FEYNMAN AMPLITUDES AND LANDAU SINGULARITIES FOR
1-LOOP GRAPHS

SPENCER BLOCH AND DIRK KREIMER

1. INTRODUCTION

The subject of Feynman amplitudes with variable momenta and non-zero masses has been
studied by physicists since the 1950’s. In the interim, new mathematical methods involving
Hodge structures and variations of Hodge structures have been developed. The purpose of
this paper is to apply these techniques to the study of amplitudes and Landau singularities
in momentum space. While the techniques we develop bear on the general case here, we
will mainly focus on the 1-loop case. In this case, for general values of masses and external
momenta, the polar locus of the integrand (written in Feynman coordinates) is a smooth
quadric. (Exceptionally, in the “triangle case”, the polar locus is a union of a hyperplane
and a quadric.) Mathematically, the polar loci form a degenerating family of such objects,
which is a familiar and well-studied situation in algebraic geometry. Our objective is firstly
to explain motivically the known fact [4] that dilogarithms are ubiquitous in this situation,
and secondly to show how the motivic and Hodge-theoretic framework is a powerful way to
study thresholds and Landau singularities.

In section 2 we sketch briefly what we will need from the theory of Hodge Structures.
The Hodge structures which arise in the context of one loop graphs are quite simple, but
it is important to understand how to pass to limits in order to study thresholds in physics.
In section 3 we develop the basic properties of the second Symanzik polynomial which is
treated as a quaternionic pfaffian in the sense of E. H. Moore [9]. The motives we need to
study are hypersurfaces defined by a linear combination of the first and second Symanzik
polynomials.

Section 5 develops the basic calculus of differential forms on projective space which is
necessary to calculate the de Rham cohomology of our motives. Section 6 is devoted to
the essential technical result, lemma 6.3, which determines the structure of all the 1-loop
motives. Section 7 defines the relevant motives. We show (formula (7.6)) that the weight
graded object is a sum of Tate motives Q(7) for i = 0, —1, —2, —3. In section 8 we consider
the amplitude itself and show it is a period of a sub Hodge structure (dilogarithm Hodge
structure) involving only Q(0), Q(—1),Q(—2). Completing this chain of ideas, we show in
section 9 that the motive of such a dilog Hodge structure is always a sum of dilogs and squares
of logarithms (cf. (2.5) below). The argument is variational and uses Griffiths transversality.
The authors learned it from [2].

Section 10 discusses the motive of the 1-loop graph with 3 edges, the triangle graph. It
turns out that gr'V H = Q(0)®Q(—1)>"®Q(—2) where v is the number of masses m; = 0. In
an appendix, we discuss a duality theorem which is natural mathematically but doesn’t have
any obvious physical interpretation. Section 12 is a general discussion from a mathematical
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viewpoint of Landau poles and thresholds, and section 13 discusses the limiting mixed Hodge
structures associated to various degenerations. Finally, the last section 14 offers a physical
interpretation of the period matrix in the triangle case via Cutkosky rules.

2. HODGE STRUCTURES

A pure Q-Hodge structure of weight n is a finite dimensional Q-vector space Hg together
with a decreasing (Hodge) filtration F*H¢ defined on H¢ := Hy ® C. F* is required to be
n-opposite to its complex conjugate in the sense that for any ¢
(2.1) He = FiH-oF" " 'He,

Here Fj is obtained by applying complex conjugation to F 7. Tt is straightforward to check
that if we define H*/ := F' N F’, then (2.1) is equivalent to the direct sum decomposition
(2.2) He =@ H".

A Q-mixed Hodge structure is a finite dimensional Q-vector space with an increasing filtra-
tion (weight filtration) W, H as well as a Hodge filtration F* Hc. We require that the induced
Hodge filtration on gr"V He give grV H the structure of a pure Hodge structure of weight n
for each n.

The only pure Hodge structures of dimension 1 are the Tate Hodge structures Q(n). By
definition, Q(n) has weight —2n. We have

(23) W@@k:{

In other words, Q(n)c = H "™ "(Q(n)c).
A mixed Hodge structure H is called mized Tate if

w0 n=2m-—1
(2.4) grnH—{@@(_m) o — o

The central result of this paper is that Feynman amplitudes at 1 loop involve only mixed
Tate Hodge structures. Moreover, the Hodge structures which arise have only 3 non-trivial
weights which we can take to be 0,2,4. We refer to them as dilogarithm Hodge structures.

Definition 2.1. A dilogarithm mixed Hodge structure H is a mixed Tate Hodge structure
such that for some integer n, we have grggH =(0)forp#n,n+1,n+2.

We will see in section 9 that periods of dilogarithm Hodge structures have the form
dg
(25) O
p I

where the f,, g, are rational functions.
For a mixed Tate Hodge structure, the weight and Hodge filtrations are opposite in the
sense that

(2.6) FP' He N WapHe = (0);  He = @ (FPHe N Wa, He).
p
We may choose a basis {e/”} of Hc with e € FPHe N Wo,He.
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Example 2.2 (Kummer extensions). To an element x € C* we can associate a mixed
Tate Hodge structure F, with gr'VE, = Q(1) ® Q(0). Define a free rank 2 Z-module
E,7 = Ze_y ® Zey with weight filtration W_oF, 5 = Ze_; = W_; C Wy = E, 7. Consider
the diagram

0 Z 1271 C exp C > O

(27) H 1/;1\ eor—m]\
0 —— Ze_; —— Em,Z — Z€0 — 0

Here 1(e_1) = 2mi and ¢(g¢) = log(x) for some branch of the logarithm.
By linearity, 1 extends to a C-linear map ¢ : E, ¢ = E, 7 ® C — C. Define

1
(28) FOE$7C = kel"(’(/Jc) =C- (80 - ;ijf:_l) C F_lE%(C = E$7c.
We take e?? = ¢, — lgifs_l and e b7 = ﬁs_l. It is traditional for mixed Tate Hodge

structures to consider the matrix where the columns, interpreted as coefficients of the e®
form a basis for the Q-structure. In this case g = €% + (logz)e 71, e | = 2mie 17! s0
the matrix is

29 (e 20

The category of Hodge structures is abelian, and
(2.10) Ext'(Q(—1),Q) = C*;, E,rux

We remark that the category of Hodge structures has a tensor product. The definitions
follow easily from the definition of a tensor product of filtered vector spaces. One has for
example Q(m) ® Q(n) = Q(m + n). Tensoring with Q(n) for a suitable n, we may if we like
arrange that any given mixed Tate Hodge structure has weights 0,2, --- | 2r for some r.

The central point is that the Betti cohomology of any complex variety (indeed, more
generally any diagram of complex algebraic varieties) carries a canonical and functorial
Hodge structure. Because Betti groups can be computed using differential forms (de Rham
cohomology) our Hodge structures will often have another rational structure coming from
algebraic de Rham cohomology. This is useful in physics because it explains the powers of
2mi occurring in formulas.

Example 2.3. Consider the Hodge structure H := H'(P' — {0, 00}, Q). By standard topol-
ogy this group is one dimensional, dual to the first homology which is spanned by a small
circle S around 0O oriented in a counterclockwise direction. Let z € Hg be a generator with
(z,S5) = 1. As a Hodge structure, H = Q(—1). On the other hand, the corresponding
de Rham cohomology H} (P! — {0,00}) is the Q-vector space defined by the 1-form dt/¢
where t is the coordinate on P!. The pairing with homology is given by integration, and
since [y dt/t = 2mi, it follows that dt/t = 2miz € H. The Q-vector space H is the Betti
cohomology, H = H5(P! — {0, 0}, Q) and the de Rham Q-structure is given in this case by
HDR = 27T’iHB.
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Families of varieties give rise to families of Hodge structures. Of particular interest is the
nilpotent orbit theorem which is the basic tool in describing degenerations. In the physics sur-
rounding 1-loop Feynman graphs these degenerations (thresholds) are not as well understood
as they might be, and we will show how the nilpotent orbit theorem can be applied.

To avoid complications, we focus on a 1-parameter degeneration {H;} parametrized by
t € D ={t € C|0 < |t| < e}. This means that we are given a local system H over
D* with fibre H;,. We have a weight filtration which is an increasing filtration W,H on the
local system, and a Hodge filtration which is a decreasing filtration by coherent subbundles
F*(H ®c Op+). The point is that the Hodge filtration is not horizontal for the flat structure
determined by the local system H. However, Griffiths transversality says

d _, A
(2.11) aFZ(H ®c Op+) C F"Y(H ®@¢ Op-).
A very general result in algebraic geometry gives that the monodromy on our local system
is quasi-unipotent. In other words, replacing ¢ by u = t" for some n, the action ¢ of winding
around the puncture in D* on a fibre of H will be unipotent. This allows us to deal for
example with the square roots which one faces in 1-loop computations early on. Assuming

this has been done, we write
(2.12) N :=log(c)

so N is a nilpotent endomorphism of a fibre.

If we choose ty € D*, we can identify our variation of Hodge structure as a single Q-
vector space H = H,;, with a weight filtration W,H, a nilpotent endomorphism N : H —
H stabilizing W,, and a variable Hodge filtration F}"H. In this situation, the nilpotent
orbit theorem gives a decreasing filtration Fj;,, Hc such that the orbit of the one parameter
subgroup exp(N 1;_7%;) acting on the filtration Fj;,, Hc approximates the given FyH:

log ¢
(2.13) exp ( Oi,) Fiim ~ F,.
e

Another way to think about (2.13) is to note (again by a general result in algebraic geometry)
that the coherent sheaf H @ Op« extends to a coherent sheaf # on D in such a way that the
connection on H extends to a connection with log poles on H, i.e. we have

~  ~ ~ dt
Choose a basis ; for H" which we then view as a multi-valued basis of the local system H".
We view the v; as homology classes. For w; a section of H we write (7v;,w;) = fv- w; as an
integral. Then the entries of

(2.15) exp (— b—gt) f%fwt

271

are single-valued functions on D*, and the limit |{| — 0 exists.
Furthermore, the filtration F; is meromorphic with respect to the extension in the sense
that I can find a basis of the global sections of H®Op« which is compatible with the filtration

F*(H®Op-) and which lies in ™% for M > 0. This means there exists a unique saturated
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filtration F*H inducing F; on H ® Op-. If we choose a basis w; ; of H compatible with the
filtration and compute the limits in (2.15), we obtain a concrete matrix representation for
Fyim. Note that Fj;,, depends on the choice of a parameter t. For example, if I replace ¢ by
ct with ¢ € C* then the limit in (2.15) is multiplied by exp(—NI;ng).

In the context of the limiting Hodge filtration, Griffiths transversality (2.11) becomes the
condition

(2.16) NF;

lim

C Fifl

lim

The limiting filtration Fj;,, is itself the Hodge filtration for the limiting mized Hodge
structure Hyy,. In general, the weight filtration on Hy;, is not the limit of the weight
filtrations on the H;. For example, the classical situation is when H; are pure, i.e. have a
single weight. In that case, the limit weight filtration is determined in a canonical way by
the nilpotent endomorphism N. For applications to 1-loop amplitudes, we are interested in
limits of dilogarithm mixed Tate Hodge structures. The action of monodromy on gr'"V H, will
be finite. (This is true quite generally because monodromy will stabilize both an integral
and a unitary structure and hence lie in the intersection of a discrete group and a compact
group. Such an intersection is necessarily finite.) Typically, in our examples, the eigenvalues
of monodromy on gr"¥ H, will be %1 so it may be necessary to replace o by 2. This explains
the presence of v/t in formulas found by physicists. Once ¢ is unipotent, however, in our
examples, the weight filtration on Hy,, will be the given weight filtration.

Example 2.4. We consider a family of Kummer Hodge structures as in example 2.2. In
(2.7), take €9 +— z(t) for z(t) a meromorphic function on the disk D, holomorphic away
from 0. Write z(t) = tMu(t) with u(0) # 0,00. With notation as in that example, we take
v =¢€/, i =0,—1 (dual basis) and w; = e**. We get

Wy w_1 1 0)
2.17 70 % T
(2.17) <fmwO fmwl) (— ) L

The monodromy is given by

(2.18) N = (—3\4 8) .

Clearly we should take

. 0 0 1 0 1 0
(2'19) Fiim = 15% €xXp (—l—Mlog(t)/Qm' 0) (—1og(tMu(t)) 1 ) = (—log(U(O)) L)

2ri 2mi 2mi 2ri
: 1 : T
In this example F* = C - (g9 — We_l) = Cep? (defining €)°). We take e, " = S

It is a straightforward exercise to extend this construction to mixed Tate variations H;
with gr'V H, = Q(0)? @ Q(1)4 for arbitrary p,q > 1.

Example 2.5. Suppose now gr'VH;, = Q(0) ® Q(1) ® Q(2). We associate to H; the two
Kummer extensions H, = W_oH; and H/ = H;,/W_,H;. We assume as in example 2.4
above that we have calculated the logarithms of monodromy N’, N”. We can write Hy;, c =

Cey® @ Cepn ™' @ Cep 2% in such a way that Wie = dici Cel? is stable under N and
NEF;,, = N3 ;5;Ce ) € NF, ! This implies

2,2 _ (. ~1,-1 _ 1 —2,-2, 00 _ n —1-1
(22()) Nelim - O’ Nelim = A€y Nelim = @ €,
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Griffiths transversality for N (2.16) implies that Nej:> does not involve e;,>~>. As a conse-
quence, N for the dilogarithm motive is determined by N’ and N” for the Kummer sub and
quotient motives. These are usually straightforward to calculate.

3. THE SECOND SYMANZIK POLYNOMIAL

The second Symanzik polynomial is used in the calculation of the Feynman amplitude
associated to a graph G with possibly non-trivial external momenta. In the physics literature
it is usually derived directly from the linear algebra of Feynman coordinates [11], [12]. We
will show in this section that it can also be interpreted as a pfaffian in the sense of E. H.
Moore [9] associated to a quaternionic hermitian matrix. We give the pfaffian construction,
but our proof that the resulting polynomial coincides with the second Symanzik polynomial
is not particularly elegant, so it is relegated to an appendix in the following section. Two
consequences of the pfaffian viewpoint which we do not pursue further, are firstly that the
polynomial is a configuration polynomial for quaternionic subspaces of a based quaternionic
vector space, and hence the techniques of [10] should apply to the study of the singularities,
and secondly that for each loop number there is a universal family. For example, with one
loop and 6 edges, the hypersurface defined by the second Symanzik is the complement in P°
of the complex points of a coset space GLy(A)/Us(A) where A is the quaternions and Us(A)

is the subgroup of 2 x 2 quaternionic matrices M satisfying M' = M. The Betti numbers of
these coset spaces are known, and one may hope to better understand the motives of physical
interest from this viewpoint. It will be interesting to study the corresponding family at two
loops in future work.

Note that in the presence of non-trivial masses m;, the actual polynomial of physical
interest is

(3.1) O(A,q) — () miA)U(A)

where U and & are respectively the first and second Symanzik polynomials.
We write the quaternions A = R-1®R-iGR-j@&R-k as usual, and we embed A — M,(C)
by

(3.2) 1»—><(1] ?), z»—>((l) Ez)
jH(? _01); kH(—Oi _OZ)

Let u = <? _01) One checks that the anti-involution z — Z on A given by € = —¢

for ¢ = 14,7,k corresponds to m — u~'m'u on M,(C). More generally, we may embed
M, (A) = M, (M3(C)) < My, (C) and the anti-involution z — Z* on M, (A) corresponds to
M +— U IM'U where U is the diagonal matrix with u along the diagonal. Note that U is
skew-symmetric, U! = —U.

The reduced norm, Nrd : M,(A) — R is a polynomial of degree 2n which corresponds to
the determinant on My, (C).

Let Herm C M, (A) be the R-vector space of Hermitian elements, which we can think of

as all elements of the form x + Z°.
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Proposition 3.1 (Moore, Tignol). There ezists a unique polynomial map, the pfaffian norm
or Moore determinant Nrp : Herm — R such that Nrp(I) =1 and Nrp(y)*> = Nrd(y).

Proof. We can compute in Ms,(C). We have
(3.3) det(M +UM'U™") =det(MU — (MU))YU ) =

det(MU — (MU)") det(U™") = (pfaff(MU — (MU)"))?* - pfaff(U~1)?,
using the fact that the determinant of a skew matrix is the square of the pfaffian. O

Corollary 3.2. Suppose M 1in the above proposition is block diagonal with quaternionic
hermitian matrices My, ..., M, along the diagonal. Then Nrp(M) = [[ Nrp(M;).

Proof. The assertion is true for the usual pfaffians for skew matrices, and all the matrices in
the proof of proposition 3.1 are in block diagonal form. O

One way to construct elements in Herm is to take R-linear combinations of rank 1 her-
mitian elements z = . The latter are given by

ay
a _
(34) xr = . ‘2. . (al, as . .. ,CLn) = (aiaj)lgi,jgn,
Qp
where ay,...,a, € A. Given a collection zy,...,z, of such hermitian elements, we can
construct a polynomial of degree n in Ay, ..., A, by taking
P
(3.5) O(Ay,...,A)) = Nrp(z Aixy).
i=1
View AP as a right A-vector space of column vectors. Let H C AP be a subspace with
dim4 H = n. Choose a basis o, ..., a, for H with a; = (a1, . .., ay)". Define
(3.6) ef = (a1, .., a5), 1<j<p

vt
Take z; = €;

(3.7) Py = NTP(Z Ai;)

as in (3.5). Writing a = (a;;), a p X n matrix, one sees that a different choice of basis for H
yields a matrix § = (b;;) = oM where M is n x n and invertible. We have (b;1,...,b;,) =

e]VM so z; is replaced by M M,

. e]v and define

Lemma 3.3. Let M, N be n X n matrices with entries in A. Assume N = N and M is
invertible. then

(3.8) Nrp(M'NM) = Nrd(M)Nrp(N).

Proof. Both sides of (3.8) are polynomial maps in the entries of M and N, and they have the

same square. It follows that the ratio is constant. For M the identity matrix, the ratio is 1.

(Note Nrd(M) = det(«(M)) where ¢ : Mat,(A) — Mats,(C) is defined via the embedding

A — Maty(C). In particular, Nrd(M) = Nrd(—M).) O
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As a consequence of the lemma, ®(> AiﬁtxiM) = Nrd(M)®(>_ Ajz;) so ®yy is well
defined upto a non-zero constant factor.

Consider a graph I' with edge set E and vertex set V. Let H = H;(I',Q), and choose a
basis H = Q". We have

(3.9) 0—Q — Q"% Q" -0,
where QY'Y ¢ QV is the image of the boundary map 9. If we tensor with A we get
(3.10) 0= A — A% - A 50

Suppose we are given q := (...q,,...) € A¥’. Let H, C A¥ be the sub right A-module
in A” spanned by A" and a lifting § of ¢. To each e € E we define an r + 1-vector
We = (We 1, ..., Wery1) by looking at the e-th coordinate of the r basis vectors for H ® A
together with ¢. Note w,1,...,w., € R. Define (quaternionic) hermitian matrices

(3.11) Te = W' - We.

The second Symanzik polynomial is the configuration polynomial (3.7) for H = H,,
(3.12) O(A)rg = Nrp(d_ Acze).
E

Example 3.4. Take r = 1 and H = Q(e; + --- + e,). (This is the 1-loop case.) Let
q=> pce € AF. Then

A, Acpte
(3.13) Ni=) A= (%ieﬂe ZZAeﬂfﬂe) '

We will see that in this case
(3.14) ®(A) = Nrp(N) = _(Z Aelae>(z Actre) + (Z Ae)(Z Acficpte) =
> (i — 1) (s — 1) Ae, Ae,

i<j
The physics convention would write p; = Z?:Z ¢; with gy = 0. The result in (3.14) becomes
(3.15) O(A)r,y = Z (gt +q-1)(@+ -+ gi-1) A4

i<j

Again as in (3.1), the polynomial of physical interest is
(3.16) D(q,A)=> (gi++ -0+ +qg-)Ad — (O _mlA)>_ A).

i<j

Example 3.5. Let us actually discuss one more example. Consider the three-edge banana.
We take as a basis the two independent cycles {e, es} and {ey, e3}. The matrix is then given
as

N = A1<1707/I1)T ' (1,0,,&1) + A2<17 17/12)T : (17 17:“2) + A3<O7 17,u_3>T ’ <O7 17“3)7

A+ Ay Ay Aj g+ Ag g
(317) N = A2 AQ + Ag Ag,uz + Ag[tg
Ay + Aofiy Aoy + Azt Avpiipin + Asfiopis + Asfispis

We have NRP(N) = A1 A As(juy — pio + p3) (1 — o + p13)-
8




4. APPENDIX TO SECTION 3

It remains to show that our definition of the second Symanzik polynomial coincides with
the classical physical definition [5], formulas 6-87 and 6-88. (The argument which follows
parallels the argument for scalar momenta given in [10].)

Lemma 4.1. Let H C AP be a subspace as above. Then ®y has degree < 1 in each A;.

Proof. First note that if a4, ..., a, € AP satisfy a linear relation > «;a; = 0, then the z; in
(3.7), viewed as map of row vectors A" — A" by multiplication on the right, kills the row
vector ((a@)i,...,(a),). It follows that the matrix Y  A;z; does not have maximal rank, so

If some A; appears to degree > 2 in some monomial in ®4,, then the monomial can contain
at most dim H — 1 distinct A;. Let T C {1,...,p} be the indices occurring in this monomial.
By assumption, #7 < dim H. Consider the diagram

H —— AP

(41) H J{proj
H —— AT
It is immediate that ®|a,—orer is the configuration polynomial for the bottom row in

(4.1). If this is non-zero, then by the above, the map ¢ must be injective. In particular,
#T > dim H, a contradiction. O

We now consider H, C AP as above. Let C C E with #C = r + 1. A necessary
condition for the monomial [] . 4. to appear in ®r, is that H — QF/QF~“. Such a
set C' of edges is called a cut set. For a cut set (', there exists a spanning tree 7" and an
edge e € T' such that T'— e = E — C. We choose an A-basis hy, ..., k41 for H, such that
hi,...,h, € H(T,Q) C H,. For c € C let w, : H, — A® be the map w.(h) = c¢"(h)c. Let
w! : AY — H, be the map A® - cA — H = A" given by ¢ — (¢V(h1),...,c¢"(hyy1)).
Here we identify H, = A" using the basis {h;}. Note that wiw,; = 0 for ¢ # d. It follows
that writing Re = Y. we we have RERe = > . with z. as in (3.11). Thus

(4.2)  Nrp(RLRc) = Nrp(z Acxe)|a=0, egc, A=1, ecc = coeflicient of H A in O,
ceC

It follows from lemma 3.3 that this coefficient equals Nrd(R¢). Note that the (r+1) x (r+1)-

matrix Rc has real entries except for the last column. Let us define the A-determinant to

be the expansion in the last column

(4.3) det(Re) := (1)) (=1)"det(R¢) (Re)igs
where (R¢)> ™ denotes the minor. Note this matrix has R-coefficients, so the determinant

is defined.
Lemma 4.2. With notation as above, we have Nrd(R¢) = (det 4(R¢))(det 4(R¢)).

Proof. By definition Nrd(R¢) is calculated using the embedding A < Ms(C) to view R¢ as
a (2r+2) x (2r+2)-complex matrix and then taking the usual determinant. In other words,
one views R¢ as a map (C?*)"1 — (C?)"l. The assertion is thus clear if the entries of R¢

all lie in R C A. In that case, all the 2 x 2-matrices are real scalar and we just get the square
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of the usual determinant. For the general case, it suffices to consider a 2N x 2N complex
matrix with entries 2 x 2 scalar diagonal except for the last two columns. Then one checks
that the determinant is computed by interpreting the last two columns as a single column
of N 2 x 2-matrices, expanding as above (4.3) and then taking the determinant. (Note that
under the embedding A < M5(C) the determinant corresponds to zZ.) O

Finally, to identify Nrp with the second Symanzik polynomial, we have to show the
expansion (4.3) coincides with the usual combinatorial description in terms of cut sets. Fix
an orientation and an ordering for the edges of I'. Let C' be a cut set as above. Let Fj,
1 = 1,2 be disjoint with I' = C' = F; I1 F5. Note that one of the F; may be an isolated vertex.
Let I'// F' denote the 2-vertex graph obtained by shrinking the two components of F' C T" to
two (separate) vertices vy, vy. For e € E(I') not an edge of F', the image € of e in I'//F is
either a loop (tadpole) or has boundary the difference of the two vertices, de = £(vy — vy).
We have also H,(I') = H,(I'//F). As above we enumerate the edges e, ...,e,1; in I' = C.
Let T; = (I'//F)/e; be obtained by contracting ¢;. Then det(R& ) is the determinant of
the map from H,(I') with basis hi,. .., h, to Z¥~C~{¢} with basis e;,...,&...,e,41. Define

+1 0e; = vy — 1y
(4.4) a(i) =49 =1 08¢ =v — o
0 Oe =0.
The key point then is
(4.5) (—1) det(Ri’r+1) =a(i)b

where b = *1 is independent of i. This can be seen as follows. Let W = @Hl Qe;, . The
composition Hy(I') € W — W/Qe; is an isomorphism. The evident basis {ey, k # i} of
W/Qe; induces a basis of Hi(I'). For two different choices of i, say i1, i, the determinant
of the change of basis matrix is (—1)"~*. Indeed, writing ¢ = -5 > ¢; € W and letting
dety, dety € det Hi(I") be the exterior powers of the basis vectors for the two bases, one has
in det W that e A det; = (—1)""2¢ A dety. (Compare both sides with e; A -+ Aepqq.)

Finally, we deduce from this and (4.2) the classical combinatorial description of the second
Symanzik polynomial, viz. the coefficient of [] . A. is given by

4 (X @)= Y @) X @)= Y ).

0e;=v2—v1 0e;=v1 —v2 oe;=va—uv1 0e;=v1—v2

5. DIFFERENTIAL FORMS ON PROJECTIVE SPACE

We turn now to the study of motives associated to 1-loop graphs. We recall first the
structure of differential forms on projective space. Let O = Opn be the sheaf of (algebraic)
functions on projective n-space, and let Q' = A" Q! denote the sheaf of algebraic differential

i-forms. Fix a basis Ay, ..., A, for the linear homogeneous forms on P"”. One has an exact
sequence
(5.1) 0— Q' - Po(-1)dA; % 0 =0

i=0

(Here the dA; are just labels for the various summands of the direct sum.) Twisting by 1, the
map p(1) maps d4; to A; € I'(P", O(1)). For example, p(2)(A;dA;—A;dA;) = AjA—AA; =
10



0, so A;dA; — A dA; € T(P™,QY(2)). It follows that dA;/A; — dA;/A; is a (meromorphic)
section of Q1.
We are interested in Q"~!. By standard Koszul algebra we get from (5.1) an exact sequence

n—1 n—2

(5.2) 0—>Q"l(n—l)%/\(é@d&)%/\(é(’))(l)

the map on the right is given by

in—1°

n—1
(5.3) dAy, N NdAi e Y (17T A dAL A NdAG A N A
7=1

Again by standard Koszul stuff we have an exact sequence (I have dropped the labels dA;)

n n—1 n n—2

(5.4 A(@0) + A (Bo)m - A (Bo)e

where the maps are as in (5.3). For 0 < j < n, the section

(5.5) Tii=dAg A NdA; A - AdA,

on the left maps to

(5.6)  ©;:= > £AidAgA - AdA A AdA; A - AdA, € TP, QY ().
i#]

(The sign in the sum is (—1)" for i < j and (—1)*"! for ¢ > j.) Treating these expressions as
differential forms in the evident way, we have

(57) d@] = nTj.

In particular, if F = G/H is a ratio of homogeneous polynomials with deg G — deg H = n,
then we compute

(5.8) d(©,/F) = nr,/F —dF n©,;/F? — M7 = (2, 0F/04dA)6;

F2
F? B
8F/8Aj(Aj7’j - dAj@j) (—1)]8F/8A]Qn

F? F?

Here Q, = > (=1)'A;dAg A -+ A dA; A -+ A dA,. Note that (5.8) is an identity between
meromorphic n-forms on P".
Replacing, if necessary, I’ by a power of F', we have proven

Lemma 5.1. Let w = £ be an n-form on U := P" — {F = 0}. Assume G = ZGiaa_,i lies

in the ideal generated by the partial derivatives of F'. Then we can reduce the order p of pole
of [w] € Hpx(U), i.e. there exists a form w' = %% which is cohomologous to w, [w] = [w'].

(Here Hpg is algebraic de Rham cohomology calculated using algebraic differential forms. It
coincides with Betti cohomology.)
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6. COMPLEX POINCARE GROUP INVARIANTS

Feynman integrals, after integration, are fuctions of external momenta. If the whole
integral transforms as a Lorentz scalar, the integral is a function of Lorentz invariant scalar
products of external momenta. The number of and type of these invariants are exhibited
here from a mathematical viewpoint, incorporating momentum conservation and the finite
dimension of spacetime.

The fact that the amplitudes for 1-loop graphs are dilogarithms is a consequence of some
basic facts about the invariants of the orthogonal group. Let O¢(r) be the subgroup of
GL(C") leaving invariant a non-degenerate inner product (p,q) — p-q. Let G = C" x O¢(r)
be the “complex Poincaré group” generated by orthogonal transformations and translations.

As an algebraic group over C, G has dimension r + T(r—;) Let G act diagonally on (C")" 2.
The quotient (C")"*2/G has dimension

—1 2
(6.1) dime(C") 2 /G =r(r +2) — (r + %) = (T;r ) — 1.

Let p; : (C")"™? — C",1 < j < r + 2 be the projections. Following physics notation we
write

(6.2) (ps —pi)* == (0 — px) - (D — k)

with the inner product as above. We obtain in this way (7";2) G-invariant functions on

(Cm)r+2. Tt follows from (6.1) that there is an algebraic relation between these functions.
To understand this relation, we change bases in C" so the inner product is the sum of

squares of coordinates (Euclidean inner product). We can view P := (p1,...,py42) as an
r X (r + 2) matrix. The (r + 2) x (r 4+ 2)-symmetric matrix
(6.3) N := (p; -px) = P'P

has rank < r. It is convenient at the point to introduce masses m;,1 < j < r 4 2. Consider
the (r + 2) x (r + 2)-symmetric matrix

(6.4) M(m) := (mi +m}+ (p; — p;)*) = (mi +p})ij + (m] +p})ij — 2N = My + My — 2N.

View C"™2 as column vectors, and let H C C"*2 be the codimension 1 subspace defined by
setting the sum of the coordinates to zero. Note that M; has all columns the same, so for
h € H we have Mih = 0. Similarly h*My = 0. It follows that the quadratic form given by
the symmetric matrix M (m) is necessarily degenerate when restricted to H,i.e. 30# k€ H

with h'M(m)k =0 for all h € H.
Lemma 6.1. For general values of the p; we have det(M(0)) # 0.

Proof. Take pq, ..., p. to be the usual orthonormal basis of C", and take p,; = 0. One easily
checks in this case that the coefficient of p},,, in det(M(0)) is plus or minus a power of 2.
In particular, it is non-zero, and the lemma follows. O

Remark 6.2. Of course, it follows from the lemma that det(M(m)) # 0 for general m and
p as well.

Assume now that M(m) is invertible. Write 1= (1,...,1) € C™™2. It follows from the
above that M(m)k = k1; k # 0. Scaling k, we may assume k = M(m)~'I. Thus

(6.5) (M(m)~'1)-1T=0.



When the masses are zero, (6.5) yields the non-trivial algebraic relation between the (p;—p;)*.
We will interpret (6.5) in the case r = 4 as determining where in the weight filtration of
a Hodge structure the Feynman integrand lies. In physics terms, it is the statement that
for 1-loop graphs, the amplitude is expressed in terms of logarithms and dilogarithms of
Lorentz-invariant rational functions of momenta, [4], [12].

In physical situations, of course, the p; are 4-vectors.

Lemma 6.3. Fizxn > 6. Letp; € C*, 1 <i<n, andletm; €C, 1 <i<n. Let HC C"
be the codimension 1 linear subspace defined by setting the sum of the coordinates to 0. The
matriz M(m) = (m; +m3 + (p; — p;)?)i; has rank < 6. For general values of my, p; the rank
is exactly 6 and the vector (1,...,1) lies in the image M(m)(H) C C".

Proof. Asin (6.4) M(m) is a sum of three matrices. The matrices My, M5 have rank 1. The
matrix N has rank 4 (for general p;) as in (6.3). It follows that M (m) has rank < 6, and it
is easy to see the rank is exactly 6 for general values of the parameters. To show the vector
(1,...,1) € M(m)(H), it suffices to solve the equations

(6.6) Zai(p? +mi) =1; Z%pz‘ = 0; Zai =0.

i=1 i=1 i=1
These equations clearly admit a solution in the a; for general values of the parameters when
n > 6. O

7. THE MOTIVE

Let X : @ = 0 be a rank min(6,n + 1) quadric in P". Let Ay, ..., A, be homogeneous
coordinates, and write A : [[ A; = 0 for the reference simplex. We will be interested in the
"motive” (or more concretely, the Hodge structure)

(7.1) H'(P" — X,A - XN A,Q).

(In the case n = 2, the triangle graph, the motive of physical interest is slightly different.
We treat it separately in section 10.)

We assume that X is in good position with respect to A in the sense that for any face
F = P C A the intersection X N F has rank min(6,7 + 1). In particular, if dim F' < 6
then X N F' is smooth. (The nullspace L C X is a linear space of dimension n — 6, and our
assumption is that L meets all faces of A properly.)

Lemma 7.1. (i) We have

0 n>>5
(7.2) H"(P" — X,Q) = o
Q(0) n=>0

(ii) H*(P" — X, Q) = (0) if 0 < k #n <5 orifn>5 and k #0,5.

Proof. Suppose first n > 5. Let p : P* — L — P° be the projection with center L. We have
X —L=p YY), where Y C P’ is a smooth quadric. It follows that P" — X is a fibre bundle

over P° — Y with fibre A»~°. A standard result for fibrations with contractible fibres yields
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H*(P5-Y,Q) = H*(P" — X,Q). Since P° —Y is affine of dimension 5, it has cohomological
dimension 5 so H"(P" — X, Q) = (0).

Quite generally, for X a smooth hypersurface in P, the Gysin sequence (given by residues
on differential forms) yields an exact sequence which reads in part

(7.3) 0— H"(P" — X,Q) — H" 1(X,Q(~1)) = H" 'P",Q) — 0.

We now assume n < 5 so X is a smooth quadric. The middle dimensional cohomology of
a smooth quadric of dimension d is known to be rank 2 generated by algebraic cycles for d
even and zero for d odd. The lemma follows. O

For an index set I = {ig,...,i,} C {0,...,n} write |[I| = p+ 1 and let A; C A C P
be defined by the vanishing of the homogeneous coordinates A;,. The motive (7.1) is the
hypercohomology of the complex of sheaves

(74) QP”*X — @ QA]*XI"IA] — @ QA]

=1 I=n
There is a spectral sequence £ = HI(EP;_, Qa,—xna,) = HF(P" - X,A - X NA,Q).
(For simplicity we write P" — X = @, Ar — X NAr)

Suppose first n < 5. The differentials @ : EP? — EP17 are zero in this case except for
dr Dr-s H(A;—XNA,LQ) — D1 H°(A; — X N A7, Q) which is simply restriction
from 1-simplices to 0-simplices. It follows that the weight graded cohomology in these cases
is

(Q(0) ® D1 A1) @Dy, A-2) ©Q(-3) n=5

Q(0) & D1, Q(—1) & ;5 A(—2) n=4

(7.5) gr'V H'(P"—X, A— XA, Q) = { Q(0) © B Q(~1) © Q(~2) n=3

Q(0) & D3 Q(-1) n=2

Q(0) & Q(=1) n=1

For n > 6 the differential d}*° : E?76’5 — E7">° is non-trivial. One finds for the weight
graded

(7.6)  gr"H'(P" - X,A-XNAQ =00 e P e-e P ae-2Pa-

(+4) (wt3)
Here ¢, is the dimension of coker(@|l|:n_6(@ RN @\I\:n—5 Q). In fact, the weight 6 part of
these motives will not play a role in our amplitude calculations. This is because (as we will

see in proposition 8.2) the differential form given by the Feynman integrand (8.1) below lies
in WoH"(P" — X, A — X NAQ).

8. THE AMPLITUDE

Associated to a 1-loop graph with n internal edges and incoming momenta (4-vectors
summing to 0) p; at the vertices we have the second Symanzik polynomial D(p, A) (3.16)
which is a homogeneous quadric in the variables Ay, ..., A,. The associated amplitude is

(30 A)"
(8.1) /U D(1?1,4A)"_2 )




Here the first Symanzik polynomial is just > A;, and €,,_; is as in section 5. Note if n < 3
then ) A; appears in the denominator. We will focus on the case n > 4, leaving the triangle
graph case n = 3 (we are now counting edges from 1,...,n, not from 0,...,n — 1, as in the
previous section) to section 10.

Lemma 8.1. Assumen > 5. LetP" 2= A;, 0<i<n—1CP"! bethe marimal faces of
the coordinate simplex A C P"~L. Let X : D(p, A) C P"! be the quadric. Assume momenta
and masses are general. Then the form n,_1 = %#31 on P! — X is exact. we can
find an (n — 2)-form w,_1 on P"' — X and constants a; € C such that (i) dw,_1 = Np_1;
(11) wy—1|Aj = £a;nn—o; (1) Y a; =0.

Proof. Let M(m) = (m7 +mZ + (pi — p;)*)1<ij<n be the symmetric matrix corresponding to
D(p, A). From lemma 6.3 there exists a column vector @ = (ay, ..., a,) such that M(m)d =
(1,...,1) and )" a; = 0. Define

> AN (=1)a;8;
2(n—3)D(p, A3

where ©; is as in (5.6). Using (5.8) with F' = ?z(:pAAgn = we compute

(8.2) Wp_1 =

(n=3)(C A58 (n—5)(3 A"
(8.3) dw,_1 = Zaj( 23D 20— 3) D ) —

(= E A Y, 458 (F A

2(n — 3)Dn2 - pn2 Mt
Note finally that ©;|A; = £6;,,_2, proving (ii). O

Proposition 8.2. With notation as in the lemma, we have n,_, € W4H"_1(IP’"_1 - X, A —
X NA). The Feynman amplitude for any 1-loop graph is a period of a dilogarithm mized
Hodge structure as in definition 2.1.

Proof. If n > 6, the faces A; = P"2 have dimension > 4 and we can apply the lemma again
to the forms w,_1|A; = £a;n,_2. In this way we can build a sort of cascade

n d n
Q]Pm 21 -X — Q]pn 11 - X
i
n— d n—
(5.4 -

3 d
@m:n—5 Q7 —xna, —

3
@u\:n% Q7 xna,

where the vertical maps are restrictions on faces (with appropriate signs). (We simplify

notation by writing Q% for the sections of the sheaf Q¢ over Z rather than the sheaf itself.)

What this means is that the de Rham cohomology of our motive, Hpy:' (P" 1 — X, A— X NA)

is calculated by a double complex of algebraic differential forms C** = @ ;_, Q4,_xra,-
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The differential d’' : C%® — C**1b (resp. d” : C** — C%**1) is given by restriction to faces
of A with appropriate signs (resp. exterior differentiation.) The total differential d = d'+d".
We have

(85) HIYP"™'— X,A— XNA)=H"YC™,d) = ( D cavb> /d< an C“’b>.

at+b=n— a+b=n—2

(Note that in total degree n—1, all cochains are closed.) The cochain (0,...,0,7,_,) € C%"1
represents a de Rham class whose period integrated against the homology chain given by
on—1={(a1,...,a,) | a; > 0,Vi} is the Feynman amplitude. The content of proposition 8.1
is that we can construct a form w € @,,,_,,_, C*" such that

(8.6) 0,...,0,0,_1) —dw € C"*3 g2 g Cn 10

(Note there is no contribution from C"~32. This is because H*(P* — X) = (0) for a smooth
quadric in even dimensional projective space of any dimension. The argument is the same
as in lemma 8.1.)

Finally, It follows from lemma 7.1 that the filtration in equation (8.5) coming from the
filtration W,C** = @a,b; a>n_2r C%* is the weight filtration Wngj%l(P"_l - X,A—-Xn
A). O

Note that this is a proof of an old result of Nickel, who first studied the dependences
between one-loop graphs in a fixed dimension [8].

9. DILOGARITHM MOTIVES

We have seen (7.6), (8.6) (note also the last comment in section 7) that motives H arising
from 1-loop amplitudes satisfy gr'VH = Q(0) ® Q(—1) ® Q(—2)¢. They are mixed Tate
motives with weights 0,2, 4. In this section we show how periods of such motives are related
to dilogarithms. A general reference is [3]. We will follow the standard convention and
trivialize the one-dimensional vector space Q(n) = Q in such a way that the Betti structure
is (27i)"Q so the D R-structure is Q.

First let us reduce to the case ¢ = 1. We assume for simplicity that our de Rham structure
is defined over Q. (If not, one need simply extend the field of coefficients of H.) The quotient
pure Hodge structure H/WoH = @ Q(—2) satisfies

(9.1) (H/WyH)pr = (2r8)*(H/WyH)g C (H/WoH)c.

Further, the Hodge filtration has a single non-trivial piece in degree —2 and hence is defined
already over Q. What this means is that we can take our Feynman integrand n which we
view as lying in Hpg and project it to (H/WyH)pgr. The C-line spanned by this image is
canonically identified with Q(—2)¢, where Q(—2)pr = Q-1 and Q(—2)5 = Q- (n/(2mi)?).
The preimage H' C H of this copy of Q(—2) has weight graded gr'V H' = Q(0) ® Q(—1)* &
Q(—2), and it suffices to compute the periods for this Hodge structure.

Because H is a mixed Tate Hodge structure, there will exist a base e_9,e_; ,, €y of Hc
(1 < p < b) such that the weight (resp. Hodge) filtration on He = CI729 is given by
ClHY = Wy He and F/He = CI-277 and such that the trivialization given by the e’s
identifies gr'"V H = Q(0) ® Q(—1)* ®Q(—2). Here C"*! is the span of the e, , with r < p < s.

We consider first the sub Hodge structure Wy H and the quotient H/WyH, which are mixed

Tate with weights 0,2 (resp. 2,4). There will exist b-tuples (fi,..., f,) and (g1,...,9s) in
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C** such that the Betti structures on WyoHe = Cey @ ®Z:1 Ce_y,, (resp. (H/WoH)c =
@Zzl Ce_1,, ® Ce_5) are given by the Q-spans of the elements 5= (e_1,, + log g,€o) (resp.
(ZW%)Q(e,g +log fue_1,). The Betti structure on H will then be the Q-span of the columns
of a matrix

1 0 0 0 0
log fi  2mi 0 0 0
(9:2) Lk 0 R
(27i)2 : : .0 0
log f3 0 0 co 2m 0
h 2milogg, 2miloggy 1 ... loggr (2mi)?

and the challenge is to compute h.

We can compute h upto a constant by using Griffiths transversality. We treat the f,, g,, h
as functions and consider the variation of Hodge structure given by (9.2). It carries a connec-
tion V for which the columns are horizontal. The transversality condition says V(F*) C F"~!
where F* is the Hodge filtration.

Write C; for the columns in (9.2). We have

1 1
(9.3) ca=C -y o o oL o Y " 1og f,108 9,)Cose.

omi T (2mi)?
Transversality says that

1 —df, 1

(94) Vez=Aes+Be=—c— f—uc}ﬂ-l - W(dh = > (fudgy + 9udf,))Cryo =

1 df, dg,
-5 f—ue_w — (dh — Z(log fua)eo.

We conclude that the Betti structure on H is given upto a constant of integration by setting

(9.5) h = Z/log f“%

in (9.2).

Remark 9.1. Note that the actual entries in (9.2) depend on the scaling of the e; , which
are given by algebraic de Rham classes. The actual values determined by the Feynman
integrand will differ by an algebraic function of masses and momenta (eventually involving

square roots) from the logs an dilogs in (9.2). For an example of how this works, see section
14.

10. THE TRIANGLE GRAPH

The amplitude associated to the triangle graph with 1 loop, 3 vertices and 3 internal edges,
is of interest both physically and mathematically. Let C, D C P? be rational curves. We
assume they are reduced but not necessarily irreducible. Rational in this context simply
means that the normalization of each irreducible component is P*. Assume further that the

intersection C'N D is transverse. In particular, C' N D is a finite set of smooth points in C
17



I

F1GURE 1. The geometry of the triangle graph. We indicate the three lines
Lo, Ly, Ly, the line L, and the conic X. The latter is given by X : ¢2A; Ay +
P AA+ 3 AgAL — (MEAg +m2 A + m3As)(Ag + A + Ay) = 0. They are all
in general position. There are many degeneracies possible: for example, the
conic would go through the three corners L; = L; in the massless case, or the
conic can become tangential to one of those lines.

and in D. Let C° = C — (CN D) (resp. D° = D — (C N D)). The triangle graph yields a
motive (10.1) which has the form H?*(P? — D, C?) for suitable C, D.

We are particularly interested in the case when C' = LqU L; U L is the coordinate simplex
(with homogeneous coordinates A; and L; : A; =0) and D = LUX with L : Ag+A;1+ A, =0
and X C P? a conic. We write for simplicity

(10.1) H = H2(1P>2 — (LUX),(LyU Ly ULy) — (LUX) N (Lo U Ly U LQ)),@)

For the moment we assume that X is a smooth conic in general position with respect to the
other lines.

Proposition 10.1. The Hodge structure on H is mixed Tate, given by WoH C WoH C W H
with

(10.2) gre’ H=0Q(0); gryyH=Q(-1)°; gry"H =Q(-2).
Proof. Write C' = Lo U L1 U Ly and D = L U X. We have
(10.3) HY(P* - D) — H(C—-CND)— H— H* (P>~ D) =0

We have by Poincaré duality (formulated algebro-geometrically using cohomology with sup-
port, )

(10.4) HX(P? - D,Q) = H}(F%, Q) = Hy(D,Q(-2)) = Q(~2).
18



Note that topologically, D is a union of two Riemann spheres S? meeting at two distinct
points pi1, po. We get

(10.5)  Hy(S*,Q(=2))** — Hi(D,Q(=2)) = Ho({p1, p2}, Q(=2)) — Ho(S*, Q(—2))**
from which one deduces H;(D,Q(—2)) = Q(—2). We have again by duality a diagram
H'(P? - D) —— HY(C—CnND)

Joo Jac

(10.6) Hy(D,Q(—2)) — Ho(C'ND,Q(—1))
Q(-1)* —— Q(-1)®°

The map Jp is injective and has image the kernel of Hy(D, Q(—2)) — Hy(P?, Q(—2)) which
is one dimensional. The image of Jx consists of all elements in Ho(C' N D,Q(—1)) which
have degree 0 on each irreducible component of C. The kernel of dc is H'(C,Q) = Q(0).

The proposition follows. (A detailed proof that dimgry’ H = 5 is given in remark 10.2
below.) O

Remark 10.2. Let ¢; = L; N L and {m;,n;} = X N L;, i = 0,1,2. We can identify gry’ H
with a subquotient of the Hodge structure Q(—1)° with basis indexed by the £;, m;, n; as
follows

12

(10.7) gry H = Q(—1)°
2 2
i=0 1=0

Alternatively, Consider zero cycles z = Zg ail; + > bym; + > ¢ng with a;,b;,¢; € Q. We

impose the condition that for any one of the irreducible components L, Lgy, L1, Lo, X, the

“piece” of z supported on that component has degree 0. This amounts to the linear conditions

(108) O:Z(J,Z = Z(lerc,) :a0+b0+00 :a1+b1+01 :a2+b2+02.
The vector space A of such cycles has dimension 5 and is identified with Q(1) ® gryV H.

Remark 10.3. Let M;,i = 1,2, 3 be the masses associated to the edges of the triangle graph.
There is physical interest in the situation when one or more of the M; = 0. With reference to
(3.16), we see that setting M; = 0 amounts to having the conic pass through the i-th vertex
of the triangle. The curves C, D in the above discussion no longer meet transversally, so we
must blow up some of the vertices. Let 7 : P — P? be the blowup of v = 1,2, 3 of the three
points (1,0,0),(0,1,0), (0,0,1). Assume the other parameters are generic and let E; be the
exceptional divisors. In our motive H (10.1) we must replace P? with P. The curve L U X
is replaced by the strict transform in P of L U X, and the other rational curve becomes the
total inverse image in P of the triangle, a (3 + v)-gon comprising the strict transforms in
P of the three lines A; = 0 and the exceptional divisors £;. One checks that each blowup
drops the rank of gry H by one. Thus gri¥ H = Q(—1)° with b = 5 — v, v being the number
of zero masses.
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We will not compute the amplitude, as this has been done very nicely in [4]. Instead we
will look more closely at qualitative results we can deduce about the motive. In particular,
these will help to frame a (future) study of Landau poles for 1-loop graphs.

11. APPENDIX ON DUALITY FOR THE TRIANGLE GRAPH MOTIVE

The following duality result, proposition 11.2, will not be used in the sequel.
Lemma 11.1. Consider the diagram of varieties over C endowed with the complex topology.
p>-p 2, p2
(1L1) o] e
P2 — (DUC) 2 P2—C

where the maps are the evident inclusions. We continue to assume C N D 1is transverse. Let
A be a constant sheaf on P?. Then

(11.2) JpxkciAp2_(pucy = Jorkp«Ap_(puc)-

Here the lower ! and the lower x are extension by zero and direct image extension viewed as
acting on the derived category. (That is, we write e.g. jp. in place of Rjp..)

Proof. There is a natural morphism of functors joikp. — Jpikcr. Indeed, jor is left adjoint
to j& = j&, so it suffices to define a map kp. — j&jp«kc1 = kcx, and we can take the identity.
To show the map is an isomorphism, it suffices to look at the stalks at points of C'" D. We
can coordinatize a small complex neighborhood of such a point so locally P? — (C'N D) looks
like (U —{0}) x (U —{0}) where U C C is the open unit disk about 0. Locally, D = {0} x U
and C'= U x {0}. The stalk at (0,0) on both sides of (11.2) is jorAK jp.A by Kunneth. [

Recall we have a Verdier duality functor on the derived category of constructible sheaves
on a reasonable topological space. For P% it takes the form (to simplify I work with sheaves
of Q-vector spaces) DF = Hom(F, Qp2(2)[4]) where the Hom is in the derived category.
Verdier duality yields an isomorphism

(11.3) RI(P?, DF) = Homg(RI'(P?, F), Q)

We have DjcA = jo DA and Djc. A = jorDA. Using the lemma we find for A = Q

(11.4) Homg(RI'(P?, jpikciQpe—(pucy), Q) = Homg(RL (P, jorkpsQpe—(pucy ), Q) =
RU(P?, joukpQp2—(pucy (2)[4]).

Taking H 2 on both sides yields an isomorphism (duality)

Proposition 11.2. With notation as above, we have

(11.5) Homg(H?*(P* — D,C — (CN D),Q),Q) = H*(P* - C,D — (C N D),Q(2)).
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12. LANDAU POLES AND THRESHOLDS

In this section we examine the phenomenon of Landau poles and normal and anomalous
thresholds.

Example 12.1. Consider the case of the triangle graph. Changing notation slightly, we can
rewrite (3.16) in this case

2 2
(12.1) D(g, A) = |qo|* A1 As + 1] Ao Az + |ga* Ao Ar — (D miA) (D Ay).
0 0

Fix an i and suppose |g;|* = (m; & my)?. Then
(122) D(q, A)|Ai:0 = —(Aj + Ak)(m?Aj + mzAk) + (mj + mk)QAjAk = —(mjAj + mkAk)Q

Geometrically, our conic becomes tangent to the line L; : A; = 0. If we look at the motive
(10.1), we see that this corresponds to a degenerate configuration, and we might reasonably
expect the amplitude to become singular. In fact, a moment’s reflection reveals a vast
number of possible degenerations including situations where the conic itself degenerates to
a union of 2 lines through a point p, which may lie on one of the L;, and situations where
the conic passes through the point L; N L where L : Ay + A; + Ay = 0. One would like to
better understand the behavior of the amplitude near these singularities.

Let us consider a generalization due to Cutkosky [5] of the above example to more general
graphs. If we write the amplitude in its usual (non-parametrized) form, we find an integral
over R? where ¢ is the loop number of the graph. The integrand has in the denominator a
product of rank 4 affine quadrics of the form (roughly) (#—¢)*+m?. These quadrics determine
the polar locus of the integrand, and hence the motive whose realization will contain the
amplitude as a period. In fact the motive can be taken to be the union of the projective
closures of the quadrics. If we ignore what is happening at infinity and just consider the
affine quadrics, we might expect degeneracies to occur for values of the parameter ¢ where
some subset of the affine quadrics do not meet transversally. In general, the locus of such ¢
will form a divisor in the space of momenta, and our first job is to use elimination theory to
find this divisor.

To formulate things precisely, we fix a graph I'. We write H = H;([', Q) and £ = Edge(T").
As in (3.9), (3.10) we have

(12.3) 0 HoA— A7 S A0 5 0,

For e € E write ¥ : AP — A for the evident functional. Let me write (abusively) e
AP - R, Y ace = acle = aly+al, +al,+aly Given g =3 qv e A (so 3, ¢ = 0)
consider the set

(12.4) H(q) =07 %(q) c A"

Note that if ¢ # 0 then technically H(q) is not a vector space but a torsor under the vector
space H ® A. In fact, H(q) embodies the Feynman rule imposing relations for each vertex.
In other words, if vertex v lies on edges ey, . . ., e, oriented to point toward v, and if h € H(q),
then ) . e/(h) = q,.

Let S C E be a subset of edges, and let T' C S be such that the {€"|H (q)}cer form a basis

for the vector space spanned by {eY|H(q)}ees. To make life interesting, assume 7' # S. Let
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m. € R be a collection of masses, and consider the quadrics
(12.5) e’ —m2:H(q) »R; ecS.

Let X (S, q) C H(q) be defined by the vanishing of the quadrics (12.5). We want to identify
the set of ¢ € AY? such that X(S,¢q) is not a smooth subvariety of H(q) of codimension
equal to #5S.

For each e € T we get 4 R-linear functionals eV, ... ¢¥®) : AP — R. If we consider the
Jacobian matrix for the map
(12.6) (o eVt —m2 . ees : H(q) — R#?

It will have #S rows and 4 - #T columns. For the row given by e € S we write e¥|H(q) =
Y e Cec’ + ac(q) with a.(q) € A and c.. € R. We have

(12.7) e”?|H(q) Z Zceeé + ae(q)V)?

1=0 eeT
For 7 € T it follows that the entry of the jacobian matrix corresponding to 9/907® is
(12.8) 2¢e. Zceeg + ac(q)?)
eeT

It follows that the 4 entries of the e-row corresponding to 0/07 yield exactly

(12.9) 2¢.¢’|H(q).
If we assume S ordered so the elements of T = {7,...,7,} come first, the matrix (12.9)
evaluated at h € H(q) will look like
n'(h) 0 0
0 7w(h) O
(12.10) 2. : : : :
0 .. 0 T/(h)

The point h will be singular in X (S, ¢q) if first of all the quadrics (12.5) vanish at h (i.e.

h € X(S,q)) and secondly there exists a real non-zero row vector b = (by, ..., bag) of length
#S which dies under right multiplication by (12.10). Since the e¢Y|H(q) are affine linear
combinations of the 7,Y|H(q) we can use such a vector, which we treat as a vector with
unknown entries b;, to write p affine linear equations

(12.11) Z%E = Bi(b,q); j=1,....p

We then solve these equations:

(12.12) 7/ (h) = (b, q)
and substitute into the quadrics (12.5) (again using that e¥|H (q) are affine linear combina-
tions of the 7,Y|H(q)). Note that the 7; are homogeneous of degree 0 in the b;. The quadrics

yield #5S equations Fl(g, q) = 0 which are homogeneous of degree 0 in the b;. Write A"*°
22



~Y

for the affine space associated to AY? = (RV:%)*. We can view the b; as homogeneous co-
ordinates on P#°~!. In this way we get #S equations in P#5~1 x AV Projecting down
to AV® amounts to eliminating the variables b;. The image is a closed subvariety Z C A"*?
with the property that ¢ € Z < the intersection of the quadrics in (12.5) is not transverse.
Note that in general we expect Z is a hypersurface in A"*? though of course degeneracies can
occur. This Z is our divisor.

Example 12.2. Suppose elements of S form a cut, i.e. that I' — [ .q € is disconnected but
that S is minimal in the sense that no proper subset of S disconnects I'. (In removing edges,
we do not remove vertices, so one of the connected components may be an isolated vertex.)
It is easy to see in this case that S — T = {e} is a single edge, so S = {7,..., 7, e} and
#S = p+ 1. For a suitable edge orientation we get

P
(12.13) e/ = ZTiV + a(q)
i=1

where a(q) is some fixed linear combination (depending on I', S, T') of the ¢,. (Recall
¢ =Y qyv.) The matrix (12.10) in this case is

7 0 0

0 Ty 0
(12.14) 2 : : e

0 . 0 )

i tale) i Fale) - XL +alg)
The linear equations and their solutions become
(12.15) (bi + bps) 7 +bpn (D7) +alg) =0; i=1,....p
J#

(12.16) 7" = a(q)Dy(b)/D(b)

It is easy to see the determinant D(b) in the denominator does not identically vanish because
the term b,b; - - - b, cannot cancel.
The quadrics in this case become after substitution (|a|®> = aa, a € A.)

(12.17) |a(q)|?D;s(b)?/D(b)* =mi; 1<i<p
(12.18) la(q)*(1 + Z D;(b)/D(b))* = m2 4

Combining these, we deduce finally
p+1

(12.19) (@) = > pliyms i) = £1.

Note (12.19) is necessary and sufficient for the intersection of the Feynman quadrics on H(q)
indexed by S to be non-transverse. Indeed, if (12.19) holds, we can solve for the 7, as
multiples of a(q) using (12.16). The resulting point will lie on X (S, ¢). The matrix (12.14)
can then be treated as a matrix of scalars (more precisely, all entries lie on the same line).
It has p+ 1 rows and p columns, so there is necessarily a non-trivial solution b and the point

on X (S5, q) is not a point of transverse intersection.
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The values of ¢ where (12.19) hold are called normal thresholds. We have seen (12.2)
that in the case of the triangle graph, normal thresholds correspond to values of external
momenta where the polar conic (12.1) becomes tangent to one of the L; : A; = 0.

13. THRESHOLDS FOR THE TRIANGLE GRAPH

In this section, we outline the use of limiting mixed Hodge structures (cf. section 2) to
study thresholds. We take the very basic case of the triangle graph with zero masses. The
second Symanzik polynomial has the form

(13.1) Q= ‘%‘2141142 + ‘Q1|2A0A2 + |Q2‘2A0A1-

We will eventually want to assume ¢; = ¢;(t) for ¢ in a small disk about 0 and that two of the
|q;(t)|? tend to 0 as t — 0. (The notation here is misleading. ¢; is a 4-vector and |¢;|* = (¢, ¢;)
for some non-degenerate quadratic form on C*. In particular, |¢;|* is analytic in ¢;.) Our
objective will be to show in this case that the logarithm of monodromy N (2.12) satisfies
N? # 0 and that as a consequence the leading term for the expansion of the amplitude as
t — 0 is a non-zero multiple of (logt)?.

The differential form we need to integrate is

nla) = (Ao + A1 + A2)(|qo2 A1 Az + |12 Ao Az + |g22 Ap Ay )

Let 7 : P — P? be the blowup of the three vertices A; = A; = 0. We take ¢ general so the
singularities of the polar locus of 7(¢) do not fall at the vertices. Let Z(q) C P be the strict

transform of this polar locus. Let Ey, Eq, E5 C P be the exceptional divisors, so E; lies over
A; = A, =0, and let F; C P be the strict transform of the locus {A; = 0}. The union

(133) ZZ:W*A:E()UElUEQUF()UFlUFQCP

forms a hexagon. Note that Z(q) = L' U Y (q) where L is the strict transform of the line
L:Ag+ A+ Ay =0 in P? and Y(q) is the strict transform of the conic. L' meets each F;
in a single point, and Y(q) meets each of the E; in a single point. Let X0 := 3 — XN Z(q).
Then X is a hexagon of affine lines E}, F, so H'(X") = Q(0). The motive we need to study
is

(13.4) H = H*P — Z(q),%).

We have seen in Remark 10.3 that gr' H = Q(0) ® Q(—1)? & Q(—2). The next step is to
construct the Kummer motives WoH and H/WyH (see Example 2.2). Let S = > n;s; be a
0-cycle (formal linear combination of smooth points) on 3°. We define a Kummer extension
K by pullback as follows

0 =-H'(X%) -HY (X - {s;}) =P, Q(-1) =0

H T I
0— QO0) — K — Q(-1) —0.

Recall (2.10) that Kummer extensions <+ C*. Let [S] € C* correspond to Kg as above. It
is an easy exercise to check that the mapping

(13.6) {0-cycles on X'} — C*; S+ [9]
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is a homomorphism of groups. To compute this map, we note that the F;, F; are projective
lines with natural projective coordinates a;, a;. We have

(13.7) F =F—{-1}; E)=E —{lg|*ar + |g|*a; = 0}.

Suppose S = s is a single point. If s € E? (resp. s € F?) we choose f a regular function on
E? (resp. F?) with a simple zero at s and no other zeroes. We then orient our hexagon by
ordering the edges Ey, F, By, Fy, By, F,. Let j, k be such that Fj, E;, F, (resp. Ej, F;, Ey) is

part of the ordered string of edges. Define [s] = ];((?2?’“; (resp. [s] = ];((?2?5 )
i J v J

We will be interested in the case S = H] - ¥.° where H] is the strict transform of the line
H;: Aj— Ay =0in P2 Thus S = {1 € E?} + {1 € F’}. On F; we take f = 222 50

aj+ak’

1eF]=-1. On E;, let f = W, so[leFE)]= %ﬁf. Taken together, we see
12
13.8 o) = 9
(159 o) = [0

Lemma 13.1. W5 H is an extension of Q(—1)? by Q(0) corresponding to extension classes
I

|C]j |Qi
(13.9) )
|Qk|2 |Qk|2

Here 1,7,k are all distinct.
Proof. We have a diagram
0 -H'(X) - H*P-Z(q),x") — HP-Zq) —0

| : d

0 =H'(X) -=H*(P—Z(g)nX" X% —H*(P—Z(g)NX%) —0

(13.10) c b

Q(-1) - Q(-1)

W5 H is the image of the map a. Also
(13.11) H*(P - Z(q)NX%) = H*(P) = Q(—1)*

generated by the 4 divisor classes [L'], [Eo], [E1], [F2]. The map b has image generated by
the two divisor classes [L'],[Y(q)] = 2[L'] — [Eo] — [E1] — [E»]. Note that b lifts to a map ¢
as indicated because the divisors L', Y (¢) do not meet X°. It follows that the image of the
map d is generated by the divisor classes H! where the H] are as above. The lemma follows

from (13.9). O

It is convenient to work with Hj — H}. If, e.g., we restrict the extension given by the top
line of (13.10) to Q(—1)(H}, — Hy) € H*(P — Z(q)), the resulting Kummer extension by

lg21%|qo]?
lq1]4

. (We are using here the orientation of the hexagon as fixed above.)
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Lemma 13.2. H/W, is an extension of Q(—2) by Q(—1)? corresponding to extension classes
given by formulas (13.18), (13.19) below.

Proof. We can identify
(13.12) H/Wy = H*(P — Z(q)).

Here Z(q) is isomorphic to the union of the conic X (q) : |qo|?A1 A+ |q1|>Ag Az +|q2]|*AgA; = 0
and the projective line Ag + A; + Ay = 0. We take the coefficients |¢|? to be general, so
these two plane curves meet in 2 distinct points:

(1313) D+ - AO = —A2 — Al;

A = 00 = |a® = |@2l* = Vo' + | [* + |a2]* — 2|qo*ln]? — 2|qo]?|ae? — 2\‘11‘2|‘JQ|2A2
2|go|? '

We will also need (straightforward check) that the function fo; := 1+ }Zﬂiﬁ; on X(q) has

divisor (fo1) = (1,0,0) — (0,1,0). Similarly, foo = Asfo1/A; has divisor (fp2) = (1,0,0) —
(O’I(I)éiln)g' the techniques of section 10 and (13.12) we can identify H/W, with the extension
(13.14) 0 — (@(—1)v0 +Q(—1)ur + @(—1)v2) /@(—1) (vo o+ vg) =

Hy(2(g) = {ro, o1, 021, Q(=2) ) = Hi(2(q), Q(=2)) = 0.
More directly, If we identify
(13.15) Image(H*(P) — H*(P — Z(q))) = Q(=1)(Hy — H3) & Q(=1)(H; — Hy)
we can deduce from (13.12) an exact sequence
(13.16) 0 — Q(=1)(Hy — Hy) & Q(—=1)(H} — Hy) — H/Wo — H1(Z(q),Q(=2)) — 0

We have [H;—H}] = [E;— E;], and the identification of (13.16) with (13.14) sends [H;—H}]
v; — v = [E; — Ej] - Z(q).

Twisting and dualizing (13.14), we get the extension
(13.17)

0 H'(Z(4).Q) — H(Z(a) ~ {v0.v1,02}, @) = (Q-1o+ @~y +Q(~L)ee) " =0,

The class of the extension obtained by restricting on the right to Q(—1)(v; —v;) is calculated
by the ratio f;;(p+)/fij(p-) € C*. We have, e.g.

(13.18)  foi(p+)/ for(p-) =

2
<|qo|2 + a1 = lal® + Vgl + e [* + et — 2|ql?la1]? — 2]qo]?[g2]? — 2|Q1|2|Q2|2>

4|Qo|2|611|2
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(13-19) fo2(P+)/f02(p—):
o] + |a2? = a1 > = V]aol* + |@]* + a1 |* — 2|a0]?[q2]? — 2]qo*|ar]? — 2]g2]?]a1|? "

g0 + g2 — a1 + V]ao]* + |@2|* + @ * — 2lao]?[a2]? — 2lq0a]? — 2]g2]? a1 [?
f01(p+)/f01(29—)

g

Suppose now that the |g;|> = |¢:(¢)|* are analytic functions of a parameter ¢ with || < .

After scaling we may suppose lim;_o |qo(t)|* = 1. We will suppose further that ordg(|g;|*) > 0
for i = 1,2. Replacing ¢ by a power if necessary, we can arrange that the monodromy o as ¢
winds around 0 acts trivially on gr'V H. We want to compute N? = (log ¢)2. For the family
of Kummer extensions F, ) as in example 2.2 with gr'V E = Q(1)®Q(0), one sees easily from
(2.8) that N, viewed as a map Q(0) — Q(1)(—1) = Q(0) is multiplication by ordg(z(t)).
Similarly, N? : H — H(—2) factors as N? : Q(—2) = H/W, — Wy(—2) = Q(—2). This in
turn can be factored

(13.20) Q(-2)
Set

b = ordo (laol*+1a2 |~ |*=/Taol" + ez + il = 2[acPlazP” — 2laoPTar” = 2iaaPlasl) > 0.

c= Ordof01(p+)/f01(p—)-

Formula (13.19) and lemma 13.1 (see also the discussion below that lemma) one sees that
N?:Q(—2) — Q(—2) is multiplication by

(13.21)  p:= (4-ordo(|g2f*) — 2 - ordo(|q1[*))e + (=4 - ordo(|a1|*) + 2 ordo(|g2|*)) (b + ¢).
If for example we take ordy(|q;|?) = ordg(|gz|?) > 0, we get
(13.22) N? = multiplication by — 2b - ord(|gz|?) # 0.

Nuyw,

Q(—2)(H} — Hy) © Q(—2)(Hj — H}) 22 Q(-2).

In order to explicit the limiting behavior of the amplitude, we consider (2.15), which in
the current setup (n(q) as in (13.2)) looks like

S, (@) o
log ¢
(13.23) lim exp 128! T SICON I
t—0 271 N2 n(q) ai2
) ay

Here, the ; for j < i form a basis for the homology Hg. Our limiting approximation for
f% n(q) is therefore the top entry in the column vector

Qo

13.24 N—— ’
( ) P (+ 2mi ) a1,2
a2
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Since N2 has all entries 0 except for p (13.21) in the upper right corner, we conclude

(13.25) L (o) ~ ’ (1im A ) n(a(t))) (log t/2i)? + Blogt/2mi + C

t—0

for suitable constants B, C.

It remains, finally to compute the limit in (13.25). The cycle v_4 is a generator of the
image (W4H)Y — HY. By adjunction, we can compute the integral by a suitable residue
computation on 7(q). In affine coordinates a; = A; /Ay we find

day N dasg
(14 a1 + a2)(|qo|*ara2 + |q1]?az + |g2|?a1)
Let by be the coordinate as restricted to the line a; + as + 1 = 0. The residue yields
dby
—1901203 + (lg1]* = lgo[* — |g2[*)b2 — |go/?

For a suitable choice of v_y, f%4 n(q(t)) will be the difference of the two residues of (13.27).

Since the sum of the two residues is zero, it will suffice to show that an individual residue does
not tend to 0. With our assumptions that |go|> — 1, |¢;|? — 0,4 = 1,2, this is straightforward.
We have proved

(13.26) +n(q) =

(13.27)

Theorem 13.3. Consider the triangle graph with zero masses and momenta ¢;(t),1 = 0,1, 2.
We treat the momenta as complex 4-vectors, so |q;(t)|> = Zj LaP ()2 s analytic in a
complex parameter t for |t| — 0. Assume |q(0)|> = 1 and |¢;(0)]* = 0, i = 1,2. Assume
further that the ordy(|q;|?) are such that p in (13.21) is non-zero. (E.g. |q1|* and |¢3 vanish
to equal order at t = 0). Then if we take vy to be the chain {(x,y,z) € P2(R) | z,y,z > 0}

in P? then

(13.28) / n(q) ~ A(logt/2mi)* + Blogt/2mi + C
Y0

for suitable constants A, B, C" with A # 0.

14. PHYSICS

Let us now try to understand the above considerations from a physicists viewpoint. Setting
an edge variable to zero turns the triangle graphs into three reduced diagrams

0

Each of them is a function of a single invariant ¢?,¢3 or ¢2. The computation of these
reduced diagrams is straightforward and delivers (in the equal mass case, otherwise the
Kallen function replaces the square root) a result of the form

/ ~/1 — -1
(14.1)
1-— M + 1
which has, as a function of ¢, a branchcut from [4m?, +o0o[ and a variation there ~
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This gives us the equivalent of the functions f; above. Notice, however, that the expected
log is multiplied by an algebraic function. The problem comes in the normalization of e_q,
or in other words the choice of differential form to represent a class in de Rham cohomology.
Essentially, the Feynman integrand in this case has the form [1] (in the equal mass case, and
for the example that edge 2 shrinks)

1 mQ(A(Q)—i—A%)—i—(QmQ —q%)AoAl
m2(A24A2)+(2m2—p2)Ag Ay =71

(Ao + Ap)?

where we renormalize at a renormalization point ¢ = p? by a simple subtraction in this
one-loop example.

An easy partial integration (the boundary terms do not contribute as we have a renormal-
ized integrand) determines the result Eq.(14.1), with the square root determined from the
two solutions of the quadric.

The issue for the functions g; in (9.2) is more subtle. The idea is that the span of columns
in (9.2) starting from the right hand column is supposed to be invariant under monodromy.
In particular, the monodromy of the h is supposed to be a linear combination of the 27 log g;.
To mimic this in physics we may use Cutkosky cuts. Concretely, we look at

<0

/ RO (ko + )0 ko + ky0)S((k + gi)2 — m2)s((k + 4;)* — m?)

/ b du

W Cu+d

for suitable a, b, ¢, d depending on masses and external momenta (these a, b, c,d are in the
literature, in [7] for example).

(14.2) w=

They correspond to integrals
1
k2 — m2

which readily integrate to

Finally, the completely cut leaves no integral to be done, but gives a known rational

function of the g7, m7.
Hence, from a physicists viewpoint, the above structure looks like

0 0 0 0

1
— % ﬂk 0 0 0
Q 0 Qg 0 0
=(Ch, Gy, C3, Cy, C)
@ 0 0 @ 0
nicely expressed in terms of reduced diagrams, Cutkosky cuts, and a traingle with all edges

cut, which delivers a momentum and mass dependent constant as the right lowermost entry,
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corresponding to the entry (27i)? in the classical dilog case. This justifies recent practice in
physics to put more internal edges on the mass-shell than prescribed by Cutkosky.

A challenge for the future is to identify the correct differential equations and the connection
with Griffith’s transversality, so that it makes sense to discuss constructs like

\@«(%4 . [m% %@ +) ~0,

as functions of complex external momenta.

We believe it is basically the presence of such invariant functions in the complex domain
which allows to analytically continue Feynman diagrams in a way which will make the
analytic requirements on Green functions more transparent once the Hodge structures of
terms in the perturbative expansion are under control.
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