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Abstract

In 2017, D. Horsman, C. Heunen, M. Pusey, J. Barrett, and R. Spekkens proved that there
is no physically reasonable assignment that takes a quantum channel and an initial state and
produces a joint state on the tensor product of the input and output spaces. The interpreta-
tion was that there is a clear distinction between space and time in the quantum setting that
is not visible classically, where in the latter, one can freely use Bayes’ theorem to go between
joint states and marginals with noisy channels. In this paper, we prove that there actually
is such a physically reasonable assignment, bypassing the no-go result of Horsman et al.,
and we illustrate that this is achievable by restricting the domain of their assignment to a
domain which represents the given data more faithfully. This answers an open question at
the end of their work, thus indicating the possibility that such a symmetry between space
and time may exist in the quantum setting.
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1 Introduction

Given a joint probability measure pxy on the direct product X x Y of two finite sets, one can
obtain the associated marginals px on X and py on Y by pushing these measures forward along
the projection maps tx : X x Y — Xand 7y : X x Y — Y, respectively. In addition, one also
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obtains stochastic maps (i.e., Markov kernels) pyjx : X — Y and pxjy : Y — X, called conditionals,
such that

Pyix(Yx)px(x) = pxy(x,y) = pxyy(xly)py(y)
for all (x,y) € X x Y. This allows one to convert a joint state, which is a state at a single time,
to an initial state together with a stochastic evolution in two distinct ways based on which
marginal is used as the initial state.

Conversely, given a probability measure px on X and a stochastic map pyjx : X — Y, one
obtains a joint probability measure pxy on X x Y by the formula

pPxy (%, y) = pyx (yx)px(x).

In fact, one can formalize this duality by stating a bijection between these data (modulo some
minor subtleties related to measure zero subsets) [2].

As such, one may view a joint state pxy in classical probability either as a state at a single
time whose subsystems are arbitrarily separated in space, or as a state over time associated with
stochastic evolution. Does such a symmetric treatment of space and time hold for quantum
systems, namely quantum states and quantum channels?

The question of when it is possible to go from joint states to marginals and channels was the
subject of [11], though that work only established the conditions needed when the marginals
were full rank density matrices and for a particular construction that was motivated by cate-
gorical probability theory [1,5]. The question of when it is possible to go from initial states and
channels to joint states was the subject of the work of Horsman et. al. [8], where they argued
that such a construction satisfying a collection of axioms they put forward is not possible. To-
gether, these arguments suggest that the symmetry between time and space that is available
(and often taken for granted) in the classical setting might no longer hold for quantum systems
and their evolution.

In this paper, we show that the no-go results of [8] can be bypassed, answering an open
question posed at the end of [8]. In particular, we show that there is a consistent assignment
from quantum channels endowed with initial states to joint states over time that satisfies the
axioms proposed in [8], where the states are represented by self-adjoint, as opposed to pos-
itive, density matrices. The way that the no-go result of [8] is bypassed is by restricting the
assignment to a domain that reflects the given data more faithfully, rather than demanding a
full binary operation as in [8]. Furthermore, we formulate the definitions, axioms, and theo-
rems for arbitrary hybrid classical/quantum systems (i.e., finite-dimensional C*-algebras) and
show how these specialize to the setting of purely quantum systems when restricted to matrix
algebras. As such, we work in the Heisenberg picture for the formulations of our results, but
we translate to the Schrodinger picture when specializing to the matrix algebra setting.

The main definition of a family of states over time function is given in Definition 2.8. It
contrasts with the definition of [8] in that it assumes exactly the data given in the domain rather
than assuming that such an assignment extends to a larger domain (for more on this comment,
see Remark 2.15). The main theorem in this paper is Theorem 2.13, which says that a family of
states over time function exists, which we prove via an explicit construction.
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2 From quantum channels and quantum states to joint states

Our results are formulated in the language of finite-dimensional C*-algebras to illustrate
the similarities between classical and quantum systems and to include all hybrid classi-
cal/quantum systems. Furthermore, we use string diagrams on occasion to provide visualiza-
tions of some concepts and proofs, which are sometimes more illuminating than the algebraic
manipulations of coordinate expressions. However, such string diagrams are not essential to
follow the main definitions and statements of results. The string diagrams we use are those of
quantum Markov categories [10] (in fact, quantum CD categories), and the reader is referred to
that work for a thorough introduction. A shorter summary of quantum Markov categories is
provided in [11]. Classical versions of Markov categories originated in the works [1,5], which
also provide adequate introductions.

Notation 2.1. If m is a natural number, then M, (C) denotes the C*-algebra of m x m matrices
with complex entries. The standard matrix units are denoted by Ej; (or EEJm ) for additional
clarity), while the identity matrix is denoted by 1,,. All C*-algebras in this work will be finite-
dimensional and unital, with the involution always written as f. As such, all C*-algebras A will
be multi-matrix algebras, i.e., A = @, cx Mm, (C), where X is a finite set and the m, are natural
numbers. If A is a C*-algebra, let py : A ® A — A denote the linear product map uniquely
determined by sending A1 ® A to AjA,. The unit in A is written as 14 and the unique unital
map from C to A will be denoted by !4. Meanwhile, i4 will be used to denote an inclusion
of A into another algebra with A as a tensor factor, suchas A - A®B. f F: B — Aisa

linear map, with A = @, .x Mn (C) and B = EBer My, (C), let Fyy denote the xy component

of F, i.e., the composite M, (C) — B LT M, (C), where 7, is the projection. Also,
let F* : A — B denote the Hilbert—Schmidt adjoint, which is the map whose yx component is
given by (F*)yx = (Fxy)* = Fy, where F{, is the usual Hilbert-Schmidt adjoint for linear maps
between matrix algebras, namely, it is the unique linear map satisfying

tr(AlFxy(By)) = tr(F;J(AX)T By)

for all Ay € M, (C) and By € My, (C). We will freely use the fact that a linear map is unital if
and only if its Hilbert-Schmidt adjoint is trace-preserving. Furthermore, alinearmap F: B — A
is f-preserving, aka self-adjoint (meaning F(B)! = F(B') for all B € B), if and only if its Hilbert-
Schmidt adjoint is {-preserving. The vector space of all linear maps from B to A is denoted
by Hom(B, A), while the affine subspace of {-preserving maps is denoted by Hom**(B, A). In
what follows, v : A ® B — B ® A will be used to denote the swap isomorphism. Every finite-
dimensional C*-algebra A = P, .x M, (C) has a unique positive functional tr : A — C, called
the trace, such that troy = tr and tr(1,, ) = my for all x € X. Its evaluation on an element of the
form @, . Ax is givenby } .y tr(Ay) in terms of the usual trace on matrices. Every functional
w : A — Cis given by tr(pf - ), where p := w*(1) € A is the density associated to w. The
functional w is f-preserving if and only if p is self-adjoint.

Definition 2.2. Let F : B — A be a linear unital map. The bloom of F is the unital map ir : A ®
B — A given by if := py o (id4 ® F). The swapped bloom of F is the unital map ri: A®B — A
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given by ri:= py o (F®idy) oy. The channel state associated with F is the unital functional on
A ® B given by
SNFl:=troip=tropgo (id®F).

The channel density associated with F is the element of A ® B given by
PIF = i(1a) = (id ® F) (13 (1))

and is the unique element of A ® B that satisfies . [F] = ’cr(.@[F]T - ). The channel state provides
a linear isomorphism . : Hom(B,A) — Hom(A ® B, C) sending F to .”[F] and the channel
density provides a linear isomorphism % : Hom(B,A) — A ® B sending F to Z[F]. These iso-
morphisms will both be referred to as the Choi—Jamiotkowski isomorphism [9]. For additional
clarity, these may also be written as . 4 3 and Z 4 .

Remark 2.3. In [8], the element Z[F] is called the ‘channel state” associated with F. We have
chosen to call this the channel density to allow for simpler generalizations to the C*-algebraic
setting of hybrid classical/quantum systems. We should also point out that the state/density
terminology is abusive for two reasons. First, the trace of Z[F] is not unity, i.e., the channel
state .7’[F] is not unital. Second, and more importantly, Z[F] (and likewise .7 [F]) need not be
positive. Nevertheless, the terminology is chosen to be somewhat consistent with that of [8]
(though what we call “density” is what [8] calls a ‘state’).

Remark 2.4. The channel state could have equivalently been defined in terms of the swapped
bloom as .’[F] = tr o fi. The fact that these two are equal is a consequence of the properties of
the trace. Furthermore, it will often be useful to depict this via string diagrams as

where _L denotes the trace, which is the Hilbert-Schmidt adjoint of {4 = T Note that if A =
D, cx M, (C), then
= Z mX

xeX

\H—“\

gives the dimension of the underlying Hilbert space for A. Furthermore, note that if we set

= 4 and N = R

where /i\ is the Hilbert-Schmidt adjoint of \\T/, then the Choi—-Jamiotkowski isomorphism is
easily seen to be an instance of the zig-zag identities from categorical quantum mechanics [3,7].

Example 2.5. When A = M;,(C) and B = M,(C), the channel density from Definition 2.2 is
the matrix given by

Z[F] = (id @ F) (1 (1)) = Z Eg“) ® F*(Ej({“)),
ij
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which reproduces the definition from [8, Section 2(a)].! In particular,
m
Zlida) = 1 (1n) = Y EY @ ELY.
i

Definition 2.6. A pair (F, w), where F: B — A and w : A — C are linear, is effectively classical,
or has a classical model, iff there exist commutative C*-subalgebras A, C A and B, C B, a
linear map Fy : By — Ag, and conditional expectations® E4 : A — Ag and Eg : B — B such
that

wioky = w, (woF)joEg =woF, and F=jgoF 0Eg,
where j4 : Aq — A is the inclusion, and where | is used to denote the restriction, i.e., w; :=

wojgand (woF); :=woFojg.

The first two equations in Definition 2.6 say that the conditional expectations are state-
preserving, i.e., they are particular disintegrations in the terminology of [6]. The last condition
is more easily visualized as the commutative diagram

Fcl

Bcl -Acl
EB] JiA
B 7 A

and encapsulates the fact that the quantum dynamics actually factors through a classical sys-
tem. The conditional expectation condition also guarantees that the composite of effectively
classical channels factors through the composite of the underlying classical channels. This is
not relevant for the main statement of our theorem and is therefore addressed later in Propo-
sition 3.2. The motivation for Definition 2.6 comes from the argument often provided in the
physics literature that density matrices and channels that can be ‘simultaneously diagonalized’
are classical. The precise statement is given in the next proposition, the proof of which is given
in the next section.

Proposition 2.7. In the notation of Definition 2.6, let A = My (C) and B = My (C), and suppose w
and F are t-preserving. Write w = tr(p - ) and woF = tr(0 - ). Then, a classical model for (F, w)
exists if and only if there exist orthonormal bases {e;} for C™ and {ey} for C™ such that p and © are
diagonal in these bases and the channel density 2[F] associated with F is diagonal3 in the basis {e; ® €y}.
Furthermore, if these equivalent conditions hold, then [Z[F],p ® 13] = 0.

Definition 2.8. Let x be a family of functions that assign to any pair of finite-dimensional C*-
algebras A and B a function » : Hom(B, A) x Hom(A, C) - Hom(A ® B, C) taking any linear

IThere is a small typo in the formula from [8, Section 2(a)] since the matrix Eg| o should be an element of A @ B
and not B ® A.

2This means E 4 and E are positive unital and satisfy E4 0j4 =idy, and Eg ojg =idgp . See [6] for further
properties.

31t suffices to assume that p and Z[F] are diagonal in these bases since 8 = F*(p) will be diagonal as a conse-
quence.



map F : B — A and linear functional w on A to a functional Fx w on A ® B and satisfying the
following conditions.

(a) (Hermiticity and unitality) If (F, w) is in Hom®* (B, A) x Hom*(A,C), then Fx w is in
Hom®** (A ® B,C). If F and w are both unital, then F x w is unital.

(b) (Preservation of probabilistic mixtures/convex bi-linearity) Given any A € [0,1] together
with maps F, G € Hom(B, A) and w, § € Hom(A, C), the equalities

(AF+(1—7\)G>*w:A(F*w)+(1—7\)(G*wJ

and
F <7\w+(1—7\)£> —AFxw)+ (1—A)(Fx&)

hold.
(c) (Preservation of classical limit) If the pair (F, w) is effectively classical, then Fx w = w o if.

(d) (Preservation of marginal states) The initial and final functionals are recovered from the
joint functional in the sense that

(Frw)oig =w and (Fxw)oig =woF.

(e) (Compositionality/associativity) Given a composable pair of unital maps € S 85 Aand
a unital functional w on A,

(1, ®G) % (Fxw) = (Yﬁ,lme [(!A 9G) * (yA,B[F])]) - w.
Such a family is called a states over time function.

The explanation for why the compositionality /associativity formula looks so complicated,
but is in fact rather straightforward, will be given in Remark 2.11. In short, it follows from the
two natural ways of pairing the construction of states over two successive times and only looks
complicated due to the natural isomorphisms coming from the Choi-Jamiotkowski isomor-
phism. Secondly, although our preservation of the classical limit axiom is expressed differently
than in [8], it is equivalent to it by Proposition 2.7 on the domains for which a family of states
over time function is defined.

Remark 2.9. The terminology ‘a family of states over time’ is a bit abusive because we are only
requiring that the functionals are f-preserving and unital, rather than positive. Note that this
is the same restriction imposed in [8]. In other words, there are situations where one might
begin with a positive (even completely positive) unital map together with a state and end up
with a joint functional that is not a state, i.e., it is not necessarily positive. It is an open question
whether one can obtain a genuine family of states over time where all maps remain positive
under some operation satisfying similar, perhaps slightly weakened, axioms (see Section 5 for
more details).



Remark 2.10. Rather than requiring a family of states over time function to be defined as a
family of functions of the form Hom(B, A) x Hom(A,C) — Hom(A ® B,C), we could have
required it to be a family of functions of the form Hom* (B, A) x Hom*(A,C) - Hom* (A ®
B,C) so that Hermiticity is in the very definition of the family. However, one can see that
by arguments completely analogous to those in the proof of [8, Lemma 4.3], any such function
uniquely extends to a function Hom(B, A) x Hom(A, C) — Hom(A ® B, C) satistying the same
properties, in fact complex bi-linearity. This is achieved by splitting an arbitrary morphism
F:B — A into its Hermitian and anti-Hermitian parts via F = % (F+ftoFot)+ % (F—foFot).
Thus, we lose no generality in defining a family of states over time function on all linear maps
as opposed to the subspace of {-preserving ones.

Remark 2.11. The formula for associativity looks rather complicated because of the way in
which we have formulated our definition by avoiding the usage of a binary operation and is
one of the two reasons why we are able to bypass the no-go result of [8] (see Remark 2.15 for
more details). The formula comes from trying to pair the three different factors in the two
possible ways, i.e., the diagram

(la® - )xF 4,3 xid

Hom(C, B) x Hom(B, A) x Hom(A,C) Hom(C, A® B) x Hom(A ® B,C) x Hom(A,C)

lidx* *xid
Hom(C, B) x Hom(A ® B,C) Hom(A® B®C,C) x Hom(A,C)
j“ﬂ@ ) xid L g ge Xid
Hom(C, A® B) x Hom(A ® B,C) Hom(B ® €, A) x Hom(A, C)
\ /
Hom(A ® B® C,C)

must commute. Note that the Choi-Jamiotkowski isomorphisms .7 are used to transform chan-
nels into joint states, while the inverse transforms joint states back into channels. Furthermore,
the inclusion ! 4 is used to guarantee that the domains and codomains match so that the x opera-
tion can be applied. In other words, ignoring these canonical maps, one sees this as associativity
of x. Interestingly, when we extend such a % function to include channels in its second argu-
ment in Section 4, we will find that the associated formulation of associativity takes a much
simpler form, as it will no longer be necessary to use the Choi-Jamiotkowski isomorphism in
its description.

Remark 2.12. We can express the associativity of x in a manner that is even more closely re-
lated to associativity in the usual sense as follows. First, note that by the Choi-Jamiotkowski
isomorphism, Hom(B, A) = A ® B. Furthermore, since Hom(A,C) = C® A = A, we can
include this into A @ B. In this way, one can imagine an extension of  to a binary operation
®:(A®B) x (A®B) = A® B that agrees with x on the subspace (A ® B) x (A ® C), and like-
wise for other C*-algebras and their tensor products. Once all these identifications are made,
commutativity of the diagram in Remark 2.11 reads

71026l ® ((7F@ (p@1s) @1e) = (712Gl @ (7F @1e) ) ® (p@ 15 Te).
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Without writing any of the identity matrices and without writing the inclusions out explicitly,
the above formula reduces to

7[Gl® (2[F®p) = (Z(Gl® 2[F) ®p,

which looks more like associativity in the usual sense, and in fact coincides with the expression
that can be found in [8]. Though perhaps more cumbersome, the benefit of our approach of
specifying the domains and codomains more precisely, as well as specifying exactly when the
Choi-Jamiotkowski isomorphism is being used, is that we will bypass the no-go result of [8],
as will be discussed in Theorem 2.13 and afterwards.

Theorem 2.13. A family of states over time function exists.

Proof. GivenF:B — A and w : A — C, the assignment

F
F*w:%(woip—kwo Fi) E% +
H N\

satisfies all the required conditions. A detailed proof that this indeed satisfies all the axioms is
deferred to Section 3. n

Remark 2.14. The assignment in the proof of Theorem 2.13 is given by the Jordan product when
expressed in terms of the corresponding densities, as described in Lemma 3.6 below.

Remark 2.15. Theorem 2.13 seems to contradict the results of [8]. However, as mentioned in
Remark 2.12, there are two reasons for this. First, notice that the domain (A ® B) x (A ® B) of the
family of states over time function in [8] (what we called ® in Remark 2.12) is much larger than
is necessary for the definition to be made. The authors of [8] then demanded the five axioms to
be valid on this larger domain, rather than the domain (A ® B) x A, as we have. The second
reason, which will be explained in more detail in Section 4, is that the extension of the classical
limit axiom as formulated in [8] to the larger domain is more stringent than our extension based
on our definition of a classical model. By using only the data given (a channel together with a
state), and by using less structure that is nevertheless sufficient to make sense of such a family
of states over time function, we have been able to bypass the no-go theorem of [8]. It should
be pointed out that the authors of [8] were well aware of the fact that the Jordan product on
qubits is associative on the required matrices involved when they discussed the Fitzsimons—
Jones—Vedral (FJV) construction [4]. However, they nevertheless demanded a binary operation,
so that the Jordan product is no longer associative, and this is what forced their no-go result.

3 Proofs and relevant results

This section contains proofs of all statements made, including the proof of the main theorem.
Some lemmas are included as separate statements and a proposition regarding the composi-
tionality of classical models is given.



Proof of Proposition 2.7.

(<=) Suppose there exist orthonormal bases {e;} and {¢;} as in the assumptions of the reverse
claim. Let Py = le;)(eil and Qx = [ex)(ex| be the corresponding one-dimensional projection
operators. By assumption, there exist numbers p;, qy, fii € R such that

!
M-
=
™
®
o
=

m n
p=) PPy,  0=) qQu and 9IF
i=1 k=1
By Example 2.5, the last equality for the channel density entails
n
F(lej) (eil) = 8y5F*(Py) = Z 85Tk Qx
k=1
foralli,j € {1,..., m}. Therefore,

F(lex)(ell) = 8 Zf_kipi

i=1
for all k,1 € {1,...,n} by the definition of the Hilbert-Schmidt adjoint (since the fy; are real,
fii = i), since this definition satisfies

M) ey _ /e(m) (n) s pm)y M)\ _ % (M T (n)
tr (Eijm F(Ea )) = <Ej§“ JF(Ea )> = <F (Ej;n ), B > =tr (F (Ej;n) Ek?)
foralli,j € {1,...,m}and k,1 € {1,...,n}. From this, we can define the required conditional
expectations and classical maps. First, we set Ay := span,{Pi} and B, := span, {Qy}. These

are commutative unital C*-subalgebras of A and B, respectively, due to the orthonormality and
spanning assumptions on {e;} and {ey}. Next, define F, : B4 — A by specifying

m
Fa(Qu) =) fuiPy
i1

for all k and then extending linearly. The conditional expectations E4 : A - Agand Eg : B —
B are defined by

m n
Ea(A) =) PAP; and Ep(B):=> QiBQk.
i=1 k=1
From this, the required conditions of a classical model are all readily checked. Indeed, one has
m
(jaoFaoEg)(lex)(ell) = (Ga o Fa)(81aQxk) = & Zf_kipi = F(lex)(e1l),
i=1
as needed. The state-preserving condition for the conditional expectations is immediate.

(=) Suppose a classical model exists. Then by all the assumptions, there exist orthogonal pro-
jections (not necessarily rank 1) {P;} in A and {Qy} in B together with coefficients {p;} and {qy}
such that

Aq =spani{Pi}, By =span, {Qx}, w(Pi)=7p;, and (woF)(Qy) = qi.
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Since E 4 and Eg are conditional expectations into commutative C*-algebras, there exist positive
functionals ¢; : A — C and P : B — C supported on P;AP; and QxBQy, respectively, such
that

Ea(A) =) &i(PAPYP; and  Egp(B) =) r(QiBQi)Qx.
i k

Such functionals are necessarily represented by positive matrices o; € PiAP; and tx € QxBQx
satisfying

by =tr(o;-) and Wy =tr(tk ).
By the assumption that the conditional expectations E4 and Eg are state-preserving, we con-
clude that p and 6 are (orthogonal) linear combinations of these matrices, namely

p=) poy and 0=) G
i K

Since p and 0 are self-adjoint, o; and Ty are self-adjoint as well. As such, let {|eiy,)} and {|exp, )}
be orthonormal bases diagonalizing the o; and Ty, respectively. Thus,

P=) Pi) Sixlein)(€ig] and 0= qi) tplexg,)(exp,l
i xq

k B

have been diagonalized in terms of the real coefficients {s;, } and {tyg, }. In particular, note that

P, = Z lein, ) (ei;] and  Qx = Z l€xp. ) (€xl

o B

provide orthogonal rank 1 decompositions of the projection operators describing the commu-
tative subalgebras. Now, since F : By — A is linear and {-preserving, there exist numbers
fri € R such that

Fa(Qu) =D fiiPs

for all k. By the assumption that F = j4 o F o Eg together with all the consequences derived
thus far, we find

F (lexg, ) (€1y,]) = (Ga o Fa) <5kltf(Tk\€kf5k>(€wJ) Qk) = 81108 vy tip, (Ga © Fa) (Qi)

= 01108, v tkpi Z fiPi = dx108, vy tkpy Z i Z €1, ) (€ioc; -
- .

1 4
By a similar Hilbert-Schmidt adjoint calculation as in the proof of the («) direction, this shows
that Z[F] is diagonal in these bases.
Finally, the claim that [Z[F], p ® 1] = 0 follows from these equivalent conditions by simul-
taneously diagonalizing Z[F] and p ® 1. [

Remark 3.1. The proof of Proposition 2.7 shows ) | fy; = 1 if F is unital and fy; > 0 if Fis
positive. Hence, if F is positive and unital, then the collection fy; determine a stochastic matrix.
Analogous statements hold for p and 6 if w and w o F have analogous properties.
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After Definition 2.6, it was claimed that the definition of a classical model was made so as
to preserve compositionality. This is stated more precisely in the following.
woF

Proposition 3.2. Suppose (B LN A,A S C)and (G S, B, B —— C) have classical models (B E

Aq, B, Ep) and (Cq ~% By, Eh, Ee). Then (€ <5 A, A % C) has (Cq %% Ay, Ee) asa

classical model.

Remark 3.3. Note that the two conditional expectations Ej; need not equal Eg in Proposition 3.2,
but they are almost everywhere equivalent. None of these subtleties arise if all densities have
full rank. See [6] for details.

Proof of Proposition 3.2. The state-preservation conditions hold by assumption, while the factor-
ization follows from

jao(FaoGa)oke =jgoFqoEgojgoGoke =FoG. u
Lemma 3.4. In terms of the notation from Definition 2.2, if F is {-preserving, then the associated channel

density is self-adjoint (equivalently, the channel state is t-preserving).

Proof. This follows from the fact that F is {-preserving and 4 is f-reversing, namely pq 01 =
T oy oy, where v is the swap map. In more detail,

((id ® F) (u;(u)))T = (id ® F) (1w (14)" = (id ® F) (y(u;(ﬂﬂ))) = (id ® F*) (1 (14)).
Equivalently,

where the first identity follows from the properties of the trace, and where % denotes the invo-
lution (cf. [10]). [ |

Lemma 3.5. Given linear maps F : B — A and w : A — C, the densities associated with w o ir and
wo riare (p® 1) Z[F] and Z[Fl(p ® 1), respectively, where p := w*(1) is the density associated
with w via w = tr(pf - ).

Proof. We prove one of these claims as the other is completely analogous. Indeed, by using the
cyclicity property of the trace and the definition of the Hilbert-Schmidt adjoint,

tr(((p@lB)Q[F])TAQbB) tr( ((idy ® F* uﬂ(lﬁ))T(pTAQ@B))
= tr(Wwa(10)! (p'A 2 F(B)))

tr(ﬂluﬂ pTA®F(B))>
= tr(p' AF(B))
— (woip)(A®B).

(=g
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Since A € A and B € B are arbitrary and since the trace is non-degenerate, the density associ-
ated with woiris (p ® 1¢) 2[F. [ |

Lemma 3.6. Given unital t-preserving maps ¥ : B — A and w : A — C, one has
woipof=fowo i and worgiof=fowolif.

In particular, the functional Fx w := Y(w o ip+w o i) is unital and t-preserving and has a density
given by the Jordan product of the channel density together with the density p representing w, i.e.,

(Frw) (1) = (0@ 1) 2 + ZF(p@15)).

Proof. The two identities immediately follow from Lemma 3.4, Lemma 3.5, and

(p®13) 2[F) = 2[Al (p o 1s) = 2[Fl(p @ 14).

The {-preserving property follows from this. The unitality follows from the fact that the com-
posite of unital maps is unital. The formula for the density in terms of the Jordan product
follows from the first two identities and Lemma 3.5. |

Lemma 3.7. Let F: B — A and w : A — C be unital linear maps. Then
woiroly =w = wo fioiy and woifolg =woF = wo fioig.
Proof. The proofs are straightforward calculations. For example,
(woipoig)(A) = (wopgo(idg @F)oig)(A) =w(AF(1z)) = w(Aly) = w(A)
and
(wo pioig)(A) = (wopgo (F@idy) oy oin)(A) = w<m(F(1B)A)> = w(F(1)A) = w(A)

for all A € A. A similar calculation holds for the second set of claims. The calculations are
easily visualized using string diagrams. For example, the two we just showed are given by

Note that unitality of F was used here. n

Proof of Theorem 2.13.

(a) This follows from Lemma 3.6.

12



(b) This follows from the linearity of ir and i in the argument F as well as linearity of w.
Indeed, writing F x w out more explicitly as

1
F*w:E(wouAO(id®F)+wOLLAO(F®id)OY>

shows that in fact each term on the right-hand-side depends linearly on both F and w.

(c) In what follows, we will prove w o fi = w oif. We will use string diagrams for an ele-
gant proof. It will use the fact that state-preserving conditional expectations are Bayesian
inverses [6], and it will also crucially use the fact that s, oy = pg,, which only holds for
commutative C*-algebras. We implement the notation of Definition 2.6. The calculation

implies the claim.
(d) This follows from Lemma 3.7.

(e) The proof of associativity will be achieved by showing commutativity of the diagram in
Remark 2.11. Following along the left-hand-side of that diagram results in

[Bpw)==|Te i+

I*
|

13



Meanwhile, following along the top and right side of the diagram in Remark 2.11 gives

R I R

*xid
—_—

N —

1 .
YA,B@(? xid

I*
S =

14




By comparing these two results and using string-diagrammatic manipulations, we imme-
diately see that they are equal. n

Remark 3.8. When expressed in terms of densities, the preservation of classical limit axiom fol-
lows from the fact that the densities Z[F] and Z[w] ® 13 commute, while the associativity axiom
follows essentially from the fact that the densities 14 ® Z[G] and Z[w] ® 13 ® 1¢ commute.

4 Extension to channels

The graphical proof of Theorem 2.13 is easily seen to be independent of whether w is a state or
a channel. More precisely, if one defines

Hom(C, B) x Hom(B, A) = Hom(C, A ® B)

(G,F) — % (Foig+Fo gi)

(4.1)

(bypassing the Choi-Jamiotkowski isomorphism altogether), then the proof of Theorem 2.13
goes through without any changes. This seems to go against the no-go theorems of [8]. The
resolution to this seeming paradox comes from the “preservation of classical limit" axiom. We
have shown that our formulation of this axiom is equivalent to the one of [8] when dealing with
turning a channel plus state into a joint state (cf. Proposition 2.7). However, when extending
our definition of a classical model (Definition 2.6) to channels, as opposed to just states, we
find that our definition is inequivalent to the axiom of commutativity enforced in the no-go
theorems of [8]. Thus, by using categorical reasoning and the framework of quantum Markov
categories [10], we are able to bypass the no-go theorems of [8]. The present section will illus-
trate how this works.

Notation 4.2. In all definitions made before, wherever a linear functional w : A — C appears,
the same exact definition is now made for a linear map w : A — Z, where Z is some finite-
dimensional C*-algebra. For example, a classical model for a pair (B LAAL Z) consists of
commutative C*-algebras j4 : Aq — A, jg : Bgq — B, conditional expectations E4 : A — A,
Ep : B — By, and a linear map Fq : By — Ag such that?*

F=jaoFqoks, w=wjoky, and woF = (woF)okg,

where the | subscript means restriction to the commutative subalgebras. The only difference in
notation/terminology between this section and the previous sections is that a ‘family of states

4As in the case of states, wo F = (w o F) 1 o Eg is a consequence of the other two conditions.
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over time function’ is replaced with a ‘family of channels over time function.” Again, this is
slightly abusive terminology since channels here need not be positive. Note, however, that the
compositionality /associativity axiom can now be formulated much more simply without ever
even using the Choi-Jamiotkowski isomorphism. Namely, it says that the diagram

Hom(C, B) x Hom(B, A) x Hom(A, Z) &Hom(ﬁ ®C,A) x Hom(A, Z)
(lg® - )xx* *

Hom(C, A® B) x Hom(A ® B, Z)

Hom(A® B ® C,2Z)

commutes, i.e.,
(GxF)xw = (14 ®G) * (Fx w).

Proposition 4.3. Given {-preserving linear maps (B HA,A Z.), the following are equivalent.

i. The identity w o if = w o i holds.

ii. The densities 19 @ 2[F] and Z[w] @ 1 commute, i.e., [12 ® 9, 2lw] @ 13] =0.

Furthermore, if the pair (F, w) admits a classical model, then items i and ii hold.

Remark 4.4. Note that when Z = C, Proposition 4.3 provides a strengthening of Proposition 2.7.
In addition, Proposition 4.3 illustrates in what sense a certain commutativity condition holds
when a system is effectively classical. This commutativity condition is what replaces the com-
mutativity condition in [8] and allows us to guarantee that a family of channels over time func-
tion exists (see Theorem 4.7 below).

Lemma 4.5. Let A = @, .x M, (C). Then
PMn (C) 2 D (Mm, (€ @M, (C),
xeX x! x"eX

the Hilbert—Schmidt adjoint of the multiplication map, is given explicitly by the formula

(H;{)(X/,X”)X(A) = Oy’ Oxx Z AijESle) X E](J]-nX)
ik

forall A € M, (C) and for all x,x',x" € X. Here, Ay denotes the ij-th entry of A with respect to the
standard basis.

Proof of Lemma 4.5. This follows from the fact that (p14)y(y ) Vanishes unless x = x’ = x”, the
definition of the Hilbert-Schmidt inner product, and the fact that multiplication is computed

component-wise. |

The following lemma generalizes Lemma 3.5.
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Lemma 4.6. Given linear maps (B LN AA 2 2),
Iwoif]l = (2wl ®13) (12 © 2[F) and  Dwo fi] = (13 ® 2[F) ( Zlw] ® 13).

Proof of Lemma 4.6. By the distributive property of ® and © along with Lemma 4.5, it suffices
to assume the algebras are matrix algebras. Set wg « € C to be the unique numbers satisfying

W*(Epe) = ZU El) for all &, 3. Then
Dlwoif] = (ldz®(wopﬁo(1dﬂ®F ) ZE p®Epx

= (idz ®ida ® F) | ) Eop @ W (0" (Epa))
o,

= (idz @ida®@F) [ ) > wE“EaB ® wy (Ey)
B i

= Z Z (,UU EO‘B ® Eix ®F*(Ek))

B ijk

Meanwhile,

(2wl ®13) (12 @ Z[F]) = ) Y Eup @ w*(Epa)Eyj @ F*(Ej)
«pB i

=> ) wfhEg® (Euky) © F(Ej)

B ikl 511Ek]

= Z Z w](gi:xE(Xﬁ & Ekj ® F*(Ell)

B i,jk

By relabelling the dummy indices, the two expressions are seen to be the same. The other
identity follows from similar calculations. [

Proof of Proposition 4.3. The proof of the last claim implies item i follows exactly the same argu-
ment as in the proof of the ‘preservation of classical limit” in Theorem 2.13. The equivalence
between item i and item ii follows from Lemma 4.6. [

Theorem 4.7. A family of channels over time function exists and (4.1) provides an explicit construction.

Proof. The proof is completely analogous to the proof of Theorem 2.13. [
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5 Discussion

In this paper, we constructed a consistent way of associating a joint ‘state” on A ® B with ev-
ery state on A and a quantum channel® A — B, in such a way that by-passes the no-go result
of [8]. The reason ‘state’ is in quotes is because the associated joint matrix is only self-adjoint
in general, but is not necessarily positive. Therefore, we have not answered the more phys-
ical question of whether there exists a consistent manner of associating a genuinely positive
joint state to an initial (positive) state and a positive (perhaps even completely positive) map.
In particular, we do not know whether there is such an assignment satisfying the axioms we
have outlined that also includes such a positivity constraint. Furthermore, although we have
provided a construction of a family of states over time function, we have made no claim as to
the uniqueness of such an assignment. In particular, we do not know if the Jordan product
provides the unique function that satisfies these axioms.

An interesting aspect of our work is that the proof of the main theorem was provided in
the setting of (enriched) quantum Markov categories [10]. The proof itself also illustrated a
natural generalization to channels, where the “preservation of the classical limit” axiom of [8]
was replaced by an alternative one that allowed us to bypass the no-go result of [8]. It seems
reasonable to suspect that extensions to certain von Neumann algebras are possible, though
this is only a speculation. We leave this question to the interested reader.

Yet another question that arises as a result of our theorem is related to quantum condi-
tionals, which can be viewed as the opposite procedure to the one described in this work. In
particular, if one is given a joint state, can one find a process for which the joint state can be
expressed in terms of this process and its marginal? In [11], it was shown that one can express a
joint state Con A ® B as ( = w o ir for some positive F, and where w = (o iy, if and only if some
non-trivial condition holds. The results of this paper suggest that perhaps one should change
the question to the existence of a positive F such that { = 1(w o if +w o fi). It is not presently

known if such a symmetrization procedure allows more conditionals to exist.

Acknowledgements. The authors thank Robert W. Spekkens for answering their questions
regarding [8] and Chris Heunen for helpful suggestions.
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