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The main results for the two-dimensional quantum gravity, conjectured from the
matrix model or integrable approach, are presented in the form to be compared
with the world-sheet or Liouville approach. In spherical limit the integrable side for
minimal string theories is completely formulated using simple manipulations with
two polynomials, based on residue formulas from quasiclassical hierarchies. Explicit
computations for particular models are performed and certain delicate issues of non-
trivial relations among them are discussed. They concern the connections between
different theories, obtained as expansions of basically the same stringy solution to
dispersionless KP hierarchy in different backgrounds, characterized by nonvanishing
background values of different times, being the simplest known example of change
of the quantum numbers of physical observables, when moving to a different point
in the moduli space of the theory.
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1 Introduction

The problem of solving two-dimensional quantum gravity exists already more than twenty, or
even more than twenty-five years. By its basic definition one usually takes the Polyakov path
integral [1], where the integration over the metrics on two-dimensional string world-sheets has
been reduced to study of naively simple, but in fact quite nontrivial two-dimensional conformal
Liouville field theory. The world-sheet approach allowed to determine immediately only the
relatively simple quantities - like scaling dimensions - of the operators of the two-dimensional
quantum gravity [2, 3]. The computation of their correlators - even on the world-sheets of
simplest spherical topology - appeared to be the problem of much higher complexity, and was
(yet only partially) solved very recently.

Fortunately, the two-dimensional quantum gravity is a renormalizable theory - in the most
physically important sense of the word, which means that the details of regularization of the
theory at microscopic scale do not affect its macroscopic properties: the “observable” scaling
dimensions and correlators. In different words, two dimensional quantum gravity possesses
strong universality property - meaning that quite different methods of the computation gives
rise basically to the same result.

The first sign of this was observed already in the middle of 80-s of the last century. The
idea of summing over the discrete triangulations of world sheets instead of the integrations over
the metric in continuous theory had demonstrated its efficiency in two-dimensional case, quite
in contrast with the nonrenormalizable gravity of higher dimensions. Moreover, it turned out
that summing over triangulations of the two-dimensional surfaces can be itself reformulated as
summing over the fat graphs of the matrix models [4]. The duality between matrix model (the
zero-dimensional gauge theory) and continuous two-dimensional world-sheet gravity is in fact
nothing but the first studied example of the famous nowadays gauge/string duality.

By the matrix model approach two-dimensional quantum gravity was claimed to be “com-
pletely solved” [5] in the beginning of 90-s of the previous century. This solution was nicely
formulated [6, 7] in terms of special stringy solutions to the hierarchies of integrable equations,
being all the well-known polynomial reductions of the Kadomtsev-Petviashvili (KP) hierarchy.
In practice, this has opened a possibility to compute exactly the correlators in two-dimensional
gravity (in the framework of “matrix model” approach) at least in the spherical approximation
(when all closed string loops are suppressed) by methods of dispersionless KP hierarchy, which
turn this problem into the problem of solving algebraic nonlinear equations. Below, following
[8], we shall demonstrate how this way leads straightforwardly to the computation of invari-
ant correlation numbers - the ratios of the correlation functions which do not depend upon
normalizations of particular operators.

However, it is still a great puzzle and, at least partially, an open problem, whether the
matrix model approach leads exactly to the same results as the original world-sheet approach.
Partially this is related to the fact, that the world-sheet quantum Liouville theory of [1] is a
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rather specific two-dimensional quantum field theory, yet to be fully understood. The two- and
three- point functions in Liouville theory were computed in early 90-s [9, 10], but it turned out,
that only after discovery by Alesha Zamolodchikov the higher order equations of motion [11], it
appeared to be possible to compute the generic multipoint correlation functions of the operators
of minimal (p, q) models coupled to two-dimensional Liouville gravity, after using the higher
order equations, which basically reduce the integrands on the moduli spaces of world-sheets
with punctures to the total derivatives.

These correlation functions could be now compared with the results extracted from the
“matrix model” approach, or more strictly, from the formulation of minimal string theory in
the language of integrable hierarchies.

2 dKP for (p,q)-critical points

According to widely beleived hypothesis, the so called (p, q) critical points of two-dimensional
gravity (or (p, q) minimal string theory) are most effectively described by the tau-function of
p-reduced KP hierarchy, satisfying string equation. The logarithm of this tau-function should
be further expanded around certain background values of the time-variables, with necessary
tp+q 6= 0. In particular, it means that the correlators on world-sheets of spherical topology
(the only ones, partially computed by now by means of two-dimensional conformal field theory
[11, 12]) are governed by quasiclassical tau-function of dispersionless KP or dKP hierarchy,
which is a very reduced case of generic quasiclassical hierarchy from [13].

For each (p, q)-th minimal theory one should consider a solution of the p-reduced dKP
hierarchy, or more strictly, its expansion in the vicinity of nonvanishing tp+q = p

p+q
and vanishing

other times, perhaps except for cosmological constant x, chosen in a different way for the
different theories (the so called conformal backgrounds). If q = p + 1 (the unitary series)
the cosmological constants x ∼ t1 basically coincides with the main first time of the KP
hierarchy, but for “non-unitary” backgrounds the quantum numbers change, and this causes
certain nontrivial relations on the space of KP solutions to be discussed below.

2.1 Residue formulas

The geometric formulation of results for minimal string theories in terms of the quasiclassical
hierarchy can be sketched in the following way:

• For each (p, q)-th point take a pair of polynomials

X = λp + . . .

Y = λq + . . .
(1)
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of degrees p and q respectively. They can be thought of as a dispersionless version of the
Lax and Orlov-Shulman operators of KP theory

[
X̂, Ŷ

]
= ~

X̂ = ∂p + . . . , Ŷ = ∂q + . . .
(2)

or as a pair of (here already integrated) Krichever differentials with the fixed periods on
a complex curve (for dKP - a rational curve with global uniformizing parameter λ). It is
also convenient to combine these polynomials into a generating differential

dS = Y dX (3)

whose periods and singularities define the variables of the quasiclassical hierarchy. Since
on rational curve (λ-plane or Riemann sphere with the marked point P0, where λ = ∞)
all periods of (3) vanish, the time variables are related with the residues or singular part
of expansion of the differential dS at the point P0.

• The variables of dispersionless KP hierarchy are therefore introduced by residue formulas
[13, 14, 15]

tk =
1

k
resP0ξ

−kdS, k > 0

∂F
∂tk

= resP0ξ
kdS, k > 0

(4)

where

ξ = X
1
p = λ

(
1 + . . . +

X0

λp

) 1
p

(5)

is the distinguished inverse local co-ordinate at the point P0, where λ(P0) = ∞ and
ξ(P0) = ∞. From (4) it also follows for the second derivatives

∂2F
∂tn∂tk

= resP0(ξ
kdHn) (6)

while the third derivatives are given by the formula

∂3F
∂tk∂tl∂tn

= resdX=0

(
dHkdHldHn

dXdY

)
(7)

In (6) and (7) the set of one-forms

dHk =
∂dS

∂tk
, k ≥ 1 (8)

(derivatives are taken at fixed X) corresponds to dispersionless limit of KP flows and can
be integrated up to polynomial expressions

Hk = X(λ)
k/p
+ (9)

in uniformizing co-ordinate λ = H1.

4



Note also, that the tau-functions of (p, q) and (q, p) theories do not coincide, but are related by
the Legendre or Fourier transform [16], exchanging the polynomials (1) by each other X ↔ Y .

2.2 Solution to dKP

The fact, that one-forms (8) can be integrated up to the polynomials (9) leads to explicit
expression for the integrated generating differential (3), or

S =

p+q∑

k=1

tkHk =

p+q∑

k=1

tkX
k/p(λ)+, k mod p (10)

depending already upon the coefficients of the polynomial X(λ) only. In different words, formula
(10) means, that the first part of the equations (4) has been already effectively resolved for the
coefficients of Y (λ). The dependence of coefficients of X(λ) = λp +

∑p−2
k=0 Xkλ

k over the KP
times (4) is determined in the most easy way from dS|dX=0 = 0, which is now a system of p−1
“hodograph” equations dS

dλ
= 0 imposed at p− 1 roots of X ′(λ) = 0.

A simple observation, that any hamiltonian (9) is a polynomial in terms of the variable
λ = H1 leads to dispersionless Hirota equations, which express any second derivative ∂2F

∂tk∂tn

with arbitrary k and l in terms of the second derivatives ∂2F
∂tk∂t1

where one of the indices is fixed

and corresponds to the first time. From formulas (4) one finds that

dS =
ξ→∞

∑ (
ktkξ

k−1dξ +
∂F
∂tk

dξ

ξk+1

)
(11)

which is just an expansion in local co-ordinate at the marked point P0. Taking the time
derivatives (cf. with (8)) gives the set

Hk =
∂S

∂tk
= ξk −

∑
j

∂2F
∂tk∂tj

1

jξj
= ξk(λ)+, k > 0 (12)

which forms a basis of meromorphic functions with poles at the point P0, or just a particular
polynomial basis, explicitly fixed by last equation. The set the powers λk has the same singu-
larities as the set of functions (12), i.e. these two are related by simple linear transformation,
e.g.

H1 = λ, H2 = λ2 + 2
∂2F
∂t21

,

H3 = λ3 + 3
∂2F
∂t21

λ +
3

2

∂2F
∂t1∂t2

, . . .

(13)

These equalities follow from the comparison of the singular at P0 part of their expansions in
ξ, following from (12). Comparing the negative ”tails” of the expansion in ξ of both sides of
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eq. (13) expresses the derivatives ∂2F
∂tk∂tl

(of Hk in the l.h.s.) in terms of only those with k = 1

(of λ = H1 in the r.h.s.). These relations are called the dispersionless KP, or the dKP Hirota
equations, e.g.

∂2F
∂t1∂t3

=
3

8
X2

0 =
3

2

(
∂2F
∂t21

)2

∂2F
∂t3∂t3

=
3

8
X3

0 = 3

(
∂2F
∂t21

)3 (14)

We have listed here those, which will be of some interest for two-dimensional quantum gravity.

2.3 Scaling

Under the scaling X → ΛpX, Y → ΛqY , (induced by λ → Λλ and therefore ξ → Λξ), the
times (4) transform as tk → Λp+q−ktk. Then from the second formula of (4) it follows that the
function F scales as F → Λ2(p+q)F , or, for example, as

F ∝ t
2 p+q

p+q−1

1 f(τk) (15)

where f is supposed to be a scale-invariant function of corresponding dimensionless ratios of

the times τk = tk/t
p+q−m
p+q−1

1 (4). In the simplest (p, q) = (2, 2K − 1) case of dispersionless KdV
one also expects a natural scaling of the form

F ∝ (t2K−3)
K+

1
2 f(tl) (16)

with tl = t2l−1/(t2K−3)
(K−l+1)/2, where the role of cosmological constant is played by the time

t2K−3 ∝ Λ4.

2.4 KDV series

More explicit formulas can be written for the “KdV-series” (p, q) = (2, 2K − 1), corresponding
to the p = 2 KdV reduction of the KP hierarchy. Now

X = λ2 + 2u, ξ =
√

X =
√

λ2 + 2u

Y = λ2K−1 +
K−1∑

k=1

ykλ
2k−1

(17)

and the explicit formula (10) reads

S =
K+1∑

k=1

t2k−1X
k−1/2(λ)+ (18)
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Dependence on u upon the flat times is determined by a single equation

dS|dX=0 = 0 (19)

since dX = 2λdλ has the only zero at λ = 0, or vanishing of the polynomial

P (u) ≡ 1
2

dS

dλ

∣∣∣∣
λ=0

=
K∑

k=0

(2k + 1)!!

k!
t2k+1u

k = 0 (20)

Integrating square of the polynomial (20)

F = 1
2

∫ u

0

P 2(v)dv = 1
2

K∑

k,l=0

t2k+1t2l+1
(2k + 1)!!(2l + 1)!!

k!l!(k + l + 1)
uk+l+1 (21)

one gets the string free energy - the logarithm of quasiclassical tau-function, due to the formula

F = 1
2

∑

k,l

tktl resP0(ξ
kdHl) (22)

expressing free energy [14] in terms of its second derivatives, and since the coefficient in the
r.h.s. of (21) exactly coincides with the second derivative (6)

resλ=∞(ξ2k+1dH2l+1) =

=
∑
n≥0

l∑
m=0

(2u)n+m

n!m!

Γ(k + 3/2)Γ(l + 3/2)(2(l −m) + 1)

Γ(k + 3/2− n)Γ(l + 3/2−m)
resλ=∞

(
dλλ2(k+l−n−m)+1

)
=

= (2u)k+l+1Γ(k + 3/2)Γ(l + 3/2)
2

π

l∑
m=0

(−)l−m

m!(k + l + 1−m)!
=

=
(2k + 1)!!(2l + 1)!!

k!l!(k + l + 1)
uk+l+1

(23)

where the last equality holds, in particular, due to binomial identity
∑l

m=0(−)m(s
n) = (−)l(s−1

l ).

3 Examples: particular (p,q) models

3.1 Pure gravity: the explicit partition function

In this case (p, q) = (2, 3) and one has only two nontrivial parameters t1 and t3 with, and the
partition function can be calculated explicitly. The times (4) are expressed by

t5 =
2

5
, t3 =

2

3
Y1 −X0, t1 =

3

4
X2

0 −X0Y1

t4 =
1

2
Y2, t2 = Y0 − Y2X0

(24)
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in terms of the coefficients of the polynomials

X = λ2 + X0, Y = λ3 + Y2λ
2 + Y1λ + Y0 (25)

The odd times t1, t3 and t5 do not depend upon the even coefficients Y0 and Y2 of the second
polynomial in (25), and in what follows we choose Y2 = Y0 = 0, ensuring t2 = t4 = 0. Relations
(24) can be then easily solved for the latter coefficients of

X = λ2 + X0, Y = λ3 + Y1λ (26)

giving rise to

X0 =
1

3

√
9t23 − 12t1 − t3, Y1 =

1

2

√
9t23 − 12t1 (27)

The second half of residues (4) gives

∂F
∂t1

=
1

8
X3

0 −
1

4
Y1X

2
0

∂F
∂t3

= −1

8
Y1X

3
0 +

3

64
X4

0

(28)

This results in the following explicit formula for the quasiclassical tau-function

F =
1

3240

(
9t23 − 12t1

)5/2
+

1

4
t33t1 −

1

4
t3t

2
1 −

3

40
t53 (29)

At t3 →∞ (expansion at t1 → 0) formula (29) gives

F =
t3→∞

− t31
18t3

(
1 + O

(
t1
t23

))
(30)

which is the partition function of the Kontsevich model [17, 18] (also identified with the (2, 1)-

point or topological gravity). At t1 → ∞ tau function (29) scales as F ∝ t
5/2
1 or partition

function of pure two-dimensional gravity: expansion at t1 →∞ gives

F = (−3t1)
5/2

(
4

405
− 1

54

t23
t1

+
1

96

t43
t21

+ O

(
t63
t31

))
+ . . . (31)

modulo analytic terms.

Formula (29) is the only example of exact computation. For the rest one needs to solve
perturbatively the nonlinear string equation. It contains the polynomial part, which gives
contribution only to a finite number of correlation functions. Usually such “non-universal”
part is neglected, when comparing the result of the computation with the world-sheet Liouville
theory. It also vanishes at t3 = 0 or at vanishing of the time, corresponding to so called
“boundary operator” (see e.g. [21]), the t2K−1 variable in the (2, 2K − 1) KdV series, which we
shall usually neglect in what follows. However, these terms are essential, when taking the limit
(30) to the topological Kontevich model, and it means that they come from the contact terms
of topological origin.
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3.2 The gravitational Yang-Lee model: (p,q)=(2,5)

The calculation of times according to (4) gives

t1 = −5

8
X3

0 +
3

4
Y3X

2
0 − Y1X0

t3 =
5

4
X2

0 − Y3X0 +
2

3
Y1

t5 =
2

5
Y3 −X0

t7 =
2

7

(32)

for the polynomials
X = λ2 + X0

Y = λ5 + Y3λ
3 + Y1λ

(33)

These equations are easily solved for

Y1 =
3

2

(
t3 +

5

4
X2

0 +
5

2
t5X0

)

Y3 =
5

2
(X0 + t5)

(34)

ending up with the only nonlinear string equation for X0

t1 = −5

8
X3

0 −
3

2
t3X0 (35)

The one-point functions (4) are given by

∂F
∂t1

= −15

64
X4

0 −
3

8
t3X

2
0

∂F
∂t3

= − 9

64
X5

0 −
3

16
t3X

3
0

(36)

while the two-point functions are

∂2F
∂t21

=
X0

2
,

∂2F
∂t1∂t3

=
3

8
X2

0 ,
∂2F

∂t3∂t3
=

3

8
X3

0 (37)

The last expressions can be obtained by differentiation (36) upon following from (35) explicit
formulas for ∂X0

∂t1
and ∂X0

∂t3
, or they follow directly from the Hirota equations (14).

To compare the predictions of the “integrable” approach for correlators in two-dimensional
gravity with the calculations in world-sheet theory, one needs first to make certain correspon-
dences in the space of coupling constants. The simplest one comes from the scaling prop-
erties (15), (16). In the Yang-Lee theory the role of the cosmological constant is played
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by the KdV time t3, and from the scaling properties of the “fixed area” partition function
FA(t1) = A−7/2z

(
t1A

3/2
)

(cf. with [19]) one gets for the Laplace transformed F(t1, t3) =∫∞
0

dA
A

e−t3AFA(t1) , or

F = t
7/2
3 f

(
t1

t
3/2
3

)
≡ t

7/2
3 f(t)

∂F
∂t1

= t23f
′,

∂2F
∂t21

= t
1/2
3 f ′′, . . .

(38)

and the string equation turns into

t + 5(f ′′)3 + 3f ′′ = 0 (39)

to be solved for the coefficients fn ≡ f(n)
∣∣
t=0

in the expansion of

F = t
7/2
3 f0 + t1t

2
3f1 +

t21t
1/2
3

2
f2 +

t31
6t3

f3 + . . . (40)

which gives rise to rational expressions

f3 = − 1

3(1 + 5f22)
, f4 = − 10f2

9(1 + 5f22)
3
, f5 =

10(1− 25f22)

27(1 + 5f22)
5

f6 =
1000f2(1− 10f22)

81(1 + 5f22)
7

, f7 = −1000(1− 95f22 + 550f42)

243(1 + 5f22)
9

f8 = −70000f2(2− 70f22 + 275f42)

2187(1 + 5f22)
11

, . . .

(41)

in terms of the two-point function f2, which itself can be found as a nonvanishing solution to
the “reduced” string equation

3f2 + 5f32 = 0 (42)

The “total normalization” f0 and the “one-point function” f1, which does not have a universal
sense, since it is coupled to an analytic term in the expansion (40), in principle are determined
by residue formula for ∂F/∂t3, or

7f − 3tf ′ + 9(f ′′)5 + 3(f ′′)3 = 0 (43)

giving rise to

f0 = −9

7
f52 −

3

7
f32 = −3

7
f32

(
1 + 3f22

)

f1 = −9

4
f32 f3 −

45

4
f42 f3 =

3

4
f22

(44)

This results in the rational “invariant ratios”, e.g.

f4f2
f23

= −3,
f4f3
f2f5

= −1

8
,

f2f4
f0f6

= 1,
f24
f0f8

= − 6

143
,

f22
f0f4

=
f2f6
f24

= −35

(45)
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to be possibly compared with the computations in the world-sheet theory.

3.3 Mixing in (2, 7) model

The (p, q) = (2, 7) model naively is not much different from the Yang-Lee case of (2, 5) theory
considered in sect. 3.2. The polynomials (1) are

X = λ2 + X0

Y = λ7 +
7X0

2
λ5 + Y3λ

3 + Y1λ
(46)

and the calculation of flat times (4) gives

t1 =
3

4
Y3X

2
0 −

105

64
X4

0 − Y1X0

t3 =
35

12
X3

0 − Y3X0 +
2

3
Y1

t5 = −7

4
X2

0 +
2

5
Y3

t7 = 0

t9 =
2

9

(47)

Again we see, that (47) can be easily solved w.r.t. Yj, but the only coefficient X0 now satisfies

t1 = −35

64
X4

0 −
15

8
t5X

2
0 −

3

2
t3X0 (48)

where we put t7 = 0 for the coefficient at the ”boundary” operator [21].

The one-point functions (4) are given for the (2, 7) model by

∂F
∂t1

= − 7

32
X5

0 −
1

4
Y1X

2
0 +

1

8
Y3X

3
0 = − 7

32
X5

0 −
5

8
X3

0 t5 −
3

8
X2

0 t3

∂F
∂t3

= −1

8
Y1X

3
0 −

35

512
X6

0 +
3

64
Y3X

4
0 = − 35

256
X6

0 −
45

128
X4

0 t5 −
3

16
X3

0 t3

∂F
∂t5

= − 15

512
X7

0 −
5

64
Y1X

4
0 +

3

128
Y3X

5
0 = − 25

256
X7

0 −
15

64
X5

0 t5 −
15

128
X4

0 t3

(49)

In the r.h.s.’s of (49) we already substituted the expressions for Yj in terms of times (47), and
the rest is to solve (48) by expanding in t3 and t5 and substitute result into (49).

The scaling anzatz (16), (38) now reads

F = t
9/2
5 f

(
t1
t25

,
t3

t
3/2
5

)

∂F
∂t1

= t
5/2
5 f(1),

∂2F
∂t21

=
X0

2
= t

1/2
5 f(11), . . .

(50)
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where we have introduced shorten notation for the derivatives over the first argument of f(t1, t2),
and string equation (48) turns into

t1 +
35

4
u4 +

15

2
u2 + 3t2u = 0 (51)

for u = f(11).

Expansion should be considered in the vicinity of the point t1 = 25
28

t25, where the one-point
function in the first equation of (49) vanishes on string equation (48) at t3 = 0. It means, in
particular, that the function f should be expanded around the non-vanishing background value
t1 = 25

28
of its first argument.

3.4 Ising model (p,q)=(3,4)

The residue formulas for the polynomials

X = λ3 + X1λ + X0

Y = λ4 + Y2λ
2 + Y1λ + Y0

(52)

give rise to

Y2 =
4

3
X1 +

5

3
t5

Y0 =
2

9
X2

1 +
10

9
X1t5

Y1 =
4

3
X0

(53)

(where the last equation is true upon t4 = 0), while X0 and X1 satisfy

t1 = −2

3
X2

0 +
4

27
X3

1 +
5

9
t5X

2
1

t2 = −2

3
X0X1 − 5

3
t5X0

(54)

Differentiating equations (54) one can find explicitly expressions for the first derivatives

∂X1

∂tj
=

Q
(j)
1

R
,

∂X0

∂tj
=

Q
(j)
0

R
, j = 1, 2, 5 (55)

with R = 4X3
1 + 12X2

0 + 20t5X
2
1 + 25t25X1 and

Q
(1)
1 =

9

2
(2X1 + 5t5), Q

(1)
0 = −9X0

Q
(2)
1 = −18X0, Q

(2)
0 = −3X1(2X1 + 5t5)

Q
(5)
1 = −5

2
(2X3

1 + 5t5X
2
1 + 12X2

0 ), Q
(5)
0 = −5X1X0(X1 + 5t5)

(56)
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Solving the second equation of (54) for X0 and substituting the result into the first one, turns
it into the Boulatov-Kazakov equation for X1 [20]

t1 = − 6t22
(2X1 + 5t5)2

+
4

27
X3

1 +
5

9
t5X

2
1 (57)

(contains information about all singularities of F for arbitrary magnetic field t2 and fermion
mass t5).

It is interesting to compare the Boulatov-Kazakov equation with what gives here formula
(19). The branch points are given by dX = 0 for the first polynomial from (52), or λ± =

±
√
−X1

3
, so that vanishing of the derivative of function

S = t1X(λ)
1/3
+ + t2X(λ)

2/3
+ + t5X(λ)

5/3
+ +

3

7
X(λ)

7/3
+ (58)

at λ± or S ′(λ)λ+
= S ′(λ)λ+

gives rise to the last equation of (54), to be easily solved for X0.
Substituting the result into S ′(λ)λ+

+ S ′(λ)λ+
= 0 reproduces immediately the string equation

(57).

The one-point functions

∂F
∂t1

=
1

27
X4

1 +
10

81
t5X

3
1 −

4

9
X1X

2
0 −

5

9
t5X

2
0

∂F
∂t2

=
4

27
X3

1X0 +
10

27
t5X

2
1X0 − 8

27
X3

0

∂F
∂t5

=
40

243
X3

1X
2
0 −

10

2187
X6

1 +
25

81
t5X

2
1X

2
0 −

10

729
t5X

5
1 −

5

27
X4

0

(59)

give rise to
∂2F
∂t21

=
X1

3
,

∂2F
∂t1∂t2

=
2X0

3
,

∂2F
∂t1∂t5

=
5

9
X2

0 −
5

81
X3

1 ,
∂2F

∂t2∂t5
= −10

27
X2

1X0,

∂2F
∂t22

= −2

9
X2

1 ,
∂2F
∂t25

= −50

81
X2

1X
2
0 +

5

243
X5

1 , . . .

(60)

At t2 = 0 one gets for the one-point functions (61)

∂F
∂t1

∣∣∣∣
t2=0

=
1

27
X4

1 +
10

81
t5X

3
1 ,

∂F
∂t2

∣∣∣∣
t2=0

= 0

∂F
∂t5

∣∣∣∣
t2=0

= − 10

729
X5

1

(
t5 +

X1

3

) (61)
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Note also, that for t2 = 0 the second equation of (54) has the only reasonable solution X0 = 0,
while the first one turns into

t1 =
4

27
X3

1 +
5

9
t5X

2
1 (62)

which almost coincides with the perturbation of the Yang-Lee (2, 5) model by quadratic term
(cf. with (35) and note that potential X1

3
from (62) is an analog of X0

2
from (35), see (37) and

(60)). More strictly, the quadratic term can be removed by redefinition

t̂1 =
4

27
X̂3

1 −
25

36
t25X̂1

t̂1 = t1 − 125

216
t35, X̂1 = X1 +

5

4
t5

(63)

This redefinition exactly fits [21] the vanishing of the energy 3-point function in the Ising model.
Indeed, if one identifies t̂1 with the cosmological constant of the world-sheet theory, the energy
3-point functions

∂3

∂t35
F(t̂1 + Ct35, t2 = 0, t5)

∣∣∣∣
t5=0

=

(
6
∂F
∂t1

+
∂3F
∂t35

)∣∣∣∣
t2,5=0

(64)

vanishes exactly at C = 125
216

. To calculate the r.h.s. of (64) one can use the first equation from
(61) and differentiate the last formula from (60) using (55), which is quite easy since X0 = 0
at t2 = 0. An alternative and more fundamental way is to use directly the residue formula (7)
for the third derivatives, which gives here

∂3F
∂t35

= resdX=0

(
dH3

5

dXdY

)
=

∑

λ=λ±

H ′
5(λ)3

6λY ′(λ)
=

t2=t5=0
−125

972
X4

1 (65)

It is interesting to point out, that under reparameterization (63) in the space of couplings

X1 = X̂1 − 5

4
t5

t1 = t̂1 +
125

216
t35

(66)

the reduced string equation (62) acquires the form of (analytically continued) string equa-
tion (35) for the Yang-Lee model, with tYL

3 ∼ t25 of the Yang-Lee model being substituted
by the square of the t5 = tIsing

5 of the (reduced) Ising model. However, one should take
into account an extra reparameterization in the space of couplings (66) and use the scaling
anzatz (15) rather than (16), has been used for the (2, 5) theory in (38) for the function
F (t̂1, t5) = F(t̂1 + 125

216
t35, t5)

∣∣
t2=0

. Since

∂2F

∂t̂21
= X̂1(t̂1, t

2
5)−

5

4
t5 (67)
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as follows from string equation (63) for X̂1 and the couplings are dimensional, the gravitational
Ising free energy F = F̂ (t̂1, t

2
5)− 5

8
t5t̂

2
1 is an even function of t5, apart of an analytic cubic term,

and its expansion gives all the 〈ε2n〉 correlators of the gravitationally dressed (3, 4) Ising model.
We shall present more comment about the relation of these two models in the next section.

4 Ising versus Yang-Lee

Both gravitational Ising model and (2, 5) Yang-Lee minimal theory arise as two different critical
points in a system of Ising spins on a random lattice. Moreover, since both theories have
p + q = 7, they have identical scaling in the first KP variable (15), which originally has cause
a confusion, when distinguishing these two minimal string theories. In particular, that origins
from the fact that string equations of those two models can be obtained from each other by
simple reparameterization in the space of couplings, as we have noticed already in the previous
section.

However, the physical sense of parameters, arising in these two equations is totally different.
One can say, that the same KP time variable has different “quantum numbers”, when one takes
a solution, corresponding to a different critical point. For example, the role of cosmological
constant, coupled to a unity operator on world-sheet is played by t1 in (3, 4) Ising, but by t3 in
the (2, 5) Yang-Lee theory. Below we shall try to present more details about this relation and
describe it as much as possible from the point of view of (dispersionless) KP theory.

4.1 Kostov equation

This is a name, given by Alesha Zamolodchikov to a “phenomenological” transcendental equa-
tion, satisfied by the second derivative of free energy over the cosmological constant u ∼ ∂2F

∂x2

of the form
uν + tuν−1 = x (68)

where ν = ν(p, q) = p
q−p

. For the cases of interest one gets integer ν(2, 3) = 2 for pure gravity

and ν(3, 4) = 3 for Ising (both are unitary with q = p + 1), but ν(2, 5) = 2
3
.

Hence, for the Ising model the Kostov equation reads

u3
I + tIu

2
I = xI (69)

and coincides (after renormalization xI ∼ t1, tI ∼ t5 and uI ∼ X1 = 3∂2F
∂t21

, below in this section

we shall use different normalization from conventional in KP theory, to get rid of ugly numerical
constants) with the Boulatov-Kazakov equation (62) when t2 = 0, i.e. for vanishing magnetic
field.
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For the Yang-Lee model equation (68) u
2/3
Y L + tY Lu

−1/3
Y L = xY L after the substitution uY L =

v3
Y L turns into

v3
Y L − xY LvY L = −tY L (70)

which coincides (again, up to a similar renormalization of couplings) with the Yang-Lee string
equation (35) upon t3 ∼ xY L, t1 ∼ tY L and X0 = 2 ∂2F

∂t21
∼ vY L.

Comparing (70) with (69) one finds that, as we have already done in the previous section,
one may indeed identify uI with vY L after appropriate shifts of the variables (66) and pointing
out the change of the quantum numbers: t1 ∼ xI ∼ tY L and t3 ∼ t2I ∼ xY L.

The relation uY L ∼ v3
Y L is quite clear from the point of view of equations (14). It is just a

particular Hirota equation for dispersionless KP hierarchy, expressing

uY L ∼ ∂2F
∂t23

= 3

(
∂2F
∂t21

)3

∼ v3
Y L

(71)

the function satisfying equation (68), and being here a double derivative of free energy w.r.t
the third time of the hierarchy, in terms of the canonical KP potential, being always a double
derivative w.r.t. the first time.

From the point of view of KP theory it is also rather clear, why equation (68) is applicable
only for p < q < 2p, in particular only for K = 2, 3 with ν(2, 2K − 1) = 2

2K−3
. When

transforming it to conventional KdV string equation (20), like it was done in (70) for the Yang-
Lee model, one finds that the variable t should be generally identified with t7−2K-th time of
KP hierarchy, which does not have clear sense at K > 3.

4.2 Zamolodchikov curve for Ising

If all parameters of the gravitational Ising model are “alive”, the best way is to study, following
[19], the fixed area partition function

Za =

∫
dx

2πia
uexa = −

∫
du

2πia2
exa

x = u3 +
3

2
Tu2 +

H2

(u + T )2

(72)

where we use again the rescaled variables x = xI ∼ t1, H ∼ t2, T ∼ t5 and the rescaled
Boulatov-Kazakov equation (57) for u ∼ ∂2F

∂x2 . The saddle point equation dx
du

= 0 for the
integral in (72) is given by

u(u + T )4 =
2

3
H2 ≡ ξ2T 5 (73)

In rescaled variables u ∼ TU , the saddle point equation (73) presents a Riemann surface

U(U + 1)4 = ξ2 (74)
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which is a double-cover of the Uc-plane and a 5-sheet cover of the “magnetic” plane ξ, and the
function x on the curve (74) contains description of all singularities in the gravitational Ising
model [23].

In particular, the Yang-Lee singularity arises at critical value of magnetic field H = Hc,

where two values ξc =
√

2
3

Hc

T 5/2 = ±i 16
55/2 correspond to two points on the curve (74)

Uc = −1

5
, ξ2

c = Uc(Uc + 1)4 = −44

55
(75)

where dξ
dU

∣∣
U=Uc

=0. At the Yang-Lee point one also obviously has d2x
dU2

∣∣∣
U=Uc

= 0, and

x = − 7

50
T 3 +

5

2
(U − Uc)

3 + . . . = xc +
625

128
T 3

(
ξ2 − ξ2

c

2

)3/2

+ . . . (76)

so that X ∼ x−xc

T 3 ∼ µ3/2 scales as the right fractional power of the cosmological constant

xY L = µ ∼ ξ − ξc in the Yang-Lee model, corresponding to the well-known scaling t1 ∼ t
3/2
3 of

KP times at the critical point with p+ q = 7. For the expansion of Boulatov-Kazakov equation
one can now write

X

ε3
∼ µV + V 3 + O(ε) (77)

where H −Hc ∼ ε2µ, U + 1
5
∼ εV , i.e. the Zamolodchikov curve in the vicinity of the Yang-Lee

singularity is described, up to renormalization of parameters, by string equation (35).

5 Discussion

We have tried to demonstrate in this paper, that all spherical correlation functions in quantum
Liouville gravity are all contained and can be easily extracted from the “science of polynomials”
- dispersionless KP hierarchy. A simple collection of residue formulas allows to extract the
invariant ratios, to be further compared with the correlation functions in world-sheet theory,
which can be now also computed - though in a much more cumbersome way - mostly due to
the results of Alesha Zamolodchikov in Liouville theory.

Such application of classical integrable science to the problems of two-dimensional quantum
physics is already a step towards dynamical physics from topological strings, where similar
science has been already used with visible success, see e.g. [25, 17, 18, 26, 27, 28].

The most nontrivial point in application of this “integrable science” is its interpretation
in terms of the world-sheet theory. The first point concerns resonances [21, 22], which allow
nonlinear relations between the couplings in KP and world-sheet theories when the fractions of
the KPZ scaling dimensions of couplings [2] are integer. We have observed this phenomenon
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in the cases of (2, 7) and (3, 4) minimal theories, where it is yet quite easy taken into account
- just playing with the residue formulas for one- two- and three-point functions. Naively, these
resonance reparameterizations look as particular W -flows in the space of couplings, but this
question deserves further investigation.

Another nontrivial point is related to the fact that KP times may have different phys-
ical sense, or different quantum numbers, when we expand a KP solution around different
backgrounds, corresponding to particular minimal theories. We have noticed this, say, when
comparing the formulations for the gravitational Ising and Yang-Lee models. This is a simplest
observation for a very important generic fact that physical observables may change their quan-
tum numbers, when effective field theory is moved in the moduli space - like in four-dimensional
supersymmetric gauge theories electrically charged objects may capture magnetic charges and
vice versa. Two dimensional quantum gravity is therefore a good laboratory for studying such
effects.

Finally, let us say few words, how the picture of dispersionless KP for the minimal string
theory could be deformed towards quasiclassical hierarchies of generic nonsingular type. An
invariant way to look at the basic polynomials X = λp + . . . and Y = λq + . . . (1) is to say, that
they satisfy an algebraic equation

Xq + Y p +
∑

fijX
iY j = 0 (78)

with some particular coefficients {fij}. Generally, for arbitrary coefficients this is a smooth
curve of genus

g =
(p− 1)(q − 1)

2
(79)

which is a resolution or desingularization of the situation, when X and Y can be parameterized
as polynomial of a uniformizing global variable λ. This number coincides with the number of
primaries in corresponding minimal conformal (p, q) theory. Such curves can be obtained, say,
by reduction of the curve of two-matrix model [24].

For such curves, the residue formulas we have discussed above should be extended by period
integrals

∮
Y dX along all nontrivial cycles on the curve (78). The sense of such period integrals

is analogous to the Seiberg-Witten periods or the filling fractions in matrix models. As usually
in quasiclassical hierarchies, the appearance of corresponding period variables reflect increasing
number of unfrozen coefficients in the equation (78) or new deformations of the background of
the minimal string theories. The study of such deformations is again a long-standing, but still
an open problem.
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