REMARKS ON COMPACT SHRINKING RICCI
SOLITONS OF DIMENSION FOUR

LI MA

ABSTRACT. In this paper, we study the topological restriction of
gradient shrinking Ricci solitons (M, g) of dimension 4. Let s be
the scalar curvature of the metric g. Then we have

/ sdvg = 4pvol(M),
M

where p > 0 is the shrinking constant and vol(M) is the volume
of (M,g). We also have two kinds of topology results. 1). If we
assume that

/ 52 < 24p*vol (M),
M

then
2x(M) £37(M) > 0.
2). If (M, g) is a natural oriented Kahler surface, then we have

(M) + 3r(M) = p2“2"7fr(2M)

Actually, we shall show that the assumption in 1) above is equiv-
alent to the fact that

/ o2(Rc — fg) > 0.
M 6

Here 02(A) is the 2nd symmetric function of the eigenvalues of the
matrix A := Rc— §g.

1. INTRODUCTION

We study the topological restriction of gradient shrinking Ricci soli-
tons (M, g) of dimension 4. Roughly speaking, Ricci solitons are self-
similar solutions to Ricci flow. Special examples of Ricci solitons are
Einstein metrics, which are fixed points of Ricci flow. One of the most
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important topic in Ricci flow is to classify the Ricci solitons in dimen-
sion four. Just like in Einstein metric case, we can expect that there
are some topological restrictions to Ricci solitons and there is some
type of Hitchin-Thorpe inequality for Ricci solitons. Our aim here is
to show this true for some cases. We write by s the scalar curvature
of the metric g. We point out here that the dimension four case is
special that we do have compact non-trivial Ricci solitons like Cao and
Koiso solitons, see [6]. In dimension two and three, there is no compact
non-trivial Ricci solitons, and we have non-compact Ricci solitons like
Bryant soliton in dimension three and cigar soliton of R.Hamilton (also
called Witten black hole ) in dimension two, see [5]. We show that

Main Theorem . Let (M, g) be a gradient shrinking Ricci soliton of
dimension 4 with shrinking constant p > 0. Then we have

/ sdv, = 4pvol(M).
M

We have the following two topology results. 1). If we assume that

(1) /M s% < 24p*vol (M),

then
2x(M) £ 37(M) > 0.
2). If (M, g) is a natural oriented Kahler surface, then we have
p*vol (M)
T oz

Here the word "natural oriented” means that the Kahler form is self-
dual.

2x(M) + 37(M)

This result is a generalization of Hitchin-Thorpe inequality (see A.Besse’s
book [4]) for Einstein metrics. We basically show that the assumption
in 1) above is equivalent to the fact that

/ oa(Re — fg) > 0.
M 6

Here 05(A) is the 2nd symmetric function of the eigenvalues of the ma-
trix A := Rc — £g. Then the result follows from Chern-Gauss-Bonnet
Theorem. There is a large room to be done for more results. For exam-
ple, it is expected that there are some close relationship between Ein-
stein metrics and Ricci solitons on compact Kahler manifolds. One also
likes to see some applications of Ricci-Kahler solitons to algebraic geom-
etry [20])or conformal field theory. Using the Seiberg-Witten invariant
method of C.Lebrun [16], one may sharpen the inequality above for
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Ricci solitons. One may also prove some results as done by N.Hitchin
[10] and M.Anderson [1] for complete manifolds with asymptotic flat
or hyperbolic geometry. There should be a nice relationship between
Ricci solitons and Yamabe constants, see the work of M.Gursky and
C.Lebrun [13] for the Einstein metric cases.

2. PRELIMINARY

We recall first some basic properties about Ricci solitons [15].

Given a compact Riemannian manifold (A", ¢) of dimension n > 3.
We say that (M, g) is a gradient shrinking Ricci soliton if for the metric
g, there is a smooth function fand a constant p > 0 such that

(2) Rc = pg+ D*f,

where Rc is the Ricci curvature of the metric g, and D?f is the Hessian
of the potential function f on (M, g). We normalize f such that

/fdv—()

where dv is the volume element of the metric g.
Taking the trace of both sides of (2), we have

(3) s =np+ Af.
Then we have
/ s = npvol(M) > 0,
M

/M § = n2ptuol(M) + /M (Af)2

Hence, the Yamabe constant in the conformal class of the metric ¢ is
positive, and the scalar curvature s is positive somewhere. Using the
maximum principle, one has (see Proposition 1 in [11]) that the scalar
curvature is positive everywhere in M.

Take a point x € X. In local normal coordinates (z°) of the Rie-
mannian manifold (X, g) at a point z, we write the metric g as (g;;).
The corresponding Riemannian curvature tensor and Ricci tensor are
denoted by Rm = (R;j;) and Re = (R;;) respectively. Hence,

Ri; = gklRika

and

and

S = g”R”
We write the covariant derivative of a smooth function f by Df = (f;),
and denote the Hessian matrix of the function f by D?f = (f;;), where
D the covariant derivative of g on M. The higher order covariant
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derivatives are denoted by fi;x, etc. Similarly, we use the Tj; ;, to denote
the covariant derivative of the tensor (T};). We write T} = g'*Tj),. Then
the Ricci soliton equation is
Rij = fij + pgij.
Taking covariant derivative, we get
fijk = Rijp
So we have
fijk — firj = Rijr — Rir ;-
By the Ricci formula we have that
fijk — fiej = R fi.

Hence we obtain that

Riji — Rirj = Rigpfi.
Recall that the contracted Bianchi identity is

1

Rijj = 55

Upon taking the trace of the previous equation we get that

1
§Sz+Rffk = 07

ie.,
(4) sp = —2R] f;.
Then at x,
Di(IDf* + R+ 2pf) = 2f;(fir — Rjr + 2¢g;i) = 0.
So,
(5) IDFI? + 5+ 2pf = A,

where A is a constant. We normalize f such that

/ f=o.
M
Then we have

Avol(M):/M|Df|2+/Ms:/M|Df|2+npvol(M).

This gives us that

(6) [ 1DsF = (A = nppuot(ar).
M
This implies that A > np.



SHRINKING RICCI SOLITONS 5

3. BASIC FACTS ON 4-DIMENSIONAL GEOMETRY

In this section, we assume that n = 4. The basic references for
the four dimensional geometry are the papers of Atiyah, Hitchin and
Singer [2], and the books of A.Besse [4], Freed and Uhlenbeck [12] and
Donaldson and Kronheimer [9]. Let W be the Weyl tensor, which is a

conformal invariant, and let A be the Weyl-Schouten tensor
s
A=Re— ——q.
“Tom—1?

Then

Rm:W@niQA@g.

Here () is the Kulkarni-Nomizu product (see [[4], 1.110]). Define o5(A)
the 2nd symmetric function of the eigenvalues of the matrix A. Then

we have

1 1 1
02(A4) = 5 (1r(A)P — |AP) = =" — S|Ref.

Assume that n = 4. Then by using the Chern-Gauss-Bonnet for-
mula, the Euler number of M is given by the formula:

8y (M) = / (03(A) + [WV]2)do.

M

By this formula, we see that the integral [, o2(A) is a conformal in-
variant.

Using the Hodge star operator we can write by W into self-dual and
anti-self-dual part:

W:W++W,.

Then we have the following Hirzebruch formula [4] for signature of the
manifold M:

127°7(M) :/M(|W+|2—|W|2)dv.

Therefore, we have

(M) + 3r(M) = 4%2/M(02(A) 2\ [?)do,.

We make two remarks below. One remark is that people often write
the Chern-Gauss-Bonnet formula in dimension 4 (see [4]) as
82 |B|2

QMZ/_ 2__d
s () = [ (57 W = S,
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where B is the trace-free part of the Ricci curvature Re. For our
gradient shrinking Ricci soliton, we then have, by an elementary com-

putation that
/ B = / N

The other remark is that the assumption (1) is equivalent to
/ (AF)2 < 8pPvol (M).
M

4. PROOF OF MAIN THEOREM

Assume that (M, g) is a gradient shrinking Ricci soliton of dimension
four. Then we have

[ R = [ 1077+ poP
M M

= [ (D217 +2007) + 45700l(01)
M

= / |D?f|* + 4p*vol(M).
M

Using integration by part, (5),(6), and the Ricci formula, we have

[ o == [ g,

/M((Af) £+ Rifify)

[l
=

(Af)? — / (fisfifi + pIDfI?)
M
2 1 2A 2
@17+ [ psPar= [ sips]

2 1 e B 2
@rpy [ (=s-20naf- [ glps

3 | to=s)as

I
ST

=
=
_|_

>
=
(e}

(s —4p)?

N~ N~ N~

T

s — 8p*vol(M).
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This also implies that

/ s > 16p”vol (M).
M

Then,
1
/ |Re|® = —/ s — 4p*vol(M).
M 2 Ju
Hence, by
(4) = 252 — S|Ref?
=—s5°— —|Rc
72 6 2t
we have
1
(7) / 09(A) = —— s? + 2p21)0l(M).
M 12 [y

Recall our assumption (1) is

/ s < 24p*vol (M).
M

From the computation above, we have the following inequality

/ oa(A) > 0.
M
Then we have

2x(M) £37(M) > ! /UQ(A)ZO.

= 4r?
Assume that (M*?, g) is a natural oriented Kahler surface. Then it is
well-known (see Proposition 16.62 in [4] or see [8]) that

1
WLl = 2
Hence, we have
1 1
2y (M M)=— A) + —s?).
X0+ 3700 = 7 [ () + 5

It is clear from the formulae above that if (M, g) is a natural oriented
Kahler surface, then we have by (7)

2X(M) +37(M) = /)21}207752]\/[).

This completes the proof of the Main Theorem.
We remark that it is interesting to know which closed manifolds
admit Riemannian metrics with inequality

/M s (A)do > 0.
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One may see the work of A.Chang, P.Yang, and M.Gurskey [7] for
related topic.
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