e € F/E®* the image of e under the iterated comultiplication map
E/E® — (E/E®*)®" vanishes for n large enough. One can easily prove these results,
e. g., using the fact that any graded coalgebra is the union of its finite-dimensional
graded subcoalgebras together with the graded version of the structure theory of
finite-dimensional associative algebras.

Let £ = C~ be the graded coalgebra for which the category of CDG-comodules
over C' and closed morphisms between them is equivalent to the category of graded
comodules over E (see [25] for an explicit construction). Let F,,E C E be the graded
subspace formed by all elements e € E whose images vanish in (E/E*)®"*1 Then
FWE = E*, E=\J,F,E, and the filtration F,F is compatible with the coalgebra
structure on E. For any graded left comodule M over E, set F,,M to be the full
preimage of Fj,E ®; M under the comultiplication map M — FE ®; M. Then the
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filtrations F' on E and M are compatible with the coaction map; in paricular, F,, M
are E-subcomodules of M and the quotient comodules F,,M/F,, 1M are comodules
over FyE. Since FyF is a semisimple graded coalgebra, the comodules F,, M/ F, 1M
are direct sums of irreducible comodules, which are finite-dimensional.

Any left CDG-comodule M over C' can be viewed as a left graded comodule over
FE; the above construction provides a filtration F' on M such that F,, M are CDG-co-
modules over C, the embeddings F,M — M are closed morphisms, and the quo-
tient CDG-comodules F,,M/F, ;M taken in the abelian category Z°DG(C-comod)
are direct sums of finite-dimensional CDG-comodules over C. It follows that M
belongs to the minimal triangulated subcategory of D®°(C-comod) containing finite-
dimensional CDG-comodules and closed under infinite direct sums. So we have proven
that D(C-comod) is compactly generated.

Let us point out that in the similar way one can prove that D (C—contra)
is the minimal triangulated subcategory of itself containing finite-dimensional
CDG-contramodules and closed under infinite products. As for comodules, the cate-
gory of CDG-contramodules over C' and closed morphisms between them is equivalent
to the category of graded contramodules over E. Even though the natural decreasing
filtration F"P = imHomy(E/F,,_,E, P) on a graded contramodule P over E asso-
ciated with the filtration F' of E is not always separated, it is always separated and
complete for projective graded contramodules and their graded subcontramodules,
which is sufficient for the argument to work [25].

Now let C be a DG-coalgebra. To prove Theorem 2.4(a), it suffices to notice that
D(C—comod) is the quotient category of D®(C-comod) by the thick subcategory
which can be represented as the kernel of the forgeful functor D°(C-comod) —
D(k—vect) or the kernel of the homological functor H: D®(C-comod) — k—vect®".
Both this forgetful functor and this homological functor preserve infinite direct sums.
It follows that this thick subcategory is well-generated [18] and therefore the local-
ization functor D°(C~comod) — D(C-comod) has a right adjoint. The localization
functor Hot(C—comod) — D®(C—comod) has a right adjoint by Theorem 4.4, thus
the localization functor Hot(C—comod) — D(C—comod) also has a right adjoint.

To prove Theorem 2.4(b), consider the object P = Homy(C, k) € D (C—contra).
Notice that D(C—contra) is the quotient category of D"(C—contra) by the thick sub-
category of all objects @ such that Homper(c—contra)(P, @) = 0. Consider the min-
imal triangulated subcategory of D®"(C'—contra) containing P and closed under in-
finite direct sums. This triangulated category is well-generated and therefore the
functor of its embedding into D®(C-contra) has a right adjoint functor. It fol-
lows that the localization functor D" (C—contra) — D(C—contra) has a left ad-
joint functor whose image coincides with the minimal triangulated subcategory of
D" (C—contra) containing P and closed under infinite direct sums. The localization
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functor Hot(C—comod) — D" (C'—contra) has a left adjoint functor by Theorem 4.4,
thus the localization functor Hot(C'—contra) — D(C—contra) also has a left adjoint.

In addition to the assertions of Theorem, we have proven that the triangulated
subcategory Hot(C—contra),,; coincides with the minimal triangulated subcategory
of Hot(C—contra) containing the DG-contramodule Homy (C, k) and closed under in-
finite direct sums. Indeed, this is so in the triangulated category D" (C—contra) and
the triangulated subcategory Hot(C—contraye;) C Hot(C—contra), which is equiv-
alent to D"(C—contra), contains Homy(C, k), and is closed under infinite direct
sums. We do not know whether the triangulated subcategory Hot(C—comod)iy;
coincides with the minimal triangulated subcategory of Hot(C'-comod) contain-
ing the DG-comodule C' and closed under infinite products; the former subcate-
gory certainly contains the latter one. Notice that the DG-comodule C' and the
DG-contramodule Homy(C, k) correspond to each other under the equivalence of
categories D°(C—comod) ~ D" (C—contra). O

6. KoszuL DUALITY: CONILPOTENT AND NONCONILPOTENT CASES

6.1. Bar and cobar constructions. Let B = (B,d, h) be a CDG-algebra over a
field k. We assume that B is nonzero, i. e., the unit element 1 € B is not equal
to 0, and consider £ = k- 1 as a graded vector subspace in B. Let v: B — k be a
homogeneous k-linear retraction of the graded vector space B to its subspace k; set
V = kerv C B. The direct sum decomposition B = V @ k allows one to split the
multiplication map m: V ®,V — B, the differential d: V — B, and the curvature
element h € B into the components m = (my,my), d = (dy,d), and h = (hy, hy),
where my : VRrV —V, mp: VLV — k, dy: V —V, dp: V — k, hy €V,
and hy € k. Notice that the restrictions of the multiplication map and the differential
to k®rV, VRrk, k®k, and k are uniquely determined by the axioms of a graded
algebra and its derivation. One has hy = 0 for the dimension reasons when B is
Z-graded, but hy may be nonzero when B is Z/2-graded (see Remark 1.1).

Set By = B/k. Let Bar(B) = @;°, B$* be the tensor coalgebra generated by
the graded vector space B,. The comultiplication in Bar(B) is given by the rule
b @ @b (0@ ®b;) @ (bj11®--®b;) and the counit is the projection
to the component Bfo ~ k. The coalgebra Bar(B) is a graded coalgebra with the
grading given by the rule deg(b; ® - -- ® b;) = deg(by) + - - - + deg(b;) — 3.

Odd coderivations of degree 1 on Bar(B) are determined by their compositions
with the projection of Bar(B) to the component BY' ~ B,; conversely, any linear
map Bar(B) — B, of degree 2 gives rise to an odd coderivation of degree 1 on
Bar(B). Let dg, be odd coderivation of degree 1 on Bar(B) whose compositions
with the projection Bar(B) — B, are given by the rules b; ® --- ® b; — 0 for
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i >3, by ®by — (=1)"Himy (b ® by), b— —dy(b), and 1 — hy, where B, is
identified with V and 1 € BY°. Let hp,: Bar(B) — k be the linear function given
by the formulas hg, (b ®---®b;) = 0 fori > 3, hpa(by ®by) = (—1)"+1hy (b @ by),
hpar(b) = —di(b), and hgy (1) = hg. Then Bar,(B) = (Bar(B),dgar, Apar) is a
CDG-coalgebra over k. The CDG-coalgebra Bar,(B) is called the bar-construction
of a CDG-algebra B endowed with a homogeneous k-linear retraction v: B — k.

A retraction v: B — k is called an augmentation of a CDG-algebra B if
(v,0): (B,d,h) —> (k,0,0) is a morphism of CDG-algebras; equivalently, v is
an augmentation if it is a morphism of graded algebras satisfying the equations
v(d(b)) = 0 and v(h) = 0. A k-linear retraction v is an augmentation if and only if
the CDG-coalgebra Bar,(B) is actually a DG-coalgebra, i. e., hgy, = 0.

Let C = (C,d,h) be a CDG-coalgebra over k. We assume that C' is nonzero,
i. e., the counit map ¢: C' — k is a nonzero linear function. Let w: k — C
be a homogeneous k-linear section of the surjective map of graded vector spaces ¢;
set W = cokerw. The direct sum decomposition C = W & k allows one to split
the comultiplication map pu: ¢ — W ®; W, the differential d: C — W, and
the curvature linear function h: C' — k into the components y = (uw, px), d =
(dw,dy), and h = (hw, hy), where py: W — W W, up € W, W, dy: W —
W, dp, e W, hy: W — k, and h, € k. Notice that the compositions of the
comultiplication map with the projections C ®; C — k@ W, W Q4 k, k & k and
the composition of the differential with the projection (counit) C' — k are uniquely
detemined by the axioms of a graded coalgebra and a differential compatible with
the coalgebra structure. One has hy = 0 for dimension reasons when B is Z-graded,
but hy may be nonzero when B is Z/2-graded.

Set Cy = kere. Let Cob(C) = @:2, CS" be the tensor (free associative) algebra,
generated by the graded vector space C. The multiplication in Cob(C) is given
by the rule (¢; ® --- @ ¢;)(cj11 ® - ® ¢i)) = ¢1 ® --- ® ¢; and the unit element is
1 € k ~ C$°. The algebra Cob(C) is a graded algebra with the grading given by the
rule deg(c; ® - - ® ¢;) = degey + - - - + dege; + 4.

Odd derivations of degree 1 on Cob(C') are determined by their restrictions to the
component C ~ C$' C Cob(C); conversely, any linear map C, — Cob(C) of
degree 2 gives rise to an odd derivation of degree 1 on Cob(C). Let dgo, be the
odd derivation on Cob(C') whose restriction to C is given by the formula d(c) =
(—Dlcam*ley ) ® cowy — dw(c) + hw(c), where C, is identified with W and
pw(c) = caw) ® cow). Let hoo, € Cob(C) be the element given by the formula
hcob = (—1)‘“(1’k)|+1ﬁ6(1,k)®M(2,k) —dy+hy, where py = (1K) @ H(2,k) - Then CObw(C) =
(Cob(C), dcob, hcob) is a CDG-algebra over k. The CDG-algebra Cob,,(C) is called
the cobar-construction of a CDG-coalgebra C endowed with a homogeneous k-linear
section w: k — C' of the counit map ¢: C' — k.
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A section w: k — (' is called a coaugmentation of a CDG-coalgebra C if
(w,0): (k,0,0) — (C,d, h) is a morphism of CDG-coalgebras; equivalently, w is
a coaugmentation if it is a morphism of graded coalgebras satisfying the equations
dow=0and how = 0. A k-linear section w is a coaugmentation if and only if the
CDG-algebra Cob,,(C) is actually a DG-algebra, i. e., hcop = 0.

For any CDG-algebra B with a k-linear retraction v, the k-linear section w: k —
Bar, (B) given by the embedding of k ~ B%? into Bar(B) is a coaugmentation of the
CDG-coalgebra Bar,(B) if and only if h = 0 in B, i. e., B is a DG-algebra. For any
CDG-coalgebra C with a k-linear section w, the k-linear retraction v: Cob,(C) — k
given by the projection of Cob(C) onto C$° ~ k is an augmentation of the
CDG-algebra Cob,,(C) if and only if » = 0 on C, i. e., C is a DG-coalgebra. So
a (co)augmentation on one side of the (co)bar-construction corresponds to the van-
ishing of the curvature element on the other side.

Given a CDG-algebra B, changing a retraction v: B — k to another retrac-
tion v': B — k given by the formula v'(b) = v(b) + a(b) leads to an isomor-
phism of CDG-coalgebras (id,a): Bar,(B) — Bary(B), where a: By — &k
is a linear function of degree 0 identified with the corresponding linear function
Bar(B) — By — k of degree 1. Given a CDG-coalgebra C, changing a sec-
tion w: k — C to another section w': k — C given by the rule w'(1) = w(l) +a
leads to an isomorphism of CDG-algebras (id, a): Cob,/(C) — Cob,(C), where
a € C, is an element of degree 0 identified with the corresponding element of
Cob(C) D C4 of degree 1. To an isomorphism of CDG-coalgebras of the form
(id,a): (C,d,h) — (C,d',h') one can assign an isomorphism of the correspond-
ing cobar-constructions of the form (f,,0): Cob,(C,d,h) — Cob,(C,d', h’) with
the automorphism f, of the graded algebra Cob(C) given by the rule ¢ — ¢ + a(c)
for c€ C,. Here a: C' — k is a linear function of degree 1.

Consequently, there is a functor from the category of CDG-coalgebras to the
category of CDG-algebras assigning to a CDG-coalgebra C its cobar-construction
Coby(C). The cobar-construction is also a functor from the category of coaugmented
CDG-coalgebras to the category of DG-algebras, from the category of DG-coalgebras
to the category of augmented CDG-algebras, and from the category of coaugmented
DG-coalgebras to the category of augmented DG-algebras.

Furthermore, let us call a morphism of CDG-algebras (f,a): B — A strict if
one has ¢ = 0. Then there is a functor from the category of CDG-algebras and
strict morphisms between them to the category of CDG-coalgebras assigning to a
CDG-algebra B its bar-construction Bar,(B). The bar-construction is also a functor
from the category of DG-algebras to the category of coaugmented CDG-coalgebras,
from the category of augmented CDG-algebras and strict morphisms between them
to the category of DG-coalgebras, and from the category of augmented DG-algebras
to the category of coaugmented DG-coalgebras.
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Remark. There is no isomorphism of bar-constructions corresponding to an iso-
morphism of CDG-algebras that is not strict. The reason is, essentially, that there
exist no morphisms of tensor coalgebras Bar(B) that do not preserve their coau-
mentations ¥ ~ B$® — Bar(B), while there do exist coderivations of Bar(B) not
compatible with the coaugmentation. Moreover, for any augmented CDG-algebra
B = (B,d, h) with h # 0 the DG-coalgebra Bar,(B) is acyclic, i. e., its cohomology
is the zero coalgebra. Indeed, consider the dual DG-algebra Bar,(B)*. Its sub-
algebra of cocycles of degree zero Z°(Bar,(B)*) is complete in the adic topology
of its augmentation ideal ker(Z°(Bar,(B)*) — k), while the ideal of coboundaries
imd ' C Z°(Bar,(B)*) contains elements not belonging to the augmentation ideal.
Thus imd! = Z%Bar,(B)*) and the unit element 1 € Bar,(B)* is a coboundary.
One can show that the DG-coalgebra Bar,(B) considered up to DG-coalgebra iso-
morphisms carries no information about a coaugmented CDG-algebra B except for
the dimensions of its raded components. Furthermore, for any CDG-algebra (B, d, h)
with h # 0 and any left CDG-module M over B, the CDG-comodule Bar, (B)®"5» M
and the CDG-contramodule Hom"™ (Bar,(B), M) over the CDG-coalgebra Bar, (B)
are contractible (see Remark 7.3).

6.2. Twisting cochains. Let C = (C,d¢, he) be a CDG-coalgebra and B =
(B,dp, hg) be a CDG-algebra over the same field k. We introduce a CDG-algebra
structure on the graded vector space of homogeneous homomorphisms Homy(C, B)
in the following way. The multiplication in Homy(C, B) is given by the formula
(f9)(c) = (=1)9 ™ f(cu))g(c). The differential is given by the standard rule
d(f)(c) = dg(f(c)) — (=) f(dc(c)). The curvature element is defined by the for-
mula h(c) = e(c)hp — he(c) - 1, where 1 is the unit element of B and ¢ is the counit
map of C. A homogeneous linear map 7: C — B of degree 1 is called a twisting
cochain [19, 14, 22] if it satisfies the equation 72 4+ d7 + h = 0 with respect to the
above-defined CDG-algebra structure on Homy(C, B).

Let C' be a CDG-coalgebra and w: £k — C be a homogeneous k-linear section of
the counit map . Then the composition 7 = 7¢,,: C — Cob(C) of the homogeneous
linear maps C — W =~ C; ~ C?' — Cob(C) is a twisting cochain for C' and
Cob,(C). Let B be a CDG-algebra and v: C — k be a homogeneous k-linear
retraction. Then minus the composition Bar,(B) — B' ~ B, ~V — Bisa
twisting cochain 7 = 75, Bar,(B) — B for Bar,(B) and B.

Let 7: C' — B be a twisting cochain for a CDG-coalgebra C' and a CDG-alge-
bra B. Then for any left CDG-module M over B there is a natural structure of left
CDG-comodule over C' on the tensor product C' ®; M. Namely, the coaction of C' in
C'®i M is induced by the left coaction of C' in itself, while the differential on C'® M is
given by the formula d(c®z) = d(c) @z + (—1)e®@d(z) + (—1) Ol @ T(c2))z. We
will denote the tensor product C'®; M with this CDG-comodule structure by C'®" M.
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Furthermore, for any left CDG-comodule N over C' there is a natural structure of
left CDG-module over B on the tensor product B ®; N. Namely, the action of B in
B ®; N is induced by the left action of B in itself, while the differential on B ®; N is
given by the formula d(b®y) = d(b)@y+(—1)"*b@d(y)+ (—1) P 1br(n_1)) ®@n(p). We
will denote the tensor product B ®; N with this CDG-module structure by B ®” N.

The correspondences assigning to a CDG-module M over B the CDG-comodule
C ® M over C and to a CDG-comodule N over C' the CDG-module B ®” N over
B can be extended to DG-functors whose action on morphisms is given by the stan-
dard formulas f.(c ® z) = (-1)/lec ® f.(z) and ¢.(b® y) = (=1)91b @ g.(y).
The DG-functor C' ®” —: DG(B-mod) — DG(C-comod) is right adjoint to the
DG-functor B ®" —: DG(C-comod) — DG(B-mod).

Analogously, for any right CDG-module M over B there is a natural structure of
right CDG-comodule over C' on the tensor product M ®; C. The coaction of C in
M ®y, C' is induced by the right coaction of C' in itself and the differential on M ®; C
is given by the formula d(z ®¢) = d(z) ® c+ (—1)*lz ®d(c) + (=1)* a7 (c(1)) @ (2.
We will denote the tensor product M ®; C' with this CDG-comodule structure by
M ®"C. For any right CDG-comodule N over C' there is a natural structure of right
CDG-module over B on the tensor product N ®, B. Namely, the action of B in
N ®y, B is induced by the right action of B in itself and the differential on N ®j B is
given by the formula d(y®b) = d(y) ® b+ (—1)¥y @d(b) + (=1) ¥y 0 @ T (y1))b. We
will denote the tensor product N ®,; B with this CDG-module structure by N Q" B.

For any left CDG-module P over B there is a natural structure of left CDG-contra-
module over C on the graded vector space of homogeneous linear maps Homy (C, P).
The contraaction of C' in Homy(C, P) is induced by the right coaction of C in it-
self as explained in 2.2. The differential on Homy(C, P) is given by the formula
d(f)(c) = d(£(e) = (=1) F(d()) + (~1) /10 7(cqry) f(eqz) for f € Homy (C, P). We
will denote the graded vector space Homy(C, P) with this CDG-contramodule struc-
ture by Hom" (C, P). For any left CDG-contramodule @) over C' there is a natural
structure of left CDG-module over B on the graded vector space of homogeneous lin-
ear maps Homg(B, Q). The action of B in Homy (B, @) is induced by the right action
of B in itself as explained in 1.5 and 1.7. The differential on Homg(B, Q) is given
by the formula d(f)(b) = d(f(b)) — (=)VIf(d(b)) + 7(c = (=1)/IFHEPf(7(c)b)),
where 7 denotes the contraaction map Homy (C, Q) — Q. We will denote the graded
vector space Homy (B, @) with this CDG-module structure by Hom" (B, Q).

The correspondences assigning to a CDG-module P over B the CDG-contramodule
Hom"(C, P) over C' and to a CDG-contramodule @ over C' the CDG-module
Hom" (B, Q) over B can be extended to DG-functors whose action on morphisms
is given by the standard formula g.(f) = go f for f: C — P or f: B — Q.
The DG-functor Hom" (C, —): DG(B-mod) — DG(C-contra) is left adjoint to the
DG-functor Hom” (B, —): DG(C—contra) —» DG(B-mod).

54



6.3. Duality for bar-construction. Let A = (A,d) be a DG-algebra over a
field k. Choose a homogeneous k-linear retraction v: A — k and consider the
bar-construction C' = Bar,(A); then C is a coaugmented CDG-coalgebra. Let
T =Ta,: C — A be the natural twisting cochain.

Theorem. (a) The functors C @ —: Hot(A-mod) — Hot(C—comod) and A ®" —:
Hot(C—comod) — Hot(A-mod) induce functors D(A-mod) — D (C-comod) and
D (C-comod) — D(A-mod), which are mutually inverse equivalences of triangu-
lated categories.

(b) The functors Hom" (C, —): Hot(A-mod) — Hot(C-contra) and Hom" (A, —):
Hot(C—contra) — Hot(A-mod) induce functors D(A-mod) — D"(C—contra) and
D" (C—contra) — D(A-mod), which are mutually inverse equivalences of triangu-
lated categories.

(c) The above equivalences of triangulated categories D(A-mod) ~ D®(C~-comod)
and D(A-mod) ~ D"(C—contra) form a commutative diagram with the equivalence
of triangulated categories D®(C—comod) ~ D (C—contra) provided by the derived
functors L®¢c and R of Theorem 5.2.

Proof. Part (a): first notice that for any coacyclic CDG-comodule N over C' the
DG-module A ®™ N over A is contractible. Indeed, whenever N is the total
CDG-module of an exact triple of CDG-modules A ® N is the total DG-module
of an exact triple of DG-modules that splits as an exact triple of graded A-modules.
Secondly, let us check that for any acyclic DG-module M over A the CDG-comodule
C ®™ M over C is coacyclic. Introduce an increasing filtration F' on the coalgebra
C = Cob(A) by the rule F; Cob(4) = @;; A", There is an induced filtration on
C ® M given by the formula F;(C ® M) = F,C ®; M. This is a filtration by
CDG-subcomodules and the quotient CDG-comodules F;(C @™ M)/F;_1(C ®™ M)
have trivial C-comodule structures. So these quotient CDG-comodules can be con-
sidered simply as complexes of vector spaces, and as such they are isomorphic to the
complexes A%i ®p M. These complexes are acyclic, and hence coacyclic, whenever M
is acyclic. So the CDG-comodule C' ®™ M is coacyclic. Since it is cofree as a graded
C-comodule, it is even contractible. We have shown that there are induced func-
tors D(A-mod) — D%°(C—comod) and D®(C-comod) — D(A-mod); it remains to
check that they are mutually inverse equivalences. For any DG-module M over A, the
DG-module A ®™ C ®™ M is isomorphic to the total DG-module of the reduced bar-
resolution - -+ — AQRA, A, QM — ARA, @M — A® M. So the cone of the
adjunction morphism AQRTC' ®™ M — M is acyclic, since the reduced bar-resolution
remains exact after passing to the cohomology --- — H(A)® H(A,) @ H(M) —
H(A) ® HM) — H(M) — 0, as explained in the proof of Theorem 1.4. For
a CDG-comodule N over C, let K denote the cone of the adjunction morphism
N — CQ® AQ" N. Let us show that the CDG-comodule K is absolutely acyclic.
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Introduce a finite increasing filtration on the graded C-comodule K by the rules
F.,K =0, F1K=NI[l], [kK=N[1]l®8C®k®, N C N[1]® C ®; A®; N,
and F1K = K, where C ®; k ®; N is embedded into C' ®; A ®; N by the map
induced by the unit element of A. The differential d on K does not preserve this
filtration; still one has d(F;K) C F;11 K. Let 0 denote the differential induced by d
on the associated quotient C-comodule gr, K. Then (gr, K, 0) is an exact complex of
graded C-comodules; indeed, it is isomorphic to the standard resolution of the graded
comodule N over the graded tensor coalgebra C. Set L = F 1K + d(F_1K) C K; it
follows that both L and K/L are contractible CDG-comodules over C. Part (a) is
proven; the proof of part (b) is completely analogous (up to duality). To prove (c),
it suffices to notice the natural isomorphisms V¢ (C @™ M) ~ Hom’(C, M) and
¢ (Hom" (C, M)) ~ C @™ M for a DG-module M over A. O

6.4. Conilpotent duality for cobar-construction. A graded coalgebra E with-
out counit is called conilpotent (cf. 5.5) if it is the union of the kernels of iterated
comultiplication maps £ — E®". A graded coalgebra D endowed with a coaug-
mentation (morphism of coalgebras) w: k — D is called conilpotent if the graded
coalgebra without counit D/w(k) is conilpotent. One can easily see that a conilpotent
graded coalgebra has a unique coaugmentation.

For a conilpotent graded coalgebra D set F;, D to be the kernel of the composition
D — D®" — (D/w(k))®™*; then the increasing filtration F' on D is compatible
with the coalgebra structure. We will call a CDG-coalgebra C' = (C, d, h) conilpotent
if it is coaugmented as a CDG-coalgebra and conilpotent as a graded coalgebra. A
DG-coalgebra is conilpotent if it is conilpotent as a CDG-coalgebra. For a conilpotent
CDG-coalgebra C, the filtration F' defined above is compatible with the CDG-coal-
gebra structure, i. e., one has d(F,C) C F,C, and in addition, h(FyC) = 0.

Let C' be a conilpotent CDG-coalgebra and w: £k — C be its coaugmentation
map. Consider the cobar-construction A = Cob,(C); then A is a DG-algebra. Let
T =Tow: C — A be the natural twisting cochain.

Theorem. All the assertions of Theorem 6.3 hold for the DG-algebra A, CDG-co-
algebra C, and twisting cochain T as above in place of A, C, and T from 6.3.

Proof. Just as in the proof of Theorem 6.3 one shows that for any coacyclic
CDG-comodule N over C' the DG-module A ® N over A is contractible. To
check that the CDG-comodule C' ®"™ M is coacyclic (and even contractible) for any
acyclic DG-module M over A, one uses the filtration F' on the coalgebra C' that
was constructed above and the induced filtration of the CDG-comodule C' ®™ M by
its CDG-subcomodules F;(C @™ M) = F,C ®;, M. The quotient CDG-comodules
F,(C® M)/F;_1(C®" M) are simply the complexes F;C/F;_1C ®; M with the triv-
ial C-comodule structures, so they are coacyclic whenever M is acyclic. For any
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CDG-comodule N over C, the CDG-comodule C' ®™ A ®” N is isomorphic to the re-
duced version of the curved cobar-resolution introduced in the proof of Theorem 4.4.
So the same argument with the canonical filtration with respect to the cobar differ-
ential 0 proves that the cone of the adjunction morphism N — C ® A ®" N is
coacyclic. For a DG-module M over A, denote by K the cocone of the adjunction
morphism A @ C @™ M — M. We will show that the DG-module K is absolutely
acyclic. Introduce a finite decreasing filtration F' on the graded A-module K by the
rules K/F 'K =0, K/F°K = M[-1], K/F'K = AQ; k ®, M & M[-1], and
K/F*K = K, where A ®; C ®; M maps onto A ®; k ®, M by the map induced by
the counit of C'. The differential d on K does not preserve this filtration; still one
has d(F'K) C F*"'K. Let 0 denote the differential induced by d on the associated
quotient A-module grp K. Then (grpK, 0) is an exact complex of graded A-modules;
indeed, it is isomorphic to the standard resolution of the graded module M over the
graded tensor algebra A. Set L = F'K + d(F'K) C L; it follows that both L and
K/L are contractible DG-modules over A. The proof of part (b) is similar (up to
duality), and the proof of (c) is analogous to the proof of Theorem 6.3(c). O

6.5. Acyclic twisting cochains. Let C' be a coaugmented CDG-coalgebra with
a coaugmentation w and A be a DG-algebra. Then there is a natural bijective
correspondence between morphisms of DG-algebras Cob,, (C) — A and twisting
cochains 7: C — A such that 7 o w = 0. Whenever C' is a DG-coalgebra, so
that Cob,,(C) is an augmented DG-algebra, and A is also an augmented DG-algebra
with an augmentation v, a morphism of DG-algebras Cob,,(C) — A preserves the
augmentations if and only if one has vor = 0 for the corresponding twisting cochain 7.

Let us assume from now on that C'is a conilpotent CDG-coalgebra. Then a twisting
cochain 7: C — A with Tow = 0 is said to be acyclic if the corresponding morphism
of DG-algebras Cob(C') — A is a quasi-isomorphism.

Theorem. (a) The functors C @ —: Hot(A-mod) — Hot(C—comod) and A ®" —:
Hot(C—-comod) — Hot(A-mod) induce functors D(A-mod) — D (C-comod) and
D (C—comod) — D(A-mod), the former of which is right adjoint to the latter.
These functors are mutually inverse equivalences of triangulated categories if and
only if the twisting cochain T is acyclic.

(b) The functors Hom" (C, —): Hot(A-mod) — Hot(C—-contra) and Hom" (A, —):
Hot(C—contra) — Hot(A-mod) induce functors D(A-mod) — D"(C—contra) and
D" (C—contra) — D(A-mod), the former of which is left adjoint to the latter. These
functors are mutually inverse equivalences of triangulated categories if and only if the
twisting cochain T is acyclic.

(c) Whenever the twisting cochain T is acyclic, the above equivalences of triangu-
lated categories D(A-mod) ~ D*(C—comod) and D(A-mod) ~ D (C—contra) form a
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commutative diagram with the equivalence of triangulated categories D (C—comod) ~
D" (C—contra) provided by the derived functors L®c and R¥Y ¢ of Theorem 5.2.

So in particular the twisting cochain 7 = 74, of 6.3 is acyclic; the twisting cochain
T = Tou Of 6.4 is acyclic by the definition.

Notice that for any acyclic twisting cochain 7 the above equivalences of derived
categories (of the first and the second kind) transform the trivial CDG-comodule
k over C into the free DG-module A over A and the trivial CDG-contramodule &
over C into the cofree DG-module Homy (A, k) over A. When C' is a DG-coalgebra,
A is an augmented DG-algebra with an augmentation v, and one has v o7 = 0,
these equivalences of exotic derived categories also transform the trivial DG-module
k over A into the cofree DG-comodule C over C' and into the free DG-contramodule
Homy (C, k) over C. Here the trivial comodule, contramodule, and module structures
on k are defined in terms of the coaugmentation w and augmentation v.

Proof. Part (a): Just as in the proofs of Theorems 6.3 and 6.4 one shows that the
functor N — A ®” M sends coacyclic CDG-comodules to contractible DG-mod-
ules and the functor M —— C ®” M sends acyclic DG-modules to contractible
CDG-comodules. In order to see that the induced functors are adjoint it suffices
to recall that adjointness of functors can be expressed in terms of adjunction mor-
phisms and equations they satisfy; these morphisms obviously continue to exist and
the equations continue to hold after passing to the induced functors between the
quotient categories. To prove that these functors are equivalences of triangulated
categories if and only if 7 is an acyclic twisting cochain, it suffices to apply The-
orem 6.4 and Theorem 1.7 for the morphism of DG-algebras f: Cob,(C) — A.
Indeed, there are obvious isomorphisms of functors C ®” M ~ C ®"¢v R;(M) for
a DG-module M over A and A ®" N ~ E;(Cob,(C) ®°w N) for a CDG-comodule
N over C. The proof of part (b) is completely analogous and uses the functor E/
instead of E. Notice that for any twisting cochain 7, for any CDG-comodule N over
C the DG-module A ® N over A is projective and for any CDG-contramodule @)
over C' the DG-module Hom" (A, )) over A is injective, as one can prove using either
the adjointness of the 7-related functors between the homotopy categories, or the
facts that D°(C'—comod) is generated by the trivial CDG-comodule & as a triangu-
lated category with infinite direct sums and D (C'—contra) is generated by the trivial
CDG-contramodule £ as a triangulated category with infinite products (see 5.5 for
some details). The proof of part (c) is identical to the proof of Theorem 6.3(c). O

Notice that for any acyclic twisting cochain 7: C' — A and any left CDG-comod-
ule N over C the complex A®" N computes Cotor®(k, N). Indeed, let A®"C be the
image of the right DG-module A over A under the functor M — M ®" C. Then by
the right version of Theorem the right CDG-comodule A®"C over C is isomorphic to
the trivial right CDG-comodule k£ in the coderived category. This CDG-comodule is
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also cofree as a graded comodule and one has A®™ N ~ (A®"C)O¢ N. Analogously,
for any acyclic twisting cochain 7 and any left CDG-contramodule ) over C' the
complex Hom" (4, @) ~ Cohom¢(C ®" A, @) computes Coextc(k, Q).

Now let C' be a conilpotent DG-algebra, A be an augmented DG-algebra with an
augmentation v, and 7: C — A be an acyclic twisting cochain for which v o 7 = 0.
Then for any left DG-module M over A the complex C' ®” M computes Tor” (k, M).
Indeed, let C ®™ A be the image of the right DG-comodule C over C' under the
functor N — N ®™ A. Then by the right version of Theorem the right DG-module
C ®" A over A is isomorphic to the trivial right DG-module & in the derived category.
This DG-module is also projective, as mentioned in the above proof, and one has
C® M ~ (CQ®" A) ®4 M. Analogously, for any left DG-module P over A the
complex Hom" (C, P) ~ Homy4 (A ®" C, P) computes Ext4(k, P).

It follows from the above Theorem that our definion of the coderived category of
CDG-comodules is equivalent to the definition of Lefevre-Hasegawa and Keller [19, 17]
for a conilpotent CDG-coalgebra C.

6.6. Koszul generators. Let A be a DG-algebra over a field k. Suppose that A is
endowed with an increasing filtration by graded subspaces k = FoA C F1A C FRA C
.-+ C A which is compatible with the multiplication, preserved by the differential,
and cocomplete, i. e., A = |J, F;A. Let grpA = @, F;A/F;_1A be the associated
quotient algebra; it is a bigraded algebra with a grading n induced by the grading
of A and a nonnegative grading ¢ coming from the filtration F'. Assume that the
algebra grp A is Koszul [23, 24, 25] in its nonnegative grading i.

Choose a graded subspace V C F} A complementary to k¥ = FyA in Fy A. Notice
that the filtration F on A is determined by the subspace V' C A, as a Koszul algebra
is generated by its component of degree 1 We will call F a Koszul filtration and V/
a Koszul generating subspace of A. Extend V to a subspace V C A complementary
to k in A and denote by v: A — k the projection of A to k along V.

Let C C @;(FiA/k)®" be the Koszul coalgebra quadratic dual to grpA. Re-
call that C is constructed as the direct sum of intersections of the form C' =
D, Uf;ll(FlA/k)@S_l Qi R @y, (F1A/k)®7571 where R C (FLA/k) ® (F1A/k) is
the kernel of the multiplication map (F; A/k)®? — FyA/F A. In particular, Cy = k,
Cy, = F1A/k, and Cy = R are the low-degree components of C' in the grading i. We
will consider C' as a subcoalgebra of the tensor coalgebra Bar(A) = @,(A/k)®" and
endow C with the total grading inherited from the grading of Bar(A).

One can easily see that the graded subcoalgebra C' C Bar,(A) is preserved by
the differential of Bar,(A), which makes it a CDG-algebra and a CDG-subcoalgebra
of Bar,(A). The CDG-algebra structure on C does not depend on the choice of a
subspace V' C A, but only on the subspace V' C FyA. Define the homogeneneous
linear map 7: C — A of degree 1 as minus the composition C — Cy = F1A/k ~
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V — F1A C A. Clearly, C is a conilpotent CDG-coalgebra with the coaugmentation
w:k>~Cy—Cand Tow=0.

Theorem. The map 7 is an acyclic twisting cochain.

Proof. The element 7 € Homy(C, A) satisfies the equation 72 + dr + h = 0, since it is
the image of the twisting cochain 74, € Homy(Bar,(A), A) under the natural strict
surjective morphism of CDG-algebras Homy(Bar,(A), A) — Homy(C, A) induced
by the embedding C — Bar,(A). To check that the morphism of DG-algebras
Cob, (C) — A is a quasi-isomorphism, it suffices to pass to the associated quotient
objects with respect to the increasing filtration /' on A and the increasing filtration ¥’
on Cob,, (C) induced by the increasing filtration F' on C' associated with the grading i.
Then it remains to use the fact that the coalgebra C is Koszul [24]. O

Let A be a DG-algebra with a Koszul generating subspace V and the correspond-
ing Koszul filtration F'. Consider the CDG-coalgebra C' and the twisting cochain
7: C' — A constructed above. Let M be a left DG-module over A; suppose that M
is endowed with an increasing filtration by graded subspaces FopM C FiM C ---C M
that is compatible with the filtration on A and the action of A on M, preserved by
the differential on M, and cocomplete, i. e., M = J, F;M. Assume that the asso-
ciated quotient module grp M over the associated quotient algebra grpA is Koszul
in its nonnegative grading ¢. Define the graded subcomodule N C C' ®™ M as the
intersection C' @y FobM NC Q@ S C C @ M, where S C (F1A/k) ® FyM is the kernel
of the action map (F1A/k) ®, FoM — FiM/FyM. This is the Koszul comodule
quadratic dual to the Koszul module grp M over grpA. The subcomodule N is pre-
served by the differential on C' ®" M, so it is a CDG-comodule over C. The natural
morphism of DG-modules A ® N — M over A is a quasi-isomorphism, as one can
show in the way analogous to the proof of the above Theorem. A dual result holds
for DG-modules P over A endowed with a complete decreasing filtration satisfying
the Koszulity condition and the CDG-contramodules P quadratic dual to them.

Example. Let g be a Lie algebra and A = Ug be its universal enveloping algebra
considered as a DG-algebra concentrated in degree 0. Let F' be the standard filtration
on Ug and V = g C Ug be the standard generating subspace; they are well-known
to be Koszul. Then A is augmented, so C' is a DG-coalgebra; it can be identi-
fied with the standard homological complex C,(g). The functors M —— C ®™ M
and P —— Hom"(C, P) are isomorphic to the functors of standard homological
and cohomological complexes M +— C.(g, M) and P —— C*(g, P) with coeffi-
cients in complexes of g-modules M and P. Hence we see that these functors induce
equivalences between the derived category of g-modules, the coderived category of
DG-comodules over C,(g), and the contraderived category of DG-contramodules over
C.(g). When g and consequently C,(g) are finite-dimensional, DG-comodules and
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DG-contramodules over C,(g) can be identified with DG-modules over the standard
cohomological complex C*(g), so the functors M —— C.(g, M) and P — C*(g, P)
induce equivalences between the derived category of g-modules, the coderived cate-
gory of DG-modules over C*(g), and the contraderived category of DG-modules over
C*(g). These results can be extended to the case of a central extension of Lie al-
gebras 0 — k — g’ — g — 0 with the kernel k& and the enveloping algebra
U'g = Ug'/(lyy — 1y) governing representations of g’ where the central element
1 € k C ¢ acts by the identity. Choose a section g — g’ of our central extension
and define the generating subspace V C g’ C U'g accordingly; then the correspond-
ing CDG-coalgebra C' coincides with the DG-coalgebra C,(g) as a graded coalgebra
with a coderivation; the 2-cochain Cy(g) — k of the central extension g’ — g is
the curvature linear function of C. The derived category of U’g-modules is equiv-
alent to the coderived category of CDG-comodules and the coderived category of
CDG-contramodules over this CDG-coalgebra C.

6.7. Nonconilpotent duality for cobar-construction. Let C' be a CDG-coalge-
bra endowed with a homogeneous k-linear section w: k — C of the counit
map ¢, and let B be a CDG-algebra. Then there is a natural bijective correspon-
dence between morphisms of CDG-algebras Cob,,(C') — B and twisting cochains
7: C — B. A morphism of CDG-algebras Cob,(C) — B is strict if and only
if one has 7 o w = 0 for the corresponding twisting cochain 7. Whenever C' is
a DG-coalgebra, so that Cob,(C) is an augmented CDG-algebra, and B is also
an augmented CDG-algebra with an augmentation v, a morphism of CDG-algebras
Cob,(C) — B preserves the augmentations if and only if one has v o7 = 0 for the
corresponding twisting cochain 7.

Given a CDG-coalgebra C with a k-linear section w: k — C, set B = Cob,,(C)
and 7 =710, C — B.

Theorem. (a) The functors C ®" —: Hot(B-mod) — Hot(C-comod) and B®" —:
Hot(C—comod) — Hot(B-mod) induce functors D®(B-mod) — D (C-comod)
and D®°(C—comod) — D(B-mod), which are mutually inverse equivalences of
triangulated categories.

(b) The functors Hom" (C, —): Hot(B-mod) — Hot(C—contra) and Hom" (B, —):
Hot(C—contra) — Hot(B-mod) induce functors D" (B—mod) — D (C'—contra)
and D (C-contra) — D(B-mod), which are mutually inverse equivalences of
triangulated categories.

(¢) The above equivalences of triangulated categories D***(B-mod) ~ D®(C-comod)
and D?*(B-mod) ~ D% (C—contra) form a commutative diagram with the equivalence
of triangulated categories D®(C—comod) ~ D (C—contra) provided by the derived
functors L®c and RY of Theorem 5.2.
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Whenever C is an coaugmented CDG-coalgebra and accordingly B is a DG-algebra,
the above equivalences of triangulated categories transform the trivial CDG-comodule
k over C' into the free DG-module B over B and the trivial CDG-contramodule & over
C into the cofree DG-module Homg(B, k) over B. Whenever C is a DG-coalgebra and
accordingly B is an augmented CDG-algebra, the same equivalences of triangulated
categories transform the trivial CDG-module k£ over B into the cofree DG-comodule
C over C and into the free DG-contramodule Homy (C, k) over C.

Proof. The assertions about existence of induced functors in (a) and (b) hold for any
CDG-coalgebra C'; CDG-algebra B, and twisting cochain 7: C' — B. Indeed, the
functors M — C'®™M and N — B®"N send coacyclic objects to contractible ones,
while the functors P —— Hom'(C, P) and @@ —— Hom"(B, Q) send contraacyclic
objects to contractible ones, for the reasons explained in the proof of Theorem 6.3.
One also finds that the induced functors are adjoint to each other, as explained in
the proof of Theorem 6.5. Now when B = Cob,(C) and 7 = 7¢,, the adjunction
morphisms are isomorphisms, as it was shown in the proof of Theorem 6.4. Notice
that D®°(B-mod) = D?**( B-mod) = D®(B-mod) in this case by Theorem 3.7. The
proof of part (c) is identical to that of Theorem 6.3(c). O

Let us continue to assume that B = Cob,(C) and 7 = 7¢,. Whenever C is
a coaugmented CDG-coalgebra, for any left CDG-comodule N over C' the complex
B ®" N computes Cotor®(k, N) and for any left CDG-contramodule @ over C the
complex Hom" (B, Q)) computes Coextc(k, ), as explained in 6.5. Whenever C' is
a DG-coalgebra, for any left CDG-modules M and P over B the complex C' @™ M
computes Tor® (k, M) and the complex Hom"(C, P) computes Ext (k, P).

Corollary. Let C be a conilpotent CDG-coalgebra, w: k — C be its coaugmentation,
and A = Coby,(C) be its cobar-construction. Then the derived category D(A-mod)
and the absolute derived category D (A-mod) coincide; in other words, any acyclic
DG-module over A is absolutely acyclic.

Proof. Compare Theorem 6.4 and Theorem 6.7. O

For a counterexample showing that the conilpotency condition is necessary in this
Corollary, see Remark 6.9.

Now let 7: C' — B be any twisting cochain between a CDG-coalgebra C and a
CDG-algebra B. Let us discuss the adjunction properties of our functors between
the homotopy categories in some more detail. Notice that the functor M — C®™ M
is the composition of left adjoint functors M —— Hom’(C, M) and Q — P¢(Q).
So the corresponding composition of right adjoint functors N — Hom" (B, V¢ (N))
is right adjoint to the functor M —— C ®7 M. At the same time, the functor
N —— B®"N is left adjoint to the functor M —— C'®" M. Analogously, the functor
M +— Hom'(C, M) is the composition of right adjoint functors M —— C @™ M
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and N —— W (N). So the corresponding composition of left adjoint functors ¢ —
B®"®:(Q) is left adjoint to the functor M —— Hom™ (C, M). At the same time, the
functor Q — Hom" (B, @) is right adjoint to the functor M — Hom"(C, M).

6.8. Cotor and Tor, Coext and Ext, Ctrtor and Tor. Let C be a conilpotent
CDG-coalgebra, A be a DG-algebra, and 7: C' — A be an acyclic twisting cochain.
Notice that by the right version of Theorem 6.5 the functors M — M®"C and N —
N ®™ A induce an equivalence of triangulated categories D(mod—A) ~ D (comod—-C).

Theorem 1. (a) The equivalences of triangulated categories D®(comod-C) =~
D(mod-A) and D®(C—comod) ~ D(A-mod) transform the functor CotorC into the
functor Tor™.
(b) The equivalences of triangulated categories D®(C—comod) ~ D(A-mod) and
D (C—contra) ~ D(A-mod) transform the functor Coextc into the functor Ext,.
(¢) The equivalences of triangulated categories D®(comod-C) ~ D(mod-A) and
DSt (C~contra) ~ D(A-mod) transform the functor Ctrtor® into the functor Tor®.

Proof. To prove part (a), it suffices to use either of the natural isomorphisms of
complexes N'O¢ (CQ®™M") ~ (N'®TA)@aM" or (M'Q"C)OcN" ~ M'®@4(ARQ"N").
To check that one obrains the same isomorphism of functors in these two ways,
notice that the two compositions N' Oc N — N'O¢ (C ® A®™ N") ~ (N' ®"
A) @4 (A®"N") and N'Oc N" — (NN®@ AQ"C)Oc N" — (N' Q™ A) ®4
(A ®" N") coincide. To prove (b), use either of the isomorphisms Cohom¢(C ®”
M, @) ~ Hom(M,Hom" (A, @)) or Cohom¢ (N, Hom"(C, P)) ~ Homy(A ®" N, P).
Alternatively, use the result of 5.3 and Theorem 6.5. To check (c), use the natural
isomorphism (N ®™ A) ®4 P ~ N ®¢ Hom’ (C, P). O

Now let C' be a CDG-algebra endowed with a k-linear section w: £k — C and
B = Cob,(C) be its cobar-construction. By the right version of Theorem 6.7, the
functors M — M ®" C and N — N ®" B induce an equivalence of triangulated
categories D?**(mod-B) ~ D (comod-C).

Theorem 2. (a) The equivalences of triangulated categories D°(comod-C) =~
D?*(mod-B) and D®°(C-comod) ~ D**(B-mod) transform the functor Cotor® into
the functor TorPX .
(b) The equivalences of triangulated categories D°(C—comod) ~ D"*( B—mod) and
D" (C—contra) ~ D?*(B-mod) transform the functor Coext¢ into the functor Exth.
(¢) The equivalences of triangulated categories D*°(comod-C) ~ D(mod-B) and
DS (C—contra) ~ D(B-mod) transform the functor Ctrtor® into the functor Tor®"™ .

Proof. See the proof of Theorem 1. O
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6.9. Bar duality between algebras and coalgebras. Graded tensor coalgebras
are cofree objects in the category of conilpotent graded coalgebras. More precisely,
for any conilpotent graded coalgebra C' with the coaugmentation w: £ — C and any
graded vector space U there is a bijective correspondence between graded coalgebra
morphisms C — @, U®" and homogeneous k-linear maps C'/w(k) — U of degree
zero. Notice that the graded coalgebra @;-, U®" is conilpotent and any morphism
of conilpotent graded coalgebras preserves the coaugmentations. Let us emphasize
that the above assertion in not true when the graded coalgebra C' is not conilpotent.

Let B be a CDG-algebra and v: B — k be a homogeneous k-linear retraction.
Let C be a CDG-coalgebra that is conilpotent as a graded coalgebra; denote by
w: k — C the coaugmentation map (which does not have to be a coaugmentation
of C' as a CDG-algebra). Then there is a natural bijective correspondence between
morphisms of CDG-coalgebras C —» Bar,(B) and twisting cochains 7: C — B
such that 7 ow = 0. Whenever C' is a DG-coalgebra and v is an augmentation of B,
a CDG-coalgebra morphism C' — Bar, (B) is actually a morphism of DG-coalgebras
if and only if one has v o 7 = 0 for the corresponding twisting cochain 7.

Let k- coalgcz"IIp denote the category of conilpotent CDG-coalgebras, k—coalgg,
denote the category of conilpotent DG-coalgebras, k—alg,, denote the category of
DG-algebras with nonzero units, and k- algd”g denote the category of augmented
DG-algebras (over the ground field k). It follows from the above that the functor of

conilpotent cobar-construction Cob,,: k- coalgcg"IIp — k-algy, is left adjoint to the

conilp

functor of DG-algebra bar-construction Bar, : k-algy, — k- coalgc°nIIp Analogously,

the functor of conilpotent DG-coalgebra cobar-construction Cob,,: k- coalgd —

k— algdug is right adjoint to the functor of augmented DG-algebra bar-construction
conilp

conilp

Bar,: k-algy® — k-coalgy]

A IIlOI‘phlSIn of comlpotent CDG-coalgebras (f,a): C — D is called a filtered
quasi-isomorphism if there exist increasing filtrations F' on C' and D satisfying the
following conditions. The filtrations /' must be compatible with the comultiplications
and differentials on C' and D; one must have FyC' = we (k) and FoD = wp(k), so that,
in particular, the associated quotient objects grpC and grpD are DG-coalgebras;
and the induced morphism grpf: grp,C — grpD must be a quasi-isomorphism
of graded complexes of vector spaces. A morphism of conilpotent DG-coalgebras
is a filtered quasi-isomorphism if it is a filtered quasi-isomorphism as a morphism
of conilpotent CDG-coalgebras. The classes of filtered quasi-isomorphisms will be
denoted by FQuis C k— coalgc°nIIp and FQuis C k- coalgc°""p. Let us emphasize that
there is no claim that the classes of filtered quasi- 1s0morphisms are closed under
composition of morphisms. The classes of quasi-isomorphisms of DG-algebras and

aug

augmented DG-algebras will be denoted by Quis C k—algy, and Quis C k- algy, -
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conilp
cdg

induce functors between the localized categories kfcoalgﬁg;“p[FQuis_l] —

Theorem. (a) The functors Cob,,: k—coalg — k-algy, and Bar,: k-algy, —

conilp
cdg

k—algdg[Quis_l] and k—algdg[Quis_l] — k—coalg
wmverse equivalences of categories.

b) The functors Cob,: k—coalg™ — k-alg®® and Bar,: k-alg?® —
dg dg dg

Z‘;""p induce functors between the localized categories kfcoalgg‘;"'lp[FQuis_l] —
conilp

k—algfj;g[Quis_l] and kfalgf;;g[Quis_l] — k—coalgg [FQuis™'], which are mutually
inverse equivalences of categories.

k—coalg
conilp

cdg [FQuis™'], which are mutually

k—coalg

Proof. We will prove part (a); the proof of part (b) is similar. For any filtered
quasi-isomorphism of conilpotent CDG-coalgebras (f,a): C — D the induced
morphism of cobar-constructions Cob,(f,a): Cob,(C) — Cob, (D) is a quasi-
isomorphism of DG-algebras. Indeed, let F' denote the increasing filtrations on
the cobar-constructions induced by the filtrations F' of C' and D; then the mor-
phism of associated graded DG-algebras grp Cob,(f,a) is a quasi-isomorphism,
since the tensor products and the cones of morphisms of complexes preserve quasi-
isomorphisms. Conversely, for any quasi-isomorphism of DG-algebras g: A — B
the induced morphism of bar-constructions Bar,(g): Bar,(A) — Bar,(B) is a fil-
tererd quasi-isomorphism. Indeed, it suffices to consider the increasing filtrations
of bar-constructions associated with their nonnegative gradings ¢ by the number
of factors in tensor powers. So the induced functors exist; it remains to check
that they are mutually inverse equivalences. For any DG-algebra A, the adjunc-
tion morphism Cob,(Bar,(4)) — A is a quasi-isomorphism. One can prove this
by passing to the associated quotients with respect to the increasing filtration F
on A defined by the rules FpA = k and F1A = A, and the induced filtration
on Cob,(Bar,(A)). Finally, for any conilpotent CDG-coalgebra C, the adjunction
morphism C' — Bar,(Cob,(C)) is a filtered quasi-isomorphism. Indeed, consider
the natural increasing filtration ' on C defined in 6.4 and the induced filtration
F on Bar,(Cob,(C)). We have to prove that our adjunction morphism becomes
a quasi-isomorphism after passing to the associated quotient objects, i. e., the mor-
phism of graded DG-coalgebras gr,C — Bar,(Cob,,(grpC)) is a quasi-isomorphism.
Here it suffices to consider the decreasing filtration G on grpC defined by the rules
Glr,C = gr,C, G'grp,C = ker(e: grpC — k), and G?*gr,C = 0. The induced
filtration on Bar,(Cob,,(gr,C)) stabilizes at every degree of the nonnegative grading
coming from the filtration F' and the morphism gr,C — Bar,(Cob,,(grzC)) can be
easily seen to become a quasi-isomorphism after passing to the associated quotient
objects with respect to the filtration G. O
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Remark. Notice that the notion of a filtered quasi-isomorphism makes sense for
conilpotent CDG-coalgebras only, as any CDG-coalgebra admitting an increasing fil-
tration F' satisfying the conditions in the definition of a filtered quasi-isomorphism
is conilpotent. And one cannot even speak about conventional (nonfiltered) quasi-
isomorphisms of CDG-coalgebras, as the latter are not complexes. Furthermore,
the assertions of Theorem do not hold with the filtered quasi-isomorphisms replaced
with conventional quasi-isomorphisms of DG-coalgebras, or with the conilpotency
condition dropped. Indeed, let A be any DG-algebra; consider it as a DG-algebra
without unit and add a unit formally to it, obtaining an augmented DG-algebra
k & A with the augmentation v. Then the morphisms of augmented DG-algebras
k — k® A — k induce quasi-isomorphisms of bar-constructions Bar,(k) —
Bar,(k & A) — Bar,(k); applying the cobar-construction, we find that the mor-
phisms Cob,,(Bar,(k)) — Cob,,(Bar,(k & A)) — Cob,(Bar,(k)) are not quasi-
isomorphisms, since the middle term is quasi-isomorphic to k@ A. Analogously, let D
be any DG-coalgebra; consider it as a DG-coalgebra without counit and add a counit
formally to it, obtaining a coaugmented DG-coalgebra £ @ D with the coaugmenta-
tion w. Then the morphisms of augmented DG-algebras & — Cob,,(k®D) — k are
quasi-isomorphisms and it follows that the induced morphisms of bar-constructions
Bar, (k) — Bar,(Cob,, (k & D)) — Bar,(k) are also quasi-isomorphisms, hence the
cohomology of the DG-coalgebra Bar,(Cob,, (k @ D)) is different from that of £ & D.
And there is even no natural morphism between C' and Bar,(Cob,(C)) for a non-
conilpotent DG-coalgebra C'. Finally, let D be a DG-coalgebra and N be a left
DG-comodule over D. Consider N as a DG-comodule over the above DG-coalgebra
k & D; then the DG-module Cob,(k & D) @™*e>.w N is acyclic. It follows that the
assertions of Theorem 6.4 and Corollary 6.7 do not hold without the conilpotency
assumption on the coaugmented CDG-coalgebra C.

7. Aso-ALGEBRAS AND CURVED A,,-COALGEBRAS

7.1. Nonunital A, -algebras. Let A be a graded vector space over a field k. Con-
sider the graded tensor coalgebra (cofree conilpotent coassociative graded coalgebra)
D2, A[1]®* with its coaugmentation w: k ~ A[1]%° — @, A[1]*". A nonuni-
tal Ay -algebra structure on A is, by the definition, a coaugmented DG-coalgebra
structure on @; A[1]**, i. e., an odd coderivation d of degree 1 on €, A[1]** such
that d> = 0 and d o w = 0. Since a coderivation of @, A[1]** is uniquely de-
termined by its composition with the projection €0, A[1]®* — A[1]®* ~ A[1], a
nonunital A, -algebra structure on A can be considered as a sequence of linear maps
mi: A¥ — A i =1, 2, ... of degree 2 — i. More precisely, define the maps m;
by the rule that the image of the element d(a; ® - - - ® a;) under the projection to A
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equals (—1)*Xs=1(=8)esl+m; (a1 ® - - - ® @;) for a; € A. The sequence of maps m;
must satisfy a sequence of quadratic equations corresponding to the equation d? = 0
on the coderivation d. We will not write down these equations explicitly.

A morphism of nonunital Ay-algebras f: A — B over k is, by the definition, a
morphism of (coaugmented) DG-coalgebras @, A[1]** — @, B[1]®". Since a graded
coalgebra morphism into a graded tensor coalgebra @, B[1]*" is determined by its
composition with the projection @, B[1]** — B[1]®! ~ BJ[1] and any morphism of
conilpotent graded coalgebras preserves coaugmentations, a morphism of nonunital
A-algebras f: A — B can be considered as a sequence of linear maps f;: A% —s
B, 1 =1, 2, ... of degree 1 — 1. More precisely, define the maps f; by the rule
that the image of the element f(a; ® --- ® a;) under the projection to B equals
(—1)"Hie==9)(asl 4D £(g) ® -+ - ® g;) for a, € A. The sequence of maps f; must
satisfy a sequence of polynomial equations corresponding to the equation do f = fod
on the morphism f.

Let A be a nonunital A, -algebra over a field £ and M be a graded vector space
over k. A structure of nonunital left As-module over A on M is, by the definition,
a structure of DG-comodule over the DG-coalgebra @; A[1]** on the cofree graded
left comodule @; A[1]®* ®; M over the graded coalgebra €@, A[1]®". Analogously, a
structure of nonunital right A, -module over A on a graded vector space N is defined
as a structure of DG-comodule over @, A[1]®" on the cofree graded right comodule
N ®, @, A[1]®". Since a coderivation of a cofree graded comodule ), A[1]®" @, M
compatible with a given coderivation of the graded coalgebra @, A[1]®* is determined
by its composition with the projection @, A[1]®* ®, M — M induced by the counit
map P, A[1]*" — k, a nonunital left A,-module structure on M can be considered
as a sequence of linear maps n;: A" @ M — M, i =0, 1, ... of degree 1 —i. More
precisely, define the maps n; by the rule that the image of the element d(a; ®- - -®a; ®
) under the projection to M equals (—1)"+Xs=1G=s)las 4Dy, (¢, ®- - -Qa;@z) fora, € A
and x € M. The sequence of maps n; must satisfy a system of nonhomogeneous
quadratic equations corresponding to the equation d?> = 0 on the coderivation d on
P, A[1]®* ®; M. Analogously, a nonunital right A.-module structure on N can be
considered as a sequence of linear maps n;: N ® A®" —s N defined by the rule
that the image of the element d(y ® a; ® - - - ® a;) under the projection to N equals
(=1 FZe=m=9(a 4 n (y @ a; ® -+~ ® a;) for as € A and y € N.

The complex of morphisms between nonunital left A,-modules L and M over a
nonunital A,-algebra A is, by the definition, the complex of morphisms between left
DG-comodules @, A[1]®* ®; L and @, A[1]®*®; M over the DG-coalgebra B, A[1]%".
Analogously, the complex of morphisms between nonunital right A,.-modules R and
N over A is, by the definition, the complex of morphisms between right DG-comodules

R @, @, A[1]®" and N ®;, @, A[1]** over the DG-coalgebra @, A[1]*". A morphism
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of nonunital left A,-modules f: L — M of degree j is the same that a sequence
of linear maps f;: A% ®, L — M, i =0, 1, ... of degree j — i. More precisely,
define the maps f; by the rule that the image of the element f(a; ® --- ® a; ® )
under the projection to M equals (—1)*2s=10=9)(asl+) f,(g, ® - - - @ a; ® 2) for a; € A
and z € L. Any sequence of linear maps f; corresponds to a (not necessarily closed)
morphism of nonunital A,,-modules f. Analogously, a morphism of nonunital right
As-modules g: R — N of degree j is the same that a sequence of linear maps
gi: A% ®, R — N of degree j — i. More precisely, define the maps g; by the rule
that the image of the element ¢g(y ® a; ® - - - ® a;) under the projection to N equals
(_1)i|y\+2§=1(i*5)(\as|+1)gi(y ®a,®---®a;) for a, € Aand y € R.

For any CDG-coalgebra C, the functors ®- and ¥ of 5.1-5.2 provide an equiv-
alence between the DG-category of left CDG-comodules over C' that are cofree as
graded C-comodules and the DG-category of left CDG-contramodules over C' that
are free as graded C-contramodules. So one can alternatively define a nonunital left
As-module M over a nonunital A,-algebra A as a graded vector space for which
a structure of DG-contramodule over the DG-coalgebra €, A[1]® is given on the
free graded contramodule Homy, (€D, A[1]®%, M) over the graded coalgebra B, A[1]*".
Since a contraderivation of a free graded contramodule Homy (6D, A[1]®*, M) com-
patible with a given coderivation of the graded coalgebra €, A[1]®" is determined
by its restriction to the graded subspace M C Homy (€D, A[1]®*, M), a nonunital
left A,-module structure on M can be considered as a sequence of linear maps
pi: M — Homy (A%, M), i =0, 1, ... of degree 1 —i. More presicely, define the
maps p; by the formula p;(z)(a;®- - -®a;) = (—1)FIeF == asl+D (1) (0, ®- - -®a;)
for a, € A and x € M. Then the maps p; are related to the above maps
n;: A%®,M — M by the rule p;(7) (a1 ®- - -®a;) = (1)1 Xe=1l0:ln, (0, ®- - -®0a;@1).

Furthermore, one can alternatively define the complex of morphisms between
nonunital left A, -modules L and M over a nonunital A, -algebra A as the
complex of morphisms between left DG-contramodules Homy (€D, A[1]**, L) and
Homy, (6D, A[1]®, M) over the DG-coalgebra €; A[1]**. Thus a (not necessarily
closed) morphism of nonunital left A, -modules f: L — M of degree j is the same
that a sequence of linear maps f*: L — Homy (A% M), ¢ =0, 1, ... of degree
j — 1. More precisely, define the maps f* by the formula fi(z)(a; ® --- ® a;) =
(—1)iilel e =s)(as+) £ (1) (a; ® -+ ® a;) for a, € A and x € L, where L is con-
sidered as a graded subspace in Hom (€D, A[1]**, L). Then the maps f* are re-
lated to the above maps fi: A®* @, L — M by the rule fi(z)(a1 ® --- ® q;) =

(—1)|$|E;:1 ‘as‘fl(a’l ® .. ® (J/Z ® x).

7.2. Strictly unital A, -algebras. Let A be a nonunital A, -algebra over a field k.

An element 1 € A of degree 0 is called a strict unit if one has mq(1®a) = a = my(a®1)

for all a € A and mi(a1 @ - ® a1 ® 1 ® a541 ® --- ® a;) = 0 for all ¢ # 2,
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1 <s <14, and a; € A. Obviously, a strict unit is unique if it exists. A strictly unital
A-algebra is a nonunital A,-algebra that has a strict unit. A morphism of strictly
unital A, -algebras f: A — B is a morphism of nonunital A..-algebras such that
fily) =1pand fi(a1® - -®as-1014Qas:1®---®a;) =0foralli >1and a; € A.
Notice that for a strictly unital A,.-algebra A with the unit 14 one has 14, = 0 if and
only if A =0. We will assume our strictly unital A.-algebras to have nonzero units.

A strictly unital left Aso-module M over a strictly unital A.-algebra A is a nonuni-
tal left Ao-module such that n;(1®z) =z and n;(01 ® - a1 Q1R a5 1 Q- ®
a;@x) =0foralli >1, 1 <s<i a € A, and x € M. Equivalently, one must
have p;(z)(1) =0 and p;(2) (01 @+ ® a1 ®1® a541 @ - - - Q@ a;) = 0. Analogously, a
strictly unital right As-module N over A is a nonunital right A,-module such that
nmy®l)=yandni(y®a1 ® - - ®a;-1 ®1 Qa4 @ ---®a;) =0 forall i > 1,
a; € A, and y € N.

The complex of morphisms between strictly unital left A,-modules L and M over a
strictly unital A..-algebra A is the subcomplex of the complex of morphisms between
L and M as nonunital A,-modules consisting of all morphisms f: L — M such
that f;(a1® - ®as;_191Qas11®---®a;Qx) =0foralli >0, 1 <s< i, a; € A, and
z € L. Equivalently, one must have f'(z)(a;1 ® -+ ®a5-1®1Q a511 ® -+ - ® a;) = 0.
Analogously, the complex of morphisms between strictly unital right A,,-modules
R and N over A is the subcomplex of the complex of morphisms between R and
N as nonunital A,-modules consisting of all morphisms g: R — N such that
(YR ® - ®a;_1®1R®as,1 ®---Q®a;) =0foralli >0, a; € A, and y € R.

Let A be a nonunital A,-algebra and 14 € A be a nonzero element of degree 0. Set
A = A/k-14. Then the graded tensor coalgebra @), A,[1]®" is a quotient coalgebra
of the tensor coalgebra €0, A[1]®". Denote by K4 the kernel of the natural surjection
@, A[1]®" — D, A+[1]*" and by k4: K4 — k the homogeneous linear function
of degree 1 sending 14 € K4 N A[1] to 1 € k and annihilating K4 N A[1]®* for all
i > 1. Let As: €D, A[1]®" — k be any homogeneous linear function of degree 1
extending the linear function k4 on K4. Then the element 14 € A is a strict unit
if and only if the odd coderivation d'(c) = d(c) + Aa * ¢ — (=1)!dlc * A4 of degree 1
on the tensor coalgebra @, A[1]®* preserves the subspace K4 and the linear function
h'(c) = Aa(d(c)) + Ny(c) of degree 2 on @, A[1]** annihilates K 4. This condition
does not depend on the choice of A4. For strictly unital A,-algebras A and B, a
morphism of nonunital Ay -algebras f: A — B is a morphism of strictly unital
A-algebras if and only if f(K4) C K and kg o f|x, = Kka.

Let A be a strictly unital A, -algebra and M be a nonunital left A, -module
over A. Then M is a strictly unital A,-module if and only if the odd coderiva-
tion d'(z) = d(z) + Aa x z of degree 1 on the cofree comodule @, A[1]** @, M
compatible with the coderivation d’ of the coalgebra @@, A[1]®" preserves the sub-
space K4 @ M C @, A[1]** ® M. Equivalently, the odd contraderivation d'(¢q) =
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d(g) + Aa * g of degree 1 on the free contramodule Homy (6D, A[1]®", M) compat-
ible with the coderivation d' of the coalgebra @, A[1]®* must preserve the sub-
space Homy (€D, A4 [1]%%, M) C Hom, (€D, A[1]®*, M). Analogously, a nonunital right
As-module N over A is a strictly unital A,.-module if and only if the odd coderiva-
tion d'(z) = d(z) — (—1)"*lz * A4 of degree 1 on the cofree comodule N ®; €D, A[1]®
compatible with the coderivation d’ of the coalgebra €, A[1]®* preserves the subspace
N ®y K4 C N ®; @, A[1]®". For strictly unital left A,-modules L and M over A,
a (not necessarily closed) morphism of nonunital A,-modules f: L — M is a mor-
phism of strictly unital A,-modules if and only if one has f(Ka ®; L) C Ka Qx M,
or equivalently, f(Homg (€D, A+[1]%%, L)) C Homy (6D, A+[1]®%, M). Analogously, for
strictly unital right A,-modules R and N over A, a (not necessarily closed) morphism
of nonunital A,-modules g: R — N is a morphism of strictly unital A,-modules
if and only if one has g(R ®; K4) C N ®; Ka.

Let A be a strictly unital A,-algebra. Identify k& with the subspace k-14 C A and
choose a homogeneous k-linear retraction v: A — k. Define the homogeneous linear
function A4: @D; A[1]®" — k of degree 1 by the rules As(a) = v(a) and Ag(a1 Q- ®
a;) = 0 for 4 # 1. Then the linear function )\, is an extension of the linear function
ka: Ka — k. Let d: @, A:[1]® — @, A+[1]® be the map induced by the odd
coderivation d’ of @), A[1]®* defined by the above formula, and let h: @, A, [1]%" —
k be the linear function induced by the above linear function A’. Then Bar,(A) =
(B, A+[1]%%, d, h) is a coaugmented (and consequenly, conilpotent) CDG-coalgebra
with the coaugmentation k ~ A [1]%° — @, A;[1]®*. The CDG-coalgebra Bar,(A)
is called the bar-construction of a strictly unital A-algebra A.

Let f: A — B be a morphism of strictly unital A,-algebras. Let v: A — k and
v: B — k be homogeneous k-linear retractions, and let A4 and Ag be the corre-
sponding homogeneous linear functions of degree 1 on the graded tensor coalgebras.
The morphism of tensor coalgebras f: @, A[1]*" — @, B[1]®* maps K 4 into K g, so
it induces a morphism of graded tensor coalgebras €, A [1]®* — @D, B4 [1]®", which
we will denote also by f. The linear function Ago f—A4: €, A[1]*" — k annihilates
K4, so it induces a linear function @@, A4[1]®* — k, which we will denote by py.
Then the pair (f, ps) is a morphism of CDG-coalgebras Bar,(A) — Bar,(B). Thus
the bar-construction A — Bar,(A) is a functor from the category of strictly uni-
tal Ay -algebras with nonzero units to the category of coaugmented CDG-coalgebras
whose underlying graded coalgebras are graded tensor coalgebras. One can easily see
that this functor is an equivalence of categories. Alternatively, one can use any linear
function A4 of degree 1 extending the linear function k4 in the construction of this
equivalence of categories.

To obtain the inverse functor, assign to a conilpotent CDG-coalgebra (D, dp, hp)
the conilpotent DG-coalgebra (C,d¢) constructed as follows. First, adjoin to D a
single cofree cogenerator of degree —1, obtaining a conilpotent graded coalgebra C

70



endowed with a graded coalgebra morphism C' — D and a homogeneous linear
function A\: C' — k of degree 1. Second, define the odd coderivation d, of degree 1
on the graded coalgebra C' by the conditions that di; must preserve the kernel of the
graded coalgebra morphism C' — D and induce the differential dp on D, and that
the equation A\(d;(c)) = A?(¢)+hp(c) must hold for all ¢ € C, where hp is considered
as a linear function on C. Finally, set d¢(c) = diy(c) —Axc+(=1)l¢lex A for all ¢ € C.

Let A be a strictly unital Ay -algebra, v: A — k be a homogeneous k-linear
retraction, and A4: €D, A[1]®" — k be the corresponding homogeneous linear
function of degree 1. Let M be a strictly unital left A, -module over A. Set
d: @, A+[1]% @ M — @D, A+[1]®" ® M to be the map induced by the differ-
ential d' on @, A[1]®® ®; M defined by the above formula. Then Bar,(4, M) =
(B; AL[1]®" @ M, d) is a left CDG-comodule over the CDG-coalgebra Bar,(A).
Furthermore, set d: Homy (6D, 4+[1]*", M) — Homy (D, A+[1]®", M) to be the
restriction of the differential d’ on Hom (€D, A[1]®", M) defined above. Then
Cob”(A, M) = (Homy (€D, A;[1]®", M), d) is a left CDG-contramodule over the
CDG-coalgebra Bar, (A). Analogously, for a strictly unital right A,-module N over A
set d: N @, @, A+[1]®" — N Q@ P, A+[1]®* to be the map induced by the differen-
tial d’ on N ®; €, A[1]® defined above. Then Bar,(N, 4) = (N ®; @, A+[1]*", d)
is a right CDG-comodule over the CDG-coalgebra Bar,(A).

To a (not necessarily closed) morphism of strictly unital left A.-modules f: L —
M over A one can assign the induced maps @@, A [1]* @, L — P, A+ [1]%" @ M
and Homy (6D, A4 [1]®", L) — Homy (6D, A+[1]®*, M). These are a (not necessarily
closed) morphism of CDG-comodules Bar, (A, L) — Bar,(A, M) and a (not neces-
sarily closed) morphism of CDG-contramodules Cob’(A, L) — Cob”(A4, M) over the
CDG-coalgebra Bar,(A). So we obtain the DG-functor M —— Bar,(A, M), which
is an equivalence between the DG-category of strictly unital left A,-modules over A
and the DG-category of left CDG-comodules over Bar,(A) that are cofree as graded
comodules, and the DG-functor M —— Cob”(A, M), which is an equivalence between
the DG-category of strictly unital left A,-modules over A and the DG-category of
left CDG-contramodules over Bar,(A) that are free as graded contramodules. These
two equivalences of DG-categories form a commutative diagram with the equivalence
between the DG-category of CDG-comodules that are cofree as graded comodules
and the DG-category of CDG-contramodules that are free as graded contramodules
provided by the functors ¥gar,(4) and ®gar,(4). Analogously, to a (not necessar-
ily closed) morphism of strictly unital right A,-modules g: R — N over A one
can assign the induced map R ®; @, A4[1]*" — N @, @, A4[1]*". This is a (not
necessarily closed) morphism of CDG-comodules Bar,(R, A) — Bar,(N, A). The
DG-functor N — Bar, (N, A) is an equivalence between the DG-category of strictly
unital right A,-modules over A and the DG-category of right CDG-comodules over
Bar,(A) that are cofree as graded comodules.
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Now let A be a DG-algebra with nonzero unit, M be a left DG-module over A, and
N be a right DG-module over A. Let v: A — k be a homogeneous k-linear retrac-
tion. Define a strictly unital Ay -algebra structure on A by the rules m;(a) = d(a),
mo(a; ® az) = ajag, and m; = 0 for ¢ > 2. Define a structure of a strictly uni-
tal left Ay-module over A on M by the rules no(z) = d(z), ni(ae ® ) = azx, and
n; = 0 for ¢ > 1, where a € A and z € M. Analogously, define a structure of a
strictly unital right A,-module over A on N by the rules ng(y) =y, ni(y®a) = ya,
and n; = 0 for ¢ > 1, where « € A and y € N. Then the CDG-coalgebra struc-
ture Bar,(A) on the graded tensor coalgebra @, A;[1]®" that was defined in 6.1
coincides with the CDG-coalgebra structure Bar,(A) constructed above, so our no-
tation is consistent. The left CDG-comodule structure Bar,(A) ®4» M on the
cofree graded comodule @@, A, [1]®* ®; M that was defined in 6.2 coincides with the
left CDG-comodule structure Bar,(A, M). The left CDG-contramodule structure
Hom™- (Bar,(A), M) on the free graded contramodule Homy (€D, A, [1]®", M) coin-
cides with the CDG-contramodule structure Cob”(A, M). The right CDG-comodule
structure N @~ Bar,(A) on the cofree graded comodule N ®; @; A;[1]®" coincides
with the right CDG-comodule structure Bar,(N, A).

A morphism of strictly unital A, -algebras f: A — B is called strict if f; = 0 for
all 2 > 1. An augmented strictly unital A,-algebra A is a strictly unital A.,-algebra
endowed with a morphism of strictly unital A,-algebras A — k, where the strictly
unital A.-algebra structure on £ comes from its structure of DG-algebra with zero
differential. An augmented strictly unital A.-algebra is strictly augmented if the
augmentation morphism is strict. A morphism of augmented or strictly augmented
strictly unital A,.-algebras is a morphism of strictly unital A..-algebras forming a
commutative diagram with the augmentation morphisms. The categories of aug-
mented strictly unital A,-algebras, strictly augmented strictly unital A.-algebras,
and nonunital Ay -algebras are equivalent. The equivalence of the latter two cat-
egories is provided by the functor of formal adjoining of the strict unit, and the
equivalence of the former two categories can be deduced from the equivalence be-
tween the categories of DG-coalgebras C' and CDG-coalgebras C' endowed with a
CDG-coalgebra morphism C — k. The DG-category of strictly unital A,-modules
over an augmented strictly unital A-algebra A is equivalent to the DG-category of
nonunital A, -modules over the corresponding nonunital A..-algebra.

7.3. Derived category of A, -modules. Let A be a strictly unital A.-algebra
over a field k. A (not necessarily closed) morphism of strictly unital left A,-modules
f: L — M over A is called strict if one has f; = 0 and (df); = 0 for all i > 0,
or equivalently, f* = 0 and (df)* = 0 for all 7 > 0. Strictly unital left A,-modules
and strict morphisms between them form a DG-subcategory of the DG-category of
strictly unital left A,-modules and their morphisms.
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A closed strict morphism of strictly unital A,.-modules is called a strict homotopy
equivalence if it is a homotopy equivalence in the DG-category of strictly unital
Ay -modules and strict morphisms between them. A triple K — L — M of
strictly unital A,-modules with closed strict morphisms between them is said to be
exact if K — L — M is an exact triple of graded vector spaces. The total strictly
unital A,-module of such an exact triple is defined in the obvious way.

Any strictly unital left A,-module M over A can be considered as a complex with
the differential ng = po: M — M, since one has n3 = 0. A strictly unital left
As-module M is called acyclic if it is acyclic as a complex with the differential ny.
For any closed morphism of strictly unital left A, -modules f: L — M the map
fo=f% L — M is a morphism of complexes with respect to ng. The morphism f
is called a quasi-isomorphism if fy is a quasi-isomorphism of complexes.

Let v: A — k be a homogeneous k-linear retraction and C = Bar,(A) be the
corresponding CDG-coalgebra structure on the graded tensor coalgebra €, A [1]%".

Theorem 1. The following five definitions of the derived category D(A-mod) of
strictly unital left A, -modules over A are equivalent, i. e., lead to naturally isomor-
phic triangulated categories:

(a) the homotopy category of the DG-category of strictly unital left As-modules
over A and their morphisms;

(b) the localization of the category of strictly unital left As-modules over A and
their closed morphisms by the class of quasi-isomorphisms;

(c) the localization of the category of strictly unital left As-modules over A and
their closed morphisms by the class of strict homotopy equivalences;

(d) the quotient category of the homotopy category of the DG-category of strictly
unital left As-modules over A and strict morphisms between them by the thick sub-
category of acyclic As-modules;

(e) the localization of the category of stricly unital left As-modules over A and
their closed strict morphisms by the class of strict quasi-isomorphisms;

(f) the quotient category of the homotopy category of the DG-category of strictly
unital left Ao-modules over A and strict morphisms between them by its minimal
triangulated subcategory containing all the total strictly unital As-modules of exact
triples of strictly unital As-modules with closed strict morphisms between them.

The derived category D(A—mod) is also naturally equivalent to the following trian-
gulated categories:

(g) the coderived category D°(C—comod) of left CDG-comodules over C;

(h) the contraderived category D'(C—contra) of left CDG-contramodules over C;

(i) the absolute derived category D**(C—comod) of left CDG-comodules over C;

(j) the absolute derived category D3 (C—contra) of left CDG-contramodules over C.
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Proof. The equivalence of (a-g) holds in the generality of CDG-comodules and
CDG-contramodules over an arbitrary conilpotent CDG-coalgebra C'. More pre-
cisely, let us consider CDG-comodules over C' that are cofree as graded comodules,
or equivalently, CDG-contramodules over C that are free as graded contramodules,
in place of strictly unital A,-modules. The equivalence of (a), (g), and (h) follows
from (the proof of) Theorem 4.4.

There is a natural increasing filtration F' on a conilpotent CDG-coalgebra C
that was defined in 6.4, and there are induced increasing filtrations F,K =
v~ 1(F,C @ K) on all CDG-comodules K over C' and decreasing filtrations F"Q =
7 (Homy(C/F, 1C,Q)) on all CDG-contramodules @ over C. In particular, from any
CDG-comodule C ®; M that is cofree as a graded comodule and the correspond-
ing CDG-contramodule Homy (C, M) that is free as a graded contramodule one can
recover the complex M as M ~ Fy(C ®; M) ~ Homy(C, M)/F!'Homy(C, M). A
closed morphism of CDG-comodules C ®; L — C ®; M and the corresponding
closed morphism of CDG-contramodules Homy(C, L) — Homy(C, M) are homo-
topy equivalences if and only if the corresponding morphism of complexes L — M
is a quasi-isomorphism. Indeed, let us pass to the cones and check that a cofree
CDG-comodule C' ®; M is contractible if and only if the complex M is acyclic. The
“only if” is clear, and “if” follows from the fact that C ®; M is coacylic when-
ever M is acyclic. To check the latter, notice that the quotient CDG-comodules
F,(C®xM)/F;_1(C® M) are just the tensor products of complexes of vector spaces
F,C/F;_1C ®; M with the trivial CDG-comodule structures.

This proves the equivalence of (a) and (b), since for any DG-category DG with
shifts and cones the homotopy category H°(DG) can be also obtained by inverting
homotopy equivalences in the category of closed morphisms Z°(DG). The equivalence
of (d) and (e) also follows from the latter result about DG-categories; and to prove the
equivalence of (a) and (c) the following slightly stronger formulation of that result
is sufficient. For any DG-category DG with shifts and cones consider the class of
morphisms of the form (idx,0): X @ cone(idx) — X. Then by formally inverting
all the morphisms in this class one obtains the homotopy category H°(DG).

A morphism of CDG-comodules f': C ®;, L — C ®; M and the corresponding
morphism of CDG-contramodules f”: Homy(C, L) — Homy(C, M) can be called
strict if both f’ and df’ are as maps of graded vector spaces can be obtained by ap-
plying the functor C'® — to certain maps L — M, or equivalently, both f” and df”
as maps of graded vector spaces can be obtained by applying the functor Homy (C, —)
to (the same) maps L — M. Let w: k — C be the coaugmentation map; con-
sider the DG-algebra U = Cob,,(C). When C = Bar,(A) is the bar-construction
of a strictly unital Ay -algebra A, the DG-algebra U is called the enveloping
DG@G-algebra of A. For any conilpotent CDG-coalgebra C', consider the DG-functors
C ®@v» — and Hom™»(C, —) assinging CDG-comodules and CDG-contramodules
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over C' to DG-modules over U. These two DG-functors are equivalences between
the DG-categories of left DG-modules over A, left CDG-comodules over C that
are cofree as graded comodules with strict morphisms between them, and left
CDG-contramodules over C' that are free as graded contramodules with strict mor-
phisms between them. So the equivalence of (a) and (d) follows from Theorem 6.4,
and the equivalence of (d) and (f) follows from Corollary 6.7.

Finally, the equivalences (g)<=-(i) and (h)<=-(j) for C = Bar,(A) are provided
by Theorem 4.5. O

Let A be a DG-algebra over k; it can be considered as a strictly unital A,-algebra
and left DG-modules over it can be considered as strictly unital A,-modules as
expained in 7.2. It follows from Theorem 6.3 that the derived category of left
DG-modules over A is equivalent to the derived category of left A,,-modules, so
our notation D(A-mod) is consistent.

Any strictly unital A, -algebra A can be considered as a complex with the differ-
ential m;: A — A, since m? = 0. For any morphism of strictly unital A,-algebras
f: A — B the map f;: A — B is a morphism of complexes with respect
to my;. A morphism f of strictly unital A,-algebras is called a quasi-isomorphism if
fi: A — B is a quasi-isomorphism of complexes, or equivalently, f; ;: Ay — By
is a quasi-isomorphism of complexes.

Let f: A — B be a morphism of strictly unital A-algebras and g: Bar,(4) —
Bar,(B) be the corresponding morphism of CDG-coalgebras. Any strictly unital
left Ao-module M over B can be considered as a strictly unital left A,,-module
over A; this corresponds to the extension-of-scalarars functors E;, on the level
of CDG-comodules that are cofree as graded comodules and EY on the level of
CDG-contramodules that are free as graded contramodules. Denote the induced
functor on derived categories by IR;: D(B-mod) — D(A-mod). The functor IR,
has left and right adjoint functors LE; and RE/: D(A-mod) — D(B-mod) that
can be constructed as the functors IR, and IRY on the level of coderived categories
of CDG-comodules and contraderived categories of CDG-contramodules (see 5.4).

Theorem 2. The functor Ry is an equivalence of triangulated categories if and only
if a morphism f of strictly unital Ay -algebras is a quasi-isomorphism.

Proof. The “if” part follows easily from Theorem 4.7. Both “if” and “only if” can be
deduced from Theorem 1.7 in the following way. For any strictly unital A..-algebra
A and the corresponding CDG-coalgebra C' = Bar,(A) with its coaugmentation w,
the adjunction morphism C' — Bar,(Cob,,(C)) corresponds to a morphism of strict
A-algebras u: A — U(A) from A to its the enveloping DG-algebra U(A) (see
the proof of Theorem 1). The morphism u is a quasi-isomorphism, as one can see
by considering the increasing filtration F' on A defined by the rules FyA = k and

F1A = A, and the induced filtration on U(A). The functor IR, is an equivalence
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of triangulated categories, as it follows from Theorems 6.3 and 6.4, or as we have
just proved. It remains to apply Theorem 1.7 to the morphism of DG-algebras
U(f): UA) — U(B). O

Let A be a strictly unital Ay-algebra and C = Bar,(A) be the corresponding
CDG-coalgebra. All the above results about strictly unital left A,-modules over
A apply to strictly unital right A,-modules as well, since one can pass to the op-
posite CDG-coalgebra CP as defined in 4.6. In particular, the derived category of
strictly unital right A,-modules D(mod—-A) is defined and naturally equivalent to
the coderived category D (comod-C).

The functor Tor: D(mod-A) x D(A-mod) — k-vect® can be constructed
either by restricting the functor of cotensor product O¢: Hot(comod-C) X
Hot(C—comod) — Hot(k—vect) to the Carthesian product of the homotopy cate-
gories of CDG-comodules that are cofree as graded comodules, or by restricting the
functor of contratensor product ®¢ : Hot(comod-C') x Hot(C—contra) — Hot(k—vect)
to the Carthesian product of the homotopy categories of CDG-comodules that are
cofree as graded comodules and CDG-contramodules that are free as graded contra-
modules. The functors one obtains in these two ways are naturally isomorphic by
the result of 5.3. This definition of the functor Tor? agrees with the definition of
functor Tor” for DG-algebras A by Theorem 6.8.1.

The functor Ext4 = Homp(4-mod): D(A-mod)°? x D(A-mod) — k—vect8 can be
computed in three ways. One can either restrict the functor Hom¢ : Hot(C—comod)®P x
Hot(C—comod) — Hot(k—vect) to the Carthesian product of the homotopy cate-
gories of CDG-comodules that are cofree as graded comodules, or restrict the functor
Hom® : Hot(C-contra)®® x Hot(C-contra) — Hot(k-vect) to the Carthesian prod-
uct of the homotopy categories of CDG-contramodules that are free as graded con-
tramodules, or restrict the functor Cohom¢: Hot(C-comod)®? x Hot(C'—contra) —
Hot(k—vect) to the Carthesian product of the homotopy categories of CDG-comodules
that are cofree as graded comodules and CDG-contramodules that are free as graded
contramodules. The functors one obtains in these three ways are naturally isomorphic
by the result of 5.3, are isomorphic to the functor Homp(4-moq) by Theorem 1 above,
and agree with the functor Ext 4 for DG-algebras A by Theorem 6.3 or Theorem 6.8.1.

Remark. One can define a nonunital curved A.,-algebra A as a structure of not
necessarily coaugmented DG-coalgebra on @, A[1]®; such a structure is given by a
sequence of linear maps m;: A®® — A, i =0, 1, ..., where my: k — A may
be a nonzero map (corresponding to the curvature element of A). Any morphism
of DG-coalgebras f: €D, A[1]*" — B[1]®" preserves the coaugmentations of the
graded tensor coalgebras, though, so a morphism of nonunital curved A.-algebras
f: A — Bis given by a sequence of linear maps f;: A% — B, i =1,2,... All the
definitions of 7.1-7.2 can be generalized straightforwardly to the curved situation, and
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all the results of 7.2 hold in this case. However, this theory is largely trivial. For any
strictly unital curved A..-algebra A with mg # 0, every object of the DG-category
of strictly unital curved A, -modules over A is contractible. In particular, the same
applies to nonunital curved A,,-modules over a nonunital curved A, -algebra. Two
cases have to be considered separately, the case when the image of mg coincides with
k-14 C A, and the case when mg(1) and 14 are linearly independent. The for-
mer case cannot occur in the Z-graded situation for dimension reasons, but in the
Z/2-graded situation it is possible. In this case the differential on the CDG-coalgebra
C = @, A;[1]®" is compatible with the coaugmentation w: k ~ A,[1]*® — C, but
the curvature linear function h: C' — k is not, i. e., how # 0. Let C' ®; M be
a left CDG-comodule over C that is cofree as a graded comodule and F,,C ®, M
be its natural increasing filtration induced by the natural increasing filtration F' of
the conilpotent graded coalgebra C'. Then the filtrations F' on both C' and C' ®; M
are preserved by the differentials, since the differential on C' in compatible with the
coaugmentations. The induced differential ng: M — M on M = FyC ®; M has the
square equal to a nonzero constant from k& times the identity endomorphism of M.
The CDG-comodule (M, ng) over the CDG-coalgebra FyC' is clearly contractible; let
to be its contracting homotopy. Set t = id®ty: C @y M — C Q@ M; then t is a
nonclosed endomorphism of M of degree —1 and the endomorphism d(t) = dt + td is
invertible, hence C' ®; M is contractible. This argument is applicable to any conilpo-
tent graded coalgebra C. In the case when mg(1) and 1,4 are linearly independent,
the theory trivializes even further. The author learned the idea of the following ar-
guments from M. Kontsevich. All strictly unital curved Ay-algebra structures with
mo(1) and 14 linearly independent on a given graded vector space A are isomorphic,
and all structures of a strictly unital curved A,-module over A on a given graded vec-
tor space M are isomorphic. Indeed, consider the component of tensor degree i = 1
of the differential on C = @, A [1]®"; it is determined by my. This differential makes
D, A;[1] into a complex, and this complex is acyclic. Taking this fact into account,
one can first find a CDG-coalgebra isomorphism of the form (id,a), a: C — k
between a given CDG-coalgebra structure on C and a certain CDG-coalgebra struc-
ture with A = 0, i. e., a DG-coalgebra structure. One proceeds step by step, killing
the component h;: A%i — k of the linear function A using a linear function a with
the only component a;,;: A?”l — k. Having obtained a DG-coalgebra structure
on C, one subsequently kills all the components m;: A%i — A of the differen-
tial d with 7 > 0 using graded tensor coalgebra automorphisms f of C with the
only nonzero components f; = ids, and fi11: AS"' — A,. Analogously one
shows that any DG-comodule over C' is isomorphic to a direct sum of shifts of the
DG-comodule C. Since C' is acyclic, such DG-comodules are clearly contractible. Al-
ternatively, one could consider the DG-category of strictly unital curved A,,-modules
over a strictly unital curved A..-algebra A with strict morphisms between the curved

7



As-modules. This DG-category is equivalent to the DG-category of CDG-modules
over the CDG-coalgebra U = Cob,,(C). Its homotopy category Hot(U-mod) can well
be nonzero, but the corresponding absolute derived category D*(U-mod) is zero by
Theorem 6.7. So in the category of (strictly unital or nonunital) curved A.-algebras
over a field there are too few and too many morphisms at the same time: there are
no “change-of-connection” morphisms, and in particular no morphisms correspond-
ing to nonstrict morphisms of CDG-algebras, and still there are enough morphisms
to trivialize the theory in almost all cases.

7.4. Noncounital curved A,-coalgebras. Let C' be a graded vector space over
a field k. Consider the graded tensor algebra (free associative graded alge-
bra) @;°,C[—1]®" generated by the graded vector space C[—1]. A noncouni-
tal curved As-coalgebra structure on C' is, by the definition, a DG-algebra struc-
ture on @, C[—1]*", i. e., an odd derivation d of degree 1 on @, C[—1]*" such
that d> = 0. Since a derivation of @, C[—1]®" is uniquely determined by its re-
striction to C[-1] ~ C[-1]®' C @, C[-1]*", a noncounital curved A-coalgebra
structure on C' can be considered as a sequence of linear maps p;: C — C®,
i@ = 0, 1, ... of degree 2 —¢. More precisely, define the maps p; by the for-
mula d(c) = Y00 (—1)*FXe=1 ) is@O4D) 4y 1 (¢) @ -+ @ i i(c), where ¢ € C and
pi(e) = pia(c) ® -+ ® pi;i(c) is a symbolic notation for the tensor p;(c) € C®. A
convergence condition must be satisfied: for any ¢ € C' one must have y;(c) = 0 for
all but a finite number of the degrees 7. Furthermore, the sequence of maps u; must
satisfy a sequence of quadratic equations corresponding to the equation d? = 0 on
the derivation d.

A morphism of noncounital curved A,,-coalgebras f: C' — D over a field £ is, by
the definition, a morphism of DG-algebras €, C[—1]®" — @, D[—1]*" over k. Since
the graded algebra morphism from a graded tensor algebra @, C[—1]*" is determined
by its restriction to C[—1] ~ C[-1]*' C €, C[-1]*, a morphism of noncounital
curved A.-coalgebras f: C — D can be considered as a sequence of linear maps
fi:C — D¥®, i=0,1,... of degree 1 —i. More precisely, define the maps f; by
the formula f(c) = Y 52 (—1)i "+ im0 fis @) £ (0) @ - - @ f;:(c), where c € C
and fi(c) = fi1(c) ® -+ ® fii(c) € D¥. A convergence condition must be satisfied:
for any ¢ € C one must have f;(c) = 0 for all but a finite number of the degrees i.
Furthermore, the sequence of maps f; must satisfy a sequence of polynomial equations
corresponding to the equation do f = f o d on the morphism f.

Let C' be a noncounital curved A-coalgebra over a field £ and M be a graded
vector space over k. A structure of noncounital left curved Ay -comodule over C' on
M is, by the definition, a structure of DG-module over the DG-algebra @, C[—1]**
on the free graded left module @, C[—1]®*® M over the graded algebra @, C[—1]%".

Analogously, a structure of noncounital right curved A-comodule over C' on a
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graded vector space N is defined as a structure of DG-module over @, C[—1]*"
on the free graded right module N ®; @, C[—1]*". Since a derivation of a free
graded module @, C[—1]®* ®; M compatible with a given derivation of the graded
algebra @, C[—1]®" is determined by its restriction to the subspace of generators
M ~ C[-1]*" @, M C @,C|-1]*" ®; M, a noncounital left curved Ay-comodule
structure on M can be considered as a sequence of linear maps v;: M — C® ®; M,
1 = 0,1, ... of degree 1 — . More precisely, define the maps v; by the formula

d(z) = Zﬁo(_1)i+2§:1_¢(i+1)(\w,s(w)|+1),/i,_i(x) ® - @v;_1(r) ® vio(z), where z € M
and v;(z) = v; —i(2)®- - -®v; 1 (2)®Vip(z) € C®'® M. A convergence condition must
be satisfied: for any x € M one must have v;(z) = 0 for all but a finite number of the
degrees i. Furthermore, the sequence of maps v; must satisfy a sequence of nonhomo-
geneous quadratic equations corresponding to the equation d?> = 0 on the derivation d
on @, C[—1]** ®; M. Analogously, a noncounital right curved A-comodule struc-
ture on N can be considered as a sequence of linear maps v;: N — N ®;, C®' defined
by the formula d(c) = Z;’io(_1)i|l’i,0(y)\+Zi:1(i—3)(|l’i,s(y)\+1)Z/Z.’O (y)®yi,1 (y)®- - '®Vi,i(y)a
where y € N and v;(y) = v;0(y) @ v1(y) @ - - ® v, (y) € N ® C®".

The complex of morphisms between noncounital left curved A,,-comodules L and
M over a noncounital curved A,-coalgebra C' is, by the definition, the complex
of morphisms between left DG-modules @@, C[-1]®" ®; L and @,C[-1]® @ M
over the DG-algebra @,C[—1]®". Analogously, the complex of morphisms be-
tween noncounital right curved A,-comodules R and N over C' is, by the defini-
tion, the complex of morphisms between right DG-modules R ®; €@, C[—1]*" and
N @ @, C[-1]®" over the DG-algebra @@, C[—1]®. A morphism of noncounital
left curved A, -comodules f: L — M of degree j is the same that a sequence
of linear maps f;: L — C® ®, M, ¢ = 0, 1, ... of degree j — 7 satisfying
the convergence condition: for any z € L one must have f;(z) = 0 for all but
a finite number of degrees i. More precisely, define the maps f; by the formula
fz) = Z;:O(_1)i+2;1_,-(i+1)(|fi,s(w)\+1)fi,7i(x) ® - ® fi_1(z) ® fio(x), where z € L
and fi(z) = fi_i(z2) ® -+ ® fi_1(z) @ fio(x) € C® @ M. Any sequence of lin-
ear maps f; satisfying the convergence condition corresponds to a (not necessar-
ily closed) morphism of noncounital curved A, -comodules f. Analogously, a mor-
phism of noncounital right curved A,-comodules f: R — N is the same that a
sequence of linear maps f;: R — N ®, C%, ¢ =10, 1, ... of degree j — ¢ satis-
fying the convergence condition. More precisely, define the maps f; by the formula
f(y) = Z;’io(_1)i|fi,o(y)\+Zi=1(i*8)(|fi,s(y)|+1)fi,0(y) Qfi1(y)® - fii(y), wherey € R
and fi(y) = fio(y) ® fir(y) ® --- ® fii(y) € N @ C®'.

Let C be a noncounital curved A..-coalgebra over a field £ and P be a graded vec-

tor space over k. A structure of noncounital left curved A -contramodule over C on
P is, by the definition, a structure of DG-module over the DG-algebra €, C[—1]®"
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on the cofree graded left module Homy (@D, C|—1]®", P) over the graded algebra
@, C[-1]®". The action of @,C[—1]*" in Homy (&, C[-1]*", P) is induced by
the right action of P in itself as explained in 1.5 and 1.7. Since a derivation of
a cofree graded module Homy (€, C[—1]®%, P) compatible with a given derivation of
the graded algebra @, C[—1]®" is determined by its composition with the projection
Hom; (), C[-1]®*, P) — P induced by the unit map k¥ — @, C[-1]®", a non-
counital left curved A.-contramodule structure on P can be considered as a linear
map 7: [[;2, Homy (C®, P)[i — 1] — P of degree 0. More precisely, define the map
7 by the rule that the image of the element d(g) under the projection to P equals
7((9:)$2,), where amap g: €D, C[—1]®" — P and a sequence of maps g;: C®* — P
are related by the formula g(c; ®- - -®¢;) = (—1)"9+Xe=(=9)esH) g (¢ @ - - -@ ¢;) for
cs € C. The map 7 must satisfy a system of nonhomogeneous quadratic equations
corresponding to the equation d? = 0 on the derivation d on Hom (€D, C[-1]*%, P).

The complex of morphisms between noncounital left curved A -contramodules P
and ) over a noncounital curved A.-coalgebra C'is, by the definition, the complex of
morphisms between left DG-modules Homy (€D, C[—1]%%, P) and Homy (€D, C[—1]¥",
Q) over the DG-algebra @,C[—1]®". A morphism of noncounital left curved
As-contramodules f: P — (@ of degree j is the same that a linear map
fr: 1152, Homg (C®, P)[i] — Q of degree j. More precisely, define the map fr
by the rule that the image of the element f(g) under the projection to @ equals
Ir((9:)$2,), where amap g: €, C[—1]®" — P and a sequence of maps g;: C®* — P
are related by the above formula. Any linear map f corresponds to a (not necessarily
closed) morphism of noncounital curved A,-contramodules f.

7.5. Strictly counital curved A.-coalgebras. Let C' be a noncounital curved
As-coalgebra over a field k. A homogeneous linear function ¢: C — k of de-
gree 0 is called a strict counit if one has e(pg,1(c))p22(c) = ¢ = e(pg2(c))u2,1(c)
and e(pis(c))pii(c) @ -+ @ pis—1(c) @ pist1(c) ® -+ @ pii(c) = 0 for all ¢ € C,
1 < s <4, and ¢ # 2. A strict counit is unique if it exists. A strictly couni-
tal curved Ay -coalgebra is a noncounital curved A.,-coalgebra that admits a strict
counit. A morphism of strictly counital curved A,-coalgebras f: C — D is
a morphism of noncounital curved A.-coalgebras such that ep o fi = e¢ and
e(fis(c)) fir(c) @@ fis 1(c) ® fis11(c) ®---® fii(c) =0foralce C, 1< s <4,
and 7 > 1. Notice that for a strictly counital curved A.-coalgebra C one has e¢ =0
if and only if C = 0. We will assume our strictly counital curved A.-coalgebras to
have nonzero counits.

A strictly counital left curved As-comodule M over a strictly counital curved
A-coalgebra C'is a noncounital left curved A-comodule such that e(vy 1 (z))v1 ()
=z and €(Vs(2))Vi—i(2) @ -+ Q@ Vis—1(2) ® Vis11(2) ® - Vi —1(x) @ vip(x) =0
for all z € M, —i < s < —1, and ¢ > 1. Analogously, a strictly counital
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right curved As-comodule N over C' is a noncounital right curved A.-comodule
such that e(v11(y))vio(y) = v and e(Vs(y))vio(y) @ v1(y) @ - @ Vs 1(y) ®
Vist1(Y) @ - Q@ v;(y) = 0forally € N, 1 < s <4, and ¢ > 1. Finally, a
strictly counital left curved Ao -contramodule P over C' is a noncounital left curved
A-contramodule satisfying the following condition. For any sequence of linear
maps g;: C% — P, i = 0, 1, ... of degree n 4+ i — 1 for which there ex-
ists a double sequence of linear maps g; ,: Cc®-1 — P, 1 < s < i such that
Gilc1® - ®c¢;) =7 1€(cs)gi(c1 ® - Q1 Qo1 ® -+ ®¢;) for all 4 and ¢, € C
the equation 7((g:)7%y) = g1 1(1) must hold in P".

The complex of morphisms between strictly counital left curved A, ,-comodules L
and M over a strictly counital left curved A.,-coalgebra C' is the subcomplex of the
complex of morphisms between L and M as noncounital A,-comodules consisting of
all morphisms f: L — M such that e(fis(2))fi—i(2) @ -+ ® fis—1(2) @ fiss1(z) ®
@ fi—1(x) ® fiolz) = 0forallz € L, —i < s <1, and 7 > 0. Analogously,
the complex of morphisms between strictly counital right curved A, -comodules R
and N over C is the subcomplex of the complex of morphisms between R and N
as noncounital A,-comodules consisting of all morphisms f: R — N such that
e(fis(W)) fio(¥) @ fin(y) @+ ® fis1(y) ® fist1(y) ® -~ ® fii(y) =0 for all y € R,
1 < s <1, and ¢ > 0. Finally, the complex of morphisms between strictly counital
left curved A..-contramodules P and @ over C is the subcomplex of the complex
of morphisms between P and () as noncounital A,-contramodules consisting of all
morphisms f: P — (@ satisfying the following condition. For any sequence of
linear maps ¢;: C® — P, i = 0, 1, ... of degree n + i — j for which there
exists a double sequence of linear maps ng,s: C®-1 — P, 1 < s < i such that
G ®---®¢) =0 6(cs)gi(c1® - Qcm1 Q11 @ -+ ®¢;) for all s and ¢, € C
the equation f((g:)5°,) = 0 must hold in Q™.

Let C be a noncounital curved A,.-coalgebra and ec: C' — k be a homoge-
neous linear function of degree 0. Set C'; = kere. Then the graded tensor algebra
D, C[—1]®" is a subalgebra of the tensor algebra @, C[—1]®". Denote by K¢ the
cokernel of the embedding @, Cy[—1]*" — @, C|-1]®" and by k¢ € K¢ the ele-
ment of C/Cy[—1] C K¢ for which e(kc) = 1. Let A¢c € @, C[—1]* be any element
of degree 1 whose image in K¢ is equal to k¢. Then the linear function e¢: C — k
is a strict counit if and only if the odd derivation d'(a) = d(a) + [Ac, a] of degree 1
on the tensor algebra @, C[—1]*" preserves the subalgebra @, C;[—1]*" and the el-
ement h = d(\¢) + A% belongs to @, C+[—1]®". This condition does not depend
on the choice of A\¢. For strictly counital curved Ay-coalgebras C' and D, a mor-
phism of noncounital curved A.-coalgebras f: C' — D is a morphism of strictly
counital curved A,-coalgebras if and only if f(€, C4[-1]%%) C @, D+[-1]*" and

f(kc) = kp.
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Let C' be a strictly counital curved A,-coalgebra and M be a noncounital left
curved A, -comodule over C. Then M is a strictly counital curved A,-comodule if
and only if the odd derivation d'(z) = d(z) + Acz of degree 1 on the free module
@, C[-1]®* ®; M compatible with the derivation d’ of the algebra @, C[—1]®* pre-
serves the subspace @), C;[—1]®'®, M C @, C|—1]*'®; M. Analogously, a noncouni-
tal right curved A,-comodule N over C' is a strictly counital curved A,-comodule
if and only if the odd derivation d'(z) = d(z) — (—1)*2A¢ of degree 1 on the free
module N ®, @D, C[—1]®* compatible with the derivation d’ of the algebra @, C[—1]*"
preserves the subspace N®; @, C1[—1]*" C N®y@, C[—1]*". Finally, a noncounital
left curved Ay -contramodule P over C'is a strictly counital curved A,.-contramodule
if and only if the odd derivation d'(q) = d(q) + Acq of degree 1 on the cofree module
Homy, (€D, C[-1]®%, P) compatible with the derivation d' of the algebra €, C[—1]*"
preserves the subspace Homy (K¢, P) C Homy (€D, C[—1]%*, P).

For strictly counital left curved A,-comodules L and M over a strictly couni-
tal curved Ay -coalgebra C, a (not necessarily closed) morphism of noncounital
Ay -comodules f: L — M is a morphism of strictly counital A,-comodules if and
only if one has f(€D, C4[-1]*" ®x L) C @, C+[—1]®" @ M. Analogously, for strictly
counital right curved A,-comodules R and N over C, a (not necessarily closed) mor-
phism of noncounital A -comodules f: R — N is a morphism of strictly counital
Aso-comodules if and only if one has f(R ®; @,;C+[—1]*") C N & @, C+[—1]*".
Finally, for strictly counital left curved Ay-contramodules P and @ over C, a (not
necessarily closed) morphism of noncounital A.-contramodules f: P — @ is a mor-
phism of strictly counital A,-contramodules if and only if one has f(Homy (K¢, P)) C
HOIIlk (Kc, Q)

Let C be a strictly counital curved A,-coalgebra. Choose a homogeneous k-linear
section w: k — C' of the strict counit map ¢: C — k. Define the element \o €
B, C[-1]%" as \c = w(1) € C[—1] C @, C[—1]®". Then A¢ is an element of degree 1
whose image in K¢ is equal to k¢. Let d: @, C[—1]*" — @, C+[—1]®" be the re-
striction of the odd derivation d' of @; C[—1]%" defined by the above formula, and let
h € @ C4[—1]®" be the element defined above. Then Cob,,(C) = (@, C+[-1]*%, d, h)
is a CDG-algebra. The CDG-algebra Cob,,(C) is called the cobar-construction of a
strictly counital curved A,-coalgebra C.

Let f: C' — D be a morphism of strictly counital curved A.-coalgebras. Let
w: k — C and w: k — D be homogeneous k-linear sections, and let Ac and Ap be
the corresponding elements of degree 1 in the graded tensor algebras. The morphism
of tensor algebras f: @,C[-1]*" — @, D[—1]*" induces a morphism of graded
tensor algebras @@, C;[—1]®" — @, D.[—1]*", which we will denote also by f. The
element p; = f(Ac) — Ap € @@, D[—1]*" has a zero image in Kp, so it belongs to
@, D+[-1]®". Then the pair (f, pf) is a morphism of CDG-algebras Cob,,(C) —
Coby, (D). Thus the cobar-construction C' — Cob,, (C') is a functor from the category
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of strictly counital curved A,.-coalgebras with nonzero counits to the category of
CDG-algebras whose underlying graded algebras are graded tensor algebras. One
can easily see that this functor is an equivalence of categories. Alternatively, one can
use any element A\ of degree 1 whose image in K is equal to k¢ in the construction
of this equivalence of categories.

Let C be a strictly counital curved A.-coalgebra, w: k — C be a homogeneous
k-linear section, and A\c € @, C[—1]®" be the corresponding element of degree 1.
Let M be a strictly counital curved As-comodule over C. Set d: @@, C[—1]*" ®4
M — @, C+[-1]*" ®; M to be the restriction of the differential d' on €@, C[—1]**
defined by the above formula. Then Cob,,(C, M) = (B, C+[—1]®" @, M, d) is a left
CDG-module over the CDG-algebra Cob,,(C). Analogously, for a strictly counital
curved As-comodule N over C set d: N ®; @, C[-1]*" — N ®; @, Cy[-1]*
to be the restriction of the differential d' on N ®j €, C[—1]®" defined above. Then
Coby,(N,C) = (N &, @, C+[-1]%¥, d) is a right CDG-module over the CDG-algebra
Coby,(C). Finally, let P be a strictly counital curved Ay-contramodule over C.
Set d: Homy (6D, C+[—1]®", P) — Homy (D, C+[—1]*", P) to be the map induced
by the differential d' on Homy (€D, C[—1]®%, P) defined above. Then Bar”(C, P) =
(Homy (D, C+[-1]%%, P), d) is a left CDG-module over the CDG-algebra Cob,,(C).

To a (not necessarily closed) morphism of strictly counital left curved Ay-comod-
ules f: L — M over C one can assign the induced map @, C,[-1]® &, L —»
D, Ci[-11®" ®, M. So we obtain the DG-functor M — Cob,,(C, M), which is an
equivalence between the DG-category of strictly counital left curved A,-comodules
over C' and the DG-category of left CDG-modules over Cob,,(C) that are free as
graded modules. Analogously, to a (not necessarily closed) morphism of strictly
counital right curved A -comodules f: R — N over C one can assign the induced
map R®; D, C4[-1]®" — N @, P, C[-1]*". So we obtain the DG-functor N —
Coby (N, C), which is an equivalence between the DG-categories of strictly counital
right curved Ay-comodules over C' and right CDG-modules over Cob,,(C) that are
free as graded modules. Finally, to a (not necessarily closed) morphism of strictly
counital left curved A,-contramodules f: P — @ over C one can assign the induced
map Homy, (D, C$*, P) — Homy (D, C%', Q). So we obtain the DG-functor P —
Bar®(C, P), which is an equivalence between the DG-category of strictly counital left
curved A..-contramodules over C' and the DG-category of left CDG-modules over
Cob,(C') that are cofree as graded modules.

Now let C' be a CDG-coalgebra with a nonzero counit, M be a left CDG-comodule
over C', N be a right CDG-comodule over C, and P be a left CDG-contramodule
over C'. Let w: k — C be a homogeneous k-linear section. Define a strictly counital
curved A,-coalgebra structure on C' by the rules ug(c) = h(c), pi(c) = d(c), ps(c) =
ca) ® ¢2), and pi(c) = 0 for i > 2. Define a structure of strictly counital left
curved A-comodule over C on M by the rules vy(z) = d(z), vi(z) = 2(—1) ® 2(0),
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and y;(z) = 0 for i« > 1, where x € M. Define a structure of strictly counital
right curved A-comodule over C' on N by the rules vy(y) = d(y), i (y) = Yo ®
Ya), and vj(xz) = 0 for ¢ > 1, where y € N. Finally, define a structure of strictly
counital left curved Ay-contramodule over C' on P by the rule 7((g;)3°,) = d(g0) +
7wp(g1), where d: P — P is the differential on P and 7p: Homy(C, P) — P is the
contraaction map. Then the CDG-algebra structure Cob,,(C) on the graded tensor
algebra @, C[—1]*" that was defined in 6.1 coincides with the CDG-algebra structure
Coby,(C) constructed above, so our notation is consistent. The left CDG-module
structure Cob,,(C') = M on the free graded module @, C[-1]** ®; M that was
defined in 6.2 coincides with the left CDG-module structure Cob,,(C, M). The right
CDG-module structure N @« Cob,,(C) on the free graded module N ®, D, C[—1]**
coincides with the right CDG-module structure Cob,, (N, C). The left CDG-module
structure Hom™ (Cob,,(C), P) on the cofree graded module Hom, (€D, C[-1]**, P)
coincides with the left CDG-module structure Bar®(C, P).

A morphism of strictly counital curved A,-coalgebras f: C — D is called strict
if fi =0 for all 2 # 1. A coaugmented strictly counital curved A,-coalgebra C' is
a strictly counital curved A..-coalgebra endowed with a morphism of strictly couni-
tal curved A, .-coalgebras k — C', where the strictly counital curved A..-coalgebra
structure on k£ comes from its structure of CDG-coalgebra with zero differential and
curvature linear function. A coaugmented strictly counital curved A..-coalgebra
is strictly coaugmented if the coaugmentation morphism is strict. A morphism of
coaugmented or strictly coaugmented strictly counital curved A.-coalgebras is a
morphism of strictly counital curved A..-coalgebras forming a commutative diagram
with the coaugmentation morphisms. The categories of coaugmented strictly counital
curved A,.-coalgebras, strictly coaugmented strictly counital curved A.-coalgebras,
and noncounital curved A,-coalgebras are equivalent. The DG-category of strictly
counital curved A..-comodules or A,-contramodules over a coaugmented strictly
counital curved A, -coalgebra C is equivalent to the DG-category of noncouni-
tal curved A,-comodules or A-contramodules over the corresponding noncouni-
tal curved Ay -coalgebra C. If C is a strictly coaugmented strictly counital curved
A-coalgebra and w: k — C' is the coaugmentation map, then the CDG-algebra
Coby,(C) is in fact a DG-algebra.

7.6. Coderived category of curved A,-comodules and contraderived cate-
gory of curved A,-contramodules. Let C be a strictly counital curved A-coal-
gebra over a field k. Let w: k& — C be a homogeneous k-linear section and
B = Cob,,(C) be the corresponding CDG-algebra structure on €, C.[—1]".

The coderived category D (C—comod) of strictly counital left curved A-comodules
over C' is defined as the homotopy category of the DG-category of strictly counital
left curved As-comodules over C. The coderived category D (comod—C) of strictly

84



counital right curved A,,-comodules over C' is defined in the analogous way. The con-
traderived category D (C'—contra) of strictly counital right curved A.-contramodules
over (' is defined as the homotopy category of the DG-category of strictly counital
left curved A..-contramodules over C.

Theorem. The following five triangulated categories are naturally equivalent:
(a) the coderived category D°(C—-comod);

(b) the contraderived category D (C—contra);

(¢) the coderived category D®(B-mod);

(d) the contraderived category D (B—mod);

(e) the absolute derived category D*(B-mod).

Proof. The isomorphism of triangulated categories (c—e) is provided by Theo-
rem 3.7(a), and the equivalence of triangulated categories (a), (b), and (e) is the
assertion of Theorem 3.7(b) with projective and injective graded modules replaced
by free and cofree ones. It suffices to find for any left CDG-module M over B a
closed injection from M to a CDG-module J such that both J and J/M are cofree
as graded B-modules, and a closed surjection onto M from a CDG-module F' such
that both CDG-modules M and ker(F — M) are free as graded B-modules. This
can be easily accomplished with either of the constructions of Theorems 3.5-3.6 or
Theorem 4.4. One only has to notice that for any graded module M over a graded
tensor algebra B the kernel of the map B ®, M — M is a free graded B-module
and the cokernel of the map M — Homy (B, M) is a cofree graded B-module. [

Let C be a CDG-coalgebra over k; it can be considered as a strictly counital
curved A,-coalgebra, and CDG-comodules and CDG-contramodules over it can be
considered as strictly counital curved A, -comodules and A.-contramodules as ex-
plained in 7.5. It follows from Theorem 6.7 that the coderived category of left
CDG-comodules over C' is equivalent to the coderived category of strictly counital
left curved A,.-comodules and the contraderived category of left CDG-contramodules
over C' is equivalent to the contraderived category of strictly counital left curved
A-contramodules, so our notation is consistent. Thus the above Theorem provides
the comodule-contramodule correspondence for strictly counital curved Ay, -coalgebras.
By Theorem 6.7(c), the comodule-contramodule correspondence functors in the
CDG-coalgebra case agree with the comodule-contramodule correspondence functors
we have construced in the strictly counital curved A..-coalgebra case.

The functor Cotor®: D®(comod-C) x D®°(C-comod) — k-vect® is constructed
by restricting the functor of tensor product ®p: Hot(mod-B) x Hot(B-mod) —
Hot(k—vect) to the Carthesian product of the homotopy categories of CDG-mod-
ules that are free as graded modules. The functor Coexte: D°(C—comod)°P x
D (C—contra) — k-vect® is constructed by restricting the functor of homomor-

phisms Hompg: Hot(B-mod)° x Hot(B-mod) — Hot(k-vect) to the Carthesian
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product of the homotopy category of CDG-modules that are free as graded mod-
ules and the homotopy category of CDG-modules that are cofree as graded modules.
The functor Ctrtor”: D°(comod-C) x D% (C-contra) — k-vect® is constructed
by restricting the functor of tensor product ®: Hot(mod-B) x Hot(B-mod) —
Hot(k—vect) to the Carthesian product of the homotopy category of CDG-modules
that are free as graded modules and the homotopy category of CDG-modules
that are cofree as graded modules. These definitions of Cotor®, Coextc, and
Ctrtor® agree with the definitions of the functors Cotor®, Coexte, and Ctrtor®
for CDG-coalgebras C' by Theorem 6.8.2.

Remark. For any graded vector space C, consider the topological graded tensor
algebra [, C[—1]*" = Hm, D._,C[-1]®° (see Remark 4.4 for the relevant general
definitions). One can define a noncounital (“uncurved”) A,-coalgebra C' as a struc-
ture of augmented DG-algebra with a continuous differential on [[, C[-1]®". Such
a structure is given by a sequence of linear maps y;: C — C®, i =1, 2, ...
without any convergence condition imposed on them (but satisfying a sequence of
quadratic equations corresponding to the equation d*> = 0). A morphism of non-
counital A,-coalgebras is a continuous morphism of the corresponding topological
DG-algebras (which always preserves the augmentations). The notion of a non-
counital A.-coalgebra is neither more nor less general than that of a noncounital
curved A-coalgebra. Still, any noncounital curved A,-coalgebra C' with py = 0
can be considered as a noncounital A,-coalgebra. A morphism f of noncounital
curved A..-coalgebras with pg = 0 can be considered as a morphism of noncouni-
tal A, -coalgebras provided that fy = 0. A noncounital left A,-comodule M over
C is a structure of DG-module with a continuous differential over the topological
DG-algebra [], C[—1]®* on the free topological graded module [], C[-1]*" ®; M.
Such a structure is given by a sequence of linear maps v;: M — C% ®, M,
t = 0, 1, ... without any convergence conditions imposed. A noncounital left
As-contramodule P over C is a structure of DG-module over [], C[—1]®* on the
cofree discrete graded module @, Homy (C[—1]®*, P) of continuous homogeneous lin-
ear maps [[, C[—1]®*" — P, where P is discrete. Such a structure is given by a
sequence of linear maps 7;: Hom(C®, P) — P, =0, 1, ... All the definitions
of 7.4-7.5 are applicable in this situation, and all the results of 7.5 hold in this case.
For a (strictly counital or noncounital) curved A-coalgebra C' with py = 0 there are
forgetful functors from the DG-categories of (strictly counital or noncounital) curved
As-comodules and Ay.-contramodules to the corresponding DG-categories of un-
curved A-comodules and A-contramodules. Furthermore, let C' be an (uncurved)
strictly counital A, -coalgebra. Define the derived categories of strictly counital
As-comodules and A.-contramodules as the quotient categories of the homotopy
categories corresponding to the DG-categories of strictly counital A,,-comodules and
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A-contramodules by the thick subcategories formed by all the A,-comodules and
A-contramodules that are acyclic with respect to vy and 5. Then one can define the
functors Cotor®?, CoextIC, Ctrtor®, Exté, and Ext“! on the Carthesian products
of the derived categories of strictly counital A,,-comodules and A.,-contramodules by
applying the functors of topological tensor product and continuous homomorphisms
over [, C+[—1]®" to the corresponding (topological or discrete) CDG-modules over
[L; C+[—1]®". These functors are even preserved by the restrictions of scalars corre-
sponding to quasi-isomorphisms of strictly counital A,-coalgebras (i. e., morphisms
f such that f; is a quasi-isomorphism of complexes with respect to p1). In the case
of a strictly counital A-coalgebra coming from a DG-coalgebra C, these functors
agree with the derived functors Cotor®’, Coexté, etc., defined in 2.5.
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