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Abstract. We review recent ideas [1] how gravity might turn out to be a
renormalizable theory after all.

1. Introduction

Renormalizable perturbative quantum field theories are embarrassingly success-
ful in describing observed physics. Whilst their mathematical structure is still
a challenge albeit an entertaining one, they are testimony to some of the finest
achievements in our understanding of nature. The physical law as far at is insen-
sitive to the surrounding geometry seems completely described by such theories.
Alas, if we incorporate gravity, and want to quantize it, we seem at a loss.

In this talk, we report on some recent work [1] which might give hope. Our main
purpose is to review the basic idea and to put it into context.

As in [1], we will proceed by a comparison of the structure of a renormalizable
theory, quantum electrodynamics in four dimensions, and gravity.

It is the role of the Hochschild cohomology [2] in those two different situations
which leads to surprising new insights. We will discuss them at an elementary level
for the situation of pure gravity. We also allow, in the spirit of the workshop, for
the freedom to muse about conceptual consequences at the end.

Acknowledgments. It is a pleasure to thank Bertfried Fauser and Eberhard Zei-
dler for inviting me to this workshop.

2. The structure of Dyson–Schwinger Equations in QED4

2.1. The Green functions. Quantum electrodynamics in four dimensions of space-
time (QED4) is described in its short-distance behaviour by four Green functions

(1) Gψ̄γ·∂ψ, Gmψ̄ψ, Gψ̄γ·Aψ, G
1
4 F 2

,

corresponding to the four monomials in its Lagrangian

(2) L = ψ̄γ · ∂ψ − ψ̄mψ − ψ̄γ ·Aψ − 1
4
F 2.

Here, Gi = Gi(α, L), with α the fine structure constant and L = ln q2/µ2, so that
we work in a MOM scheme, subtract at q2 = µ2, project the vertex function to its
scalar formfactor Gψ̄γ·∂ψ with UV divergences evaluated at zero photon momen-
tum. Similarly the other Green functions are normalized as to be the multiplicative
quantum corrections to the tree level monomials above, in momentum space.
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In perturbation theory, the degree of divergence of a graph Γ with f external
fermion lines and m external photon lines in D dimensions is

(3) ωD(Γ) =
3
2
f + m−D − (D − 4)(|Γ| − 1) ⇒ ω4(Γ) =

3
2
f + m− 4.

This is independent of the loop number for QED4, D = 4, and is a sole function of
the number and type of external legs. ωD(Γ) determines the number of derivatives
with respect to masses or external momenta needed to render a graph logarithmi-
cally divergent, and hence identifies the top-level residues which drive the iteration
of Feynman integrals according to the quantum equations of motion [3].

We define these four Green functions as an evaluation by renormalized Feynman
rules of a series of one-particle irreducible (1PI) Feynman graphs Γ ∈ FGi. These
series are determined as a fixpoint of the following system in Hochschild cohomology.

Xψ̄γ·∂ψ = 1−
∞∑

k=1

αkBψ̄γ·∂ψ,k
+ (Xψ̄γ·∂ψQ2k(α)),(4)

Xψ̄γ·Aψ = 1 +
∞∑

k=1

αkBψ̄γ·Aψ,k
+ (Xψ̄γ·AψQ2k(α)),(5)

Xψ̄mψ = 1−
∞∑

k=1

αkBψ̄mψ,k
+ (Xψ̄mψQ2k(α)),(6)

X
1
4 F 2

= 1−
∞∑

k=1

αkB
1
4 F 2,k
+ (X

1
4 F 2

Q2k(α)).(7)

Here,

(8) Bi,k
+ =

∑

|γ|=k,∆′(γ)=0,γ∈FGi

Bγ
+, ∀i ∈ RQED,

a sum over all Hopf algebra primitive graphs with given loop number k and con-
tributing to superficially divergent amplitude i, and

(9) Bγ
+(X) =

∑

Γ∈<Γ>

bij(γ, X,Γ)
|X|∨

1
maxf(Γ)

1
(γ|X)

Γ,

where maxf(Γ) is the number of maximal forests of Γ, |X|γ is the number of distinct
graphs obtainable by permuting edges of X, bij(γ,X, Γ) is the number of bijections
of external edges of X with an insertion place in γ such that the result is Γ, and
finally (γ|X) is the number of insertion places for X in γ [4], and

(10) RQED = {ψ̄γ · ∂ψ, ψ̄γ ·Aψ,mψ̄ψ,
1
4
F 2}.

Also, we let

(11) Q =
Xψ̄γ·Aψ

Xψ̄γ·∂ψ
√

X
1
4 F 2

.

The resulting maps Bi,K
+ are Hochschild closed

(12) bBi,K
+ = 0,
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in the sense of [5]. We have in fact

(13) ∆(Bγ
+(X)) =

∑

Γ

nΓ,X,γΓ

where nΓ,X,γ can be determined from (9,12).
Furthermore, one can choose a basis of primitives γ [3] such that their Mellin

transforms Mγ(ρ) have the form

(14) Mγ(ρ) =
∫

ιγ(ki; q)|q2=µ2

|γ|∏
s=1

[k2
s/µ2]−ρ/|γ|d4ki

(2π)4
for 1 > <(ρ) > 0,

where the integrand ιγ is a function of internal momenta ki and an external mo-
mentum q, subtracted at q2 = µ2.

The Dyson Schwinger equations then take the form

(15) Gi
R(α, L) = 1± lim

ρ→0


∑

k

αk
∑

|γ|=k

Gi
r(α, ∂ρ)Q(α, ∂ρ)Mγ(ρ)

[(
q2

µ2

)−ρ

− 1

]
 ,

where

(16) ΦR(Xi) = Gi
R(α, L),

and

(17) ΦR(Q) = Q(α,L),

is the invariant charge, all calculated with renormalized Feynman rules in the MOM
scheme.

2.2. Gauge theoretic aspects. Using Ward identities, we can reduce the set
RQED = {ψ̄γ ·∂ψ, mψ̄ψ, ψ̄γ ·Aψ, 1

4F 2} to three elements upon identifying Gψ̄γ·∂ψ =
Gψ̄γ·Aψ. Using the Baker–Johnson–Willey gauge [6] we can furthermore trivialize

(18) Gψ̄γ·∂ψ = Gψ̄γ·Aψ = 1.

Using their work again [7], we have that mψ̄ψ can be ignored in RQED.
We are hence left with the determination of a single gauge-independent Green

function G
1
4 F 2

which in the MOM scheme takes the form

(19) G
1
4 F 2

(α, L) = 1−
∞∑

k=1

γk(α)Lk,

and the renormalization group determines [8]

(20) γk(α) =
1
k

γ1(α)(1− α∂α)γk−1(α).

Here, γ1(α) = 2ψ(α)/α, where ψ(α) is the MOM scheme β-function of QED, which
is indeed half of the anomalous dimension γ1 of the photon field in that scheme.

One can show that γ1(α) as a perturbative series (γ1(α) =
∑∞

j=1 γ1,jα
j) is

Gevrey–1 and that the series
∑∞

j=1 γ1,jα
j/j! has a finite radius of convergence,

with a bound involving the lowest order contribution of the β-function and the
one-instanton action [3].

Furthermore, γ1(α) fulfills [3]

(21) γ1(α) = P (α)− γ1(α)(1− α∂α)γ1(α),
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an equation which has been studied in numerical detail recently [9], with more of
its analytic structure to be exhibited there. In this equation, P (α) is obtained from
the primitives of the Hopf algebra

(22) P (α) =
∑

γ

α|γ| lim
ρ→0

ρMγ(ρ),

and P (α) is known perturbatively as a fifth order polynomial [10] and its asymp-
totics have been conjectured long ago [11].

This finishes our summary of QED4 as a typical renormalizable theory.

2.3. Non-abelian gauge theory. The above approach to Green functions remains
valid for a non-abelian gauge theory with the definition of a single invariant charge
Q(α,L) being the crucial requirement. This can be consistently done, [4], upon
recognizing that the celebrated Slavnov–Taylor identities for the couplings fulfill

(23)
Sφ

R(Xψ̄γ·Aψ)

Sφ
R(Xψ̄γ·∂ψ)

=
Sφ

R(XAA∂A)

Sφ
R(X∂A∂A)

=
Sφ

R(XAAAA)

Sφ
R(XAA∂A)

=
Sφ

R(X φ̄A·∂φ)

Sφ
R(X φ̄¤φ)

,

for the set of amplitudes

(24) RQCD = {DADA, ψ̄γ · ∂ψ, φ̄¤φ, AADA, AAAA, φ̄A · ∂φ, ψ̄γ ·Aψ},
needing renormalization in QCD.

This allows to define a Hochschild cohomology on the sum of graphs at a given
loop order, and hence to obtain multiplicative renormalization in this language from
the resulting coideals in the Hopf algebra [4, 12].

Note that the structure of the sub-Hopf algebras underlying this approach [5, 8]
implies that the elements Xi(α) close under the coproduct. A general classification
of related sub-Hopf algebras has been recently obtained by Loic Foissy [13]. He
considers only the case that the lowest order Hochschild cocycle is present in the
combinatorial Dyson–Schwinger equations, but his study is rather complete when
augmented by the results of [2].

3. Gravity

We consider pure gravity understood as a theory based on a graviton propagator
and n-graviton couplings as vertices. A fuller discussion incorporating ghosts and
matter fields is referred to future work.

3.1. Summary of results of [1].

Corollary 1. Let |Γ| = k. Then ω(Γ) = −2(|Γ|+ 1).

This is a significant change from the behavior of a renormalizable theory: in
the renormalizable case, each graph contributing to the same amplitude i has the
same powercounting degree regardless of the loop number. Here, we have the dual
situation: the loop number determines the powercounting degree, regardless of the
amplitude.

Theorem 2. The set dω(Γ) contains no primitive element beyond one loop.

The set dω(Γ) is determined as a set of dotted graphs, with dots representing ω(Γ)
derivatives with respect to masses or external momenta such that the corresponding
integrand ιΓ is overall log-divergent. Whilst in a renormalizable theory, we find for
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each amplitude in the finite set R primitives at each loop order in dω(Γ), here we
have an infinite set R, but only one primitive in it.

Proposition 3. The relations

(25)
Xn+1

Xn
=

Xn

Xn−1
, n ≥ 3,

define a sub-Hopf algebra with Hochschild closed one-cocycles B1,n
+ .

Here, Xn is the sum of all graphs with n external graviton lines. One indeed
finds that the combinatorial Dyson–Schwinger equations for gravity provide a sub-
Hopf algebra upon requiring these relations, in straightforward generalization of
the situation in a non-abelian gauge theory.

3.2. Comments.

3.2.1. Gauss-Bonnet. The Gauss–Bonnet theorem ensures here, in the form

(26) 0 =
∫

M

√
g

(
RµνρσRµνρσ − 4RαβRαβ + R2

)

the vanishing of the one-loop renormalization constants. This does not imply the
vanishing of the two-loop renormalization constants as their one-loop subdiver-
gences are off-shell. But it implies that the two-loop counter term has only a
first order pole by the scattering type formula, in agreement with the vanishing
of φoff-shell(γ)φon-shell(Γ/γ). Here, γ, Γ/γ is the decomposition of Γ into one-loop
graphs and φon/off-shell denotes suitable Feynman rules.

3.2.2. Two-loop counterterm. Also, the universality of the two-loop counterterm
suggests that indeed

(27)
Zgrn+1

Zgrn
=

Zgrn

Zgrn−1
, with Zgrn = Sφ

R(Xn),

holds for off-shell counterterms. In particular, if we compute in a space of constant
curvature and conformally reduced gravity which maintains many striking features
of asymptotic safe gravity [14, 15], the above identities should hold for suitably
defined characters: indeed, in such circumstances we can renormalize using a gravi-
ton propagator which is effectively massive with the mass

√
R/6 provided by the

constant curvature R, and hence can renormalize at zero external momentum. Us-
ing the KLT relations [16], this reduces the above identities to a (cumbersome)
combinatorial exercise on one-loop graphs to be worked out in the future.

Continuing this line of thought one expects that a single quantity, the β function
of gravity, exhibits short-distance singularities. If this expectation bears out, it
certainly is in nice conceptually agreement with the expectation that in theories
where gravity has a vanishing β function, gravity is indeed a finite theory [17].

3.2.3. Other instances of gravity powercounting. The appearance of Feynman rules
such that the powercounting of vertex amplitudes in RV cancels the powercounting
of propagator amplitudes inRE, R = RV∪RE, is not restricted to gravity. It indeed
appears for example also in the field theoretic description of Brownian fluids and
glass possibly, which were recently described at tree-level as a field theory [18], with
dynamics beyond tree level which will involve renormalization with powercounting
properties similar to the present discussion.
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