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ABSTRACT. The theory of p-adic fractal strings and their complex dimensions
was developed by the first two authors in [17, 18, 19], particularly in the
self-similar case, in parallel with its archimedean (or real) counterpart devel-
oped by the first and third author in [28]. Using the fractal tube formula
obtained by the authors for p-adic fractal strings in [20], we present here an
exact volume formula for the tubular neighborhood of a p-adic self-similar
fractal string L, expressed in terms of the underlying complex dimensions.
The periodic structure of the complex dimensions allows one to obtain a very
concrete form for the resulting fractal tube formula. Moreover, we derive and
use a truncated version of this fractal tube formula in order to show that £,
is not Minkowski measurable and obtain an explicit expression for its average
Minkowski content. The general theory is illustrated by two simple examples,
the 3-adic Cantor string and the 2-adic Fibonacci strings, which are nonar-
chimedean analogs (introduced in [17, 18]) of the real Cantor and Fibonacci
strings studied in [28].
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Nature is an infinite sphere of which the center is everywhere
and the circumference nowhere. Blaise Pascal

1. Introduction

In this paper, we present and use the explicit tube formulas obtained in [20],
for general p-adic fractal strings, in order to derive exact fractal tube formulas for
p-adic self-similar fractal strings. The general results are illustrated in the case of
suitable nonarchimedean analogs of the Cantor and the Fibonacci strings. Some
particular attention is devoted to the 3-adic (or nonarchimedean) Cantor string
(introduced and studied in [17], an appropriate counterpart of the archimedean
Cantor string, whose ‘metric boundary’ is the 3-adic Cantor set [17]), a suitable
p-adic analog of the classic ternary Cantor set. We also derive an explicit expression
for the average Minkowski content of a p-adic self-similar string and the ‘boundary’
of the associated nonarchimedean self-similar set.

We note that p-adic (or nonarchimedean) analysis has been used in various ar-
eas of mathematics (such as functional analysis and operator theory, representation
theory, number theory and arithmetic geometry), as well as (sometimes more spec-
ulatively) of mathematical and theoretical physics (such as quantum mechanics,
relativity theory, quantum field theory, statistical and condensed matter physics,
string theory and cosmology); see, e.g., [2, 3, 11, 4, 36, 40, 41] and the rele-
vant references therein. In particular, ultrametric structures have been shown to
be very useful tools to study spin glasses in condensed matter physics; see [36] for
a comprehensive survey on this and related topics. We also point out the more
recent review article [3] which discusses a variety of potential applications of p-adic
analysis in mathematical physics and biology. Furthermore, several physicists and
mathematical physicists have suggested that the small scale structure of spacetime
may be fractal; see, e.g., [6, 8, 15, 31, 42]. In addition, it has been suggested (in
[41] for example) that seemingly abstract objects such as nonarchimedean fields
(including the field of p-adic numbers) can be helpful in order to understand the
geometry of spacetime at sub-Planckian scales.

Finally, we note that p-adic fractal strings (and their possible quantized analogs)
may be helpful to obtain an appropriate adelic counterpart of ordinary (real) fractal
strings, along with their quantization (called fractal membranes), as introduced in
[15].

2. p-Adic Numbers

Given a fixed prime number p, any nonzero rational number x can be written
as ¢ = p¥ - a/b, for integers a and b and a unique exponent v € Z such that p does
not divide @ or b. The p-adic absolute value is the function | -|,: Q — [0, 00) given
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v and |0|, = 0. It satisfies the strong triangle inequality: for every

by ||, = p~
T,y €Q,

|z + ylp < max{|alp, |ylp}-
Relative to the p-adic absolute value, Q does not satisfy the archimedean property
because for each x € Q, |nz|, will never exceed |z|, for any n € N. The completion
of Q with respect to | - |, is the field of p-adic numbers Q,. More concretely, every

z € @, has a unique representation
z=ayp’ +--+ag+ap+ap’ +---,

for some v € Z and with a; € {0,1,...,p — 1} for all j > v and a, # 0. An
important subspace of Q, is the unit ball, Z, = {z € Q,: |z|, < 1}, which can also
be represented as follows:
Z, = {a0+a1p+a2p2—|—--- ta; €{0,1,...,p— 1} for all j >0} .

Using this p-adic expansion, one sees that

p—1
(2.1) Z, = U(a—l—pr),

a=0
where a + pZ, = {y € Qp: |y — al, < 1/p}. Note that Z, is compact and thus
complete. Also, Q, is a locally compact group, and hence admits a unique trans-
lation invariant Haar measure pg, normalized so that pm(Z,) = 1. In particular,
wr(a+p"Z,) =p~" for every n € Z. For general references on p-adic analysis, we
point out, e.g., [10, 37, 38, 39|.

Here and thereafter, we use the following notation: N = {0,1,2,...}, N* =

{1,2,3,...} and Z = {0, £1, 42, .. ).

3. p-Adic Fractal Strings

Let © be a bounded open subset of Q,. Then it can be decomposed into a
countable union of disjoint open balls! with radius p~™ centered at a; € Qp,

aj +p" Ly = Blaj,p~ ") ={r € Qp | |x —aj], <p~ "},

where n; € Z and j € N*. There may be many different such decompositions since
each ball can always be decomposed into smaller disjoint balls [10]; see Equation
(2.1). However, there is a canonical decomposition of € into disjoint balls with
respect to a suitable equivalence relation, as we now explain.

DEFINITION 3.1. Let U be an open subset of Q,. Given z,y € U, we write that
x ~ y if and only if there is a ball B C U such that z,y € B.

It is easy to check that ~ is an equivalence relation on U (see [20]), due to the
fact that either two balls are disjoint or one is contained in the other. Moreover,
there are at most countably many equivalence classes since Q is dense in Q.

REMARK 3.2. (Convex components) The equivalence classes of ~ can be thought
of as the ‘convex components’ of U. They are an appropriate substitute in the
present nonarchimedean context for the notion of connected components, which is
not useful in Q,, since Z, (and hence, every interval) is totally disconnected. Note

13We shall often call a p-adic ball an interval. By ‘ball’ here, we mean a metrically closed and
hence, topologically open (and closed) ball.
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that given any = € U, the equivalence class (i.e., the convex component) of x is the
largest ball containing x (or equivalently, centered at x) and contained in U.

DEFINITION 3.3. A p-adic (or nonarchimedean) fractal string £, is a bounded
open subset 2 of Q.

Thus it can be written, relative to the above equivalence relation, canonically

as a disjoint union of intervals or balls:

o0 o0

L, = U(aj +pYZ,) = U B(aj,p~™™).

Jj=1 j=1
Here, B(aj,p~ ") is the largest ball centered at a; and contained in . We may
assume that the lengths (i.e., Haar measure) of the intervals a; + p"iZ, are nonin-
creasing, by reindexing if necessary. That is,

(3.1) p Mt >p ™ >p ™ > >0,

REMARK 3.4. Ordinary archimedean (or real) fractal strings were introduced
in [25, 26] (see also [13, 14]) and the theory of complex dimensions of those strings
was developed in [28] (and its predecessors).

DEFINITION 3.5. The geometric zeta function of a p-adic fractal string £, is
defined as

(3:2) Cey(5) = Y (s + 9™ 2))" = 3 p"

j=1
for R(s) sufficiently large.

REMARK 3.6. The geometric zeta function (., is well defined since the de-
composition of £, into the disjoint intervals a; + p"iZ, is unique. Indeed, these
intervals are the equivalence classes of which the open set Q (defining £,) is com-
posed. In other words, they are the p-adic “convex components” (rather than the
connected components) of 2. Note that in the real (or archimedean) case, there
is no difference between the convex or connected components of {2, and hence the
above construction would lead to the same sequence of lengths as in [28, §1.2].

As in [28, §5.3], the screen S is the graph (with the vertical and horizontal axes
interchanged) of a real-valued, bounded and Lipschitz continuous function S(¢):

S ={S(t)+it:teR}.
The window W is the part of the complex plane to the right of the screen S (see
Figure 1):
W={seC:R(s) > S5(3(s))}
Let

inf S = inf S(¢t) and supS = supS(t),
teR teR

and assume that sup S < o, where o = o, is the abscissa of convergence of £, (to
be precisely defined in (3.4) below).

DEFINITION 3.7. If (¢, has a meromorphic continuation to an open connected
neighborhood of W C C, then

(3.3) Dr,(W)={weW :wisapoleof (£ }
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FIGURE 1. The screen S and the window W.

is called the set of visible complex dimensions of L,. If no ambiguity may arise or if
W = C, we simply write Dz, = D, (W) and call it the set of complex dimensions
of L,,.

Moreover, the abscissa of convergence of the Dirichlet series initially defining
(c, in Equation (3.2) is denoted by o = o,. Recall that it is defined by

(3.4) oc, =inf a € R: prnja < 00
j=1

REMARK 3.8. In particular, if (¢, is entire, which occurs only in the trivial
case when L, is given by a finite union of intervals, then oz, = —oo. Otherwise,
or, > 0 since £, is composed of infinitely many intervals, and hence (¢, (0) = oo.
Moreover, oz, < oo since oz, < Dy < 1, where Dy is the Minkowski dimension
of £,. (The fact that Dj; < 1 follows since the Haar measure of 2 is finite and
coincides with (¢, (1).) Indeed, as is shown in [20], we actually have oz, = Dy
for any nontrivial p-adic fractal string. This is the case, for example, for the 3-adic
Cantor string introduced in [17], for which oz, = Dy = logz 2; see Example 3.9
below.

Observe that since D, (W) is defined as a subset of the poles of a meromorphic
function, it is at most countable.

Finally, we note that it is well known that (, is holomorphic for R(s) > o, ;
see, e.g., [39]. Hence,

'Dgp C {S eC: %(S) < O'Lp}.
EXAMPLE 3.9. The 3-adic Cantor string is given by

(3.5) CS3 = (14 3%3) U (34 9Z3) U (5+9Z3)U--- .
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By definition, the geometric zeta function of CSs is given by

Cess(s) = (pm(1+3Z3))° + (nu (3 +9Z))° + (pu (5 + 9Z3))" + - -
> 211_1 35
= ; 3us - 1—-92.3s for %(8) > 10g3 2.

Hence, by analytic continuation, the meromorphic extension of (¢s, to the entire
complex plane C exists and is given by

375
3.6 §) = ——F—,
(3.6) Cesy(s) 123>

with poles at

for s € C,

B log2 . 27w
Y= log 3 mlog?)’
Therefore, the set of complex dimensions of CS3 is given by

(3.7) Des, = {D+inp:n € Z},

n € 7.

where D = log, 2 is the dimension of CS3 and p = 27/ log 3 is its oscillatory period.
Moreover, the residue of (¢s,(s) at s = D + inp is given by

(3.8) res((esy; D +inp) =

2log3

independently of n € Z. Finally, note that (¢s, is a rational function of z := 37?,
ie.,

oz

T 1-27

Cess(s)

The geometric zeta function (cs, in Equation (3.6) is bounded in the left half-
plane {s € C: R(s) < 0}. In general, the geometric zeta function of a real or p-adic
self-similar fractal string is always strongly languid, i.e.,

e There exist constants A, C' > 0 such that for all ¢ € R and m > 0,
¢, (—m +it)| < CAlY.
See [28, §5.3] or [20] for the general definition of “languid”.

4. Volume of Inner Tubes

In this section, based on a part of [20], we provide a suitable analog in the
p-adic case of the ‘boundary’ of a fractal string and of the associated inner tubes
(inner e-neighborhoods). Moreover, we give the p-adic counterpart of the expression
that yields the volume of the inner tubes (see Theorem 4.3). This result serves as
a starting point in [20] for proving the corresponding explicit tube formula.

DEFINITION 4.1. Given a point a € Q, and a positive real number r > 0, let
B = B(a,r) ={x € Qp : |z — al, < r} be a metrically closed ball in Q,, as above.?
We call S = S(a,r) ={x € Qp: |z —al, =r} the sphere of B.

2Recall that it follows from the ultrametricity of | - |, that B is topologically both closed and
open (i.e., clopen) in Qp.
In our sense, S also coincides with the ‘metric boundary’ of B, as given in this definition.
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Let £, = Uj’;l B(aj,rj) be a p-adic fractal string. We then define the metric
boundary 8L, of L, to be the disjoint union of the corresponding spheres, i.e.,

8L, = S(aj.ry).
j=1

Given € > 0, define the thick p-adic ‘inner e-neighborhood’ of L, to be
(4.1) N = N(Lp) :i={x € Ly : dp(x, BLy) < e},

where dp(z, E) = inf{|z — y|, : y € E} is the p-adic distance of z € Q, to a subset
E C Qp. Then the volume V¢, (€) of the thick inner e-neighborhood of L, is defined
to be the Haar measure of NV, i.e., V¢, (e) = pm(N:).

Recall that (¢, (1) = Y2, p~™ is the volume of £, (or rather, of the bounded
open subset  of Q, representing £,): (¢, (1) = pu(Ly) = pa () < oco.

DEFINITION 4.2. Given € > 0, the p-adic ‘inner e-neighborhood’ (or ‘inner
tube’) of L, is given by

(4.2) N. = N.(L,) := N2\ BL,.

Then the volume V., (€) of the inner e-neighborhood of Ly, is defined to be the Haar
measure of N, i.e.,

(4.3) Ve, (€)== pu(Ne) = Ve, (e) — pa(BLy).

We next state the nonarchimedean counterpart of [25, Eq. (3.2)] (see also
[28, Eq. (8.1)]), which is the key result in [20] that will enable us to obtain an
appropriate p-adic analog of the fractal tube formula as well as of the notion of
Minkowski dimension and content (see §9 and §10).

THEOREM 4.3 (Volume of inner tubes). Let £, = Uj’;l B(aj,p~™) be a p-adic
fractal string. Then, for any ¢ > 0, we have

k
(4.4) Ve,(6) = p ¢, (M= p ),
j=1

where k = k(e) is the largest integer such that ny < log,, e~ L

REMARK 4.4. Note that lim._+ V,,(¢) = 0, which justifies Definition 4.2; see
[20]. Further observe that even though ‘the’ metric boundary may depend on the
choice of the centers a; (j € N*), both V., (¢) and V., (¢) are independent of this
choice (in light of Equations (4.3) and (4.4)).

EXAMPLE 4.5 (The explicit tube formula for 3-adic Cantor string). Let € > 0.
Then, by Theorem 4.3, we have
1S 2t 12\t
4- = — P — u—
(45) es@-3 ¥ T =3(3)

n=k+1

where k := [log; e 1]. Let  := logg e~ = k+ {x}, where {x} is the fractional part
of . Then a simple computation shows that (%)w = ¢! P and e2™"® = ¢ 7P with
D =1log; 2 and p = 27/log3 as in Example 3.9. Using the Fourier expansion for
the periodic function b~ {#}, as given by [28, Eq. (1.13)], for b = 3~! and the above
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value of x, we obtain an expansion in terms of the complex dimensions w = D +inp

of CS3:

( ) 371 Elfoinp
Ves,(e) = -
2log3 = 1-D —inp
1 El—w
4.6 =
(4.6) 6log3 Z 1-—w

w€Dcs,

since Dcs, is given by (3.7).

5. Explicit Tube Formulas for p-Adic Fractal Strings

The following result is the counterpart in this context of Theorem 8.1 of [28],
the distributional tube formula for real fractal strings. It is established in [20] by
using, in particular, the extended distributional explicit formula of [28, Thms. 5.26
and 5.27], along with the expression for the volume of thin inner e-tubes stated in
Theorem 4.3.

THEOREM 5.1. Let L, be a languid p-adic fractal string. Further assume that
oc, < 1.* Then the volume of the thin inner e-neighborhood of L, is given by

—1 1—s
(5.1) Ve, (e) = Z res <%;w) + Rp(e),
W€D, (W)

where D, (W) is the set of visible complex dimensions of L,. Here, the distribu-
tional error term is given by

1 p—ICL (S)El_s
2 Y B ol AN |
(5.2) Ry(e) = g [ s
and is estimated distributionally® by
(5.3) Ry(e) = O(er 7P %), ase— 0.

Moreover, if L, is strongly languid (which is the case of all p-adic self-similar
strings; see §3 and §9), then we can take W = C and R,(¢) = 0.

COROLLARY 5.2. If, in addition to the hypotheses in Theorem 5.1, we assume
that all the visible complex dimensions of L, are simple, then

1—w

9
(5.4) Ve,() = D cop— TRye),
W€D, (W)

where ¢, = p~lres (Cgp;w). Here, the error term R, is given by (5.2) and is

estimated by (5.8) in the languid case. Furthermore, we have R,(¢) = 0 in the
strongly languid case (yielding an exact tube formula), provided we choose W = C.

4Recall from Remark 3.8 that we always have oz, < 1. Moreover, if £p is self-similar, then
or, <1 (in light of [35] and the definition of o, ).
5As in [28, Defn. 5.29].
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REMARK 5.3. In [28, Ch. 8], under different sets of assumptions, both distri-
butional and pointwise tube formulas are obtained for archimedean fractal strings
(and also, for archimedean self-similar fractal strings). (See, in particular, Theo-
rems 8.1 and 8.7, along with §8.4 in [28].) At least for now, in the nonarchimedean
case, we limit ourselves to discussing distributional explicit tube formulas. We ex-
pect, however, that under appropriate hypotheses, one should be able to obtain a
pointwise fractal tube formula for p-adic fractal strings and especially, for p-adic
self-similar strings. In fact, for the simple examples of the nonarchimedean Cantor
and Fibonacci strings, the direct derivation of the fractal tube formula (5.4) yields
a formula that is valid pointwise and not just distributionally. (See, in particular,
Examples 4.5 and 10.7.) We leave the consideration of such possible extensions to
a future work.

EXAMPLE 5.4 (The explicit tube formula for 3-adic Cantor string revisited).
By Equation (3.8), we have that

1

- 2log3’

independently of w € D¢s,. So, using the last part of Theorem 5.1, the exact fractal
tube formula for the 3-adic Cantor string is found to be

3—1
(5.5) ch3 (8) Z

2log 3 weDus,

res(Ces,;w)

El—w

1—w’
which is exactly the same as Equation (4.6).

Note that since CS3 has simple complex dimensions, we may also apply Corol-
lary 5.2 (in the strongly languid case when W = C) in order to precisely recover
Equation (5.5). (Alternatively, we could use Corollary 9.2 in §9 below.)

We may rewrite (4.6) or (5.5) in the following form (which agrees with the tube
formula to be obtained in Corollary 9.2):

Vesy(e) = €' PGes, (logz e ™),
where G¢s, is the nonconstant periodic function of period 1 on R given by
e27rinm

1
Gess (@) = 610g37;Z 1—D—inp’

Finally, we note that since the Fourier series

Z eQﬂ'inz

= 1—-D —inp

is pointwise convergent on R, the above direct computation of Vs, (¢) shows that
(4.6) and (5.5) actually hold pointwise rather than distributionally.

6. Nonarchimedean Self-Similar Strings

Nonarchimedean (or p-adic) self-similar strings form an important class of p-
adic fractal strings. In this section, we first recall the construction of these strings,
as provided in [18] and [19]; see §6.1. Later on, we will give an explicit expression
for their geometric zeta functions and deduce from it the periodic structure of their
poles (or complex dimensions) and zeros, as obtained in [18]; see §7-8.1. Moreover,
in §9, we will deduce from the results of §5 and §7-8 the special form of the fractal
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tube formula for p-adic self-similar strings. Finally, in §10, we will apply this latter
result in order to calculate the average Minkowski content of such strings.

6.1. Geometric Construction. Before explaining how to construct arbi-
trary p-adic self-similar strings, we need to introduce a definition and a few facts
pertaining to p-adic similarity transformations.

DEFINITION 6.1. A map ® : Z, — Z,, is called a similarity contraction map-
ping of Z,, if there is a real number r € (0, 1) such that

[@(2) = @(Y)lp =7 - |z = ylp,
for all z,y € Zj,.

Unlike in Euclidean space (and in the real line R, in particular), it is not true
that every similarity transformation of Q, (or of Z)) is necessarily affine. Actually,
in the nonarchimedean world (for example, in Qg, with d > 1), and in the p-adic
line Q,,, in particular, there are a lot of similarities which are not affine. However, it
is known (see, e.g., [38]) that every analytic similarity must be affine.” Hence, from
now on, we will be working with a similarity contraction mapping ® : Z, — Z,
that is affine. Thus we assume that there exist constants a,b € Z, with |al, < 1
such that ®(z) = ax + b for all z € Z,. Regarding the scaling factor a of the
contraction, it is well known that it can be written as a = u - p", for some unit
u € Zp (ie., Julp = 1) and n € N* (see [30]). Then r = |a|, = p~". We summarize
this fact in the following lemma:

LEMMA 6.2. Let ®(x) = ax + b be an affine similarity contraction mapping of
Z,, with the scaling ratio r. Then b € Z, and a € pZ,, and the scaling factor is
r=lal, =p~" for some n € N*.

Zyp

AN
%N

@112 ‘I)1NZ .Gy P16k (I)le ‘I>NNZ ONGy - PNG

FI1GURE 2. Construction of a p-adic self-similar fractal string.

For simplicity, let us take the unit interval (or ball) Z, in Q, and construct
a p-adic (or nonarchimedean) self-similar string L, as follows (see [18]).% Let

6The standard definition of self-similarity (in Euclidean space or in more general complete
metric spaces) can be found in [9] and in [5], for example.

7Here, amap f: Qp — Qp is said to be analytic if it admits a convergent power series
expansion about 0, and with coefficients in Qp, that is convergent in all of Q.

8In the sequel, Ly is interchangeably called a p-adic or nonarchimedean self-similar string.
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N > 2 be an integer and ®4,...,®y : Z, — Z, be N affine similarity contraction
mappings with the respective scaling ratios r1,...,ry € (0, 1) satisfying

(61) 1>T12T22"'ZTN>O;

see Figure 2. Assume that
N
(6.2) o<,
j=1
and the images ®,(Z,) of Z, do not overlap, i.e., ®;(Z,) N ®;(Z,) = ( for all j # I.
Note that it follows from Equation (6.2) that Ujvzl ®,;(Zy) is not all of Z,. We

therefore have the following (nontrivial) decomposition of Z, into disjoint p-adic
intervals:

N K
(6.3) Zp =) ®;(Zy) U | ) G,
j=1 k=1

where G}, is defined below.
In a procedure reminiscent of the construction of the ternary Cantor set, we
then subdivide the interval Z, by means of the subintervals ®;(Z,). Then the

convex” components of

N
Zp\ U (I)j(Zp)

are the first substrings of the p-adic self-similal string £,,, say G1, G2, ..., Gk, with
K > 1. These intervals Gy, are called the generators, the deleted intervals in the
first generation of the construction of £,.'° The length of each Gy is denoted by
gr; so that gp = pum(Gy).!Y Without loss of generality, we may assume that the
lengths g1, g2, ..., gk of the first substrings (i.e., intervals) of £, satisfy

(6.4) 1>g1>g2>->gg >0.

It follows from Equation (6.3) and the additivity of Haar measure pp that

N K
(6.5) er+ng:1.

j=1 k=1
We then repeat this process with each of the remaining subintervals ®;(Z,) of Z,,
for j = 1,2,...,N. And so on, ad infinitum. As a result, we obtain a p-adic
self-similar string L, = l1,12,13, ..., consisting of intervals of length /,, given by
(66) TviTyy Tngku
for k =1,...,K and all choices of ¢ € N and v1,...,v; € {1,...,N}. Thus, the
lengths are of the form r{* ...r%" g, with e1,...,exy € N (but not all zero).

9We choose the convex components instead of the connected components because Z,, is totally
disconnected. Naturally, no such distinction is necessary in the archimedean case; cf. [28, §2.1.1].
Here and elsewhere in this paper, a subset I of Qp is said to be ‘convex’ if for every z,y € E, the
p-adic segment {tx + (1 —t)y : t € Zp} lies entirely in E.

10T heir archimedean counterparts are called ‘gaps’ in [28, Ch. 2 and §8.4], where archimedean
self-similar strings are introduced.

U\We note that the lengths gx (k = 1,2,...,K) will sometimes be called the (nonar-
chimedean) ‘gaps’ or ‘gap sizes’ in the sequel.
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In [18], the classic notion of self-similarity is extended to the nonarchimedean
setting, much as in [9], where the underlying complete metric space is allowed to be
arbitrary. We note that the next result follows by applying the classic Contraction
Mapping Principle to the complete metric space of all nonempty compact subsets
of Z,. (Note that Z, itself is complete since it is a compact metric space.)

THEOREM 6.3. There is a unique nonempty compact subset S, of Z,, such that

N
Sp = U (I)j(sp)-
j=1

The set S, is called the p-adic self-similar set associated with the self-similar system
® ={Dy,...,On}. It is also called the ®-invariant set.

The relationship between the p-adic self-similar string £,, and the above p-adic
self-similar set S, is given by the following theorem, also obtained in [18]:'?

THEOREM 6.4. (i) L, = Z,\S,, the complement of S, in Zy,.

(i) Lp = Ua:O UweWa Uk:l Py (Gy), while Sp = na:O UweWa ®(Zp), where
Wo =41,2,...,N}* denotes the set of all finite words on N symbols, of length «,
and @y, := Py 00 Dy, for w = (wy,...,ws) € W,.

Zs3
0+ 3Zs 14+3%Z3 =G 24 3Zs
0+ 9Zs ®,(Q) 64975 24974 (@) 8 + 9Zs

F1GURE 3. Construction of the 3-adic Cantor string CS3 via an IFS.

EXAMPLE 6.5 (Nonarchimedean Cantor string as a 3-adic self-similar string).
In this example, we review the construction of the nonarchimedean Cantor string
CS3, as introduced in [17] and revisited in [18]. Our main point here is to stress
the fact that CSs is a special case of a p-adic self-similar string, as constructed just
above, and to prepare the reader for more general results about nonarchimedean
self-similar strings, as obtained in the rest of this paper.

Let @1, ®5 : Z3s — Zs be the two affine similarity contraction mappings of Zs
given by

(6.7) ®y(x) =3z and Py(z) =2+ 3z,
12y Theorem 6.4, Lp is not viewed as a sequence of lengths but is viewed instead as the open

set which is canonically given by a disjoint union of intervals (its p-adic convex components), as
described in the above construction of a p-adic self-similar string.
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with the same scaling ratio r = 37! (i.e., 71 = ro = 371). By analogy with the
construction of the real Cantor string, subdivide the interval Zs into subintervals

(I)l(Zg) =0+ 323 and (I)Q(Zg) =2+ 323

The remaining (3-adic) convex component

2
Zs\ | ) ®;(Z3) =1+3Zs =G
j=1
is the first substring of a 3-adic self-similar string, called the nonarchimedean Cantor
string and denoted by CS3 [17]. The length of G is Iy = ug (1 + 3Z,) = 371. By
repeating this process with the remaining subintervals ®;(Zsz), for j = 1,2, and
continuing on, ad infinitum, we eventually obtain a sequence CS3 = [y,1s,13,.. .,
associated with the open set resulting from this construction and consisting of
intervals of lengths [, = 37¢ with multiplicities m, = 2*~, for v € N*. As follows
from this construction (see Figure 3 and Equation (6.7), along with part (ii) of
Theorem 6.4), the nonarchimedean Cantor string CSs can also be written as

(6.8) CS3 = (14 3%3) U (34 9Z3) U (5+9Z3)U--- .

We refer the interested reader to [17] and [19] for additional information con-
cerning the nonarchimedean Cantor string CS3 and the associated nonarchimedean
Cantor set C3. We just mention here that in light of part (i) of Theorem 6.4, we
can recover the 3-adic Cantor set Cs as the complement of the 3-adic Cantor string
CS3 in the unit interval (and vice-versa):

(69) 083 = Zg\Cg, and so Cg = Zg\CSg.

Indeed, according to Theorem 6.3, C3 is the self-similar set associated with the
self-similar system ® = {®q, Po}.

7. Geometric Zeta Function of p-Adic Self-Similar Strings

In this section, as well as in §8 and §8.1, we will survey results obtained in [18]
about the geometric zeta functions and the complex dimensions of p-adic self-similar
strings. (See also [19], where the archimedean and nonarchimedean situations are
contrasted.)

In the next theorem, we provide a first expression for the geometric zeta func-
tion of a nonarchimedean self-similar string. At first sight, this expression is almost
identical to the one obtained in the archimedean case in [28, Thm. 2.4]. Later
on, however, we will see that unlike in the archimedean case where the situation
is considerably more subtle and complicated (cf. [28, Thms. 2.17 and 3.6]), this
expression can be significantly simplified since the two potentially transcendental
functions appearing in the denominator and numerator of Equation (7.1) below can
always be made rational; see Theorem 8.1 in §8.

THEOREM 7.1. Let L, be a p-adic self-similar string with scaling ratios {r; }jvzl
and gaps {gi}_ |, as in the above construction. Then the geometric zeta function
of L, has a meromorphic extension to the whole complex plane C and is given by

(r.) Ge,(5) =~y O

= for seC.
N
1=20mr5
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COROLLARY 7.2. The set of complex dimensions of a p-adic self-similar fractal
string L, is contained in the set of complex solutions w of the Moran equation
Zj.vzl r¢ = 1. If the string has a single generator (i.e., if K = 1), then this inclusion
is an equality.'®

DEFINITION 7.3. A p-adic self-similar string £, is said to be lattice if the
multiplicative group generated by the scaling ratios ri,79,...,ry is discrete in
(0,00). Otherwise, £, is said to be nonlattice. Furthermore, £, is said to be
strongly lattice if the multiplicative group generated by {r1,...,7n,91,..., 9K} 18
discrete in (0, 00). Naturally, a strongly lattice string is also a lattice string.

THEOREM 7.4. Every p-adic self-similar fractal string is strongly lattice.

REMARK 7.5. Theorem 7.4 follows from the fact that all the scaling ratios r;
and the gaps g must belong to the group p%, as will be discussed below in more
detail in §8. It follows that p-adic self-similar strings are lattice strings in a very
strong sense, namely, their geometric zeta functions are rational functions of a
suitable variable z (see Theorem 8.1 below).

REMARK 7.6. Theorem 7.4 is in sharp contrast with the usual theory of real self-
similar strings developed in [28, Chs. 2 and 3|. Indeed, there are both lattice and
nonlattice strings in the archimedean case. Furthermore, generically, archimedean
self-similar strings are nonlattice. Moreover, it is shown in [28, Ch. 3] by us-
ing Diophantine approximation that every nonlattice string in R = Q4 can be
approximated by a sequence of lattice strings with oscillatory periods increasing
to infinity. It follows that the complex dimensions of an archimedean nonlattice
string are quasiperiodically distributed (in a very precise sense, that is explained
in loc. cit.) because the complex dimensions of archimedean lattice strings are pe-
riodically distributed along finitely many vertical lines. Clearly, there is nothing of
this kind in the nonarchimedean case since p-adic self-similar strings are necessarily
lattice.

8. Rationality of the Geometric Zeta Function

In this section, we show that the geometric zeta function of a p-adic self-similar
string is always rational (after an appropriate change of variable). It will follow
(see Theorem 8.3) that not only the poles (i.e., the complex dimensions of £,) but
also the zeros of (¢, are periodically distributed.

We introduce some necessary notation. First, by Lemma 6.2, we can write

ry=p ", with n; e N* for j=1,2,...,N.
Second, we write
g = pp(Gr) =p~ ™, with my e N* for k=1,2,..., K.

Third, let
d =ged{ny,...,nn,my,...,mg}.

Then there exist positive integers n’; and mj, such that

(81) mnj=dn} and my =dmj for j=1,...,N and k=1,... K.

13800, e.g., Examples 6.5, 10.7 and Theorem 8.1.



MINKOWSKI MEASURABILITY AND EXACT TUBE FORMULAS FOR p-ADIC STRINGS 15

Finally, we set'4

(8.2) pt=1/r.

Without loss of generality, we may assume that the scaling ratios r; and the gaps
gk are written in nonincreasing order as in Equations (6.1) and (6.4), respectively;
so that

(8.3) 0<n)<ny<---<nly and 0<m) <m)<--- <mk.

THEOREM 8.1. Let L, be a p-adic self-similar string and z = r°, with r = p~¢
as in Equation (8.2). Then the geometric zeta function (c, of L, is a rational
function in z. Specifically,

K /

D kg 2
(8.4) e, (8) = =S5
’ L- Zjvzl z"

where mj,,n’; € N* are given by Equation (8.1).

2
dlogp

DEFINITION 8.2. Let p = . Then p is called the oscillatory period of L.

8.1. Periodicity of the Poles and the Zeros of (. The following result
(also from [18]) is the nonarchimedean counterpart of [28, Thms. 2.17 and 3.6],
which provide the rather subtle structure of the complex dimensions of archimedean
self-similar strings. It is significantly simpler, however, due to the fact that nonlat-
tice p-adic self-similar strings do not exist.

To avoid any confusion, we stress that in the statement of the next theorem,
Cc, is viewed as a function of the original complex variable s. Moreover, as was
recalled in Remark 3.8, it follows from a theorem in [20] that the dimension of
L,, defined as the Minkowski dimension D = D, (see §10), coincides with the
abscissa of convergence of the Dirichlet series originally defining (z, and denoted
(as in Equation (3.4)) by o = o,. Furthermore, let § be the similarity dimension
of L, i.e., the unique real (and hence, positive) solution of the Moran equation

Zj.vzl r? = 1; then § = D by part (iii) of Theorem 8.3 below. Therefore, in the
present case of p-adic self-similar strings, there is no need to distinguish between

these various notions of ‘fractal dimensions’.

THEOREM 8.3 (Structure of the complex dimensions). Let £, be a nontrivial
p-adic self-similar string. Then

(1) The complex dimensions of L, and the zeros of (r, are periodically dis-
tributed along finitely many vertical lines, with period p, the oscillatory period of
L, (as given in Definition 8.2).

(i) Furthermore, along a given vertical line, each pole (respectively, each zero)
of Cc, has the same multiplicity.

(#1) Finally, the dimension D of L, is the only complex dimension that is lo-
cated on the real awis. Moreover, D is a simple pole of (¢, and is located on the
right most vertical line. That is, D is equal to the maximum of the real parts of the
complex dimensions.

!
M4Note that by construction, r; = r™i and gj = ™% for j=1...,Nand k=1,..., K.
Hence, r = p~% is the multiplicative generator in (0,1) of the rank one group generated by
{F1se TN G109} (or, equivalently, by either {r1,...,7x} or {g1,. .., gxc})-
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REMARK 8.4. The situation described above—specifically, the rationality of
the zeta function in the variable z = r®, with » = p~%, and the ensuing periodicity
of the poles and the zeros—is analogous to the one encountered for a curve (or
more generally, a variety) over a finite field F,q; see, e.g., Chapter 3 of [33]. In
this analogy, the prime number p is the characteristic of the finite field, and the
cardinality of the field, p?, corresponds to r—!, the reciprocal of the multiplicative
generator of L.

We next supplement the above results by stating a theorem (from [18], [19]
and based on corresponding results in [28, Chs. 2 & 6]) which will be very useful to
us in §9 in order to simplify the tube formula associated with a p-adic self-similar
string.'®

According to part (i) of Theorem 8.3, there exist finitely many poles

Wi, ..., Wq,
of (¢, with wy = D and R(wy) < --- < R(w2) < D, such that
De, ={wu+inp:n€Z, u=1,...,q}.
Furthermore, each complex dimension w + inp is simple (by parts (ii) and (iii) of
Theorem 8.3) and the residue of ( (s) at s = w + inp is independent of n € Z
and, in light of Equation (8.4), equal to

K m. s K mlw
. . Tk . Tk
(8.5)  res(Cc,;w +inp) = lim (s —w) Zk—}v —— = Zk—lN ——.
s 1- Zj:l r logr—1 Z_j:l n;T J

In particular, this is the case for w = D. See [28, Ch. 6] for the general case.

THEOREM 8.5. (i) For eachu =1,...,q, the principal part of the Laurent series
of Cc,(s) at s = wy + inp does not depend on n € Z.

(i) Moreover, let u € {1,...,q} be such that w, (and hence also w, + inp, for
every n € Z, by part (i) of Theorem 8.8) is simple. Then the residue of (¢, (s) at
§ = wy + inp is independent of n € Z and
Zszl P

—.
7 nwy

N
logr=t 325, nlr's

In particular, this is the case for wy = D.

(8.6) res((r,; wy +inp) =

Note that by contrast, in the lattice case of the archimedean theory of self-
similar strings developed in [28, Chs. 2 and 3], one has to assume that the gap
sizes (and not just the scaling ratios) are integral powers of 7 in order to obtain the
counterpart of Theorem 8.5.

REMARK 8.6 (Comparison with the archimedean case). Part (i) of Theorem
8.3, along with Theorem 8.1, shows that the theory of p-adic self-similar strings
is simpler than its archimedean counterpart. Indeed, not only is it the case that
every p-adic self-similar string £,, is lattice, but both the zeros and poles of (¢, (s)
are periodically distributed along vertical lines, with the same period (because L,
is strongly lattice; see Theorem 7.4). By contrast, even if an archimedean self-
similar string £ is assumed to be ‘lattice’, then the zeros of (. (s) are usually not
periodically distributed because the multiplicative group generated by the distinct

151y light of Theorems 8.1 and 8.3, Theorem 8.5 follows from a corresponding result in [28].
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gap sizes need not be of rank one or coincide with the group generated by the
distinct scaling ratios; see [28, Chs. 2 and 3]. In fact, from this point of view, only
strongly lattice archimedean (or real) strings behave like p-adic self-similar strings.

9. Exact Tube Formulas for p-Adic Self-Similar Strings

In view of Equation (7.1), every p-adic self-similar string £,, is strongly languid,
withk =0and A = rNglzl, in the notation of [28, Definition 5.3]. Indeed, Equation
(7.1) implies that [(z, (s)| < (ry'grx) 1% as R(s) — —oco. Hence, we can apply
the distributional tube formula without error term (i.e., the last part of Theorem
5.1 and of Corollary 5.2) with W = C. Since by Theorem 7.4, £, is a lattice string,
we obtain (in light of Theorems 8.1, 8.3 and 8.5) the following simpler analogue of
Theorem 8.25 in [28]:16

THEOREM 9.1 (Exact tube formulas for p-adic self-similar fractal strings). Let
L, be a p-adic self-similar string with simple complex dimensions. Then, for all ¢
with 0 < € < gxry', the volume Ve, (€) is given by

(9.1) Ve, (e) = Z Coel ™Y,

weD

res(Cc,; w
where ¢, = ﬁ for each w € D =D, (C).

COROLLARY 9.2. Let L, be a p-adic self-similar string with multiplicative gen-
erator r. Assume that all the complex dimensions of L, are simple. Then, for all €
with 0 < e < gKrJf,l, the volume V¢, (€) is given by the following exact distributional
tube formula:

q

(9.2) Ve, () = ZslfW“Gu(logl/r e h,

u=1

where 1/r = p? (as in Equation (8.2)), and for eachu = 1,...,q, G, is a real-valued
periodic function of period 1 on R corresponding to the line of complex dimensions
through wy, (w1 = D > R(w2) > -+ > R(wy)), and is given by the following
(conditionally and also distributionally convergent) Fourier series:

e27rzn;ﬂ

03 Gulr) = i) 3

p neZl—wu—inp’

where (as in Equation (8.6) of Theorem 8.5),

res(<£p§wu) =
Moreover, G, is nonconstant and bounded.

16\We note that instead, we could more generally apply parts (i) and (ii) of Theorem 5.1 in
order to obtain a distributional tube formula with or without error term, valid without assuming
that all of the complex dimensions of £, are simple. This observation is used in the proof of
Theorem 9.5.
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PRrROOF. That the explicit formula for V. (g) can be written as a sum over ¢! =<«
times a periodic function of period 1 in log; Ir ¢~ ! in case all complex dimensions are
simple follows from Theorem 9.1, as does the formula for G,,. This latter function
is clearly nonconstant. That it is bounded follows from [28, Formula (1.13)]. O

REMARK 9.3. In comparing our results with the corresponding results in Chap-
ter 2 and §8.4 of [28], obtained for real self-similar fractal strings, the reader should
keep in mind the following two facts: (i) the simplification brought upon by the
“strong lattice property” of p-adic self-similar strings; see Theorem 8.5 and Remark
8.6 above. (ii) By construction, any p-adic self-similar string £, (as defined in this
paper) has total length L equal to one: L = puy(Ly) = (¢, (1) = pr(Zy) = 1.
Indeed, for notational simplicity, we have assumed that the similarity transforma-
tions ®; (j = 1,...,N) are self-maps of the ‘unit interval’ Z,, rather than of an
arbitrary ‘interval’ of length L in Q. Clearly, only minor adjustments are needed
in order to deal with the case of an arbitrary interval.

REMARK 9.4. It would be interesting to obtain a geometric interpretation of the
coefficients of the fractal tube formulas (9.1) and (9.2), in terms of nonarchimedean
fractal curvatures, along the lines suggested by the work of [28] and [22, 23, 24]
(in the archimedean setting). It would also be interesting to extend these results to
higher-dimensional p-adic self-similar sets or tilings (as was done in the Euclidean
case in loc. cit.).

THEOREM 9.5 (Truncated tube formula). Let £, be an arbitrary p-adic self-
similar string with multiplicative generator r. Then, for all € with 0 < & < gKrJf,l,

(9-4) Ve, () =€'77(Glogy /. 71) +0(1)),

where o(1) — 0 as € — 07 and G = Gy is the nonconstant, bounded periodic
function of period 1 given by Equation (9.3) of Theorem 9.2 (with v = 1 and
w1 = D)

PRrROOF. This follows from the method of proof of Corollary 8.27 in [28] in the
easy case of a lattice string and with 2 replaced by ¢ and with L := 1; see Remark
9.3. In particular, we have the following ‘truncated tube formula’:

(9.5) Ve, (e) = sl_DG(logl/T e+ E(e),

where E(¢) is an error term that can be estimated much as in loc. cit. In particular,
there exists 6 > 0 such that e~(1"P)E(g) = O(e%), as ¢ — 0F.

Furthermore, since we limit ourselves here to the first line of complex dimen-
sions, and since those complex dimensions are always simple (by parts (ii) and (iii)
of Theorem 8.3), we do not have to assume (as in Theorem 9.1 and Corollary 9.2)
that all the complex dimensions of £, are simple in order for Equation (9.5) and
the corresponding error estimate for E(¢) to be valid.

More specifically, we note that Equation (9.5) and the corresponding error
estimate for E(¢) (namely, 6 > 0 and so E(¢) = o(e~(*=P)) as ¢ — 0%) follow from
the first part of Theorem 5.1 (the explicit tube formula with error term, applied
to a suitable window), along with the fact that the complex dimensions on the
rightmost vertical line R(s) = D are simple (according to parts (i) and (iii) of
Theorem 8.3). Here, since £,, is a lattice string, we can simply choose the screen S
to be a vertical line lying strictly between R(s) = D and the next vertical line of
complex dimensions (if such a line exists). O
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10. The Average Minkowski Content

The (inner) Minkowski dimension and the (inner) Minkowski content of a p-
adic fractal string £, (or, equivalently, of its metric boundary 8L, see Definition
4.1) are defined exactly as the corresponding notion for a real fractal string (see
(28], Definition 1.2), except for the fact that we use the definition of V'(¢) = V, (¢)
provided in Equation (4.3) of §4. More specifically, the Minkowski dimension of L,
is given by

(10.1) Dy i=inf{a>0:V,, () =O0(e'"*) ase - 0"},

Furthermore, £, is said to be Minkowski measurable, with Minkowski content M,
if the limit

(10.2) M = lim Vg, (e)e” =P

e—0+t

exists in (0, 00). Otherwise, £, is said to be Minkowski nonmeasurable.

REMARK 10.1. Note that since V., (¢) = V¢, () — ur (BLp) in light of Equation
(4.3), there is an analogy between the above definition of the Minkowski dimension
and that of “exterior dimension”, which is used in chaos theory to study certain
archimedean ‘fat fractals’ (dynamically defined fractals with positive Lebesgue mea-
sure); see, e.g., [7] and the survey article [32]. In the present nonarchimedean case,
however, for any p-adic fractal string, it is necessary to substract pg(8L,) from
Ve, (€). Indeed, otherwise, the metric boundary of every p-adic string (even a single
interval) would be a ‘fat fractal’; see [20] and Remark 4.4 above.

The next result follows from the truncated tube formula provided in Theorem
9.5, along with the corresponding error estimate.

THEOREM 10.2. A p-adic self-similar string L,, is never Minkowski measurable.
Moreover, it has multiplicatively periodic oscillations of order D in its geometry.

PRrROOF. This follows immediately from Theorem 9.5 and the fact that G = G,
is a nonconstant periodic function, which implies (in light of Equation (9.4)) that
the limit of e=(=P)V, _(e) does not exist as e — 07. O

According to Theorem 10.2, a p-adic self-similar string does not have a well-
defined Minkowski content, because it is not Minkowski measurable. Nevertheless,
as we shall see in Theorem 10.4 below, it does have a suitable ‘average content’
Mgy, in the following sense:

DEFINITION 10.3. Let £, be a p-adic fractal string of dimension D. The average
Minkowski content, My, is defined by the logarithmic Cesaro average

M. =M (L).f li 1 ! -(1-D)y, ()%
av T ITraviep '_TgnoologT 1/TE £p(® g’

provided this limit exists and is a finite positive real number.

THEOREM 10.4. Let L, be a p-adic self-similar string of dimension D. Then
the average Minkowski content of L,, exists and is given by the finite positive number

K /
1 Zk:l kaD

~ p(1=D)logr-1 Zjvzl n}rnﬁ'D'

(10.3) My res(Cz,; D)

o
- p(1-D)
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PRrROOF. In light of (the proof of) Theorem 9.5, we have for all 0 < ¢ <1 and
for some 6 > 0,
e~ =Dy (e) = G(logy /. e +0(e%),
where G is the nonconstant and bounded periodic function of period 1 given by
Equation (9.3) of Theorem 9.2 (with v = 1 and w; = D). (See Equation (9.5) and
the text surrounding it.) Noting that

1 bood
lim / gl € _ 0,
T—o00 IOgT 1/T g

and that each oscillatory term of G; (for n # 0 in (9.3), n € Z) gives a vanishing

contribution as well,
1
lim 1 / Ein/ log % =0,

we conclude that

1 1
li -(1=D)y,
7o logT /1/T § & (©)

gives the constant coefficient of G = G}. O

REMARK 10.5. Definition 10.3 and Theorem 10.4 are the exact nonarchimedean
counterpart of [28], Definition 8.29 and Theorem 8.30.

EXAMPLE 10.6 (Nonarchimedean Cantor string). The average Minkowski con-
tent of the nonarchimedean Cantor string CS3 is given by
1
Mao(CS3) = ——F———.
(CSs) 6(log 3 — log 2)
Indeed, we have seen in Example 3.9 that D = logs 2,res((cs,; D) = 1/21og3 and
p=3.

ExAMPLE 10.7 (Nonarchimedean Fibonacci string). Let ®; and ®2 be the two
affine similarity contraction mappings of Zs given (much as in §6, with N = p = 2)
by

®q(z) =22 and Py(z) =1+ 4a,

with the respective scaling ratios r; = 1/2 and 7o = 1/4. The associated 2-adic self-
similar string (introduced in [18]) with generator G = 3 4 47, is called the nonar-
chimedean Fibonacci string and denoted by FSo (compare with the archimedean
counterpart discussed in [28, §2.3.2]). It is given by the sequence FSs = I, 2,13, . . .
and consists (for m = 1,2,...) of intervals of lengths I,,, = 2~ (™*1) with multiplic-
ities fi,, the Fibonacci numbers. (Recall that these numbers are defined by the
recursive formula: fr,41 = fm + fm—1,fo = 0 and f; = 1.) Alternatively, in the
spirit of Theorem 6.4, the nonarchimedean Fibonacci string is the bounded open
subset of Zy given by the following disjoint union of 2-adic intervals (necessarily its
2-adic convex components):

FSo=(3+4Z2)U (64 8Zs) U (124 16Z2) U (13 + 16Z2) U - - - .

By Theorem 7.1, the geometric zeta function of FS5 is given (almost exactly as for
the archimedean Fibonacci string, cf. loc. cit.) by!'”

17The minor difference between the two geometric zeta functions is due to the fact that the
real Fibonacci string FS in [28, §2.3.2 and Exple. 8.32] has total length 4 whereas the present
2-adic Fibonacci string FS2 has total length 1; see also part (ii) of Remark 9.3 above.
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4—8
(10.4) (Fs:(8) = T—5= =
Hence, the set of complex dimensions of FS» is given by
(10.5) Drs, ={D+inp:ne€ZiU{-D+i(n+1/2)p:necZ}

with D = log, ¢, where ¢ = (1 + /5)/2 is the golden ratio, and p = 27/log?2,
the oscillatory period of FSs; see Figure 4. Moreover, a simple computation shows
that

. 3—¢
(10.6) res(Crs,; D + inp) = Blog 2
and
. 2+ ¢
(10.7) res(Crs,;—D +i(n+1/2)p) = Flog2’

independently of n € Z.
We refer the interested reader to [18] for additional information concerning the
nonarchimedean Fibonacci string.

o
o
o
p e
o ip
—-D 0 D 1
o
o
o
o
o

FIGURE 4. The complex dimensions of the 2-adic Fibonacci string
FSo. Here, D = log, ¢ and p = 27/ log 2.

Note that (rs, does not have any zero (in the variable s) since the equation
47° = 0 does not have any complex solution. Moreover, in agreement with Theorem
8.1, (rs, is a rational function of z =277, i.e.,

2

(10.8) (rs,(s) =

1—2—22"
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Since, in light of (10.8), the complex dimensions of FS» are simple, we may apply
either Corollary 5.2 or Corollary 9.2 in order to obtain the following exact fractal
tube formula for the nonarchimedean Fibonacci string:'®

1-w
(10.9) Vrs,(e) = % Z reS(C]-‘Sz;W)f—

— W
w€DrFs,
= "7 PG(logye™t) + e HPTP/2G, (logy e 7Y,

where, in light of Equation (10.5) and of the values of res({rs,;w) provided in
Equations (10.6) and (10.7), G; and G2 are bounded periodic functions of period
1 on R given by their respective (conditionally convergent) Fourier series

27r1nac

- 10log2 Z 1-D—inp

(10.10) Gi(z) =

and
2_|_¢ Z 27r1nac
10log2 < 1+D—z(n+1/2)

(10.11) Go(z) =

Note that the above Fourier series for G1 and G are conditionally (and also distri-
butionally) convergent, for all z € R. Furthermore, the explicit fractal tube formula
(10.9) for FS2 actually holds pointwise and not just distributionally, as the inter-
ested reader may verify via a direct computation. The average Minkowski content
of F&, is given by

1

2(¢+2)(log2 —log @)’

Ma'u - Mav(]:S2) -

where ¢ = # is the golden ratio. Indeed, since D = log, ¢, we deduce from
Equation (10.6) with n = 0 that
1
: D =
res(<f827 ) (¢+2) 10g2

Hence, the above expression for M, follows from Theorem 10.4 with p = 2. Fur-
thermore, note that log2 — log ¢ = log(v/5 — 1). Therefore, Mg, can be rewritten

as follows:
1

(5+ v5)log(v/5 — 1)
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