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1 Introduction and notations

Let p be a prime number, F' a finite extension of Q,, Q, an algebraic closure of
F and pick a finite extension E of Q, containing the Galois closure of F'. This
note fits into the local p-adic Langlands programme, whose aim is to attach and
study locally Q,-analytic or continuous p-adic representations of GL,,(F') over E
to n-dimensional p-adic representations of Gal(Q,/F) over E. One of the most
important cases is when the Galois representation is crystalline with distinct
Hodge-Tate weights. When n = 2 and F' = Q,, we completely understand the
GL2(Q,)-representations both from a p-adic and from a locally analytic point
of view ([6], [1], [14]). When n = 2 but F # Q,, several complications occur,
all more or less related to the fact that one has to deal with the “mixture” of
several embeddings of the base field F' into the coefficient field E. This note
focusses on the locally analytic point of view when n = 2. To most of the
2-dimensional crystalline representations V' of Gal(Q,/F) over E with distinct
Hodge-Tate weights for each embedding F' — E, we attach and study a locally
Qp-analytic representation II(V') of GLy(F). Before we sum up the results of this
note, let us mention right away that we don’t ezpect I1(V') to be the “complete”
locally Q,-analytic representation associated to V when F' # Q,, but only a
subrepresentation of it. For instance, one can’t recover V from II(V') in general
when F # Q,. However, the study of II(V') is not hard and already reveals
interesting features. Moreover it already seems a non-trivial task to prove that
II(V)®gV occurs for instance inside the completed H' of Hilbert Shimura curves.

We now explain the main results of this note. Let f be the residual index of
F. To any rank 2 filtered ¢-module D (not necessarily weakly admissible) with
distinct Hodge-Tate weights and such that ¢/ has two distinct eigenvalues, we first
associate a locally Q,-analytic representation II(D) of GLy(F'). The underlying
idea for the definition of I1(D) is the following. Since we are in dimension 2 with
distinct Hodge-Tate weights, the Hodge filtration on the rank 2 module Dy is just
the datum of a rank one submodule. If this submodule is completely generic, then
II(D) is just the amalgamated sum of two natural locally Q,-analytic parabolic
inductions associated to D relative to their common locally algebraic vectors.
But it can happen that the Hodge filtration is in a special position (with respect
to the eigenvectors of ¢/). In that case, one replaces each locally Q,-analytic
parabolic induction in the previous amalgamated sum by a certain direct sum of
some of its subquotients (depending on the position of the Hodge filtration) so
that the final representation has the same Jordan-Hoélder constituents. One uses
here results of Frommer and Schraen (and others) on the Jordan-Hoélder filtration
of locally @Q,-analytic parabolic inductions of characters (which are themselves
based on foundational results of Schneider, Teitelbaum and Morita).

Let socgr,(r) II(D) be the direct sum of the topologically irreducible subrep-



resentations of I1(D). We then prove the following statements, all giving evidence
that II(D) is (a piece of) the right representation to consider.

(i) If socqr,(rm II(D) has a p-adic norm which is invariant under the action of
GLa(F) (for instance if II( D) itself has such an invariant norm), then D is weakly
admissible (§5).

(ii) If socqr,(m II(D) has a p-adic invariant norm, then the completion of
socgr,(r) (D) with respect to this norm automatically contains a larger locally
Q,-analytic representation I1( D)™ of GLy(F') which is such that II1(D)Amice C
(D) (87).

(iii) If D is weakly admissible and corresponds to a reducible crystalline Galois
X2€

0 x1
X1, X2 are crystalline characters), then II(D) has a natural increasing filtration
by GLs(F)-subrepresentations:

representation V' = (where ¢ is the p-adic cyclotomic character and

0 = Fil’TI(D) € Fil'TI(D) < --- € FilF*@I1(D) ¢ FilF*®& (D) = 11(D)
such that, when y1x5 " € {1,€2}, the graded pieces:
[I(D); := FiV ' II(D) /FiVTI(D)

satisfy T1(D)o = (1ndS2" x18x2) &) (D) = (Ind S yaznae )&

where B(F') is the upper parabolic) and such that II(D) ~ @LF:: QD). if and
7=0 J
only if V' is split (§9).

(i) follows from an easy necessary condition for a parabolic induction which is
locally analytic in some “directions” and locally algebraic in the others to admit
a p-adic invariant norm. (ii) is based on well-known techniques of Amice-Vélu
and Vishik which give that, if a unitary Banach space representation of GLy(F)
contains socgr,(r)y I1(D), then p-adic analysis forces it to contain a larger represen-
tation IT1(D)Amic which turns out to be a subrepresentation of II(D). Note that
one knows examples of unitary Banach spaces representations of GLy(F) con-
taining socar,(r) II(D) (e.g. completed cohomology groups when socar, () IL(D)
is the locally algebraic vectors of II(D)). The results of (i) and (ii) might be
(very) special cases of some of the results of [9], [10]. Finally, (iii) is consistent
with results in characteristic p when F' is unramified ([3]) giving evidence that
the smooth representation(s) of GLy(F') in characteristic p corresponding to a re-
ducible non-split (resp. split) 2-dimensional representation of Gal(Q,/F) should
generically be a successive extension (resp. a direct sum) of [F' : Q,] irreducible
representations, the first and the last being two principal series analogous to the
two parabolic inductions in (iii) above. We refer to the body of the text for more
detailed and more precise statements.



For any finite extension L of Q,, we denote by Oy, its ring of integers, wy, a
uniformizer and ky, := Op/(wy) its residue field.

Throughout the text, ' and E are two fixed finite extensions of @, such that
the set S of field embeddings of F' into F has cardinality [F': Q,] (F' is the base
field, E the coefficient field). We denote by Fj the maximal unramified subfield
in F, f:=[F:Q,), e:=[F: F) q:=p' and Sy the set of embeddings of F;
into E. We let ¢ be the arithmetic Frobenius on Fj inducing x +— 2 on kp.

The p-adic valuation valp on F or on E is normalized by valp(p) := [F : Q)]
and we set |z|p :=p @ if g € Foraz € E. If A\ € EX, unrp(\) : F* — EX
is by definition the unramified character sending x € F* to A¥r®).

We normalize local class field theory such that uniformizers are sent to geo-
metric Frobeniuses. We view without comment a character of Gal(Q,/F) as a
character of F’*. We denote by ¢ the p-adic cyclotomic character. It corresponds
to the character of F* given by & |z|p [ cq0(2).

A p-adic norm on an E-vector space V is a function || - || : V' — Rs¢ such
that ||v]| = 0 if and only if v = 0, [|[Av| = |MF|lv]] (A € E, v € V) and
v + w|| < sup(||v||, [|w]]) (v,w € V). A p-adic Banach space over E is an
E-vector space endowed with a topology coming from a p-adic norm and such
that the underlying metric space is complete. An invariant norm on an E-vector
space V endowed with an E-linear action of a group G is a p-adic norm || - || such
that ||gv|| = ||v|| for all v € V and g € G. A unitary Banach space representation
of a topological group GG over E is a p-adic Banach space B over E endowed with
an E-linear action of GG such that the map G x B — B is continuous and such
that the topology on B can be defined by an invariant norm.

By (topologically) irreducible for a (continuous) representation of a (topo-
logical) group on an E-vector space, we always mean (topologically) absolutely
irreducible.

If Ry and R; are objects in an abelian category, we denote by R Ry
an arbitrary non-split extension of Ry by Ry. If R and (R;); are objects of this
category, R ~ R, Ry Ry -+ means that R contains a non-split
extension of Ry by Ry such that the quotient R/Ry contains a non-split extension
of Ry by Ry etc.

I thank F. Diamond, M. Dimitrov, F. Herzig, M. Kisin, R. Liu, T. Schmidt and
B. Schraen for conversations or remarks related to this note, and the organizers
of the programme “Non-abelian Fundamental Groups in Arithmetic Geometry”,
especially J. Coates, M. Kim and P. Schneider, for giving me the opportunity
to give talks containing the results of this note at the Isaac Newton Institute in
September 2009.



2 Quick review of the GLy(Q,)-case

We review the locally analytic representations of GLy(Q),) associated to 2-dimen-
sional crystalline representations of Gal(Q,/Q,) over E with distinct Hodge-Tate
weights.

Recall that, when F' = Q,, a filtered p-module (D, ¢, Fil' D) is a finite di-
mensional E-vector space equipped with a bijective automorphism ¢ and with
a decreasing filtration by subvector spaces Fil' D, i € Z which is exhaustive
(Fil' D = D for i < 0) and separated (Fil' D = 0 for i > 0).

Let V be a 2-dimensional crystalline representation of Gal(Q,/Q,) over E
with distinct Hodge-Tate weights. Twisting V' if necessary, we can assume that
its Hodge-Tate weights are (0,k — 1) where k € Zss. Then by [12] we have
V = Viis(D) := Fil°(Beys ®q, D)#=! for a filtered p-module which can be written
as follows:

i) If © has distinct eigenvalues, then D = Ee @ Fe, o(e) = a e e) =ate
(i) If ¢ g s, , ple) = , P

(with o, € E*, a # @), FiI'D = D if i < —(k — 1),' Fil' D = E(ae + ae) if
—(k—2) <1 <0 (with (a,a) € Ex E\{(0,0)}) and Fil' D =0 if 1 <.

(ii) If the eigenvalues of ¢ are the same, then D = Fe @ Fe, ¢(e) = ale,

o) =a(e+e) (witha e EX), Fil' D=Difi < —(k—1), Fil' D = E(e +¢)
if ~(k—2)<i<O0andFil'D=0if1<.

Moreover, the so-called weak admissibility conditions ([12]) imply in (i): Val@p( a)+
valg,(a) = k — 1 with 0 < valg,(a) < k — 1 and valg, (o) = k — 1 (resp.

valg, (@) =k — 1) if a = 0 (resp. a = 0), and in (ii): valg,(e) = %5*. Note that
¢ can never be scalar when F' = Q,,.

Let B(Q,) C GL2(Q,) be the subgroup of upper triangular matrices and
X1, X2 : @) — E* two locally analytic characters. We define the locally analytic
parabolic induction:

(Indﬁ%&?p) X1 ® X2> . ={f: GL2(Q,) — E, f is locally analytic and
f(bg) = (x1 ® x2)(b)f(9), b€ B(Qy), g € GL2(Qy)}

where x; ® y2 maps (8 Z) € B(Q,) to xi(a)x2(d) € E*. We endow this
parabolic induction with a left E-linear action of GL2(Q,) via (¢ - f)(¢') :=

an

f(g'g). This makes (ImdB(Q (?p) X1 ® x2> into a locally analytic admissible

representation of GLy(Q,) in the sense of [17], [18].

Let D be a filtered module as in (i) above such that ¢ has distinct eigenvalues.



We define:

GL2(Q, B an

Tp = (IndB%QS? )uner(a " ® unrg, (pa*)d"~ ) (1)
Tp = (Ind Q”) unrg, (&71) ® unrg, (pa)d"~ )

% = Sym*?E?®pg (I d uner(a " ® unrg, (pa~ 1))00

% = Sym*?E’® (Ind unr@ (@™") ® unrg, (pa~ 1))

where the parabolic inductions in the last two tensor products are the classical
smooth parabolic inductions. Note that we have inclusions 7y C 7p and 7% C
7p. If aa™ # p*! we have the classical intertwining 7% ~ 7%. If aa™t = p~!
(resp. aa™!
dimensional subrepresentation. Otherwise, we let Fp := 0 (resp. Fp := 0). In
all cases, we denote by m(D) the unique non-zero irreducible subrepresentation
of both 7% /Fp and 75/ Fp.

= p), we let Fy C ©% (resp. Fp C 7%) be the unique non-zero finite

If D is a filtered module as in (ii) above such that ¢ has twice the same
eigenvalue, we just define 7p as in (1) with & = a.

To any 2-dimensional continuous representation of Gal(Q,/Q,) over E, the
local p-adic Langlands correspondence as in [7] associates a unitary Banach space
representation B(V) of GL2(Q,) over E. The following theorem describes the
locally analytic vectors B(V)*" inside B(V). It was conjectured (in the case
a # &) in [1] and proved independently by Liu ([14]) and Colmez:

Theorem 2.1. We keep all of the above notations.

(i) Assume ¢ has distinct eigenvalues, we have:

B(V)an = (WD/FD> EBTr(D) (%D/ﬁD) if CLEL/7'é ON
BV)*™ = (/) & (75 /Fp) &=(p) (Fp/Fp)) if a =0, a#0
B(V)™ = ((mp/Fp) @xpy (75 /Fp)) & (Fp/7%) if a #0, @ =0.

(ii) Assume the eigenvalues of ¢ are the same, we have B(V)* = mp.

Let us rename B(V)*" as [I(D), and note that, by the same formulas as those
in Theorem 2.1, one can define II(D) for any filtered p-module as in (i) or (ii)
before which is not necessarily weakly admissible. When F' # Q,), it is not known
at present how to define a reasonable B(V'), but one can easily extend and study
the definition of II(D), as we will see.

Remark 2.2. When aa~! # p*!, one can rewrite II(D) in (i) of Theorem 2.1 in
a simpler way as mp @~(p)7p if aa # 0, (7p/7(D))®7p ifa =0, m1p @ (7p /7 (D))
if a =0.



3 Quick review of weakly admissible filtered p-modules

We list weakly admissible filtered p-modules of rank 2 with distinct Hodge-Tate
weights and such that ¢/ has distinct eigenvalues.

When F' is not necessarily Q,, a filtered p-module (D, ¢, Fil' Dp) is a free
Fy ®q, E-module D of finite rank equipped with a bijective Fy-semi-linear and
E-linear endomorphism ¢ such that Dp := F'®p, D is equipped with a decreas-
ing exhaustive separated filtration by F' ®q, E-submodules Fil' Dy, i € Z (not
necessarily free over F' ®gq, F/). Using the isomorphism:

Fy®q, B ——— HUGSO E
T ®yr—=(0(z)y)oses,

D, where D,, :=(0,---,0,1,0,---,0)D (1 being “at
D, and:

one can write D as [[, cs,

0y”). Likewise, one has Dp = [] ¢

F®Fg,ao DO'() = H DO’

oceS
olry=00

(viewing D,, as an Fy-vector space via og : Fy — E).
In the rest of the text, we consider rank 2 filtered p-modules:
D = D(O[, &, (k07 a0'72io')0'€s)

with a,a@ € EX, of # af, ky € Z+1, (ay,0,) € E x E\{(0,0)} (Vo € S) and
with:

D,, = FEe,,®FEe,, (005
plea) = a legop
Qo(gao) = a ,é/O'OOSD71
D, =  Fe,®FEe, (c€8)
FiI' D, = D, i < —(kg — 1)
Fil' D, = FE(ases +agey) —(kg—2)<i<0
Fil'D, = 0 1<i

where 1 ® e,, = (e,) and 1 ® €5, = (€5) In F ®py 00 Doy = [, —y Do
0

The following lemma is straightforward and left to the reader.

Lemma 3.1. One has D(«, @, (ky, Gy, 0y)oes) = D(/, &, (KL, al,a) )ses) if and

only if ky = k., for all o € S and there exists (Aoy, Aoy Joves, € (B X EX)15! such



that either:

( As|
o = a2
71 Fp 0%
X
& — 5l forall o €S
>‘U|F00<P
/A1) _ ~ ; 1
\ (CLU,CLU) = ()\U|F0a0'7)\0"F0a0'> in P (E>
or: \
[~ \
o = ay—= 75
ﬁﬂfw
X
o — 5llm forall o €S.
Aﬂﬂf@
~r _ N ~ . 1
L (a,a)) = ()\U|F0a(,,)\g|F0aU) in PY(F)

;) o~

Remark 3.2. Note that if D(«,q, (ky, a0, 00)ees) = D/, &, (kL al,d)ses)
then one has {o/, &’} = {//, &'},
For D = D(a, &, (ky, Gy, Gy )ges) We let:
Zp={0€ S a, =0}, Zp:={ceS a,=0} (2)
One obviously always has Zp N Zp = 0.

Lemma 3.3. The filtered -module D is weakly admissible (in the sense of [12])
if and only if the following hold:

valp(a) + valp(@) =Y (ks — 1) (3)

D (kg —1) <valp(a) < Y (k, — 1) (4)
o€EZp U¢ZD

The proof is straightforward and omitted.
Remark 3.4. (i) In the presence of (3), (4) is equivalent to:

D (kg —1) <valp(@) < Y (ko — 1) (5)

O'EZD U¢ZD

(ii) One could also consider the case o/ = af. When F = Q,, the weak admis-
sibility condition forces ¢ to be non-semi-simple (see §2). But this breaks down
when F' # Q,, that is, there exist plenty of weakly admissible filtered ¢-modules
D with Hodge-Tate weights (0, k, — 1),c5 as above such that ¢/ is scalar (i.e. is
the multiplication by =/ = a=f). As I am not sure how to define a reasonable
II(D) if o/ is scalar (see §4 below for II(D) when of # af), I prefer to ignore
here this case.



By the main result of [8], when D runs along the weakly admissible modules
D(«, @, (ky, ay,05)0es) of Lemma 3.3, the E-vector spaces:

Veria(D) = (Baxis ®, D)= [ |Fil’(Bar ©r Dr)

endowed with the continuous E-linear action of Gal(Q,/F) induced by that on
Beris and Bgr exhaust the 2-dimensional crystalline representations of Gal(@/ F)
over E with Hodge-Tate weights (0, k, —1),¢cs such that the crystalline Frobenius
has distinct eigenvalues.

One easily checks that V(D) is reducible if and only if either valg(a) =
> oezy ke — 1) or valp(a) = > 7 (k, — 1), and that V(D) is reducible split
if and only if both equalities hold, which, granting (3), (4) and (5), is equivalent
to jUSt ZD II ZD =5.

4  Some locally Qp-analytic representations of GLy(F)

To a filtered p-module as in §3 (not necessarily weakly admissible), we associate
a locally Q,-analytic representation II(D) of GLy(F) over E.

For every p-adic analytic group G, we have the E-vector space C%~2(G| E)
of locally Q,-analytic functions f : G — E. Let g be the Lie algebra of G and
forr € gand f € C%~21(G, ), define as usual ¢ - f : G — E by:

(- f)g) = %f(g exp(tx))i=o- (6)

This endows C%~21(G, E) with a Q,-linear action of g which extends linearly to
an E-linear action of g ®g, £. If G is F-analytic, then g is an F-vector space
and we have the usual decomposition induced by F ®q, £ ~ ], s E:

0@q, E~[[o®r. E.

oesS

Let J be any subset of S. Following [20, §1.3.1] we say that f € C% (G, E) is
locally J-analytic if the action of g®q, £ on f in (6) factors through [] ., §®r.E.
Note the two extreme cases: when J = S, we rather say that f is locally Q,-
analytic (instead of S-analytic) and write “Q, — an” (instead of “S — an”) and
when J = (), we rather say that f is locally constant or smooth (instead of
()-analytic).

Let J C S, x1,x2 : F* — E* be two locally J-analytic multiplicative charac-
ters and B(F) C GLy(F) the Borel subgroup of upper triangular matrices. We



set:
X1®x2 @ B(F)— EX

(6 7) @@

and define as in §2 the locally J-analytic parabolic induction:

(IndGL2(F) ® )J_an = {f: QLy(F is locally .J — analytic and
B(F) X1@X2 ={f: o(F) —— E , f is locally analytic an
f(bg) = (x1 ® x2)(b) f(g), b€ B(F), g € GLy(F)}.

As in §2 we endow this parabolic induction with a left E-linear action of GLy(F)
J—an

by (g f)(¢') := f(¢'g). This makes (Indghigm X1 ® XQ) into a locally Q,-
analytic admissible representation of GLy(F') in the sense of [17], [18].

For the rest of this section, we fix D = D(«, @, (ky, @y, G5 )ses) @ rank 2 filtered
p-module as in §3 (not necessarily weakly admissible). For r, € Zsq (o € 5),
denote by (Sym’® E?)? the r,-symmetric product of the representation E? on
which GLy(F) acts via the embedding . For J C S and r, € Z (0 € J),
denote by [[ ., 0™ : F* — E* the locally J-analytic character sending = to
[I,c,o(x)™ (it is in fact “J-algebraic”).

For J; C Jy C S, we first define the following locally Jy-analytic parabolic
inductions:

Jo—an
Ip(Ji, Jo):= (Indg%;(F)uan(a_l)Ha '@ unrp(pa Ha H oo ) .

o€J1 ocJ1 oeda\J1

Note that by definition the unramified characters unrz(a~!) and unrp(pa—!)
only depend on of and af. Note also that Ip((),()) is a smooth unramified
parabolic induction which is irreducible unless (aa~!)/ = ¢ (resp. (aa™1)/ = ¢71)
in which case it is the twist by unrp(a=!) o det (resp. by unrg(a~') o det) of the
unique non-split extension of the trivial representation by the Steinberg repre-
sentation (resp. of the Steinberg representation by the trivial representation).

For J; C J; C S, we then define the following locally Q,-analytic representa-
tions of GLy(F):

mp(Ji, J2) = ( Qo gy (Sym*e 2 EQ)U) ®p Ip(J1, J2). (7)

Theorem 4.1 ([20]). (i) The wp(J;,J5) for Jy € J; C J, C Jy C S are all
distinct and are subquotients of tp(Jy, Jo). Moreover, if J; = Jy (resp. Jy =
Jo) then mp(Jy, J3) is a subrepresentation (resp. a quotient) of wp(Jy, J2)

10



(ii) If (aa=1) # ¢ or Jy # 0, the representations wp(J,J) for J, C J C J
are all topologically irreducible and exhaust the irreducible constituents of
7TD(J1, JQ) .

(iii) If | Jo\J1| = 1, wp(J1, Ja) is the unique non-split extension of wp(Ja, J2) by

wp(J1, 1) (in the abelian category of admissible locally Q,-analytic repre-
sentations of GLy(F') over E [18]).

Theorem 4.1 is proved in details by Schraen in [20, §1.3.3] (the proof relies on
work of Schneider-Teitelbaum ([17]), Frommer ([13]) and Orlik-Strauch ([15])).
It tells us that the position of the constituents wp(J, J) inside mp(Jy, J2) form a
“hypercube” with 7p(0,0) as “first vertex” and 7p(S,S) as “last vertex”. Note
that 7wp(0,0) is a locally algebraic representation of GLy(F).

We define TD(Jl, Jo) and wp(Jy, Jo) exactly as Ip(Jy,J2) and 7p(Jy, J2) by
exchanging « and a.

As in §2, if (aa™!)/ # ¢t there is a GLy(F)-equivariant isomorphism
In(0,0) ~ Ip(0,0) which induces a GLy(F)-equivariant isomorphism p (0, 0) ~
7p(0,0). When (aa~!), = ¢! (resp. (aa™1) = q), we let Fp C wp(0,0) (resp.
Fp C 7p(0,0)) be the unique non-zero finite dimensional subrepresentation. Oth-
erwise, we let Fp := 0 (resp. Fp :=0). We denote by (D) the unique non-zero
irreducible subrepresentation of both 75 (0, 0)/Fp and 7p(0,0)/Fp (note that
7(D) is 7p(0,0)/Fp or 7p(0,0)/Fp or both).

We define:
(D) := (FD(@, S\Zp)/Fp @) 7p (0, S\ZD)/ﬁD> (8)
@ ( Dociczp mp(J,J 11 (S\ZD))) EB ( @@ngZD mp(J,J 11 (S\ZD)))

When (aa~1)/ # ¢+, we can rewrite it more simply as:

(D) = ( @ocscz, mo(J, J L (S\Zp))) D (Sycscz, (. J I (S\Zp))).

(D)

The representation I1(D) is locally Q,-analytic and admissible. If (ca~1)f #

¢, (ii) of Theorem 4.1 implies that it has exactly 2!4r| + 21Zol _ 1 topologically
irreducible constituents and that its socle socgr,r) II(D) is exactly:

(D) @ @ (®ocscz, mp(J,J)) @ ( DPociczy wp(J,J)).

For later use, we also define:
s0CqL,(m IH(D) = (WD(@, 0)/Fp ®rpy Tp(0, @)/ED) (9)
@ (@ocsczy, 0(J, ) @ ( Docicz, ™o, J))

11



which coincides with the above socle if (@) # ¢*! (note that 7p (0, 0)/Fp®r(p)
7p(0,0)/Fp is the locally agebraic vectors of I1(D)).

Basically, what we do in (8) is that we decompose each “hypercube” 7p (0, .S)
and 7p (0, S) into a direct sum of smaller “hypercubes” of the same size according
to where the parameters a, and a, (defining the Hodge filtration) vanish. Note
also that if ' = Q, and D is weakly admissible, we exactly recover the locally
analytic representation in (i) of Theorem 2.1 (we leave this as an exercise). One
big difference if F' # Q, is that one obviously can’t recover D from II(D) as we
miss the exact values of the a,.

Remark 4.2. By twisting by a suitable crystalline character, one can extend
in an obvious way the definition of TI(D) to any filtered ¢-module with distinct
Hodge-Tate weights for each o € S and such that ¢/ has distinct eigenvalues.
This can be useful as the natural filtered ¢-modules coming from, e.g., Hilbert
eigenforms when F' # Q, only have Hodge-Tate weights (0, k, — 1),es after such
a twist (see §8).

O  Weak admissibility and GL,(F)-unitarity I

The most interesting locally Q,-analytic representations of a p-adic analytic group
are those which occur inside continuous unitary Banach spaces representations
of this group. Assuming that II(D) occurs inside such a unitary representation
of GLy(F), we show that D is weakly admissible.

Recall that an invariant lattice on a locally Q,-analytic representation over
E of a p-adic analytic group G is a closed Og-submodule that generates the
underlying E-vector space of the representation, that doesn’t contain non-zero
E-lines and that is preserved by G. A locally Q,-analytic representation of GG
contains an invariant lattice if and only if it is continuously contained in a unitary
Banach space representation of G over E (the p-adic completion of a lattice is a
unit ball).

Proposition 5.1. Let J C S, r, € Z>y (0 € S\J) and x1,x2 : F* — E* two
locally J-analytic multiplicative characters. If:

J—an
( ®ogs (Sym'™ E*)7) @ (IndB(;(F X1 ® X2> (10)
is contained in a unitary Banach space representation of GLo(F') then one has:
valg, (x1(p)) + valg, (x2(p)) + Z r, = 0 (11)
o¢J
valg, (x2(p)) + ZTU > 0. (12)
ogJ
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Proof. The equality (11) is just the integrality of the central character, so we
are left to prove (12). Viewing the representation (10) inside (Indg%;gm X1 ®

X2 nga(z)’"(’)(@"_an, we see that it contains the functions 1o, : GLy(F) —

E (resp. 1l,1p0, @ GLo(F) — E for x € Op) defined by 10F<(Z 2)) =

_ : b
x1(ad—be)xa2x; (d) [l 0(d) 7 ifc/d € OF (resp. liipoy <<ZL d)) = x1(ad—
be)xaxg (d) [T,¢gso(d) if c¢/d € z+pOF) and 10F<<CCL 2)) = 0 (resp.

1,00, ( (CCL Z)) = () otherwise. It is straightforward to check that for z € Op:

1 0 -
(x p) lo, = X2(p)ng¢‘] “1otpor

which implies:

1Lep0r | = X2 (P )p™ 202" | p[| 10, | (13)

where || - || is any invariant norm on (10) (induced by a unitary Banach space
representation). Taking a set (z;);er of representatives of Op/pOF in Of, we
obviously have 1o, = >,.; 1s,4p0, Which implies:

e[l < sup [[Ls 0, || = 2™ )p™ =72 | 1o, -
1€

Since |[1p,| # 0, we deduce |xo(p~!)p~2e¢s7"|p > 1 which is just what we
want. []

Corollary 5.2. Let D = D(a, @, (ky, Gy, Gy )ses) be a rank 2 filtered p-module as
in §3 (not necessarily weakly admissible) and let II(D) be the locally Q,-analytic
representation of GLo(F') associated to D in §4. IfI1(D) is contained in a unitary
Banach space representation of GLo(F') then D is weakly admissible.

Proof. The central character of II(D) is also the one of mp((, S) and the assump-
tion implies that it sends p to an element of valuation zero inside E*, which
immediately gives (3). Assume first (aa™')7 # ¢*'. The locally Q,-analytic
representations mp(Zp,S) and %D(Z p,S) both appear as subrepresentations of
II(D), hence are contained in a unitary Banach space representation if I1(D) is.
Applying (12) to mp(Zp, S) yields:

[F: Q) —valp(d@) — [Zp|+ > (ks —2)>0

UES\ZD

13



which can be rewritten as:

valp(@) < > (k, — 1)

UES\ZD

which, combined with (3), is equivalent to:

> (ks = 1) < valp(a). (14)

o€Zp
Applying (12) to %D(ZD,S) yields:

[F: Q) —valp(a) — [Zp|+ Y (k,—2)>0

O'ES\ZD

which can be rewritten as:

valp(a) < Y (k, — 1) (15)

O’ES\ZD

We see that (14) and (15) are just (4), and by Lemma 3.3 this finishes the
proof in the case (aa™!)/ # ¢*!. Assume now (aa~ ')/ =q. As 7p(Zp,9) is a
subrepresentation of II(D), the first part of the above proof gives (14). If Zp # 0
then Tp(Zp,S) is still a subrepresentation of II(D) and the second part of the
above proof gives (15) and hence the result by Lemma 3.3. Assume Zp = 0. The
equality valp(aa™') = [F': Q,] combined with (3) gives:

valp(a) = %Zkg and valp(a) = %Z(/ﬁg —2).

ogeS oc€eS

We thus have (15) since Zp =0 and k, > 2 for all & and we are done by Lemma
3.3. The case (aa~1)! = ¢! is symmetric by exchanging o and a. O

Remark 5.3. (i) One can expect that the converse statement of Corollary 5.2
holds, namely that if D is weakly admissible, then there always exists an invariant
norm (or lattice) on II(D). This holds for instance when F' = Q, but is non-
trivial and ultimately rests on the construction of II(D) via (¢, ')-modules ([6],

[1])-

(ii) Corollary 5.2 still holds replacing II(D) by socgy, mII(D) (and thus yielding
a stronger statement). Indeed, the proof is the same by applying Proposition 5.1
to mp(Zp, Zp) and Tp(Zp, Zp) instead of 7p(Zp, S) and 7p(Zp, S).

14



6 Amice-Vélu and Vishik revisited

We state and (re)prove a slight generalization of a well-known result of Amice-
Vélu and Vishik.

Let U C Op an open subset, J C S and r, € Z>( for 0 € S\J. Denote by
F(U, J,(r4)ses\s) the E-vector space of functions f : U — E such that there
exists an open (disjoint) cover (a; + @y Op);er of U such that, for each ¢, one has
an expansion:

f(2)

aitwpiOp = Z amH o(z—a;)™ (16)

F:
m=(m[7)065EZ[ZOQZD] oeS

mo<rg if ogJ
With |am|pg "i2ees™) — 0 when Y. _sm, — 400 (a, € E). Recall that
F(U, J, (ra)aeg\ 7) is an inductive limit of Banach spaces with injective and com-
pact transition maps ([16, §16]), namely the Banach spaces of functions as in (16)
with norm:

sup < || qu(zf’esm"))
Note that F(U, J, (rs)ecs\s) € F(U,J', (75)0es\sr) for any J C J'.

The technical but key lemma that follows is essentially due to Amice-Vélu
and Vishik.

Lemma 6.1. Let B be a p-adic Banach space over E and v be an E-linear map
F(U, J,(r6)0es\s) — B. Let||-|| be a norm on B defining its topology and assume
that there exist C' € R-g and ¢ € R>g such that, for any a € Op, any n € Zx>g

and any (My)oes € Z[}:):Qp] with my <1, if o & J, one has:

S Cq_n(ZUESmU_C) (17)

L(la_,_w};oF(Z) H o(z — a)m">

oeS

where 1 mnop 1 the characteristic function of a + wpOF. Let:
J = JI{r e S\J, ¢ <r,+1}.

Then v uniquely extends to an E-linear map o' : F(U,J', (75)ses\s7) — B such
that the diagram:

',F<U7 J7 (TU)UGS\J) s B

L,

f<U7 J/7 (TO’)O'GS\J/)

commutes and such that (17) holds for all (my)ses € Z[ZFOZQP} with my < 1, if
o & J (possibly up to increasing C'). Moreover, v and (' are continuous.
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Proof. First, the map ¢ is automatically continuous. Indeed, for any a € Op
and any n € Zs, the inequality (17) gives that ¢ is continuous upon restriction
to the Banach subspace of analytic functions on a + @wOp as in (16). Since
the topology on F (U, J, (74 )secs\s) is the locally convex topology with respect to
these Banach subspaces, this implies ¢ is continuous. Let 7 € J'\J. By induction
it is enough to prove the statement replacing J' by JII {7}. By E-linearity, it is
then enough to prove that ¢ uniquely extends to each function of the form:

loropor(2)7(z —a)™ ] oz —a)™ (18)

oeS\T

with m, <r, if 0 ¢ JII {7} and m, > r; + 1 so that (17) still holds (maybe up
to modifying C'). Let f be a function as in (18) and let:

D™ = {d=(dy)ses € Z5¥  d, <m, and d, <7}
DT = {d= (dy)oes € Z[ZF(;QP], dy <my,and r, +1 < d,}.

Since for any function h on U:

Lisepor(h(z —a) = 3 Ly owio, (((z — )+ (d —a),

a'cat+wihkr]

an easy computation shows we can rewrite f as f.I + f~ where:

CEED SR SNEI (& N (v | CET ) | AT )

a'€atwlhkr] deD+ oeS oeS

fro= > 1a,+w;+1oF<z>(Z (a;Haw—a’)’””‘d“H0<Z—a’>d°))

a'catwiilkp] deD~- o€S o€S

for some a},a; € Og. Since:

ag H o(a —a')mo

and since one has by (17) and the definition of D~:

L< ’+wn+1(9 HO' Z—CL )

o€eS

S qin(ZUES mo'idO')

)

F

< CqmD(Soesdoe).

we see that:
i) < CaprZees oo,

One can start again and write f as f7, + f,, where ff .. fo; arctle finite
INdy <
linear combinations over O of functions 1, +W;HOF( ) 1,eq0(z — a”)% with
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r, +1<d, <m, for £, and where ||c(f,,)|| < Cqéq~ "V (Zoesmo=<) by the
same proof as before. Iterating this process, we see that for any integer M > n
the function f in (18) can be written:

M
f=fi+ 2 0 (19)

where ¢(f;") is defined and satisfies |[c(f;)|| < Cq¢q=ses ™o~ and where f;; is
a finite linear combination over Op of functions 1,/ ue, (2) [[,e50(z — @” )de
with dp <my, and 7, +1<d,. Asc<r. +1< Y _omy (vecall rr +1 < m;),
we see that ¢(f;) — 0in B when ¢ — +o00. If ¢ extends to F(U, J', (75)scs\07)
in such a way that (17) is satisfied (up to modifying C'), we see that we have in
particular ||¢(f3;)]| < Cqg~™7+1=9 and hence ¢(f;;) — 0 when M — 4oc0. So we
must have ¢(f) = S u(f;7). Conversely, setting ¢(f) := >.°° 1(f;7) implies:

i=n i=n

||L(f)|| < Sl>lp ||L(fz_>|| = ch Sl>1p q—i(des me—c) _ chq—n(zoesma—(:)

and hence (17) is still satisfied replacing C' by C¢°. The continuity of /" is checked
as for «. O

7  Weak admissibility and GL,(F)-unitarity II

Using Lemma 6.1, we show that if a continuous unitary Banach space represen-
tation of GLy(F) over E contains socqy, z II(D) (see (9)), then it automatically

contains a larger locally Q,-analytic representation II(D)"™i¢ which is included

in I1(D).
We start with the following theorem.

Theorem 7.1. Let J C S, r, € Z>o (0 € S\J) and x1,x2 : F* — E* two
locally J-analytic multiplicative characters. Define:

J = JI{r € S\J,—valg, (xa(p)) < rr + 1}. (20)
Then any continuous E-linear equivariant injection:

re NG GLy(F) T 21
(®a’§2] (Sym" E?) >®E IndB(F) X1 & X2 B (21)

where B is a unitary Banach space representation of GLo(F') over E canonically
extends to an E-linear continuous equivariant injection:

J'—an
( ®J¢J/ (Symr" Ez)a) RE (Indg%;gF) X1 ® X2 HUEJ’\J O'T‘7> ——B. (22>
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Proof. Any element F of:

J—an
(@agj (SymTa E2)cr) XRE <IndB(F X1 ® X2> (23)

can be seen as a pair of functions (f; : Op — E, fo: wpOp — F) by setting:

= r(( 1) ad ne =i (I )a(l) e

where f5 is the only continuous function on wprOp agreeing with the right hand
side of (24) on wrOp\{0}. The map F +— f; @ f, yields an isomorphism be-
tween (23) and F(Op, J, (75)oecs\s) ® F(w@wrOp, J, (15)ses\s) and the action of
g = (Cj Z) € GLy(F) is given by:

(9PN (2) = xa(detg)xani™ (e +a) [[o(—ez + aye i (20) (25)

oy —cz+a
if djz+a € O and:
_ , —cz+a
(9F)1(2) = xa(det g)xaxi  (d= — ) 1;[Ja<dz — 0 (=)
if 4=t +ba € F\Op, and symmetric formulas for (gF)s(2). Let ¢ be a continuous
injection as in (21) and let || - || be an invariant norm on B (which exists by
assumption). Let F':= f; ® 0 = f; where fi(2) :=[],cq0(2)™ for z € O and
[F:Qyp]

some (Mg )oes € Zs " such that m, < r, if 0 ¢ J. By continuity of ¢, there is
C € Ry such that ||¢(F)|| < C for all such F. Using ||t(gF)|| = ||c(F)|| and then
applying (25) with g = (s /Zk) (a € Op, n € Zx) gives:

1/wp
(Lormpor ) [[oz=a)™)| = pa@p) [ o] lue)]
o€eS oeS F
< ¢ (Zeesmotvaio, ) ¢
Lemma 6.1 applied with ¢ := —valg, (x1(p)) and the norm induced by B (via

t) gives that F(Op, J, (75)ses\s) ® 0 — B canonically extends to a continuous
map F(Op,J', (T5)oes\s/) @0 — B. Let F := 0® fo, = fo where f5(2) =
[1,cq0(2)™ with the m, as before. Applying (25) (more precisely its symmetric
version for (gF)s(z)) with g := (}Zk ?) € GLy(F) gives by an analogous proof

that 0 ® F(wrOp, J, (r5)ses\s) — B canonically extends to a continuous map
0® F(wrOp, J', (rs)ses\s) — B. Via the isomorphism:

(Sogrr Sy B2)7) @p (dg@ oy I] o) =
oeJ\J

f<OF7 le (TU)UES\J,> S f(wFOF7 Jl? (TU)UGS\J/> (26>
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(defined as previously) we have that ¢ extends to an E-linear continuous map
as in (22) (still denoted ¢) except that it remains to prove that it is equivari-
ant and injective. Let’s first indicate how equivariance can be checked. By
linearity and symmetry, it is enough to prove «(g(f1 @ 0)) = gu(f1 & 0) for
i = Lorwpor () [Les 0z — @)™ € F(Op, J', (ro)sesyy) and g € GLy(F). Go-
ing back to the proof of Lemma 6.1, one writes f; = f; + Zf\in fi forall M >n
as in (19). Using that ¢ is equivariant upon restriction to F(Op, J, (74)secs\s) and
that || - || is invariant, it is enough to check that ||c(gf;)]| — 0 when M — +oo.
This follows again from the bounds (17) and an explicit computation of gf;;
using (25). Now injectivity follows from continuity and equivariance. Indeed, if
(22) is not injective, then its non-zero kernel must be a closed invariant subspace.
But by Theorem 4.1, this closed invariant subspace must contain (23) (which
is a topologically irreducible GLq(F')-representation). However, ¢ in (21) being
injective, this is impossible. O

Let D be a rank 2 filtered p-module with Hodge-Tate weights (0, k, — 1),es
as in §3 (not necessarily weakly admissible). For J C S define:

Zp(J) = J1 {T € S\J,valp(a) > k, — 1+ Z(k" — 1)}

oceJ

Zp(J) = JII {7‘ e S\J,valp(a) > k, — 1+ Z(kg - 1)} :

oceJ

We set:
D) = ({0, 5\Zo())/Fo =) To(0. S\Zo(0)/Fp) (27
@@QQJQZDWD(J,JH(S\ZD )))
P @ocscz, 7o (1 T (S\Zp()))).

We have socgy, ) II(D) € [I(D)Amice (see (9) for S0CGy, (ry (D))

(J
(J

Corollary 7.2. Let D be a rank 2 filtered p-module as above.

(1) If a unitary Banach space representation of GLo(F) over E continu-
ously contains socqy, ) (D) then it continuously contains II(D)Amice gnd
D is weakly admissible.

(ii) If D is weakly admissible, then TI(D)Amice C TI(D).

Proof. (i) The last statement is (ii) of Remark 5.3. Let J C S, J # (). Rewriting
(20) as J' = JH S\Z(J) where Z(J) := J I {1 € S\J, —valg,(x1(p)) > - + 1},
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Theorem 7.1 implies that a unitary Banach space representation B of GLy(F')
(continuously) contains mp(J, J) (resp. 7p(J,J)) if and only if it (continuously)
contains 7p(J,J 11 (S\Zp(J))) (resp. 7p(J,J I (S\Zp(J)))). Likewise, if B
contains mp(0,0)/Fp (resp. 7p(0,0)/Fp), the same proof as for Theorem 7.1
gives an equivariant continuous map mp (0, S\Zp(0)) — B with kernel containing
Fp (resp. with tildes). If this kernel were strictly bigger than Fp, then it would
also contain 7p (0, @) which is impossible. We conclude using that all embeddings
mp(J,J) — mp(J, J L (S\Zp(J))) etc. are essential (Theorem 4.1), that is, any
subrepresentation of the right hand side intersects non-trivially the left hand side.
(ii) If J C Zp (resp. J C Zp), the first inequality in (4) (resp. in (5)) implies
Zp C Zp(J) (vesp. Zp C Zp(J)) and thus we have:

JILS\Zp(J) C JILS\Zp (resp. JILS\Zp(J) C JILS\Zp).

Comparing (8) and (27), we see that I1(D)Amice C TI(D). O

We say that a continuous 2-dimensional E-linear representation of Gal(Q,/F)
is ordinary if its semi-simplification has restriction to inertia isomorphic to e* @1
for some integer *. It would have been nice to have in many cases I1(D)Amice =
I1(D), however this turns out to be quite rare.

Proposition 7.3. We have II(D)A™ic = T1(D) if and only if either Vius(D) is
split ordinary or Vs(D) is irreducible and F = Q,,.

Broof. Cl(iarly the statement holds if and only if Zp(J) = Zp for all J C Zp and
Zp(J) = Zp for all J C Zp. But Zp(J) = Zp if and only if:

valp(o) <k, — 14> (ke — 1)

oed

for all 7 € S\Zp, so Zp(J) = Zp for all J C Zp if and only if :
T ¢ Zp = valp(a) < k, — 1 (28)

and likewise with tildes everywhere. Assume first that there are 7,7 € S with
7 # 7 such that 7 ¢ Zp and 7 ¢ Zp. By (3), the inequality (28) and its tilde
analogue imply > _o(k; — 1) < k; — 14 kz — 1 which is impossible. Since
ZnNZp = (), we thus have either Zp = S and Zp = 0, or Zp = () and Zp =S,
or Zp = Zp = () and |S| = 1. The first two cases correspond to Vis(D) being
split ordinary and the last to F' = Q, and V,,i5(D) being indecomposable. Finally,
it is straightforward to check that (28) and its tilde analogue hold in the first two
cases, and hold in the last if and only if V(D) is moreover irreducible. O

20



8 Local-global considerations

We briefly put the previous considerations within a global setting.

Let L be a totally real finite extension of Q with ring of integers Oy. Assume
for simplicity that there is a unique prime ideal p in O, above p and let L, denote
the completion of L at p and L, its maximal absolutely unramified subfield.
Denote by Ap the finite adeles of L outside p. To any quaternion algebra D
over L Wthh sphts at only one of the infinite places and which splits at p and
to any compact open subgroup KJ’? (D @5, A} 7f)X, one can associate a tower
of Shimura algebraic curves (S(K}Kjy,))k,, over L where Ky, runs over the
compact open subgroups of (D ®p, Ly)* =~ GLa(Ly) (see e.g. [4]). Consider:

A'(K7) = (tim lim HY (S(KPK ) <1 @, Op/p"Op) ) @0, E

n Kfyp

which is a p-adic Banach space over E (an open unit ball being the Og-module
lim lim Hg, (S(K$Kyp) X Q,0p/p"Og)) endowed with a linear continuous uni-

tary action of GLy(L,) x Gal(Q/L) ([5]).

Let g be a parabolic Hilbert eigenform of level prime to p, E a finite extension
of Q, containing the Galois closure of L, and the Hecke eigenvalues associated to
g, and k, > 2 for o € S := Hom(L;, E) the various weights of g. We denote by:

pe s Gal(Q/L) — GLy(E)

the continuous totally odd Galois representation associated to g ([21]). We nor-
malize p, so that the traces of arithmetic Frobeniuses at unramified places are
the Hecke eigenvalues. We let :

(Dy, 9, Fill Dy1,) i= ((Besis @, 05) @), 0 @14, (FiT' Ban, @g, p,) ™)),

Choose 7 : Gal(Q/L,) — E* a crystalline character such that PolGar@/r,) @ N
has Hodge-Tate weights (0, k, — 1),cs (such a character always exists) and define
the filtered module Dy, as D, but replacing py|cam,z,) PY Polca@/r,) @ n- If
the eigenvalues of @!Fp0: @l on D, , (or equivalently on D,) are distinct, then the
locally Q,-analytic representation II(D,,) is well-defined (§4). We set:

I(D,) :=1I(D,,) ®n " odet.

The locally Q,-analytic representation II(D,) of GLy(L,) is easily checked to be
independent of the choice of the crystalline character 7 as above (note that the
ratio of two such 7 is an unramified character of Gal(Q/Ly)).
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Conjecture 8.1. Assume that the eigenvalues of pl»0 @l on D, are distinct. If
Homg,, g1 (0y, H' (K})) # 0 then there is an integer n > 0 (depending on g and
K¥) such that:

I(D,)" C HomGal(@/L) (1021/7 Hl(Kﬁ)) (29)
and such that any GLa(Ly)-subrepresentation of Home, g, 1)y, }A[l(KJ]?)) inter-
sects I1(D,)™ non-trivially.

This conjecture is known so far only for L = Q ([2], [11]). If one knows
that (socgy, g (D) @ n~! o det)” embeds into the right hand side of (29),
then (i) of Corollary 7.2 gives that (II(D, )™ ® n~' o det)" also embeds. This
should allow one to check Conjecture 8.1 if L, = Q) and pg|g. @1, ) I irreducible
using the last case of Proposition 7.3 (as the locally algebraic representation
(7p,.,(0,0) @ n~* o det)" should embed). But (II(Dy,)*™ @ n~' o det)" is the
“maximum that p-adic analysis will give you”. Going from (II(D,, )™ @ n~'o
det)" to (II(D,,) @n~ ' odet)™ = I1(D,)™ will require some non-trivial arithmetic
geometry.

Finally, if L, # Q,, I never expect (29) to be a topological isomorphism for

any n as Homg, g, 1) (py H '(K%)) should determine py|q.q, 1,) (which is not the
case of II(D,)").

9  The case where the Galois representation is reducible

We examine more closely the structure of II(D) when V(D) is reducible and
relate it to considerations of [3].

Let us first make a detour via the modulo p theory. Let V ~ (X(Z)w ; ) be

1
a continuous 2-dimensional representation of Gal(Q,/F) over kp where w is the
reduction modulo p of € and where X, X, : £’ — kj, are smooth characters. The
results of [3, §19] (in the case F' is unramified) suggest that, when V is non-split,
the corresponding “good” representation(s) m of GLy(F') over kg (e.g. the repre-
sentation(s) Homg, g1 (Vg,lim Hy, (S(K7Ky,) x 1 Q, kg)) when V' globalizes to

a representation V, of Gal(Q/L), see §8) should (generically) have the form:

To ™ e TF:Qp)—1

W[F:Qp}

where my = Indg%;gF) X1 ® Xa2s TFQ, = Indg%égF

inductions) and where the 7; for 1 < j < [F' : Q)] — 1 are irreducible and are

) Xow @ X;w ! (smooth parabolic
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not subquotients of parabolic inductions (extensions are taken in the category of
smooth representations of GLy(F') over kg). When V is split, one should have
@Ei:?p}wj. The representations 7;, 1 < j < [F': Q,] — 1 are still quite mysterious,
although one knows a few things about them (such as their GLy(OFr)-socle, see

3])-

Now let D be a rank 2 filtered ¢-module with Hodge-Tate weights (0, ks —1)es
as in §3 (not necessarily weakly admissible). For j € {0,--- ,[F : Q,]} let us first

define two series (II(D);); and (II(D),); of locally Q,-analytic representations of
GLQ(F)

(D); := & scz, wp(J, TS\ Zp) if 0<j<|[Zp]—1
[JI=1Zpl|—j
(D); = mp(0,S\Zp)/Fp @®n(p) 700, Zp)/Fp if j =|Zp|
I(D); := EBIJ‘QS\‘ZD‘%D(J,JHZD) if |Zp|+1<j<[F:Q)
Jl=i—Zp

and likewise for I1(D); replacing Zp by Zp, np(J, JILS\Zp) by 7p(J, JI1S\ Zp)
and 7p(J, J 11 Zp) by wp(J, J 11 Zp). Since Zp C S\Zp and Zp C S\Zp, the
I1(D); and II(D); are easily checked to be subquotients of II(D) (we leave this
to the reader). Note that the above two series coincide (up to numbering) if and
only if Zp 11 Zp = S in which case one has II(D); = ﬁ(D)[F:Qp]_j.

If D is weakly admissible, recall from §3 that V.;s(D) is reducible if and only
if either valp(a) = > ., (ko —1) or valp(a) = 3 .7 (k;—1), and that V(D)
is reducible split if and only if both equalities hold if and only if Zp 1T Zp=2S.

We consider below extensions in the abelian category of admissible locally
Qp-analytic representations of GLo(F') over E ([18]).

Theorem 9.1. Let D be a weakly admissible rank 2 filtered p-module as in §3.
(i) Veis(D) is indecomposable if and only if:
(D) ~ &5 11(D),
P (D) 1z, — U(D)zp 141 — - —— (D) gy,
of and only if:
(D) ~ &/ 'TI(D),

P D)z, — D)7y — —— (D)o, -



1) Veris(D) 1s reducible split if and only if II(D) ~ @[ZQP]H D); if and only
7=0 J
if II(D) ~ @gFé@p]H(D)j.

(111) Let x1,x2 : F* — Of be two locally Q,-analytic integral characters. The
following are equivalent:

o V(D) is reducible and isomorphic to <X(2)E ;)
1

e II(D) contains (Indg(L;SF) X1 ® Xz)Qp_an if X1 # X2 or (Ind X1 ®
Xl)Qp_an/Xl odet if x1 = X2

(iv) Assume Vis(D) is reducible and isomorphic to (XSS ;1) with x1x,' ¢
{1,e%}.
o [fvalp(@) = 2gez, (ko = 1), then T(D)o = (Indg(LégF) X1 ®X2)Qp_an and
(D), = (IHdE(LESF) X2€ ® Xle_l)Q”_an.
o Ifvalp(@) = Y5, (ks — 1), then TI(D)o ~ (Indg 2" x1 @ x2) ™™ and
(D) g, = (Tndj™ xoe @ xae™!) ™

Proof. (ii) is straightforward using Zp = S\ Zp and (i) is a consequence of some
easy combinatorics using Zp C S\ZD and Theorem 4.1 that we leave to the
reader.

We prove one implication in (iii). Assume first that I[I(D) contains (Indg(LégF) X1®
X2)Qp_an for some integral characters x; # x2. From (8), we see that this
parabolic induction must be either 7p(Zp, S) or Tp(Zp, S). Going back to (7),
this implies either:

-1 ko — -1
X1 = unrp(a ) H o~ and xy = unrp(a™ )| - |5t H H ot
o€EZp oE€EZp U%ZD
or:

X1 = unrp(a H o1 and y, = unrp(at)| - |7t H H o

O'EZD O'EZD UﬁZD

The integrality of x; implies either valp(a) = >, (k, — 1) or valp(a) =
> wcz, (ke —1). In the first case, we have from the definition (2) of Zp that
¢, e Fi’D, if 0 € Zp and &, € Fil'* "V pD_if ¢ ¢ Zp. Hence the crys-
talline Galois character Vcris(]_[go €5 Eé,,) sends p to a~ @] and has Hodge-Tate
weights ((0)gezp, (ke — 1)o¢z,,), hence is exactly xoe (using € = |- [ [[,cq0)-

Likewise, we have Viis(D/[] Eés,) = X1, and thus Vess(D) ~ X(2)€ ;
1

o0€Sy
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The second case is symmetric. Assume now that II(D) contains (Ind L2 )1 ®
Xl)Qp_an/Xl o det, which from (8) must be either mp(0,S)/Fp (with FD 7& 0) or

#p(0,5)/Fp (with Fp # 0). Thus (IndB(;(F X1 ® X1)Qp7an is either wp (), S) or
7p(0,S) and the proof is the same as previously.

Now let us prove (iv) and the other implication in (iii). Assume valp(a) =
> wezy ko —1). By computing Veuis([ ], cs, E€00) as before, we see that we can
assume that x; and xo are as in (30) (replacing if necessary x; by x2¢ and
X2 by x1e7t when V(D) is split). If Zp # 0 or (aa )/ ¢ ¢*', we have
II(D)y = mp(Zp,S) = (Indg%ligm X1 ® Xg)pran and II(D) contains II(D), from
(i). If Zp # S or (aa™ )/ ¢ ¢*, we have II(D)(pq,] = 7p(S\Zp,S) which

is easily checked to be (IndGLQ(F) X2 ® Xls_l)pran. This proves the first part

of (iv). If Zp = 0 and (a™ )f = ¢*!, the above equality for valp(a) together
with (3) imply (aa™!)/ = ¢! and k, = 2 for all 0 € S, and we see that
II(D) contains (Ind 2(F X1 ® Xl)Q”_an/Xl odet = mp(0,S)/Fp. The proof for
valp(a) = >, 7, (ko — 1) is completely symmetric and left to the reader. This
finishes the proofs of (iv) and (iii). O

Remark 9.2. There is a variant of (iv) in Theorem 9.1 when y;x5,' € {1,e%}
that we leave to the reader.

Let us finish the paper with some free speculations. Assume V(D) is re-
ducible as in (iv) above and consider the case, say, valp(a) = > ., (k, — 1)
(the other case being symmetric). Then II(D)y (resp. II(D)r.q,)) has a unique
(admissible) unitary completion ﬁ(D)O (resp. ﬁ(D)[F:QP}) which is just the contin-
uous parabolic induction of x; ® xa (resp. Y26 ®x1e!) and which is topologically
irreducible if (k,)yes # (2, -+ ,2) or (aa 1)/ # q (resp. or (aa™1)/ # ¢71). The-
orem 9.1 together with the characteristic p considerations at the beginning of
this section strongly suggest that there should also exist topologically irreducible
admissible unitary completions II(D); of II(D); for 1 < 57 < [F : Q] — 1, con-
taining I1(D); and which may - or may not - only depend on D, together with
an admissible unitary Banach space representation B of GLy(F') of the form:

o~ A~ A~

B =~ M(D)y—— (D), —  —— (D) pg,)-1 — (D) raq,

when V(D) is non-split and of the form B ~ @[F Q”]H(D)j when V(D) is
split, and such that B completely determines D. Here admissibility for Banach
space representations is as in [19].

For simplicity (and because it is speculative) we just focus on the case [F' :
Q,] = 2 (and keep the same assumptions as above). We write S = {o,0'}. As-

suming a unitary Banach space representation as I1(D); exists, one can consider
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its locally Q,-analytic vectors [I(D)¥ ™. One has an exact sequence (in the
category of admissible locally Q,-analytic representations of GLy(F)):

~

0—1(D), —= (D)}~ —=1I(D); —=0

where:
(D), = 7p({o}.{o})@7mp({o'},{0'}) if Zp=0

(D) = 7mp(0,5\Zp) ®rp) 700, Zp) if |Zp|=1

(D) = molfo}{o}) ®mpl{o’}.{o'}) i Zp=S5.

Granting the existence of such an “extra-constituent” II(D)!, we can speculate
that the “complete” locally @,-analytic representation(s) II(D)” of GLy(F) asso-
ciated to D should be a non-split extension:

0 — (D) —=TI(D)? —=II(D)} —0

(even if V5(D) is irreducible) and that the “parameters” giving the isomorphism
class of this extension should be related to (and determine) the values of a,, a,,
a, and @, (up to modifications as in Lemma 3.1).
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