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1. Introduction

The subject of Feynman amplitudes with variable momenta and non-zero masses has been
studied by physicists since the 1950’s. In the interim, new mathematical methods involving
Hodge structures and variations of Hodge structures have been developed. The purpose of
this paper is to apply these techniques to the study of amplitudes and Landau singularities
in momentum space. While the techniques we develop bear on the general case here, we
will mainly focus on the 1-loop case. In this case, for general values of masses and external
momenta, the polar locus of the integrand (written in Feynman coordinates) is a smooth
quadric. (Exceptionally, in the “triangle case”, the polar locus is a union of a hyperplane
and a quadric.) Mathematically, the polar loci form a degenerating family of such objects,
which is a familiar and well-studied situation in algebraic geometry. Our objective is firstly
to explain motivically the known fact [4] that dilogarithms are ubiquitous in this situation,
and secondly to show how the motivic and Hodge-theoretic framework is a powerful way to
study thresholds and Landau singularities.

In section 2 we sketch briefly what we will need from the theory of Hodge Structures.
The Hodge structures which arise in the context of one loop graphs are quite simple, but
it is important to understand how to pass to limits in order to study thresholds in physics.
In section 3 we develop the basic properties of the second Symanzik polynomial which is
treated as a quaternionic pfaffian in the sense of E. H. Moore [9]. The motives we need to
study are hypersurfaces defined by a linear combination of the first and second Symanzik
polynomials.

Section 5 develops the basic calculus of differential forms on projective space which is
necessary to calculate the de Rham cohomology of our motives. Section 6 is devoted to
the essential technical result, lemma 6.3, which determines the structure of all the 1-loop
motives. Section 7 defines the relevant motives. We show (formula (7.6)) that the weight
graded object is a sum of Tate motives Q(i) for i = 0,−1,−2,−3. In section 8 we consider
the amplitude itself and show it is a period of a sub Hodge structure (dilogarithm Hodge
structure) involving only Q(0),Q(−1),Q(−2). Completing this chain of ideas, we show in
section 9 that the motive of such a dilog Hodge structure is always a sum of dilogs and squares
of logarithms (cf. (2.5) below). The argument is variational and uses Griffiths transversality.
The authors learned it from [2].

Section 10 discusses the motive of the 1-loop graph with 3 edges, the triangle graph. It
turns out that grWH = Q(0)⊕Q(−1)5−ν⊕Q(−2) where ν is the number of massesmi = 0. In
an appendix, we discuss a duality theorem which is natural mathematically but doesn’t have
any obvious physical interpretation. Section 12 is a general discussion from a mathematical
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viewpoint of Landau poles and thresholds, and section 13 discusses the limiting mixed Hodge
structures associated to various degenerations. Finally, the last section 14 offers a physical
interpretation of the period matrix in the triangle case via Cutkosky rules.

2. Hodge Structures

A pure Q-Hodge structure of weight n is a finite dimensional Q-vector space HQ together
with a decreasing (Hodge) filtration F ∗HC defined on HC := HQ ⊗ C. F ∗ is required to be
n-opposite to its complex conjugate in the sense that for any i

(2.1) HC
∼= F iHC ⊕ F

n+1−i
HC,

Here F
j
is obtained by applying complex conjugation to F j. It is straightforward to check

that if we define H i,j := F i ∩ F j
, then (2.1) is equivalent to the direct sum decomposition

(2.2) HC =
⊕

i

H i,n−i.

A Q-mixed Hodge structure is a finite dimensional Q-vector space with an increasing filtra-
tion (weight filtration)W∗H as well as a Hodge filtration F ∗HC. We require that the induced
Hodge filtration on grWn HC give grWn H the structure of a pure Hodge structure of weight n
for each n.

The only pure Hodge structures of dimension 1 are the Tate Hodge structures Q(n). By
definition, Q(n) has weight −2n. We have

(2.3) F iQ(n)C =

{
0 i > −n
Q(n)C i ≤ −n.

In other words, Q(n)C = H−n,−n(Q(n)C).
A mixed Hodge structure H is called mixed Tate if

(2.4) grWn H =

{
0 n = 2m− 1⊕

Q(−m) n = 2m.

The central result of this paper is that Feynman amplitudes at 1 loop involve only mixed
Tate Hodge structures. Moreover, the Hodge structures which arise have only 3 non-trivial
weights which we can take to be 0, 2, 4. We refer to them as dilogarithm Hodge structures.

Definition 2.1. A dilogarithm mixed Hodge structure H is a mixed Tate Hodge structure
such that for some integer n, we have grW2pH = (0) for p 6= n, n + 1, n+ 2.

We will see in section 9 that periods of dilogarithm Hodge structures have the form

(2.5)
∑

µ

∫
log fµ

dgµ
gµ

where the fµ, gµ are rational functions.
For a mixed Tate Hodge structure, the weight and Hodge filtrations are opposite in the

sense that

(2.6) F p+1HC ∩W2pHC = (0); HC =
⊕

p

(F pHC ∩W2pHC).

We may choose a basis {ep,pi } of HC with ep,pi ∈ F pHC ∩W2pHC.
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Example 2.2 (Kummer extensions). To an element x ∈ C× we can associate a mixed
Tate Hodge structure Ex with grWEx = Q(1) ⊕ Q(0). Define a free rank 2 Z-module
Ex,Z = Zε−1 ⊕ Zε0 with weight filtration W−2Ex,Z = Zε−1 = W−1 ⊂ W0 = Ex,Z. Consider
the diagram

(2.7)

0 −−−→ Z
17→2πi−−−−→ C

exp−−−→ C× −−−→ 0∥∥∥ ψ

x ε0 7→x

x
0 −−−→ Zε−1 −−−→ Ex,Z −−−→ Zε0 −−−→ 0

Here ψ(ε−1) = 2πi and ψ(ε0) = log(x) for some branch of the logarithm.
By linearity, ψ extends to a C-linear map ψ : Ex,C = Ex,Z ⊗ C → C. Define

(2.8) F 0Ex,C := ker(ψC) = C · (ε0 −
log x

2πi
ε−1) ⊂ F−1Ex,C = Ex,C.

We take e0,0 = ε0 − log x
2πi

ε−1 and e−1,−1 = 1
2πi
ε−1. It is traditional for mixed Tate Hodge

structures to consider the matrix where the columns, interpreted as coefficients of the ei,i

form a basis for the Q-structure. In this case ε0 = e0,0 + (log x)e−1,−1, ε−1 = 2πie−1,−1 so
the matrix is

(2.9)

(
1 0

log x 2πi

)
.

The category of Hodge structures is abelian, and

(2.10) Ext1(Q(−1),Q) ∼= C×; Ex 7→ x

We remark that the category of Hodge structures has a tensor product. The definitions
follow easily from the definition of a tensor product of filtered vector spaces. One has for
example Q(m)⊗Q(n) = Q(m+ n). Tensoring with Q(n) for a suitable n, we may if we like
arrange that any given mixed Tate Hodge structure has weights 0, 2, · · · , 2r for some r.

The central point is that the Betti cohomology of any complex variety (indeed, more
generally any diagram of complex algebraic varieties) carries a canonical and functorial
Hodge structure. Because Betti groups can be computed using differential forms (de Rham
cohomology) our Hodge structures will often have another rational structure coming from
algebraic de Rham cohomology. This is useful in physics because it explains the powers of
2πi occurring in formulas.

Example 2.3. Consider the Hodge structure H := H1(P1−{0,∞},Q). By standard topol-
ogy this group is one dimensional, dual to the first homology which is spanned by a small
circle S around 0 oriented in a counterclockwise direction. Let z ∈ HQ be a generator with
〈z, S〉 = 1. As a Hodge structure, H = Q(−1). On the other hand, the corresponding
de Rham cohomology H1

DR(P
1 − {0,∞}) is the Q-vector space defined by the 1-form dt/t

where t is the coordinate on P1. The pairing with homology is given by integration, and
since

∫
S
dt/t = 2πi, it follows that dt/t = 2πiz ∈ H . The Q-vector space H is the Betti

cohomology, H = H1
B(P

1 −{0,∞},Q) and the de Rham Q-structure is given in this case by
HDR = 2πiHB.
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Families of varieties give rise to families of Hodge structures. Of particular interest is the
nilpotent orbit theorem which is the basic tool in describing degenerations. In the physics sur-
rounding 1-loop Feynman graphs these degenerations (thresholds) are not as well understood
as they might be, and we will show how the nilpotent orbit theorem can be applied.

To avoid complications, we focus on a 1-parameter degeneration {Ht} parametrized by
t ∈ D∗ = {t ∈ C | 0 < |t| < ε}. This means that we are given a local system H over
D∗ with fibre Ht. We have a weight filtration which is an increasing filtration W∗H on the
local system, and a Hodge filtration which is a decreasing filtration by coherent subbundles
F ∗(H⊗C OD∗). The point is that the Hodge filtration is not horizontal for the flat structure
determined by the local system H. However, Griffiths transversality says

(2.11)
d

dt
F i(H⊗C OD∗) ⊂ F i−1(H⊗C OD∗).

A very general result in algebraic geometry gives that the monodromy on our local system
is quasi-unipotent. In other words, replacing t by u = tn for some n, the action σ of winding
around the puncture in D∗ on a fibre of H will be unipotent. This allows us to deal for
example with the square roots which one faces in 1-loop computations early on. Assuming
this has been done, we write

(2.12) N := log(σ)

so N is a nilpotent endomorphism of a fibre.
If we choose t0 ∈ D∗, we can identify our variation of Hodge structure as a single Q-

vector space H = Ht0 with a weight filtration W∗H , a nilpotent endomorphism N : H →
H stabilizing W∗, and a variable Hodge filtration F ∗

t H . In this situation, the nilpotent
orbit theorem gives a decreasing filtration FlimHC such that the orbit of the one parameter
subgroup exp(N log t

2πi
) acting on the filtration FlimHC approximates the given F ∗

t H :

(2.13) exp

(
N
log t

2πi

)
Flim ∼ Ft.

Another way to think about (2.13) is to note (again by a general result in algebraic geometry)

that the coherent sheaf H⊗OD∗ extends to a coherent sheaf H̃ on D in such a way that the

connection on H extends to a connection with log poles on H̃, i.e. we have

(2.14) ∇̃ : H̃ → H̃ · dt
t
.

Choose a basis γi for H
∨ which we then view as a multi-valued basis of the local system H∨.

We view the γi as homology classes. For ωt a section of H̃ we write 〈γi, ωt〉 =
∫
γi
ωt as an

integral. Then the entries of

(2.15) exp

(
−N log t

2πi

)



...∫
γi
ωt
...




are single-valued functions on D∗, and the limit |t| → 0 exists.
Furthermore, the filtration Ft is meromorphic with respect to the extension in the sense

that I can find a basis of the global sections ofH⊗OD∗ which is compatible with the filtration
F ∗(H⊗OD∗) and which lies in t−MH̃ forM > 0. This means there exists a unique saturated
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filtration F ∗H̃ inducing Ft on H⊗OD∗ . If we choose a basis ωt,j of H̃ compatible with the
filtration and compute the limits in (2.15), we obtain a concrete matrix representation for
Flim. Note that Flim depends on the choice of a parameter t. For example, if I replace t by
ct with c ∈ C× then the limit in (2.15) is multiplied by exp(−N log c

2πi
).

In the context of the limiting Hodge filtration, Griffiths transversality (2.11) becomes the
condition

(2.16) NF i
lim ⊂ F i−1

lim .

The limiting filtration Flim is itself the Hodge filtration for the limiting mixed Hodge
structure Hlim. In general, the weight filtration on Hlim is not the limit of the weight
filtrations on the Ht. For example, the classical situation is when Ht are pure, i.e. have a
single weight. In that case, the limit weight filtration is determined in a canonical way by
the nilpotent endomorphism N . For applications to 1-loop amplitudes, we are interested in
limits of dilogarithm mixed Tate Hodge structures. The action of monodromy on grWHt will
be finite. (This is true quite generally because monodromy will stabilize both an integral
and a unitary structure and hence lie in the intersection of a discrete group and a compact
group. Such an intersection is necessarily finite.) Typically, in our examples, the eigenvalues
of monodromy on grWHt will be ±1 so it may be necessary to replace σ by σ2. This explains
the presence of

√
t in formulas found by physicists. Once σ is unipotent, however, in our

examples, the weight filtration on Hlim will be the given weight filtration.

Example 2.4. We consider a family of Kummer Hodge structures as in example 2.2. In
(2.7), take ε0 7→ x(t) for x(t) a meromorphic function on the disk D, holomorphic away
from 0. Write x(t) = tMu(t) with u(0) 6= 0,∞. With notation as in that example, we take
γi = ε∨i , i = 0,−1 (dual basis) and ωi = ei,i. We get

(2.17)

( ∫
γ0
ω0

∫
γ0
ω−1∫

γ−1
ω0

∫
γ−1

ω−1

)
=

(
1 0

− log(tMu(t))
2πi

1
2πi

)

The monodromy is given by

(2.18) N =

(
0 0

−M 0

)
.

Clearly we should take

(2.19) Flim = lim
t→0

exp

(
0 0

+M log(t)/2πi 0

)(
1 0

− log(tMu(t))
2πi

1
2πi

)
=

(
1 0

− log(u(0))
2πi

1
2πi

)

In this example F 0 = C · (ε0 − log(u(0))
2πi

ε−1) = Ce0,0lim (defining e0,0lim). We take e−1,−1
lim = ε−1

2πi
.

It is a straightforward exercise to extend this construction to mixed Tate variations Ht

with grWHt = Q(0)p ⊕Q(1)q for arbitrary p, q ≥ 1.

Example 2.5. Suppose now grWHt = Q(0) ⊕ Q(1) ⊕ Q(2). We associate to Ht the two
Kummer extensions H ′

t = W−2Ht and H ′′
t = Ht/W−4Ht. We assume as in example 2.4

above that we have calculated the logarithms of monodromy N ′, N ′′. We can write Hlim,C =

Ce0,0lim ⊕ Ce−1,−1
lim ⊕ Ce−2,−2

lim in such a way that Wi,C =
∑

j≤iCe
j,j
lim is stable under N and

NF i
lim = N(

∑
j≥iCe

j,j
lim) ⊂ NF i−1

lim . This implies

(2.20) Ne−2,−2
lim = 0; Ne−1,−1

lim = a′e−2,−2
lim ; Ne0,0lim = a′′e−1,−1

lim .
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Griffiths transversality for N (2.16) implies that Ne0,0lim does not involve e−2,−2
lim . As a conse-

quence, N for the dilogarithm motive is determined by N ′ and N ′′ for the Kummer sub and
quotient motives. These are usually straightforward to calculate.

3. The Second Symanzik Polynomial

The second Symanzik polynomial is used in the calculation of the Feynman amplitude
associated to a graph G with possibly non-trivial external momenta. In the physics literature
it is usually derived directly from the linear algebra of Feynman coordinates [11], [12]. We
will show in this section that it can also be interpreted as a pfaffian in the sense of E. H.
Moore [9] associated to a quaternionic hermitian matrix. We give the pfaffian construction,
but our proof that the resulting polynomial coincides with the second Symanzik polynomial
is not particularly elegant, so it is relegated to an appendix in the following section. Two
consequences of the pfaffian viewpoint which we do not pursue further, are firstly that the
polynomial is a configuration polynomial for quaternionic subspaces of a based quaternionic
vector space, and hence the techniques of [10] should apply to the study of the singularities,
and secondly that for each loop number there is a universal family. For example, with one
loop and 6 edges, the hypersurface defined by the second Symanzik is the complement in P5

of the complex points of a coset space GL2(A)/U2(A) where A is the quaternions and U2(A)

is the subgroup of 2×2 quaternionic matricesM satisfyingM
t
=M−1. The Betti numbers of

these coset spaces are known, and one may hope to better understand the motives of physical
interest from this viewpoint. It will be interesting to study the corresponding family at two
loops in future work.

Note that in the presence of non-trivial masses mi, the actual polynomial of physical
interest is

(3.1) Φ(A, q)− (
∑

m2
iAi)Ψ(A)

where Ψ and Φ are respectively the first and second Symanzik polynomials.
We write the quaternions A = R ·1⊕R ·i⊕R ·j⊕R ·k as usual, and we embed A →֒M2(C)

by

1 7→
(
1 0
0 1

)
; i 7→

(
i 0
0 −i

)
(3.2)

j 7→
(
0 −1
1 0

)
; k 7→

(
0 −i
−i 0

)
.

Let u =

(
0 −1
1 0

)
. One checks that the anti-involution x 7→ x̄ on A given by ε̄ = −ε

for ε = i, j, k corresponds to m 7→ u−1mtu on M2(C). More generally, we may embed
Mn(A) →֒ Mn(M2(C)) →֒ M2n(C) and the anti-involution x 7→ x̄t on Mn(A) corresponds to
M 7→ U−1M tU where U is the diagonal matrix with u along the diagonal. Note that U is
skew-symmetric, U t = −U .

The reduced norm, Nrd :Mn(A) → R is a polynomial of degree 2n which corresponds to
the determinant on M2n(C).

Let Herm ⊂Mn(A) be the R-vector space of Hermitian elements, which we can think of
as all elements of the form x+ x̄t.
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Proposition 3.1 (Moore, Tignol). There exists a unique polynomial map, the pfaffian norm
or Moore determinant Nrp : Herm→ R such that Nrp(I) = 1 and Nrp(y)2 = Nrd(y).

Proof. We can compute in M2n(C). We have

(3.3) det(M + UM tU−1) = det((MU − (MU)t)U−1) =

det(MU − (MU)t) det(U−1) = (pfaff(MU − (MU)t))2 · pfaff(U−1)2,

using the fact that the determinant of a skew matrix is the square of the pfaffian. �

Corollary 3.2. Suppose M in the above proposition is block diagonal with quaternionic
hermitian matrices M1, . . . ,Mp along the diagonal. Then Nrp(M) =

∏
Nrp(Mj).

Proof. The assertion is true for the usual pfaffians for skew matrices, and all the matrices in
the proof of proposition 3.1 are in block diagonal form. �

One way to construct elements in Herm is to take R-linear combinations of rank 1 her-
mitian elements x = x̄t. The latter are given by

(3.4) x =




ā1
ā2
· · ·
ān


 ·

(
a1, a2 . . . , an

)
= (āiaj)1≤i,j≤n,

where a1, . . . , an ∈ A. Given a collection x1, . . . , xp of such hermitian elements, we can
construct a polynomial of degree n in A1, . . . , Ap by taking

(3.5) Φ(A1, . . . , Ap) := Nrp(

p∑

i=1

Aixi).

View Ap as a right A-vector space of column vectors. Let H ⊂ Ap be a subspace with
dimAH = n. Choose a basis α1, . . . , αn for H with αi = (a1i, . . . , api)

t. Define

(3.6) e∨j = (aj1, . . . , ajn), 1 ≤ j ≤ p

Take xj = ē∨,tj · e∨j and define

(3.7) ΦH := Nrp(
∑

Aixi)

as in (3.5). Writing α = (aij), a p× n matrix, one sees that a different choice of basis for H
yields a matrix β = (bij) = αM where M is n × n and invertible. We have (bj1, . . . , bjn) =

e∨jM so xj is replaced by M
t
xM .

Lemma 3.3. Let M,N be n × n matrices with entries in A. Assume N = N
t
and M is

invertible. then

(3.8) Nrp(M
t
NM) = Nrd(M)Nrp(N).

Proof. Both sides of (3.8) are polynomial maps in the entries ofM and N , and they have the
same square. It follows that the ratio is constant. For M the identity matrix, the ratio is 1.
(Note Nrd(M) = det(ι(M)) where ι : Matn(A) →֒ Mat2n(C) is defined via the embedding
A →֒ Mat2(C). In particular, Nrd(M) = Nrd(−M).) �

7



As a consequence of the lemma, Φ(
∑
AiM

t
xiM) = Nrd(M)Φ(

∑
Aixi) so ΦH is well

defined upto a non-zero constant factor.
Consider a graph Γ with edge set E and vertex set V . Let H = H1(Γ,Q), and choose a

basis H ∼= Qr. We have

(3.9) 0 → Qr → QE ∂−→ QV,0 → 0,

where QV,0 ⊂ QV is the image of the boundary map ∂. If we tensor with A we get

(3.10) 0 → Ar → AE → AV,0 → 0

Suppose we are given q := (. . . qv, . . .) ∈ AV,0. Let Hq ⊂ AE be the sub right A-module
in AE spanned by Ar and a lifting q̃ of q. To each e ∈ E we define an r + 1-vector
we = (we,1, . . . , we,r+1) by looking at the e-th coordinate of the r basis vectors for H ⊗ A
together with q̃. Note we,1, . . . , we,r ∈ R. Define (quaternionic) hermitian matrices

(3.11) xe := we
t · we.

The second Symanzik polynomial is the configuration polynomial (3.7) for H = Hq

(3.12) Φ(A)Γ,q := Nrp(
∑

E

Aexe).

Example 3.4. Take r = 1 and H = Q(e1 + · · · + en). (This is the 1-loop case.) Let
q̃ =

∑
µee ∈ AE . Then

(3.13) N :=
∑

Aexe =

(∑
E Ae

∑
Aeµe∑

Aeµ̄e
∑
Aeµ̄eµe

)
.

We will see that in this case

(3.14) Φ(A) = Nrp(N) = −(
∑

Aeµ̄e)(
∑

Aeµe) + (
∑

Ae)(
∑

Aeµ̄eµe) =
∑

i<j

(µi − µj)(µi − µj)AeiAej .

The physics convention would write µi =
∑n

j=i qj with µ1 = 0. The result in (3.14) becomes

(3.15) Φ(A)Γ,q =
∑

i<j

(qi + · · ·+ qj−1)(qi + · · ·+ qj−1)AiAj.

Again as in (3.1), the polynomial of physical interest is

(3.16) D(q, A) :=
∑

i<j

(qi + · · ·+ qj−1)(qi + · · ·+ qj−1)AiAj − (
∑

m2
iAi)(

∑
Ai).

Example 3.5. Let us actually discuss one more example. Consider the three-edge banana.
We take as a basis the two independent cycles {e1, e2} and {e2, e3}. The matrix is then given
as

N := A1(1, 0, µ̄1)
T · (1, 0, µ1) + A2(1, 1, µ̄2)

T · (1, 1, µ2) + A3(0, 1, µ̄3)
T · (0, 1, µ3),

(3.17) N =




A1 + A2 A2 A1µ1 + A2µ2

A2 A2 + A3 A2µ2 + A3µ3

A1µ̄1 + A2µ̄2 A2µ̄2 + A3µ̄3 A1µ̄1µ1 + A2µ̄2µ2 + A3µ̄3µ3




We have NRP (N) = A1A2A3(µ1 − µ2 + µ3)(µ1 − µ2 + µ3).
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4. Appendix to section 3

It remains to show that our definition of the second Symanzik polynomial coincides with
the classical physical definition [5], formulas 6-87 and 6-88. (The argument which follows
parallels the argument for scalar momenta given in [10].)

Lemma 4.1. Let H ⊂ Ap be a subspace as above. Then ΦH has degree ≤ 1 in each Ai.

Proof. First note that if α1, . . . , αn ∈ Ap satisfy a linear relation
∑
αiai = 0, then the xi in

(3.7), viewed as map of row vectors An → An by multiplication on the right, kills the row
vector ((ā)1, . . . , (ā)n). It follows that the matrix

∑
Aixi does not have maximal rank, so

Φ(
∑
Aixi) = 0.

If some Ai appears to degree ≥ 2 in some monomial in ΦH, then the monomial can contain
at most dimH−1 distinct Aj . Let T ⊂ {1, . . . , p} be the indices occurring in this monomial.
By assumption, #T < dimH. Consider the diagram

(4.1)

H −−−→ Ap

∥∥∥
yproj

H ι−−−→ AT

It is immediate that ΦH|Ak=0,k 6∈T is the configuration polynomial for the bottom row in
(4.1). If this is non-zero, then by the above, the map ι must be injective. In particular,
#T ≥ dimH, a contradiction. �

We now consider Hq ⊂ AE as above. Let C ⊂ E with #C = r + 1. A necessary
condition for the monomial

∏
e∈C Ae to appear in ΦΓ,q is that H →֒ QE/QE−C. Such a

set C of edges is called a cut set. For a cut set C, there exists a spanning tree T and an
edge e ∈ T such that T − e = E − C. We choose an A-basis h1, . . . , hr+1 for Hq such that
h1, . . . , hr ∈ H1(Γ,Q) ⊂ Hq. For c ∈ C let wc : Hq → AC be the map wc(h) = c∨(h)c. Let
w̄tc : AC → Hq be the map AC

։ cA → H ∼= Ar+1 given by c 7→ (c∨(h1), . . . , c
∨(hr+1)).

Here we identify Hq = Ar+1 using the basis {hi}. Note that w̄tcwd = 0 for c 6= d. It follows
that writing RC =

∑
c∈C wc we have R̄t

CRC =
∑

c∈C xc with xc as in (3.11). Thus

(4.2) Nrp(R̄t
CRC) = Nrp(

∑
Aexe)|Ae=0, e 6∈C, Ae=1, e∈C = coefficient of

∏

c∈C

Ac in ΦΓ,q.

It follows from lemma 3.3 that this coefficient equals Nrd(RC). Note that the (r+1)×(r+1)-
matrix RC has real entries except for the last column. Let us define the A-determinant to
be the expansion in the last column

(4.3) detA(RC) := (−1)r+1
∑

i

(−1)i det(Ri,r+1
C )(RC)i,r+1

where (RC)
i,r+1 denotes the minor. Note this matrix has R-coefficients, so the determinant

is defined.

Lemma 4.2. With notation as above, we have Nrd(RC) = (detA(RC))(detA(RC)).

Proof. By definition Nrd(RC) is calculated using the embedding A →֒ M2(C) to view RC as
a (2r+2)× (2r+2)-complex matrix and then taking the usual determinant. In other words,
one views RC as a map (C2)r+1 → (C2)r+1. The assertion is thus clear if the entries of RC

all lie in R ⊂ A. In that case, all the 2×2-matrices are real scalar and we just get the square
9



of the usual determinant. For the general case, it suffices to consider a 2N × 2N complex
matrix with entries 2 × 2 scalar diagonal except for the last two columns. Then one checks
that the determinant is computed by interpreting the last two columns as a single column
of N 2× 2-matrices, expanding as above (4.3) and then taking the determinant. (Note that
under the embedding A →֒ M2(C) the determinant corresponds to xx̄.) �

Finally, to identify Nrp with the second Symanzik polynomial, we have to show the
expansion (4.3) coincides with the usual combinatorial description in terms of cut sets. Fix
an orientation and an ordering for the edges of Γ. Let C be a cut set as above. Let Fi,
i = 1, 2 be disjoint with Γ−C = F1∐F2. Note that one of the Fi may be an isolated vertex.
Let Γ//F denote the 2-vertex graph obtained by shrinking the two components of F ⊂ Γ to
two (separate) vertices v1, v2. For e ∈ E(Γ) not an edge of F , the image ē of e in Γ//F is
either a loop (tadpole) or has boundary the difference of the two vertices, ∂e = ±(v2 − v1).
We have also H1(Γ) ∼= H1(Γ//F ). As above we enumerate the edges e1, . . . , er+1 in Γ − C.
Let Γi = (Γ//F )/ei be obtained by contracting ei. Then det(Ri,r+1

C ) is the determinant of
the map from H1(Γ) with basis h1, . . . , hr to ZE−C−{ei} with basis e1, . . . , êi . . . , er+1. Define

(4.4) a(i) :=





+1 ∂ēi = v2 − v1
−1 ∂ēi = v1 − v2

0 ∂ēi = 0.

The key point then is

(4.5) (−1)i det(Ri,r+1
C ) = a(i)b

where b = ±1 is independent of i. This can be seen as follows. Let W =
⊕r+1

1 Qei, . The
composition H1(Γ) ⊂ W ։ W/Qei is an isomorphism. The evident basis {ek, k 6= i} of
W/Qei induces a basis of H1(Γ). For two different choices of i, say i1, i2, the determinant
of the change of basis matrix is (−1)i1−i2 . Indeed, writing ε = 1

r+1

∑
ei ∈ W and letting

det1, det2 ∈ detH1(Γ) be the exterior powers of the basis vectors for the two bases, one has
in detW that ε ∧ det1 = (−1)i1−i2ε ∧ det2. (Compare both sides with e1 ∧ · · · ∧ er+1.)

Finally, we deduce from this and (4.2) the classical combinatorial description of the second
Symanzik polynomial, viz. the coefficient of

∏
e∈C Ae is given by

(4.6)
( ∑

∂ēi=v2−v1

e∨i (hr+1)−
∑

∂ēi=v1−v2

e∨i (hr+1)
)( ∑

∂ēi=v2−v1

e∨i (hr+1)−
∑

∂ēi=v1−v2

e∨i (hr+1)
)
.

5. Differential Forms on Projective Space

We turn now to the study of motives associated to 1-loop graphs. We recall first the
structure of differential forms on projective space. Let O = OPn be the sheaf of (algebraic)

functions on projective n-space, and let Ωi =
∧iΩ1 denote the sheaf of algebraic differential

i-forms. Fix a basis A0, . . . , An for the linear homogeneous forms on Pn. One has an exact
sequence

(5.1) 0 → Ω1 →
n⊕

i=0

O(−1)dAi
p−→ O → 0

(Here the dAi are just labels for the various summands of the direct sum.) Twisting by 1, the
map p(1) maps dAi to Ai ∈ Γ(Pn,O(1)). For example, p(2)(AjdAi−AidAj) = AjAi−AiAj =
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0, so AjdAi − AidAj ∈ Γ(Pn,Ω1(2)). It follows that dAi/Ai − dAj/Aj is a (meromorphic)
section of Ω1.

We are interested in Ωn−1. By standard Koszul algebra we get from (5.1) an exact sequence

(5.2) 0 → Ωn−1(n− 1) →
n−1∧ ( n⊕

0

O · dAi
)
→

n−2∧ ( n⊕

0

O
)
(1)

the map on the right is given by

(5.3) dAi1 ∧ · · · ∧ dAin−1
7→

n−1∑

j=1

(−1)j−1AijdAi1 ∧ · · · ∧ d̂Aij ∧ · · · ∧ dAin−1
.

Again by standard Koszul stuff we have an exact sequence (I have dropped the labels dAi)

(5.4)
n∧( n⊕

0

O
)
→

n−1∧ ( n⊕

0

O
)
(1) →

n−2∧ ( n⊕

0

O
)
(2)

where the maps are as in (5.3). For 0 ≤ j ≤ n, the section

(5.5) τj := dA0 ∧ · · · ∧ d̂Aj ∧ · · · ∧ dAn
on the left maps to

(5.6) Θj :=
∑

i 6=j

±AidA0 ∧ · · · ∧ d̂Ai ∧ · · · ∧ d̂Aj ∧ · · · ∧ dAn ∈ Γ(Pn,Ωn−1(n)).

(The sign in the sum is (−1)i for i < j and (−1)i−1 for i > j.) Treating these expressions as
differential forms in the evident way, we have

(5.7) dΘj = nτj .

In particular, if F = G/H is a ratio of homogeneous polynomials with degG − degH = n,
then we compute

(5.8) d(Θj/F ) = nτj/F − dF ∧Θj/F
2 =

nFτj − (
∑
∂F/∂AkdAk)Θj

F 2
=

(nF −
∑

k 6=j ∂F/∂AkAk)τj − ∂F/∂AjdAj ∧Θj

F 2
=

∂F/∂Aj(Ajτj − dAjΘj)

F 2
=

(−1)j∂F/∂AjΩn
F 2

Here Ωn =
∑

(−1)iAidA0 ∧ · · · ∧ d̂Ai ∧ · · · ∧ dAn. Note that (5.8) is an identity between
meromorphic n-forms on Pn.

Replacing, if necessary, F by a power of F , we have proven

Lemma 5.1. Let ω = PΩn

F p be an n-form on U := Pn − {F = 0}. Assume G =
∑
Gi

∂F
∂Ai

lies
in the ideal generated by the partial derivatives of F . Then we can reduce the order p of pole
of [ω] ∈ Hn

DR(U), i.e. there exists a form ω′ = G′Ω
F p−1 which is cohomologous to ω, [ω] = [ω′].

(Here HDR is algebraic de Rham cohomology calculated using algebraic differential forms. It
coincides with Betti cohomology.)
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6. Complex Poincaré Group Invariants

Feynman integrals, after integration, are fuctions of external momenta. If the whole
integral transforms as a Lorentz scalar, the integral is a function of Lorentz invariant scalar
products of external momenta. The number of and type of these invariants are exhibited
here from a mathematical viewpoint, incorporating momentum conservation and the finite
dimension of spacetime.

The fact that the amplitudes for 1-loop graphs are dilogarithms is a consequence of some
basic facts about the invariants of the orthogonal group. Let OC(r) be the subgroup of
GL(Cr) leaving invariant a non-degenerate inner product (p, q) 7→ p · q. Let G = Cr⋊OC(r)
be the “complex Poincaré group” generated by orthogonal transformations and translations.

As an algebraic group over C, G has dimension r + r(r−1)
2

. Let G act diagonally on (Cr)r+2.
The quotient (Cr)r+2/G has dimension

(6.1) dimC(C
r)r+2/G = r(r + 2)− (r +

r(r − 1)

2
) =

(
r + 2

2

)
− 1.

Let pj : (C
r)r+2 → Cr, 1 ≤ j ≤ r + 2 be the projections. Following physics notation we

write

(6.2) (pj − pk)
2 := (pj − pk) · (pj − pk)

with the inner product as above. We obtain in this way
(
r+2
2

)
G-invariant functions on

(Cr)r+2. It follows from (6.1) that there is an algebraic relation between these functions.
To understand this relation, we change bases in Cr so the inner product is the sum of

squares of coordinates (Euclidean inner product). We can view P := (p1, . . . , pr+2) as an
r × (r + 2) matrix. The (r + 2)× (r + 2)-symmetric matrix

(6.3) N := (pj · pk) = P tP

has rank ≤ r. It is convenient at the point to introduce masses mj , 1 ≤ j ≤ r + 2. Consider
the (r + 2)× (r + 2)-symmetric matrix

(6.4) M(m) := (m2
i +m2

j + (pi − pj)
2) = (m2

i + p2i )ij + (m2
j + p2j)ij − 2N =M1 +M2 − 2N.

View Cr+2 as column vectors, and let H ⊂ Cr+2 be the codimension 1 subspace defined by
setting the sum of the coordinates to zero. Note that M1 has all columns the same, so for
h ∈ H we have M1h = 0. Similarly htM2 = 0. It follows that the quadratic form given by
the symmetric matrixM(m) is necessarily degenerate when restricted to H , i.e. ∃ 0 6= k ∈ H
with htM(m)k = 0 for all h ∈ H .

Lemma 6.1. For general values of the pi we have det(M(0)) 6= 0.

Proof. Take p1, . . . , pr to be the usual orthonormal basis of Cr, and take pr+1 = 0. One easily
checks in this case that the coefficient of p4r+2,1 in det(M(0)) is plus or minus a power of 2.
In particular, it is non-zero, and the lemma follows. �

Remark 6.2. Of course, it follows from the lemma that det(M(m)) 6= 0 for general m and
p as well.

Assume now that M(m) is invertible. Write ~1 = (1, . . . , 1) ∈ Cr+2. It follows from the

above that M(m)k = κ~1; κ 6= 0. Scaling k, we may assume k =M(m)−1~1. Thus

(6.5) (M(m)−1~1) ·~1 = 0.
12



When the masses are zero, (6.5) yields the non-trivial algebraic relation between the (pi−pj)2.
We will interpret (6.5) in the case r = 4 as determining where in the weight filtration of
a Hodge structure the Feynman integrand lies. In physics terms, it is the statement that
for 1-loop graphs, the amplitude is expressed in terms of logarithms and dilogarithms of
Lorentz-invariant rational functions of momenta, [4], [12].

In physical situations, of course, the pi are 4-vectors.

Lemma 6.3. Fix n ≥ 6. Let pi ∈ C4, 1 ≤ i ≤ n, and let mi ∈ C, 1 ≤ i ≤ n. Let H ⊂ Cn

be the codimension 1 linear subspace defined by setting the sum of the coordinates to 0. The
matrix M(m) = (m2

i +m2
j + (pi− pj)

2)ij has rank ≤ 6. For general values of mi, pi the rank
is exactly 6 and the vector (1, . . . , 1) lies in the image M(m)(H) ⊂ Cn.

Proof. As in (6.4) M(m) is a sum of three matrices. The matrices M1,M2 have rank 1. The
matrix N has rank 4 (for general pi) as in (6.3). It follows that M(m) has rank ≤ 6, and it
is easy to see the rank is exactly 6 for general values of the parameters. To show the vector
(1, . . . , 1) ∈M(m)(H), it suffices to solve the equations

(6.6)

n∑

i=1

ai(p
2
i +m2

i ) = 1;

n∑

i=1

aipi = 0;

n∑

i=1

ai = 0.

These equations clearly admit a solution in the ai for general values of the parameters when
n ≥ 6. �

7. The Motive

Let X : Q = 0 be a rank min(6, n + 1) quadric in Pn. Let A0, . . . , An be homogeneous
coordinates, and write ∆ :

∏
Ai = 0 for the reference simplex. We will be interested in the

”motive” (or more concretely, the Hodge structure)

(7.1) Hn(Pn −X,∆−X ∩∆,Q).

(In the case n = 2, the triangle graph, the motive of physical interest is slightly different.
We treat it separately in section 10.)

We assume that X is in good position with respect to ∆ in the sense that for any face
F ∼= Pi ⊂ ∆ the intersection X ∩ F has rank min(6, i + 1). In particular, if dimF < 6
then X ∩ F is smooth. (The nullspace L ⊂ X is a linear space of dimension n− 6, and our
assumption is that L meets all faces of ∆ properly.)

Lemma 7.1. (i) We have

(7.2) Hn(Pn −X,Q) ∼=





0 n > 5

Q(−m − 1) n = 2m+ 1 ≤ 5

0 n = 2m > 0

Q(0) n = 0

(ii) Hk(Pn −X,Q) = (0) if 0 < k 6= n ≤ 5 or if n > 5 and k 6= 0, 5.

Proof. Suppose first n > 5. Let p : Pn − L → P5 be the projection with center L. We have
X−L = p−1(Y ), where Y ⊂ P5 is a smooth quadric. It follows that Pn−X is a fibre bundle
over P5 − Y with fibre An−5. A standard result for fibrations with contractible fibres yields
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H∗(P5 − Y,Q) ∼= H∗(Pn−X,Q). Since P5 − Y is affine of dimension 5, it has cohomological
dimension 5 so Hn(Pn −X,Q) = (0).

Quite generally, for X a smooth hypersurface in Pn, the Gysin sequence (given by residues
on differential forms) yields an exact sequence which reads in part

(7.3) 0 → Hn(Pn −X,Q) → Hn−1(X,Q(−1)) → Hn−1Pn,Q) → 0.

We now assume n ≤ 5 so X is a smooth quadric. The middle dimensional cohomology of
a smooth quadric of dimension d is known to be rank 2 generated by algebraic cycles for d
even and zero for d odd. The lemma follows. �

For an index set I = {i0, . . . , ip} ⊂ {0, . . . , n} write |I| = p + 1 and let ∆I ⊂ ∆ ⊂ Pn

be defined by the vanishing of the homogeneous coordinates Aij . The motive (7.1) is the
hypercohomology of the complex of sheaves

(7.4) QPn−X →
⊕

|I|=1

Q∆I−X∩∆I
→ · · · →

⊕

|I|=n

Q∆I

There is a spectral sequence Ep,q
1 = Hq(

⊕
|I|=pQ∆I−X∩∆I

) ⇒ Hp+q(Pn −X,∆−X ∩∆,Q).

(For simplicity we write Pn −X =
⊕

|I|=0∆I −X ∩∆I .)

Suppose first n ≤ 5. The differentials dp,q1 : Ep,q
1 → Ep+1,q

1 are zero in this case except for
d4,01 :

⊕
|I|=4H

0(∆I −X ∩∆I ,Q) →
⊕

|I|=5H
0(∆I −X ∩∆I ,Q) which is simply restriction

from 1-simplices to 0-simplices. It follows that the weight graded cohomology in these cases
is

(7.5) grWHn(Pn−X,∆−X∩∆,Q) =





Q(0)⊕
⊕

15Q(−1)⊕
⊕

15Q(−2)⊕Q(−3) n = 5

Q(0)⊕
⊕

10Q(−1)⊕
⊕

5Q(−2) n = 4

Q(0)⊕
⊕

6Q(−1)⊕Q(−2) n = 3

Q(0)⊕
⊕

3Q(−1) n = 2

Q(0)⊕Q(−1) n = 1

For n ≥ 6 the differential dn−6,5
1 : En−6,5

1 → En−5,5
1 is non-trivial. One finds for the weight

graded

(7.6) grWHn(Pn −X,∆−X ∩∆,Q) = Q(0)⊕
⊕

(n+1

n−1)

Q(−1)⊕
⊕

(n+1

n−3)

Q(−2)
⊕

cn

Q(−3).

Here cn is the dimension of coker(
⊕

|I|=n−6Q
∂−→
⊕

|I|=n−5Q). In fact, the weight 6 part of

these motives will not play a role in our amplitude calculations. This is because (as we will
see in proposition 8.2) the differential form given by the Feynman integrand (8.1) below lies
in W4H

n(Pn −X,∆−X ∩∆,Q).

8. The amplitude

Associated to a 1-loop graph with n internal edges and incoming momenta (4-vectors
summing to 0) pi at the vertices we have the second Symanzik polynomial D(p, A) (3.16)
which is a homogeneous quadric in the variables A1, . . . , An. The associated amplitude is

(8.1)

∫

σ

(
∑
Ai)

n−4Ωn−1

D(p, A)n−2
.
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Here the first Symanzik polynomial is just
∑
Ai, and Ωn−1 is as in section 5. Note if n ≤ 3

then
∑
Ai appears in the denominator. We will focus on the case n ≥ 4, leaving the triangle

graph case n = 3 (we are now counting edges from 1, . . . , n, not from 0, . . . , n− 1, as in the
previous section) to section 10.

Lemma 8.1. Assume n ≥ 5. Let Pn−2 ∼= ∆i, 0 ≤ i ≤ n−1 ⊂ Pn−1, be the maximal faces of
the coordinate simplex ∆ ⊂ Pn−1. Let X : D(p, A) ⊂ Pn−1 be the quadric. Assume momenta

and masses are general. Then the form ηn−1 :=
(
∑
Ai)n−4Ωn−1

D(p,A)n−2 on Pn−1 −X is exact. we can

find an (n − 2)-form wn−1 on Pn−1 − X and constants aj ∈ C such that (i) dwn−1 = ηn−1;
(ii) wn−1|∆j = ±ajηn−2; (iii)

∑
aj = 0.

Proof. Let M(m) = (m2
i +m2

j + (pi− pj)
2)1≤i,j≤n be the symmetric matrix corresponding to

D(p, A). From lemma 6.3 there exists a column vector ~a = (a1, . . . , an) such that M(m)~a =
(1, . . . , 1) and

∑
ai = 0. Define

(8.2) wn−1 :=
(
∑
Ai)

n−5
∑

j(−1)jajΘj

2(n− 3)D(p, A)n−3

where Θj is as in (5.6). Using (5.8) with F = D(p,A)n−3

(
∑
Ai)n−5 we compute

(8.3) dwn−1 =
∑

j

aj

((n− 3)(
∑
Ak)

n−5 ∂D
∂Aj

2(n− 3)Dn−2
− (n− 5)(

∑
Ak)

n−6

2(n− 3)Dn−3

)
=

(n− 3)(
∑
Ak)

n−5
∑

j aj
∂D
∂Aj

2(n− 3)Dn−2
=

(
∑
Ak)

n−4

Dn−2
= ηn−1.

Note finally that Θj |∆k = ±δjkΩn−2, proving (ii). �

Proposition 8.2. With notation as in the lemma, we have ηn−1 ∈ W4H
n−1(Pn−1 −X,∆−

X ∩ ∆). The Feynman amplitude for any 1-loop graph is a period of a dilogarithm mixed
Hodge structure as in definition 2.1.

Proof. If n ≥ 6, the faces ∆j
∼= Pn−2 have dimension ≥ 4 and we can apply the lemma again

to the forms wn−1|∆j = ±ajηn−2. In this way we can build a sort of cascade

(8.4)

Ωn−2
Pn−1−X

d−→ Ωn−1
Pn−1−X

↓⊕
iΩ

n−3
∆i−X∩∆i

d−→
⊕

iΩ
n−2
∆i−X∩∆i

↓
...⊕

|I|=n−5Ω
3
∆I−X∩∆I

d−→ . . .

↓⊕
|I|=n−4Ω

3
∆I−X∩∆I

where the vertical maps are restrictions on faces (with appropriate signs). (We simplify
notation by writing ΩiZ for the sections of the sheaf Ωi over Z rather than the sheaf itself.)
What this means is that the de Rham cohomology of our motive, Hn−1

DR (Pn−1−X,∆−X∩∆)
is calculated by a double complex of algebraic differential forms Ca,b =

⊕
|I|=aΩ

b
∆I−X∩∆I

.
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The differential d′ : Ca,b → Ca+1,b (resp. d′′ : Ca,b → Ca,b+1) is given by restriction to faces
of ∆ with appropriate signs (resp. exterior differentiation.) The total differential d = d′+d′′.
We have

(8.5) Hn−1
DR (Pn−1 −X,∆−X ∩∆) = Hn−1(C∗∗, d) =

( ⊕

a+b=n−1

Ca,b
)/

d
( ⊕

a+b=n−2

Ca,b
)
.

(Note that in total degree n−1, all cochains are closed.) The cochain (0, . . . , 0, ηn−1) ∈ C0,n−1

represents a de Rham class whose period integrated against the homology chain given by
σn−1 = {(a1, . . . , an) | ai ≥ 0, ∀i} is the Feynman amplitude. The content of proposition 8.1
is that we can construct a form w ∈⊕a+b=n−2C

a,b such that

(8.6) (0, . . . , 0, ηn−1)− dw ∈ Cn−4,3 ⊕ Cn−2,1 ⊕ Cn−1,0

(Note there is no contribution from Cn−3,2. This is because H2k(P2k−X) = (0) for a smooth
quadric in even dimensional projective space of any dimension. The argument is the same
as in lemma 8.1.)

Finally, It follows from lemma 7.1 that the filtration in equation (8.5) coming from the
filtration WrC

∗∗ =
⊕

a,b; a≥n−2−r C
a,b is the weight filtration WrH

n−1
DR (Pn−1 − X,∆ − X ∩

∆). �

Note that this is a proof of an old result of Nickel, who first studied the dependences
between one-loop graphs in a fixed dimension [8].

9. Dilogarithm Motives

We have seen (7.6), (8.6) (note also the last comment in section 7) that motives H arising
from 1-loop amplitudes satisfy grWH = Q(0) ⊕ Q(−1)b ⊕ Q(−2)c. They are mixed Tate
motives with weights 0, 2, 4. In this section we show how periods of such motives are related
to dilogarithms. A general reference is [3]. We will follow the standard convention and
trivialize the one-dimensional vector space Q(n) = Q in such a way that the Betti structure
is (2πi)nQ so the DR-structure is Q.

First let us reduce to the case c = 1. We assume for simplicity that our de Rham structure
is defined over Q. (If not, one need simply extend the field of coefficients of H .) The quotient
pure Hodge structure H/W2H ∼=

⊕
Q(−2) satisfies

(9.1) (H/W2H)DR = (2πi)2(H/W2H)B ⊂ (H/W2H)C.

Further, the Hodge filtration has a single non-trivial piece in degree −2 and hence is defined
already over Q. What this means is that we can take our Feynman integrand η which we
view as lying in HDR and project it to (H/W2H)DR. The C-line spanned by this image is
canonically identified with Q(−2)C, where Q(−2)DR = Q · η and Q(−2)B = Q · (η/(2πi)2).
The preimage H ′ ⊂ H of this copy of Q(−2) has weight graded grWH ′ = Q(0)⊕Q(−1)b ⊕
Q(−2), and it suffices to compute the periods for this Hodge structure.

Because H is a mixed Tate Hodge structure, there will exist a base e−2, e−1,µ, e0 of HC

(1 ≤ µ ≤ b) such that the weight (resp. Hodge) filtration on HC = C[−2,0] is given by
C[−i,0] = W2iHC and F jHC = C[−2,−j], and such that the trivialization given by the e’s
identifies grWH = Q(0)⊕Q(−1)b⊕Q(−2). Here C[r,s] is the span of the ep,q with r ≤ p ≤ s.

We consider first the sub Hodge structureW2H and the quotient H/W0H , which are mixed
Tate with weights 0, 2 (resp. 2, 4). There will exist b-tuples (f1, . . . , fb) and (g1, . . . , gb) in
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C×,b such that the Betti structures on W2HC = Ce0 ⊕
⊕b

µ=1Ce−1,µ (resp. (H/W0H)C =⊕b
µ=1Ce−1,µ ⊕ Ce−2) are given by the Q-spans of the elements 1

2πi
(e−1,µ + log gµe0) (resp.

1
(2πi)2

(e−2 + log fµe−1,µ). The Betti structure on H will then be the Q-span of the columns

of a matrix

(9.2)
1

(2πi)2




1 0 0 . . . 0 0
log f1 2πi 0 . . . 0 0
log f2 0 2πi . . . 0 0

...
...

... . . . 0 0
log fb 0 0 . . . 2πi 0
h 2πi log gb 2πi log gb−1 . . . log g1 (2πi)2



,

and the challenge is to compute h.
We can compute h upto a constant by using Griffiths transversality. We treat the fµ, gµ, h

as functions and consider the variation of Hodge structure given by (9.2). It carries a connec-
tion ∇ for which the columns are horizontal. The transversality condition says ∇(F i) ⊂ F i−1

where F ∗ is the Hodge filtration.
Write Ci for the columns in (9.2). We have

(9.3) e−2 = C1 −
∑

µ

log fµ
2πi

Cµ+1 −
1

(2πi)2
(h−

∑
log fµ log gµ)Cb+2.

Transversality says that

(9.4) ∇e−2 = Ae−2 +Be−1 = − 1

2πi

∑ dfµ
fµ
Cµ+1 −

1

(2πi)2
(dh−

∑
(fµdgµ + gµdfµ))Cb+2 =

− 1

2πi

∑ dfµ
fµ
e−1,µ − (dh−

∑
(log fµ

dgµ
gµ

)e0.

We conclude that the Betti structure on H is given upto a constant of integration by setting

(9.5) h =
∑

µ

∫
log fµ

dgµ
gµ

in (9.2).

Remark 9.1. Note that the actual entries in (9.2) depend on the scaling of the ei,µ which
are given by algebraic de Rham classes. The actual values determined by the Feynman
integrand will differ by an algebraic function of masses and momenta (eventually involving
square roots) from the logs an dilogs in (9.2). For an example of how this works, see section
14.

10. The Triangle Graph

The amplitude associated to the triangle graph with 1 loop, 3 vertices and 3 internal edges,
is of interest both physically and mathematically. Let C,D ⊂ P2 be rational curves. We
assume they are reduced but not necessarily irreducible. Rational in this context simply
means that the normalization of each irreducible component is P1. Assume further that the
intersection C ∩D is transverse. In particular, C ∩D is a finite set of smooth points in C
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L

X

L0

L1

L2

Figure 1. The geometry of the triangle graph. We indicate the three lines
L0, L1, L2, the line L, and the conic X . The latter is given by X : q20A1A2 +
q21A2A0 + q22A0A1 − (m2

0A0 +m2
1A1 +m2

2A2)(A0 +A1 +A2) = 0. They are all
in general position. There are many degeneracies possible: for example, the
conic would go through the three corners Li = Lj in the massless case, or the
conic can become tangential to one of those lines.

and in D. Let C0 = C − (C ∩ D) (resp. D0 = D − (C ∩ D)). The triangle graph yields a
motive (10.1) which has the form H2(P2 −D,C0) for suitable C,D.

We are particularly interested in the case when C = L0∪L1∪L2 is the coordinate simplex
(with homogeneous coordinates Ai and Li : Ai = 0) and D = L∪X with L : A0+A1+A2 = 0
and X ⊂ P2 a conic. We write for simplicity

(10.1) H := H2
(
P2 − (L ∪X), (L0 ∪ L1 ∪ L2)−

(
(L ∪X) ∩ (L0 ∪ L1 ∪ L2)

)
,Q
)

For the moment we assume that X is a smooth conic in general position with respect to the
other lines.

Proposition 10.1. The Hodge structure on H is mixed Tate, given by W0H ⊂W2H ⊂W4H
with

(10.2) grW0 H = Q(0); grW2 H = Q(−1)5; grW4 H = Q(−2).

Proof. Write C = L0 ∪ L1 ∪ L2 and D = L ∪X . We have

(10.3) H1(P2 −D) → H1(C − C ∩D) → H → H2(P2 −D) → 0

We have by Poincaré duality (formulated algebro-geometrically using cohomology with sup-
port, )

(10.4) H2(P2 −D,Q) ∼= H3
D(P

2,Q) ∼= H1(D,Q(−2)) ∼= Q(−2).
18



Note that topologically, D is a union of two Riemann spheres S2 meeting at two distinct
points p1, p2. We get

(10.5) H1(S
2,Q(−2))⊕2 → H1(D,Q(−2)) → H0({p1, p2},Q(−2)) → H0(S

2,Q(−2))⊕2

from which one deduces H1(D,Q(−2)) ∼= Q(−2). We have again by duality a diagram

(10.6)

H1(P2 −D) −−−→ H1(C − C ∩D)y∂D
y∂C

H2(D,Q(−2)) −−−→ H0(C ∩D,Q(−1))y∼=

y∼=

Q(−1)⊕2 →֒−−−→ Q(−1)⊕9

The map ∂D is injective and has image the kernel of H2(D,Q(−2)) → H2(P
2,Q(−2)) which

is one dimensional. The image of ∂C consists of all elements in H0(C ∩ D,Q(−1)) which
have degree 0 on each irreducible component of C. The kernel of ∂C is H1(C,Q) ∼= Q(0).
The proposition follows. (A detailed proof that dim grW2 H = 5 is given in remark 10.2
below.) �

Remark 10.2. Let ℓi = Li ∩ L and {mi, ni} = X ∩ Li, i = 0, 1, 2. We can identify grW2 H
with a subquotient of the Hodge structure Q(−1)9 with basis indexed by the ℓi, mi, ni as
follows

(10.7) grW2 H
∼= Q(−1)5 ∼=

{ 2∑

i=0

aiℓi+ bimi+ cini | ai, bi, ci ∈ Q(−1), ai+ bi+ ci = 0
}/{

Q(−1) ·
2∑

i=0

(2ℓi−mi−ni)
}
.

Alternatively, Consider zero cycles z =
∑2

0 aiℓi +
∑
bimi +

∑
cini with ai, bi, ci ∈ Q. We

impose the condition that for any one of the irreducible components L, L0, L1, L2, X , the
“piece” of z supported on that component has degree 0. This amounts to the linear conditions

(10.8) 0 =
∑

ai =
∑

(bi + ci) = a0 + b0 + c0 = a1 + b1 + c1 = a2 + b2 + c2.

The vector space A of such cycles has dimension 5 and is identified with Q(1)⊗ grW2 H .

Remark 10.3. LetMi, i = 1, 2, 3 be the masses associated to the edges of the triangle graph.
There is physical interest in the situation when one or more of theMi = 0. With reference to
(3.16), we see that setting Mi = 0 amounts to having the conic pass through the i-th vertex
of the triangle. The curves C,D in the above discussion no longer meet transversally, so we
must blow up some of the vertices. Let π : P → P2 be the blowup of ν = 1, 2, 3 of the three
points (1, 0, 0), (0, 1, 0), (0, 0, 1). Assume the other parameters are generic and let Ei be the
exceptional divisors. In our motive H (10.1) we must replace P2 with P . The curve L ∪X
is replaced by the strict transform in P of L ∪X , and the other rational curve becomes the
total inverse image in P of the triangle, a (3 + ν)-gon comprising the strict transforms in
P of the three lines Aj = 0 and the exceptional divisors Ei. One checks that each blowup
drops the rank of grW2 H by one. Thus grW2 H = Q(−1)b with b = 5− ν, ν being the number
of zero masses.
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We will not compute the amplitude, as this has been done very nicely in [4]. Instead we
will look more closely at qualitative results we can deduce about the motive. In particular,
these will help to frame a (future) study of Landau poles for 1-loop graphs.

11. Appendix on duality for the triangle graph motive

The following duality result, proposition 11.2, will not be used in the sequel.

Lemma 11.1. Consider the diagram of varieties over C endowed with the complex topology.

(11.1)

P2 −D
jD−−−→ P2

kC

x
xjC

P2 − (D ∪ C) kD−−−→ P2 − C

where the maps are the evident inclusions. We continue to assume C ∩D is transverse. Let
A be a constant sheaf on P2. Then

(11.2) jD∗kC!AP2−(D∪C) = jC!kD∗AP2−(D∪C).

Here the lower ! and the lower ∗ are extension by zero and direct image extension viewed as
acting on the derived category. (That is, we write e.g. jD∗ in place of RjD∗.)

Proof. There is a natural morphism of functors jC!kD∗ → JD∗kC!. Indeed, jC! is left adjoint
to j!C = j∗C , so it suffices to define a map kD∗ → j∗CjD∗kC! = kC∗, and we can take the identity.
To show the map is an isomorphism, it suffices to look at the stalks at points of C ∩D. We
can coordinatize a small complex neighborhood of such a point so locally P2− (C ∩D) looks
like (U −{0})× (U −{0}) where U ⊂ C is the open unit disk about 0. Locally, D = {0}×U
and C = U ×{0}. The stalk at (0, 0) on both sides of (11.2) is jC!A⊠ jD∗A by Kunneth. �

Recall we have a Verdier duality functor on the derived category of constructible sheaves
on a reasonable topological space. For P2

C it takes the form (to simplify I work with sheaves
of Q-vector spaces) DF = Hom(F,QP2(2)[4]) where the Hom is in the derived category.
Verdier duality yields an isomorphism

(11.3) RΓ(P2,DF ) ∼= HomQ(RΓ(P
2, F ),Q)

We have DjC!A = jC∗DA and DjC∗A = jC!DA. Using the lemma we find for A = Q

(11.4) HomQ(RΓ(P
2, jD∗kC!QP2−(D∪C)),Q) ∼= HomQ(RΓ(P

2, jC!kD∗QP2−(D∪C)),Q) ∼=
RΓ(P2, jC∗kD!QP2−(D∪C)(2)[4]).

Taking H−2 on both sides yields an isomorphism (duality)

Proposition 11.2. With notation as above, we have

(11.5) HomQ(H
2(P2 −D,C − (C ∩D),Q),Q) ∼= H2(P2 − C,D − (C ∩D),Q(2)).
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12. Landau Poles and Thresholds

In this section we examine the phenomenon of Landau poles and normal and anomalous
thresholds.

Example 12.1. Consider the case of the triangle graph. Changing notation slightly, we can
rewrite (3.16) in this case

(12.1) D(q, A) = |q0|2A1A2 + |q1|2A0A2 + |q2|2A0A1 − (

2∑

0

m2
iAi)(

2∑

0

Ai).

Fix an i and suppose |qi|2 = (mj ±mk)
2. Then

(12.2) D(q, A)|Ai=0 = −(Aj +Ak)(m
2
jAj +m2

kAk)+ (mj ±mk)
2AjAk = −(mjAj ∓mkAk)

2.

Geometrically, our conic becomes tangent to the line Li : Ai = 0. If we look at the motive
(10.1), we see that this corresponds to a degenerate configuration, and we might reasonably
expect the amplitude to become singular. In fact, a moment’s reflection reveals a vast
number of possible degenerations including situations where the conic itself degenerates to
a union of 2 lines through a point p, which may lie on one of the Li, and situations where
the conic passes through the point Li ∩ L where L : A0 + A1 + A2 = 0. One would like to
better understand the behavior of the amplitude near these singularities.

Let us consider a generalization due to Cutkosky [5] of the above example to more general
graphs. If we write the amplitude in its usual (non-parametrized) form, we find an integral
over Rq where q is the loop number of the graph. The integrand has in the denominator a
product of rank 4 affine quadrics of the form (roughly) (~x−~q)2+m2. These quadrics determine
the polar locus of the integrand, and hence the motive whose realization will contain the
amplitude as a period. In fact the motive can be taken to be the union of the projective
closures of the quadrics. If we ignore what is happening at infinity and just consider the
affine quadrics, we might expect degeneracies to occur for values of the parameter ~q where
some subset of the affine quadrics do not meet transversally. In general, the locus of such ~q
will form a divisor in the space of momenta, and our first job is to use elimination theory to
find this divisor.

To formulate things precisely, we fix a graph Γ. We write H = H1(Γ,Q) and E = Edge(Γ).
As in (3.9), (3.10) we have

(12.3) 0 → H ⊗A → AE ∂−→ AV,0 → 0.

For e ∈ E write e∨ : AE → A for the evident functional. Let me write (abusively) e∨,2 :
AE → R,

∑
ε aεε 7→ aeāe = a2e,0 + a2e,1 + a2e,2 + a2e,3. Given q =

∑
qvv ∈ AV,0 (so

∑
v qv = 0)

consider the set

(12.4) H(q) := ∂−1(q) ⊂ AE

Note that if q 6= 0 then technically H(q) is not a vector space but a torsor under the vector
space H ⊗A. In fact, H(q) embodies the Feynman rule imposing relations for each vertex.
In other words, if vertex v lies on edges e1, . . . , ep oriented to point toward v, and if h ∈ H(q),
then

∑
i e

∨
i (h) = qv.

Let S ⊂ E be a subset of edges, and let T ⊂ S be such that the {e∨|H(q)}e∈T form a basis
for the vector space spanned by {e∨|H(q)}e∈S. To make life interesting, assume T 6= S. Let
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me ∈ R be a collection of masses, and consider the quadrics

(12.5) e∨,2 −m2
e : H(q) → R; e ∈ S.

Let X(S, q) ⊂ H(q) be defined by the vanishing of the quadrics (12.5). We want to identify
the set of q ∈ AV,0 such that X(S, q) is not a smooth subvariety of H(q) of codimension
equal to #S.

For each e ∈ T we get 4 R-linear functionals e∨,(0), . . . , e∨,(3) : AE → R. If we consider the
Jacobian matrix for the map

(12.6) (. . . , e∨,2 −m2
e, . . .)e∈S : H(q) → R#S

It will have #S rows and 4 ·#T columns. For the row given by e ∈ S we write e∨|H(q) =∑
ε∈T ce,εε

∨ + ae(q) with ae(q) ∈ A and ce,ε ∈ R. We have

(12.7) e∨,2|H(q) =

3∑

i=0

(
∑

ε∈T

ce,εε
∨,(i) + ae(q)

(i))2

For τ ∈ T it follows that the entry of the jacobian matrix corresponding to ∂/∂τ (i) is

(12.8) 2ce,τ (
∑

ε∈T

ce,εε
∨,(i) + ae(q)

(i))

It follows that the 4 entries of the e-row corresponding to ∂/∂τ yield exactly

(12.9) 2ce,τe
∨|H(q).

If we assume S ordered so the elements of T = {τ1, . . . , τp} come first, the matrix (12.9)
evaluated at h ∈ H(q) will look like

(12.10) 2 ·




τ∨1 (h) 0 0 . . .
0 τ∨2 (h) 0 . . .
...

...
...

...
0 . . . 0 τ∨p (h)
...

...
...

...




The point h will be singular in X(S, q) if first of all the quadrics (12.5) vanish at h (i.e.

h ∈ X(S, q)) and secondly there exists a real non-zero row vector ~b = (b1, . . . , b#S) of length
#S which dies under right multiplication by (12.10). Since the e∨|H(q) are affine linear
combinations of the τ∨i |H(q) we can use such a vector, which we treat as a vector with
unknown entries bi, to write p affine linear equations

(12.11)

p∑

i=1

αij(~b)τ
∨
i (h) = βj(~b, q); j = 1, . . . , p

We then solve these equations:

(12.12) τ∨i (h) = γi(~b, q)

and substitute into the quadrics (12.5) (again using that e∨|H(q) are affine linear combina-
tions of the τ∨i |H(q)). Note that the γi are homogeneous of degree 0 in the bj . The quadrics

yield #S equations Fi(~b, q) = 0 which are homogeneous of degree 0 in the bi. Write AV,0
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for the affine space associated to AV,0 ∼= (RV,0)4. We can view the bi as homogeneous co-
ordinates on P#S−1. In this way we get #S equations in P#S−1 × AV,0. Projecting down
to AV,0 amounts to eliminating the variables bi. The image is a closed subvariety Z ⊂ AV,0

with the property that q ∈ Z ⇔ the intersection of the quadrics in (12.5) is not transverse.
Note that in general we expect Z is a hypersurface in AV,0 though of course degeneracies can
occur. This Z is our divisor.

Example 12.2. Suppose elements of S form a cut, i.e. that Γ−
⋃
e∈S e is disconnected but

that S is minimal in the sense that no proper subset of S disconnects Γ. (In removing edges,
we do not remove vertices, so one of the connected components may be an isolated vertex.)
It is easy to see in this case that S − T = {e} is a single edge, so S = {τ1, . . . , τp, e} and
#S = p+ 1. For a suitable edge orientation we get

(12.13) e∨ =

p∑

i=1

τ∨i + a(q)

where a(q) is some fixed linear combination (depending on Γ, S, T ) of the qv. (Recall
q =

∑
qvv.) The matrix (12.10) in this case is

(12.14) 2 ·




τ∨1 0 0 . . .
0 τ∨2 0 . . .
...

...
... . . .

0 . . . 0 τ∨p∑p
i=1 τ

∨
i + a(q)

∑p
i=1 τ

∨
i + a(q) . . .

∑p
i=1 τ

∨
i + a(q)



.

The linear equations and their solutions become

(bi + bp+1)τ
∨
i + bp+1(

∑

j 6=i

τ∨j + a(q)) = 0; i = 1, . . . , p(12.15)

τ∨i = a(q)Di(b)/D(b)(12.16)

It is easy to see the determinant D(b) in the denominator does not identically vanish because
the term b1b2 · · · bp cannot cancel.

The quadrics in this case become after substitution (|a|2 = aā, a ∈ A.)

|a(q)|2Di(b)
2/D(b)2 = m2

i ; 1 ≤ i ≤ p(12.17)

|a(q)|2(1 +
p∑

i=1

Di(b)/D(b))2 = m2
p+1(12.18)

Combining these, we deduce finally

(12.19) |a(q)| =
p+1∑

i=1

µ(i)mi; µ(i) = ±1.

Note (12.19) is necessary and sufficient for the intersection of the Feynman quadrics on H(q)
indexed by S to be non-transverse. Indeed, if (12.19) holds, we can solve for the τ∨i as
multiples of a(q) using (12.16). The resulting point will lie on X(S, q). The matrix (12.14)
can then be treated as a matrix of scalars (more precisely, all entries lie on the same line).

It has p+1 rows and p columns, so there is necessarily a non-trivial solution ~b and the point
on X(S, q) is not a point of transverse intersection.
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The values of q where (12.19) hold are called normal thresholds. We have seen (12.2)
that in the case of the triangle graph, normal thresholds correspond to values of external
momenta where the polar conic (12.1) becomes tangent to one of the Li : Ai = 0.

13. Thresholds for the triangle graph

In this section, we outline the use of limiting mixed Hodge structures (cf. section 2) to
study thresholds. We take the very basic case of the triangle graph with zero masses. The
second Symanzik polynomial has the form

(13.1) Q = |q0|2A1A2 + |q1|2A0A2 + |q2|2A0A1.

We will eventually want to assume qi = qi(t) for t in a small disk about 0 and that two of the
|qi(t)|2 tend to 0 as t→ 0. (The notation here is misleading. qi is a 4-vector and |qi|2 = 〈qi, qi〉
for some non-degenerate quadratic form on C4. In particular, |qi|2 is analytic in qi.) Our
objective will be to show in this case that the logarithm of monodromy N (2.12) satisfies
N2 6= 0 and that as a consequence the leading term for the expansion of the amplitude as
t→ 0 is a non-zero multiple of (log t)2.

The differential form we need to integrate is

(13.2) η(q) :=
Ω2

(A0 + A1 + A2)(|q0|2A1A2 + |q1|2A0A2 + |q2|2A0A1)

Let π : P → P2 be the blowup of the three vertices Ai = Aj = 0. We take q general so the
singularities of the polar locus of η(q) do not fall at the vertices. Let Z(q) ⊂ P be the strict
transform of this polar locus. Let E0, E1, E2 ⊂ P be the exceptional divisors, so Ei lies over
Aj = Ak = 0, and let Fi ⊂ P be the strict transform of the locus {Ai = 0}. The union

(13.3) Σ := π∗∆ = E0 ∪ E1 ∪ E2 ∪ F0 ∪ F1 ∪ F2 ⊂ P

forms a hexagon. Note that Z(q) = L′ ∪ Y (q) where L′ is the strict transform of the line
L : A0 + A1 + A2 = 0 in P2 and Y (q) is the strict transform of the conic. L′ meets each Fi
in a single point, and Y (q) meets each of the Ei in a single point. Let Σ0 := Σ− Σ ∩ Z(q).
Then Σ0 is a hexagon of affine lines E0

i , F
0
j , so H

1(Σ0) = Q(0). The motive we need to study
is

(13.4) H := H2(P − Z(q),Σ0).

We have seen in Remark 10.3 that grWH = Q(0)⊕Q(−1)2 ⊕Q(−2). The next step is to
construct the Kummer motives W2H and H/W0H (see Example 2.2). Let S =

∑
nisi be a

0-cycle (formal linear combination of smooth points) on Σ0. We define a Kummer extension
KS by pullback as follows

(13.5)

0 −→H1(Σ0) −→H1(Σ0 − {si}) −→
⊕

iQ(−1) −→ 0∥∥∥
x

xs

0 −→ Q(0) −→ KS −→ Q(−1) −→0.

Recall (2.10) that Kummer extensions ↔ C×. Let [S] ∈ C× correspond to KS as above. It
is an easy exercise to check that the mapping

(13.6) {0-cycles on Σ0} → C×; S 7→ [S]
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is a homomorphism of groups. To compute this map, we note that the Ei, Fi are projective
lines with natural projective coordinates aj , ak. We have

(13.7) F 0
i = Fi − {−1}; E0

i = Ei − {|qj |2ak + |qk|2aj = 0}.
Suppose S = s is a single point. If s ∈ E0

i (resp. s ∈ F 0
i ) we choose f a regular function on

E0
i (resp. F 0

i ) with a simple zero at s and no other zeroes. We then orient our hexagon by
ordering the edges E0, F1, E2, F0, E1, F2. Let j, k be such that Fj, Ei, Fk (resp. Ej, Fi, Ek) is

part of the ordered string of edges. Define [s] = f(Ei∩Fk)
f(Ei∩Fj)

(resp. [s] = f(Fi∩Ek)
f(Fi∩Ej)

.)

We will be interested in the case S = H ′
i · Σ0 where H ′

i is the strict transform of the line
Hi : Aj − Ak = 0 in P2. Thus S = {1 ∈ E0

i } + {1 ∈ F 0
i }. On Fi we take f =

aj−ak
aj+ak

, so

[1 ∈ F 0
i ] = −1. On Ei, let f =

aj−ak
|qj |2ak+|qk|2aj

, so [1 ∈ E0
i ] =

−|qj|
2

|qk|2
. Taken together, we see

(13.8) [H ′
i · Σ0] =

|qj|2
|qk|2

.

Lemma 13.1. W2H is an extension of Q(−1)2 by Q(0) corresponding to extension classes

(13.9)
|qj|2
|qk|2

,
|qi|2
|qk|2

∈ C×.

Here i, j, k are all distinct.

Proof. We have a diagram

(13.10)

0 −→H1(Σ0) −→ H2(P − Z(q),Σ0) −→ H2(P − Z(q)) −→0∥∥∥ a

x d

x
0 −→H1(Σ0) −→H2(P − Z(q) ∩ Σ0,Σ0) −→H2(P − Z(q) ∩ Σ0) −→0

c

x b

x
Q(−1)2 Q(−1)2x

x
0 0.

W2H is the image of the map a. Also

(13.11) H2(P − Z(q) ∩ Σ0) ∼= H2(P ) ∼= Q(−1)4

generated by the 4 divisor classes [L′], [E0], [E1], [E2]. The map b has image generated by
the two divisor classes [L′], [Y (q)] = 2[L′] − [E0] − [E1] − [E2]. Note that b lifts to a map c
as indicated because the divisors L′, Y (q) do not meet Σ0. It follows that the image of the
map d is generated by the divisor classes H ′

i where the H ′
i are as above. The lemma follows

from (13.9). �

It is convenient to work with H ′
i −H ′

j. If, e.g., we restrict the extension given by the top

line of (13.10) to Q(−1)(H ′
0 − H ′

2) ⊂ H2(P − Z(q)), the resulting Kummer extension by

the lemma is |q2|2|q0|2

|q1|4
. Similarly, the extension class after restriction to Q(−1)(H ′

0 − H ′
1) is

|q2|4

|q0|2|q1|2
. (We are using here the orientation of the hexagon as fixed above.)

25



Lemma 13.2. H/W0 is an extension of Q(−2) by Q(−1)2 corresponding to extension classes
given by formulas (13.18), (13.19) below.

Proof. We can identify

(13.12) H/W0
∼= H2(P − Z(q)).

Here Z(q) is isomorphic to the union of the conic X(q) : |q0|2A1A2+|q1|2A0A2+|q2|2A0A1 = 0
and the projective line A0 + A1 + A2 = 0. We take the coefficients |qi|2 to be general, so
these two plane curves meet in 2 distinct points:

(13.13) p± : A0 = −A2 −A1;

A1 =
|q0|2 − |q1|2 − |q2|2 ±

√
|q0|4 + |q1|4 + |q2|4 − 2|q0|2|q1|2 − 2|q0|2|q2|2 − 2|q1|2|q2|2

2|q2|2
A2.

We will also need (straightforward check) that the function f01 := 1 + |q2|2A1

|q1|2A2
on X(q) has

divisor (f01) = (1, 0, 0) − (0, 1, 0). Similarly, f02 = A2f01/A1 has divisor (f02) = (1, 0, 0) −
(0, 0, 1).

Using the techniques of section 10 and (13.12) we can identify H/W0 with the extension

(13.14) 0 →
(
Q(−1)v0 +Q(−1)v1 +Q(−1)v2

)/
Q(−1)

(
v0 + v1 + v2

)
→

H1

(
Z(q)− {v0, v1, v2},Q(−2)

)
→ H1(Z(q),Q(−2)) → 0.

More directly, If we identify

(13.15) Image(H2(P ) → H2(P − Z(q))) ∼= Q(−1)(H ′
0 −H ′

2)⊕Q(−1)(H ′
1 −H ′

2)

we can deduce from (13.12) an exact sequence

(13.16) 0 → Q(−1)(H ′
0 −H ′

2)⊕Q(−1)(H ′
1 −H ′

2) → H/W0 → H1(Z(q),Q(−2)) → 0

We have [H ′
i−H ′

j ] = [Ej−Ei], and the identification of (13.16) with (13.14) sends [H ′
i−H ′

j ] 7→
vj − vi = [Ej − Ei] · Z(q).

Twisting and dualizing (13.14), we get the extension
(13.17)

0 → H1(Z(q),Q) → H1(Z(q)−{v0, v1, v2},Q) →
(
Q(−1)v0+Q(−1)v1+Q(−1)v2

)deg 0
→ 0.

The class of the extension obtained by restricting on the right to Q(−1)(vi−vj) is calculated
by the ratio fij(p+)/fij(p−) ∈ C×. We have, e.g.

(13.18) f01(p+)/f01(p−) =
(
|q0|2 + |q1|2 − |q2|2 +

√
|q0|4 + |q1|4 + |q2|4 − 2|q0|2|q1|2 − 2|q0|2|q2|2 − 2|q1|2|q2|2

)2

4|q0|2|q1|2
.
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(13.19) f02(p+)/f02(p−) =

|q0|2 + |q2|2 − |q1|2 −
√

|q0|4 + |q2|4 + |q1|4 − 2|q0|2|q2|2 − 2|q0|2|q1|2 − 2|q2|2|q1|2
|q0|2 + |q2|2 − |q1|2 +

√
|q0|4 + |q2|4 + |q1|4 − 2|q0|2|q2|2 − 2|q0|2|q1|2 − 2|q2|2|q1|2

×

f01(p+)/f01(p−)

�

Suppose now that the |qi|2 = |qi(t)|2 are analytic functions of a parameter t with |t| < ε.
After scaling we may suppose limt→0 |q0(t)|2 = 1. We will suppose further that ord0(|qi|2) > 0
for i = 1, 2. Replacing t by a power if necessary, we can arrange that the monodromy σ as t
winds around 0 acts trivially on grWH . We want to compute N2 = (log σ)2. For the family
of Kummer extensions Ex(t) as in example 2.2 with grWE = Q(1)⊕Q(0), one sees easily from
(2.8) that N , viewed as a map Q(0) → Q(1)(−1) = Q(0) is multiplication by ord0(x(t)).
Similarly, N2 : H → H(−2) factors as N2 : Q(−2) = H/W2 → W0(−2) = Q(−2). This in
turn can be factored

(13.20) Q(−2)
NH/W0−−−−→ Q(−2)(H ′

0 −H ′
2)⊕Q(−2)(H ′

0 −H ′
1)

NW2−−→ Q(−2).

Set

b = ord0

(
|q0|2+|q2|2−|q1|2−

√
|q0|4 + |q2|4 + |q1|4 − 2|q0|2|q2|2 − 2|q0|2|q1|2 − 2|q2|2|q1|2

)
> 0.

c = ord0f01(p+)/f01(p−).

Formula (13.19) and lemma 13.1 (see also the discussion below that lemma) one sees that
N2 : Q(−2) → Q(−2) is multiplication by

(13.21) ρ := (4 · ord0(|q2|2)− 2 · ord0(|q1|2))c+ (−4 · ord0(|q1|2) + 2 · ord0(|q2|2))(b+ c).

If for example we take ord0(|q1|2) = ord0(|q2|2) > 0, we get

(13.22) N2 = multiplication by− 2b · ord0(|q2|2) 6= 0.

In order to explicit the limiting behavior of the amplitude, we consider (2.15), which in
the current setup (η(q) as in (13.2)) looks like

(13.23) lim
t→0

exp

(
−N log t

2πi

)



∫
γ0
η(q)∫

γ−2,1
η(q)∫

γ−2,2
η(q)∫

γ−4
η(q)


 =




a0
a1,1
a1,2
a2




Here, the γj for j ≤ i form a basis for the homology H∨
Q. Our limiting approximation for∫

γ0
η(q) is therefore the top entry in the column vector

(13.24) exp

(
+N

log t

2πi

)



a0
a1,1
a1,2
a2


 .
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Since N2 has all entries 0 except for ρ (13.21) in the upper right corner, we conclude

(13.25)

∫

γ0

η(q) ∼ ρ

2

(
lim
t→0

∫

γ−4

η(q(t))
)
(log t/2πi)2 +B log t/2πi+ C

for suitable constants B,C.
It remains, finally to compute the limit in (13.25). The cycle γ−4 is a generator of the

image (W4H)∨ →֒ H∨. By adjunction, we can compute the integral by a suitable residue
computation on η(q). In affine coordinates ai = Ai/A0 we find

(13.26) ±η(q) = da1 ∧ da2
(1 + a1 + a2)(|q0|2a1a2 + |q1|2a2 + |q2|2a1)

Let b2 be the coordinate a2 restricted to the line a1 + a2 + 1 = 0. The residue yields

(13.27)
db2

−|q0|2b22 + (|q1|2 − |q0|2 − |q2|2)b2 − |q2|2

For a suitable choice of γ−4,
∫
γ−4

η(q(t)) will be the difference of the two residues of (13.27).

Since the sum of the two residues is zero, it will suffice to show that an individual residue does
not tend to 0. With our assumptions that |q0|2 → 1, |qi|2 → 0, i = 1, 2, this is straightforward.
We have proved

Theorem 13.3. Consider the triangle graph with zero masses and momenta qi(t), i = 0, 1, 2.

We treat the momenta as complex 4-vectors, so |qi(t)|2 =
∑4

j=1 q
(j)
i (t)2 is analytic in a

complex parameter t for |t| → 0. Assume |q0(0)|2 = 1 and |qi(0)|2 = 0, i = 1, 2. Assume
further that the ord0(|qi|2) are such that ρ in (13.21) is non-zero. (E.g. |q1|2 and |q22 vanish
to equal order at t = 0). Then if we take γ0 to be the chain {(x, y, z) ∈ P2(R) | x, y, z ≥ 0}
in P2 then

(13.28)

∫

γ0

η(q) ∼ A(log t/2πi)2 +B log t/2πi+ C

for suitable constants A,B,C with A 6= 0.

14. Physics

Let us now try to understand the above considerations from a physicists viewpoint. Setting
an edge variable to zero turns the triangle graphs into three reduced diagrams

, , .

Each of them is a function of a single invariant q21, q
2
2 or q23. The computation of these

reduced diagrams is straightforward and delivers (in the equal mass case, otherwise the
Kallen function replaces the square root) a result of the form

(14.1)

√
1− 4m2

q2
ln

√
1− 4m2

q2
− 1

√
1− 4m2

q2
+ 1

,

which has, as a function of q2, a branchcut from [4m2,+∞[ and a variation there∼
√
1− 4m2

q2
.
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This gives us the equivalent of the functions fi above. Notice, however, that the expected
log is multiplied by an algebraic function. The problem comes in the normalization of e−1,
or in other words the choice of differential form to represent a class in de Rham cohomology.
Essentially, the Feynman integrand in this case has the form [1] (in the equal mass case, and
for the example that edge 2 shrinks)

(14.2) ω =
ln

m2(A2
0
+A2

1
)+(2m2−q2

2
)A0A1

m2(A2
0
+A2

1
)+(2m2−µ2)A0A1

Ω1

(A0 + A1)2

where we renormalize at a renormalization point q22 = µ2 by a simple subtraction in this
one-loop example.

An easy partial integration (the boundary terms do not contribute as we have a renormal-
ized integrand) determines the result Eq.(14.1), with the square root determined from the
two solutions of the quadric.

The issue for the functions gj in (9.2) is more subtle. The idea is that the span of columns
in (9.2) starting from the right hand column is supposed to be invariant under monodromy.
In particular, the monodromy of the h is supposed to be a linear combination of the 2πi log gj.
To mimic this in physics we may use Cutkosky cuts. Concretely, we look at

, , .

They correspond to integrals
∫
d4kΘ(k0 + qi,0)Θ(k0 + kj,0)δ((k + qi)

2 −m2)δ((k + qj)
2 −m2)

1

k2 −m2

which readily integrate to ∫ b

a

du

cu+ d

for suitable a, b, c, d depending on masses and external momenta (these a, b, c, d are in the
literature, in [7] for example).

Finally, the completely cut leaves no integral to be done, but gives a known rational

function of the q2i , m
2
j .

Hence, from a physicists viewpoint, the above structure looks like



1 0 0 0 0

0 0 0

0 0 0

0 0 0




=(C1, C2, C3, C4, C5)

nicely expressed in terms of reduced diagrams, Cutkosky cuts, and a traingle with all edges
cut, which delivers a momentum and mass dependent constant as the right lowermost entry,
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corresponding to the entry (2πi)2 in the classical dilog case. This justifies recent practice in
physics to put more internal edges on the mass-shell than prescribed by Cutkosky.

A challenge for the future is to identify the correct differential equations and the connection
with Griffith’s transversality, so that it makes sense to discuss constructs like

Var

(
ℑ −

[
ℜ · ℑ

]
+ · · ·

)
= 0,

as functions of complex external momenta.
We believe it is basically the presence of such invariant functions in the complex domain

which allows to analytically continue Feynman diagrams in a way which will make the
analytic requirements on Green functions more transparent once the Hodge structures of
terms in the perturbative expansion are under control.
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