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1 Introduction and notations

Let p be a prime number, F a finite extension of Qp, Qp an algebraic closure of
F and pick a finite extension E of Qp containing the Galois closure of F . This
note fits into the local p-adic Langlands programme, whose aim is to attach and
study locally Qp-analytic or continuous p-adic representations of GLn(F ) over E
to n-dimensional p-adic representations of Gal(Qp/F ) over E. One of the most
important cases is when the Galois representation is crystalline with distinct
Hodge-Tate weights. When n = 2 and F = Qp, we completely understand the
GL2(Qp)-representations both from a p-adic and from a locally analytic point
of view ([6], [1], [14]). When n = 2 but F 6= Qp, several complications occur,
all more or less related to the fact that one has to deal with the “mixture” of
several embeddings of the base field F into the coefficient field E. This note
focusses on the locally analytic point of view when n = 2. To most of the
2-dimensional crystalline representations V of Gal(Qp/F ) over E with distinct
Hodge-Tate weights for each embedding F ↪→ E, we attach and study a locally
Qp-analytic representation Π(V ) of GL2(F ). Before we sum up the results of this
note, let us mention right away that we don’t expect Π(V ) to be the “complete”
locally Qp-analytic representation associated to V when F 6= Qp, but only a
subrepresentation of it. For instance, one can’t recover V from Π(V ) in general
when F 6= Qp. However, the study of Π(V ) is not hard and already reveals
interesting features. Moreover it already seems a non-trivial task to prove that
Π(V )⊗EV occurs for instance inside the completed H1 of Hilbert Shimura curves.

We now explain the main results of this note. Let f be the residual index of
F . To any rank 2 filtered ϕ-module D (not necessarily weakly admissible) with
distinct Hodge-Tate weights and such that ϕf has two distinct eigenvalues, we first
associate a locally Qp-analytic representation Π(D) of GL2(F ). The underlying
idea for the definition of Π(D) is the following. Since we are in dimension 2 with
distinct Hodge-Tate weights, the Hodge filtration on the rank 2 module DF is just
the datum of a rank one submodule. If this submodule is completely generic, then
Π(D) is just the amalgamated sum of two natural locally Qp-analytic parabolic
inductions associated to D relative to their common locally algebraic vectors.
But it can happen that the Hodge filtration is in a special position (with respect
to the eigenvectors of ϕf ). In that case, one replaces each locally Qp-analytic
parabolic induction in the previous amalgamated sum by a certain direct sum of
some of its subquotients (depending on the position of the Hodge filtration) so
that the final representation has the same Jordan-Hölder constituents. One uses
here results of Frommer and Schraen (and others) on the Jordan-Hölder filtration
of locally Qp-analytic parabolic inductions of characters (which are themselves
based on foundational results of Schneider, Teitelbaum and Morita).

Let socGL2(F ) Π(D) be the direct sum of the topologically irreducible subrep-
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resentations of Π(D). We then prove the following statements, all giving evidence
that Π(D) is (a piece of) the right representation to consider.

(i) If socGL2(F ) Π(D) has a p-adic norm which is invariant under the action of
GL2(F ) (for instance if Π(D) itself has such an invariant norm), then D is weakly
admissible (§5).

(ii) If socGL2(F ) Π(D) has a p-adic invariant norm, then the completion of
socGL2(F ) Π(D) with respect to this norm automatically contains a larger locally
Qp-analytic representation Π(D)Amice of GL2(F ) which is such that Π(D)Amice ⊆
Π(D) (§7).

(iii) If D is weakly admissible and corresponds to a reducible crystalline Galois

representation V =

(
χ2ε ∗
0 χ1

)
(where ε is the p-adic cyclotomic character and

χ1, χ2 are crystalline characters), then Π(D) has a natural increasing filtration
by GL2(F )-subrepresentations:

0 = Fil0Π(D) ( Fil1Π(D) ( · · · ( Fil[F :Qp]Π(D) ( Fil[F :Qp]+1Π(D) = Π(D)

such that, when χ1χ
−1
2 /∈ {1, ε2}, the graded pieces:

Π(D)j := Filj+1Π(D)/FiljΠ(D)

satisfy Π(D)0 =
(

Ind
GL2(F )
B(F ) χ1⊗χ2

)Qp−an
, Π(D)[F :Qp] =

(
Ind

GL2(F )
B(F ) χ2ε⊗χ1ε

−1
)Qp−an

(where B(F ) is the upper parabolic) and such that Π(D) ' ⊕[F :Qp]
j=0 Π(D)j if and

only if V is split (§9).

(i) follows from an easy necessary condition for a parabolic induction which is
locally analytic in some “directions” and locally algebraic in the others to admit
a p-adic invariant norm. (ii) is based on well-known techniques of Amice-Vélu
and Vishik which give that, if a unitary Banach space representation of GL2(F )
contains socGL2(F ) Π(D), then p-adic analysis forces it to contain a larger represen-
tation Π(D)Amice, which turns out to be a subrepresentation of Π(D). Note that
one knows examples of unitary Banach spaces representations of GL2(F ) con-
taining socGL2(F ) Π(D) (e.g. completed cohomology groups when socGL2(F ) Π(D)
is the locally algebraic vectors of Π(D)). The results of (i) and (ii) might be
(very) special cases of some of the results of [9], [10]. Finally, (iii) is consistent
with results in characteristic p when F is unramified ([3]) giving evidence that
the smooth representation(s) of GL2(F ) in characteristic p corresponding to a re-
ducible non-split (resp. split) 2-dimensional representation of Gal(Qp/F ) should
generically be a successive extension (resp. a direct sum) of [F : Qp] irreducible
representations, the first and the last being two principal series analogous to the
two parabolic inductions in (iii) above. We refer to the body of the text for more
detailed and more precise statements.
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For any finite extension L of Qp, we denote by OL its ring of integers, $L a
uniformizer and kL := OL/($L) its residue field.

Throughout the text, F and E are two fixed finite extensions of Qp such that
the set S of field embeddings of F into E has cardinality [F : Qp] (F is the base
field, E the coefficient field). We denote by F0 the maximal unramified subfield
in F , f := [F0 : Qp], e := [F : F0], q := pf and S0 the set of embeddings of F0

into E. We let ϕ be the arithmetic Frobenius on F0 inducing x 7→ xp on kF .

The p-adic valuation valF on F or on E is normalized by valF (p) := [F : Qp]
and we set |x|F := p− valF (x) if x ∈ F or x ∈ E. If λ ∈ E×, unrF (λ) : F× → E×

is by definition the unramified character sending x ∈ F× to λvalF (x).

We normalize local class field theory such that uniformizers are sent to geo-
metric Frobeniuses. We view without comment a character of Gal(Qp/F ) as a
character of F×. We denote by ε the p-adic cyclotomic character. It corresponds
to the character of F× given by x 7→ |x|F

∏
σ∈S σ(x).

A p-adic norm on an E-vector space V is a function ‖ · ‖ : V → R≥0 such
that ‖v‖ = 0 if and only if v = 0, ‖λv‖ = |λ|F‖v‖ (λ ∈ E, v ∈ V ) and
‖v + w‖ ≤ sup(‖v‖, ‖w‖) (v, w ∈ V ). A p-adic Banach space over E is an
E-vector space endowed with a topology coming from a p-adic norm and such
that the underlying metric space is complete. An invariant norm on an E-vector
space V endowed with an E-linear action of a group G is a p-adic norm ‖ · ‖ such
that ‖gv‖ = ‖v‖ for all v ∈ V and g ∈ G. A unitary Banach space representation
of a topological group G over E is a p-adic Banach space B over E endowed with
an E-linear action of G such that the map G × B → B is continuous and such
that the topology on B can be defined by an invariant norm.

By (topologically) irreducible for a (continuous) representation of a (topo-
logical) group on an E-vector space, we always mean (topologically) absolutely
irreducible.

If R0 and R1 are objects in an abelian category, we denote by R0 R1

an arbitrary non-split extension of R1 by R0. If R and (Rj)j are objects of this
category, R ' R0 R1 R2 · · · means that R contains a non-split
extension of R1 by R0 such that the quotient R/R0 contains a non-split extension
of R2 by R1 etc.

I thank F. Diamond, M. Dimitrov, F. Herzig, M. Kisin, R. Liu, T. Schmidt and
B. Schraen for conversations or remarks related to this note, and the organizers
of the programme “Non-abelian Fundamental Groups in Arithmetic Geometry”,
especially J. Coates, M. Kim and P. Schneider, for giving me the opportunity
to give talks containing the results of this note at the Isaac Newton Institute in
September 2009.
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2 Quick review of the GL2(Qp)-case

We review the locally analytic representations of GL2(Qp) associated to 2-dimen-
sional crystalline representations of Gal(Qp/Qp) over E with distinct Hodge-Tate
weights.

Recall that, when F = Qp, a filtered ϕ-module (D,ϕ,Fil·D) is a finite di-
mensional E-vector space equipped with a bijective automorphism ϕ and with
a decreasing filtration by subvector spaces FiliD, i ∈ Z which is exhaustive
(FiliD = D for i� 0) and separated (FiliD = 0 for i� 0).

Let V be a 2-dimensional crystalline representation of Gal(Qp/Qp) over E
with distinct Hodge-Tate weights. Twisting V if necessary, we can assume that
its Hodge-Tate weights are (0, k − 1) where k ∈ Z≥2. Then by [12] we have
V = Vcris(D) := Fil0(Bcris⊗QpD)ϕ=1 for a filtered ϕ-module which can be written
as follows:

(i) If ϕ has distinct eigenvalues, then D = Ee ⊕ Eẽ, ϕ(e) = α−1e, ϕ(ẽ) = α̃−1ẽ
(with α, α̃ ∈ E×, α 6= α̃), FiliD = D if i ≤ −(k − 1), FiliD = E(ae + ãẽ) if
−(k − 2) ≤ i ≤ 0 (with (a, ã) ∈ E × E\{(0, 0)}) and FiliD = 0 if 1 ≤ i.

(ii) If the eigenvalues of ϕ are the same, then D = Ee ⊕ Eẽ, ϕ(e) = α−1e,
ϕ(ẽ) = α−1(e + ẽ) (with α ∈ E×), FiliD = D if i ≤ −(k − 1), FiliD = E(e + ẽ)
if −(k − 2) ≤ i ≤ 0 and FiliD = 0 if 1 ≤ i.

Moreover, the so-called weak admissibility conditions ([12]) imply in (i): valQp(α)+
valQp(α̃) = k − 1 with 0 ≤ valQp(α) ≤ k − 1 and valQp(α) = k − 1 (resp.
valQp(α̃) = k − 1) if a = 0 (resp. ã = 0), and in (ii): valQp(α) = k−1

2
. Note that

ϕ can never be scalar when F = Qp.

Let B(Qp) ⊂ GL2(Qp) be the subgroup of upper triangular matrices and
χ1, χ2 : Q×p → E× two locally analytic characters. We define the locally analytic
parabolic induction:(

Ind
GL2(Qp)

B(Qp) χ1 ⊗ χ2

)an

:= {f : GL2(Qp) // E , f is locally analytic and

f(bg) = (χ1 ⊗ χ2)(b)f(g), b ∈ B(Qp), g ∈ GL2(Qp)}

where χ1 ⊗ χ2 maps

(
a ∗
0 d

)
∈ B(Qp) to χ1(a)χ2(d) ∈ E×. We endow this

parabolic induction with a left E-linear action of GL2(Qp) via (g · f)(g′) :=

f(g′g). This makes
(

Ind
GL2(Qp)

B(Qp) χ1 ⊗ χ2

)an

into a locally analytic admissible

representation of GL2(Qp) in the sense of [17], [18].

Let D be a filtered module as in (i) above such that ϕ has distinct eigenvalues.
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We define:

πD :=
(

Ind
GL2(Qp)

B(Qp) unrQp(α
−1)⊗ unrQp(pα̃

−1)dk−2
)an

(1)

π̃D :=
(

Ind
GL2(Qp)

B(Qp) unrQp(α̃
−1)⊗ unrQp(pα

−1)dk−2
)an

π∞D := Symk−2E2 ⊗E
(

Ind
GL2(Qp)

B(Qp) unrQp(α
−1)⊗ unrQp(pα̃

−1)
)∞

π̃∞D := Symk−2E2 ⊗E
(

Ind
GL2(Qp)

B(Qp) unrQp(α̃
−1)⊗ unrQp(pα

−1)
)∞

where the parabolic inductions in the last two tensor products are the classical
smooth parabolic inductions. Note that we have inclusions π∞D ⊂ πD and π̃∞D ⊂
π̃D. If αα̃−1 6= p±1 we have the classical intertwining π∞D ' π̃∞D . If αα̃−1 = p−1

(resp. αα̃−1 = p), we let FD ⊂ π∞D (resp. F̃D ⊂ π̃∞D ) be the unique non-zero finite

dimensional subrepresentation. Otherwise, we let FD := 0 (resp. F̃D := 0). In
all cases, we denote by π(D) the unique non-zero irreducible subrepresentation

of both π∞D /FD and π̃∞D /F̃D.

If D is a filtered module as in (ii) above such that ϕ has twice the same
eigenvalue, we just define πD as in (1) with α̃ = α.

To any 2-dimensional continuous representation of Gal(Qp/Qp) over E, the
local p-adic Langlands correspondence as in [7] associates a unitary Banach space
representation B(V ) of GL2(Qp) over E. The following theorem describes the
locally analytic vectors B(V )an inside B(V ). It was conjectured (in the case
α 6= α̃) in [1] and proved independently by Liu ([14]) and Colmez:

Theorem 2.1. We keep all of the above notations.

(i) Assume ϕ has distinct eigenvalues, we have:

B(V )an = (πD/FD)⊕π(D) (π̃D/F̃D) if aã 6= 0

B(V )an = (πD/π
∞
D )⊕ ((π∞D /FD)⊕π(D) (π̃D/F̃D)) if a = 0, ã 6= 0

B(V )an = ((πD/FD)⊕π(D) (π̃∞D /F̃D))⊕ (π̃D/π̃
∞
D ) if a 6= 0, ã = 0.

(ii) Assume the eigenvalues of ϕ are the same, we have B(V )an = πD.

Let us rename B(V )an as Π(D), and note that, by the same formulas as those
in Theorem 2.1, one can define Π(D) for any filtered ϕ-module as in (i) or (ii)
before which is not necessarily weakly admissible. When F 6= Qp, it is not known
at present how to define a reasonable B(V ), but one can easily extend and study
the definition of Π(D), as we will see.

Remark 2.2. When αα̃−1 6= p±1, one can rewrite Π(D) in (i) of Theorem 2.1 in
a simpler way as πD⊕π(D) π̃D if aã 6= 0, (πD/π(D))⊕ π̃D if a = 0, πD⊕(π̃D/π(D))
if ã = 0.
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3 Quick review of weakly admissible filtered ϕ-modules

We list weakly admissible filtered ϕ-modules of rank 2 with distinct Hodge-Tate
weights and such that ϕf has distinct eigenvalues.

When F is not necessarily Qp, a filtered ϕ-module (D,ϕ,Fil·DF ) is a free
F0 ⊗Qp E-module D of finite rank equipped with a bijective F0-semi-linear and
E-linear endomorphism ϕ such that DF := F ⊗F0 D is equipped with a decreas-
ing exhaustive separated filtration by F ⊗Qp E-submodules FiliDF , i ∈ Z (not
necessarily free over F ⊗Qp E). Using the isomorphism:

F0 ⊗Qp E
∼ //

∏
σ∈S0

E

x⊗ y � // (σ(x)y)σ∈S0

one can write D as
∏

σ0∈S0
Dσ where Dσ0 := (0, · · · , 0, 1, 0, · · · , 0)D (1 being “at

σ0”). Likewise, one has DF =
∏

σ∈S Dσ and:

F ⊗F0,σ0 Dσ0 =
∏
σ∈S

σ|F0
=σ0

Dσ

(viewing Dσ0 as an F0-vector space via σ0 : F0 ↪→ E).

In the rest of the text, we consider rank 2 filtered ϕ-modules:

D = D(α, α̃, (kσ, aσ, ãσ)σ∈S)

with α, α̃ ∈ E×, αf 6= α̃f , kσ ∈ Z>1, (aσ, ãσ) ∈ E × E\{(0, 0)} (∀σ ∈ S) and
with: 

Dσ0 = Eeσ0 ⊕ Eẽσ0 (σ0 ∈ S0)
ϕ(eσ0) = α−1eσ0◦ϕ−1

ϕ(ẽσ0) = α̃−1ẽσ0◦ϕ−1
Dσ = Eeσ ⊕ Eẽσ (σ ∈ S)

FiliDσ = Dσ i ≤ −(kσ − 1)
FiliDσ = E(aσeσ + ãσẽσ) −(kσ − 2) ≤ i ≤ 0
FiliDσ = 0 1 ≤ i

where 1⊗ eσ0 = (eσ) and 1⊗ ẽσ0 = (ẽσ) in F ⊗F0,σ0 Dσ0 =
∏

σ|F0
=σ0

Dσ.

The following lemma is straightforward and left to the reader.

Lemma 3.1. One has D(α, α̃, (kσ, aσ, ãσ)σ∈S) ' D(α′, α̃′, (k′σ, a
′
σ, ã

′
σ)σ∈S) if and

only if kσ = k′σ for all σ ∈ S and there exists (λσ0 , λ̃σ0)σ0∈S0 ∈ (E××E×)|S0| such
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that either:
α′ = α

λσ|F0

λσ|F0
◦ϕ

α̃′ = α̃
λ̃σ|F0

λ̃σ|F0
◦ϕ

(a′σ, ã
′
σ) = (λσ|F0

aσ, λ̃σ|F0
ãσ) in P1(E)

for all σ ∈ S

or: 
α̃′ = α

λσ|F0

λσ|F0
◦ϕ

α′ = α̃
λ̃σ|F0

λ̃σ|F0
◦ϕ

(ã′σ, a
′
σ) = (λσ|F0

aσ, λ̃σ|F0
ãσ) in P1(E)

for all σ ∈ S.

Remark 3.2. Note that if D(α, α̃, (kσ, aσ, ãσ)σ∈S) ' D(α′, α̃′, (k′σ, a
′
σ, ã

′
σ)σ∈S)

then one has {αf , α̃f} = {α′f , α̃′f}.

For D = D(α, α̃, (kσ, aσ, ãσ)σ∈S) we let:

ZD := {σ ∈ S, aσ = 0}, Z̃D := {σ ∈ S, ãσ = 0}. (2)

One obviously always has ZD ∩ Z̃D = ∅.

Lemma 3.3. The filtered ϕ-module D is weakly admissible (in the sense of [12])
if and only if the following hold:

valF (α) + valF (α̃) =
∑
σ∈S

(kσ − 1) (3)∑
σ∈ZD

(kσ − 1) ≤ valF (α) ≤
∑
σ/∈Z̃D

(kσ − 1). (4)

The proof is straightforward and omitted.

Remark 3.4. (i) In the presence of (3), (4) is equivalent to:∑
σ∈Z̃D

(kσ − 1) ≤ valF (α̃) ≤
∑
σ/∈ZD

(kσ − 1). (5)

(ii) One could also consider the case αf = α̃f . When F = Qp, the weak admis-
sibility condition forces ϕ to be non-semi-simple (see §2). But this breaks down
when F 6= Qp, that is, there exist plenty of weakly admissible filtered ϕ-modules
D with Hodge-Tate weights (0, kσ − 1)σ∈S as above such that ϕf is scalar (i.e. is
the multiplication by α−f = α̃−f ). As I am not sure how to define a reasonable
Π(D) if ϕf is scalar (see §4 below for Π(D) when αf 6= α̃f ), I prefer to ignore
here this case.

8



By the main result of [8], when D runs along the weakly admissible modules
D(α, α̃, (kσ, aσ, ãσ)σ∈S) of Lemma 3.3, the E-vector spaces:

Vcris(D) := (Bcris ⊗F0 D)ϕ=1
⋂

Fil0(BdR ⊗F DF )

endowed with the continuous E-linear action of Gal(Qp/F ) induced by that on
Bcris and BdR exhaust the 2-dimensional crystalline representations of Gal(Qp/F )
over E with Hodge-Tate weights (0, kσ−1)σ∈S such that the crystalline Frobenius
has distinct eigenvalues.

One easily checks that Vcris(D) is reducible if and only if either valF (α) =∑
σ∈ZD(kσ − 1) or valF (α̃) =

∑
σ∈Z̃D(kσ − 1), and that Vcris(D) is reducible split

if and only if both equalities hold, which, granting (3), (4) and (5), is equivalent

to just ZD q Z̃D = S.

4 Some locally Qp-analytic representations of GL2(F )

To a filtered ϕ-module as in §3 (not necessarily weakly admissible), we associate
a locally Qp-analytic representation Π(D) of GL2(F ) over E.

For every p-adic analytic group G, we have the E-vector space CQp−an(G,E)
of locally Qp-analytic functions f : G → E. Let g be the Lie algebra of G and
for x ∈ g and f ∈ CQp−an(G,E), define as usual x · f : G→ E by:

(x · f)(g) :=
d

dt
f
(
g exp(tx)

)
|t=0. (6)

This endows CQp−an(G,E) with a Qp-linear action of g which extends linearly to
an E-linear action of g ⊗Qp E. If G is F -analytic, then g is an F -vector space
and we have the usual decomposition induced by F ⊗Qp E '

∏
σ∈S E:

g⊗Qp E '
∏
σ∈S

g⊗F,σ E.

Let J be any subset of S. Following [20, §1.3.1] we say that f ∈ CQp−an(G,E) is
locally J-analytic if the action of g⊗QpE on f in (6) factors through

∏
σ∈J g⊗F,σE.

Note the two extreme cases: when J = S, we rather say that f is locally Qp-
analytic (instead of S-analytic) and write “Qp − an” (instead of “S − an”) and
when J = ∅, we rather say that f is locally constant or smooth (instead of
∅-analytic).

Let J ⊆ S, χ1, χ2 : F× → E× be two locally J-analytic multiplicative charac-
ters and B(F ) ⊂ GL2(F ) the Borel subgroup of upper triangular matrices. We

9



set:

χ1 ⊗ χ2 : B(F ) // E×(
a ∗
0 d

)
� // χ1(a)χ2(d)

and define as in §2 the locally J-analytic parabolic induction:(
Ind

GL2(F )
B(F ) χ1⊗χ2

)J−an

:= {f : GL2(F ) // E , f is locally J − analytic and

f(bg) = (χ1 ⊗ χ2)(b)f(g), b ∈ B(F ), g ∈ GL2(F )}.

As in §2 we endow this parabolic induction with a left E-linear action of GL2(F )

by (g · f)(g′) := f(g′g). This makes
(

Ind
GL2(F )
B(F ) χ1 ⊗ χ2

)J−an

into a locally Qp-

analytic admissible representation of GL2(F ) in the sense of [17], [18].

For the rest of this section, we fix D = D(α, α̃, (kσ, aσ, ãσ)σ∈S) a rank 2 filtered
ϕ-module as in §3 (not necessarily weakly admissible). For rσ ∈ Z≥0 (σ ∈ S),
denote by (Symrσ E2)σ the rσ-symmetric product of the representation E2 on
which GL2(F ) acts via the embedding σ. For J ⊆ S and rσ ∈ Z (σ ∈ J),
denote by

∏
σ∈J σ

rσ : F× → E× the locally J-analytic character sending x to∏
σ∈J σ(x)rσ (it is in fact “J-algebraic”).

For J1 ⊆ J2 ⊆ S, we first define the following locally J2-analytic parabolic
inductions:

ID(J1, J2) :=

(
Ind

GL2(F )
B(F ) unrF (α−1)

∏
σ∈J1

σkσ−1 ⊗ unrF (pα̃−1)
∏
σ∈J1

σ−1
∏

σ∈J2\J1

σkσ−2

)J2−an

.

Note that by definition the unramified characters unrF (α−1) and unrF (pα̃−1)
only depend on αf and α̃f . Note also that ID(∅, ∅) is a smooth unramified
parabolic induction which is irreducible unless (αα̃−1)f = q (resp. (αα̃−1)f = q−1)
in which case it is the twist by unrF (α̃−1) ◦ det (resp. by unrF (α−1) ◦ det) of the
unique non-split extension of the trivial representation by the Steinberg repre-
sentation (resp. of the Steinberg representation by the trivial representation).

For J1 ⊆ J2 ⊆ S, we then define the following locally Qp-analytic representa-
tions of GL2(F ):

πD(J1, J2) :=
(
⊗σ/∈J2 (Symkσ−2E2)σ

)
⊗E ID(J1, J2). (7)

Theorem 4.1 ([20]). (i) The πD(J ′1, J
′
2) for J1 ⊆ J ′1 ⊆ J ′2 ⊆ J2 ⊆ S are all

distinct and are subquotients of πD(J1, J2). Moreover, if J ′1 = J1 (resp. J ′2 =
J2) then πD(J ′1, J

′
2) is a subrepresentation (resp. a quotient) of πD(J1, J2).

10



(ii) If (αα̃−1)f 6= q±1 or J1 6= ∅, the representations πD(J, J) for J1 ⊆ J ⊆ J2

are all topologically irreducible and exhaust the irreducible constituents of
πD(J1, J2).

(iii) If |J2\J1| = 1, πD(J1, J2) is the unique non-split extension of πD(J2, J2) by
πD(J1, J1) (in the abelian category of admissible locally Qp-analytic repre-
sentations of GL2(F ) over E [18]).

Theorem 4.1 is proved in details by Schraen in [20, §1.3.3] (the proof relies on
work of Schneider-Teitelbaum ([17]), Frommer ([13]) and Orlik-Strauch ([15])).
It tells us that the position of the constituents πD(J, J) inside πD(J1, J2) form a
“hypercube” with πD(∅, ∅) as “first vertex” and πD(S, S) as “last vertex”. Note
that πD(∅, ∅) is a locally algebraic representation of GL2(F ).

We define ĨD(J1, J2) and π̃D(J1, J2) exactly as ID(J1, J2) and πD(J1, J2) by
exchanging α and α̃.

As in §2, if (αα̃−1)f 6= q±1, there is a GL2(F )-equivariant isomorphism

ID(∅, ∅) ' ĨD(∅, ∅) which induces a GL2(F )-equivariant isomorphism πD(∅, ∅) '
π̃D(∅, ∅). When (αα̃−1)f = q−1 (resp. (αα̃−1)f = q), we let FD ⊂ πD(∅, ∅) (resp.

F̃D ⊂ π̃D(∅, ∅)) be the unique non-zero finite dimensional subrepresentation. Oth-

erwise, we let FD := 0 (resp. F̃D := 0). We denote by π(D) the unique non-zero

irreducible subrepresentation of both πD(∅, ∅)/FD and π̃D(∅, ∅)/F̃D (note that

π(D) is πD(∅, ∅)/FD or π̃D(∅, ∅)/F̃D or both).

We define:

Π(D) :=
(
πD(∅, S\ZD)/FD ⊕π(D) π̃D(∅, S\Z̃D)/F̃D

)
(8)⊕(

⊕∅(J⊆ZD πD(J, J q (S\ZD))
)⊕(

⊕∅(J⊆Z̃D π̃D(J, J q (S\Z̃D))
)
.

When (αα̃−1)f 6= q±1, we can rewrite it more simply as:

Π(D) =
(
⊕∅⊆J⊆ZD πD(J, J q (S\ZD))

)⊕
π(D)

(
⊕∅⊆J⊆Z̃D π̃D(J, J q (S\Z̃D))

)
.

The representation Π(D) is locally Qp-analytic and admissible. If (αα̃−1)f 6=
q±1, (ii) of Theorem 4.1 implies that it has exactly 2|ZD| + 2|Z̃D|− 1 topologically
irreducible constituents and that its socle socGL2(F ) Π(D) is exactly:

π(D)⊕
⊕(

⊕∅(J⊆ZD πD(J, J)
)⊕(

⊕∅(J⊆Z̃D π̃D(J, J)
)
.

For later use, we also define:

soc′GL2(F ) Π(D) :=
(
πD(∅, ∅)/FD ⊕π(D) π̃D(∅, ∅)/F̃D

)
(9)⊕(

⊕∅(J⊆ZD πD(J, J)
)⊕(

⊕∅(J⊆Z̃D π̃D(J, J)
)

11



which coincides with the above socle if (αα̃−1)f 6= q±1 (note that πD(∅, ∅)/FD⊕π(D)

π̃D(∅, ∅)/F̃D is the locally agebraic vectors of Π(D)).

Basically, what we do in (8) is that we decompose each “hypercube” πD(∅, S)
and π̃D(∅, S) into a direct sum of smaller “hypercubes” of the same size according
to where the parameters aσ and ãσ (defining the Hodge filtration) vanish. Note
also that if F = Qp and D is weakly admissible, we exactly recover the locally
analytic representation in (i) of Theorem 2.1 (we leave this as an exercise). One
big difference if F 6= Qp is that one obviously can’t recover D from Π(D) as we
miss the exact values of the aσ.

Remark 4.2. By twisting by a suitable crystalline character, one can extend
in an obvious way the definition of Π(D) to any filtered ϕ-module with distinct
Hodge-Tate weights for each σ ∈ S and such that ϕf has distinct eigenvalues.
This can be useful as the natural filtered ϕ-modules coming from, e.g., Hilbert
eigenforms when F 6= Qp only have Hodge-Tate weights (0, kσ − 1)σ∈S after such
a twist (see §8).

5 Weak admissibility and GL2(F )-unitarity I

The most interesting locally Qp-analytic representations of a p-adic analytic group
are those which occur inside continuous unitary Banach spaces representations
of this group. Assuming that Π(D) occurs inside such a unitary representation
of GL2(F ), we show that D is weakly admissible.

Recall that an invariant lattice on a locally Qp-analytic representation over
E of a p-adic analytic group G is a closed OE-submodule that generates the
underlying E-vector space of the representation, that doesn’t contain non-zero
E-lines and that is preserved by G. A locally Qp-analytic representation of G
contains an invariant lattice if and only if it is continuously contained in a unitary
Banach space representation of G over E (the p-adic completion of a lattice is a
unit ball).

Proposition 5.1. Let J ⊆ S, rσ ∈ Z≥0 (σ ∈ S\J) and χ1, χ2 : F× → E× two
locally J-analytic multiplicative characters. If:(

⊗σ/∈J (Symrσ E2)σ
)
⊗E

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

)J−an

(10)

is contained in a unitary Banach space representation of GL2(F ) then one has:

valQp(χ1(p)) + valQp(χ2(p)) +
∑
σ/∈J

rσ = 0 (11)

valQp(χ2(p)) +
∑
σ/∈J

rσ ≥ 0. (12)

12



Proof. The equality (11) is just the integrality of the central character, so we

are left to prove (12). Viewing the representation (10) inside
(

Ind
GL2(F )
B(F ) χ1 ⊗

χ2

∏
σ/∈J σ(z)rσ

)Qp−an
, we see that it contains the functions 1OF : GL2(F ) →

E (resp. 1x+pOF : GL2(F ) → E for x ∈ OF ) defined by 1OF

((a b
c d

))
:=

χ1(ad−bc)χ2χ
−1
1 (d)

∏
σ/∈J σ(d)rσ if c/d ∈ OF (resp. 1x+pOF

((a b
c d

))
:= χ1(ad−

bc)χ2χ
−1
1 (d)

∏
σ/∈J σ(d)rσ if c/d ∈ x + pOF ) and 1OF

((a b
c d

))
= 0 (resp.

1x+pOF

((a b
c d

))
= 0) otherwise. It is straightforward to check that for x ∈ OF :

(
1 0
x p

)
1OF = χ2(p)p

∑
σ/∈J rσ1x+pOF

which implies:

‖1x+pOF ‖ = |χ2(p−1)p−
∑
σ/∈J rσ |F‖1OF ‖ (13)

where ‖ · ‖ is any invariant norm on (10) (induced by a unitary Banach space
representation). Taking a set (xi)i∈I of representatives of OF/pOF in OF , we
obviously have 1OF =

∑
i∈I 1xi+pOF which implies:

‖1OF ‖ ≤ sup
i∈I
‖1xi+pOF ‖ = |χ2(p−1)p−

∑
σ/∈J rσ |F‖1OF ‖.

Since ‖1OF ‖ 6= 0, we deduce |χ2(p−1)p−
∑
σ/∈J rσ |F ≥ 1 which is just what we

want.

Corollary 5.2. Let D = D(α, α̃, (kσ, aσ, ãσ)σ∈S) be a rank 2 filtered ϕ-module as
in §3 (not necessarily weakly admissible) and let Π(D) be the locally Qp-analytic
representation of GL2(F ) associated to D in §4. If Π(D) is contained in a unitary
Banach space representation of GL2(F ) then D is weakly admissible.

Proof. The central character of Π(D) is also the one of πD(∅, S) and the assump-
tion implies that it sends p to an element of valuation zero inside E×, which
immediately gives (3). Assume first (αα̃−1)f 6= q±1. The locally Qp-analytic

representations πD(ZD, S) and π̃D(Z̃D, S) both appear as subrepresentations of
Π(D), hence are contained in a unitary Banach space representation if Π(D) is.
Applying (12) to πD(ZD, S) yields:

[F : Qp]− valF (α̃)− |ZD|+
∑

σ∈S\ZD

(kσ − 2) ≥ 0

13



which can be rewritten as:

valF (α̃) ≤
∑

σ∈S\ZD

(kσ − 1)

which, combined with (3), is equivalent to:∑
σ∈ZD

(kσ − 1) ≤ valF (α). (14)

Applying (12) to π̃D(Z̃D, S) yields:

[F : Qp]− valF (α)− |Z̃D|+
∑

σ∈S\Z̃D

(kσ − 2) ≥ 0

which can be rewritten as:

valF (α) ≤
∑

σ∈S\Z̃D

(kσ − 1). (15)

We see that (14) and (15) are just (4), and by Lemma 3.3 this finishes the
proof in the case (αα̃−1)f 6= q±1. Assume now (αα̃−1)f = q. As πD(ZD, S) is a

subrepresentation of Π(D), the first part of the above proof gives (14). If Z̃D 6= ∅
then π̃D(Z̃D, S) is still a subrepresentation of Π(D) and the second part of the

above proof gives (15) and hence the result by Lemma 3.3. Assume Z̃D = ∅. The
equality valF (αα̃−1) = [F : Qp] combined with (3) gives:

valF (α) =
1

2

∑
σ∈S

kσ and valF (α̃) =
1

2

∑
σ∈S

(kσ − 2).

We thus have (15) since Z̃D = ∅ and kσ ≥ 2 for all σ and we are done by Lemma
3.3. The case (αα̃−1)f = q−1 is symmetric by exchanging α and α̃.

Remark 5.3. (i) One can expect that the converse statement of Corollary 5.2
holds, namely that if D is weakly admissible, then there always exists an invariant
norm (or lattice) on Π(D). This holds for instance when F = Qp but is non-
trivial and ultimately rests on the construction of Π(D) via (ϕ,Γ)-modules ([6],
[1]).

(ii) Corollary 5.2 still holds replacing Π(D) by soc′GL2(F )Π(D) (and thus yielding

a stronger statement). Indeed, the proof is the same by applying Proposition 5.1

to πD(ZD, ZD) and π̃D(Z̃D, Z̃D) instead of πD(ZD, S) and π̃D(Z̃D, S).
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6 Amice-Vélu and Vishik revisited

We state and (re)prove a slight generalization of a well-known result of Amice-
Vélu and Vishik.

Let U ⊆ OF an open subset, J ⊆ S and rσ ∈ Z≥0 for σ ∈ S\J . Denote by
F(U, J, (rσ)σ∈S\J) the E-vector space of functions f : U → E such that there
exists an open (disjoint) cover (ai+$ni

F OF )i∈I of U such that, for each i, one has
an expansion:

f(z)|ai+$niF OF =
∑

m=(mσ)σ∈S∈Z
[F :Qp]

≥0
mσ≤rσ if σ/∈J

am
∏
σ∈S

σ(z − ai)mσ (16)

with |am|F q−ni(
∑
σ∈Smσ) → 0 when

∑
σ∈Smσ → +∞ (am ∈ E). Recall that

F(U, J, (rσ)σ∈S\J) is an inductive limit of Banach spaces with injective and com-
pact transition maps ([16, §16]), namely the Banach spaces of functions as in (16)
with norm:

sup
m

(
|am|F q

−ni(
∑
σ∈Smσ)

)
.

Note that F(U, J, (rσ)σ∈S\J) ⊆ F(U, J ′, (rσ)σ∈S\J ′) for any J ⊆ J ′.

The technical but key lemma that follows is essentially due to Amice-Vélu
and Vishik.

Lemma 6.1. Let B be a p-adic Banach space over E and ι be an E-linear map
F(U, J, (rσ)σ∈S\J)→ B. Let ‖·‖ be a norm on B defining its topology and assume
that there exist C ∈ R>0 and c ∈ R≥0 such that, for any a ∈ OF , any n ∈ Z≥0

and any (mσ)σ∈S ∈ Z[F :Qp]
≥0 with mσ ≤ rσ if σ /∈ J , one has:∥∥∥∥∥ι(1a+$nFOF (z)

∏
σ∈S

σ(z − a)mσ
)∥∥∥∥∥ ≤ Cq−n(

∑
σ∈Smσ−c) (17)

where 1a+$nFOF is the characteristic function of a+$n
FOF . Let:

J ′ := J q {τ ∈ S\J, c < rτ + 1}.

Then ι uniquely extends to an E-linear map ι′ : F(U, J ′, (rσ)σ∈S\J ′) → B such
that the diagram:

F(U, J, (rσ)σ∈S\J) ι //
� _

��

B

F(U, J ′, (rσ)σ∈S\J ′)

ι′

77ooooooooooooo

commutes and such that (17) holds for all (mσ)σ∈S ∈ Z[F :Qp]
≥0 with mσ ≤ rσ if

σ /∈ J ′ (possibly up to increasing C). Moreover, ι and ι′ are continuous.
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Proof. First, the map ι is automatically continuous. Indeed, for any a ∈ OF
and any n ∈ Z≥0, the inequality (17) gives that ι is continuous upon restriction
to the Banach subspace of analytic functions on a + $n

FOF as in (16). Since
the topology on F(U, J, (rσ)σ∈S\J) is the locally convex topology with respect to
these Banach subspaces, this implies ι is continuous. Let τ ∈ J ′\J . By induction
it is enough to prove the statement replacing J ′ by J q {τ}. By E-linearity, it is
then enough to prove that ι uniquely extends to each function of the form:

1a+$nFOF (z)τ(z − a)mτ
∏
σ∈S\τ

σ(z − a)mσ (18)

with mσ ≤ rσ if σ /∈ J q {τ} and mτ ≥ rτ + 1 so that (17) still holds (maybe up
to modifying C). Let f be a function as in (18) and let:

D− := {d = (dσ)σ∈S ∈ Z[F :Qp]
≥0 , dσ ≤ mσ and dτ ≤ rτ}

D+ := {d = (dσ)σ∈S ∈ Z[F :Qp]
≥0 , dσ ≤ mσ and rτ + 1 ≤ dτ}.

Since for any function h on U :

1a+$nFOF (z)h(z − a) =
∑

a′∈a+$nF [kF ]

1a′+$n+1
F OF (z)h((z − a′) + (a′ − a)),

an easy computation shows we can rewrite f as f+
n + f−n where:

f+
n :=

∑
a′∈a+$nF [kF ]

1a′+$n+1
F OF (z)

( ∑
d∈D+

(
a+
d

∏
σ∈S

σ(a− a′)mσ−dσ
∏
σ∈S

σ(z − a′)dσ
))

f−n :=
∑

a′∈a+$nF [kF ]

1a′+$n+1
F OF (z)

( ∑
d∈D−

(
a−d
∏
σ∈S

σ(a− a′)mσ−dσ
∏
σ∈S

σ(z − a′)dσ
))

for some a+
d , a

−
d ∈ OE. Since:∣∣∣∣∣a−d ∏

σ∈S

σ(a− a′)mσ−dσ
∣∣∣∣∣
F

≤ q−n(
∑
σ∈Smσ−dσ),

and since one has by (17) and the definition of D−:∥∥∥∥∥ι(1a′+$n+1
F OF (z)

∏
σ∈S

σ(z − a′)dσ
)∥∥∥∥∥ ≤ Cq−(n+1)(

∑
σ∈S dσ−c),

we see that: ∥∥ι(f−n )
∥∥ ≤ Cqcq−n(

∑
σ∈Smσ−c).

One can start again and write f+
n as f+

n+1 + f−n+1 where f+
n+1, f−n+1 are finite

linear combinations over OE of functions 1a′′+$n+2
F OF (z)

∏
σ∈S σ(z − a′′)dσ with
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rτ + 1 ≤ dτ ≤ mτ for f+
n+1 and where ‖ι(f−n+1)‖ ≤ Cqcq−(n+1)(

∑
σ∈Smσ−c) by the

same proof as before. Iterating this process, we see that for any integer M ≥ n
the function f in (18) can be written:

f = f+
M +

M∑
i=n

f−i (19)

where ι(f−i ) is defined and satisfies ‖ι(f−i )‖ ≤ Cqcq−i(
∑
σ∈Smσ−c) and where f+

M is
a finite linear combination over OE of functions 1a′′+$MF OF (z)

∏
σ∈S σ(z − a′′)dσ

with dσ ≤ mσ and rτ + 1 ≤ dτ . As c < rτ + 1 ≤
∑

σ∈Smσ (recall rτ + 1 ≤ mτ ),
we see that ι(f−i ) → 0 in B when i → +∞. If ι extends to F(U, J ′, (rσ)σ∈S\J ′)
in such a way that (17) is satisfied (up to modifying C), we see that we have in
particular ‖ι(f+

M)‖ ≤ Cq−M(rτ+1−c) and hence ι(f+
M)→ 0 when M → +∞. So we

must have ι(f) =
∑+∞

i=n ι(f
−
i ). Conversely, setting ι(f) :=

∑+∞
i=n ι(f

−
i ) implies:

‖ι(f)‖ ≤ sup
i≥n
‖ι(f−i )‖ = Cqc sup

i≥n
q−i(

∑
σ∈Smσ−c) = Cqcq−n(

∑
σ∈Smσ−c)

and hence (17) is still satisfied replacing C by Cqc. The continuity of ι′ is checked
as for ι.

7 Weak admissibility and GL2(F )-unitarity II

Using Lemma 6.1, we show that if a continuous unitary Banach space represen-
tation of GL2(F ) over E contains soc′GL2(F ) Π(D) (see (9)), then it automatically

contains a larger locally Qp-analytic representation Π(D)Amice which is included
in Π(D).

We start with the following theorem.

Theorem 7.1. Let J ⊆ S, rσ ∈ Z≥0 (σ ∈ S\J) and χ1, χ2 : F× → E× two
locally J-analytic multiplicative characters. Define:

J ′ := J q {τ ∈ S\J,− valQp(χ1(p)) < rτ + 1}. (20)

Then any continuous E-linear equivariant injection:(
⊗σ/∈J (Symrσ E2)σ

)
⊗E

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

)J−an
� � // B (21)

where B is a unitary Banach space representation of GL2(F ) over E canonically
extends to an E-linear continuous equivariant injection:

(
⊗σ/∈J ′ (Symrσ E2)σ

)
⊗E

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

∏
σ∈J ′\J σ

rσ
)J ′−an � � // B . (22)
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Proof. Any element F of:(
⊗σ/∈J (Symrσ E2)σ

)
⊗E

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

)J−an

(23)

can be seen as a pair of functions (f1 : OF → E, f2 : $FOF → E) by setting:

f1(z) := F
(( 0 1
−1 z

))
and f2(z) := χ2χ

−1
1 (z)

(∏
σ/∈J

σ(z)rσ
)
f1

(1

z

)
(24)

where f2 is the only continuous function on $FOF agreeing with the right hand
side of (24) on $FOF\{0}. The map F 7→ f1 ⊕ f2 yields an isomorphism be-
tween (23) and F(OF , J, (rσ)σ∈S\J) ⊕ F($FOF , J, (rσ)σ∈S\J) and the action of
g =

(
a b
c d

)
∈ GL2(F ) is given by:

(gF )1(z) = χ1(det g)χ2χ
−1
1 (−cz + a)

∏
σ/∈J

σ(−cz + a)rσf1

( dz − b
−cz + a

)
(25)

if dz−b
−cz+a ∈ OF and:

(gF )1(z) = χ1(det g)χ2χ
−1
1 (dz − b)

∏
σ/∈J

σ(dz − b)rσf2

(−cz + a

dz − b

)
if dz−b
−cz+a ∈ F\OF , and symmetric formulas for (gF )2(z). Let ι be a continuous

injection as in (21) and let ‖ · ‖ be an invariant norm on B (which exists by
assumption). Let F := f1 ⊕ 0 = f1 where f1(z) :=

∏
σ∈S σ(z)mσ for z ∈ OF and

some (mσ)σ∈S ∈ Z[F :Qp]
≥0 such that mσ ≤ rσ if σ /∈ J . By continuity of ι, there is

C ∈ R>0 such that ‖ι(F )‖ ≤ C for all such F . Using ‖ι(gF )‖ = ‖ι(F )‖ and then
applying (25) with g =

(
1 a/$n

F
0 1/$n

F

)
(a ∈ OF , n ∈ Z≥0) gives:∥∥∥∥∥ι(1a+$nFOF (z)

∏
σ∈S

σ(z − a)mσ
)∥∥∥∥∥ =

∣∣∣∣∣χ1($n
F )
∏
σ∈S

σ($n
F )mσ

∣∣∣∣∣
F

‖ι(F )‖

≤ q−n
(∑

σ∈Smσ+valQp (χ1(p))
)
C.

Lemma 6.1 applied with c := − valQp(χ1(p)) and the norm induced by B (via
ι) gives that F(OF , J, (rσ)σ∈S\J) ⊕ 0 ↪→ B canonically extends to a continuous
map F(OF , J ′, (rσ)σ∈S\J ′) ⊕ 0 → B. Let F := 0 ⊕ f2 = f2 where f2(z) :=∏

σ∈S σ(z)mσ with the mσ as before. Applying (25) (more precisely its symmetric
version for (gF )2(z)) with g :=

(
1/$n

F 0
a/$n

F 1

)
∈ GL2(F ) gives by an analogous proof

that 0 ⊕ F($FOF , J, (rσ)σ∈S\J) ↪→ B canonically extends to a continuous map
0⊕F($FOF , J ′, (rσ)σ∈S\J ′)→ B. Via the isomorphism:

(
⊗σ/∈J ′ (Symrσ E2)σ

)
⊗E

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

∏
σ∈J ′\J

σrσ
)J ′−an

'

F(OF , J ′, (rσ)σ∈S\J ′)⊕F($FOF , J ′, (rσ)σ∈S\J ′) (26)
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(defined as previously) we have that ι extends to an E-linear continuous map
as in (22) (still denoted ι) except that it remains to prove that it is equivari-
ant and injective. Let’s first indicate how equivariance can be checked. By
linearity and symmetry, it is enough to prove ι(g(f1 ⊕ 0)) = gι(f1 ⊕ 0) for
f1 = 1a+$nFOF (z)

∏
σ∈S σ(z − a)mσ ∈ F(OF , J ′, (rσ)σ∈S\J ′) and g ∈ GL2(F ). Go-

ing back to the proof of Lemma 6.1, one writes f1 = f+
M +

∑M
i=n f

−
i for all M ≥ n

as in (19). Using that ι is equivariant upon restriction to F(OF , J, (rσ)σ∈S\J) and
that ‖ · ‖ is invariant, it is enough to check that ‖ι(gf+

M)‖ → 0 when M → +∞.
This follows again from the bounds (17) and an explicit computation of gf+

M

using (25). Now injectivity follows from continuity and equivariance. Indeed, if
(22) is not injective, then its non-zero kernel must be a closed invariant subspace.
But by Theorem 4.1, this closed invariant subspace must contain (23) (which
is a topologically irreducible GL2(F )-representation). However, ι in (21) being
injective, this is impossible.

Let D be a rank 2 filtered ϕ-module with Hodge-Tate weights (0, kσ − 1)σ∈S
as in §3 (not necessarily weakly admissible). For J ⊆ S define:

ZD(J) := J q

{
τ ∈ S\J, valF (α) ≥ kτ − 1 +

∑
σ∈J

(kσ − 1)

}

Z̃D(J) := J q

{
τ ∈ S\J, valF (α̃) ≥ kτ − 1 +

∑
σ∈J

(kσ − 1)

}
.

We set:

Π(D)Amice :=
(
πD(∅, S\ZD(∅))/FD ⊕π(D) π̃D(∅, S\Z̃D(∅))/F̃D

)
(27)⊕

⊕∅(J⊆ZDπD
(
J, J q (S\ZD(J))

)⊕
⊕∅(J⊆Z̃D π̃D

(
J, J q (S\Z̃D(J))

)
.

We have soc′GL2(F ) Π(D) ⊆ Π(D)Amice (see (9) for soc′GL2(F ) Π(D)).

Corollary 7.2. Let D be a rank 2 filtered ϕ-module as above.

(i) If a unitary Banach space representation of GL2(F ) over E continu-
ously contains soc′GL2(F ) Π(D) then it continuously contains Π(D)Amice and
D is weakly admissible.

(ii) If D is weakly admissible, then Π(D)Amice ⊆ Π(D).

Proof. (i) The last statement is (ii) of Remark 5.3. Let J ⊆ S, J 6= ∅. Rewriting
(20) as J ′ = J q S\Z(J) where Z(J) := J q {τ ∈ S\J,− valQp(χ1(p)) ≥ rτ + 1},
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Theorem 7.1 implies that a unitary Banach space representation B of GL2(F )
(continuously) contains πD(J, J) (resp. π̃D(J, J)) if and only if it (continuously)

contains πD(J, J q (S\ZD(J))) (resp. π̃D(J, J q (S\Z̃D(J)))). Likewise, if B

contains πD(∅, ∅)/FD (resp. π̃D(∅, ∅)/F̃D), the same proof as for Theorem 7.1
gives an equivariant continuous map πD(∅, S\ZD(∅))→ B with kernel containing
FD (resp. with tildes). If this kernel were strictly bigger than FD, then it would
also contain πD(∅, ∅) which is impossible. We conclude using that all embeddings
πD(J, J) ↪→ πD(J, J q (S\ZD(J))) etc. are essential (Theorem 4.1), that is, any
subrepresentation of the right hand side intersects non-trivially the left hand side.
(ii) If J ⊆ ZD (resp. J ⊆ Z̃D), the first inequality in (4) (resp. in (5)) implies

ZD ⊆ ZD(J) (resp. Z̃D ⊆ Z̃D(J)) and thus we have:

J q S\ZD(J) ⊆ J q S\ZD (resp. J q S\Z̃D(J) ⊆ J q S\Z̃D).

Comparing (8) and (27), we see that Π(D)Amice ⊆ Π(D).

We say that a continuous 2-dimensional E-linear representation of Gal(Qp/F )
is ordinary if its semi-simplification has restriction to inertia isomorphic to ε∗⊕1
for some integer ∗. It would have been nice to have in many cases Π(D)Amice =
Π(D), however this turns out to be quite rare.

Proposition 7.3. We have Π(D)Amice = Π(D) if and only if either Vcris(D) is
split ordinary or Vcris(D) is irreducible and F = Qp.

Proof. Clearly the statement holds if and only if ZD(J) = ZD for all J ⊆ ZD and

Z̃D(J) = Z̃D for all J ⊆ Z̃D. But ZD(J) = ZD if and only if:

valF (α) < kτ − 1 +
∑
σ∈J

(kσ − 1)

for all τ ∈ S\ZD, so ZD(J) = ZD for all J ⊆ ZD if and only if :

τ /∈ ZD ⇒ valF (α) < kτ − 1 (28)

and likewise with tildes everywhere. Assume first that there are τ, τ̃ ∈ S with
τ 6= τ̃ such that τ /∈ ZD and τ̃ /∈ Z̃D. By (3), the inequality (28) and its tilde
analogue imply

∑
σ∈S(kσ − 1) < kτ − 1 + kτ̃ − 1 which is impossible. Since

ZD ∩ Z̃D = ∅, we thus have either ZD = S and Z̃D = ∅, or ZD = ∅ and Z̃D = S,
or ZD = Z̃D = ∅ and |S| = 1. The first two cases correspond to Vcris(D) being
split ordinary and the last to F = Qp and Vcris(D) being indecomposable. Finally,
it is straightforward to check that (28) and its tilde analogue hold in the first two
cases, and hold in the last if and only if Vcris(D) is moreover irreducible.
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8 Local-global considerations

We briefly put the previous considerations within a global setting.

Let L be a totally real finite extension of Q with ring of integers OL. Assume
for simplicity that there is a unique prime ideal p in OL above p and let Lp denote
the completion of L at p and Lp,0 its maximal absolutely unramified subfield.
Denote by Ap

L,f the finite adèles of L outside p. To any quaternion algebra D
over L which splits at only one of the infinite places and which splits at p and
to any compact open subgroup Kp

f ⊂ (D ⊗L Ap
L,f )

×, one can associate a tower
of Shimura algebraic curves (S(Kp

fKf,p))Kf,p over L where Kf,p runs over the
compact open subgroups of (D ⊗L Lp)

× ' GL2(Lp) (see e.g. [4]). Consider:

Ĥ1(Kp
f ) :=

(
lim
←−
n

lim
−→
Kf,p

H1
ét

(
S(Kp

fKf,p)×L Q,OE/pnOE
))
⊗OE E

which is a p-adic Banach space over E (an open unit ball being the OE-module
lim
←−

lim
−→

H1
ét

(
S(Kp

fKf,p) ×L Q,OE/pnOE
)
) endowed with a linear continuous uni-

tary action of GL2(Lp)×Gal(Q/L) ([5]).

Let g be a parabolic Hilbert eigenform of level prime to p, E a finite extension
of Qp containing the Galois closure of Lp and the Hecke eigenvalues associated to
g, and kσ ≥ 2 for σ ∈ S := Hom(Lp, E) the various weights of g. We denote by:

ρg : Gal(Q/L)→ GL2(E)

the continuous totally odd Galois representation associated to g ([21]). We nor-
malize ρg so that the traces of arithmetic Frobeniuses at unramified places are
the Hecke eigenvalues. We let :

(Dg, ϕ,Fil·Dg,Lp) :=
(

(Bcris ⊗Qp ρg)
Gal(Q/Lp), ϕ⊗ Id, (Fil·BdR ⊗Qp ρg)

Gal(Q/Lp)
)
.

Choose η : Gal(Q/Lp) → E× a crystalline character such that ρg|Gal(Q/Lp) ⊗ η
has Hodge-Tate weights (0, kσ−1)σ∈S (such a character always exists) and define
the filtered module Dg,η as Dg but replacing ρg|Gal(Q/Lp) by ρg|Gal(Q/Lp) ⊗ η. If

the eigenvalues of ϕ[Lp,0:Qp] on Dg,η (or equivalently on Dg) are distinct, then the
locally Qp-analytic representation Π(Dg,η) is well-defined (§4). We set:

Π(Dg) := Π(Dg,η)⊗ η−1 ◦ det .

The locally Qp-analytic representation Π(Dg) of GL2(Lp) is easily checked to be
independent of the choice of the crystalline character η as above (note that the
ratio of two such η is an unramified character of Gal(Q/Lp)).
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Conjecture 8.1. Assume that the eigenvalues of ϕ[Lp,0:Qp] on Dg are distinct. If

HomGal(Q/L)(ρ
∨
g , Ĥ

1(Kp
f )) 6= 0 then there is an integer n > 0 (depending on g and

Kp
f ) such that:

Π(Dg)
n ⊆ HomGal(Q/L)(ρ

∨
g , Ĥ

1(Kp
f )) (29)

and such that any GL2(Lp)-subrepresentation of HomGal(Q/L)(ρ
∨
g , Ĥ

1(Kp
f )) inter-

sects Π(Dg)
n non-trivially.

This conjecture is known so far only for L = Q ([2], [11]). If one knows
that (soc′GL2(F ) Π(Dg,η) ⊗ η−1 ◦ det)n embeds into the right hand side of (29),

then (i) of Corollary 7.2 gives that (Π(Dg,η)
Amice⊗ η−1 ◦ det)n also embeds. This

should allow one to check Conjecture 8.1 if Lp = Qp and ρg|Gal(Q/Lp) is irreducible
using the last case of Proposition 7.3 (as the locally algebraic representation
(πDg,η(∅, ∅) ⊗ η−1 ◦ det)n should embed). But (Π(Dg,η)

Amice ⊗ η−1 ◦ det)n is the
“maximum that p-adic analysis will give you”. Going from (Π(Dg,η)

Amice⊗ η−1 ◦
det)n to (Π(Dg,η)⊗ η−1 ◦det)n = Π(Dg)

n will require some non-trivial arithmetic
geometry.

Finally, if Lp 6= Qp, I never expect (29) to be a topological isomorphism for

any n as HomGal(Q/L)(ρ
∨
g , Ĥ

1(Kp
f )) should determine ρg|Gal(Q/Lp) (which is not the

case of Π(Dg)
n).

9 The case where the Galois representation is reducible

We examine more closely the structure of Π(D) when Vcris(D) is reducible and
relate it to considerations of [3].

Let us first make a detour via the modulo p theory. Let V '
(
χ2ω ∗

0 χ1

)
be

a continuous 2-dimensional representation of Gal(Qp/F ) over kE where ω is the
reduction modulo p of ε and where χ1, χ2 : F× → k×E are smooth characters. The
results of [3, §19] (in the case F is unramified) suggest that, when V is non-split,
the corresponding “good” representation(s) π of GL2(F ) over kE (e.g. the repre-
sentation(s) HomGal(Q/L)(V g, lim−→ H1

ét

(
S(Kp

fKf,p)×L Q, kE)) when V globalizes to

a representation V g of Gal(Q/L), see §8) should (generically) have the form:

π0 π1 · · · π[F :Qp]−1 π[F :Qp]

where π0 = Ind
GL2(F )
B(F ) χ1⊗χ2, π[F :Qp] = Ind

GL2(F )
B(F ) χ2ω⊗χ1ω

−1 (smooth parabolic

inductions) and where the πj for 1 ≤ j ≤ [F : Qp] − 1 are irreducible and are
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not subquotients of parabolic inductions (extensions are taken in the category of
smooth representations of GL2(F ) over kE). When V is split, one should have

⊕[F :Qp]
j=0 πj. The representations πj, 1 ≤ j ≤ [F : Qp]− 1 are still quite mysterious,

although one knows a few things about them (such as their GL2(OF )-socle, see
[3]).

Now letD be a rank 2 filtered ϕ-module with Hodge-Tate weights (0, kσ−1)σ∈S
as in §3 (not necessarily weakly admissible). For j ∈ {0, · · · , [F : Qp]} let us first

define two series (Π(D)j)j and (Π̃(D)j)j of locally Qp-analytic representations of
GL2(F ):

Π(D)j := ⊕ J⊆ZD
|J|=|ZD |−j

πD(J, J q S\ZD) if 0 ≤ j ≤ |ZD| − 1

Π(D)j := πD(∅, S\ZD)/FD ⊕π(D) π̃D(∅, ZD)/F̃D if j = |ZD|

Π(D)j := ⊕ J⊆S\ZD
|J|=j−|ZD |

π̃D(J, J q ZD) if |ZD|+ 1 ≤ j ≤ [F : Qp]

and likewise for Π̃(D)j replacing ZD by Z̃D, πD(J, JqS\ZD) by π̃D(J, JqS\Z̃D)

and π̃D(J, J q ZD) by πD(J, J q Z̃D). Since ZD ⊆ S\Z̃D and Z̃D ⊆ S\ZD, the

Π(D)j and Π̃(D)j are easily checked to be subquotients of Π(D) (we leave this
to the reader). Note that the above two series coincide (up to numbering) if and

only if ZD q Z̃D = S in which case one has Π(D)j = Π̃(D)[F :Qp]−j.

If D is weakly admissible, recall from §3 that Vcris(D) is reducible if and only
if either valF (α) =

∑
σ∈ZD(kσ−1) or valF (α̃) =

∑
σ∈Z̃D(kσ−1), and that Vcris(D)

is reducible split if and only if both equalities hold if and only if ZD q Z̃D = S.

We consider below extensions in the abelian category of admissible locally
Qp-analytic representations of GL2(F ) over E ([18]).

Theorem 9.1. Let D be a weakly admissible rank 2 filtered ϕ-module as in §3.

(i) Vcris(D) is indecomposable if and only if:

Π(D) ' ⊕|ZD|−1
j=0 Π(D)j⊕

Π(D)|ZD| Π(D)|ZD|+1 · · · Π(D)[F :Qp]

if and only if:

Π(D) ' ⊕|Z̃D|−1
j=0 Π̃(D)j⊕

Π̃(D)|Z̃D| Π̃(D)|Z̃D|+1
· · · Π̃(D)[F :Qp] .
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(ii) Vcris(D) is reducible split if and only if Π(D) ' ⊕[F :Qp]
j=0 Π(D)j if and only

if Π(D) ' ⊕[F :Qp]
j=0 Π̃(D)j.

(iii) Let χ1, χ2 : F× → O×E be two locally Qp-analytic integral characters. The
following are equivalent:

• Vcris(D) is reducible and isomorphic to

(
χ2ε ∗
0 χ1

)
• Π(D) contains

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2

)Qp−an
if χ1 6= χ2 or

(
Ind

GL2(F )
B(F ) χ1 ⊗

χ1

)Qp−an
/χ1 ◦ det if χ1 = χ2.

(iv) Assume Vcris(D) is reducible and isomorphic to

(
χ2ε ∗
0 χ1

)
with χ1χ

−1
2 /∈

{1, ε2}.
• If valF (α) =

∑
σ∈ZD(kσ− 1), then Π(D)0 '

(
Ind

GL2(F )
B(F ) χ1⊗χ2

)Qp−an
and

Π(D)[F :Qp] '
(

Ind
GL2(F )
B(F ) χ2ε⊗ χ1ε

−1
)Qp−an

.

• If valF (α̃) =
∑

σ∈Z̃D(kσ− 1), then Π̃(D)0 '
(

Ind
GL2(F )
B(F ) χ1⊗χ2

)Qp−an
and

Π̃(D)[F :Qp] '
(

Ind
GL2(F )
B(F ) χ2ε⊗ χ1ε

−1
)Qp−an

.

Proof. (ii) is straightforward using ZD = S\Z̃D and (i) is a consequence of some

easy combinatorics using ZD ( S\Z̃D and Theorem 4.1 that we leave to the
reader.
We prove one implication in (iii). Assume first that Π(D) contains

(
Ind

GL2(F )
B(F ) χ1⊗

χ2

)Qp−an
for some integral characters χ1 6= χ2. From (8), we see that this

parabolic induction must be either πD(ZD, S) or π̃D(Z̃D, S). Going back to (7),
this implies either:

χ1 = unrF (α−1)
∏
σ∈ZD

σkσ−1 and χ2 = unrF (α̃−1)| · |−1
F

∏
σ∈ZD

σ−1
∏
σ/∈ZD

σkσ−2 (30)

or:

χ1 = unrF (α̃−1)
∏
σ∈Z̃D

σkσ−1 and χ2 = unrF (α−1)| · |−1
F

∏
σ∈Z̃D

σ−1
∏
σ/∈Z̃D

σkσ−2.

The integrality of χ1 implies either valF (α) =
∑

σ∈ZD(kσ − 1) or valF (α̃) =∑
σ∈Z̃D(kσ − 1). In the first case, we have from the definition (2) of ZD that

ẽσ ∈ Fil0Dσ if σ ∈ ZD and ẽσ ∈ Fil−(kσ−1)Dσ if σ /∈ ZD. Hence the crys-
talline Galois character Vcris(

∏
σ0∈S0

Eẽσ0) sends p to α̃−[F :Qp] and has Hodge-Tate
weights ((0)σ∈ZD , (kσ − 1)σ/∈ZD), hence is exactly χ2ε (using ε = | · |F

∏
σ∈S σ).

Likewise, we have Vcris(D/
∏

σ0∈S0
Eẽσ0) = χ1, and thus Vcris(D) '

(
χ2ε ∗
0 χ1

)
.
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The second case is symmetric. Assume now that Π(D) contains
(

Ind
GL2(F )
B(F ) χ1 ⊗

χ1

)Qp−an
/χ1 ◦ det, which from (8) must be either πD(∅, S)/FD (with FD 6= 0) or

π̃D(∅, S)/F̃D (with F̃D 6= 0). Thus
(

Ind
GL2(F )
B(F ) χ1 ⊗ χ1

)Qp−an
is either πD(∅, S) or

π̃D(∅, S) and the proof is the same as previously.
Now let us prove (iv) and the other implication in (iii). Assume valF (α) =∑

σ∈ZD(kσ − 1). By computing Vcris(
∏

σ0∈S0
Eẽσ0) as before, we see that we can

assume that χ1 and χ2 are as in (30) (replacing if necessary χ1 by χ2ε and
χ2 by χ1ε

−1 when Vcris(D) is split). If ZD 6= ∅ or (αα̃−1)f /∈ q±1, we have

Π(D)0 = πD(ZD, S) =
(

Ind
GL2(F )
B(F ) χ1 ⊗ χ2

)Qp−an
and Π(D) contains Π(D)0 from

(i). If ZD 6= S or (αα̃−1)f /∈ q±1, we have Π(D)[F :Qp] = π̃D(S\ZD, S) which

is easily checked to be
(

Ind
GL2(F )
B(F ) χ2ε ⊗ χ1ε

−1
)Qp−an

. This proves the first part

of (iv). If ZD = ∅ and (αα̃−1)f = q±1, the above equality for valF (α) together
with (3) imply (αα̃−1)f = q−1 and kσ = 2 for all σ ∈ S, and we see that

Π(D) contains
(

Ind
GL2(F )
B(F ) χ1 ⊗ χ1

)Qp−an
/χ1 ◦ det = πD(∅, S)/FD. The proof for

valF (α̃) =
∑

σ∈Z̃D(kσ − 1) is completely symmetric and left to the reader. This
finishes the proofs of (iv) and (iii).

Remark 9.2. There is a variant of (iv) in Theorem 9.1 when χ1χ
−1
2 ∈ {1, ε2}

that we leave to the reader.

Let us finish the paper with some free speculations. Assume Vcris(D) is re-
ducible as in (iv) above and consider the case, say, valF (α) =

∑
σ∈ZD(kσ − 1)

(the other case being symmetric). Then Π(D)0 (resp. Π(D)[F :Qp]) has a unique

(admissible) unitary completion Π̂(D)0 (resp. Π̂(D)[F :Qp]) which is just the contin-
uous parabolic induction of χ1⊗χ2 (resp. χ2ε⊗χ1ε

−1) and which is topologically
irreducible if (kσ)σ∈S 6= (2, · · · , 2) or (αα̃−1)f 6= q (resp. or (αα̃−1)f 6= q−1). The-
orem 9.1 together with the characteristic p considerations at the beginning of
this section strongly suggest that there should also exist topologically irreducible
admissible unitary completions Π̂(D)j of Π(D)j for 1 ≤ j ≤ [F : Qp] − 1, con-
taining Π(D)j and which may - or may not - only depend on D, together with
an admissible unitary Banach space representation B of GL2(F ) of the form:

B ' Π̂(D)0 Π̂(D)1 · · · Π̂(D)[F :Qp]−1 Π̂(D)[F :Qp]

when Vcris(D) is non-split and of the form B ' ⊕[F :Qp]
j=0 Π̂(D)j when Vcris(D) is

split, and such that B completely determines D. Here, admissibility for Banach
space representations is as in [19].

For simplicity (and because it is speculative) we just focus on the case [F :
Qp] = 2 (and keep the same assumptions as above). We write S = {σ, σ′}. As-

suming a unitary Banach space representation as Π̂(D)1 exists, one can consider
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its locally Qp-analytic vectors Π̂(D)
Qp−an
1 . One has an exact sequence (in the

category of admissible locally Qp-analytic representations of GL2(F )):

0 // Π(D)1
// Π̂(D)

Qp−an
1

// Π(D)?
1

// 0

where:

Π(D)1 = π̃D({σ}, {σ})⊕ π̃D({σ′}, {σ′}) if ZD = ∅

Π(D)1 = πD(∅, S\ZD)⊕π(D) π̃D(∅, ZD) if |ZD| = 1

Π(D)1 = πD({σ}, {σ})⊕ πD({σ′}, {σ′}) if ZD = S.

Granting the existence of such an “extra-constituent” Π(D)?
1, we can speculate

that the “complete” locally Qp-analytic representation(s) Π(D)? of GL2(F ) asso-
ciated to D should be a non-split extension:

0 // Π(D) // Π(D)? // Π(D)?
1

// 0

(even if Vcris(D) is irreducible) and that the “parameters” giving the isomorphism
class of this extension should be related to (and determine) the values of aσ, aσ′ ,
ãσ and ãσ′ (up to modifications as in Lemma 3.1).
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