
LOCALIZATION IN EQUIVARIANT OPERATIONAL

K-THEORY AND THE CHANG-SKJELBRED PROPERTY

RICHARD P. GONZALES *

Abstract. We establish a localization theorem of Borel-Atiyah-Segal
type for the equivariant operational K-theory of Anderson and Payne
[AP]. Inspired by the work of Chang-Skjelbred and Goresky-Kottwitz-
MacPherson, we establish a general form of GKM theory in this set-
ting, applicable to singular schemes with torus action. Our results are
deduced from those in the smooth case via Gillet-Kimura’s technique
of cohomological descent for equivariant envelopes. As an application,
we extend Uma’s description of the equivariant K-theory of smooth
compactifications of reductive groups to the equivariant operational K-
theory of all, possibly singular, projective group embeddings.

1. Introduction and Motivation

Goresky, Kottwitz and MacPherson, in their seminal paper [GKM], de-
veloped a theory, nowadays called GKM theory, that makes it possible to
describe the equivariant cohomology of certain T -skeletal varieties: complete
algebraic varieties upon which a complex algebraic torus T acts with a finite
number of fixed points and invariant curves. Let X be a T -skeletal variety
and denote by XT the fixed point set. The main purpose of GKM theory
is to identify the image of the functorial map i∗ : H∗

T (X) → H∗
T (X

T ), as-
suming X is equivariantly formal. GKM theory has been mostly applied to
smooth projective T -skeletal varieties, because of the Bialynicki-Birula de-
composition [B1]. Additionally, the GKM data issued from the fixed points
and invariant curves has been explicitly obtained for some interesting cases:
flag varieties [C], and regular embeddings of reductive groups [Br1, Br2].
In contrast, regarding singular varieties, GKM theory has been applied to
Schubert varieties [C] and to rationally smooth projective group embeddings,
due to the author’s work [G1, G2].

Because of its power as a computational tool, GKM theory has been im-
plemented in other equivariant cohomology theories on schemes with torus
actions. For instance, Brion established GKM theory for equivariant Chow
groups [Br1], Vezzosi-Vistoli did it for equivariant algebraic K-theory [VV],
and Krishna provided the tool in equivariant algebraic cobordism [Kr]. Nev-
ertheless, in all of these generalizations, a crucial assumption on smoothness
of the ambient space needs to be made.

* Supported by the Max-Planck-Institut für Mathematik and the Institut des Hautes

Études Scientifiques.
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This paper is concerned with the equivariantK-theory of possibly singular
schemes equipped with an action of an algebraic torus T (i.e. T -schemes).
Our main goal is to increase the applicability of GKM theory as a tool
for understanding the geometry of singular T -schemes in this setting. For
convenience of the reader, we briefly review some of the basic underlying
notions, as well as the previous progress made on this problem. Equivariant
K-theory was developed by Thomason [Th1]. Let X be a T -scheme. Let
KT (X) denote the Grothendieck group of T -equivariant vector bundles on
X. This is a ring, with the product given by the tensor product of equivariant
vector bundles. Let KT (X) denote the Grothendieck group of T -equivariant
coherent sheaves on X. This is a module for the ring KT (X). If we identify
the representation ring R(T ) with KT (pt), then pullback by the projection
X → pt gives a natural map R(T ) → KT (X). In this way, KT (X) be-
comes an R(T )-algebra and KT (X) an R(T )-module. The functor KT (−)
is contravariant with respect to arbitrary equivariant maps. In contrast,
KT (−) is covariant for equivariant proper morphisms and contravariant for
equivariant flat maps. If X is smooth, then every T -equivariant coherent
sheaf has a finite resolution by T -equivariant locally free sheaves, and thus
KT (X) ' KT (X). WhenX is complete, the equivariant Euler characteristic

F 7→ χ(X,F) =
∑
i

(−1)i[H i(X,F)]

yields the pushforward map χ : KT (X) −→ KT (pt) ' R(T ). By work of
Merkurjev [M1], one recovers the usual K-theory from the equivariant one
via the identity KT (X)⊗R(T ) Z ' K(X).

In general, the K-theory groups are difficult to compute. In the case of
singular varieties, they can be quite large [AP, Introduction, p. 2]. In the
smooth case, however, there are three powerful theorems that allow many
computations and important comparison theorems of Riemann-Roch type.
The first one is the localization theorem of Borel-Atiyah-Segal type.

Localization theorem of Borel-Atiyah-Segal type ([Th2, Théorème
2.1]). Let X be a smooth complete scheme with an action of T . Let XT

be the subscheme of fixed points and let iT : XT → X be the natural inclu-
sion. Then the pullback i∗T : KT (X) → KT (X

T ) is injective, and it becomes
surjective over the quotient field of R(T ).

Let X be a smooth complete T -scheme. The second fundamental theorem
in this context identifies the image of i∗T inside KT (X

T ) ' K(XT )⊗R(T ).
To state it, we introduce some notation. Let H ⊂ T be a subtorus of
codimension one. Observe that iT factors as iT,H : XT → XH followed by

iH : XH → X. Thus, the image of i∗T is contained in the image of i∗T,H . In
symbols,

Im[i∗T : K0
T (X) → K0

T (X
T )] j

⋂
H⊂T

Im[i∗T,H : K0
T (X

H) → K0
T (X

T )],
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where the intersection runs over all codimension-one subtori H of T . This
criteria, which dates back to the work of Chang-Skjelbred [CS] in equivari-
ant cohomology, yields a complete description of KT (X) as a subring of
KT (X

T ) ' K(XT )⊗R(T ).

CS property ([VV, Theorem 2]). Let X be a smooth complete T -scheme.
Then the image of the injective map i∗T : KT (X) → KT (X

T ) equals the

intersection of the images of i∗T,H : KT (X
H) → KT (X

T ), where H runs
over all subtori of codimension one in T .

Now let X be a (complete) T -skeletal variety. Assume, for simplicity,
that each T -invariant irreducible curve has exactly two fixed points (e.g.
X is equivariantly embedded in a normal T -variety). In this setting, it is
possible to define a ring PET (X) of piecewise exponential functions. Indeed,
letKT (X

T ) = ⊕x∈XTRx, whereRx is a copy of the representation ringR(T ).
We then define PET (X) as the subalgebra of KT (X

T ) given by

PET (X) = {(f1, . . . , fm) ∈ ⊕x∈XTRx | fi ≡ fj mod 1− e−χi,j}

where xi and xj are the two distinct fixed points in the closure of the one-
dimensional T -orbit Ci,j , and χi,j is the character of T associated with Ci,j .
This character is uniquely determined up to sign (permuting the two fixed
points changes χi,j to its opposite). In light of the CS property, one obtains:

GKM theorem ([VV, Corollary 5.12], [U, Theorem 1.3]). Let X be a
smooth T -skeletal variety. Then i∗T : KT (X) → KT (X

T ) induces an isomor-
phism between KT (X) and PET (X). If X is also projective, then KT (X) is
a free R(T )-module of rank |XT |.

Thus far, it is clear that to any complete T -skeletal variety X we can asso-
ciate the ring PET (X), regardless of whether X is smooth or not. (In fact, if
X is a projective compactification of a reductive groupG with maximal torus
T , then X is T × T -skeletal, and PET×T (X) has been explicitly identified
in [G2].) Nonetheless, as it stems from the previous facts, PET (X) does not
always describe KT (X). This phenomena yields some natural questions:
Let X be a T -skeletal variety. What kind of information does PET (X)
encode? If not equivariant K-theory, is it still reasonable to expect that
PET (X) encodes certain topological/geometric information that is common
to all possible T -equivariant resolution of singularities of X? The work
of Payne [P] and Anderson-Payne [AP], inspired in turn by the works of
Fulton-MacPherson-Sottile-Sturmfels [FMSS] and Totaro [To], gives a posi-
tive answer to these questions when X is a toric variety. Namely, the GKM
data (i.e. PET (X)) of a toric variety encodes all the information needed
to reconstruct Bott-Chern operators defined on the structure sheaves OTx

of the T -orbit closures Tx ⊆ X (and their equivariant resolutions). This
positive result is our motivation. In the pages to follow we will show that
Anderson-Payne’s assertion on toric varieties holds more generally for all T -
skeletal varieties. But first, and in order to put these statements in a much
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clearer form, we recall some of the main aspects of Anderson and Payne’s
equivariant operational K-theory.

Fulton and MacPherson [FM] devised a machinery that produces a coho-
mology theory out of a homology theory. This cohomology has all the formal
properties one could hope for, and it is well suited for the study of singular
schemes. Taking as input the homology functor KT (−), Anderson-Payne
[AP] obtained a theory that is very well suited for computations. Moreover,
it agrees with Thomason’s equivariant K-theory when X is smooth (Prop-
erties (a) and (b) below). We outline here the main notions of [AP]. Let X
be a T -scheme. The T -equivariant operational K-theory ring of X, denoted
opKT (X), is defined as follows: an element c ∈ opKT (X) is a collection
of homomorphisms cf : KT (Y ) → KT (Y ) for every T -map f : Y → X.

(Recall that KT (Y ) denotes the Grothendieck group of T -equivariant co-
herent sheaves on Y .) These homomorphisms must be compatible with (T -
equivariant) proper pushforward, flat pullback and Gysin morphisms [AP].
For any X, the ring structure on opKT (X) is given by composition of such
homomorphisms. With this product, opKT (X) becomes an associative com-
mutative ring with unit. Moreover, opKT (X) is contravariantly functorial
in X. Other salient functorial properties of opKT (−) are:

(a) For any X, there is a canonical homomorphism KT (X) → opKT (X)
of R(T )-algebras, sending a class γ to the operator [γ] which acts via
[γ]g = g∗γ ·ξ, for any T -map g : Y → X and ξ ∈ KT (Y ). There is also a
canonical map opKT (X) → KT (X) defined by c 7→ cidX [OX ], where OX

is the structure sheaf of X. Put together, they provide a factorization
of the canonical homomorphism KT (X) → KT (X) [AP, Theorem 5.6].

(b) When X is smooth, the homomorphisms

KT (X) → opKT (X) → KT (X),

defined in (a), are all isomorphisms of R(T )-modules [AP, Corollary 4.5
and Theorem 5.6].

(c) A1-homotopy invariance [AP, Corollary 4.7]: For any scheme X, the
natural pull back map from opKT (X) to opKT (X × A1) is an isomor-
phism.

(d) Gillet-Kimura’s cohomological descent for equivariant envelopes [AP,

Theorem 5.3]: If π : X̃ → X is an equivariant envelope (that is, any
T -invariant subvariety of X is the birational image of a T -invariant sub-
variety of X̃) and π1, π2 are the projections X̃ ×X X̃ → X̃, then the
following sequence is exact

0 // opKT (X)
π∗

// opKT (X̃)
π∗
1− π∗

2 // opKT (X̃ ×X X̃).
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(e) Let X be a complete T -variety. If X is a toric variety (i.e. X is normal
and has a dense orbit isomorphic to T ), then opKT (X) ' PET (X) [AP,
Theorem 1.6]. Similar results hold for non-complete toric varieties [AP].

(f) Equivariant Kronecker duality for spherical varieties [AP, Theorem 6.1]:
Let B be a connected solvable linear algebraic group with maximal torus
T . Let X be a scheme with an action of B. If B acts on X with finitely
many orbits, then the natural equivariant Kronecker map

KT : opKT (X) → HomR(T )(K
T (X), R(T )),

induced by pushforward to a point, namely,

KT : c 7−→ {ξ 7→ χ(X, cidX (ξ))} ,

is an isomorphism. This holds e.g. for Schubert varieties and spherical
varieties. There is a more general version of equivariant Kronecker dual-
ity, valid for T -linear schemes ([AP, Section 6]). This class encompasses
all the B-schemes mentioned above (see e.g. [G3, Theorem 2.5]). For
equivariant Kronecker duality in the context of equivariant operational
Chow groups, see [G3, Theorem 3.6].

In this paper we use the functorial properties listed above, together with
resolution of singularities, to establish:

(I) The localization theorem of Borel-Atiyah-Segal type for opKT (X),
whenever X is a complete T -scheme (Theorem 4.1).

(II) The CS property for opKT (X), where X is any complete T -scheme
(Theorem 4.4).

(III) GKM theory for possibly singular complete T -varieties: if X is a T -
skeletal variety, then opKT (X) ' PET (X) (Theorem 5.4).

Together with the combinatorial results of [G2], this extends Anderson’s and
Payne’s work on toric varieties to all projective group embeddings (Theorems
6.2 and 6.4). See Section 7 (as well as [G3]) for the corresponding statements
in operational Chow groups with rational coefficients.

Acknowledgments. The research in this paper was done during my visit
to the Max-Planck-Institut für Mathematik (MPIM) and the Institute des

Hautes Études Scientifiques (IHES). I am deeply grateful to both institutions
for their support, outstanding hospitality, and excellent working conditions.

2. Conventions and Notation

Conventions. Throughout this paper, we fix an algebraically closed field k
of characteristic zero. All schemes and algebraic groups are assumed to be
defined over k. By a scheme we mean a separated scheme of finite type. A
variety is a reduced scheme. Observe that varieties need not be irreducible.
A subvariety is a closed subscheme which is a variety. A curve on a scheme is
an irreducible one-dimensional subscheme. Unless explicit mention is made
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to the contrary, we will assume all schemes are equidimensional. A point on
a scheme will always be a closed point.

Notation. We denote by T an algebraic torus. A scheme X provided with
an algebraic action of T is called a T -scheme. If X is a T -scheme, the
class in KT (X) of a T -equivariant coherent sheaf F will be denoted by
[F ]. In particular, if Y ⊂ X is a T -stable closed subscheme, then the
structure sheaf of Y defines a class [OY ] in KT (X). For a T -scheme X,
we denote by XT the fixed point subscheme and by iT : XT → X the
natural inclusion. If H is a closed subgroup of T , we similarly denote by
iH : XH → X the inclusion of the fixed point subscheme. When comparing
XT and XH we write iT,H : XT → XH for the natural (T -equivariant)
inclusion. If g : Y → X is a T -equivariant morphism of T -schemes, then we
write gT : Y T → XT , or simply g : Y T → XT , for the associated morphism
of fixed point subschemes. Likewise, we write g∗ : opKT (X) → opKT (Y )
for the pullback in equivariant operational K-theory.

We denote by ∆ the character group of T , and by Z[∆] the group ring
over Z of ∆. We let eχ denote the element of Z[∆] corresponding to χ ∈ ∆.
Then {eχ}χ∈∆ is a basis of the Z-module Z[∆]. For a k-linear representation
V of T , we put

tr(V ) =
∑
χ∈∆

(rankkVχ)e
χ,

where Vχ is the subspace of invariants of T of weight χ in V . It is well-known
that tr induces an isomorphism from the representation ring of T , denoted
R(T ), to Z[∆].

3. Equivariant envelopes and computability of equivariant
operational K-theory

Recall that an envelope p : X̃ → X is a proper map such that for any
subvariety W ⊂ X there is a subvariety W̃ mapping birationally to W via
p ([F, Definition 18.3]). In the case of T -actions, we say that p : X̃ → X

is an equivariant envelope if p is T -equivariant, and if we can take W̃ to be
T -invariant for T -invariant W . If there is an open set U ⊂ X over which
p is an isomorphism, then we say that p : X̃ → X is a birational envelope.
The following is recorded in [EG-2, Proposition 7.5].

Lemma 3.1. Let X be a T -scheme. Then there exists a T -equivariant
birational envelope p : X̃ → X, where X̃ is a smooth quasi-projective T -
scheme. �

Anderson and Payne’s version of Gillet and Kimura’s notion of cohomolog-
ical descent (Property (d), Introduction) implies that opKT (X) of a singular

scheme X injects into opKT (X̃) of a smooth equivariant envelope (which is
the usual equivariant K-theory ring of a smooth scheme) with an explicit
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cokernel. More precisely, suppose that p : X̃ → X is a T -equivariant bira-
tional envelope which is an isomorphism over an open set U ⊂ X. Let {Zi}
be the irreducible components of Z = X − U , and let Ei = p−1(Zi), with
pi : Ei → Zi denoting the restriction of p. The next theorem is Kimura’s
fundamental result [Ki, Theorem 3.1]) adapted to equivariant operational
K-theory.

Theorem 3.2 ([AP, Theorem 5.4]). Let p : X̃ → X be a T -equivariant

envelope. Then the induced map p∗ : opKT (X) → opKT (X̃) is injective.
Furthermore, if p is birational (and notation is as above), then the image of

p∗ is described inductively as follows: a class c̃ ∈ opKT (X̃) equals p∗(c), for
some c ∈ opKT (X) if and only if, for all i, we have c̃|Ei = p∗i (ci) for some
ci ∈ opKT (Zi). �

Since Ei and Zi may be arranged to have smaller dimension than that
of X, we can use this result to compute opKT (X) using a resolution of
singularities (Lemma 3.1) and induction on dimension. This is one of the
reasons why cohomological descent (Property (d), Introduction) makes equi-
variant operational K-theory more computable than the Grothendieck ring
of equivariant vector bundles, when it comes to singular T -schemes.

Corollary 3.3. Notation being as above, the sequence

0 // opKT (X) // opKT (X̃)⊕ opKT (Z) // opKT (E)

is exact, where E = p−1(Z). �
Corollary 3.4. Let Y be a T -scheme, and let Y = ∪n

i=1Yi be the decom-
position of Y into irreducible components. Let Yij = Yi ∩ Yj. Then the
sequence

0 → opKT (Y ) →
⊕
i

opKT (Yi) →
⊕
i,j

opKT (Yij).

is exact.

Proof. First recall that
⊔

i Yi → Y is an equivariant envelope. Now use
cohomological descent to get the result. �

The following was first observed in [EG-2, Lemma 7.2].

Lemma 3.5. Let X be a T -scheme, and let π : X̃ → X be an equivariant
envelope. If H is a closed subgroup of T , then the induced map X̃H → XH

is also a T -equivariant envelope.

Proof. The argument here is basically that of [EG-2, Lemma 7.2]. First,

notice that the map πH : X̃H → XH is T -equivariant, because T is an
abelian group. Now let W ⊂ XH be a T -invariant irreducible subvariety
and let W̃ be an irreducible subvariety of X̃ mapping birationally to W via
π. To prove that X̃H is an equivariant envelope, it suffices to prove that
we can take W̃ ⊂ X̃H . The restricted map π : W̃ → W is a T -equivariant
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isomorphism over a dense open subspace U of W . Replace W̃ with the
closure of π−1(U). Because H acts trivially on π−1(U) (for U ⊂ W ⊂ XH),

and W̃H is closed, we get W̃ ⊂ X̃H , as desired. �

An important technical result is stated next.

Corollary 3.6. Let p : X̃ → X be an equivariant envelope. If H is a closed
subgroup of T , then the diagram of exact sequences

0 // opKT (X) //

i∗H
��

opKT (X̃) //

��
i∗H

��

opKT (X̃ ×X X̃)

��
i∗H

��
0 // opKT (X

H) // opKT (X̃
H) // opKT (X̃

H ×XH X̃H).

commutes. Moreover, if p is birational, and notation being as in Theorem
3.2, then the diagram of exact sequences

0 // opKT (X) //

i∗H
��

opKT (X̃)⊕ opKT (Z) //

��
i∗H

��

opKT (E)

��
i∗H

��
0 // opKT (X

H) // opKT (X̃
H)⊕ opKT (Z

H) // opKT (E
H).

commutes.

Proof. First, apply cohomological descent to p : X̃ → X. Due to Lemma 3.5,
we can also apply this tool to the T -equivariant envelope pH : X̃H → XH ,
noticing that (X̃ ×X X̃)H = X̃H ×XH X̃H . Now write the associated short
exact sequences as the rows of the first square diagram displayed above. An
straightforward check shows that the diagram is commutative. A similar
argument yields the second assertion, in view of Corollary 3.3. �

In the upcoming proposition we state another crucial consequence of
Kimura’s work. Put in perspective, it asserts that the equivariant oper-
ational K-theory ring opKT (X) of any complete T -scheme X is a subring
of opKT (X

T ). Moreover, there is a natural isomorphism

opKT (X
T ) ' opKT (X

T )⊗Z R(T ),

by [AP, Corollary 5.5]. In many cases of interest, XT is finite (e.g. for

spherical varieties) and so one has opKT (X) ⊆
⊕`

1 opKT (pt) = R(T )`,
where ` = |XT |. This motivates our introduction of localization techniques,
and ultimately GKM theory, into the study of the functor opKT (−).

Proposition 3.7. Let X be a complete T -scheme and let iT : XT → X be
the inclusion of the fixed point subscheme. Then the pull-back map

i∗T : opKT (X) → opKT (X
T )

is injective.
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Proof. First, choose a T -equivariant envelope p : X̃ → X, with X̃ projec-
tive and smooth (Lemma 3.1). Thus p∗ : opKT (X) → opKT (X̃) is in-

jective (Theorem 3.2). Since X̃ is smooth and projective, the pull-back

i∗T : opKT (X̃) → opKT (X̃
T ), is injective (by Property (b) of the Introduc-

tion together with the CS property for smooth T -schemes [VV, Theorem

2]). Besides, the chain of inclusions X̃T ⊂ p−1(XT ) ⊂ X̃ indicate that ĩ∗T
factors through ι∗ : opKT (X̃) → opKT (p

−1(XT )), where ι : p−1(XT ) ↪→ X̃
is the natural inclusion. Thus, ι∗ is injective as well. Finally, adding this
information to the commutative diagram

opKT (X)
p∗ //

i∗T
��

opKT (X̃)

ι∗

��
opKT (X

T )
p∗ // opKT (p

−1(XT )).

renders i∗T : opKT (X) → opKT (X
T ) injective. �

Corollary 3.8. Let X be a complete T -scheme. Let Y be a T -invariant
closed subscheme containing XT . Denote by ι : Y → X the natural inclu-
sion. Then the R(T )-algebra map ι∗ : opKT (X) → opKT (Y ) is injective. In
particular, if H is a closed subgroup of T , then i∗H : opKT (X) → opKT (X

H)
is injective.

Proof. Simply notice that ι : Y → X fits into the commutative triangle

Y
ι

%%KKKKKK

XT
iT

//

iT,Y
99rrrrrr

X.

In other words, the functorial map i∗T : opKT (X) → opKT (X
T ) factors as

ι∗ : opKT (X) → opKT (Y ) followed by i∗T,Y : opKT (Y ) → opKT (X
T ). By

Proposition 3.7, i∗T is injective, hence so is ι∗. As for the second assertion,

just note that XH is T -invariant and XT ⊂ XH . �
Remark 3.9. Of particular interest is the case Y = ∪n

i=1Yi, where Yi are
the irreducible components of Y . Let Yij = Yi ∩ Yj . By Corollary 3.4 the
following sequence is exact

0 → opKT (Y ) →
⊕
i

opKT (Yi) →
⊕
i,j

opKT (Yij).

When Y T is finite, the sequence above yields the commutative diagram
(Corollary 3.6):

0 // opKT (Y ) //

i∗T
��

⊕
i opKT (Yi) //

i∗T
��

⊕
i,j opKT (Yij)

i∗T
��

0 // opKT (Y
T )

p // ⊕
i opKT (Y

T
i )

q //
⊕

i,j opKT (Y
T
ij )
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Since all vertical maps are injective (Proposition 3.7), it is important to
observe that we can describe the image of the first vertical map in terms of
the image of the second vertical map and the kernel of q. In other words,
the map

p : im(i∗T,Y ) → {w ∈
⊕
i

opKT (Yi) |w ∈ im(
∑
i

i∗T ) and q(w) = 0}

sending u → p(u) is an isomorphism. Now, since Y T is finite, the kernel of
the map q consists of all families (fi)i such that fi(xk) = fj(xk) (equality of
k-components), whenever xk is in the intersection of Yi and Yj .

Back to the general case, let X be a complete T -scheme. We wish to
describe the image of the injective map

i∗T : opKT (X) → opKT (X
T ).

For this, let T ′ ⊂ T be a subtorus of codimension one. Observe that iT :
XT → X factors as iT,T ′ : XT → XT ′

followed by iT ′ : XT ′ → XT . Thus,
the image of i∗T is contained in the image of i∗T,T ′ . In symbols,

Im[i∗T : opKT (X) → opKT (X
T )] j

⋂
T ′⊂T

Im[i∗T,T ′ : opKT (X
T ′
) → opKT (X

T )],

where the intersection runs over all codimension-one subtori of T . This
observation will lead, as in the smooth case, to an explicit description of the
image of i∗T . Such is the central theme of the subsequent sections.

4. The Localization theorem of Borel-Atiyah-Segal type and
the Chang-Skjelbred property

Let T be an algebraic torus. We recall a construction of Thomason [Th2,
Lemma 1.1, Proposition 1.2]. Let p ⊂ R(T ) be a prime ideal. Set Kp = {n ∈
∆ | 1 − n ∈ p}, where ∆ is the character group of T . It is well-known, see
e.g. [Bo2], that the quotient ∆/Kp determines a unique subgroup Tp ⊂ T
with the property that R(Tp) = Z[∆/Kp]. Following [Th2], we call Tp the
support of p. When p is maximal, Kp has finite index and Tp is a finite
group.

Theorem 4.1. Let X be a T -scheme. Let p ⊂ R(T ) be a prime ideal and
Tp be its support. Then the R(T )-algebra map i∗Tp

: opKT (X) → opKT (X
Tp)

becomes an isomorphism after localizing at p:

i∗Tp
: opKT (X)p

∼ // opKT (X
Tp)p .

Proof. Choose a T -equivariant birational envelope p : X̃ → X, with X̃ quasi-
projective and smooth. Then p is an isomorphism outside some T -invariant
closed subscheme Z. Let E = p−1(Z). Notice that p can be chosen so that
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Z and E have dimension smaller than that of X. Now, in light of Corollary
3.6, form the commutative diagram of exact sequences

0 // opKT (X) //

i∗Tp
��

opKT (X̃)⊕ opKT (Z) //

��
i∗Tp

��

opKT (E)

��
i∗Tp

��
0 // opKT (X

Tp) // opKT (X̃
Tp)⊕ opKT (Z

Tp) // opKT (E
Tp).

It follows from Noetherian induction and Thomason’s concentration theorem
[Th2, Théorème 2.1] that the last two vertical maps become isomorphisms
after localizing at p; hence so does the first one. �

Corollary 4.2. Let X be a complete T -scheme. Notation being as above, the
R(T )-algebra map i∗Tp

: opKT (X) → opKT (X
Tp) is injective and it becomes

surjective after localizing at p.

Proof. Use Proposition 3.7 and Theorem 4.1. �

Definition 4.3. Let X be a complete T -scheme. We say that X has the
Chang-Skjelbred property (or CS property, for short) if the image of

i∗T : opKT (X) → opKT (X
T )

is exactly the intersection of the images of

i∗T,H : opKT (X
H) → opKT (X

T ),

where H runs over all subtori of codimension one in T .

By [VV, Theorem 2], every nonsingular complete T -scheme has the CS
property. Remarkably, it holds over Z. We extend this result to include all,
possibly singular, complete schemes with an action of T .

Theorem 4.4. Let X be a complete T -scheme. Then X has the CS property.

Proof. Let π : X̃ → X be a T -equivariant envelope with X̃ projective and
smooth (Lemma 3.1). Because of Corollary 3.6 we get the commutative
diagram

0 // opKT (X)
π∗

//

i∗T
��

opKT (X̃)
π∗
1−π∗

2 //

ĩ∗T
��

opKT (X
′)

i∗T
′

��
0 // opKT (X

T )
πT

∗
// opKT (X̃

T )
π∗
T,1−π∗

T,2 // opKT (X
′T ).

A simple diagram chasing shows that u ∈ opKT (X
T ) is in the image of i∗T

if and only if πT
∗(u) is in the image of ĩ∗T . Indeed, this follows from the fact

that all vertical maps in the diagram are injective (Proposition 3.7).
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On the other hand we have the commutative diagram

opKT (X)
π∗

//

i∗T
��i∗H

����
��

��
��

��
��

��
��

��
��

opKT (X̃)

ĩ∗T
��ĩ∗H

����
��

��
��

��
��

��
��

��
�

opKT (X
T )

πT
∗

// opKT (X̃
T )

opKT (X
H)

πH
∗

//
i∗T,H

77ppppppppppp

opKT (X̃
H)

ĩ∗T,H

77ppppppppppp

obtained by combining and comparing the sequences that Corollary 3.6 as-
signs to the envelopes π : X̃ → X, πH : X̃H → XH and pT : X̃T → XT .
From the diagram it follows that if u ∈ opKT (X

T ) is in the image of i∗T,H ,

then πT
∗(u) is in the image of ĩ∗T,H . Hence, if u is in the intersection of

the images of all i∗T,H , then πT
∗(u) is in the intersection of the images of all

ĩ∗T,H , where H runs over all codimension-one subtori of T . Since X̃ satisfies

the CS condition, then πT
∗(u) is in the image of ĩ∗T . Finally, from the ob-

servation made at the end of the previous paragraph, we conclude that u is
in the image of i∗T . �

5. GKM theory

Vistoli and Vezzosi established a version of GKM theory applicable to
nonsingular complete T -schemes [VV, Theorem 2]. Based on Theorem 4.4,
we establish here a version of GKM-theory valid for the equivariant op-
erational K-theory of singular complete T -schemes (Theorem 5.4). As a
consequence, we extend [AP, Theorem 1.6] to the larger class of T -skeletal
varieties, a family of objects that includes all equivariant projective em-
beddings of reductive groups (Theorem 6.2). We start by recalling a few
definitions from [GKM] and [G1].

Definition 5.1. Let X be a complete T -variety. Let µ : T ×X → X be the
action map. We say that µ is a T -skeletal action if

(1) XT is finite, and
(2) The number of one-dimensional orbits of T on X is finite.

In this context, X is called a T -skeletal variety. The associated graph of
fixed points and invariant curves is called the GKM graph of X. We shall
denote this graph by Γ(X).

Example 5.2. Smooth T -skeletal varieties include regular compactifications
of reductive groups ([BCP], [LP]) and, more generally, regular compactifica-
tions of symmetric varieties of minimal rank. The Chow rings of these vari-
eties are described in [BJ] by means of GKM theory. In constrast, Schubert
varieties and projective group embeddings of reductive groups are examples
of singular T -skeletal varieties. The former have a paving by affine spaces
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and their equivariant cohomology is well-known [C]. The latter are spheri-
cal varieties and, when rationally smooth, their equivariant cohomology has
been described by the author in [G2]. Our version of GKM theory (Theo-
rem 5.4) will generalize these topological descriptions to the corresponding
equivariant operational K-theory rings (Example 5.5 and Section 6).

Let X be a complete T -variety and let C be a T -invariant irreducible
curve of X, which is not fixed pointwise by T . Let π : C̃ → C be the (T -

equivariant) normalization. Then C̃ is isomorphic to P1. Denote by 0,∞
the two fixed points of T in C̃, and denote by x0, x∞ their corresponding
images via π. Then C̃ \ {0,∞} = C \ {x0, x∞} identifies to k∗, where T acts

on C̃ \ {0,∞} via a unique character χ (when interchanging 0 and ∞, one
replaces χ by −χ). Clearly, T has either one or two fixed points in C.

Notice that, in principle, Definition 5.1 allows for T -invariant irreducible
curves with exactly one fixed point (i.e. the GKM graph Γ(X) may have
simple loops). We shall see that the functor opKT (−) “contracts” such loops
to a point.

Proposition 5.3. Let X be a complete T -variety and let C be a T -invariant
irreducible curve of X which is not fixed pointwise by T . Then the image of
the injective map i∗T : opKT (C) → opKT (C

T ) is described as follows:

(i) If C has only one fixed point, say x, then i∗T : opKT (C) → opKT (x) is
an isomorphism; that is, opKT (C) ' R(T ).

(ii) If C has two fixed points, then

opKT (C) ' {(f0, f∞) ∈ R(T )⊕R(T ) | f0 ∼= f∞ mod 1− e−χ},
where T acts on C via the character χ.

Proof. Let π : P1 → C be the normalization map. By [VV, Theorem 2] (see
also [U, Theorem 1.3])

KT (P1) = {(f0, f∞) ∈ R(T )⊕R(T ) | f0 ∼= f∞ mod 1− e−χ},
where χ is the character of the T -action on C. Moreover, given that P1 is
smooth, we get opKT (P1) = KT (P1). In view of this, and Gillet-Kimura
criterion (Theorem 3.2), it suffices to find the image of the injective map
π∗ : opKT (C) → opKT (P1) explicitly. First, assume that C has only one
fixed point, say x = π(0) = π(∞). Then an element f ∈ opKT (P1) is in the
image of π∗ if and only if the restriction (f0, f∞) ∈ opKT ({0,∞}) is in the
image of the induced map π∗ : opKT (x) → opKT ({0,∞}). But the latter
morphism is simply the diagonal inclusion, so we get that f ∈ opKT (P1) is
in the image of π∗ if and only if f0 = f∞. Therefore, opKT (C) = R(T ) and
i∗T : opKT (C) → opKT (x) is an isomorphism. Finally, if π(0) 6= π(∞), a
similar analysis yields assertion (ii). �

Let X be a T -skeletal variety. Now, as done in the Introduction, it is
possible to define a ring PE∗

T (X) of piecewise exponential functions.
We recall the construction here, taking into account Proposition 5.3. Let
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KT (X
T ) = ⊕x∈XTRx, where Rx is a copy of the representation ring R(T ).

We then define PET (X) as the subalgebra of K0
T (X

T ) given by

PET (X) = {(f1, . . . , fm) ∈ ⊕x∈XTRx | fi ≡ fj mod 1− e−χi,j}

where xi and xj are the two (perhaps equal) fixed points in the closure of
the one-dimensional T -orbit Ci,j , and χi,j is the character of T associated
with Ci,j . This character is uniquely determined up to sign (permuting the
two fixed points changes χi,j to its opposite). Invariant curves with only one
fixed point do not impose any relation (this is compatible with Proposition
5.3).

Theorem 5.4. Let X be a complete T -skeletal variety. Then the pullback
i∗T : opKT (X) → opKT (X

T ) induces an isomorphism between opKT (X)
and PET (X).

Proof. Observe that a codimension one subtorus of T is the kernel of a
primitive (i.e. indivisible) character of T . Such character is uniquely defined
up to sign.

Let π be a primitive character of T . LetXkerπ =
⋃

j Xj be the decomposi-
tion into irreducible components. Notice that each Xj is either a fixed point,
or a T -invariant irreducible curve. Now, with the notation of Corollary 3.4,
we have the commutative diagram

0 // opKT (X
kerπ) //

i∗T,kerπ

��

⊕
i opKT (Xj) //

��

⊕
i,j opKT (Xi,j)

id
��

0 // opKT (X
T ) //

⊕
i opKT (X

T
j )

//
⊕

i,j opKT (Xi,j),

where each Xi,j is just a fixed point, and T acts on those Xj ’s that are
curves via a character χj , a multiple of π. The image of the middle vertical
map is completely characterized by Proposition 5.3, and so is the image of
i∗T,kerπ, as it follows from Remark 3.9. In short, Im(i∗T,kerπ) ' PET (X

kerπ).
Now apply Theorem 4.4 to conclude the proof. �

Let X be a T -skeletal variety. Notice that Γ(X) is a singular projective
T -variety with the same equivariant operational K-theory as that of X. In
symbols, opKT (Γ(X)) = opKT (X). This is simply a rephrasing of Theorems
4.4 and 5.4.

Example 5.5. (Bruhat graph.) Let G be a connected reductive group with
Borel subgroup B and maximal torus T ⊂ B. Let W be the Weyl group of
(G,T ). It is a finite group generated by reflections {sα}α∈Φ, where Φ stands

for the set of roots of (G,T ). Now let X(w) = BwB/B ⊂ G/B be the
Schubert variety associated to w ∈ W . In what follows we extend the usual
picture of KT (G/B) to opKT (X(w)). Denote by Iw the Bruhat interval

[1, w] = {x ∈ W |x ≤ w}.
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Notice thatX(w)T = Iw. As a shorthand, set R = R(T ). Then, by Theorem
5.4, opKT (X(w)) is the subring of ⊕x∈IwR consisting of all

∑
x∈Iw fxx such

that fx ∼= fsαx mod 1 − e−α, whenever (i) sα is a reflection of W and (ii)
x, sαx ∈ Iw. Finally, opKT (X(w)) is a free R(T )-module of rank |Iw|. This is
a consequence of equivariant Kronecker duality (Property (f), Introduction)
together with the fact that KT (X(w)) is a free R(T )-module of rank |Iw|
(for X(w) has a paving by affine spaces, cf. [U, Lemma 1.6]).

Remark 5.6. Let X be a T -skeletal variety. By Theorem 5.4, the R(T )-
algebra opKT (X) identifies to PET (X) ⊂ R(T )m. Moreover, PET (X) and
R(T )m have the same quotient field (by the localization theorem). It follows
that PET (X) is a reduced, finitely generated Z-algebra. The same holds for
the natural extension PET (X)k := PET (X) ⊗ k, a k-algebra of dimension
d = dim(T ). Let V (X) be the corresponding affine k-variety (defined over a
finite algebraic extension of Q). It is worth noting that the associated map
i∗T : opKT (X)k → k[T ]m is the normalization (cf. [Br3, Proposition 2]). For
this, first observe that k[T ] is a subring of opKT (X)k, as a choice of fixed
point yields a section of the structural map opKT (X)k → opKT (pt)k ' k[T ].
Secondly, k[T ]m is a finite module over k[T ], so it is also a finite module
over opKT (X). Finally, since k[T ]m is integrally closed in its quotient field
and opKT (X)k and k[T ]m have the same quotient field (by the localization
theorem), we conclude that i∗ is the normalization. Hence, the normalization
of the affine variety V (X) is the union of |XT | disjoint copies of T . Moreover,
the set V (X) is obtained as follows: for any character χ associated to a T -
invariant curve with fixed points x and y we identify the toric hyperplanes
{1 − eχ = 0} in Tx and Ty, provided x 6= y. If the aforementioned x and y
are the same, then we set Tx = Ty, in accordance with Proposition 5.3.

6. Equivariant operational K-theory rings of projective group
embeddings

Throughout this section we denote by G a connected reductive linear
algebraic group (over k) with Borel subgroup B and maximal torus T ⊂ B.
We denote by W the Weyl group of (G,T ). Observe that W is generated by
reflections {sα}α∈Φ, where Φ stands for the set of roots of (G,T ). We write
Uα for the unipotent subgroup of G associated to α ∈ Φ. Since W acts on
∆, the character group of T , there is a natural action of W on Z[∆] given

by w(eλ) = ew(λ), for each w ∈ W and λ ∈ ∆. Recall that we can identify
R(G) with R(T )W via restriction to T , where R(T )W denotes the subring
of R(T ) invariant under the action of W .

An affine algebraic monoid M is called reductive it is irreducible, normal,
and its unit group is a reductive algebraic group. See [R1] for many details.
Let M be a reductive monoid with zero and unit group G. We denote by
E(T ) the idempotent set of the associated affine torus embedding T , that is,
E(T ) = {e ∈ T | e2 = e}. One defines a partial order on E(T ) by declaring
f ≤ e if and only if fe = f . Denote by Λ ⊂ E(T ), the cross section lattice of
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M . The Renner monoid R ⊂ M is a finite monoid whose group of units is
W and contains E(T ) as idempotent set. In fact, any x ∈ R can be written
as x = fu, where f ∈ E(T ) and u ∈ W . Given e ∈ E(T ), we write CW (e)
for the centralizer of e in W . Denote by Rk the set of elements of rank k in
R, that is, Rk = {x ∈ R | dimTx = k }. Analogously, one has Λk ⊂ Λ and
Ek ⊂ E(T ).

A normal irreducible variety X is called an embedding of G, or a group
embedding, if X is a G×G-variety containing an open orbit isomorphic to G.
Due to the Bruhat decomposition, group embeddings are spherical G × G-
varieties. Substantial information about the topology of a group embedding
can be obtained by restricting one’s attention to the induced action of T×T .
When G = B = T , we get back the notion of toric varieties. Let M be a
reductive monoid with zero and unit group G. Then there exists a central
one-parameter subgroup ε : G∗

m → T , with image Z, such that lim
t→0

ε(t) = 0.

Moreover, the quotient space

Pε(M) := (M \ {0})/Z
is a normal projective variety on which G×G acts via (g, h) · [x] = [gxh−1].
Hence, Pε(M) is a normal projective embedding of the quotient group G/Z.
These varieties were introduced by Renner in his study of algebraic monoids
([R2], [R3]). Notably, normal projective embeddings of connected reductive
groups are exactly the projectivizations of normal algebraic monoids [Ti].

Now let X = Pε(M) be a (projective) group embedding. In [G2] we
compute the finite GKM data coming from the T×T -fixed points and T×T -
invariant curves of X in terms of the combinatorial invariants of M . These
computations are independent of whether or not X is rationally smooth.

Theorem 6.1 ([G2, Theorems 3.1, 3.5]). Let X = Pε(M) be a projective
group embedding. Then its natural T × T -action

µ : T × T × Pε(M) → Pε(M), (s, t, [x]) 7→ [sxt−1]

is T × T -skeletal. Indeed, after identifying the elements x of R1 with their
corresponding images [x] in X, the set XT×T corresponds to R1. As for the
closed T × T -curves of X, they fall into three types:

(1) Uα[ew], e ∈ E1(T ), sα /∈ CW (e) and w ∈ W .

(2) [we]Uα, e ∈ E1(T ), sα /∈ CW (e) and w ∈ W .

(3) [TxT ] = [Tx] = [xT ], where x ∈ R2.

The curves of type 1 and 2 lie entirely in closed G × G-orbits, whereas
the curves of type 3 do not. Curves of type 3 can be further separated into
whether or not the corresponding T × T -fixed points are in the same closed
G×G-orbit. In [G2, Section 4], we identify explicitly the T × T -characters
associated to these curves. With such data at our disposal, Theorem 5.4
yields an immediate translation of [G2, Theorem 4.10] into the language
of equivariant operational K-theory. Furthermore, as Theorem 5.4 does not
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require any conditions on the singular locus, the result (Theorem 6.2) applies
to all projective group embeddings. This description coincides with that of
Uma ([U, Theorem 2.1]) when X = Pε(M) is smooth, and it extends our
previous work on rationally smooth group embeddings [G2]. To state it,
we record a few extra facts. Let Λ1 be the set of rank-one idempotents of
the cross-section lattice Λ. Each closed G × G-orbit of X = Pε(M) can be
written uniquely as G[e]G ' G/Pe ×G/P−

e , where e ∈ Λ1, and Pe, P
−
e are

opposite parabolic subgroups (see e.g. [R1]).

Theorem 6.2. Let X = Pε(M) be a group embedding. Then the natural
map

opKT×T (X) −→ opKT×T

 ⊔
e∈Λ1

G[e]G

 =
⊕
e∈Λ1

KT×T (G[e]G)

is injective. In fact, its image consists of all tuples (ϕe)e∈Λ1, indexed over
Λ1 and with ϕe ∈ KT×T (G[e]G), subject to the additional conditions:

(a) If f ∈ E2(T ) and there is a (necessarily unique) reflection sαf
such that

sαf
f = fsαf

6= f , then

ϕef (f1u) ≡ ϕef (f2u) mod 1− e−αf ⊗ e−(αf◦int(u)),

for all u ∈ W . Here, f1 and f2 = sαf
· f1 · sαf

are the two idempotents

in E1(T ) below f , the root αf corresponds to the reflection sαf
, and

ef ∈ Λ1 is the unique element of Λ1 which is conjugate to f1.

(b) If f ∈ E2(T ) and sf = fs = f for every reflection s ∈ W , then

ϕe1(f1u) ≡ ϕe2(f2u) mod 1− e−λf ⊗ e−(λf◦int(u)),

for all u ∈ W . Here, λf is the character of T defined by the composition

T → Tf → Tf/k∗ ' k∗,

the idempotents f1, f2 are the unique idempotents below f , and ei ∈ Λ1

is conjugate to fi, for i = 1, 2.

Proof. Since XT×T ⊂
⊔

e∈Λ1
G[e]G, Corollary 3.8 renders the natural map

opKT×T (X) → opKT×T

(⊔
e∈Λ1

G[e]G
)
injective. Moreover, G[e]G is smooth,

so opKT×T (G[e]G) is isomorphic to KT×T (G[e]G). Finally, we apply Theo-
rem 5.4, taking into account that:
(i) the curves of type 1 and 2 in Theorem 6.1 are contained in

⊔
e∈Λ1

G[e]G
and these curves describe KT×T (G[e]G) via Example 5.5,
(ii) the characters associated to the curves of type (3) give assertions (a)
and (b), as in [G2, Theorem 4.10]. �

If X = Pε(M) is a group embedding, then X is G × G-spherical. If
moreover π1(G) is torsion free, then Corollary A.4 states that opKG×G(X)
can be read off from opKT×T (X) by computing invariants:

KG×G(X) ' opKT×T (X)W×W .
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Corollary 6.3. Let X = Pε(M) be a group embedding. If π1(G) is torsion
free, then the ring opK∗

G×G(X) consists of all tuples (Ψe)e∈Λ1, where

Ψe : WeW → (R(T )⊗R(T ))CW (e)×CW (e),

such that

(a) If f ∈ E2(T ) and Hf = {f, sαf
f}, then

Ψe(f1) ≡ Ψe(f2) mod 1− e−αf ⊗ e−αf ,

where e ∈ Λ1 is conjugate to f1, f2 = sαf
· f1 · sαf

, the reflection sαf
∈

CW (f) is associated with the root αf , and fi ≤ f .
(b) If f ∈ E2 and Hf = {f}, then

Ψe(f1) ≡ Ψe′(f2) mod 1− e−λf ⊗ e−λf ,

where λf is character of T defined by f , and f1, f2 ≤ f are conjugate to
e and e′, respectively.

Proof. Simply adapt the proof of [G2, Corollary 4.11], using Theorem 6.2
and Corollary A.4. �

Associated to X = Pε(M), there is a projective torus embedding Y of
T/Z, namely,

Y = Pε(T ) = [T \ {0}]/Z.
By construction, Y is a normal projective toric variety and Y ⊆ X. Our
next theorem allows to compare the equivariant operational K-theories of
X and its associated torus embedding Y ⊆ X. The situation for general
group embeddings contrasts deeply with the corresponding one for regular
embeddings ([Br2, Corollary 3.1.2], [U, Corollary 2.2.3]).

Theorem 6.4. Notation being as above, if π1(G) is torsion free, then the
inclusion of the associated torus embedding ι : Y ↪→ X induces an injection:

ι∗ : opK∗
G×G(X) � � // opKT×T (Y)W ' (opKT (Y)⊗R(T ))W ,

where the W -action on opKT×T (Y) is induced from the action of diag(W )
on Y. Moreover, ι∗ is an isomorphism whenever CW (e) = {1} for every
e ∈ Λ1.

Proof. The argument here is an adaptation of [G2, Proof of Theorem 4.12].
First, consider the commutative diagram

opKT×T (X) � � //

ι∗

��

opKT×T (X
T×T )

ι∗

��
opKT×T (Y) � � // opKT×T (YT×T ),
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where both horizontal maps are injective (Proposition 3.7). On the other
hand, recall that Λ1 provides a set of representatives of both the W ×W -
orbits in XT×T = R1 and the W -orbits in YT×T = E1(T ). Thus, after
taking invariants, we obtain an injection

opKT×T (R1)
W×W =

⊕
e∈Λ1

((R(T )⊗R(T ))CW (e)×CW (e)
� _

ι∗

��
opKT×T (E1(T ))

W =
⊕

e∈Λ1
(R(T )⊗R(T ))CW (e)

.

Placing this information into the commutative square above renders the
map

ι∗ : opKT×T (X)W×W −→ opKT×T (Y)W

injective. Now observe that opKT×T (Y)W ' (opKT (Y) ⊗ R(T ))W . Truly,
we have a split exact sequence

1 // diag(T ) // T × T
(t1,t2) 7→t1t

−1
2 // Tjj ifc_\X

// 1,

where the splitting is given by t 7→ (t, 1). It follows that T × T is canoni-
cally isomorphic to diag(T )× (T × 1). Clearly, diag(T ) acts trivially on Y.
Hence, by [AP, Corollary 5.5], we have a ring isomorphism opKT×T (Y) '
opKdiag(T ) ⊗ opKT (Y). This isomorphism is in fact W -invariant (because
the W -action on the operational rings is induced from the action of diag(W )
on Y).

For the second assertion, assume that CW (e) = {1} for all e ∈ Λ1. We
need to show that ι∗ is surjective. To achieve our goal, we modify slightly
an argument of [LP], Section 4.1, and Brion [Br2], Corollary 3.1.2. Define
the T × T -variety

N =
⋃

w∈W
wY.

We claim that this union is, in fact, a disjoint union. Indeed, observe that
N contains all the T ×T -fixed points of X. That is, N has |R1| fixed points.
On the other hand, each wY has |E1| fixed points (for its corresponding T -
action). Now, if it were the case that there is a pair of distinct subvarieties
wY and w′Y with non-empty intersection, then this intersection should also
contain T×T -fixed points. But then a simple counting argument would yield
|R1| < |E1||W |. This is impossible, by our assumptions and [G2, Lemma
4.14]. Hence,

N =
⊔

w∈W
wY.

In this setup, Corollary 3.8 implies that the restriction map

opKT×T (X) → opKT×T (N ).

is injective. From Theorem 6.1 we know that all the T × T -curves of X are
contained either in closed G × G-orbits (curves of type 1. and 2.) or in N
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(curves of type 3.). Moreover, note that the curves of type 3. are exactly
the T × T -invariant curves of N , so N is T × T -skeletal and Theorem 5.4
applies to it. After taking W ×W -invariants (cf. Corollary 6.3), we see that
the aforementioned map induces an isomorphism

opKT×T (X)W×W ' opKT×T (N )W×W '

(⊕
w∈W

opKT×T (Y)

)W×W

' opKT×T (Y)W.

This concludes the proof. �

Lemma 6.5 ([G2, Lemma 4.14 and Corollary 4.15].). Let X = Pε(M) be a
group embedding. Then the following are equivalent:

(a) CW (e) = {1} for every e ∈ E1(T ).
(b) All closed G×G-orbits in X are isomorphic to G/B ×G/B−. �

Group embeddings satisfying the equivalent conditions of Lemma 6.5 are
called toroidal embeddings (see e.g. [Ti, Chapter 5]). Furthermore, smooth
toroidal embeddings are exactly the regular embeddings of reductive groups
[Ti, Theorem 29.2].

Theorem 6.4 gives an explicit relation between our results and those of
[AP]. Indeed, if X = Pε(M) is a toroidal group embedding and π1(G) is
torsion free, then opKG×G(X) is isomorphic to the subring of W -invariants
in opKT (Y)⊗R(T ), where opKT (Y) is the ring of integral piecewise expo-
nential functions on the fan of Y.

7. Further remarks

(1) Extending the results to equivariant operational Chow groups. Poincaré
duality for singular schemes. Kimura’s cohomological descent for envelopes
[Ki, Theorems 2.3 and 3.1] has also been established for equivariant oper-
ational Chow groups opA∗

T (−) [EG-1, Section 2.6], the operational coho-
mology groups associated to Edidin and Graham’s equivariant Chow groups
AT

∗ (−). On the category of smooth schemes, the functors opA∗
T (−) and

AT
∗ (−) are known to agree (op. cit.). Furthermore, on the subcategory

of smooth projective T -schemes, corresponding versions of the localization
theorem and CS property hold for AT

∗ (−)Q [Br1, Section 3]. Since these
are the intersection theory analogues of our main tools, our arguments are
readily translated into the language of equivariant operational Chow groups
with Q-coefficients, yielding versions of Theorems 4.1, 4.4 and 5.4 appli-
cable to all singular complete T -schemes. See [G3] for a slightly different
approach in the case of T -linear varieties, and [G4] for some applications to
characterizing Poincaré duality on the Chow groups of singular T -schemes.
Moreover, when k = C and X is a rationally smooth T -skeletal variety,
there is a natural isomorphism between opA∗

T (X)Q and H∗
T (X)Q, as their

images on A∗
T (X

T )Q = H∗
T (X

T )Q are canonically isomorphic [GKM], [G1].
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In particular, the equivariant operational Chow groups of (complex) ratio-
nally smooth T -skeletal varieties are free modules over Sym[∆]Q. From this
point of view, equivariant operational Chow groups behave like equivariant
intersection cohomology, though the former are somewhat more combinato-
rial and easier to compute on T -skeletal varieties. Notably, for projective
group embeddings, the results of [G2] remain valid when translating them
into the context of rational smoothness in Chow groups [G4] and equivariant
operational Chow rings. The results will appear in [G5].

(2) Equivariant multiplicities in K-theory. Let X be a complete T -scheme
with finitely many fixed points. In virtue of Thomason’s localization theorem
for KT (−) [Th2, Theorem 2.1], the following identity holds in Q(∆), the
quotient field of Z[∆]:

[OX ] =
∑

x∈XT

EK(x,X)[Ox],

where the various EK(x,X) are (possibly zero) rational functions on (∆Q)
∗.

Following the nomenclature of [Br1, Section 4.2] we call EK(x,X) the K-
theoretic equivariant multiplicity of X at x. If all the EK(x,X) are non-zero,
then, by Theorem 4.1, the Poincaré duality map

opKT (X) → KT (X), c 7→ cidX (OX)

is injective (cf. proof of [Br3, Theorem 4.1]). We anticipate that the
EK(x,X)’s are non-zero whenever x is an attractive fixed point of X, be-
cause, in that case, EK(x,X) is related to the Hilbert series of Proj(k[Xx]),
where Xx is the unique open affine T -stable neighborhood of x (cf. [Br1],
[R4], [BV]). The notion of K-theoretic equivariant multiplicity at attractive
fixed points is already present in the study of flag varieties (see e.g. [BBM]).
For complete toric varieties and simple group embeddings, our claim would
imply that the natural map opKT (X) → KT (X) is always injective (this
deeply contrasts with the behaviour of the map KT (X) → KT (X), whose
kernel could be rather large, cf. [AP]). In contrast, surjectivity of the
Poincaré duality map on singular schemes is a more delicate property, and
quite often it does not hold. For instance, consider the Gm-action on P3

given by t · [x, y, z, w] = [t2x, t4y, t3z, w]. Now let Y ⊂ P3 be the projec-
tive surface z2 = xy. Clearly Y is Gm-invariant, opKT (Y ) is torsion free,
but KT (Y ) has R(Gm)-torsion coming from the fact that µ2 ⊂ Gm fixes
two lines in Y . We shall develop these ideas and explore the behaviour of
K-theoretic equivariant multiplicities in a subsequent paper.

Appendix A. G-equivariant Künneth formula for spherical
varieties

Recall that a G-variety is called spherical if it contains a dense B-orbit.
Examples include flag varieties, symmetric spaces, and G × G-equivariant
embeddings of G (e.g. toric varieties are spherical). For an up-to-date
discussion of spherical varieties, see [Ti] and the references therein.
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The following is a result of Merkurjev [M1].

Theorem A.1. Let G be a connected reductive group. Suppose that π1(G)
is torsion-free. Then the following hold:

(i) R(T ) is a free R(G)-module of rank |W |, and R(T ) ' R(G)⊗ Z[W ].
(ii) If X is a G-scheme, then

R(B)⊗R(G) K
G(X) ' KG(X ×G/B) ' KB(X) ' KT (X).

In particular, KG(X) ' KT (X)W . �

Theorem A.2. Let G be a connected reductive group with π1(G) torsion
free. Let X be a G-spherical variety. Then for any G-variety Y the exterior
product map, or Künneth map,

KuG : KG(X)⊗R(G) KG(Y ) → KG(X × Y )

is an isomorphism.

Proof. Consider the commutative diagram

KB(X)⊗RB
KB(Y )

KuB // KB(X × Y )

KG(X ×G/B)⊗RB
KG(Y ×G/B)

p1⊗p2

OO

KG((X × Y )×G/B)

p

OO

[RB ⊗RG
KG(X)]⊗RB

[RB ⊗RG
KG(Y )]

resX⊗resY

OO

RB ⊗RG
KG(X × Y )

resX×Y

OO

[RB ⊗RG
KG(X)]⊗RG

KG(Y )]

natural

OO

idRB
⊗KuG // RB ⊗RG

KG(X × Y ).

id

OO

The vertical maps are isomorphisms due to Theorem A.1, and KuB is an iso-
morphism by [AP, Proposition 6.4] and the fact that the functors opKB(−)
and opKT (−) agree on B-schemes. Therefore, the bottom horizontal map
is also an isomorphism. But this morphism is a faithfully flat extension of
KuG, because R(B) ' R(T ) is a free R(G)-module. We conclude that KuG
is an isomorphism of RG-modules. �

From Theorem A.2 one formally deduces, as in the T -equivariant case (cf.
[AP, Proposition 6.3]), the following.

Corollary A.3. Let G be a connected reductive group with π1(G) torsion
free. If X be a complete G-spherical variety, then the G-equivariant Kro-
necker duality map

opKG(X) −→ HomR(G)(K
G(X), R(G)).

is an isomorphism. �
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As a byproduct, our main theorems on torus actions can be used to cal-
culate the G-equivariant operational K-theory of spherical varieties.

Corollary A.4. Let G be a connected reductive group with π1(G) torsion
free. If X is complete G-spherical variety, then

opKT (X) ' opKG(X)⊗R(G) R(T ).

Consequently, (opKT (X))W ' opKG(X).

Proof. In light of Corollary A.3 we have the isomorphism

opKG(X) ' HomR(G)(K
G(X), R(G)).

Since the R(G)-modules R(T ) and KG(X) are, respectively, free and finitely
generated, tensoring with R(T ) both sides of the identity above yields

HomR(T )(K
G(X)⊗R(G) R(T ), R(G)⊗R(G) R(T )).

The latter expression identifies, in turn, to opKT (X), due to T -equivariant
Kronecker duality (Property (f), Introduction) and the fact thatKG(X)⊗R(G)

R(T ) ' KT (X). The second assertion follows from our previous argument
once we recall that R(T ) ' R(G)⊗ Z[W ]. �

Next we show that the functors opKG(−) and KG(X) agree on smooth
projective G-spherical varieties. For this, a few extra facts need to be
brought to our attention. The natural map opKG(X → pt) → KG(X)
is always surjective. This stems from the proof of [AP, Proposition 4.4].
In fact, this map is an isomorphism when G is a torus. Nonetheless, for
more general reductive groups G, injectivity of such map is a more delicate
issue, and it does not follow from the arguments given in [AP, Proposition
4.4]. The main problem is that, unlike to torus case, KG(X) might not be
generated by the classes of the structure sheaves of G-invariant subvarieties.
We can overcome this issue in the case of smooth projective G-spherical
varieties by appealing to G-equivariant Kronecker duality.

Corollary A.5. Let G be a connected reductive group with π1(G) torsion
free. If X is a smooth projective G-spherical variety, then the natural maps

KG(X) → opKG(X) → opKG(X → pt) → KG(X)

are isomorphisms.

Proof. Note that the displayed diagram is a factorization of the Poincaré
duality map KG(X) → KG(X), which is known to be an isomorphism.
Moreover, KG(X) is a free R(G)-module of rank |XT | [U, Lemma 1.6]. Thus,
it suffices to show that the last two maps in the array are isomorphisms.
Bearing this in mind, observe that the map opKG(X) → opKG(X → pt)
is an isomorphism by [AP, Proposition 4.3], (which is independent of their
Lemma 2.3, the main technical issue in our setting). On the other hand,
by Corollary A.3, opKG(X) is a free R(G)-module of rank |XT | (hence so
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is opKG(X → pt)). It follows that opKG(X → pt) → KG(X), being a
surjective map of free modules of the same rank, is an isomorphism. �
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