LOCALIZATION IN EQUIVARIANT OPERATIONAL
K-THEORY AND THE CHANG-SKJELBRED PROPERTY
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ABSTRACT. We establish a localization theorem of Borel-Atiyah-Segal
type for the equivariant operational K-theory of Anderson and Payne
[AP]. Inspired by the work of Chang-Skjelbred and Goresky-Kottwitz-
MacPherson, we establish a general form of GKM theory in this set-
ting, applicable to singular schemes with torus action. Our results are
deduced from those in the smooth case via Gillet-Kimura’s technique
of cohomological descent for equivariant envelopes. As an application,
we extend Uma’s description of the equivariant K-theory of smooth
compactifications of reductive groups to the equivariant operational K-
theory of all, possibly singular, projective group embeddings.

1. INTRODUCTION AND MOTIVATION

Goresky, Kottwitz and MacPherson, in their seminal paper [GKM], de-
veloped a theory, nowadays called GKM theory, that makes it possible to
describe the equivariant cohomology of certain T'-skeletal varieties: complete
algebraic varieties upon which a complex algebraic torus 1" acts with a finite
number of fixed points and invariant curves. Let X be a T-skeletal variety
and denote by X7 the fixed point set. The main purpose of GKM theory
is to identify the image of the functorial map i* : H4(X) — Hi(XT), as-
suming X is equivariantly formal. GKM theory has been mostly applied to
smooth projective T-skeletal varieties, because of the Bialynicki-Birula de-
composition [Bl]. Additionally, the GKM data issued from the fixed points
and invariant curves has been explicitly obtained for some interesting cases:
flag varieties [C], and regular embeddings of reductive groups [Brl, Br2].
In contrast, regarding singular varieties, GKM theory has been applied to
Schubert varieties [C] and to rationally smooth projective group embeddings,
due to the author’s work [G1, G2].

Because of its power as a computational tool, GKM theory has been im-
plemented in other equivariant cohomology theories on schemes with torus
actions. For instance, Brion established GKM theory for equivariant Chow
groups [Brl], Vezzosi-Vistoli did it for equivariant algebraic K-theory [VV],
and Krishna provided the tool in equivariant algebraic cobordism [Kr]. Nev-
ertheless, in all of these generalizations, a crucial assumption on smoothness
of the ambient space needs to be made.

* Supported by the Max-Planck-Institut fiir Mathematik and the Institut des Hautes

Etudes Scientifiques.
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This paper is concerned with the equivariant K-theory of possibly singular
schemes equipped with an action of an algebraic torus 7' (i.e. T-schemes).
Our main goal is to increase the applicability of GKM theory as a tool
for understanding the geometry of singular T-schemes in this setting. For
convenience of the reader, we briefly review some of the basic underlying
notions, as well as the previous progress made on this problem. Equivariant
K-theory was developed by Thomason [Thl]|. Let X be a T-scheme. Let
K7 (X) denote the Grothendieck group of T-equivariant vector bundles on
X. This is aring, with the product given by the tensor product of equivariant
vector bundles. Let K7(X) denote the Grothendieck group of T-equivariant
coherent sheaves on X. This is a module for the ring K7 (X). If we identify
the representation ring R(7T') with Kr(pt), then pullback by the projection
X — pt gives a natural map R(T) — Kr(X). In this way, K7(X) be-
comes an R(T)-algebra and K7(X) an R(T)-module. The functor Kz(—)
is contravariant with respect to arbitrary equivariant maps. In contrast,
K T(—) is covariant for equivariant proper morphisms and contravariant for
equivariant flat maps. If X is smooth, then every T-equivariant coherent
sheaf has a finite resolution by T-equivariant locally free sheaves, and thus
K7(X) ~ KT(X). When X is complete, the equivariant Euler characteristic

Fx(X, F) =D (-1)/[H'(X, F)]
i
yields the pushforward map y : K7(X) — K% (pt) ~ R(T). By work of
Merkurjev [M1], one recovers the usual K-theory from the equivariant one
via the identity K”'(X) ®@p) Z ~ K(X).

In general, the K-theory groups are difficult to compute. In the case of
singular varieties, they can be quite large [AP, Introduction, p. 2]. In the
smooth case, however, there are three powerful theorems that allow many
computations and important comparison theorems of Riemann-Roch type.
The first one is the localization theorem of Borel-Atiyah-Segal type.

Localization theorem of Borel-Atiyah-Segal type ([Th2, Théoréme
2.1]). Let X be a smooth complete scheme with an action of T. Let xT
be the subscheme of fized points and let ir : XT — X be the natural inclu-
sion. Then the pullback i’ : K1(X) — Kp(X7T) is injective, and it becomes
surjective over the quotient field of R(T).

Let X be a smooth complete T-scheme. The second fundamental theorem
in this context identifies the image of i% inside K7(XT) ~ K(XT) ® R(T).
To state it, we introduce some notation. Let H C T be a subtorus of
codimension one. Observe that ir factors as it : X T XH followed by
ig : X — X. Thus, the image of % is contained in the image of ip g In
symbols,

Im[i : KP(X) = Kp(XT)] € () Imlif - Kp(X™T) = Kp(XT)),
HCT
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where the intersection runs over all codimension-one subtori H of T'. This
criteria, which dates back to the work of Chang-Skjelbred [CS] in equivari-
ant cohomology, yields a complete description of Kp(X) as a subring of
Kr(XT) ~ K(XT)® R(T).

CS property ([VV, Theorem 2]). Let X be a smooth complete T-scheme.
Then the image of the injective map it : Kp(X) — Kr(XT) equals the
intersection of the images of iy + Kp(XH) — Kp(XT), where H runs
over all subtori of codimension one in T.

Now let X be a (complete) T-skeletal variety. Assume, for simplicity,
that each T-invariant irreducible curve has exactly two fixed points (e.g.
X is equivariantly embedded in a normal T-variety). In this setting, it is
possible to define a ring PEp(X) of piecewise exponential functions. Indeed,
let K7(XT) = @,¢ yr Rs, where R, is a copy of the representation ring R(T).
We then define PE7(X) as the subalgebra of K7(X7) given by

PET(X) = {(fh ce 7fm) S @(EGXTRI' ’ f, = fj mod 1 — e_Xi,j}

where x; and x; are the two distinct fixed points in the closure of the one-
dimensional T-orbit C; ;, and ; ; is the character of T" associated with C; ;.
This character is uniquely determined up to sign (permuting the two fixed
points changes x; ; to its opposite). In light of the CS property, one obtains:

GKM theorem ([VV, Corollary 5.12], [U, Theorem 1.3]). Let X be a
smooth T-skeletal variety. Then it : Kp(X) — Kr(XT) induces an isomor-
phism between Kp(X) and PEp(X). If X is also projective, then Kp(X) is
a free R(T)-module of rank | XT|.

Thus far, it is clear that to any complete T-skeletal variety X we can asso-
ciate the ring PE7(X), regardless of whether X is smooth or not. (In fact, if
X is a projective compactification of a reductive group G with maximal torus
T, then X is T x T-skeletal, and PEp.7(X) has been explicitly identified
in [G2].) Nonetheless, as it stems from the previous facts, PE7(X) does not
always describe K7 (X). This phenomena yields some natural questions:
Let X be a T-skeletal variety. What kind of information does PEp(X)
encode? If not equivariant K-theory, is it still reasonable to expect that
PE7(X) encodes certain topological /geometric information that is common
to all possible T-equivariant resolution of singularities of X? The work
of Payne [P] and Anderson-Payne [AP], inspired in turn by the works of
Fulton-MacPherson-Sottile-Sturmfels [FMSS] and Totaro [To], gives a posi-
tive answer to these questions when X is a toric variety. Namely, the GKM
data (i.e. PEp(X)) of a toric variety encodes all the information needed
to reconstruct Bott-Chern operators defined on the structure sheaves Oz
of the T-orbit closures Tx C X (and their equivariant resolutions). This
positive result is our motivation. In the pages to follow we will show that
Anderson-Payne’s assertion on toric varieties holds more generally for all T-
skeletal varieties. But first, and in order to put these statements in a much
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clearer form, we recall some of the main aspects of Anderson and Payne’s
equivariant operational K-theory.

Fulton and MacPherson [FM] devised a machinery that produces a coho-
mology theory out of a homology theory. This cohomology has all the formal
properties one could hope for, and it is well suited for the study of singular
schemes. Taking as input the homology functor K7 (—), Anderson-Payne
[AP] obtained a theory that is very well suited for computations. Moreover,
it agrees with Thomason’s equivariant K-theory when X is smooth (Prop-
erties (a) and (b) below). We outline here the main notions of [AP]. Let X
be a T-scheme. The T'-equivariant operational K-theory ring of X, denoted
opKp(X), is defined as follows: an element ¢ € opKp(X) is a collection
of homomorphisms ¢ : K7(Y) — K7 (Y) for every T-map f : ¥ — X.
(Recall that KT (Y) denotes the Grothendieck group of T-equivariant co-
herent sheaves on Y.) These homomorphisms must be compatible with (7-
equivariant) proper pushforward, flat pullback and Gysin morphisms [AP].
For any X, the ring structure on opKp(X) is given by composition of such
homomorphisms. With this product, op K7 (X ) becomes an associative com-
mutative ring with unit. Moreover, opKr7(X) is contravariantly functorial
in X. Other salient functorial properties of opKr(—) are:

(a) For any X, there is a canonical homomorphism K7 (X) — opKp(X)
of R(T')-algebras, sending a class v to the operator [y] which acts via
[V]g = g*v-&, for any T-map g : Y — X and £ € KT(Y). There is also a
canonical map opKr(X) — KT (X) defined by ¢ + ciq, [Ox], where Ox
is the structure sheaf of X. Put together, they provide a factorization
of the canonical homomorphism K7 (X) — K7 (X) [AP, Theorem 5.6].

(b) When X is smooth, the homomorphisms
Kr(X) = opKr(X) —» KT(X),

defined in (a), are all isomorphisms of R(T")-modules [AP, Corollary 4.5
and Theorem 5.6].

(c) Al-homotopy invariance [AP, Corollary 4.7]: For any scheme X, the
natural pull back map from opKr7(X) to opKr(X x Al) is an isomor-
phism.

(d) Gillet-Kimura’s cohomological descent for equivariant envelopes [AP,
Theorem 5.3]: If 7 : X — X is an equivariant envelope (that is, any
T-invariant subvariety of X is the birational image of a T-invariant sub-
variety of X’) and 71, mo are the projections X xx X — X, then the
following sequence is exact

* *
T To ~ ~

0 —— opKp(X) LopKT(X') opKr7(X xx X).




LOCALIZATION IN EQUIVARIANT OPERATIONAL K-THEORY 5

(e) Let X be a complete T-variety. If X is a toric variety (i.e. X is normal
and has a dense orbit isomorphic to T'), then opK7(X) ~ PEr(X) [AP,
Theorem 1.6]. Similar results hold for non-complete toric varieties [AP].

(f) Equivariant Kronecker duality for spherical varieties [AP, Theorem 6.1]:
Let B be a connected solvable linear algebraic group with maximal torus
T. Let X be a scheme with an action of B. If B acts on X with finitely
many orbits, then the natural equivariant Kronecker map

Kr : opKr(X) — Hompp) (KT (X), R(T)),
induced by pushforward to a point, namely,

,CT D {‘S = X(Xa Cidx(&))},

is an isomorphism. This holds e.g. for Schubert varieties and spherical
varieties. There is a more general version of equivariant Kronecker dual-
ity, valid for T-linear schemes ([AP, Section 6]). This class encompasses
all the B-schemes mentioned above (see e.g. [G3, Theorem 2.5]). For
equivariant Kronecker duality in the context of equivariant operational
Chow groups, see [G3, Theorem 3.6].

In this paper we use the functorial properties listed above, together with
resolution of singularities, to establish:

(I) The localization theorem of Borel-Atiyah-Segal type for opKr(X),
whenever X is a complete T-scheme (Theorem 4.1).

(IT) The CS property for opKp(X), where X is any complete T-scheme
(Theorem 4.4).

(ITT) GKM theory for possibly singular complete T-varieties: if X is a T-
skeletal variety, then opKp(X) ~ PEp(X) (Theorem 5.4).

Together with the combinatorial results of [G2], this extends Anderson’s and
Payne’s work on toric varieties to all projective group embeddings (Theorems
6.2 and 6.4). See Section 7 (as well as [G3]) for the corresponding statements
in operational Chow groups with rational coefficients.

Acknowledgments. The research in this paper was done during my visit
to the Max-Planck-Institut fiir Mathematik (MPIM) and the Institute des
Hautes Etudes Scientifiques (IHES). I am deeply grateful to both institutions
for their support, outstanding hospitality, and excellent working conditions.

2. CONVENTIONS AND NOTATION

Conventions. Throughout this paper, we fix an algebraically closed field &k
of characteristic zero. All schemes and algebraic groups are assumed to be
defined over k. By a scheme we mean a separated scheme of finite type. A
variety is a reduced scheme. Observe that varieties need not be irreducible.
A subvariety is a closed subscheme which is a variety. A curve on a scheme is
an irreducible one-dimensional subscheme. Unless explicit mention is made
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to the contrary, we will assume all schemes are equidimensional. A point on
a scheme will always be a closed point.

Notation. We denote by T an algebraic torus. A scheme X provided with
an algebraic action of T is called a T-scheme. If X is a T-scheme, the
class in KT(X) of a T-equivariant coherent sheaf F will be denoted by
[F]. In particular, if Y C X is a T-stable closed subscheme, then the
structure sheaf of Y defines a class [Oy] in K7 (X). For a T-scheme X,
we denote by X7 the fixed point subscheme and by ir : X7 — X the
natural inclusion. If H is a closed subgroup of T, we similarly denote by
im : X — X the inclusion of the fixed point subscheme. When comparing
XT and XH we write iz : X7 — X! for the natural (T-equivariant)
inclusion. If g : Y — X is a T-equivariant morphism of T-schemes, then we
write gy : YT — X7, or simply ¢ : YT — X7 for the associated morphism
of fixed point subschemes. Likewise, we write ¢* : opKp(X) — opKp(Y)
for the pullback in equivariant operational K-theory.

We denote by A the character group of T, and by Z[A] the group ring
over Z of A. We let X denote the element of Z[A] corresponding to x € A.
Then {eX},ca is a basis of the Z-module Z[A]. For a k-linear representation
V of T, we put

tr(V) = Z(rankkvx)ex,
XEA
where V) is the subspace of invariants of T" of weight x in V. It is well-known
that tr induces an isomorphism from the representation ring of T', denoted
R(T), to Z[A].

3. EQUIVARIANT ENVELOPES AND COMPUTABILITY OF EQUIVARIANT
OPERATIONAL K-THEORY

Recall that an envelope p : X — X is a proper map such that for any
subvariety W C X there is a subvariety W mapping birationally to W via
p ([F, Definition 18.3]). In the case of T-actions, we say that p : X — X
is an equivariant envelope if p is T-equivariant, and if we can take W to be
T-invariant for T-invariant W. If there is an open set U C X over which
p is an isomorphism, then we say that p : X — X is a birational envelope.
The following is recorded in [EG-2, Proposition 7.5].

Lemma 3.1. Let X be a T-scheme. Then there exists a T-equivariant
birational envelope p : X — X, where X is a smooth quasi-projective T'-
scheme. O

Anderson and Payne’s version of Gillet and Kimura’s notion of cohomolog-
ical descent (Property (d), Introduction) implies that opK7(X) of a singular
scheme X injects into opK7(X) of a smooth equivariant envelope (which is
the usual equivariant K-theory ring of a smooth scheme) with an explicit
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cokernel. More precisely, suppose that p : X — X is a T-equivariant bira-
tional envelope which is an isomorphism over an open set U C X. Let {Z;}
be the irreducible components of Z = X — U, and let E; = p~(Z;), with
p; » By = Z; denoting the restriction of p. The next theorem is Kimura’s
fundamental result [Ki, Theorem 3.1]) adapted to equivariant operational
K-theory.

Theorem 3.2 ([AP, Theorem 5.4]). Let p : X — X be a T-equivariant
envelope. Then the induced map p* : opKp(X) — opKrp(X) is injective.
Furthermore, if p is birational (and notation is as above), then the image of
p* is described inductively as follows: a class ¢ € opKT(X) equals p*(c), for
some ¢ € opKr(X) if and only if, for all i, we have é|g, = p}(c;) for some
c; € OpKT(ZZ‘). O

Since F; and Z; may be arranged to have smaller dimension than that
of X, we can use this result to compute opKr(X) using a resolution of
singularities (Lemma 3.1) and induction on dimension. This is one of the
reasons why cohomological descent (Property (d), Introduction) makes equi-
variant operational K-theory more computable than the Grothendieck ring
of equivariant vector bundles, when it comes to singular T-schemes.

Corollary 3.3. Notation being as above, the sequence
0 — opK7(X) — opK7(X) ® opKr(Z) — opKrp(E)
is exact, where E = p~1(Z). O

Corollary 3.4. Let Y be a T-scheme, and let Y = U |Y; be the decom-
position of Y into irreducible components. Let Y;; = Y; NY;. Then the
sequence

0 — opKp(Y) — @opKT(YZ-) — @opKT(Yij).
i ij
18 exact.

Proof. First recall that | |, Y; — Y is an equivariant envelope. Now use
cohomological descent to get the result. ([

The following was first observed in [EG-2, Lemma 7.2].

Lemma 3.5. Let X be a T-scheme, and let 7 : X — X be an equivariant
envelope. If H is a closed subgroup of T, then the induced map X7 — XH
18 also a T-equivariant envelope.

Proof. The argument here is basically that of [EG-2, Lemma 7.2]. First,
notice that the map 7y : X — X is T-equivariant, because T is an
abelian group. Now let W C X H be a T-invariant irreducible subvariety
and let W be an irreducible subvariety of X mapping birationally to W via
7. To prove that X is an equivariant envelope, it suffices to prove that
we can take W C X . The restricted map 7 : W — W is a T-equivariant
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isomorphism over a dense open subspace U of W. Replace W with the
closure of a~H(U). Because H acts trivially on 7 HU) (for U c W C XH),
and WH is closed, we get W C X as desired. O

An important technical result is stated next.

Corollary 3.6. Let p: X — X be an equivariant envelope. If H is a closed
subgroup of T, then the diagram of exact sequences

0 — opKp(X) —— opK7(X) opKp(X xx X)

3k 3k sk

00— OpKT(XH) I OpKT(XH) —— OpKT(XH X xH XH)

commutes. Moreover, if p is birational, and notation being as in Theorem
3.2, then the diagram of eract sequences

0 — opKp(X) —— opK7(X) @ opKp(Z) — opKr(E)

;% Sk Sk
l’lH llH lZH

0 — opKp(XH) —— opKr(XH) @ opKp(Z7) — opKr(EY).
commutes.

Proof. First, apply cohomological descent to p : X — X. Due to Lemma 3.5,
we can also apply this tool to the T-equivariant envelope py : XH 5 xH,
noticing that (X xx X)¥ = X xyu X" . Now write the associated short
exact sequences as the rows of the first square diagram displayed above. An
straightforward check shows that the diagram is commutative. A similar
argument yields the second assertion, in view of Corollary 3.3. U

In the upcoming proposition we state another crucial consequence of
Kimura’s work. Put in perspective, it asserts that the equivariant oper-
ational K-theory ring opKr(X) of any complete T-scheme X is a subring
of opK7(XT). Moreover, there is a natural isomorphism

opKr(XT) = opKp(XT) ®7 R(T),

by [AP, Corollary 5.5]. In many cases of interest, X' is finite (e.g. for
spherical varieties) and so one has opKr(X) C @i opKr(pt) = R(T),
where ¢ = | X7T|. This motivates our introduction of localization techniques,
and ultimately GKM theory, into the study of the functor opKr(—).

Proposition 3.7. Let X be a complete T-scheme and let ip : XT — X be
the inclusion of the fized point subscheme. Then the pull-back map

it opKp(X) — opKp(XT)

18 injective.
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Proof. First, choose a T-equivariant envelope p : X — X, with X projec-
tive and smooth (Lemma 3.1). Thus p* : opK7(X) — opKr(X) is in-
jective (Theorem 3.2). Since X is smooth and projective, the pull-back
it opKp(X) — opKr(XT), is injective (by Property (b) of the Introduc-
tion together with the CS property for smooth T-schemes [VV, Theorem
2]). Besides, the chain of inclusions X7 < p~*(XT) C X indicate that 4%,
factors through ¢* : opK7(X) — opKr(p~Y(XT)), where ¢ : p~(XT) — X
is the natural inclusion. Thus, ¢* is injective as well. Finally, adding this
information to the commutative diagram

*

op K (X) opKr(X)
lz} lL*
p*
opKr(XT) —=opKr(p~ 1 (XT)).
renders % : opK7(X) — opK7(X7T) injective. O

Corollary 3.8. Let X be a complete T-scheme. Let'Y be a T-invariant
closed subscheme containing XT. Denote by v : Y — X the natural inclu-
sion. Then the R(T)-algebra map * : opK1(X) — opKr(Y) is injective. In
particular, if H is a closed subgroup of T', then i}, : opKp(X) — opK7(XH)
18 injective.

Proof. Simply notice that ¢ : Y — X fits into the commutative triangle

N

T

i

XT

In other words, the functorial map i% : opKr(X) — opKr(X7T) factors as
" 1 opKp(X) — opKr(Y) followed by i}y : opKr(Y) — opK7r(XT). By
Proposition 3.7, 7. is injective, hence so is ¢*. As for the second assertion,

just note that X is T-invariant and X7 c XH. O

Remark 3.9. Of particular interest is the case Y = U} |Y;, where Y; are
the irreducible components of Y. Let Y;; = Y¥; NY;. By Corollary 3.4 the
following sequence is exact
0 — opKr(Y) — EBopKT(Yi) — EBopKT(YZ-j).
i ,J
When Y7 is finite, the sequence above yields the commutative diagram
(Corollary 3.6):

0 — opKp(Y) —— @, opKr(Y;) —— D, ; opKr(Y;)

sk sk sk
l’LT llT \L’LT

p q
0 — opKp(YT) — @, opKr (V") — @, ; opKr(V})
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Since all vertical maps are injective (Proposition 3.7), it is important to
observe that we can describe the image of the first vertical map in terms of
the image of the second vertical map and the kernel of ¢g. In other words,
the map

prim(ify) — {w € @opKT(m |lw e im(Zz‘i}) and g(w) = 0}

sending v — p(u) is an isomorphism. Now, since Y7 is finite, the kernel of
the map ¢ consists of all families (f;); such that f;(zy) = f;(xx) (equality of
k-components), whenever x, is in the intersection of Y; and Yj.

Back to the general case, let X be a complete T-scheme. We wish to
describe the image of the injective map

i% : opKp(X) — opKp(XT).

For this, let 7" C T be a subtorus of codimension one. Observe that iy :
XT — X factors as i XT 5 X7 followed by 7 : X7 5 XT, Thus,
the image of ¢7. is contained in the image of 7}, ,,. In symbols,

Im(i} : opKr(X) = opKp(X")] € (1) Im[ifp : opKr(XT) = opKr(X 1)),
T'CT
where the intersection runs over all codimension-one subtori of 7. This

observation will lead, as in the smooth case, to an explicit description of the
image of i7.. Such is the central theme of the subsequent sections.

4. THE LOCALIZATION THEOREM OF BOREL-ATIYAH-SEGAL TYPE AND
THE CHANG-SKJELBRED PROPERTY

Let T be an algebraic torus. We recall a construction of Thomason [Th2,
Lemma 1.1, Proposition 1.2]. Let p C R(T") be a prime ideal. Set K, = {n €
A|1—n € p}, where A is the character group of T. It is well-known, see
e.g. [Bo2], that the quotient A/K, determines a unique subgroup 7, C T
with the property that R(T,) = Z[A/K,]. Following [Th2], we call T} the
support of p. When p is maximal, K, has finite index and T}, is a finite
group.

Theorem 4.1. Let X be a T-scheme. Let p C R(T') be a prime ideal and
Ty be its support. Then the R(T)-algebra map iy, : opKp(X) — opKr(X)
becomes an isomorphism after localizing at p:

i, 1 opKr(X)p = opKp(XTr), .

Proof. Choose a T-equivariant birational envelope p : X — X, with X quasi-
projective and smooth. Then p is an isomorphism outside some T-invariant
closed subscheme Z. Let E = p~1(Z). Notice that p can be chosen so that
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Z and E have dimension smaller than that of X. Now, in light of Corollary
3.6, form the commutative diagram of exact sequences

0 —— opKp(X) opKT(X) @ opKr(Z) opKr(E)

e . e
l’TP lZTp llTp

0 — opKp (X)) — opKp(X™) @ opK7(ZT?) — opKp(E™).

It follows from Noetherian induction and Thomason’s concentration theorem
[Th2, Théoréme 2.1] that the last two vertical maps become isomorphisms
after localizing at p; hence so does the first one. O

Corollary 4.2. Let X be a complete T-scheme. Notation being as above, the
R(T)-algebra map i, : opKp(X) — opK7(X™%) is injective and it becomes
surjective after localizing at p.

Proof. Use Proposition 3.7 and Theorem 4.1. O

Definition 4.3. Let X be a complete T-scheme. We say that X has the
Chang-Skjelbred property (or CS property, for short) if the image of

it : opKr(X) = opKr(XT)
is exactly the intersection of the images of
it opKp(XT) — opKp(XT),
where H runs over all subtori of codimension one in 7.

By [VV, Theorem 2], every nonsingular complete T-scheme has the CS
property. Remarkably, it holds over Z. We extend this result to include all,
possibly singular, complete schemes with an action of 7'

Theorem 4.4. Let X be a complete T-scheme. Then X has the CS property.

Proof. Let 7 : X — X be a T-equivariant envelope with X projective and
smooth (Lemma 3.1). Because of Corollary 3.6 we get the commutative
diagram

* *
T~

0 — opK7(X) —— opK7(X) opKp(X)

-k o )
« * *
> >

0 — opKp(XT) > opKr(XT)

A simple diagram chasing shows that u € opKr(X7) is in the image of i%
if and only if 77*(u) is in the image of i%.. Indeed, this follows from the fact
that all vertical maps in the diagram are injective (Proposition 3.7).
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On the other hand we have the commutative diagram

*

opK7(X) " opr(X)
e
) /H pHr (D
opKp(X*) opKr(XH)

obtained by combining and comparing the sequences that Corollary 3.6 as-
signs to the envelopes 7 : X — X, 7y : X# — X" and pr : XT — X7T.
From the diagram it follows that if u € opKr(X7) is in the image of i 5,

then 77*(u) is in the image of z% Hence, if v is in the intersection of
the images of all i%. ;;, then 77" (u) is in the intersection of the images of all

i 77, where H runs over all codimension-one subtori of T'. Since X satisfies
b

the CS condition, then m7*(u) is in the image of z% Finally, from the ob-
servation made at the end of the previous paragraph, we conclude that u is
in the image of 7. O

5. GKM THEORY

Vistoli and Vezzosi established a version of GKM theory applicable to
nonsingular complete T-schemes [VV, Theorem 2]|. Based on Theorem 4.4,
we establish here a version of GKM-theory valid for the equivariant op-
erational K-theory of singular complete T-schemes (Theorem 5.4). As a
consequence, we extend [AP, Theorem 1.6] to the larger class of T-skeletal
varieties, a family of objects that includes all equivariant projective em-
beddings of reductive groups (Theorem 6.2). We start by recalling a few
definitions from [GKM] and [G1].

Definition 5.1. Let X be a complete T-variety. Let u: T x X — X be the
action map. We say that p is a T-skeletal action if

(1) X7 is finite, and

(2) The number of one-dimensional orbits of 7" on X is finite.
In this context, X is called a T-skeletal variety. The associated graph of

fixed points and invariant curves is called the GKM graph of X. We shall
denote this graph by I'(X).

Example 5.2. Smooth T-skeletal varieties include regular compactifications
of reductive groups ([BCP], [LP]) and, more generally, regular compactifica-
tions of symmetric varieties of minimal rank. The Chow rings of these vari-
eties are described in [BJ] by means of GKM theory. In constrast, Schubert
varieties and projective group embeddings of reductive groups are examples
of singular T-skeletal varieties. The former have a paving by affine spaces
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and their equivariant cohomology is well-known [C]. The latter are spheri-
cal varieties and, when rationally smooth, their equivariant cohomology has
been described by the author in [G2]. Our version of GKM theory (Theo-
rem 5.4) will generalize these topological descriptions to the corresponding
equivariant operational K-theory rings (Example 5.5 and Section 6).

Let X be a complete T-variety and let C be a T-invariant irreducible
curve of X, which is not fixed pointwise by 7. Let 7 : C — C be the (T-
equivariant) normalization. Then C is isomorphic to P!. Denote by 0, co
the two fixed points of T in C, and denote by z¢, Zoo their corresponding
images via 7. Then C'\ {0, 00} = C'\ {20, Zso } identifies to k*, where T" acts
on C'\ {0,00} via a unique character x (when interchanging 0 and co, one
replaces x by —x). Clearly, T has either one or two fixed points in C.

Notice that, in principle, Definition 5.1 allows for T-invariant irreducible
curves with exactly one fixed point (i.e. the GKM graph I'(X) may have
simple loops). We shall see that the functor opKr(—) “contracts” such loops
to a point.

Proposition 5.3. Let X be a complete T-variety and let C' be o T-invariant
irreducible curve of X which is not fized pointwise by T. Then the image of
the injective map i% : opKr(C) — opKr(CT) is described as follows:
(i) If C has only one fized point, say x, then i, : opKr(C) — opKp(z) is
an isomorphism; that is, opKr(C) ~ R(T).
(ii) If C' has two fixed points, then
oK (C) = {(fo, foe) € RT) & R(T) | fo = foo mod 1 — e},
where T acts on C' via the character x.

Proof. Let m: P! — C be the normalization map. By [VV, Theorem 2] (see
also [U, Theorem 1.3])

Er(B') = {(fo, fx) € R(T) ® R(T) | fo = fo mod 1 — e},

where y is the character of the T-action on C. Moreover, given that P! is
smooth, we get opKr(P') = Kr(P!). In view of this, and Gillet-Kimura,
criterion (Theorem 3.2), it suffices to find the image of the injective map
7* . opKr(C) — opKr(P!) explicitly. First, assume that C has only one
fixed point, say = 7(0) = 7(c0). Then an element f € opKr(P') is in the
image of 7* if and only if the restriction (fy, fso) € opK7({0,00}) is in the
image of the induced map 7* : opKp(x) — opKp({0,00}). But the latter
morphism is simply the diagonal inclusion, so we get that f € opKp(P') is
in the image of 7* if and only if fy = fo. Therefore, opK7(C) = R(T') and
i% : opKr(C) — opKr(x) is an isomorphism. Finally, if 7(0) # m(c0), a
similar analysis yields assertion (ii). O

Let X be a T-skeletal variety. Now, as done in the Introduction, it is

possible to define a ring PEY(X) of piecewise exponential functions.
We recall the construction here, taking into account Proposition 5.3. Let
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Kr(XT) = @,cxr Rz, where R, is a copy of the representation ring R(T).
We then define PE7(X) as the subalgebra of K(XT) given by

PET(X) = {(fla s 7fm) S @IEXTRCC | fl = f] mod 1 — e_Xi,j}

where x; and x; are the two (perhaps equal) fixed points in the closure of
the one-dimensional T-orbit Cj ;, and x; ; is the character of T" associated
with C; ;. This character is uniquely determined up to sign (permuting the
two fixed points changes x; ; to its opposite). Invariant curves with only one
fixed point do not impose any relation (this is compatible with Proposition
5.3).

Theorem 5.4. Let X be a complete T-skeletal variety. Then the pullback
i+ opKr(X) — opKr(XT) induces an isomorphism between opKr(X)
and PEp(X).

Proof. Observe that a codimension one subtorus of 7' is the kernel of a
primitive (i.e. indivisible) character of T'. Such character is uniquely defined
up to sign.

Let 7 be a primitive character of T. Let X" = | J ;X be the decomposi-
tion into irreducible components. Notice that each X is either a fixed point,
or a T-invariant irreducible curve. Now, with the notation of Corollary 3.4,
we have the commutative diagram

0—— OPKT(Xke”) —— P, opKr(X;) — @zg opKr(Xi ;)

i;”,ker ™ l/ i i id

0 — opK7(XT) —— @, opKr(X]) — D, ; op K7 (X 5),

where each Xj;; is just a fixed point, and T acts on those X;’s that are
curves via a character x;, a multiple of 7. The image of the middle vertical
map is completely characterized by Proposition 5.3, and so is the image of
i ker > @S it follows from Remark 3.9. In short, Im(i7,, ) ~ PEr(X kermy,
Now apply Theorem 4.4 to conclude the proof. U

Let X be a T-skeletal variety. Notice that I'(X) is a singular projective
T-variety with the same equivariant operational K-theory as that of X. In
symbols, opK7(I'(X)) = opKp(X). This is simply a rephrasing of Theorems
4.4 and 5.4.

Example 5.5. (Bruhat graph.) Let G be a connected reductive group with
Borel subgroup B and maximal torus T' C B. Let W be the Weyl group of
(G,T). It is a finite group generated by reflections {s, }acs, where ® stands
for the set of roots of (G,T). Now let X(w) = BwB/B C G/B be the
Schubert variety associated to w € W. In what follows we extend the usual
picture of K7(G/B) to opK7(X(w)). Denote by I,, the Bruhat interval

1,w] ={z e W]z <w}.



LOCALIZATION IN EQUIVARIANT OPERATIONAL K-THEORY 15

Notice that X (w)? = I,,. As ashorthand, set R = R(T). Then, by Theorem
5.4, opKr(X (w)) is the subring of @cr,, R consisting of all > frx such
that f, & fs,» mod 1 —e~® whenever (i) s, is a reflection of W and (i4)
x, sqx € I,. Finally, opK7(X (w)) is a free R(T')-module of rank |I,,|. This is
a consequence of equivariant Kronecker duality (Property (f), Introduction)
together with the fact that K7 (X (w)) is a free R(T)-module of rank |I,|
(for X (w) has a paving by affine spaces, cf. [U, Lemma 1.6]).

Remark 5.6. Let X be a T-skeletal variety. By Theorem 5.4, the R(T')-
algebra opK7(X) identifies to PEp(X) C R(T)™. Moreover, PE7(X) and
R(T)™ have the same quotient field (by the localization theorem). It follows
that PE7(X) is a reduced, finitely generated Z-algebra. The same holds for
the natural extension PEr(X); := PEp(X) ® k, a k-algebra of dimension
d = dim(T). Let V(X) be the corresponding affine k-variety (defined over a
finite algebraic extension of Q). It is worth noting that the associated map
i% : opKp(X)r — K[T]™ is the normalization (cf. [Br3, Proposition 2]). For
this, first observe that k[T] is a subring of opK7(X)g, as a choice of fixed
point yields a section of the structural map opKrp(X)r — opKrp(pt)r ~ k[T].
Secondly, k[T])™ is a finite module over k[T, so it is also a finite module
over opKp(X). Finally, since k[T]™ is integrally closed in its quotient field
and opK7(X), and k[T]™ have the same quotient field (by the localization
theorem), we conclude that 7* is the normalization. Hence, the normalization
of the affine variety V' (X) is the union of | X 7| disjoint copies of T'. Moreover,
the set V(X)) is obtained as follows: for any character y associated to a T-
invariant curve with fixed points  and y we identify the toric hyperplanes
{1 —eX =0} in T, and T}, provided x # y. If the aforementioned = and y
are the same, then we set T, = T}, in accordance with Proposition 5.3.

6. EQUIVARIANT OPERATIONAL K-THEORY RINGS OF PROJECTIVE GROUP
EMBEDDINGS

Throughout this section we denote by G a connected reductive linear
algebraic group (over k) with Borel subgroup B and maximal torus T' C B.
We denote by W the Weyl group of (G, T'). Observe that W is generated by
reflections {sq }aca, where @ stands for the set of roots of (G, T). We write
U, for the unipotent subgroup of G associated to o € ®. Since W acts on
A, the character group of T, there is a natural action of W on Z[A] given
by w(e*) = e*@, for each w € W and A € A. Recall that we can identify
R(G) with R(T)W via restriction to T, where R(T)" denotes the subring
of R(T') invariant under the action of W.

An affine algebraic monoid M is called reductive it is irreducible, normal,
and its unit group is a reductive algebraic group. See [R1] for many details.
Let M be a reductive monoid with zero and unit group G. We denote by
E(T) the idempotent set of the associated affine torus embedding T, that is,
E(T) = {e € T|e* = e}. One defines a partial order on E(T) by declaring

f <eifandonly if fe = f. Denote by A C E(T), the cross section lattice of
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M. The Renner monoid R C M is a finite monoid whose group of units is

W and contains E(T') as idempotent set. In fact, any = € R can be written

as ¢ = fu, where f € E(T) and v € W. Given e € E(T'), we write Cyy(e)
for the centralizer of e in W. Denote by Ry the set of elements of rank £ in
R, that is, Ry = {r € R| dimTz = k }. Analogously, one has Ay C A and

A normal irreducible variety X is called an embedding of G, or a group
embedding, if X is a G x G-variety containing an open orbit isomorphic to G.
Due to the Bruhat decomposition, group embeddings are spherical G x G-
varieties. Substantial information about the topology of a group embedding
can be obtained by restricting one’s attention to the induced action of T'x T'.
When G = B = T, we get back the notion of toric varieties. Let M be a
reductive monoid with zero and unit group G. Then there exists a central
one-parameter subgroup € : G}, — T, with image Z, such that %gr(l) e(t) = 0.

Moreover, the quotient space
Pe(M) == (M \{0})/Z

is a normal projective variety on which G x G acts via (g, h) - [z] = [gzh™1].
Hence, P.(M) is a normal projective embedding of the quotient group G/Z.
These varieties were introduced by Renner in his study of algebraic monoids
([R2], [R3]). Notably, normal projective embeddings of connected reductive
groups are exactly the projectivizations of normal algebraic monoids [T4i].

Now let X = P.(M) be a (projective) group embedding. In [G2] we
compute the finite GKM data coming from the T x T-fixed points and T"x T-
invariant curves of X in terms of the combinatorial invariants of M. These
computations are independent of whether or not X is rationally smooth.

Theorem 6.1 ([G2, Theorems 3.1, 3.5]). Let X = P (M) be a projective
group embedding. Then its natural T X T-action

p:T XT XP(M) = P(M), (st [z])— [sxtil]

is T x T-skeletal. Indeed, after identifying the elements x of Rq1 with their
corresponding images [x] in X, the set XTXT corresponds to Ri. As for the
closed T x T-curves of X, they fall into three types:

(1) Ualew], e € Ex(T), sa ¢ Cw(e) and w € W.

(2) [we]Uy, e € Ev(T), sa ¢ Cw(e) and w e W.
(8) [TxT) = [Tz] = [xT], where x € Ra.

The curves of type 1 and 2 lie entirely in closed G x G-orbits, whereas
the curves of type 3 do not. Curves of type 3 can be further separated into
whether or not the corresponding T' x T-fixed points are in the same closed
G x G-orbit. In [G2, Section 4], we identify explicitly the T x T-characters
associated to these curves. With such data at our disposal, Theorem 5.4
yields an immediate translation of [G2, Theorem 4.10] into the language
of equivariant operational K-theory. Furthermore, as Theorem 5.4 does not
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require any conditions on the singular locus, the result (Theorem 6.2) applies
to all projective group embeddings. This description coincides with that of
Uma ([U, Theorem 2.1]) when X = P.(M) is smooth, and it extends our
previous work on rationally smooth group embeddings [G2]. To state it,
we record a few extra facts. Let A; be the set of rank-one idempotents of
the cross-section lattice A. Each closed G x G-orbit of X = P.(M) can be
written uniquely as Gle]G ~ G/P. x G/P.", where e € Ay, and P., P, are
opposite parabolic subgroups (see e.g. [R1]).

Theorem 6.2. Let X = P(M) be a group embedding. Then the natural
map

opKpxr(X) — opKowr | | | GlelG | = @D Krxr(Gle]G)
ec\q ecNq

is injective. In fact, its image consists of all tuples (pe)ecn,, indezed over
A1 and with ¢. € Kryx7(G[e]G), subject to the additional conditions:

(a) If f € Ex(T) and there is a (necessarily unique) reflection sq, such that
Sayf = Fsay # 1, then

Spef(flu) = SOef(fzu) modl—e 4 ® e_(afoint(“))’
for allw e W. Here, fi and fa = sa; - f1 - Sa, are the two idempotents

in Ey(T) below f, the root ay corresponds to the reflection Say, and
er € Ay is the unique element of Ay which is conjugate to f.

(b) If f € E5(T) and sf = fs = f for every reflection s € W, then
ey (1) = pey (fou) mod 1 — e @ e~ (Aromttv),
for allu € W. Here, Ay is the character of T' defined by the composition
T—>Tf—->Tf/k* ~ k",

the idempotents f1, fo are the unique idempotents below f, and e; € Ay

is conjugate to f;, fori=1,2.
Proof. Since X™*T C | |5, Gle]G, Corollary 3.8 renders the natural map
opKrxr(X) — opKrxr (I—leEAl Gle]G) injective. Moreover, G[e]G is smooth,
so opKrx7(G[e]G) is isomorphic to Krx7(G[e]G). Finally, we apply Theo-
rem 5.4, taking into account that:
(i) the curves of type 1 and 2 in Theorem 6.1 are contained in | | c,, Gle]G
and these curves describe K7« (G[e]G) via Example 5.5,

(ii) the characters associated to the curves of type (3) give assertions (a)
and (b), as in [G2, Theorem 4.10]. O

If X = P(M) is a group embedding, then X is G x G-spherical. If
moreover 71 (G) is torsion free, then Corollary A.4 states that opKgxa(X)
can be read off from opKpypr(X) by computing invariants:

Kaxa(X) ~ opKpyr (X)W,
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Corollary 6.3. Let X = P.(M) be a group embedding. If m1(G) is torsion
free, then the ring opKf, -(X) consists of all tuples (V¢)eca,, where
U, : WeW — (R(T) ® R(T))Cw(©)xCw(e)
such that
(a) If f € E5(T) and Hy = {f, sa,f}, then
Ue(f1) =Pe(fa) modl—e ¥ ®@e

where e € Ay is conjugate to fi, fo = Say fi- Says the reflection Say €
Cw (f) is associated with the root o, and f; < f.
(b) If f € E3 and Hy = {f}, then

Uo(f1) = Volfy) modl—e ™M ae™,

where Ay is character of T' defined by f, and f1, fo < f are conjugate to
e and €', respectively.

Proof. Simply adapt the proof of [G2, Corollary 4.11], using Theorem 6.2
and Corollary A.4. O

Associated to X = P.(M), there is a projective torus embedding ) of
T/Z, namely,

Y =P(T) =[T\{0}}/2.

By construction, ) is a normal projective toric variety and ) C X. Our
next theorem allows to compare the equivariant operational K-theories of
X and its associated torus embedding YV C X. The situation for general
group embeddings contrasts deeply with the corresponding one for regular
embeddings ([Br2, Corollary 3.1.2], [U, Corollary 2.2.3]).

Theorem 6.4. Notation being as above, if w1 (G) is torsion free, then the
inclusion of the associated torus embedding ¢ : Y — X induces an injection:

L OPKZ‘XG(X)(—> OpKTxT(y)W ~ (OpKT(y) @ R(T))Wv

where the W-action on opKrx7()) is induced from the action of diag(W')
on Y. Moreover, t* is an isomorphism whenever Cy(e) = {1} for every
ee€ .

Proof. The argument here is an adaptation of [G2, Proof of Theorem 4.12].
First, consider the commutative diagram

opK 1y (X )= opKryr(XT*T)

| |-

opK1x1 (V)= opKpxp(YT*T),
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where both horizontal maps are injective (Proposition 3.7). On the other
hand, recall that Ay provides a set of representatives of both the W x W-
orbits in X7*T = R; and the W-orbits in Y7*T = E;(T). Thus, after
taking invariants, we obtain an injection

opKrsr(R1)" W = @, (R(T) © R(T)) W) (©

L*

opKrxr(E1(T)" = @en, (R(T) ® R(T)) W

Placing this information into the commutative square above renders the
map
v opK (X)W W — opKpyr (V)Y
injective. Now observe that opKrx7 (V)" ~ (opK7(Y) @ R(T))W. Truly,
we have a split exact sequence

(t1,t2)—t1t5 "

1 ——diag(T) —=T xT T 1,

—

where the splitting is given by t — (¢,1). It follows that 7" x T is canoni-
cally isomorphic to diag(T) x (T x 1). Clearly, diag(T) acts trivially on ).
Hence, by [AP, Corollary 5.5], we have a ring isomorphism opKpyr(Y) ~
opKgiagr) ® opK7(Y). This isomorphism is in fact W-invariant (because
the W-action on the operational rings is induced from the action of diag(WW)
on Y).

For the second assertion, assume that Cy(e) = {1} for all e € A;. We
need to show that .* is surjective. To achieve our goal, we modify slightly
an argument of [LP], Section 4.1, and Brion [Br2|, Corollary 3.1.2. Define
the T' x T-variety

N = U w).
weW
We claim that this union is, in fact, a disjoint union. Indeed, observe that
N contains all the T’ x T-fixed points of X. That is, N has |R| fixed points.
On the other hand, each w) has |E| fixed points (for its corresponding 7T-
action). Now, if it were the case that there is a pair of distinct subvarieties
w) and w') with non-empty intersection, then this intersection should also
contain T'x T-fixed points. But then a simple counting argument would yield
|R1| < |E1||W]. This is impossible, by our assumptions and [G2, Lemma
4.14]. Hence,
N = |_| w).
weWw
In this setup, Corollary 3.8 implies that the restriction map

OpKTxT(X) — OpKTxT(N).

is injective. From Theorem 6.1 we know that all the T" x T-curves of X are
contained either in closed G x G-orbits (curves of type 1. and 2.) or in N/
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(curves of type 3.). Moreover, note that the curves of type 3. are exactly
the T' x T-invariant curves of N, so N is T x T-skeletal and Theorem 5.4
applies to it. After taking W x W-invariants (cf. Corollary 6.3), we see that
the aforementioned map induces an isomorphism

WxW
opKrur (X)W ~ opKpyp(N)V W ~ (@ OPKTXT(y)> ~ opKrxr(Y)"
weW

This concludes the proof. [l

Lemma 6.5 ([G2, Lemma 4.14 and Corollary 4.15].). Let X = P.(M) be a
group embedding. Then the following are equivalent:

(a) Cw(e) = {1} for every e € Ei(T).
(b) All closed G x G-orbits in X are isomorphic to G/B x G/B™. O

Group embeddings satisfying the equivalent conditions of Lemma 6.5 are
called toroidal embeddings (see e.g. [Ti, Chapter 5]). Furthermore, smooth
toroidal embeddings are exactly the regular embeddings of reductive groups
[Ti, Theorem 29.2].

Theorem 6.4 gives an explicit relation between our results and those of
[AP]. Indeed, if X = P(M) is a toroidal group embedding and 71 (G) is
torsion free, then opK g« (X) is isomorphic to the subring of W-invariants
in opK7(Y) ® R(T), where opKr()) is the ring of integral piecewise expo-
nential functions on the fan of V.

7. FURTHER REMARKS

(1) Extending the results to equivariant operational Chow groups. Poincaré
duality for singular schemes. Kimura’s cohomological descent for envelopes
[Ki, Theorems 2.3 and 3.1] has also been established for equivariant oper-
ational Chow groups opA%(—) [EG-1, Section 2.6], the operational coho-
mology groups associated to Edidin and Graham’s equivariant Chow groups
AT(-). On the category of smooth schemes, the functors opA%(—) and
AT (—) are known to agree (op. cit.). Furthermore, on the subcategory
of smooth projective T-schemes, corresponding versions of the localization
theorem and CS property hold for AZ(—)g [Brl, Section 3]. Since these
are the intersection theory analogues of our main tools, our arguments are
readily translated into the language of equivariant operational Chow groups
with Q-coefficients, yielding versions of Theorems 4.1, 4.4 and 5.4 appli-
cable to all singular complete T-schemes. See [G3] for a slightly different
approach in the case of T-linear varieties, and [G4] for some applications to
characterizing Poincaré duality on the Chow groups of singular T-schemes.
Moreover, when & = C and X is a rationally smooth T-skeletal variety,
there is a natural isomorphism between opA7.(X)g and H}.(X)g, as their
images on A%(XT)g = H3(XT)g are canonically isomorphic [GKM], [G1].
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In particular, the equivariant operational Chow groups of (complex) ratio-
nally smooth T-skeletal varieties are free modules over Sym[A]g. From this
point of view, equivariant operational Chow groups behave like equivariant
intersection cohomology, though the former are somewhat more combinato-
rial and easier to compute on T-skeletal varieties. Notably, for projective
group embeddings, the results of [G2] remain valid when translating them
into the context of rational smoothness in Chow groups [G4] and equivariant
operational Chow rings. The results will appear in [G5].

(2) Equivariant multiplicities in K -theory. Let X be a complete T-scheme
with finitely many fixed points. In virtue of Thomason’s localization theorem
for K*(—) [Th2, Theorem 2.1], the following identity holds in Q(A), the
quotient field of Z[A]:

Ox] = Y EK(z,X)[0],
zeXT

where the various EK (z, X) are (possibly zero) rational functions on (Ag)*.
Following the nomenclature of [Brl, Section 4.2] we call EK (z, X) the K-
theoretic equivariant multiplicity of X at x. If all the EK (x, X') are non-zero,
then, by Theorem 4.1, the Poincaré duality map

opKr(X) = KT(X), ¢+ cigy(Ox)

is injective (cf. proof of [Br3, Theorem 4.1]). We anticipate that the
EK(z,X)’s are non-zero whenever z is an attractive fixed point of X, be-
cause, in that case, EK (z, X) is related to the Hilbert series of Proj(k[X,]),
where X, is the unique open affine T-stable neighborhood of = (cf. [Brl],
[R4], [BV]). The notion of K-theoretic equivariant multiplicity at attractive
fixed points is already present in the study of flag varieties (see e.g. [BBM]).
For complete toric varieties and simple group embeddings, our claim would
imply that the natural map opKr(X) — K7 (X) is always injective (this
deeply contrasts with the behaviour of the map K7(X) — K7 (X), whose
kernel could be rather large, cf. [AP]). In contrast, surjectivity of the
Poincaré duality map on singular schemes is a more delicate property, and
quite often it does not hold. For instance, consider the G,,-action on P3
given by t - [x,y, z,w] = [t?z,t*y, t3z,w]. Now let Y C P3 be the projec-
tive surface 22 = xy. Clearly Y is G,,-invariant, opKr(Y) is torsion free,
but K7 (Y) has R(G,,)-torsion coming from the fact that us C G, fixes
two lines in Y. We shall develop these ideas and explore the behaviour of
K-theoretic equivariant multiplicities in a subsequent paper.

APPENDIX A. G-EQUIVARIANT KUNNETH FORMULA FOR SPHERICAL
VARIETIES

Recall that a G-variety is called spherical if it contains a dense B-orbit.
Examples include flag varieties, symmetric spaces, and G x G-equivariant
embeddings of G (e.g. toric varieties are spherical). For an up-to-date
discussion of spherical varieties, see [Ti] and the references therein.
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The following is a result of Merkurjev [M1].

Theorem A.1l. Let G be a connected reductive group. Suppose that 71 (QG)
is torsion-free. Then the following hold:

(i) R(T) is a free R(G)-module of rank |W|, and R(T) ~ R(G) ® Z[W].
(ii) If X is a G-scheme, then

R(B) ®p(q) K9(X) ~ K¢(X x G/B) ~ K?(X) ~ K" (X).
In particular, K% (X) ~ KT(X)W. O

Theorem A.2. Let G be a connected reductive group with 71(G) torsion
free. Let X be a G-spherical variety. Then for any G-variety Y the exterior
product map, or Kinneth map,

Kug : Kg(X) ®R(G) Kg(Y) — Kg(X X Y)
18 an isomorphism.
Proof. Consider the commutative diagram

Kup

Kp(X)®r, Kp(Y) Kp(X xY)
P1®P2 p
Ka(X x G/B) ®r, Ka(Y x G/B) Ko((X xY) x G/B)
resx @resy TesxX xy
[RB ®re Ka(X)] ®ry [RB ©Ore Ka(Y)] Rp ®rg Kg(X xY)
natural id
idr , ®Kug

[RB ®r, Ka(X)] @r, Ka(Y)] Rp ®p, Kag(X xY).

The vertical maps are isomorphisms due to Theorem A.1, and Kup is an iso-
morphism by [AP, Proposition 6.4] and the fact that the functors opKp(—)
and opKr(—) agree on B-schemes. Therefore, the bottom horizontal map
is also an isomorphism. But this morphism is a faithfully flat extension of
Kug, because R(B) ~ R(T) is a free R(G)-module. We conclude that Kug
is an isomorphism of Rg-modules. O

From Theorem A.2 one formally deduces, as in the T-equivariant case (cf.
[AP, Proposition 6.3]), the following.

Corollary A.3. Let G be a connected reductive group with 71 (G) torsion
free. If X be a complete G-spherical variety, then the G-equivariant Kro-
necker duality map

opK(X) — Hompg)(KY(X), R(G)).

is an tsomorphism. ([l
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As a byproduct, our main theorems on torus actions can be used to cal-
culate the G-equivariant operational K-theory of spherical varieties.

Corollary A.4. Let G be a connected reductive group with m (G) torsion
free. If X is complete G-spherical variety, then

opKr(X) = opKe(X) @r(a) R(T).
Consequently, (opKr(X))" ~ opKg(X).
Proof. In light of Corollary A.3 we have the isomorphism
opKg(X) = Hompg) (K%(X), R(G)).

Since the R(G)-modules R(T') and K (X) are, respectively, free and finitely
generated, tensoring with R(7") both sides of the identity above yields

Hom (1) (K (X) © () R(T), R(G) ®p(cy R(T)).

The latter expression identifies, in turn, to opKp(X), due to T-equivariant
Kronecker duality (Property (f), Introduction) and the fact that K (X)® g

R(T) ~ KT(X). The second assertion follows from our previous argument
once we recall that R(T') ~ R(G) ® Z[W]. O

Next we show that the functors opKg(—) and Kg(X) agree on smooth
projective G-spherical varieties. For this, a few extra facts need to be
brought to our attention. The natural map opKg(X — pt) — K%(X)
is always surjective. This stems from the proof of [AP, Proposition 4.4].
In fact, this map is an isomorphism when G is a torus. Nonetheless, for
more general reductive groups G, injectivity of such map is a more delicate
issue, and it does not follow from the arguments given in [AP, Proposition
4.4]. The main problem is that, unlike to torus case, K“(X) might not be
generated by the classes of the structure sheaves of G-invariant subvarieties.
We can overcome this issue in the case of smooth projective G-spherical
varieties by appealing to G-equivariant Kronecker duality.

Corollary A.5. Let G be a connected reductive group with w1 (G) torsion
free. If X is a smooth projective G-spherical variety, then the natural maps

Kg(X) = opKg(X) — opKa(X — pt) — K9(X)
are isomorphisms.

Proof. Note that the displayed diagram is a factorization of the Poincaré
duality map Kg(X) — K%(X), which is known to be an isomorphism.
Moreover, Kg(X) is a free R(G)-module of rank | X 7| [U, Lemma 1.6]. Thus,
it suffices to show that the last two maps in the array are isomorphisms.
Bearing this in mind, observe that the map opKqg(X) — opKg(X — pt)
is an isomorphism by [AP, Proposition 4.3], (which is independent of their
Lemma 2.3, the main technical issue in our setting). On the other hand,
by Corollary A.3, opKg(X) is a free R(G)-module of rank |X7| (hence so
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is opKg(X — pt)). It follows that opKg(X — pt) — K%(X), being a

surjective map of free modules of the same rank, is an isomorphism. O
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