RIGIDITY THEOREM FOR EXPANDING GRADIENT
RICCI SOLITONS

LI MA

ABSTRACT. In this paper, we study the rigidity problem for ex-
panding gradient Ricci soliton equation on a complete conformally
compact Riemannian manifold. We show that under a natural
condition on the Ricci curvature and the scalar curvature, the ex-
panding Ricci soliton is Poincare-Einstein.

1. INTRODUCTION

Ricci solitons are important objects in the understanding the geo-
metric structure of manifolds (see [25], [35], [27],[31], [11], [12], and
[32] ). We study the uniformization problem of conformally compact
expanding Ricei solitons with non-positive Ricci curvature. Let (M, g)
be a Riemannian manifold of dimension n > 2. Let Rc be the Ricci
tensor of the metric g. The equation for a homothetic Ricci soliton is

Re=cg+ Lyg

where c¢ is a homothetic constant, V' is a smooth vector field on X, and
Ly g is the Lie derivative of the metric g. When ¢ = 0, the soliton is
steady. For ¢ > 0 the soliton is shrinking, and one can consider the
Ricci flow on the sphere as such an example. For ¢ < 0 the soliton is
expanding. When V is the gradient of a smooth function, we call such
solitons Gradient Homothetic Ricci Solitons. In this case, we write the
equation as

(1) Re = cg + D*f,

where f is a smooth function on M. Let s be the scalar curvature of
g.

Our intention of this paper is to show that under some natural con-
ditions, a conformally compact expanding Ricci soliton is Poincare-
Einstein metric in the sense of Fefferman and Graham [19].
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Here we recall the concept of Poincare-Einstein metric. Follow-
ing C.Fefferman and C.R.Graham ([19] and [20]), we introduce the
Poincare metric on conformally compact manifolds as follows. A Rie-
mannian metric ¢ in the interior of manifold M™ with boundary OM is
said to be conformally compact if § = r%g extends smoothly as a metric
to the closure M, where 7 is a defining function for M in the sense
that » > 0 in M and r = 0,dr # 0 on OM. It is called the Poincare
metric if |dr|*> = 1 on r = 0. It is shown in [20] that the metric can
written as

9= 7"72@ = Tﬁ2(dr2 + gr)-
If the conformally compact Poincare metric satisfies that

Re(g) = =(n—1)g,
we say g a Poincare-FEinstein metric on M. It is shown in [22] that
Poincare-Einstein metrics are rich. See also M.Anderson’s work [4].
For more material about Einstein metrics, one may see the beautiful
book of A.Besse [8].
Our main result is the following rigidity result.

Theorem 1. Let (M, g) be an expanding gradient Ricci soliton so that
there is a smooth function f satisfying (1). Assume that the metric g is
conformally compact Poincare metric with non-positive Ricci curvature
and its scalar curvature function s no less that -n(n-1) everywhere on
M. Then f is a constant and g is a Poincare-FEinstein on M.

Let’s see why our assumptions are nature. Based on a beautiful ob-
servation and the argument of E.Witten [39], Min-Oo [33] proved a
scalar curvature rigidity theorem on spin manifolds which are asymp-
totic to the hyperbolic space in a strong sense. Later, Anderson and
Dahl [1] refined Min-Oo’s method. However, their assumptions are
still more restrictive. Xiaodong Wang [38] (see also P.Chrusciel and
M.Herslich’s work [15]) extended their works by introducing a scalar
invariant provided the boundaries of the conformally compact mani-
folds are spheres. Wang’s theorem is still for spin manifolds. Moti-
vated by Schoen and Yau’s positive mass theorem [37], people believe
that there are should be some scalar curvature rigidity results for gen-
eral asymptotically hyperbolic manifolds. This is clearly open if one
can follow Schoen-Yau’s argument since the minimal surfaces in this
case are non-compact even though there is such a nice minimal surface
theory developed by M.Anderson [2] (see also F.H.Lin [28]). Interest-
ingly, Listing [29] made an attempt in another direction by using the
Bochner type argument like E.Witten did in [39]. He proved a sec-
tional curvature rigidity of asymptocally locally hyperbolic manifolds.
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In [36], J.Qing proved a non-spin rigidity. In all these works, people
used the conformally compact and scalar curvature lower bound con-
ditions. Conformally compact conditions have been used to develop
the Hodge theory on complete Riemannian manifolds. One may see
R.Mazzeo’s work [30]. Of course, we may try to use invariants to un-
derstand complete conformally compact manifolds. This is exactly the
beautiful idea from C.Fefferman and Graham [19]. In [21], C.R.Graham
computed the volume and area renormalizations for conformally com-
pact Einstein metrics. In [3], M.Anderson used Chern-Gauss-Bonnet
theorem and a L? conformal curvature condition to express the Eu-
ler number of an AHE manifolds of dimension four. It is should be
very interesting to relate metric invariants defined by M.Gromov in
[24] to complete non-compact Ricci solitons. Actually one hope that
Ricci flow may also preserve some Mass invariants. As we showed in
[17], the Ricci flow does preserved the mass in locally asymptotic flat
manifolds. In [26], N.Hitchin computed Euler number for ALE mani-
folds of dimension four. The study of geometry and topology of open
4-manifolds is still a new field ([16], [23], and [18]).

As we mentioned at the very beginning, people want to classify Ricci
solitons. Then one may use the Ricci flow or mean curvature flow
method to attack geometric rigidity problems. The interesting new
problem arises. That is that one needs to prove the uniformization
theorems for Ricci solitons of expanding type. Clearly, it is also in-
teresting to study this kind problem for steady solitons which are as-
ymptotic flat manifolds. We made a small progress in our work [31]
by using a result done by S.Bando, A.Kasue, and H.Nakajima [6]. Our
main result in [31] says that if (M™", g) (n;2) is a complete non-compact
gradient Ricci soliton which is quasi-isometric to Euclidean space at in-
finity such that [, [Rc|"/? < +o0, then (M, g) is Ricci-flat and ALE of
order n — 1. We believe that this result (see Theorem 3 in [31]) can be
improved by using the weighted Sobolev spaces method. For compact
gradient shrinking Ricci solitons, R.Hamilton made a conjecture that
such a soliton with positive curvature operator must be Einstein. One
may see the recent work of Xiaodong Cao [14] for interesting identities
in this area.

Kahler-Ricci solitons are special cases from Ricci solitons. It is a
generally belief that Kahler-Ricci solitons are more rigid. In fact, there
are also many interesting results on uniformization problems on Kahler-
Ricci solitons. The existence results of Kahler-Ricci solitons was first
discovered by Koiso and H.D.Cao [14]. In [10], Chau and Tam studied
the uniformization theorem for gradient Kahler-Ricci solitons. Their



4 LI MA

result says that if (M™, g) is a complete non-compact gradient Kahler-
Ricci soliton of complex dimension n, which is either steady with posi-
tive Ricci curvature so that the sacalar curvature attains its maximum
at some point, or expanding with non-negative Ricci curvature, then
M™ is biholomorphic ro C™. Notice that the assumptions of this re-
sult are almost opposite to our main result above. In [9], R.Bryant
found more results for Kahler-Ricci solitons extending a result of Cao-
Hamilton [13]. L.Ni also found interesting results for Kahler-Ricci soli-
tons [34]. For the Kahler-Ricci solitons, one may improve our theorem
above.

2. SOME FACTS ABOUT EXPANDING RICCI SOLITONS

In local coordinates (z°) of the Riemannian manifold (M, g), we can

write the metric

g= gijdxidxj.
We let (¢¥) = (gi;)"' the inverse matrix of (g;;). The corresponding
Riemannian curvature tensor and Ricci tensor are denoted by Rm =
(Rijr) and Re = (R;;) respectively. Hence,

Rij = " Rigji
and

S = g”R”

We write the covariant derivative of a smooth function f by D f = (f;),
and denote the Hessian matrix of the function f by D*f = (fi;), where
D the covariant derivative of g on M. The higher order covariant
derivatives are denoted by fi;x, etc. Similarly, we use the Tj; ; to denote
the covariant derivative of the tensor (Tj;). We write T} = ¢**Tj;. Then
the expanding Ricci soliton equation is

Rij = fij + cgij,
where ¢ < 0. Taking the trace we find that
(2) s =Af +nc,

where A is the Laplacian of the metric g.
We now do computation in normal coordinates at some point p.
Taking covariant derivative we get

fijk = Rijk-
So we have
fije = fikj = Rijr — Rinj-
By the Ricci formula we have that

fijk - fz'kj - Ri]kfl
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Hence we obtain that
Rij,k - Rik,j = Rijkfk
Recall that the contracted Bianchi identity is
1

Rijj = 3si-

Upon taking the trace of the previous equation we get that
1
=8 + Rffk = 07
2

ie.,

(3) s = —2R]f;.

Then

Dy(IDf? + s+ 2¢f) = 2f;(fir + cgje — Rjx) = 0.
So, [Df|*+s+2cf is a constant, which is denoted by A. In other term,
we have

(4) s+ |VfI*+2cf = A

We now formulate some well-known formulae for Corlformal metrics
(see [?] and [8]). Let 5 be the scalar curvature and let V the covariant

derivative of § = r2g respectively. Set
u = —(=2)/2

Then g = u*™2g and

_ne2, 4(n—1) 4 ~
= n—2 _—A
) s V)

where A is the Lapacian of the metric § (with the sign A = d?/dx? on
the real line R). By direct computation, we have from (5) that

(6) s=2(n—1rAr —n(n —1)|Vr|* + srnt2/2
which implies that
(7) s=—n(n—1),

at r = 0 since |Vr|? = 1.
By an elementary computation we have

(8) Af=(2—-n)<Vr,Vf>+r’Af.
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3. PROOF OF MAIN RESULT

We now prove our main theorem. By our assumption, we can extend
the function f to the boundary » = 0. We may assume that f = 0 at
some point zg on r = 0. We first determine the constants ¢ and A.
Combining (8), (2) with (6), we find that

(2—n) < Vr,Vf>+r*Af + nc=s.
Using (7), we obtain that
c=—(n-1).

Using (4) and (7) again, and the fact f = 0 at xy on the boundary
r = 0, we have that

A= —n(n-1).

We now argue by contradiction. We assume that f is not a constant.
Otherwise, we are done. Recall that

Af=s+nn—-1)>0,on M

that is to say, f is a subharmonic function on M. By the strong
Maximum Principle ([5]) we know that f can not attain its maximum
in the interior of M. So we have

f<0,0n M.

We now consider any integral curve y(t) of the gradient vector fields V f
near the conformal boundary r = 0 such that v(t) — OM as t — +o0.
Recall our assumption that Re < 0 near r = 0. Using (3), we have that

d

9560 = ds(V ) = ~2ReAT .V 1) 2 0.
That is to say that s is non-decreasing along y(¢) as t — +o00. However,
by our assumption that s > —n(n — 1), we should have s = —n(n — 1)
on ~(t) for any ¢t. Using the strong Maximum principle again we must
that s = —n(n — 1) on M. This implies that f is a harmonic function

on M with boundary condition f = 0 at » = 0. Hence, f = 0 on M.
This is absurd. Therefore, g is a Poincare-Einstein metric. This proves
our main result.
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